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To the present date only the reconnection process for exactly antiparallel fields has been 
discussed in detail. In magnetospheric terms this restricts us to the consideration only of 
southward interplanetary fields. The qualitative study presented here shows how reconnection 
takes place between arbitrarily oriented fields in infinite and finite geometries. The process 
may best be thought of as a continuous exchange of field-line partners during the time a field 
line maps into the diffusion region. In a finite geometry the diffusion regions lie on field lines 
which connect neutral points of the field configuration, and along which a potential drop is 
imposed. Although the discussion here centers principally on the magnetosphere, the described 
reconnection process and field topology should also be applicable to other astrophysical 
problems. 

INTRODUCTION 

Reconnection between the Earth's magnetic field 
and the interplanetary field is thought to be the basic 
driving mechanism of plasma convection within the 
magnetosphere [Dungey, 1961]. However, only the 
special case of reconnection between exactly anti- 
parallel fields has to date been discussed, i.e., recon- 
nection between the Earth's field and an interplane- 
tary field directed exactly southward. The purpose 
of this paper is to obtain a qualitative understanding 
of the reconnection process which occurs between 
nonantiparallel fields and to determine how this can 
be applied to the magnetosphere. This objective is 
achieved by a two-fold approach. First, the recon- 
nection of nonantiparallel magnetic fields is con- 
sidered in a system which is infinite along the X line, 
by a simple modification of the solutions of Yeh 
and Axiord [1970] and Sonnerup [1970]. However, 
the qualitative results we obtain should not be de- 
pendent on the particular solution we choose to. 
consider. Second, the expected topology of the open 
magnetosphere in the general case is discussed, fol- 
lowing Dungey [1963]. We repeat this discussion 
here in the interests of obtaining a self-contained 
paper. Our method, as in Dungey [1963], is to 
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superpose linearly a uniform magnetic field of arbi- 
trary orientation with a dipole field. 

We then combine these two approaches to obtain 
a consistent qualitative picture of the general recon- 
nection process for arbitrary orientations of the 
interplanetary magnetic field and the general topol- 
ogy of the magnetosphere. Several authors have 
recently considered this process briefly, but do not 
seem to have been led to the picture presented here 
[Stern, 1972; Gonzales and Mozer, 1973]. 

Even though the discussion here will center spe- 
cifically on the magnetosphere, it should also be 
applicable with suitable modification to other systems 
of astro.physical interest. 

RECONNECTION OF NONANTIPARALLEL 

MAGNETIC FIELDS IN AN INFINITE SYSTEM 

No complete solution of the magnetic field struc- 
ture and plasma flow in the vicinity o.f an X neutral 
line has yet been accomplished. Sonnerup [1970] 
and Yeh and Axiord [1970] have considered the 
problem within the framework of collision-dominated 
fluid theory (the plasma conductivity • being taken 
to be a scalar) and have considered separately two 
regimes within the total solution. These two. regions 
are the convection region well away from the neutral 
line, and the diffusion region immediately surround- 
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ing the neutral line. In the convection region the 
plasma may be considered to be infinitely conducting, 
so that Ohm's law becomes 

E = --vxB/c 

and the field lines are tied into and convect with the 

plasma. This approximation breaks down in the 
diffusion region (v x B -• 0 at the neutral line) and 
finite conductivity effects become important. In this 
region, then, the field lines are no longer tied to the 
plasma and can become broken and reconnected. 
However, no detailed matching between these two 
regions has been attempted. 

Within the framework of collision-free plasmas 
there as yet exist no self-consistent solutions of the 
field and flow near an X neutral line; only neutral 
sheets and other simple geometries have been con- 
sidered [Harris, 1962; AIfvdn, 1968; Eastwood, 
1972; Cowley, 1973]. We therefore consider here 
the extension of the fluid solutions of Sonnerup and 
Yeh and Axford for an X neutral geometry to the 
case where the field lines flowing towards the X line 
are no longer antiparallel. 

In these models the neutral line is considered to 

be of infinite extent (i.e., O/OI • 0 along the direc- 
tion of the line), and the field and flow lines are 
constrained to lie in planes perpendicular to the 
neutral line. The plasma is assumed to be incom- 
pressible (div v = 0). The electric field is parallel 
to the neutral line and uniform (curl E = 0) satisfy- 
ing the previous equation in the convection region 
and 

= 

near the neutral line in the diffusion region. In the 
convection region it is found that the flow lines 
must traverse two shocks in passing through the 
system. These shocks thus break up each quadrant 
of the flow into three regimes: inflow, outflow, and 
a region between the shocks. In the diffusion region 
the flow lines are retangular hyperbolae near the 
neutral line, while the field lines are also systems 
of hyperbolae. The solutions of Sonnerup for the 
convection region are a special case of those of Yeh 
and Axford in the limit of zero radial pressure 
gradient. In this limit the field lines and plasma 
parameters between the shocks are uniform and the 
system is amenable to reasonably simple analytic 
calculation. 

We now consider the addition of a uniform magnetic 
field B, to these solutions, the field direction being 

parallel to the neutral line. This does not affect the 
dynamic equilibrium of the system since the currents 
are unchanged and j x B, = 0. However, we must 
also introduce a new electric field component which 
lies in the plane of the flow lines given by 

E' = - v x B,,/c 

where v is the fluid velocity of the new (and old) 
systems. This field is required by Ohm's law, and is the 
field required to maintain E. B = 0. The condition 
that this field has zero curl everywhere is simply 
div v - 0. Thus within the framework of incom- 

pressible plasma flow we may simply add a uniform 
magnetic field and its corresponding electric field to 
any solution for reconnection of antiparallel magnetic 
fields and hence obtain a solution for reconnection of 

nonantiparallel fields. Even in this case more com- 
plicated solutions are possible in which the magnetic 
field parallel to the neutral line is changed in strength 
across the shocks of the convection region leading 
to changes in plasma flows parallel to the X line. These 
will not be discussed, the simplest possible model 
being sufficient to obtain a qualitative understanding 
of the processes involved which is all we require here. 

The addition of a uniform magnetic field parallel 
to the X line to the field in the convection region 
simply twists the field in opposite directions on 
either side of the diffusion region in an obvious 
manner. The projection of the field lines on planes 
perpendicular to the X line remains unchanged. The 
latter statement is also. true for the field lines in the 

diffusion region. However, within the diffusion region 
the perpendicular field components become pro- 
gressively smaller as the X line is approached while 
the parallel field remains of constant strength. The 
field line twisting in the diffusion region is therefore 
more pronounced than in the convection region. 

Figure 1 shows the field line structure near the 
X line, the field lines being projected onto the plane 
perpendicular to the X line. The perpendicular field 
components near the X line depend linearly on 
distance from the X line, i.e., 

Bi -- oliixi 

where a• = OB•/Ox•l•=o since the field may be 
Taylor-expanded about the X point, and since the 
current there is nonzero. 

The field lines are thus systems of hyperbo,lae. 
The field lines which map, to the X point in this 
projection will be referred to as the separatrices 
between the inflow and outflow regions of the system. 
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Fig. 1. The field line structure near 
the X line in the diffusion region: the 
proiection onto a plane perpendicular 

to the X line. 

They also define the boundary surfaces between 
those field lines which are flowing into the system 
and those that have been reconnected, in the outflow. 
Considering the projection of Figure 1, pairs of field 
lines move toward the separatrices from either side, 
become broken and reconnected as they map into 
the X point (i.e., when in the separatrices) and 
then move away from the X point in the outflow, 
as in the conventional reconnection picture for anti- 
parallel fields. However, the field lines as they appear 
if we look down upon this system (i.e., in plan 
projection) are shown in Figure 2. The field lines 
of the inflow region marked 1, 2, and 3 are shown 
by the solid lines, and are sinh-curves. As indicated 
above, as we progress closer to the X line these field 
lines become progressively more extended along its 
direction. The field line which runs down the center 
of the X is marked X-X in Figure 2. The limiting 
case of this extension along the X line occurs for 
the field lines in the separatrices. These lines extend 
along the X line out to infinity (exponential curves), 
asymptotically approaching the field line which runs 
down the center of the X, and are shown by the 
dot-dash line in Figure 2, marked 4. The. lines 
approach the X line in opposite directions on the 
two leaves of the separatrices shown. Moving through 
the separatrices and into the outflow region the 
field-line plan projections are shown as dotted lines 
marked 5, 6, 7, and 8 in the diagram (cosh curves). 
The field lines have become reconnected, and their 
extension along the X line diminishes as we move 
away from the origin since the perpendicular field 
strength increases. 

This field line structure in the diffusion region 
leads to interesting consequences in the description 
of the reconnection process for nonantiparallel mag- 
netic fields. In Figure 3 we have drawn a particular 
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Fig. 2. The field line structure near 
the X line in the diffusion region' 

the plan projection. 

convection region solution (a Sonnerup solution) 
surrounding a diffusion region indicated schemati- 
cally by the octagonal box surrounding the X-point. 
The dotted lines indicate the shock waves. In Figure 
4 we show a plan projection of the field lines. We 
consider the motion of a particular field line, marked 

,2 '1 12 

1:• 2 

Fig. 3. Reconnection of nonantiparallel field lines: The 
projection onto a perpendicular to the X line. 
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Fig. 4. Reconnection of nonantiparallel field 
lines' the plan projection. 

1-1 on the figures, as it moves through the system. 
In the convection region we may follow the motion 
of the field line as it convects, frozen into the fluid. 
However, since the frozen-in theorem does not apply 
in the diffusion region we must use our knowledge 
of its field-line structure to discover where the field 

line maps once its central portion enters this region. 
We may, however, continue to follow the ends of 
the field line which remain in the convection region. 
We have chosen the uniform field strength parallel 
to the X line to be equal to the perpendicular field 
strength of the inflow region, so that the central 
portion of the field line 1-1' in plan projection lies 
at 45 ø to the X line (marked by the dot-dash line 
in plan), and fields of the inflow region on opposite 
sides of the diffusion region are perpendicular. The 
line at position 1-1' has two kinks in it as it crosses 
the shocks on either side of the diffusion region, 
after which it becomes more nearly perpendicular 
to the X line since the perpendicular field strength 
between the shocks is stronger than that of the inflow 
region. As the line moves down toward the diffusion 
region (positions 1-1' to 4-4') the central portion 
of the field line (in the inflow region) simply appears 
to become shorter in plan projection as it moves 
vertically down toward the diffusion region, while 
the parts of the field line beyond the shocks move 

slowly sideways since the fluid flow between the 
shocks has a component in the direction of the out- 
flow. Since the line has remained within the convec- 

tion region during this period it has simply flowed 
toward the diffusion region retaining its identity. 

The central portion of the field line now enters 
the diffusion region, so we must now appeal to our 
knowledge of the field-line structure there. According 
to the above discussion the field lines become ex- 

tended along the X line as the move toward it, 
the extension increasing as we move closer. The 
extensions are the same for the two ends of the 

original field line, but in opposite directions, as 
shown for the lines 5 and 5'. Therefore the original 
field line does not retain its identity as its central 
portion moves into the diffusion region but becomes 
split, and now each convecting end maps through 
the diffusion region to new convecting partners o,n 
the opposite sides of the diffusion region. As they 
move deeper into. the diffusion region the splitting 
increases (lines 6, 6', 7, 7') as the extensions along 
the X line increase until the field-line ends lie in the 

separatrices. They each now map out to infinity 
along the X line (8, 8'), but in opposite directions. 
Moving through the separatrices into the outflow of 
the diffusion region the field lines have become 
reconnected, but still extend considerably along the 
X line to partners in the convection region (9, 9', 
10, 10'). As they move out of the diffusion region 
their extension along the X line diminishes and they 
continuously map into closer convection region field 
lines (10, 10', 11, 11'). On reaching the edge of 
the diffusion region this exchange of convection re- 
gion partners ceases and the reconnected field lines 
move into the convection region outflow once again 
retaining their identity (12, 12', 13, 13'). The field- 
line ends to which it is ultimately connected are, of 
course, those of the field line which was initially 
placed symmetrically in the other inflow region to 
the one we have been considering, as indicated in 
Figure 5, although each piece of the field lines re- 
maining in the convection region throughout the 
motion has had to map out to infinity and back 
before this is accomplished. 

In order to apply these qualitative results to the 
magnetosphere we must first consider how this sys- 
tem must be modified in order that field lines map- 
ping out to infinity may be incorporated into a 
finite geometry. This requires a study of the general 
topology to be expected for an open magnetosphere 
and is the subject of the next section. 
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GENERAL TOPOLOGY OF THE OPEN 

MAGNETOSPHERE 

The expected topology of the open magnetosphere 
in the general case is here investigated by linearly 
adding a uniform magnetic field o.f arbitrary orienta- 
tion to a dipole field. This procedure and its results 
have previously been described by Dungey [1963] 
but will be repeated here in the interests of self- 
containment. 

The superposition of two fields in this manner is 
valid only for media with zero conductivity, so that 
the resultant magnetic fields we produce are not 
expected to be valid magnetospheric models. How- 
ever, we expect the field to be topologically correct, 
particularly if we can show them to be consistent 
with the reconnection picture discussed above. Such 
proves to be the case. 

The conventional picture of the reconnection of 
the Earth's field with a purely southward inter- 
planetary field may be represented within this frame- 
work by the addition of a uniform field parallel to 
the dipole moment vector as sketched in Figure 6. 
An X neutral ring is generated in the equatorial 
plane at a certain radial distance which corresponds 
to the dayside and nightside X-type neutral lines. 
The field lines which map from this neutral ring are 
the separatrix field lines of the X configuration and 
form the boundary surfaces between .the closed, 
o,pen, and interplanetary field lines. Surface ,4 is the 
interface between closed and open lines generating 
in three dimensions a doughnut-shaped boundary, 
while surface B forms the interface between open 
and interplanetary lines and generates two cylindrical 
regions connected to the north and south polar caps 
(the tail lobes). 

This situation is rather a special case; for any other 
orientation of the uniform field a neutral ring is 
not generated, rather two neutral points are pro- 
duced. These points lie in the plane containing the 
imposed magnetic field direction and the dipole mag- 
netic moment vector. Only in this plane does the 
imposed field have no azimuthal component; the 
dipole field has no azimuthal component in all planes 
containing the magnetic moment vector. In order 
to discuss the three-dimensional topology we must 
therefore consider the magnetic field configuration 
near a neutral point. Close to the null the field may 
be expanded in a Taylor series so, to lowest order, 
we can write a matrix expression for the field 
components of the form 

Fig. 5. Showing in plan projection 
the two inflow convection region field 
line A, B on opposite sides of the 
diffusion region which are ultimately 
connected together, and the resultant 

reconnected field lines, C and D. 

B, -- b•ix i 

where bg i - OBg/Oxilx__ 0. If there are no currents 
flowing at the null we have bii = big so that the 
matrix {b} is symmetric. It may thus be diagonalized 
by a suitable rotation of the coordinate system so that 

Bi t _•_ biitxi t 

However since div B = 0 we have Tr {b}' - 0, and 
so of the three coefficients bii two will be of the same 
sign while the third will be of the opposite sign. 
Dropping primes, let 

B, = ax B•, = /5y Bz = --½ + 

where • and/• are of the same sign. The field lines 
in the x, z plane are given by 

Fig. 6. Field configuration for the special case 
of a uniform southward magnetic field added to 

a dipole. 



908 S. W. H. COWLEY 

dx/dz = = + = -- rx/z 

where 0 _< Y• _< 1. Integrating we obtain 

XZ Y• • C1 

where C• is an arbitrary constant. Similarly, the field 
lines of the y, z plane are given by 

Yz r2 -- C2 

where Y2 - •/(.a + •) and 0 _< Y• _< 1. 
Therefore the field lines in both these planes will 

have the form o.f those shown on the left-hand side 

of Figure 7. However, the field lines in the x, y 
plane are given by 

X = C3Y r• 

where Ya -.a/fi > 0. These field lines map into the 
neutral point and define a surface about it. The 
field points toward the neutral point if ,•, • < 0 
(type A in Figure 7), or away from the null if ,•, • 
> 0 (type B). Of the field lines above (or below) 
.the surface only one maps into the neutral point and 
is locally perpendicular to the surface. The field direc- 
tion along these single lines with respect to the neu- 
tral point is in the opposite direction to those in the 
surface, as shown on the right-hand side of Figure 7. 
The lines mapping into a neutral point therefore 
consist of a set of field lines which .define a surface, 

plus two singular field lines located perpendicular 
to the surface. On the left-hand side of Figure 7 the 
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Fig. 7. Field line configurations near neutral 
points. 

lines OA lie in the surface as shown o,n the right- 
hand side while the lines OB are singular field lines. 

A second special case of uniform field plus dipole 
occurs when the imposed field is antiparallel to the 
dipole moment vector (i.e., a northward interplanetary 
field). As in the general case two neutral points are 
formed, one of type A in the terminology of Figure 7, 
and one of type B. These neutral points lie on the 
dipole axis, and, as sketched in Figure 8, the 'surface 
field lines from the southern type-B neutral point 
all map along the surface of a sphere into the northern 
type-A point. They generate the boundary between 
closed and interplanetary field lines; the open field 
lines have disappeared (i.e., the magnetosphere is 
closed) except for the singular field lines from the 
polar neutral points. We now wish to consider the 
general case between the two extremes of southward 
and northward fields which we have discussed. In 

Figure 9 we show the field lines lying in the plane of 
the neutral points for this general case. The figure was 
prepared by assuming that the imposed field is 
perpendicular to the dipole axis. For the sake of 
definiteness we might imagine that the imposed field 
is B = -- lB, P in magnetospheric coordinates so 
that Figure 9 represents the field lying in the dusk- 
dawn meridian plane as seen from the Sun. The 
neutral points have been chosen to lie at a radial 
distance from Earth of 15RE corresponding to an 
interplanetary field strength B• - 13 •. Because the 
azimuthal component of the field is nonzero except 
in this plane, the field lines at other longitudes do not 
lie in meridians. 

In Figure 9 we note that, as in the case of a south- 
ward-imposed field, we have three types of field 
lines, closed, open, and interplanetary, and that the 
boundary field lines in this plane map from the 
neutral points. The field-line structure of the left- 
hand side of Figure 8 is reproduced about these 
neutral points. We must therefore inquire which of 
the field lines mapping into the neutral point in Fig- 
ure 9 belong to the surface and which are the singular 
lines. A moment's consideration of the field direction 

out o.f the plane of the neutral points is sufficient 
to show that the lines marked OA about each neu- 

tral point lie in the surface while OB are the singular 
lines. The northern neutral point is thus of type A 
in the terminology of Figure 8 while the southern 
neutral point is of type B. However, even though the 
lines marked OA lie o,n a continuous surface of 

field lines we see that OA• are open while OA2 are 
closed. Therefore, there must exist two field lines 
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on the surface, on opposite sides of the neutral point, 
which mark the boundary between the segment of 
surface field lines which are open and the segment 
which is closed. These lines themselves can be neither 

open nor closed, and hence must map between the 
neutral points, one around the dayside, the other 
around the nightside. In the special case of a south- 
ward field this special ring-like field line becomes the 
neutral line encircling the Earth. Fo.r our illustrative 
case of Bt perpendicular to the dipole moment vector 
this field-line ring running between the neutral points 
is a circle whose radius is equal to the radial distance 
of the neutral points, and which intersects the X 
axis at noon and midnight, as shown in Figure 10. 
With reference to this figure the segment of the sur- 
face field lines marked C1A1C2 about each neutral 

point are open lines (i.e., map out to infinity) while 
the surface segments CiA,2C, 2 are closed (i.e., map 
to the Earth) These segments each define a part ß 

of the boundary between the three field-line types, 
and all these boundaries meet at the ring. For ex- 
ample, the segment C•A.2C2 of closed field lines 
from the southern neutral point defines the boundary 
surface between closed and open field lines in the 
northern hemisphere, forming the upper half of a 
doughnut. This surface is cut by the closed singular 
field line from the northern neutral point OB2. As 
an aid to its visualization we show in' Figure 11 
a computer-generated 30 ø isometric projection of 
this boundary. The interface between open and 

I 

-15 -I0 -5 0 5 I0 15 20 

Fig. 9. Field lines in the plane of the neutral points for a 
uniform field perpendicular to, the dipole moment vector. 

C•A.2C2 of the northern neutral point which forms 
a second half doughnut for the southern hemi- 
sphere; this surface is cut by the singular line 
OB• from the southern neutral point. The remaining 
surface segments C1A1C,2 form the surfaces of two. 

closed lines is completed by the surface segment 
•TYPE A N.R 

x 

Fig. 8. Field configuration for the 
special case of a uniform northward 

magnetic field added to a dipole. 

Fig. 10. Three-dimensional arrangement of the 
neutral points, field-line ring, and surface and 

singular neutral point field lines. 
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z 
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Y 

Fig. 11. Isometric 30 ø projection of one of the 
half-doughnut boundaries between open and closed 

field lines. 

cyclinders of open field lines. This segment from the 
northern neutral point forms the boundary of the 
north tail lobe and is shown in isometric projection 
in Figure 12. The surface is cut by the singular 
neutral point field line OB• from the southern neutral 
point. (Similarly for the southern tail lobe.) 

We now consider the projection of the field lines 
onto a plane which intersects and is perpendicular to 
the ring field line. The situation near noon (i.e., 
equidistant from the neutral points) is sketched in 

Fig. 12. Isometric 30 ø projection of one of the 
cyclindrical boundaries between open and inter- 

planetary field lines. 

Figure 13. An X-type configuration is generated, 
but the center of the X is not a neutral point since 
there exists a magnetic field component perpendicular 
to the plane of the projection. The field lines along 
the separatrices are the field lines in the boundary 
surfaces between closed, open, and interplanetary 
lines, and map from either the Earth or the inter- 
planetary medium into one or another of the neutral 
points. The equivalence of this situation and that 
discussed above for an infinite X-type region should 
now be clear. In the infinite system the field lines of 
the separatrices are extended indefinitely along the 
line running down the center of the X; in a finite 
system they do not extend to infinity but map into 
neutral points. The field-line ring joining the two 
neutral points is simply the field line which runs 
along the center of the X in the infinite system, and 
thus defines the centers of the day and night diffusion 
regions. For the finite system, therefore, the diffusion 
regions lie between and are terminated at neutral 
points. 

THE GENERALIZED RECONNECTION PROCESS 
IN THE MAGNETOSPHERE 

Having made the above identification of the field- 
line ring with the center of the diffusion regions on 
the dayside and nightside, we can now use the results 
of the second section to describe qualitatively the 
reconnection process for the general case. In order to 
keep the figures as simple and consistent as possible 
we describe the process in terms of the previous field- 
line structures of Figures 9, 10, 11, and 12, and we 
will not attempt to represent the sweeping back of 
the reconnected field to produce an antisolar tail, the 
day-night asymmetry of the magnetosphere, etc. 
These are the MHD aspects of the. problem and will 
not change the fundamentals of the processes dis- 
cussed here provided that the. topology we have 
arrived at and its interpretation in terms of the sec- 
ond section are correct. In addition we discuss only 
dayside reconnection; the nightside process is the 
same but reversed in time-sequence to that which we 
discuss here. 

In Figure 14 we show the deformation of an equa- 
torial plane interplanetary field line as it is con- 
vected up to and into the dayside diffusion region. 
This line will eventually become connected to a 
dipole line lying in the noon-midnight plane on the 
dayside. In (a) the initial interplanetary line A-A is 
shown. As it enters the diffusion region in (b), it 
becomes split and extended along the diffusion region 
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so that its ends A map through the diffusion region 
into new partners in the interplanetary convection 
region. Moving closer to the ring, (c), the extensions 
along it increase, until in (d) the lines A-A map into 
the north and south neutral points. At this point 
they lie in the cylinder boundaries of the open and 
interplanetary field lines, or equivalently in the open 
separatrices of the dayside X configuration. The con- 
tinuation of the lines past the neutral points, as in- 
dicated in Figure 14 may be considered to be either 
the open or the closed singular field lines at the neu- 
tral point. At this point a change in the connection 
of the field lines take place (i.e., from interplanetary 
to open), that is, reconnection with a dipole field 
line occurs. We therefore pause to consider the sim- 
ilar progress of the dipole field line to which the 
original interplanetary line will become connected. 

As shown in Figure 15(a) this dipole line lies 
initially in the noon-midnight plane and is convected 
toward the ring. As it approaches the ring and 
moves into the diffusion region it becomes split and 
extended along it so that the northern part of the line 
maps into a new partner on the dusk side of noon 
while the southern part maps into a new partner on 
the dawn side of noon, (b). This description is valid 
for B• < 0, the change of connection with respect to 
noon is reversed for positive B•. Moving closer to 
the ring the extension increases, (c), until the lines 
map to the neutral points (d). They then lie in the 
boundary of the closed field-line doughnut, or equiv- 
alently in the closed separatrices of the dayside X- 
type configuration. As in Figure 14(d) the contin- 
uation of these lines out from their neutral points 
may be considered to be either the closed or open 
singular line from that point. 

In Figure 16(a) we show the northern part of the 
original dipole line, now mapping to the southern 
neutral point as in Figure 15 (d), and that part of 
the original interplanetary line which maps to the 
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Fig. 13. Projection of the fi'eld lines near the 
ring onto a plane perpendicular to the ring at 

noon. 

northern neutral point as in Figure 14 (d). These two 
will become connected when they are outside the 
diffusion region. Following through the histories as 
initiated for these two parts in Figures 14 and 15 
the field lines pass through the separatrices so that 
the interplanetary line now becomes open and maps 
to the polar cap near dawn, while the dipole line 
also becomes open and maps into the interplanetary 
medium near the open singular line from the southern 
neutral point, Figure 16(b). As these lines move 
up and away from the ring the mapping of the inter- 
planetary lines into the polar cap moves toward 
noon,. while the original dipole line maps into the 
interplanetary medium closer to the original inter- 
planetary line, since their extensions along the ring 
are being reduced, Figure 16(c). Finally, out of the 
diffusion region, the two lines are joined and flow as 
a single open field line into the north tail lobe, 
Figure 16 (d). 

A A ' ", A f• ', 

c d 

Fig. 14. Deformation of an interplanetary field line as it convects into the dayside diffusion region. 
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Fig. 15. Deformation of a dipole field line as it is convected into the dayside diffusion region. 

DISCUSSION 

In the preceding sections we have shown how the 
qualitative description of the reconnection process 
must be modified when the reconnecting fields are 
not exactly antiparallel. A splitting of the incoming 
field lines and a continuous exchange of partners 
along the X line takes place when a field line ,maps 
into the diffusion region. Such a picture of the 
process is just that required to be consistent with the 
expected topology of the magnetosphere for non- 
antiparallel fields. We conclude this paper with a 
brief discussion of the electric fields. 

Outside the diffusion region the equation 

1• = -vxS/c 

is expected to be valid, so that the field lines are 
equipotentials. In the diffusion region finite conduc- 
tivity effects are dominant, the above frozen-in equa- 
tion no longer applies, and field lines are not neces- 
sarily equipotentials. In particular, it is obvious that 
the field line which runs down the center of the X 

for the nonantiparallel field case is not an equipo- 
tential. In the finite geometry this implies that there 
exists a potential drop between the neutral points, 
corresponding to the potential drop across the polar 
caps. The field lines which lie in the various bound- 
ary surfaces all map to one or another of the two 
neutral points. However, in the convection regions 
the field lines on one of these boundary surfaces are 

not the same potential, but the potential varies be- 
tween that of the two. neutral points. For example, 
if we consider one of the tail lobes as in Figure 12, 
the singular field line which cuts the surface from 
the southern neutral point is expected to be at south- 
ern neutral-point po.tential. As we move around the 
cylinder surface we expect the potential to vary 
monotonically until northern neutral-point po,tential 
is reached on the field line at the top of the cylinder. 
However, all these field lines map to the northern 
neutral point. A similar argument applies to the two. 
closed field-line boundary surfaces. The situation is 
no.t inconsistent ho.wever, since all these field lines 
pass through the dayside or nightside diffusion re- 
gions in their mapping to the neutral point. The 
potential drop in the diffusion regio.n which occurs 
along one of these field lines simply correspo.nds to 
the difference between its potential in whichever con- 
vection region it lies and the potential of the neutral 
point to which it maps. 

The magnetospheric and ionospheric convection 
corresponding to these models will be the same on a 
large scale as that previously discussed for a purely 
southward interplanetary field [Dungey, 1961], that 
is, a dawn-to-dusk electric field across the polar cap 
corresponding to the motion of open lines over the 
cap into the tail, with the ionospheric return flow at 
lower latitudes, corresponding to the flow of tail- 
reconnected closed field lines towards the dayside in 
the equatorial plane. 

Fig. 16. The reconnection process completed. 
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