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Abstract. Sgr A* is extra-ordinarily dim in all wavelengths requiring a very low accretion rate at the present time. However,
at a radial distance of a fraction of a parsec from Sgr A*, two rings populated by young massive stars suggest a recent burst of
star formation in a rather hostile environment. Here we explore two ways of creating such young stellar rings with a gaseous
accretion disk: by self-gravity in a massive disk, and by capturing “old” low mass stars and growing them via gas accretion in
a disk. The minimum disk mass is above 104 M� for the first mechanism and is few tens of times larger for the second one.
The observed relatively small velocity dispersion of the stars rules out disks more massive than around 105 M�: heavier stellar
or gas disks would warp each other too strongly by orbital precession in an axisymmetric potential. The capture of “old” stars
by a disk is thus unlikely as the origin of the young stellar disks. The absence of a massive nuclear gas disk in Sgr A∗ now
implies that the disk was either accreted by the SMBH, which would then imply almost a quasar-like luminosity for Sgr A∗, or
was consumed in the star formation episode. The latter possibility appears to be more likely on theoretical grounds. We also
consider whether accretion disk plane changes, expected to occur due to fluctuations in the angular momentum of gas infalling
into the central parsec of a galaxy, would dislodge the embedded stars from the disk midplane. We find that the stars leave the
disk midplane only if the disk orientation changes on time scales much shorter than the disk viscous time.

Key words. accretion, accretion disks – black hole physics – Galaxy: center – stars: formation

1. Introduction

The complex chain of events leading to the growth of super-
massive black holes (SMBHs) in galactic centers is not yet
fully understood (e.g., Rees 2002). Nevertheless, gas accretion
is probably the dominant physical process delivering the matter
to the giant black holes (e.g., Yu & Tremaine 2002). At small
radial distances from the SMBH, the standard thin accretion
disk (Shakura & Sunyaev 1973) appears to be an appropriate
way to provide the SMBH with gas at rates approaching the
Eddington limit. However, at distances larger than ∼10−2 par-
sec from the SMBH, standard thin disks face several problems.

First, the time necessary for the gas to inflow into the black
hole – the disk viscous time scale – becomes too long (e.g.
as large as 108−1010 years for larger radii). In parallel with
this, the (standard accretion) disk mass becomes very large.
When the latter exceeds about 1% of the SMBH mass, lo-
cal gravitational instabilities develop (e.g., Paczyński 1978;
Kolykhalov & Sunyaev 1980; Shlosman & Begelman 1989;
Goodman 2003; Collin & Zahn 1999). The structure of such
disks is unclear (see Sect. 9) due to uncertainties in theory and
a dearth of relevant observations.

Sgr A∗ is the closest SMBH (with a mass MBH ≈ 3 ×
106 M�; e.g., Schödel et al. 2002). Although Sgr A∗ has re-
mained extremely dim during the entire history of X-ray obser-
vations, there are hints that it was much more active in the past.

The X-ray and γ-ray spectrum of the giant molecular cloud
Sgr B2 is most naturally explained as a time-delayed reflec-
tion of a source with a flat AGN-like spectrum (e.g., Sunyaev
et al. 1993; Koyama et al. 1996; Revnivtsev et al. 2004). The
required luminosity is in the range of ∼few × 1039 erg s−1, too
high by Galactic standards. Sgr A∗ is then strongly suspected of
having been brighter in X-rays by some 6 orders of magnitude
300–400 years ago.

Deeper in the past, a few million years ago, few dozen mas-
sive stars were formed and are currently at a distance of the or-
der of 0.1−0.3 pc from Sgr A∗ (Krabbe et al. 1995; Genzel et al.
2003; Ghez et al. 2003). This is surprising given that the tidal
force of the SMBH would easily shear even gas clouds with
densities orders of magnitude higher than the highest density
cores of GMCs observed in the Galaxy.

In situ star formation scenarios for the Sgr A∗ young mas-
sive stars have been numerically studied by Sanders (1998)
with a sticky-particle code and also qualitatively described by
Morris et al. (1999). In particular, one of the simulations done
by Sanders (1998) assumed that a cold cloud of gas with ra-
dial dimensions of 0.4 pc and with a small angular momentum
falls into Sgr A∗ gravitational potential starting from a distance
of 2.4 parsec. The cloud gets tidally sheared into a thin band
of gas which then forms a precessing eccentric ring. Frequent
shocks are assumed to lead to strong compression of the gas
and star formation.
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The existence of such low angular momentum clouds seems
to be questionable. In addition, the initial conditions of the
simulations are rather extreme: to be stable against tidal shear
(e.g., Eq. (1) of Sanders 1998), the cloud mass should be
Mcl >∼ 7 × 104 M�, a very large mass for a cloud of 0.4 pc in
size. Recent observations (Liszt 2003) seem to contradict the
Sanders (1998) model for the ionized gas streamers. Genzel
et al. (2003) discount current star formation in the mini-spiral,
which is believed to be an ionized streamer. Genzel et al. (2003)
also note more generally that “if massive stars are forming
frequently in dense gas streamers when outside the central
parsec and then rapidly move through the central region, one
would expect ∼100 times as many massive stars outside the
central region as in the central parsec”, which is not the case
observationally.

Alternatively to the in situ star formation, Gerhard (2001)
proposed that the young massive stars could have been formed
outside the central parsec in a massive star cluster. Then, due
to dynamical friction with the older population of background
stars, the cluster would have been dragged into the central
parsec and then dissolved there by the SMBH tidal shear.
However, this appears to be only possible (Kim & Morris 2003;
McMillan & Portegies Zwart 2003) if the cluster is very mas-
sive (M >∼ 106 M�), or if it is formed very near the central par-
sec already. In both cases a very dense core for the star cluster
is required and appears to be unrealistic. An intermediate mass
black hole in the center of the cluster does allow the star clus-
ter to survive longer against tidal disruption and hence trans-
port the young stars in the central parsec more efficiently (as
suggested by Hansen & Milosavljević 2003). However the nu-
merical simulations of Kim et al. (2004) show that the mass of
the black hole has to be unusually large (∼10%) compared to
the cluster mass for this idea to work in practice.

Levin & Beloborodov (2003) and Nayakshin et al. (2004)
suggested that the origin of the young stars is a massive self-
gravitating accretion disk existing in Sgr A∗ in the past. Here
we intend to investigate this idea quantitatively and to also look
into some related theoretical questions.

We first estimate the minimum mass of such accretion disks
to be around 104 M�, for each of the two stellar rings. In ad-
dition, we rule out the possibility that a less massive accre-
tion disk could capture enough of low mass stars from the
pre-existing “relaxed” Sgr A∗ cusp and then grow them by ac-
cretion into massive stars (Sect. 3).

We then attempt to understand the spatial distribution of the
young stars. In particular, we find that the rate of N-body scat-
tering between the stars (Sect. 4) of the same ring can explain
the observed stellar velocity dispersions in the inner stellar ring
if the time-averaged total stellar mass in the ring was 104 M�
or higher. We also find that stellar orbits in both rings should
remain close to the circular Keplerian orbits up to this day (if
stars were indeed born in a disk). The outer ring is however
observed to be geometrically thicker and with a higher veloc-
ity dispersion than the inner one. The velocity dispersion of the
outer ring may result from the stellar disk warping in the gravi-
tational potential of the inner ring. Such warping sets the upper
limit on the disk mass of about 105 M� (Sect. 5).

We also question in Sect. 6 whether it is possible for the
disk to leave the newly born stars behind (due to their high in-
ertia) when the disk plane rotates. Dislodging the newly born
stars, or proto-stars, from the disk midplane would have signif-
icantly reduced the problems faced by accretion disks at large
radii since these stars would then stop devouring the disk and
instead heat it and speed up the accretion of gas onto the SMBH
via star-disk collisions (Ostriker 1983). However, we find that
the disk maintains a firm grip on these stars unless the plane
change occurs on a time scale much shorter than the disk vis-
cous time (Sect. 6).

It is found that young massive stars would not migrate
much radially (Sect. 7) in the disk, meaning that they are prob-
ably located at the radius where they were originally formed.
Small scale proto-stellar disks around the embedded stars may
be gravitationally unstable as well and may create further gen-
erations of stars. Hierarchical growth and merging of such ob-
jects may result in the creation of “mini star clusters” with the
central object collapsing to an intermediate mass black hole
(Sect. 8). This could potentially be relevant to the observations
of such objects as IRS13 (Maillard et al. 2004).

Since the combined mass of the stellar material in the ob-
served stellar rings presently is <∼3 × 103 M� (Genzel et al.
2003), there is the interesting question of whether most of the
gaseous disk mass has been used to activate the presently dor-
mant Sgr A∗ or whether it was reprocessed through star for-
mation and expelled to larger radii via winds and supernova
explosions. We believe the latter outcome is more likely since
the accretion of gas onto embedded stars is very efficient. We
briefly discuss observations that could distinguish between the
quasar and the nuclear starburst possibilities (Sect. 9).

2. The minimum mass of a self-gravitating disk
in Sgr A∗ is 104 M�

The standard accretion disk solution (Shakura & Sunyaev
1973) neglects self-gravity of the disk. Clearly, this solution be-
comes invalid when the disk becomes strongly self-gravitating,
but here we only want to estimate the minimum disk mass
at which the self-gravity becomes important. For numerical
values of the standard disk parameters, we follow Svensson
& Zdziarski (1994) with their parameters ξ = 1 and f = 0
(i.e. no X-ray emitting disk corona is assumed). The dimen-
sionless accretion rate ṁ is defined as ṁ = Ṁ/ṀEdd, where
ṀEdd = LEdd/εc2 is the accretion rate corresponding to the
Eddington luminosity and ε ≈ 0.06 is the radiative efficiency
of the standard accretion flow1.

For large radii (r � 1) the gas dominated equations are
appropriate:

H
R
= 2.7 × 10−3 (αM8)−1/10 r1/20ṁ1/5, (1)

Σ = 4.2 × 106 g cm−2 α−4/5 M1/5
8 r−3/5ṁ3/5. (2)

T = 6.3 × 102 K (αM8)−1/5ṁ2/5

[
R

105RS

]−9/10

· (3)

1 Note that our definition of ṁ is different from the one Svensson &
Zdziarski (1994) use: ṁSZ = 17.5 ṁ.
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Fig. 1. The disk mass in units of 104 M�, the Toomre instability pa-
rameter Q, and the ratio of the disk height scale H to radius R as a
function of radius for the standard accretion disk model. The thick
curves are plotted for ṁ = 0.03, whereas thin ones are for ṁ = 1. In
both cases the disk is unstable to self-gravity at R >∼ 105RS, where its
mass is Md >∼ 104 M�.

Where H is the disk vertical height scale, R is the distance from
the SMBH, T is the midplane gas temperature, α is the dimen-
sionless viscosity parameter, M8 = MBH/108 M�, r = R/RS,
RS = 2GMBH/c2 is the Schwarzschild radius of the SMBH
and Σ is the surface density of the accretion disk. These equa-
tions assume Thomson electron scattering opacity for simplic-
ity. Figure 1 shows some of the disk parameters obtained for
MBH = 3 × 106 M�, α = 1, and two values of the dimen-
sionless accretion rate, ṁ = 0.03 (thick lines) and ṁ = 1 (thin
lines). The mass of the disk as a function of radius is approxi-
mated as Md ≈ πR2Σ.

It is well known that the standard accretion disk becomes
self-gravitating at large radii, when the Toomre (1964) param-
eter Q becomes less than unity,

Q =
csΩ

πGΣ
≈ H

R
MBH

Md
< 1 (4)

(cs is the sound speed inside the disk and Ω its angular veloc-
ity). The radius where Q = 1 yields the minimum mass of the
disk needed for the latter to become locally self-gravitating2.

As can be seen from Fig. 1, the disk should weigh at least
104 M� in order to become self-gravitating. Note that this min-
imum disk mass estimate is quite robust because H/R depends
on α, radius and the accretion rate only weakly. This estimate is
also conservative. The basic Shakura-Sunyaev model used here
does not include irradiation by the central source, which may
increase the disk midplane temperature somewhat, leading to

2 Disk self-gravity is local when the disk mass is much smaller
than the SMBH mass. Effectively, regions of disk separated by large
radial distances do not communicate with each other via gravity in
this regime. When the disk mass becomes comparable to that of the
SMBH, the instability becomes global, and a very rapid angular mo-
mentum transfer via self-gravity occurs.

a slightly larger H/R. In addition, trapping radiation by opac-
ity effects would reduce the efficiency of cooling, adding to the
stability of the disk against self-gravity.

3. Capturing low mass stars and growing them
by accretion: Too slow

Artymowicz et al. (1993) noted that stars in the nuclear star
cluster on orbits relatively close to the local circular rotation of
the accretion disk in quasars will be captured by the disk. The
stars can then rapidly grow by gas accretion, and then enrich
the accretion disk with heavy elements through stellar evolu-
tion. For the problem of the observed young massive stars in
the Galactic Center (GC), the Artymowicz et al. trapping mech-
anism may be an alternative route to form the stars. The accre-
tion disk does not have to be self-gravitating for the mechanism
to work, provided there is enough stars and the time scale for
the star trapping is short enough. One may thus hope to reduce
the required disk mass.

To within a factor of the order of unity, Eq. (15) of
Artymowicz et al. (1993) yields the number of stars captured
by the disk within time ∆t as

dN∗(R) ∼ ζ
4

4
N∗(R), (5)

where N∗ is the total number of stars in the star cluster within
radius R, and the variable ζ is defined by

ζ4 = 32Cd
M∗Md

M2
BH

∆t
P
, (6)

where P is the orbital period and M∗ = m∗ M� is the typi-
cal mass of the stars in the cluster. For an estimate, we take
Cd � 3 and q−2 ≡ 100Md/MBH <∼ 1. Note also that we want
to start with abundant stellar seeds, so we assume m∗ ∼ 1. At
the typical radial position of the young massive stars in Sgr A∗,
R = 0.1 pc ∼ 3 × 105RS, the circular Keplerian rotation period
is

P � 103 year

[
R

3 × 105RS

]3/2
· (7)

Thus,

ζ4 � 3 × 10−4m∗q−2
∆t

103P
· (8)

Now, from results of Genzel et al. (2003) we estimate that

N∗(R) � 105 m−1
∗

[
R

3 × 105RS

]3/2
(9)

(we assumed the cusp power-law index p = 1.5 for simplic-
ity; see also Eq. (15) in Nayakshin et al. 2004). Therefore, the
number of stars captured by the disk is

dN∗ ∼ 7 q−2
∆t

106 years
· (10)

Note that the radius R and the average stellar mass m∗ scale out
of this relation.
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The number of captured stars is somewhat low if we take
into account the fact that the ∼12 “helium” stars found in each
of the rings are only the brightest end of the stellar distribution,
and there are probably many more (less massive) stars in the
rings (Sect. 3.7 in Genzel et al. 2003). Therefore one would
require q−2 >∼ 3−10, that is disk mass Md ∼ (1−3) × 105 M�.
With this rather high required disk mass, the disk would have to
be self-gravitating, and one expects a large number of stars to
be born inside the disk. The disk capture mechanism thus fails
to reduce the minimum disk mass. Nevertheless, it should not
be forgotten completely because of its ability to bring in some
late type stars into the plane of the disk, e.g. the plane of the
young massive stars. This type of star would not be born inside
the accretion disk in a time span of just a few million years.

4. Velocity dispersion of an isolated stellar disk

Stars embedded in accretion disks are often considered in a
“test star” regime (e.g., Syer et al. 1991), when each star co-
rotates with the accretion disk. The star’s velocity is then nearly
equal to the local Keplerian circular velocity. When number
of embedded stars, N∗ � 1, two-body interactions between
stars will increase their local velocity dispersion, σ, potentially
leading to some interesting consequences.

Since the disk velocity field has the radial Keplerian shear,
it is the radial velocity dispersion of stars that will grow the
fastest. However, when the anisotropy σr/σz becomes larger
than 3, buckling instability will develop and the stellar velocity
dispersion will become more isotropic (Kulsrud et al. 1971;
Shlosman & Begelman 1989). Thus we assume an isotropic
velocity dispersion here for simplicity. The velocity dispersion
of stars grows due to N-body interactions at the rate

dσ
dt
∼ 4πG2M∗ρ∗

σ2
lnΛ∗ (11)

where Λ∗ ∼ H∗σ2/GM∗ is the Coulomb logarithm for stellar
collisions; H∗ is the stellar disk height scale, which in general
may be different from the gas disk height scale H.

The growth of velocity dispersions is opposed by the dy-
namical friction force acting between the stars and the gas.
Consider a star moving inside the disk with a relative ve-
locity vrel with respect to the local Keplerian velocity, vK.
Artymowicz (1994) shows that the angular momentum and
energy flow between the disk and the star (a small disk per-
turber in the case of proto-planetary disks), calculated explic-
itly, coincides within a factor of a few with the hydrodynamical
Bondi-Hoyle drag acting on the star during its passage through
the disk. The acceleration experienced by the star is thus

ad = −4πG2M∗ρCd
urel

g4(c2
s + v

2
rel)

3/2
, (12)

where g = min(1, vc/vrel) and vc = C1/4
d vesc,∗ is of the order

of the escape velocity from the star, vesc,∗. In perturbative an-
alytical approaches, such as dynamical friction, Cd >∼ 1 is the
Coulomb logarithm, lnΛ, whereΛ is the ratio of the disk height
scale H to Bondi (or accretion) radius (e.g., Ostriker 1983).
However, in many circumstances the Bondi-Hoyle formula for

accretion rate onto the star produces super-Eddington values.
The drag force (e.g. Cd) should then be reduced to account for
the radiation pressure force. One finds that in the disk geometry
the largest contribution to the star-gas friction comes from dis-
tances ∼H from the star. The exact value of Cd depends on disk
opacity and the 3-D velocity of the star, but estimates suggest
that Cd is not much smaller than unity in this case.

Note that when the relative velocity is high, the drag force
is just the hydrodynamical drag, ad ∝ πR2∗ρv2rel, where R∗ is the
stellar radius. For cs < vrel < vesc,∗, the classical Chandrasekhar
(1943) dynamical friction formula is recovered, with ad ∝ v−2

rel .
Finally, if the relative velocity is smaller than cs, we have ad ∼
ṀBvrel, which is about equal to the momentum flux accreted by
the star (ṀB is the Bondi accretion rate).

While vrel is not too large, i.e., g = 1, the evolution of the
stellar velocity dispersion is approximately given by

dσ
dt
∼ 4πG2M∗


ρ∗ lnΛ∗
σ2

− ρCdσ(
c2

s + σ2
)3/2
 · (13)

As long as ρ∗ lnΛ∗ < ρCd, the star-gas drag will be able to keep
the stars on local circular Keplerian orbits in the sense that σ

cs, the gas sound speed, thus the stars indeed behave as test
particles. However, when ρ∗ lnΛ∗ > ρCd, the stellar velocity
dispersion will evolve mainly under the influence of N-body
collisions, and it will increase rapidly.

It may appear that the last fact suggests a natural mecha-
nism to stop the very efficient (see Sect. 9) accretion of gas
onto the embedded (proto-) stars. As the stellar velocity disper-
sion grows much larger than the gas sound speed, the stars will
be no longer embedded in accretion disks as they would spend
most of their orbits outside the main body of the accretion disk.
In addition, even when the stars are crossing the disk, the rela-
tively high value of vrel means that the accretion rate onto stars
will be strongly reduced. However, the effect is important only
when ρ∗ > ρ (assuming lnΛ∗ ∼ Cd), that is when the stellar
density is already larger than the gas density. Therefore, before
this effect may become important, about a half of the initial gas
mass should already be consumed by the stars. The accretion
onto the stars is curbed by the N-body dispersion effects too
late, when the disk is already partially consumed by the stars.

For Sgr A∗, we can estimate the expected H∗ ∼ Rσ/vK. The
relaxation time, defined as the time needed for the stellar disk
to thicken to height H∗ can be found from Eq. (11):

trel

tdyn
∼
[H∗

R

]4 M2
BH

4Md∗M∗ lnΛ∗
, (14)

where Md∗ is πR2H∗ρ∗, the mass of the stellar disk.
Equation (14) yields

trel

tdyn
∼ 2500

104 M�
Md∗

10 M�
M∗

[
H∗/R
0.1

]4
lnΛ−1

∗ . (15)

With tdyn ∼ 300 years, we have trel ∼ 106 years. Hence the
geometrical thickness of the rings, and the ratio of velocity dis-
persion to the local Keplerian velocity, σ/vK, are expected to
be of the order of 0.1 for the two young stellar rings in the GC.
The individual stellar velocities should thus still be close to the
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local circular Keplerian values if the origin of the stars is in the
gaseous disk.

Levin & Beloborodov (2003) estimate the geometrical
thickness of the inner stellar disk in Sgr A∗ to be of the order
of H∗/R = 0.1. This ratio is however larger but is not quanti-
fied for the outer disk found by Genzel et al. (2003). From their
Fig. 15 we estimate that H∗/R ∼ 0.3 for the outer, counter-
rotating, disk.

One may try to invert Eq. (15) to constrain the initial stellar
mass of the disks in the GC by using the observed velocity
dispersions (Genzel et al. 2003) in the rings. Unfortunately the
limits are not very stringent due to the strong dependence of trel

on H/R. A disk mass as high as Md ∼ 3 × 105 M� could still
be consistent with the observations for the inner stellar ring.
Interestingly, for the outer stellar ring, the velocity dispersion
is too high to be explained by the N-body effects unless the ring
mass is unrealistically high.

5. Destruction of stellar rings by orbital
precession: The maximum disk mass

Genzel et al. (2003) found that most of the young innermost
stars lie in one of two stellar rings. There is no noticeable differ-
ence in the estimated age of the two groups of stars. The rings
are bound to interact gravitationally with one another, and this
could lead to observable disk distortions.

In particular, stellar orbits precess around the axis of sym-
metry in an axisymmetric potential (e.g., Sect. 3.2 in Binney
& Tremaine 1987). We represented one of the disks by the
Kuzmin potential

ΦK(R, z) = − GMd√
R2 + (a + |z|)2

, (16)

where a is the disk radius, R is the radius in the cylindrical co-
ordinates and z is the perpendicular distance from the disk. We
then numerically integrated stellar orbits, starting from nearly
circular Keplerian orbits unperturbed by the disk presence. The
orbits remain approximately circular, and conserve the inclina-
tion angle i between the orbital plane and the disk plane (be-
cause the z-component of the angular momentum is rigorously
conserved in the axisymmetric potential). The stellar orbital
plane precesses with respect to the disk at a rate

φ̇ = CpqP−1 cos i, (17)

where Cp is a constant (for a given orbit and given geometry) of
order unity. Angle φ here is the azimuthal angle of the lines of
the nodes for the orbit in cylindrical coordinates used to define
the Kuzmin potential. The precession rate scaling (Eq. (17)) is
natural since for small q the effect is linear in q as can be seen
for orbits nearly co-planar with the disk (when i ≈ 0◦); for
i = 90◦ there should be no plane precession due to symmetry.

The value of Cp depends on the value of a with respect
to the radius of the nearly circular stellar orbit; for a of or-
der the radius, Cp ∼ 1. Setting i = 74◦ as appropriate for the
two GC stellar rings (Genzel et al. 2003), we obtain

∆φ � Cp
q

0.003
t

103P
· (18)

The important point to note is that nearly circular orbits of
stars at different radii from the SMBH will precess by different
amounts ∆φ. Therefore such a precession leads to a warping of
the stellar disk. After a time long enough to yield ∆φ >∼ 1 some-
where in the disk, the initially flat stellar disk will be disfigured
and will not be recognizable as a disk at all by an observer.

An approximate upper limit on the time-averaged mass of
each of the two stellar rings in Sgr A∗ can be set. Clearly the
exact value of this limit should be obtained numerically with
N-body experiments and comparison with the quality (χ2) of
the fits to the two observed planes (Levin & Beloborodov 2003;
Genzel et al. 2003). Such a study is underway. Due to an obser-
vational uncertainty in the radial dimensions of the rings’ inner
and outer radii, and theoretical uncertainty in the distribution of
gaseous mass (i.e. Σ(R)) in the accretion disk, it is possible to
reduce Cp from its maximum value for some values of param-
eters. Nevertheless, a rather robust value for the upper mass of
the disks appears to be

max Md ≈ 105 M�. (19)

6. Rotating the accretion disk midplane: Do stars
remain embedded?

The accretion disk midplane orientation can in principle change
as a result of a new mass deposition coming with a different ori-
entation of the angular momentum vector. In such a rotation,
would the newly born stars remain embedded in the disk and
follow its rotation or would they stay behind in the “old” ac-
cretion disk midplane due to their high inertia? The answer to
this question is important for AGN disks in general as embed-
ded stars can significantly influence the accretion process (e.g.,
Goodman & Tan 2004; Nayakshin 2004).

By orders of magnitude, one can estimate the time needed
to turn the accretion disk plane around on a significant angle
to be

trot ∼ Md

Ṁc
∼ tvisc

Ṁ

Ṁc
, (20)

where Ṁc is the mass condensation rate onto the accretion disk.
If the accretion and condensation processes are in an approxi-
mate steady state, Ṁc = Ṁ, trot ∼ tvisc. The latter is

tvisc ∼ R
vK
α−1
( R

H

)2
, (21)

and can be fairly long. Thus in general the disk plane orienta-
tion changes rather slowly.

6.1. Forces keeping the stars embedded

Two forces mediating interaction between a star and a gaseous
disk are the gravity of the disk as a whole, and the friction act-
ing on a star moving inside the disk at a certain velocity with
respect to the local circular Keplerian speed. If stars lag be-
hind the rotating disk plane, the characteristic relative velocity
at which the star and the gas would be separated is ∼vK/trot

and is very small compared to the sound speed in the gas (if
trot ∼ tvisc). At small relative velocities the dynamical friction
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of a star “leaving” the gas disk is very small too (see Eq. (12)),
and a simple estimate shows that the dynamical friction force
can be safely neglected in what follows.

Therefore the binding force to consider is the direct gravi-
tational attraction between the disk and the star. Near the disk
midplane, the infinite plane approximation can be used for the
disk gravity. The gravitational attraction force of the gaseous
disk for a star that left the disk midplane (i.e., the star-disk mid-
plane separation |z| >∼ H) is

apl = 2πGΣ, (22)

where Σ is the local disk surface density. Comparing this ac-
celeration with the centrifugal acceleration of the star mov-
ing in a circular Keplerian orbit around the central black hole,
ac = v

2
K/R,

apl

ac
=

2Md

MBH
· (23)

6.2. Critical rotation time

Suppose that the accretion disk midplane turns at a rate given
by the time scale trot. Define a critical rotation time scale,
trc, such that for disk plane changes occurring on time scales
shorter than trc, the stars are dislodged from the gas disk. For
trot > trc, on the contrary, the stars remain bound to the disk.
Clearly, we get the critical time scale when apl = arot ≡ vK/trot,
where arot is the “rotation acceleration” of the turning disk mid-
plane. We obtain for the critical rotation time

trc =
MBH

2Md
tdyn. (24)

Figure 2 shows the critical rotation time scales (dotted curves)
along with other important time scales for the standard accre-
tion disk model with same parameters as used for Fig. 1 and
for a 10 Solar mass star. The thick line curves are for ṁ = 0.03,
whereas the thin curves are for ṁ = 1. The accretion and mi-
gration time scales will be discussed in Sect. 7 below.

Note that trc is longer than tdyn but is much shorter than tvisc.
This implies that if accretion disk plane changes occur on a
viscous time scale, the stars would remain bound to the disk.
Only very fast plane changes could dislodge the stars from the
disk midplane.

6.3. The case of Sgr A∗

We have just shown that it is fairly difficult to separate the stars
and the accretion disks in slow disk plane rotations or deforma-
tions. For the Sgr A∗ case, this implies that either (i) there were
two separate accretion disk creation events that created the two
differently oriented rings; or (ii) the accretion disk itself was
extremely warped so that its inner part was oriented almost at
the right angle with respect to the outer disk part.

7. Accretion onto embedded stars

The Hill’s radius RH,

RH =

[
M∗

3MBH

]1/3
R, (25)

Fig. 2. Time scales for a 10 Solar mass star embedded in the standard
accretion disk with parameters as in Fig. 1. As before, thick curves
correspond to ṁ = 0.03, whereas thin ones are for ṁ = 1. The solid
lines show the viscous and the dynamical time scales for the disk, as
labelled in the figure. The star is massive enough to open up a gap
and hence migrates inward on the viscous timescale (tmigr = tvisc).
The dashed and dotted lines are the accretion and the critical rotation
time scales, respectively. For chosen parameters, the former one is
independent of ṁ (see text in Sect. 7 for detail).

defines the sphere around the star where the dynamics of gas
is dominated by the star rather than the SMBH. The accretion
of gas onto a star is believed to be similar to the growth of
terrestrial planets in a planetesimal disk (Lissauer 1987; Bate
et al. 2003). For RH > H, gas accretion onto the star is quasi
two-dimensional. The accretion rate is determined by the rate
at which differential rotation brings the matter into the Hill’s
sphere,

Ṁ∗ = ṀH ∼ 4πRHH ρ vH ∼ 4πR2
Hρcs, (26)

where ρ = Σ/2H is the mean disk density. We used the fact that
the characteristic gas velocity (relative to the star) at the Hill’s
distance from the star, vH, is vH = RH|dΩ/d ln R| ∼ cs(RH/H)
since the angular velocity for Keplerian rotation is Ω = cs/H.
Equation 26 is valid as long as RH > H since in the opposite
case the gas thermal velocity becomes important and the accre-
tion would proceed at the Bondi accretion rate (ṀB; e.g., Syer
et al. 1991). Of course Ṁ∗ cannot exceed Ṁ∗,Edd � 10−3r∗ �
10−3 M�/year m1/2

∗ , the Eddington accretion rate onto the star3.
We thus estimate

Ṁ∗ = min
[
ṀH , ṀB, Ṁ∗,Edd

]
. (27)

One can then define the accretion time scale for a star embed-
ded in a disk:

tacc ≡ M∗
Ṁ∗
· (28)

3 We assumed that r∗ = (R∗/R�) ≈ (M∗/M�)1/2. Note that Eq. (10)
in Nayakshin (2004) contains a typo.
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Figure 2 shows the accretion time scale (dashed line) for
a 10 M� embedded star. Although we considered two values
for the accretion rate onto the SMBH, ṁ = 0.03 and ṁ = 1, as
in Fig. 1, tacc turns out to be the same for both of these because
the accretion rate is close to the Eddington value.

An important point from Fig. 2 is that accretion onto em-
bedded stars is able to double the stellar mass in a few thou-
sand years. Therefore, growing stars as massive as 100 M� in a
million years in a disk with gas mass Md >∼ 104 M� appears
possible. (One potential uncertainty here is the reduction in
the accretion rate onto the embedded stars once these stars are
massive enough to clear out a radial gap in the accretion disk.
Results of Bate et al. (2003), Fig. 9, show that this reduction
can be very large. However, in the case of an AGN disk with
many embedded stars, the dynamics of the star-gas interaction
is likely going to be different from the case of a “test” star or
planet. The accretion disk will then be divided into many rings
between stars on nearly circular radial orbits. If the orbits are
close enough (number of stars N∗ � 1), then the gas in a ring
will experience alternating inward and outward pushes from
the two stars closest to it and hence the radial gap can in fact
be closed, enabling unhindered accretion. The issue deserves
future study.)

We also estimated the radial migration time scale, tmigr, us-
ing the prescription for the radial migration velocity based on
the numerical calculations of Bate et al. (2003). For the param-
eters chosen, the 10 M� stars, and any stars more massive than
that, open up a gap in the accretion disk and their radial migra-
tion is identical to the viscous flow of matter in the gas disk.
Thus tmigr = tvisc (two solid curves in Fig. 2). The migration
time scale is very long, indicating that stars will remain close to
where they were born in accretion disks with parameters close
to that of the standard disk for Sgr A∗. A more realistic self-
gravitating disk would not change this conclusion significantly
since the migration time scale only gets longer when the mid-
plane disk density decreases as a result of disk swelling due to
gravitationally induced turbulence.

8. Growth of “mini star clusters”
and intermediate mass black holes in accretion
disks

Goodman & Tan (2004) have recently suggested that it is pos-
sible to grow supermassive stars in AGN accretion disks. The
maximum mass of a star in this case is the gas disk mass in
a ring with width of the order of the Hill radius of the star,
RH = R(M∗/3MBH)1/3. This is the “isolation” mass, Mi �
M3/2

d M−1/2
BH ,

Mi ≈ 550 M�
[

Md

104 M�

]3/2 [3 × 106 M�
MBH

]1/2
· (29)

The stability of super-massive stars is briefly summarized in
Sect. 2 of (Goodman & Tan 2004). The supermassive star could
collapse directly into a black hole if the star is more massive
than 300 M� (Fryer et al. 2001).

However, the Hill accretion rate estimate assumes that all
of the disk mass delivered by the differential rotation into the

Hill radius around the star is accreted onto the star. Even with-
out the gap, this is not obvious because the gas still has to lose
most of its angular momentum before it can reach the stellar
surface (e.g., Milosavljević & Loeb 2004). Furthermore, quite
frequently the accretion rate onto the star estimated in this way
exceeds the Eddington accretion rate onto the star (as is the case
for Fig. 2). Milosavljević & Loeb (2004) have shown that the
fringes of the small-scale disk around the embedded stars them-
selves become self-gravitating and may therefore also form
stars or planets. It is thus possible to grow in situ star clus-
ters. The maximum total mass of such a cluster should be close
to the isolation mass.

A qualitative confirmation of these ideas can be found in
numerical simulations of a related physical problem by Tanga
et al. (2004). These authors simulate the growth and cluster-
ing of planetesimals in a proto-stellar disk. They find a hierar-
chical growth of clusters of particles and find that these “clus-
ters” are intrinsically stable structures. This is likely because
of the abundant supply of gas into the Hill sphere: there is al-
ways plenty of gas to interact with the particles (gravitationally
bound objects in the AGN case) that continue to get more and
more bound to the central object in the mini-cluster.

This mechanism of growth of intermediate mass black
hole (IMBH) and star cluster bound to it may be relevant to
the observations of the IRS13 cluster near Sgr A∗ (Maillard
et al. 2004). The “dark” mass in the IRS13 is estimated to be
>∼103 M�. Equation (29) shows that an initial mass of the disk
is of the order of several times 104 M� would have been suffi-
cient to “in situ” grow an object massive enough to become the
IRS13 cluster.

9. Discussion

We have considered here the formation of massive stars in a
self-gravitating accretion disk for conditions appropriate for
the central ∼0.2 pc of our Galaxy. Formation of an accretion
disk (instead of a narrow ring) would be a likely outcome of
a cooling instability for a hot gas since the gas would realis-
tically have a broad range of the angular momentum values.
Additionally, a cloud with an initial size of a parsec or larger,
tidally disrupted and shocked, should settle in a disk of a size
comparable to its initial radius. There is of course a direct ob-
servational test which would distinguish between the accre-
tion disk versus the compact infalling cloud idea of Sanders
(1998) – one simply has to establish whether the orbits of the
young stars in the two stellar rings are nearly circular or they
are strongly eccentric. As we showed in Sect. 4, stars born in an
accretion disk in Sgr A∗ would still retain their nearly circular
orbits.

The standard theory of gravitational instability for a thin
disk (Toomre 1964; Paczyński 1978) predicts that the mini-
mum mass of the gas in the disk that would make it gravita-
tionally unstable for the parameters appropriate to our Galactic
Center is ∼104 M� (Sect. 2). It would be interesting to com-
pare the predicted stellar mass resulting from star formation
in such an accretion disk with the current stellar content of
the rings. Unfortunately theoretical uncertainties for the effi-
ciency of star formation in self-gravitating disks are too large.
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Shlosman et al. (1990) have shown that if the cooling time of
a self-gravitating disk is shorter than tdyn = Ω

−1, then the disk
will fragment and form stars and/or planets. For longer cooling
times, it was argued that the disk does not fragment (Shlosman
et al. 1990). Numerical simulations with a constant cooling
time by Gammie (2001) confirmed this, and have shown that
the disk settles into a stable state where the cooling is offset
by the energy input generated by gravitational instabilities (see
also Paczyński 1978). Yet for disk temperatures of the order
of 103 Kelvin, the opacity is strongly dependent on the temper-
ature. Johnson & Gammie (2003) showed that in the non-linear
stage of the instabilities, the local cooling time may be orders
of magnitude smaller than that found in the unperturbed disk
model. However AGN disks are usually hotter than this and
hence the non-linear effect should be weaker.

Nevertheless, we believe that the Sgr A∗ accretion disk was
likely consumed almost entirely in the star formation episode
rather than accreted by the SMBH. There is no doubt about
star formation here: there are dozens of the brightest and quite
massive stars in each of the stellar rings with 3-D velocity mea-
surements. There are additional numbers of dimmer stars that
have only 2-D velocities measured but are strongly suspected of
belonging to these same rings (Genzel et al. 2003, Sect. 3.7).
The accretion time scale of the embedded stars is very short
(Sect. 7 and Fig. 2) compared to the disk viscous time scale.
We have also shown in this paper that neither disk plane ro-
tations, warps, or the stellar N-body scattering (unless there is
already more mass in the stars than in the gas, see also Cuadra
& Nayakshin 2004) can “shake” the stars off the disk midplane.
In addition, each massive star opens up a radial gap in the ac-
cretion disk around it. These stars would not let the standard
accretion disk transfer the gas into the SMBH simply because
they are in the way of the gas flow.

While the standard accretion disk equations are not appli-
cable to the region where the disk becomes self-gravitating, the
stellar accretion time scale is shorter than the viscous time by
3–4 orders of magnitude. We experimented with a prescription
for the accretion disk equations that introduces turbulent en-
ergy and pressure in addition to the thermal ones to keep the
disk marginally stable (i.e., Q >∼ 1), and found that the turbu-
lent energy content must be unrealistically high to reduce the
accretion rate onto the stars sufficiently.

We have also found (Sect. 4) that the geometrical thickness
of the inner 2−4′′ stellar ring, and the stellar velocity disper-
sion, could be explained by N-body scatterings between the
members of the same ring if the initial stellar mass was as
high as 104 M�. However, the outer 4−7′′ projected distance
ring (Genzel et al. 2003) is too thick to result from the internal
scatterings. We believe that a better explanation is stellar ring
warping due to a non-spherical gravitational potential (Sect. 6),
e.g. due to the presence of the inner ring. Estimating the rate
at which the rings become distorted, we tentatively set an up-
per limit on the time-averaged total mass of each of the gas-
star disks (rings) at around 105 M�. Future numerical N-body
modeling and direct comparison to stellar orbits may tighten
this limit.

We hope that future observations of the stellar mass content
in the two rings in Sgr A∗, and also observations of the inner

Galaxy ISM budget, could be used to constrain the initial mass
of the gaseous accretion disk and its further fate. As we have
shown, the gaseous disk mass should have been in the range of
(1−10) × 104 M�, 10 to 100 times higher than the present day
mass in the observed stellar rings (Genzel et al. 2003). If most
of the disk gas was used to make stars, then more of these stars
and/or their remnants should be found in the future in the inner
∼0.2 pc of the Galaxy. In addition, one may look for evidence
of a hot, high metallicity bubble in the inner 1 kpc of the Galaxy
produced by stellar winds and supernova explosions.

If instead the gas was mostly accreted by Sgr A∗, then there
should be evidence of a past quasar phase. The required accre-
tion rate, ∼(104−105) M�/106 year = 10−2 to 10−1 M� year−1

is comparable with the Eddington accretion rate for Sgr A∗,
ṀEdd ∼ 0.03 M� year−1, corresponding to perhaps LX <∼
1043 erg s−1 or even more. This would have to be a very rare
event in Sgr A∗’s recent life since the recent star formation
episode appears to be an isolated event in Sgr A∗’s past (Krabbe
et al. 1995). In addition, such star formation and accretion
events should also be rare in nearby galaxies, since these either
have no detectable AGN or have very weak ones with an X-ray
luminosity usually less than LX <∼ 1040 erg s−1 (e.g., Zang &
Meurs 2001; Pellegrini 2005). A past bright AGN phase should
also leave a hot buoyant radio bubble in the Milky Way halo,
as accretion onto the SMBH is widely believed to go hand
in hand with superluminous jet outflows. Future observations
will hopefully constrain Sgr A∗ accretion activity a few million
years ago.

10. Conclusions

Our main results are as follows:

1. The minimum mass of each of the disks needed to form the
observed young stars by self-gravity is around 104 M�.

2. The observed stellar velocity dispersions in the outer ring
are too large to result from N-body interactions between
stars belonging to the same ring. The orbital precession of
stars caused by the potential of the other disk can explain
the observed disk thickness and velocity dispersion if the
time-averaged stellar and gaseous mass in the inner disk is
in the range (3−10) × 104 M�.

3. A few million years ago, Sgr A∗ had a good chance to be-
come a very bright AGN with a bolometric luminosity L ∼
1044−1045 erg s−1, but was robbed of most of its gaseous
fuel by nuclear star formation in a self-gravitating accre-
tion disk. Nevertheless, even if only a few percent of the
available disk fuel was captured by Sgr A∗, the SMBH in
our Galactic Center was as bright as L ∼ 1042−1043 erg s−1.

We have also shown that capture of stars from the “old” relaxed
isotropic Sgr A∗ star cluster (the cusp; see Genzel et al. 2003)
by the accretion disk is inefficient unless the gaseous disk mass
was as high as 105 M�. In addition, the role of possible accre-
tion disk midplane changes was estimated. It was found that the
embedded stars inertia would have been efficient in taking the
stars out of the body of the disks only if the disk plane change
its orientation on time scales much shorter than the disk viscous
time.
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Milosavljević, M., & Loeb, A. 2004, ApJ, 604, L45
Morris, M., Ghez, A. M., & Becklin, E. E. 1999, Advances in Space

Research, 23, 959
Nayakshin, S. 2004, MNRAS, 352, 1028
Nayakshin, S., Cuadra, J., & Sunyaev, R. 2004, A&A, 413, 173
Ostriker, J. P. 1983, ApJ, 273, 99
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