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Discovery of a bright X-ray transient in the Galactic Center
with XMM-Newton
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Abstract. We report the discovery of a bright X-ray transient object, XMMU J174554.4-285456, observed in outburst with
XMM-Newton on October 3, 2002, and located at 6.3’ from Sgr A*, the supermassive black hole at the Galactic center. This
object exhibits a very large X-ray luminosity variability of a factor of about 1300 between two X-ray observations separated by
four months. The X-ray spectrum is best fitted by a power-law with a photon index of 1.6+0.2 and absorption column density of
14.1*14 % 10% cm™. This large absorption suggests this source is located at the distance of the Galactic center, i.e., 8 kpc. The
2-10 keV luminosity is about 1.0 x 10%° (d/8 kpc)? ergs™'. A pulsation period of about 172 s is hinted by the timing analysis.
The X-ray properties strongly suggest a binary system with either a black hole or a neutron star for the compact object.

Key words. Galaxy: center — X-rays: binaries — X-rays: individuals: XMMU J174554.4-285456

1. Introduction

XMMU J174554.4-285456

The Galactic center region (Al ~ 2°, Ab ~ 0.5°) is very —28°5' |8
complex in X-rays with both diffuse emission and point-like
sources, counterparts of fluorescent molecular clouds, su-
pernova remnants, compact objects, and stellar clusters. In
addition to Sgr A*, the supermassive black hole at the Galactic
center, this region shelters accreting compact objects, such as
neutron stars and black hole candidates (e.g., Churazov et al.
1997; Sidoli et al. 1999; Sakano et al. 2002; Porquet et al.
2003a), which can be transient sources in X-rays. Therefore,
repeated X-ray observations of this region, achieved for the
monitoring of Sgr A*, give us the opportunity to catch one of
these compact objects during an outburst phase, and to shed R0 R
light on their nature. We report here the serendipitous discov-
ery on October 3, 2002 with XMM-Newton of a bright X-ray
transient source located at 6.3” from Sgr A*.
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2. XMM-Newton observation Fig.1. XMM-Newton/EPIC image of the bright X-ray transient
XMMU J174554.4-285456 close to Sgr A*. Red, green and blue code

The XMM-Newton observation is the one obtained on for photons with energy 0.5-2, 2-5, and 5-10 keV, respectively.
October 3, 2002, where a very bright X-ray flare was reported

from Sgr A* (Porquet et al. 2003b). The observation exposure

times are ~16.8 ks and ~13.9 ks for the MOS and PN cam- for MOS and PN, respectively. We select only events with data
eras, respectively. The data were processed with SAS (ver- quality flag equal to 0. The astrometry is the one reported in
sion 6.0). X-ray events with patterns 0—12 and 0—4 are used Porquetet al. (2003b). Figure 1 shows the 7’ X7’ central part of
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Fig.2. XMM-Newton/EPIC background subtracted light curve of
XMMU J174554.4-285456 in the 2-10 keV energy band. The lower
light curve shows the background level scaled to the source extraction
area.

this observation in the 0.5-10 keV energy range: a new X-ray
source, as bright as Sgr A*, is clearly seen at 6.3” from Sgr A*.
Its position in J2000 coordinates is @ = 17h45m54.4s, 6 =
—28°54'56" with a 90% confidence level error position of 23"
in radius. We name this new X-ray source XMMU J174554.4—
285456. We did not find any known counterpart of this source
in the SIMBAD data base. We note that this area was pre-
viously observed in X-rays with higher sensitivity both with
XMM-Newton (e.g., Sakano et al. 2004) and Chandra (e.g.,
Muno et al. 2003), and that this source was not detected. In ad-
dition, during the Chandra observation on June 19, 2003, about
eight months after the present observation, the source was not
detected, hence XMMU J174554.4-285456is a transient X-ray
source.

We extract the source events from a circular region of
12”-radius centered on the X-ray source position, and the back-
ground events from a rectangular region free of X-ray sources
lying on the same CCD and close to the transient. Photon
arrival times were computed for the solar system barycenter.
Figure 2 displays the background subtracted EPIC light curve
of XMMU J174554.4-285456 in the 2—-10 keV energy band,
during the time interval when the three cameras were observ-
ing together. We do not see any obvious variations of the light
curve as type-I burst, or eclipse.

3. Spectral analysis

We use for the spectral analysis only PN data, which have a
higher S/N and better energy coverage than the MOS data. The
spectrum is binned to a minimum of 20 counts per bin. The
fitting parameter errors quoted correspond to 90% confidence
ranges for one interesting parameter (Ay?> = 2.71). In the fol-
lowing, we use the updated X-ray absorption cross-sections
and abundances of the interstellar medium (ISM) of Wilms
et al. (2000). The PN spectrum, shown in Fig. 3, is strongly
absorbed below 2 keV, evidence of a large absorption by the
ISM along the line-of-sight. We fit the data taking into account
the scattering of X-rays by dust, using the scatter model
(Predehl & Schmitt 1995) assuming a visual extinction value
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Fig.3. PN spectrum of XMMU J174554.4-285456 with the best fit
model using an absorbed power-law continuum (see Table 1) and data-
to-model ratio.

Table 1. Models of the PN spectrum of XMMU J174554.4—
285456, taking into account absorption. po: power law. bb: black
body. diskbb: multi black body (Mitsuda et al. 1984). brems:
bremsstrahlung. The number of degrees of freedom is 161. The
column density is expressed in units of 10> cm™2. The flux (Fx)
and luminosity (Lx) corrected for absorption are expressed in
107" ergem™ s7!' and 10%° ergs™!, respectively. The luminosity is
calculated assuming d = 8 kpc.

Model Ny TorkT x%, Fx Lx Fx Ly
2-10keV  0.5-10 keV

po 14116 165017 087 14 10 21 15
bb 73+09 19«01 108 1.0 07 1.0 0.7
diskbb 11.0+x1.0 3705 093 12 09 14 1.0
brems 13.6+1.2 22f‘1“5) 088 13 09 1.8 1.3

Ay = 30 mag, as determined from IR observations of stars
close to Sgr A* (e.g., Rieke et al. 1989).

The PN spectrum is well fitted by the standard absorbed
continuum models, such as power-law, black-body, multi black
body, and bremsstrahlung (Table 1). However, the temperatures
found for the latter three models are rather high, and the spec-
trum is not well fitted above 10keV by the black-body and
the multi black body models. According to Predehl & Schmitt
(1995), Ay = 30 mag corresponds to an hydrogen column den-
sity of about 6 x 10?> cm~2 towards the Galactic center located
at about 8 kpc. The updated ISM abundance used here lead to
absorption column density values about 30% larger than those
derived assuming solar abundance as in Predehl & Schmitt
(1995). For comparison we found for Sgr A* (during its X-ray
flare) a column density of about Therefore, the hydrogen col-
umn density estimated here for the absorbed power law model
is consistent with a location of this transient object at the dis-
tance of the Galactic center. We also test a thin thermal model
mekal but in case of solar metal abundance, we obtain an un-
physically high temperature greater than 50 keV. If the metal
abundance is let as a free parameter, the temperature is lower
with kT = 18.6f%8 keV, and the upper limit of the metal abun-
dance is about 0.3, due mainly to the lack of obvious spectral
emission lines. Therefore the power-law model is our best fit.
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Fig. 4. Timing analysis of XMMU J174554.4-285456 in the 2-10 keV energy band. left: power spectrum of the EPIC 2.6 s-binned light curve.
The enlargement shows the X-ray pulsation candidate at the frequency 5.85 + 0.07 mHz corresponding to a period of 171 + 2 s. right: folded
light curve for the period 171.6 + 0.3 s found with periodogram analysis.

We obtain an upper limit of the equivalent widths for a narrow
iron Ka line (o0 = 10 eV) between 6.4 (“neutral”) and 7 keV
(H-like) of 30-86 eV. To look for a possible time variability of
the spectrum, we split the observation into two parts, but we
find no statistically significant variations of the photon index,
the absorption column and the 2-10 keV flux. 20 x 10?> cm—2
(Porquet et al. 2003b).

4. Period analysis

We have searched the combined EPIC data with a time bin
of 2.6s for X-ray pulsations in the 2-10 keV range. The
FFT power density spectrum shows a peak at 5.85 + 0.07 mHz
or 171 + 2 s (Fig. 4, left). The probability that the peak at this
frequency is produced by just white photon noise is 2% has
been found by Monte Carlo simulations. To cope with the pos-
sibility that the signal is not constant with just random fluctua-
tions, we assessed the false alarm probability making use of the
periodogram analysis (Lomb 1976, Scargle’s 1982) in the form
suggested by Andronov (1994): x(t) = a — Rcos2n(t—Ty)/P),
where x(¢) is the 2.6 s-binned signal at time ¢, a is phase-
averaged mean value, R is the semi-amplitude, P is the trial pe-
riod, and T is an initial epoch. The MOS1, MOS2 and PN data
as well as their sum have been analysed separately, and a can-
didate period at P = 171.57 + 0.25 s has been found consis-
tent with the period found by the FFT analysis. The candi-
date period has a signal to noise ratio (S/N) of 2.9 (MOS1),
3.3 (MOS2), 6.0 (PN) and 9.7 (total). The S/N ratio is de-
fined as the ratio of the count rate obtained for the candi-
date frequency divided by the count rate averaged over the
full frequency band. Monte Carlo simulations were done for
50000 evenly spaced trial frequencies ranging from 107> s
up to the Nyquist frequency of 1/2 s™!, and resulted in a false
alarm probability of 0.37 for 7638 independent frequencies.
We have also exercised a test on the phase relation among
the three instruments by comparing the fitted values for 7Y,
which are TO,MOSl =7678 £ 11s, TQ)MOSZ = 7682+ 11s, and

Topn 7665 = 8 s. The largest phase shift is 0.10 = 0.08 which
suggests that there is no significant shift. In the context of this
approach, we have estimated a false alarm probability, defined
as the probability to get by chance the observed phase “coin-
cidence”, by computing 10® trial data sets with uniformly dis-
tributed phases. For each trial set, a weighted mean and vari-
ance is computed using the previous measured instrumental
uncertainties. The simulated variance of the phases exceeds the
measured variance in 3.4% of all trials. In summary the false
alarm probability for the suggested period is somewhere be-
tween 2 and 3.4% ignoring any modulation of the signal and
could be around 37% otherwise. Finally, we give the best fit
parameters of the signal function for the data of the three in-
struments combined: a = 0.368 + 0.005, R = 0.032 = 0.007,
To = 7672.2 + 6.2 s (corresponding to mjd = 2550.80667, i.e.
October 3, 2002 at 7:21:36.0). The peak-to-peak amplitude of
the periodic variations is ~16% =+ 2, which is the same for all
three instruments within the error estimates. Figure 4 (right)
shows the light curve folded with this period. We have ex-
tracted phase resolved spectra selecting data corresponding to
peak (phase = 0.2-0.6), and to trough (phase = 0.6—1.2), and
we found no significant spectral differences.

5. The nature of XMMU J174554.4-285456

We estimate the amplitude of the luminosity outburst from
the deepest Chandra observation of Sgr A*, 167 ks of ex-
posure obtained on May 25, 2002, i.e. four months be-
fore our XMM-Newton observation. We found a 3-o- count
rate upper limit of 1.2 x 10™* counts™' at the loca-
tion of XMMU J174554.4-285456 in the 0.5-10 keV en-
ergy band. Assuming I' = 1.6 (see Table 1), we find
Lx (0.5-10keV) < 1.2 x 10*(d/8 kpc)® ergs™! during the
quiescent state. Therefore, this source has exhibited a lumi-
nosity increase of a factor of about 1300 over four months.
In addition the source was not detected eight months after
the present XMM-Newton observation by Chandra during a
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short exposure (25 ks) obtained on June 19, 2003 leading to
a3-0-0.5-10keV count rate upper limit of 3.7 x 10~ count s~
at the location of XMMU J174554.4-285456, corresponding
to Lx (0.5-10 keV) < 3.7 x 10°2(d/8 kpc)? ergs™'. Then
XMMU J174554.4-285456 is a transient source detected here,
for the first time, during an outburst on October 3, 2002, ruling
out for example the outburst of a supernova. Such very rapid
luminosity decrease is not compatible with a tidal disruption of
a star as observed in some non active galaxies (e.g., Halpern
et al. 2004). The X-ray properties suggests an X-ray binary na-
ture, involving a compact object which could be either a white
dwarf, or a neutron star, or a black hole.

The typical outburst luminosity of white dwarf system is
only up to about 103 ergs™! (e.g., GK Per, Sen & Osborne
1998), implying a distance upper limit of about 2.5 kpc, and the
bulk of the observed hydrogen column density would be for in-
stance intrinsic, produced by the accreting material. However,
here the amplitude between the outburst phase and the quies-
cent phase is much larger than the one observed in cataclysmic
variables. For example, GK Per, which has the most similar
X-ray properties (€.g., Nu, kTrems, period pulsation), has only
an amplitude of about 10 (Hellier et al. 2004), and a signifi-
cant Fe Ka line is seen during outburst with an equivalent width
of 160 + 20 eV typical for cataclysmic variables (see Ezuka &
Ishida 1999). Therefore, a cataclysmic variable origin is very
unlikely for XMMU J174554.4-285456.

The companion of the neutron star or of the black hole
can be either a low mass object or a high-mass object. A
subclass of low mass X-ray binaries are transient systems,
called X-ray novae, which undergo sometimes outbursts.
For most of the time, X-ray novae are in quiescent state,
where the mass accretion rate from the disk to the com-
pact object is very small, producing a low-level of X-ray
emission. The quiescent 0.5-10 keV X-ray luminosities of
neutron star X-ray novae are about 10°2-10* ergs™!, i.e.,
100 times higher than those for black hole X-ray novae
(~10%°-10% ergs™'), as shown by Garcia et al. (2001). Here
we find an upper limit of the luminosity in the quiescent state
of 1.2 x 1032 (d/8 kpc)? ergs™, i.e., compatible with a black
hole X-ray nova or a neutron star X-ray nova. The lower
limit amplitude between the outburst phase and the quiescent
phase is consistent with both a neutron star and a black hole
(Chen et al. 1997). Therefore XMMU J174554.4-285456 can
be either a neutron star X-ray nova or a black hole X-ray
nova. XMMU J174554.4-285456 can also be a high mass
X-ray binary formed by a neutron star or a black hole and a
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primary Be star companion. Indeed, as reported by Liu et al.
(2000), most of the transient high mass X-ray binaries are
Be star systems. Roughly two-third of a sample of 130 high
mass X-ray binaries are Be/X-ray binaries, and X-ray pulsa-
tions have been found in about 60 Be/X-ray binary systems
(Zidlkowski 2002).

We conclude that a higher S/N X-ray observation of
XMMU J174554.4-285456 during its outburst phase is needed
to confirm or reject the candidate X-ray pulsation at 172 s sug-
gested by our timing analysis. If confirmed, we will be able to
firmly identify the compact object as a neutron star. Moreover
near-infrared follow-up observations are needed to identify and
to characterize the companion star.
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