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ABSTRACT
In smoothed particle hydrodynamics (SPH), artificial viscosity is necessary for the correct
treatment of shocks, but often generates unwanted dissipation away from shocks. We present
a novel method of controlling the amount of artificial viscosity, which uses the total time
derivative of the velocity divergence as shock indicator and aims at completely eliminating
viscosity away from shocks. We subject the new scheme to numerous tests and find that
the method works at least as well as any previous technique in the strong-shock regime,
but becomes virtually inviscid away from shocks, while still maintaining particle order. In
particular sound waves or oscillations of gas spheres are hardly damped over many periods.
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1 IN T RO D U C T I O N

Smoothed particle hydrodynamics (SPH) is a Lagrangian method
for modelling fluid dynamics, pioneered by Gingold & Monaghan
(1977) and Lucy (1977). Instead of discretizing the fluid quan-
tities, such as density, velocity and temperature, on a fixed grid
as in Eulerian methods, the fluid is represented by a discrete set
of moving particles acting as interpolation points. Because of its
Lagrangian nature, SPH models regions of higher density with
higher resolution with the ability to simulate large dynamic ranges.
This makes it particularly useful in astrophysics, where it is used
to model galaxy and star formation, stellar collisions and accretion
discs.

The core of SPH is the kernel estimator: the fluid density is
estimated from the masses mi and positions xi of the particles via1

ρ̂(xi) = ∑
j mj W (|xi − x j |, hi), (1)

where W is the kernel function and hi the SPH smoothing length2 for
the ith particle. Similar estimates F̂ (x) for the value of any field F(x)
can be obtained from its discretized values Fi. By applying these
estimators to the fluid equations governing mass, momentum and
energy, discrete equations for the SPH particle positions xi and other
properties (such as internal energy ui) can be obtained. Together with
an appropriate time integration method, these constitute a concrete
SPH scheme.

Unfortunately, this process is not unique and since its inception
the SPH method has undergone many refinements such as indi-
vidual particle smoothing lengths and viscosities, as well as many

�E-mail: walter.dehnen@astro.le.ac.uk
1 We use the symbol ˆ to denote a local estimate – in many SPH-related
publications the distinction between actual and estimated quantities is not
clearly made, confusing the discussion.
2 In this study we use the convention that the kernel has finite support of one
smoothing length radius, i.e. W = 0 for |xi − xj| > h.

alternative derivations of the SPH equations, leading to a plethora
of SPH methods. While formally these various schemes differ only
in their error terms, their conservation and stability properties can
be quite different. This has lead to the unfortunate situation that the
shortcomings of a few such implementations are often blamed on
the general SPH concept per se.

However, Springel & Hernquist (2002) have pointed out that
SPH equations derived from a variational principle are not only
unique, but also conservative. Such SPH equations are most simply
obtained as the Euler–Lagrange equations derived from an SPH
LagrangianL representing the Lagrangian of the fluid system. Once
L is chosen, the SPH equations follow uniquely (see Appendix A2
for a typical example). Complementing these with a symplectic
integrator, such as the standard leapfrog, results in a SPH scheme
which by construction conserves the total mass, momentum, angular
momentum, energy and entropy.

The conservation of entropy means that SPH is dissipationless, as
demonstrated in Fig. 1. In real fluids, however, entropy increases in
shocks, where particle collisions randomize their velocities generat-
ing heat and entropy. This basic collisional mechanism is inherent to
all fluids (except for dust and collisionless plasma, which therefore
may not be considered fluids) and prevents the flow from becoming
multivalued. In SPH artificial viscosity is needed to dissipate local
velocity differences and convert them into heat, which generates
entropy and prevents interpenetration of SPH particles and thus a
multivalued flow.

Since the artificial viscosity required for this goal is usually much
stronger than the actual physical viscosity, it also causes unphysical
dissipation away from shocks. While it may be possible for certain
simulations to select the magnitude of the viscosity to minimize
such undesired dissipation, in general the adverse effect of artificial
viscosity is unknown prior to any simulation and, possibly, even
afterwards. For example, when simulating the effect of a perturbing
massive body on a pulsating star, it may be very difficult to distin-
guish this effect from that induced by artificial viscosity. Another
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670 L. Cullen and W. Dehnen

Figure 1. A 1D sinusoidal sound wave with velocity amplitude 10−4c and
γ = 1.4 propagated for 50 periods with SPH without artificial viscosity
using 100 particles and with a grid code (RAMSES; Teyssier 2002) using 128
cells (only every fifth particle or grid cell is plotted). Both methods preserve
the wave amplitude and period, demonstrating their dissipationless nature.

example is the case of a differentially rotating disc, where artificial
viscosity causes spurious angular momentum transport.

Since viscosity is a dissipative process, the corresponding SPH
equations cannot be derived from a variational principle, and we are
back to ad hoc methods for deriving them. Most SPH simulations
to date still use a rather simple artificial viscosity, which effectively
amounts to modelling a viscous fluid and quickly damps away any
oscillations, such as sound waves or stellar pulsations, and impedes
shear flows. While suggestions have been made to reduce such
unwanted dissipation, our goal here is to eliminate it. To this end
we introduce a novel method of controlling the amount of artificial
viscosity, such that away from shocks the modelled flow is virtually
inviscid.

Section 2 describes SPH artificial viscosity and previous efforts
to reduce its adverse effects, while our new method is outlined
in Section 3. The ability of the new scheme to reduce artificial
viscosity but also to capture shocks is demonstrated in Sections 4
and 5, respectively. Finally, Section 6 concludes our study.

2 R E D U C I N G U N WA N T E D A RT I F I C I A L
VISCOSITY

2.1 Standard SPH artificial viscosity

The traditional form of artificial viscosity (e.g. Monaghan 1992)
adds the following terms to the momentum and energy equations,
allowing the conversion of kinetic energy into heat:

(υ̇ i)AV = −
∑

j

mj �ij ∇iW ij , (2a)

(u̇i)AV = 1

2

∑
j

mj �ij υ ij · ∇iW ij , (2b)

with the average kernel

Wij = 1

2

(
W (|xij |, hi) + W (|xij |, hj )

)
. (3)

Here, xij ≡ xi − xj and υ ij ≡ υ i − υ j, while hi is the individual
adaptive smoothing length of each SPH particle (for details on how
hi is adapted see Appendix A1). The artificial viscosity term is given
by (Gingold & Monaghan 1983)

�ij =

⎧⎪⎨⎪⎩
−α c̄ij μij + β μ2

ij

¯̂ρij

for υ ij · xij < 0,

0 otherwise,

(4)

with

μij = h̄ij υ ij · xij

x2
ij + ε2

(5)

(h̄ij ≡ [hi + hj ]/2 and likewise for the average sound speed c̄ij

and estimated density ¯̂ρij ). Since �ij = 0 for receding particle pairs,
artificial viscosity does not affect expanding flows. This functional
form of SPH artificial viscosity may seem rather ad hoc, but it
is reasonably well motivated and emerged as the most useful one
amongst several methods (Gingold & Monaghan 1983). Moreover,
it is equivalent to the form of dissipation implicit in Riemann solvers
(Monaghan 1997).

By expanding density and velocity in a Taylor series around xi, it
is straightforward to show that these terms correspond to both a shear
and a bulk viscosity. More quantitatively, if one assumes that, other
than in equation (4), artificial viscosity acts between approaching
and receding neighbours and that β = 0, the corresponding shear and
bulk viscosity coefficients are (e.g. Meglicki, Wickramasinghe &
Bicknell 1993) η = (1/2)ακhcρ and ζ = (5/3)η, respectively, where
the factor κ is of order unity and depends on the functional form
of the kernel. This implies that artificial viscosity decreases with
increasing resolution (smaller h). Thus, a straightforward though
expensive way to reduce unwanted dissipation is to increase the
resolution. In fact, one motivation for reducing artificial viscosity
is to avoid this purely numerical necessity for high resolution.

Most SPH applications to date use the above treatment with α =
1. The widely used code GADGET-2 (Springel 2005) employs a fixed
α chosen at the start of the simulation (though Dolag et al. 2005
have implemented into GADGET-2 the improved method described
in Section 2.3). Clearly, in complex situations, where strong and
weak shocks are present as well as converging flows, any choice
for α is unsatisfactory, leading to bad treatment of strong shocks,
overdamping of converging flows, or both.

2.2 Balsara’s method

The purpose of artificial viscosity is to allow for entropy generation
across shocks and to stop particle interpenetration. To this end,
only bulk viscosity is required, but the inherent shear viscosity
is unnecessary. What is worse, this shear viscosity may seriously
compromise simulations of shear flows, such as in a differentially
rotating gas disc. In an effort to reduce the resulting artificial angular
momentum dissipation, Balsara (1995) proposed to multiply �ij

with a reduction factor f̄ij = (fi + fj )/2 with

fi = |∇·υ i |
|∇·υ i | + |∇ × υ i | (6)

(with velocity divergence and curl estimated using the SPH kernel
estimator). This term diminishes the effect of artificial viscosity
whenever the vorticity dominates the convergence. However, this
method only reduces (but does not eliminate) unwanted dissipation
in the presence of a rotating shear flow.

2.3 The method of Morris & Monaghan

Standard SPH artificial viscosity acts whenever the flow of the fluid
converges, even if only weakly. For example, when a pulsating star
contracts artificial viscosity damps its pulsation. Exactly the same
happens to ordinary sound waves: standard SPH viscosity damps
them, as demonstrated in Fig. 2, the faster the shorter the wavelength
(because these are more poorly resolved).
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Inviscid smoothed particle hydrodynamics 671

Figure 2. As Fig. 1, but for SPH with standard (α = 1) or Morris &
Monaghan (1997) artificial viscosity, as well as our new method (only every
fifth particle is plotted). Also shown are the undamped wave (solid) and lower
amplitude sinusoidals (dashed). Only with our method the wave propagates
undamped, very much like SPH without any viscosity, as in Fig. 1.

With this in mind, Morris & Monaghan (1997) proposed to adapt
the strength of artificial viscosity to the local convergence of the
flow. To this end, they introduced the concept of individual adaptive
viscosities αi for each particle, replaced α in equation (4) by ᾱij =
(αi + αj )/2, and set β ∝ ᾱij . The individual viscosities are adapted
according to the differential equation

α̇i = (αmin − αi)/τi + Si, (7)

with the velocity-based source term

Si = max{−∇·υ i , 0}, (8)

and the decay time3

τi = hi/(2ci). (9)

Here, αmin = 0.1 constitutes a lower limit for the artificial viscosity
such that αi = αmin for non-convergent flows. For a convergent
flow, on the other hand, αi grows above that value, guaranteeing
the proper treatment of shocks. In the post-shock region, the flow
is no longer convergent and αi decays back to αmin on the time-
scale τ i (typically  = 0.1–0.2). This method reduces the artificial
viscosity away from shocks by an order of magnitude compared
to standard SPH and gives equally accurate post- and pre-shock
solutions (Morris & Monaghan 1997).

More recently, Rosswog et al. (2000) proposed to alter the adap-
tation equation (7) to4

α̇i = (αmin − αi)/τi + (αmax − αi) Si, (10)

with αmax = 1.5, while Price (2004) advocated αmax = 2. The effect
of this alteration is first to prevent αi to exceed αmax and second to
increase α̇i for small αi, which ensures a faster viscosity growth,
resulting in somewhat better treatment of shocks (Price 2004). This
method may also be combined with the Balsara switch by applying
the reduction factor (6) either to �ij (Rosswog et al. 2000) or to Si

(Morris & Monaghan 1997; Wetzstein et al. 2009).
The scheme of equations (8), (9) and (10) with αmin = 0.1, αmax =

2 and  = 0.1 is the current state of the art for SPH and is imple-
mented in the codes PHANTOM (by Daniel Price) and VINE (Wetzstein
et al. 2009). In Sections 4 and 5, we will frequently compare our
novel scheme (to be described below) with this method and refer to

3 The factor 2 in the denominator of equation (9) accounts for the differ-
ence in the definition of the smoothing length h between us and Morris &
Monaghan (1997).
4 This is equivalent to keeping (7) but multiplying the source term (8) by
(αmax − α), which is what Rosswog et al. actually did.

it as the ‘M&M method’ or the ‘Price (2004) version of the M&M
method’ as opposed to the ‘original M&M method’, which uses
equation (7) instead of equation (10).

2.4 Critique of the M&M method

The M&M method certainly constitutes a large improvement over
standard SPH, but low-viscosity flows, typical for many astrophys-
ical fluids, are still inadequately modelled. After studying this and
related methods in detail, we identify the following problems.

First, any αmin > 0 results in unwanted dissipation, for example
of sound waves (see Fig. 2) or stellar pulsations (see Section 4.4),
yet the M&M method requires αmin ≈ 0.1. This necessity has been
established by numerous tests (most notably of Price 2004) and
is understood to originate from the requirement to ‘maintain order
amongst the particles away from shocks’ (Morris & Monaghan
1997).

Secondly, there is a delay between the peak in the viscosity α and
the shock front (see Fig. 3): the particle viscosities are still rising
when the shock arrives. One reason for this lag is that integrating
the differential equation (10) increases αi too slowly: the asymptotic
value

αs = αmin + αmax Siτi

1 + Siτi

(11)

is hardly ever reached before the shock arrives (and Si decreases).
Thirdly, the source term (8) does not distinguish between pre- and

post-shock regions: for a symmetrically smoothed shock it peaks at
the exact shock position (in practice the peak occurs one particle
separation in front of the shock; Morris & Monaghan 1997, see also
Fig. 3). However, immediately behind the shock (or more precisely
the minimum of ∇·υ), the (smoothed) flow is still converging and
hence α continues to increase without need. A further problem is
the inability of the source term (8) to distinguish between velocity
discontinuities and convergent flows.

Finally, in strong shear flows the estimation of the velocity di-
vergence ∇·υ, needed in (8), often suffers from substantial errors
(see Appendix B1 for the reason), driving artificial viscosity with-
out need. This especially compromises simulations of differentially
rotating discs even when using the Balsara switch.

3 A NOVEL A RTI FI CI AL V I SCOSI TY SCH EME

Our aim is a method which overcomes all the issues identified in
Section 2.4 and in particular gives αi → 0 away from shocks. To
this end, we introduce a new shock indicator in Section 3.1, a novel
technique for adapting αi in Section 3.2 and a method to suppress
false compression detections due to the presence of strong shear in
Section 3.3.

3.1 A novel shock indicator

We need a shock indicator which not only distinguishes shocks
from convergent flows, but, unlike ∇·υ, also discriminates between
pre- and post-shock regions. This requires (at least) a second-order
derivative of the flow velocity and we found the total time derivative
of the velocity divergence, ∇̇·υ ≡ d(∇·υ)/dt , to be most useful. As
is evident from differentiating the continuity equation,

−∇̇·υ = d2 ln ρ/dt2, (12)

∇̇·υ < 0 indicates a non-linear density increase and a steepening
of the flow convergence, as is typical for any pre-shock region.
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672 L. Cullen and W. Dehnen

Conversely, in the post-shock region ∇̇·υ > 0. This suggests to
consider only negative values and, in analogy with equation (8), we
define the new shock indicator

Ai = ξi max{−∇̇·υ i , 0}. (13)

Here, ξ i is a limiter, detailed in Section 3.3, aimed at suppressing
false detections of compressive flows in multidimensional flows.

3.2 Adapting individual viscosities

Instead of increasing αi by integrating a differential equation, we set
αi directly to an appropriate local value αloc,i whenever this exceeds
the current value for αi. After extensive experimenting, we settled
on the following simple functional form

αloc,i = αmax
h2

i Ai

υ2
sig,i + h2

i Ai

, (14)

with the signal velocity5

υsig,i = max
|xij |≤hi

{c̄ij − min{0,υ ij · x̂ij }}. (15)

At the moment of passing through a shock (more precisely through
a maximum of the flow convergence), A and hence αloc return to
zero and whenever αi > αloc,i we let αi decay according to

α̇i = (αloc,i − αi)/τi, τi = hi/2υsig,i . (16)

We use υsig,i rather than c in the decay time τ i for internal consis-
tency (this is of little practical relevance as υsig ≈ c in the post-shock
region). We use  = 0.05, such that the viscosity decays twice as
slowly as in previous methods, avoiding some occasional minor
post-shock ringing not present in methods with αmin > 0. However,
the traditional  = 0.1 also gives satisfactory results for most of our
test problems.

3.3 Avoiding false compression detections

As explained in detail in Appendix B1, in multidimensional flows
strong shear induces false detections of ∇·υ with the standard SPH
estimator even in the absence of particle disorder (noise). As shown
in Appendix B2, these errors can be reduced by first estimating the
velocity gradient matrix V ≡ ∇υ and then obtaining ∇·υ as its trace
(we employ a similar method to estimate ∇̇·υ, see Appendix B3).

Unfortunately, even with this improved method false detections
for ∇·υ (and ∇̇·υ) remain, for example in the situation of a differen-
tially rotating disc. These still induce artificial viscosity, which may
be significant in particular if cs/h is small compared to the shear.
The limiter ξ i in equation (13) is aimed at suppressing such false
detections by ξ i → 0 whenever the shear is much stronger than the
convergence and no shock is present.

Having obtained the velocity gradient matrix V, the shear is easily
obtained as its traceless symmetric part S≡ (V +Vt)/2 − ν−1(∇·υ)I
(with ν the number of spatial dimensions), while the presence of a
shock is indicated by

−1 ≈ Ri ≡ 1

ρ̂i

∑
j

sign(∇·υj ) mj W (|xi − xj |, hi), (17)

5 Various definitions for the signal velocity can be found in the SPH liter-
ature. Ours reflects the maximum velocity with which information can be
transported between particles, but avoids υsig,i ≤ 0.

since near a shock ∇·υ < 0 for all particles. After some exper-
imenting, we found the following functional form for the limiter
suitable:

ξi =
∣∣2(1 − Ri)4 ∇·υ i

∣∣2∣∣2(1 − Ri)4 ∇·υ i

∣∣2 + tr
(
Si ·St

i

) . (18)

This functional form is similar to the Balsara limiter (6) in that it
compares the flow convergence to a measure of the traceless part of
the velocity gradient (the shear or the vorticity).

Alternatively, if one can be sure that no strong shear flows occur
during the simulation, one may use the standard SPH estimator for
∇·υ and estimate ∇̇·υ from its change over the last time-step. How-
ever, the limiter is still desirable and one may use |∇ × υ|2 instead
of tr (S ·St) in equation (18). We do not use this simplified version
in the tests presented below, but our experiments indicate that such
a method would pass all our tests except those of Sections 4.3 and
5.3, both involving strong shear.

3.4 Behaviour in typical situations

Before considering 2D and 3D test problems, we now assess the
behaviour of our novel scheme, as well as that of the M&M method,
in simple yet typical situations.

First, consider a sound wave of velocity amplitude υs 	 c and
wave number k 	 h−1 as example of a well-resolved weakly con-
vergent flow. In this case, A 
 k2cυs and S 
 kυs at their respective
maxima. Since υsig 
 c � υs we have αloc 
 αmaxh2k2(υs/c),
while for the M&M method the asymptotic value αs 
 αmin + αmax

hk(υs/c)/2. In the limit kh → 0 of a well-resolved wave, αloc →
0 faster than αs → αmin, such that even with αmin = 0 the M&M
method would be more viscous than our new scheme. Fig. 2 shows
1D sound-wave SPH runs, demonstrating that our new scheme be-
haves quasi-inviscid in this situation.

Following Morris & Monaghan (1997), we may also consider
a simple homologous flow υ = −ax with a > 0, which approxi-
mates certain astrophysical problems involving collapse and does
not require artificial dissipation. For this situation S = 3a but A =
0 (a direct consequence of the ability of ∇̇·υ to distinguish shocks
from convergent flows), such that our new scheme remains inviscid,
while the M&M method does not even for αmin = 0.

Next, consider a strong shock with velocity discontinuity δυ �
c. Assuming that it is smoothed over one kernel width, we find
maximum amplitudes of S 
 δυ/h and A 
 (δυ/h)2 (the exact values
depend on the shock conditions and the functional form of the
smoothing kernel). Since υsig 
 h∇·υ ∼ δυ, our new scheme gives
αloc ∼ αmax, while the asymptotic value (11) for the M&M method
also approaches αmax.

While 3D simulations of strong shocks are presented in Sec-
tion 5.2, Fig. 3 presents weak ram-shock simulations with δυ =
0.1c (top) and δυ = c (bottom) for our new scheme, the M&M
method and standard SPH. In both regimes the peak in, respec-
tively, αloc and αs is one particle farther in front of the shock with
our new method than with the M&M method, which reflects the su-
periority of A over S to detect an incoming shock. This, combined
with setting the viscosity parameter directly to the required value,
results in the peak in α to occur two particle separations before the
shock for our new method, while for the M&M method it peaks a
similar length behind the shock.

With our new method, the viscous deceleration (bottom panels in
Fig. 3) sets in about three particle separations before the weak and
the strong shock, yielding good shock capturing properties in both
cases. The M&M method, on the other hand, decelerates the flow
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Inviscid smoothed particle hydrodynamics 673

Figure 3. A 1D ram shock with δυ = 0.1 (top) and δυ = 1 (bottom) in
ideal gas with γ = 1.4 simulated using standard SPH, the M&M and our
new method. We compare the velocity, viscosity parameter, its asymptotic
value and the viscous deceleration. Initially, the velocity is discontinuous
with υ = −δυ sign(x), resulting in two shocks of δυ propagating in either
direction from the origin; the shock plotted propagates from right to left.

much earlier for a weak shock than for a strong shock and results
in significant overdamping of weak shocks (which also pertains to
density and internal energy – not shown in Fig. 3), while our method
smoothes both shocks over four particle separations (top panels in
Fig. 3), the optimal SPH resolution in 1D. Note that standard SPH
is hopeless: it oversmoothes the strong shock and is completely
incapable of dealing with the weak shock.

3.5 Maintaining particle order

The main point of our method is the absence of artificial viscosity
away from shocks. Hence, if αmin > 0 was indeed required to
maintain particle order, as previously argued in context of the M&M

Figure 4. Time evolution of qmin, defined in equation (19), for SPH sim-
ulations started from noisy initial conditions (see text). All SPH schemes
with artificial viscosity suppress the noise equally well.

Figure 5. The rms amplitudes of density and velocity fluctuations for 3D
simulations of the Sod (1978) shock tube test (see also Fig. 11). Initial
conditions were prepared using a glass. The shock propagates to the right
and is indicated by the dotted line; the velocity jump at the shock is 0.63.

method, our method should fail in this regard. Noise in SPH can
emerge from shocks or carelessly generated initial conditions.

Let us first consider the time evolution of noisy initial conditions,
generated by adding random displacements to particle positions
representing noise-free hydrostatic equilibrium (the vertices of a
face-centred-cubic grid, i.e. densest sphere packing). We consider
two cases with the displacements in each dimension drawn from a
normal distribution with rms amplitude equal to the nearest neigh-
bour distance or a tenth of it, respectively. The time evolution of
such noisy initial conditions can be distinguished by monitoring

qmin ≡ min
i,j

{|xij |/hi}. (19)

There are three possible scenarios. Either the particles settle back
close to the original grid (qmin approaches its grid value qgrid), form
a glass (qmin approaches a finite value < qgrid) or form dense clumps
(‘clumping instability’, qmin ∼ 0). Fig. 4 plots the evolution of qmin

for Nh = 40 SPH neighbours (see also Appendix A1) when qgrid ≈
0.529. Clumping only occurs when α ≡ 0, while for any viscous
scheme tested the particles settle back on to the grid or form a glass
with roughly similar time evolutions.

Post-shock noise occurs because the shock-induced compression
disrupts the original particle order, but other than in the above test
the viscosity is already switched on. In Fig. 5, we plot the amplitudes
of the velocity and density noise in 3D simulations of the standard
Sod (1978) shock tube test (see also Section 5.1). The three methods
have similar levels of density noise, but standard SPH is less noisy
in the velocities, which is not surprising given its stronger viscosity.
However, between the two viscosity suppressing schemes there
is little difference, even though αmin = 0 for our method. Similar
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674 L. Cullen and W. Dehnen

Figure 6. Steepening of a 1D sound wave: velocity and viscosity parameter
versus position for standard SPH, the M&M method, our new scheme and
GPH of first and second order (Cha & Whitworth 2003), each using 100
particles per wavelength. The solid curve in the top panel is the solution
obtained with a high-resolution grid code.

results obtain for other shock tests and we conclude that our method
is no worse than M&M’s for maintaining particle order.

4 V ISCOSITY SUPPRESSION TESTS

We now present some tests of low-Mach-number flows, where pre-
vious methods give too much unwanted dissipation.

4.1 Sound-wave steepening

The steepening of sound waves is a simple example demonstrating
the importance of distinguishing between converging flows and
shocks. As the wave propagates, adiabatic density and pressure
oscillations result in variations of the sound speed, such that the
density peak of the wave travels faster than the trough, eventually
trying to overtake it and forming a shock.

In our test, a 1D sound wave with a velocity amplitude 10 per cent
of the sound speed is used (ideal gas with γ = 1.4). Fig. 6 compares
the velocity field at the moment of wave steepening for various
SPH schemes, each using 100 particles, with a high-resolution grid
simulation. The new method resolves the shock better than the
M&M scheme, let alone standard SPH.

In Fig. 6, we also show results from Godunov-type particle hy-
drodynamics (GPH; Cha & Whitworth 2003), which differs from
SPH by using the pressure P∗, found by solving the Riemann prob-
lem between particle neighbours, in the momentum and energy
equations and avoids the need for explicit artificial viscosity. This
substitution does not affect the energy or momentum conservation
(Cha 2002), and indeed we find that both are well conserved. While
the first-order GPH scheme is comparable to standard SPH and also
to a Eulerian–Godunov grid code using the same Riemann solver
without interpolation (not shown), the second-order GPH scheme
resolves the discontinuity almost as well as our novel method.

4.2 1D converging flow test

Similar to sound-wave steepening, this test requires good treatment
of convergent flows and weak shocks. The initial conditions are

Figure 7. A 1D converging flow test with initially constant density and
pressure and velocities given by equation (20) using an adiabatic equation of
state with γ = 1.4. Top: run for υa = 1 at t = 0.3; bottom: run for υa = 2 at
t = 0.1. The solid lines are the result of a high-resolution Eulerian grid-code
simulation.

uniform pressure and density and a continuous flow velocity:

υ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4(1 + x)υa −1.00 < x < −0.75,

υa −0.75 < x < −0.25,

−4xυa −0.25 < x < 0.25,

−υa 0.25 < x < 0.75,

4(1 − x)υa 0.75 < x < 1.00.

(20)

As there is no analytical solution, we compare the results to a high-
resolution grid-code simulation. We run tests for υa = 1 and υa =
2 as shown in the top and bottom panels of Fig. 7.

While the M&M switch certainly improves upon standard SPH,
it still oversmoothes the velocity profile as the viscosity is increased
before a shock has formed. This is particularly evident in the velocity
profile of the υa = 2 case (bottom) near x = 0. The new switch keeps
the viscosity low, in the υa = 2 case an order of magnitude lower
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Inviscid smoothed particle hydrodynamics 675

than the M&M method. In fact, the agreement between our method
and the high-resolution grid code is as good as one can possibly
expect at the given resolution, in particular the velocity plateau and
density amplitude around x = 0 in the υa = 2 case (bottom) are
correctly modelled.

4.3 2D Keplerian-ring test

In this test, a gaseous ring orbits a central point mass, neglecting the
self-gravity of the gas. Initially, the ring is in equilibrium: pressure
forces, attraction by the point mass and centrifugal forces balance
each other. The Keplerian differential rotation implies that the flow
is shearing and any viscosity causes the ring to spread (Lynden-
Bell & Pringle 1974). This is indeed what Maddison, Murray &
Monaghan (1996) found in SPH simulations without pressure
forces.

Maddison et al. also found an instability to develop from the inner
edge, which quickly breaks up the ring. They argue convincingly
that this is the viscous instability (Lyubarskij, Postnov & Prokhorov
1994), which causes eccentric orbits at the inner edge of the ring to
become more eccentric due to the viscous deceleration peaking at
apocentre.

Imaeda & Inutsuka (2002) performed SPH simulations of the
same problem but including pressure forces. They find a similar
break-up of the ring after only few rotations and blame it on an in-
adequacy of the SPH scheme itself. We strongly suspect that Imaeda
& Inutsuka encountered a form of the clumping instability, which
appears to be particularly strong in 2D simulations of strong shear
flows (though it may have been a dynamical instability inherent
to gaseous Keplerian rings, e.g. Papaloizou & Pringle 1984, 1985;
Goldreich & Narayan 1985). This numerical instability grows on
a local hydrodynamical time and may therefore be suppressed by
choosing the sound speed c much lower than the rotation speed
υϕ . Indeed, Price (2004) and Monaghan (2006), who repeated these

and similar experiments with a very low sound speed, found no
such numerical instabilities. A detailed investigation of these issues
is clearly beyond the scope of our study and we merely compare
our new scheme to previous methods for pressure forces with c 	
υϕ when the viscous instability should strike after few rotations
depending on the strength of the artificial viscosity.

In our test, GM = 1000 for the central point mass, while the gas
ring has Gaussian surface density centred on r = 10 with width
(standard deviation) 2.5 represented by N = 9745 particles ini-
tially placed according to the method of Cartwright, Stamatellos &
Whitworth (2009). This implies an orbital period of 2π and veloc-
ity of υϕ = 10 at the ring centre. We choose a sound speed of c =
0.01 	 υϕ to ensure that any dynamical instabilities of inviscid
rings become important only after many periods.

Fig. 8 shows the particle distributions at various times for dif-
ferent SPH schemes. Only with our new method, the rings stay
in their initial equilibrium configuration over at least five periods,
while for the other methods, the inner parts of the ring soon be-
come disordered leading to a catastrophic break-up after a few
periods. It is noteworthy that this failure occurs despite the Bal-
sara switch, which was designed specifically for applications like
this.

Note that without the viscosity limiter ξ of equation (18), our
novel method fails, precisely because of shear causing false de-
tections of flow compression (as highlighted in Section 3.3 and
Appendix B).

We also run similar tests with the central point mass replaced by
a mass distribution (Plummer sphere or Kuzmin disc) with gravi-
tational potential � = −GM/

√
r2 + s2 with s = 3, such that the

rotation curve of the disc also contains a rising part, similar to the
situation in galactic discs. The outcome of these simulations (not
shown) is essentially identical to that for the pure Keplerian rings:
only our new method with viscosity limiter does not fall prey to the
viscous instability.

Figure 8. Keplerian ring test: particle positions at various times for standard SPH with Balsara switch, the M&M method with and without Balsara switch
and our new method without and with the viscosity limiter ξ of equation (18). Only for this last method the ring remains stable against a viscosity-induced
instability. (Ring-like features at r � 2 are artefacts caused by the dynamical time close to the centre being short compared to the time-step.)
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676 L. Cullen and W. Dehnen

Figure 9. Left: virial ratio plotted versus time for SPH models of a radially oscillating polytrope which initially was in its fundamental radial eigenmode with
relative radial amplitude of 0.01 and period 3.89. The solid curves are for a SPH model without any artificial viscosity. Right: the viscosity parameter α at t =
97 (maximum contraction) and t = 99 (maximum expansion) for every 100th particle. The new method keeps viscosity lower at the edge of the polytrope.

4.4 An oscillating polytropic sphere

The pulsations of a polytropic sphere are a good test for the adverse
effects of artificial dissipation (Steinmetz & Müller 1993). We set
up a polytropic sphere of 105 particles and induce oscillations in its
fundamental mode (e.g. Cox 1980) with relative amplitude of 0.01
in radius and a period of P = 3.8.

In the absence of viscosity we expect the radial oscillations to
continue with the initial amplitude and period over many oscilla-
tions. However, as with any numerical method some small amount
of numerical dissipation may appear. None the less, such effects

should be small compared to the dissipation caused by artificial
viscosity. Since the size of the radial perturbations increases with
radius, we expect the oscillations to be small at the centre of the
polytrope and therefore our new method to keep the viscosity low
there. However, at the edge the size of the oscillations is more
significant, and we may see an increase in viscosity at this point.

In order to track the oscillations, we monitor in Fig. 9 the time
evolution of the virial ratio −2(T + U)/W where T , U and W are
the kinetic, internal and the gravitational energies, respectively. At
maximum contraction the virial ratio is at its peak and at maximum
expansion the virial ratio is lowest. With no artificial viscosity (solid

Figure 10. Same as Fig. 9, except that the sphere is in circular orbit around a point mass of 100 times its mass and with orbital radius 20 times its radius
(the kinetic and potential energies are corrected for the contributions from the orbit). The viscosity parameter for every 100th particle is plotted at t =
100 (right).
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Inviscid smoothed particle hydrodynamics 677

Figure 11. Comparison of our new scheme and the M&M method for the standard Sod (1978) shock tube test with the analytic solution (solid).

curves in Fig. 9) the wave remains at constant amplitude barring
a slight initial drop. The period averaged over 25 oscillations is
P = 3.89, only slightly larger than the expected value. The reason
for this discrepancy is most likely the unavoidable deviation of the
(finite resolution) SPH model from a perfect polytropic sphere. This
deviation also means that our SPH model is not exhibiting a pure
eigenmode, but in addition contains some higher order modes at
low amplitudes, resulting in some beating between them.

The M&M method results in a slow but continuous decay of
the oscillations, though the period is hardly affected. This damping
can be blamed largely on the finite αmin (standard SPH damps the
oscillation 10 times faster). Conversely, our new method, hardly
damps the oscillations at all, because α is kept very small (except
for the outermost layers where α is still below the M&M values).

We also run simulations where the oscillating polytropic sphere
is on a circular orbit 20 times the radius of the sphere around a point
mass 100 times that of the sphere (corresponding to a period of 56
time units). With this choice, the tidal radius is approximately four
times the radius of the gas sphere, implying that tides are strong
but not catastrophic. Since the orbital accelerations are much larger
than those due to the polytropic oscillations, this is a tough test for
any numerical scheme. In particular, Eulerian methods should have
severe problems (this does exclude using corotating coordinates,
which do not allow for tidal evolution of the orbit and are unavailable
for eccentric orbits).

The time evolution of the virial ratio and the viscosity parameter
α are shown in Fig. 10 for the same viscosity schemes as for the
isolated case in Fig. 9. First note that the undamped simulations
(solid curves) behave differently from the isolated case, exhibiting
variations and a slight decay, both of which are most likely caused by
the tidal field. As to be expected for any Lagrangian scheme, both
SPH methods perform very similar to the isolated case, because
neither ∇·υ nor ∇̇·υ are affected by the orbital acceleration.

5 SHOCK CAPTURING TESTS

In this section, we subject our method to situations where artificial
viscosity is required, mainly high Mach number shocks, and our
aim is to demonstrate that it performs at least as well as the M&M
method.

5.1 Sod shock tube test

The Sod (1978) shock tube test is a standard test for any shock
capturing method and consists of an initial discontinuity in pressure
and density leading to the production of a rarefaction wave, contact
discontinuity and shock wave, which forms from the steepening of
a subsonic wave. The whole system is subsonic with a maximum
Mach number ofM ≈ 0.63 in the pre-shock region. We perform the
test in 3D at a resolution of 200 particle layers in the high-density
region.

The density, energy, velocity and viscosity for standard SPH as
well as the M&M and our method are shown in Fig. 11. As for the 1D
ram test (see Fig. 3), our new method switches on viscosity already
in the pre-shock region peaking about one smoothing length before
the actual shock front (which travels to the right in Fig. 11), whereas
the M&M switch turns on viscosity later, lagging our method by
about four particle separations. As a consequence, the transition of
the fluid values across the shock front is slightly smoother with our
method than with the M&M method.

Note that the irregularities around the contact discontinuity at
x = 0.138 common to all schemes tested are not related to arti-
ficial viscosity (the irregularities in α at that point could be re-
moved by choosing non-zero initial α at the initial discontinu-
ity); they can be alleviated by artificial conductivity (Price 2004;
Price 2008).

5.2 Strong shocks and particle penetration

In Section 3.4 and Fig. 3 we already demonstrated that our new
method is superior to the M&M scheme in resolving ‘subsonic
shocks’ (velocity discontinuities smaller than the sound speed) and
comparable in resolving shocks of Mach number ∼1. Here, we
extend this comparison to high Mach numbers. Fig. 12 shows the
result for the 1D ram test with M = 50. The Price (2004) version
of the M&M method, which uses equation (10) with αmax = 2,
is implemented in some contemporary SPH codes, and has been
used in our tests so far, fails this test: α remains too low and as a
consequence the velocity discontinuity is not correctly smoothed
and some post-shock ringing occurs. To give credit to Morris &
Monaghan (1997), we also tested their original method and find
it to work well (stars in Fig. 12). Our new method works about
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678 L. Cullen and W. Dehnen

Figure 12. Same as Fig. 3 but for M = 50. We distinguish between the
original M&M method (using equation 7) and the Price (2004) version
(using equation 10 with αmax = 2), which has been denoted ‘M&M’ in all
figures so far.

as well as the original M&M scheme, with α reaching the same
level, though our scheme detects the coming shock much earlier:
α is ahead of the original M&M method by about four particle
separations.

Whilst the main role of artificial viscosity is to resolve shocks by
transferring entropy, a secondary but vital role is to prevent particle
penetration, which requires strong viscosity in high Mach number
shocks. Bate (1995) performed many tests to determine the value
of the parameters α and β needed to prevent particle penetration in
ram shock tests of various Mach numbers. For particles arranged
in face-centred-cubic or cubic grids, Bate found that appropriate
values for the viscosity parameters can prevent particle penetration
for shocks up to M = 8. Most SPH practitioners opt for a value of
β = 2α (Morris & Monaghan 1997).

To determine the correct value of β required for the new scheme,
we perform high-resolution 3D runs of ram shocks withM= 20 and
various values for β/α. We smooth the initial velocity discontinuity,
as suggested by Monaghan (1997), to provide the method with a
situation realistic for SPH, such as would have arisen for a shock
forming from continuous initial conditions.

For different values of β/α with our viscosity scheme and the
two variants of the M&M switch, we plot in Fig. 13 the x and y
positions (for all values of z) of particles near the shock front at a
late time. The colour coding distinguishes particles which at that
time should be upstream (red) or downstream (green). Our scheme
prevents particle penetration with β = α (for β = 0 there is one layer
of overlap). The original M&M scheme with the standard choice
β = 2α also avoids particle penetration, but not the Price (2004)
version, again a consequence of too little viscosity.

5.3 A shearing shock

This test combines a shock with a perpendicular shear and presents
a difficult test for any SPH scheme. We use periodic boundary
conditions and start from a face-centred-cubic grid and velocities:

υx = −δυ sign(x), υy = s sin(πx) and υz = 0. (21)

Figure 13. Particle positions in the x–y plane of 3D simulations of a M =
20 ram shock along x direction. Particles are coloured red if there initial
positions was x0 < −0.45 and green if x0 > −0.45.

Figure 14. Shearing shock test: density and velocity for various SPH
schemes (symbols) and a grid-code simulation (curve). Initial velocities
are given by equation (21) with s = 100υ = 100c.

In Fig. 14, we present results for various SPH simulations as well
as a grid-code run for s = 100δυ = 100c. The M&M method
produces a large viscosity due to the shear-induced errors in ∇·υ,
leading to spurious results. Using the Balsara limiter with either
M&M or Standard SPH gives in much better results, though the
shock is clearly oversmoothed. The new scheme is able to limit the
viscosity to the correct level, allowing good capturing of the shock
and retaining particle order in the post-shock region.

Note that this is a difficult test for any SPH implementation:
without viscosity reduction (as in standard SPH) the shear flow
is strongly damped, while viscosity reduction schemes (M&M as
well as ours) suffer from the problem of shear-induced errors. These
potentially result in too much viscosity and oversmoothing of the
shock. Our limiter was able to control this problem, but for yet larger
ratios s/δυ of shear to shock amplitude this problem becomes too
difficult for any SPH implementation.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 669–683

 at :: on N
ovem

ber 17, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Inviscid smoothed particle hydrodynamics 679

5.4 Evrard test

In this test the inward gravitational pull of a gas cloud exceeds
its outward pressure force causing the cloud to collapse under its
own self-gravity. The initial conditions consist of a gas sphere with
density profile (Evrard 1988)

ρ(r) = M

2πR2

1

r
(22)

for r < R and ρ = 0 for r > R. Initially the gas is at rest and has con-
stant specific internal energy u = 0.05 GM/R, which corresponds to
a virial ratio −2U/W = 0.075 	 1. The initial gravitational inward
pull is the same at each radius, while the pressure forces decline
outwards, leading to collapse and, as a consequence, formation of a
shock, which steepens and evolves into a strong shock propagating
outwards as more incoming material joins the jam. Even though the
problem is initially spherically symmetric, the SPH realization of
initial conditions cannot be exactly spherically symmetric and the
system may well evolve away from sphericity, for instance driven
by dynamical instabilities.

We use a unit system such that G = R = M = 1 and represent the
cloud by 100 280 SPH particles, initially placed on a face-centred-
cubic grid which is then radially stretched to match the density.

Fig. 15 compares the simulation results for our method, the original
M&M method and a 1D calculation by Steinmetz & Müller (1993)
using the piece-wise parabolic method (PPM).

At early times (t = 0.39, left-hand column) the results from all
three methods match very well, but the M&M scheme already shows
a large viscosity. At later times a shock forms (at r ≈ 0.13 by t =
0.78), which moves outwards until it reaches the end of the sphere,
when a significant fraction of the gas still has outwards velocities
(by t = 1.95). The most obvious difference between the two SPH
schemes is the amount of (artificial) dissipation: the M&M method
is much more viscous, resulting in significant oversmoothing of
the shock front by t = 0.78 accompanied by unphysical pre-shock
heating as visible in the entropy (K) profile. Our new scheme agrees
better with the 1D calculation, in particular in the inner (post-shock)
regions. Note that with our new method α peaks well before the
shock arrives (at t = 1.17), while for the M&M method the peak in
α appears actually slightly after the shock.

We found this a valuable test as early versions of our scheme
tended to be far too viscous, while our final version passes this
test ahead of the M&M switch. Standard SPH (not shown in the
figure) shows similar results, though the shock at t = 0.78 appears
less smoothed than with the M&M method but more smoothed than
with the new scheme.

Figure 15. The Evrard test (see text for the initial set-up): shown are various physical quantities (K = Pρ−γ is the entropy function) and α at different times
for SPH simulations with N = 105 particles using our new viscosity scheme (blue) or the original M&M method (red). Also shown (black) are the results from
1D PPM calculation (Steinmetz & Müller 1993). Not every particle is plotted.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 669–683

 at :: on N
ovem

ber 17, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


680 L. Cullen and W. Dehnen

6 SU M M A RY

Any hydrodynamical numerical method requires some form of arti-
ficial viscosity in order to resolve shocks (in grid methods, artificial
viscosity is implicit in the Riemann solver; Monaghan 1997). In
grid codes, such as RAMSES (Teyssier 2002), interpolation methods
are employed to effectively suppress artificial viscosity away from
shocks. Most SPH simulations to this date hardly use such precau-
tions and, as a consequence, adiabatic oscillations and shear flows
are damped. Note that this affects state-of-the-art simulations of
e.g. galaxy formation, which usually only employ Balsara’s (1995)
rather inefficient method to reduce some adverse effects of artificial
viscosity on rotation discs.

The method of Morris & Monaghan (1997), which reduces the
default amount of artificial viscosity by an order of magnitude com-
pared to standard SPH practice, has only recently been recognized
as advantageous. In this method, explained in detail in Section 2.3,
individual artificial viscosities αi are adapted by integrating a dif-
ferential equation. Though constituting a major improvement, this
method remains unsatisfactory, because it still damps adiabatic os-
cillations and oversmoothes weak shocks, as we argued in Section 3
and demonstrated in Section 4.

In Section 3, we present a novel method, which improves upon
that of Morris & Monaghan in four important ways.

(i) We set αmin = 0 enabling αi → 0 away from shocks and
effectively modelling the fluid as inviscid.

(ii) We use ∇̇·υ ≡ d(∇·υ)/dt < 0 rather than ∇·υ < 0 as
shock indicator. This distinguishes pre-shock from post-shock re-
gions (where ∇̇·υ > 0 but ∇·υ < 0) and discriminates much better
between converging flows and weak shocks.

(iii) We set αi directly to an appropriate local value αloc, instead
of growing it by integrating a differential equation.

(iv) We use an improved estimator for ∇·υ and ∇̇·υ and employ
a limiter to avoid viscosity driven by shear-induced errors.

Together these novelties result in a significantly improved artificial
viscosity method, in particular the viscosity is increased to an ap-
propriate level well before an incoming shock. The implementation
details, i.e. the precise way of setting αloc from ∇̇·υ and the ex-
act form of the limiter, may well be subject to improvements. Any
reader who considers modifying these details is advised to consider
the behaviour of the resulting method for a test suite comprising
noise suppression as well as shear and strong shocks, for example
the tests of Figs 4, 8 and 14.

For static equilibria ∇·υ = 0 and υ̇ = 0, and our new shock in-
dicator (as well as the M&M shock indicator) are only triggered by
velocity noise. As long as particle order is maintained, such noise
triggers only negligible amounts of viscosity, unlike the situation
with the M&M method, whose minimum viscosity αmin = 0.1 is
often sufficient to affect the simulations (as demonstrated in Sec-
tion 4). None the less, the noise-induced viscosity is sufficient to
suppress particle disorder, as demonstrated in Section 3.5.

For dynamic equilibria ∇·υ = 0 (and ∇̇·υ = 0) but υ̇ �= 0.
However, in multidimensional flows strong shear induces false de-
tections of ∇·υ (and ∇̇·υ), even with best possible particle order, for
reasons explained in Appendix B1. In simulations of differentially
rotating discs, this problem strongly affects the M&M method (even
when using the Balsara switch). We avoid this problem by applying
a limiter (see Section 3.3) as well as using improved estimators
for ∇·υ and ∇̇·υ, see Appendix B2 for details. (Alternatively, if
no strong shear flows are present, the standard estimators should

suffice, though still in conjunction with a limiter using |∇ × υ| as
a proxy for the shear amplitude.)

These improved estimators also provide the full velocity and
acceleration gradient matrices for each particle (and increase the
computational costs by ∼30 per cent). The knowledge of the veloc-
ity gradient matrix V and its traceless symmetric part, the shear S,
is also useful for implementing physical viscosity

ρ υ̇ = ∇ · [η S + ζ tr(V)] (23)

(with η and ζ the shear and bulk viscosity coefficients) in SPH.
In Sections 3.5, 4 and 5, we demonstrate convincingly that our

technique successfully deals with the following four situations:

shocks are resolved at least as well, if not better, than with any
previous technique;

adiabatic oscillations, such as sound waves or stellar pulsations,
remain undamped over many periods, which was not possible with
any previous SPH implementation;

strong shear flows, such as in accretion discs, are modelled virtu-
ally inviscid, while shearing shocks are well resolved without being
oversmoothed;

particle disorder is suppressed at least as well as with the M&M
method.

In particular, in the regime of convergent flows and weak shocks
our new method is far superior to any previous scheme, which all
required a significant increase in resolution just to suppress adverse
effects of artificial viscosity.
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APPENDIX A : D ETAILS OF THE SPH SCHEME

For completeness, we give here a brief description of our SPH
method, which is largely similar to previous methods, but may
differ in some details.

A1 Density and adaptive smoothing lengths

Let ν denote the number of spatial dimensions, then we adapt the
individual smoothing lengths hi such that hν

i ρ̂i = Mh with Mh ≡
mNh/Vν a global constant, defined in terms of the number Nh of
neighbours, the mass m of each SPH particle and the volume Vν of
the unit sphere. In this work, we use Nh = 5, 13 and 40 for ν = 1, 2
and 3 dimensions, respectively. Inserting the density estimator (1),
we find

hν
i ρ̂i =

∑
j

mj w(rij ) with rij ≡ |xij |/hi, (A1)

where we have rewritten the SPH kernel as W(|xij|, hi) = h−ν
i w(rij )

with the dimensionless function w(r). For this work, we employ the
usual cubic spline kernel (Monaghan & Lattanzio 1985):

w(r) =
(

ν + 3
3

)
1

Vν(2 − 2−ν)

⎧⎪⎨⎪⎩
1 − 6r2(1 − r) r ≤ 1/2,

2(1 − r)3 1/2 < r < 1,

0 otherwise.

(A2)

At each time-step, the hi are adjusted by performing one Newton–
Raphson step in log h– log(hνρ̂) space, i.e.

hi ← hi

(
Mh

hν
i ρ̂i

)fi /ν

, (A3)

with a factor of order unity

fi = −ν

∑
j mj wij∑

j mj r2
ij w̃ij

, (A4)

where wij ≡ w(rij ) and w̃(r) ≡ w′(r)/r . This method converges ex-
tremely well, except when hi was too much small. In this case, faster
convergence can be achieved by subtracting the self-contribution
(which does not depend on hi). Thus, whenever hν

i ρ̂i < Mh we use
instead of (A3),

hi ← hi

(
Mh − mi w(0)

hν
i ρ̂i − mi w(0)

)f̃i /ν

, with f̃i = −ν

∑
j �=i mi wij∑

j �=i mj r2
ij w̃ij

.

(A5)

The time derivatives ḣi are obtained by demanding d(hν
i ρ̂i)/dt = 0:

ḣi

hi

=
∑

j mj υ ij · xij w̃ij∑
j mj x2

ij w̃ij

. (A6)

A2 Pressure forces

We use SPH equations of motion derived from the simple SPH
Lagrangian L = ∑

k mk[ẋ2
k/2 − uk]. Together with the relation6

du/dρ = P/ρ2, this gives

υ̇ i = − 1

mi

∂L
∂xi

= −
∑

i

mj xij

(
Pifi

ρ̂2
i h

ν+2
i

w̃ij + Pjfj

ρ̂2
j h

ν+2
j

w̃ji

)
,

(A7)

where the factors fi and fj (equation A4) arise from the fact that the
derivatives ∂ρ̂k/∂xi have to be taken at fixed hν

k ρ̂k . The work done
by these pressure forces has to be balanced by

u̇i = −ν
Pi ḣi

ρ̂i hi

= Pi fi

ρ̂2
i hν+2

i

∑
j

mj υ ij · xij w̃ij . (A8)

A3 Artificial viscosity

For the artificial viscosity drag and heating we actually use

(υ̇ i)AV = −
∑

j

mj xij

�̃ij

2

(
αifi

ρ̂ih
ν+2
i

w̃ij + αjfj

ρ̂jh
ν+2
j

w̃ji

)
, (A9)

(u̇i)AV =
∑

j

mj υ ij · xij

�̃ij

2

αifi

ρ̂ih
ν+2
i

w̃ij , (A10)

with �̃ij = −μij (c̄ij − bμij ), where

μij =

⎧⎪⎨⎪⎩
2υ ij · xij(

r2
ij + r2

ji

)
h̄ij

for υ ij · xij < 0,

0 otherwise,

(A11)

while the parameter b has the meaning of β/α for traditional SPH.
Note that equations (A9) and (2a) differ only by O(h̄2

ij ). The differ-
ence between equations (A10) and (2b) is more pronounced since,
similarly to equation (A8), we do not symmetrize the contributions
with respect to i and j.

A4 Time integration

Our scheme employs a kick-drift-kick leapfrog time integrator,
which is second-order accurate. With this scheme, a full (global)
time-step of size δt consists of the following substeps (‘←’ means
‘is replaced by’).

Initial kick. Compute υ i and ui at half step:

υ̃ i = υ i + 1
2 δt υ̇ i ,

ũi = ui + 1
2 δt u̇i . (A12)

Full drift. Advance t and xi by a full step:

t ← t + δt,

xi ← xi + δt υ̃ i . (A13)

6 Alternatively, for an ideal-gas equation of state one may replace u in the
Lagrangian with u = Kρ̂γ−1/(γ − 1) and consider the entropy function
K = P ρ̂−γ to be constant (Springel & Hernquist 2002).
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682 L. Cullen and W. Dehnen

Prediction. Predict υ i, ui and hi at full step:

υ i ← υ i + δt υ̇ i ,

ui ← ui exp(δt u̇i/ui),

hi ← hi exp(δt ḣi/hi). (A14)

Sweep 0. Compute hν
i ρ̂i and fi (equations A1 and A4).

Adapt. Adjust hi (equation A3 or A5).
Sweep 1. Compute ρ̂i , fi and ḣi (equations A1, A4 and A6) as

well as ∇·υ i , ∇̇·υ i and Ri (equations B8, B12 and 17, using υ̇ and
∇·υ from the previous time-step).

Between sweeps. Obtain Pi and ci from ρ̂i and ui via the equa-
tion of state, and adapt αi via (using equations 9 and 14)

αi ←
{

αloc if αi < αloc,

αloc + (αi − αloc) exp(−δt/τi) otherwise.
(A15)

Sweep 2. Compute υ̇ i (equations A7 and A9 plus gravitational
forces) and u̇i (equations A8 and A10 plus external heating or
cooling).

Final kick. Set υ i and ui at full step:

υ i = υ̃ i + 1
2 δt υ̇ i ,

ui = ũi + 1
2 δt u̇i . (A16)

In the initial kick and prediction steps, the time derivatives are
known from the previous time-step (in case of the very first time-
step, they need to be pre-computed). Note that the quantities pre-
dicted in (A14) enter the final υ i and ui only indirectly via the
computation of the time derivatives.

We use an oct-tree, generated just before sweep 0, to find all
interacting particle pairs, which are then remembered in an inter-
action list, whereby allowing for the fact that hi may grow slightly
during adjustment (just after sweep 0). Utilizing this interaction list
in sweeps 1 and 2 is much faster than further tree walks. The same
oct-tree is also used in computing gravitational forces, as outlined
by Dehnen (2002).

Our scheme can also be implemented with adaptive individual
time-steps organized in a hierarchical block-step scheme, though
we have not used this in the tests presented in this study.

APPENDIX B: ESTIMATING ∇·υ A N D ∇̇·υ

B1 Failure of the standard SPH estimator for ∇·υ
Our constraint that hν

i ρ̂i be constant (see Section A1) implies
˙̂ρi/ρ̂i = −νḣi/hi . Together with the continuity equation ρ̇ +
ρ ∇·υ = 0 and equation (A6) this yields the simple velocity-
divergence estimate:

∇̂·υ i = ν

∑
j mj υ ij · xij w̃ij∑

j mj x2
ij w̃ij

. (B1)

While this estimate satisfies the continuity equation for the SPH
density estimate ρ̂i , it is not necessarily accurate. To see this, con-
sider the matrix (⊗ denotes the outer or dyadic vector product)

Di = ∑
j υ ij ⊗ xij w̄ij , (B2)

with w̄ij some weighting factor. Assuming a smooth velocity field,
we may replace υ ij in equation (B2) with its Taylor expansion
υ ij = Vi · xij + O(|xij |2), where Vi ≡ ∇ ⊗ υ|xi

is the gradient of
υ at position xi, and obtain

Di = Vi ·Ti + h.o.t., (B3)

with the symmetric matrix

Ti = ∑
j xij ⊗ xij w̄ij . (B4)

Comparing (B2) and (B4) to the simple estimator (B1), we see
that the latter corresponds to (conveniently dropping the index i)
∇̂·υ = ν tr(D)/tr(T) and the weights w̄ij = mjw̃ij . If we split V
into its isotropic part (divergence), the symmetric traceless part S
(shear), and the antisymmetric part R (vorticity),

V = ν−1 ∇·υ I + S + R, (B5)

and insert it into (B3), we find for the simple estimator (B1):

∇̂·υ = ∇·υ + ν tr(S·T̃)/tr(T) + h.o.t., (B6)

where T̃ denotes the anisotropic (traceless) part of T. Thus, the sim-
ple estimator (B1) contains an O(h0) error term, which originates
from anisotropy of T in conjunction with velocity shear (owing to
the symmetry of T the vorticity is harmless). For perfectly sym-
metric particle distributions T̃ = 0, but in general T̃ �= 0 such that
in the presence of strong shear even a small residual T̃ results in
a failure of the simple estimator (B1). This typically happens in
differentially rotating discs, where (i) the velocity field is divergent
free but contains shear and (ii) even in the absence of noise T̃ �= 0
owing to the shearing particle distribution.

B2 A more accurate ∇·υ estimator

From equation (B3), we can also estimate

V̂i = Di ·T−1
i , (B7)

which allows an improved divergence estimator

∇̂·υ i = tr
(
Di ·T−1

i

)
. (B8)

In order to assess the error of this estimator, let us expand the flow
to second order, replacing equation (B3) with (dropping the index i
and using suffix instead of matrix notation)

Dαβ = υα,γ Tγβ − 1

2
υα,γ δ Uγ δβ + h.o.t., (B9)

with the symmetric tensor Ui = ∑
j xij ⊗ xij ⊗ xij w̄ij . Inserting

this into (B7) we find

V̂αβ = υα,β − 1

2
υα,γ δ Uγ δηT

−1
ηβ + h.o.t. (B10)

Thus, while this estimator avoids an O(h0) error, we still have an
O(h1) error term (since U is one order higher in h than T). We can
reduce the O(h1) error by a careful choice of the weights w̄ij . If,
for instance, w̄ij = mjw̃ij /ρ̂j then U → 0 to leading order in the
continuum limit by virtue of the isotropy of the kernel. This limit,
which is commonly used to assess SPH estimators, replaces

∑
j mj

with
∫

ρ(xj ) dxj under the assumption of a smooth density without
particle noise.7 As these conditions are hardly ever truly satisfied,
we can only reduce but not eliminate the O(h1) error term – as we
do not even try to avoid the O(h2) error (hidden in ‘h.o.t.’ above),
such a reduction should be okay in most cases.

7 Under these conditions also T̃, which causes the O(h0) error term in the
simple ∇·υ estimator, vanishes.
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B3 Estimating ∇̇·υ
We can estimate ∇̇·υ either from the change in the estimated ∇·υ
over the last time-step or as the trace of V̇, the total time derivative
of V. Since (with A ≡ ∇ ⊗ υ̇ the gradient of the acceleration)

V̇ = A − V2 (B11)

(a good exercise for your undergraduate students), we can estimatê̇∇·υ i = tr
(
Âi − V̂

2
i

)
. (B12)

Here, the estimate Âi is obtained from the accelerations at the
previous time-step in a way analogous to estimating V̂i , in particular

we need to compute the matrix Ti and its inverse only once. The
lowest order error in this estimate again is O(h1) ∝ Ui , such that
reducing Ui by careful choice of the weights remains a good idea.

Note that, by virtue of equation (B11), we could estimate ∇̇·υ
also as ∇·υ̇ − tr(V2) with the acceleration divergence ∇·υ̇ esti-
mated using the standard divergence estimator, in the hope that
its O(h0) error term is small since the acceleration is hardly
sheared.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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