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Initial conditions for disc galaxies
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ABSTRACT
We present a general recipe for constructing N-body realizations of galaxies comprising near
spherical and disc components. First, an exact spherical distribution function for the spheroids
(halo and bulge) is determined, such that it is in equilibrium with the gravitational monopole
of the disc components. Second, an N-body realization of this model is adapted to the full disc
potential by growing the latter adiabatically from its monopole. Finally, the disc is sampled
with particles drawn from an appropriate distribution function, avoiding local-Maxwellian
approximations. We performed test simulations and find that the halo and bulge radial density
profile very closely match their target model, while they become slightly oblate due to the added
disc gravity. Our findings suggest that vertical thickening of the initially thin disc is caused
predominantly by spiral and bar instabilities, which also result in a radial re-distribution of
matter, rather than scattering off interloping massive halo particles.

Key words: methods: N-body simulations – galaxies: haloes – galaxies: kinematics and
dynamics.

1 I N T RO D U C T I O N

Generating an equilibrium N-body representation of a multicompo-
nent galaxy is of importance for a number of applications, for exam-
ple the study of bars (e.g. Debattista & Sellwood 2000; Athanassoula
2002), warps (e.g. Ideta et al. 2000) and galaxy mergers, both minor
(e.g. Mihos et al. 1995; Walker, Mihos & Hernquist 1996) and major
(e.g. Heyl, Hernquist & Spergel 1996; Naab, Burkert & Hernquist
1999). Yet, constructing realistic equilibrium models is consider-
ably difficult and in fact impossible rigorously, i.e. requires some
sort of approximation.

Barnes (1988) introduced a ‘rather ad hoc’ method for construct-
ing N-body models for a multicomponent galaxy. He begins by con-
structing separate spherical equilibrium N-body King (1966) models
for the halo and bulge, which are then superposed and allowed to
relax into a new equilibrium over several dynamical times. Next, the
gravitational potential of the disc is slowly imposed, causing both a
flattening and a radial contraction of halo and bulge. Finally, the disc
component is populated with particles drawn from a Maxwellian
distribution with the local mean and dispersion in agreement with
the Jeans equations.

Hernquist (1993) introduced another method, which makes it pos-
sible to specify the density and velocity profiles of the various com-
ponents in a straightforward way. In this method, the positions of
all the particles in all components are determined first. This can
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be carried out easily since the desired density profiles are known.
The Jeans equations are then used to find the velocity dispersions
of the various components, with those for the halo being found under
the assumption that the potentials of disc and bulge can be approx-
imated by their spherical average. Finally, individual velocities for
all components are drawn from a locally Maxwellian distribution
with the appropriate mean and dispersion velocities.

Boily, Kroupa & Peñarrubia-Garrido (2001) extended this ap-
proach to include a non-spherical halo, but maintained the approxi-
mation to a Maxwellian distribution for the particle velocities. This
method is not rigorous and Hernquist (1993) himself suggested that
‘in the future, it will likely be necessary to refine the basic approach
as computer hardware and software permit simulations with particle
numbers significantly in excess of those discussed here’. (He used
N = 49 152 in his empirical tests.)

Kazantzidis, Magorrian & Moore (2004b) compared the proper-
ties of N-body haloes based on the Maxwellian approximation with
those derived from an exact distribution function found through
Eddington (1916) inversion. As their study clearly demonstrates,
the Maxwellian approximation results in non-equilibrium effects
and is inappropriate, for example, when modelling the tidal stripping
of substructure in cold dark matter haloes. Unfortunately, Edding-
ton inversion only works for spherically symmetric equilibria and
cannot be straightforwardly applied to the problem of finding the
self-consistent distribution function of a multicomponent system.

Therefore, Kuijken & Dubinski (1995) followed an alternative
method, later expanded by Widrow & Dubinski (2005). They start
from an analytical ansatz for the equilibrium distribution function of

C© 2007 The Authors. Journal compilation C© 2007 RAS

 at :: on N
ovem

ber 19, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


542 P. J. McMillan and W. Dehnen

each component in isolation, written in terms of energy and angular
momentum. In the case of the disc, the distribution function is also
a function of the ‘vertical energy’ Ez ≡ 1

2 v2
z + �(R, z) − �(R, 0),

which for orbits close to the disc plane is approximately conserved.
These distribution functions are found for predetermined isolated
density distributions. In the case of Kuijken & Dubinski (1995),
these were a King (1966) model bulge, a lowered Evans model
(Kuijken & Dubinski 1994) halo and an exponential disc. The com-
bined model is then found by using these distribution functions in
the combined gravitational potential of the entire model. The major
problem with this approach is summed up by Widrow & Dubinski
(2005) when they state that the combined model constructed in this
way ‘may bare [sic] little resemblance to the corresponding isolated
components, a situation which is cumbersome for model building’.
This approach is also rather inflexible.

In this study, we therefore return to using Eddington inversion
(in fact a generalization thereof) for the near-spherical components
but an analytic distribution function for the disc. Our method is
detailed in Section 2, while Section 3 presents extended tests of
the robustness and stability of the constructed N-body equilibria.
Finally, Section 4 sums up and concludes.

2 T H E N E W M E T H O D

Our method bears some relation to that of Barnes (1988) in that the
non-spherically symmetric component (the disc) is grown adiabati-
cally within the N-body halo. The bulge is assumed to be spherically
symmetric, though it would be a relatively straightforward step to in-
clude a non-spherical bulge in a similar way to the disc. The process
has three stages.

(i) Creating an equilibrium initial N-body representation of the
spherically symmetric components of the galaxy (halo and bulge)
in the presence of an external potential field corresponding to the
monopole (spherical average) of the desired disc potential.

(ii) Evolving the N-body system by growing the non-monopole
components of the disc potential adiabatically in a N-body simula-
tion in order to allow halo and bulge particles time to relax into the
new potential.

(iii) Replacing the external potential field representing the disc
component with an N-body representation.

2.1 Creating the initial N-body halo and bulge

We create an N-body realization of the spherically symmetric com-
ponents of the system using Cuddeford’s (1991) method, an exten-
sion of the model by Osipkov (1979) and Merritt (1985), which
in turn extended Eddington’s (1916) original inversion technique
to obtain the distribution function for a spherical system with an
isotropic velocity distribution.

Cuddeford considered distribution functions of the form

f (E, L) = L2α f0(Q). (1)

Here, Q ≡ E − L2/2r 2
a as for Osipkov–Merritt models (E ≡

	− 1
2v

2, 	 denoting the negative of the gravitational potential) with
anisotropy radius ra. The parameter α is constrained to be greater
than −1. As Cuddeford showed, f(Q) is related to the density by an
Abel integral equation, which can [under the assumption that
f (Q < 0) = 0 be inverted to yield

f0(Q) = sin
(

n − 1
2 − α

)
π

π λ(α) η(α)

d

dQ

∫ Q

0

dnρred

d	n

d	

(Q − 	)α+3/2−n
, (2)

where n is defined as the largest integer equal to or less than α + 3
2 ,

and where the ‘reduced density’ is given as

ρred =
(

1 + r 2/r 2
a

)α+1

r 2α
ρ (3)

while

η(α) =
{(

α + 1
2

)(
α − 1

2

)
. . .

(
α + 3

2 − n
)
, α > − 1

2

1 −1 < α � − 1
2 ,

(4)

and

λ(α) = 2α+3/2 π3/2 �(α + 1)

�(α + 3/2)
. (5)

This distribution function produces a spherically symmetric sys-
tem with a velocity distribution such that

β(r ) ≡ 1 − σ 2
θ

σ 2
r

= r 2 − αr 2
a

r 2 + r 2
a

. (6)

In the case where α = 0, this model reduces to an Osipkov–Merritt
model. In the case where ra → ∞, the anisotropy of the halo is the
same at all radii, β = −α.

This approach has the advantage that the distribution function
is exact for a spherically symmetric system, and thus remains in
equilibrium, maintaining its original density profile. At no point is
the assumption of a Maxwellian velocity distribution made. The
only restrictions to this method are that 	 = 	(r) is a monotonic
function of radius (only); that ρ = ρ(r) and that the solution to
equation (2) must be physical, i.e. f 0(Q) � 0. This allows us to use
a wide range of different halo (or bulge) density profiles.

It is extremely useful that the derivation of equation (2) does not
make the assumption that the potential of the system is that due to
the density profile through the Poisson equation. This means that it
is straightforward to generalize this approach to find the distribution
function of a spherically symmetric component of a larger, spheri-
cally symmetric, system. The term ρred in equation (3) is replaced
by the reduced density ρred,i the reduced density of the component
i; the term 	 in equation (3) always refers to the potential of the
entire system.

In the model, the presence of the disc component is taken into
account when calculating the distribution function of the halo and
bulge. It is impossible to do this exactly using this method, as the
disc is not spherically symmetric. The best approximation available
in this case is to take the spherical average of the disc potential. Then,
the distribution functions of the bulge and halo are found in the total
potential of the halo, bulge and fictitious spherically averaged disc.
This prevents the radial contraction seen in the models constructed
by Barnes (1988).

Finally, we will briefly describe how we choose initial conditions
from a model with distribution function of the form (1). First, we
draw an initial position from the density in the usual way by invert-
ing the cumulative mass profile for the radius. Secondly, we sample
velocities by introducing pseudo-elliptical coordinates (u, η) in ve-
locity space such that vr = u cos η and vt = u(1 + r2/r2

a)−1/2 sin η.
Then, we pick values for η and u at random from the distributions
p(η) = sin1+2aη and p(u) = u2+2α f0(	 − 1

2 u2), using the rejection
method for the latter.

2.2 Evolving the halo and bulge to adapt to the disc

The second stage of creating the model is to evolve N-body model
of halo and bulge so that it is in equilibrium with the full disc
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potential, rather than with its spherical average. To this end, we use
the N-body code GYRFALCON, which is based on Dehnen’s (2000,
2002) force solver FALCON – though the axisymmetry of the system
means that a code based upon an expansion in spherical harmonics
about the origin (such as the so-called self-consistent field codes,
e.g. Hernquist & Ostriker 1992) would be well suited to this purpose.

The full potential of the disc, �disc(x) is grown from its spherical
average �disc,0(r) according to the formula

�(x, t) = �disc,0(r ) + A(t)
[
�disc(x) − �disc,0(r )

]
, (7)

where A(t) is a growth factor that goes from 0 at t = 0 to 1 smoothly
in a time-scale, tgrow, far longer than the dynamical time in the region
of the disc. The halo and bulge are then allowed further time to relax
completely under the influence of the disc potential.

This process causes changes to the density distribution of the halo.
The spherically averaged density distribution is largely unchanged,
but the halo and bulge are somewhat flattened, and the iso-density
contours of both the halo and the bulge become oblate. The degree
of flattening is dependent on the details of the various components,
a typical example is given in Section 3.

This stage is by some distance the slowest in creating of the initial
conditions. However, it still takes a relatively small fraction of the
total CPU time of almost any scientifically interesting simulation. It
should also be noted that up until this point the velocity distribution
of the disc has not been a factor in the calculations, so the halo and
bulge created by this process can be re-used in simulations with
identical disc density profiles, but different disc kinematics.

2.3 Populating the disc

We start from the assumption that the motion of disc particles
decouples into its components in the plane of the disc, and per-
pendicular to it. That is, we assume that the planar and vertical
components of the total energy, E‖ ≡ 1

2 (v2
R + v2

φ) + �(R, 0) and
E⊥ ≡ 1

2 v2
z +�(R, z)−�(R, 0), are both separately conserved. This

assumption is usually excellent for orbits near the disc, for which
|z| � R always. The potential � here is, of course, the total potential
of the system, i.e. that of the disc model plus that of the evolved
N-body system. The first is computed as in Dehnen & Binney
(1998), while the latter is approximated using a potential expansion
(so-called SCF) method whereby ensuring axial symmetry by taking
only m = 0 and even l terms.

We make an ansatz for the disc distribution function, following the
approach of Dehnen (1999b). As in that study, we first consider the
simplest distribution function, i.e. that of a dynamically completely
cold disc, in which all particles are on circular orbits. For a disc
with density ρ = �(R) δ(z) (� being the surface density), this can
be written as (e.g. Dehnen 1999b)

fcold(E‖, Lz, z, vz) = �
(

RLz

)
�

(
RLz

)
πκ

(
RLz

) δ[E‖ − Ec(RLz )] δ(z) δ(vz),

(8)

where �(R) and κ(R) denote the angular and epicycle frequency
at radius R and Ec(R) the energy of the circular orbit through R,
while RLz is the radius of the circular orbit with angular momen-
tum Lz . In order to obtain a warm disc distribution function, one
may replace the δ-functions in (8) by exponentials, resulting in a
locally Maxwellian velocity distribution (e.g. Shu 1969; Kuijken &
Dubinski 1995).

However, as demonstrated by Dehnen (1999b), it is better to use
the following alternative form for the cold-disc model before ‘warm-

ing’ it up.

fcold(E‖, Lz, z, vz)

= �(RE‖ ) �(RE‖ )

πκ(RE‖ )
δ(�(RE‖ )[Lz − Lc(RE‖ )]) δ(z) δ(vz), (9)

where Lc(R) is the angular momentum of the circular orbit with
radius R and RE‖ the radius of the circular orbit with energy E‖.
Again, the warm disc distribution function is obtained by replacing
the δ-functions with exponentials (noting that z = 0, vz = 0 means
that E⊥ = 0), giving

fdisc(E‖, E⊥, Lz) = �(RE‖ ) �̃(RE‖ )

(2π)3/2κ(RE‖ )

1

zd σz(RE‖ )
exp

[
− E⊥

σ 2
z (RE‖ )

]

× 1

σ̃ 2
R(RE‖ )

exp

(
�(RE‖ )[Lz − Lc(RE‖ )]

σ̃ 2
R(RE‖ )

)
.

(10)

Here, �̃(R) and σ̃R(R) are sought such that the true surface-density
and radial-velocity dispersion profiles of the N-body representation
are those desired, to within an appropriate degree of accuracy, while
the velocity dispersion in the vertical direction σ 2

z (R) = πGzd�(R)
with disc scaleheight parameter zd .

Dehnen (1999b) argued that equation (10) gives a more useful
distribution function than that of Shu (1969); he pointed that the
warming of a disc can be described as an exponential in the ra-
dial action JR. The radial action is more closely approximated by
�(RE‖ )[Lc(RE‖ ) − |Lz |]/κ(RE‖ ) than by [E‖ − Ec(RLz )]/κ(RLz )
(Dehnen 1999a). More practically, this distribution function has the
advantage that the value of RE‖ is generally a far better approx-
imation to the mean radius of an orbit than RLz , which ensures
that �(R) and σ R(R) closely resemble �̃(R) and σ̃R(R), respec-
tively. This choice of distribution function also extends to nega-
tive Lz , unlike that of Shu, allowing for a tail of counter-rotating
stars.

When sampling from this distribution function, we attempt to
minimize noise in the particle distribution by sampling points more
regularly than random in phase space. We accomplish this by
sampling orbits from the density distribution �̃(R), then placing
1 � Nsam � Ndisc particles at points on each orbit. Finally, we it-
eratively adapt �̃(R) and σ̃R(R) so that the actual surface density
and velocity dispersion profile match the target profiles as closely as
possible. The procedure for sampling the planar part of the phase-
space positions is very similar to that proposed in Dehnen (1999b)
and its details are as follows.

(i) Draw a radius from a thin disc with surface density �̃(R)
(initially �̃ = �) and set E‖ to the energy of the circular orbit at R.

(ii) Draw a number ξ ∈ (0, 1) and determine

Lz = Lc(R) + ln ξ σ̃ 2
R(R)/�(R). (11)

If Lz �∈ [−Lc(R), Lc(R)] go back to Step (i).
(iii) Integrate the orbit with these values of E‖ and Lz for one

radial period TR, find the radial frequency ωR, and tabulate R(t) and
Ṙ(t) for that orbit. Evaluate the correction factor gcorr ≡ κ(R)/ωR

(see Dehnen 1999b).
(iv) Given Norb ≈ N1/2

disc, choose Nsam to be either of the two in-
tegers next to gcorrNorb drawn with probabilities such that the mean
equals gcorrNorb. Next sample Nsam orbital phases ti ∈ (0, TR) and
azimuth angles φi ∈ (0, 2π), and determine the corresponding phase-
space points {Ri , φi , Ṙi , φ̇i } from the orbit.

(v) Repeat Steps (i) to (iv) until a total of Ndisc disc particles have
been sampled.
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(vi) Finally, evaluate from the Ndisc phase-space points the actual
surface-density and radial-velocity dispersion, �out and σ out,R , of
the N-body model and adapt

�̃(R) → �̃(R)
�(R)

�out(R)
, σ̃R(R) → σ̃R(R)

σR(R)

σout,R(R)
. (12)

Then, repeat the whole sampling procedure of Steps (i) to (v) and
iteratively adapt �̃(R) and σ̃R(R) until no further improvement
occurs.

If we use quasi-random, rather than pseudo-random, numbers
in this procedure, it closely resembles the ‘quiet start’ method
(e.g. Sellwood 1987). Once this is done, we determine the verti-
cal component of each disc particle’s position and velocity. We
assume that the local structure in the z-direction corresponds to
that of an isothermal sheet with a constant vertical scaleheight,
zd (Spitzer 1942). This leads to a density throughout the disc
ρ(R, z) ∝ sech2(z/zd). vz is then drawn randomly from a normal
distribution with σ 2

z = πG�(RE‖ ) zd.

3 T E S T I N G T H E N E W M E T H O D

We test our approach using a model based loosely upon the Milky
Way as modelled by Klypin, Zhao & Somerville (2002). The disc
is defined as having an exponential surface density profile with a
vertical structure modelled by isothermal sheets, i.e.

ρd(R, z) = Md

4πR2
d zd

exp

(
− R

Rd

)
sech2

(
z

zd

)
, (13)

where Md is the total disc mass, Rd is the disc scale radius and
zd is a scaleheight (though it should be noted that this is not the
e-folding height). The halo model is a truncated (Navarro, Frenk &
White 1997, hereafter NFW) halo with initially spherical density
distribution

ρh(r ) = ρc
sech(r/rt)

(r/rh)(1 + r/rh)2
, (14)

while the bulge is modelled with a Hernquist (1990) density profile

ρb(r ) = Mb rb

2πr (rb + r )3
. (15)

We choose units such that Newton’s constant of gravity G = 1,
Rd = 1 and Md = 1. We take the disc scaleheight zd = 0.1, the bulge
mass Mb = 0.2 and scalelength rb = 0.2. Scaling these values to the
Milky Way, taking Rd = 3.5 kpc, Md + Mb = 5 × 1010 M� (as in
Klypin et al. 2002) gives a time unit �14Myr, and thus a velocity
unit of ∼250 km s−1.

For the halo, we take a scale radius rh = 6, truncation radius
rt = 60 and mass Mh = 24, 79 per cent of which is within the
truncation radius. The rotation curve for this model (with velocities
given in code units) is shown in Fig. 1.

In all tests in which they were populated, the halo had 1200 000
particles, the bulge 40 000 and the disc 200 000. This corresponds
to each halo particle being four times more massive than a stellar
particle. We use gravitational softening lengths of ε = 0.02 for disc
and bulge particles, and 0.04 for halo particles. This choice ensures
that the maximum force exerted by a single particle (∝ mi/ε

2
i ) is the

same for all particles.
Simulations were performed with GYRFALCON with a minimum

time-step of 2−7, and a block-step scheme with largest time-step 2−4.
Individual particle time-steps were adjusted such that on average the
time-step

τi = min

{
0.01

|ai | ,
0.05

|�i |

}
, (16)

Figure 1. Rotation curve for the test galaxy model. The solid line is the net
rotation curve, also shown are the contributions from the disc (dotted), bulge
(short-dashed) and halo (long-dashed).

with �i and ai the gravitational potential and acceleration of the ith
body in simulation units.

We first tested that the spherically symmetric components remain
in equilibrium in the spherically symmetrized potential. This was
tested with various different choices for ra and α (equation 1) in the
halo, in order to ensure that Cuddeford inversion had been imple-
mented correctly. The halo and bulge profiles remained consistent
to within a few softening lengths of the centre, where softening and
two-body relaxation have some small effect. This testing was also
used to assess whether the time integration parameters were appro-
priate. Since energy was typically conserved to within 0.05 per cent
over 200 time units in these test simulations, we assume that the
time integration is sufficiently accurate. For all further tests we only
consider the isotropic case (α = 0, ra → ∞, so β = 0 throughout
the halo).

3.1 Testing the disc growth

The next step was to ensure that the growth of the full disc potential
from its monopole occurs without significant effect upon the radial
density profile of the halo or bulge, or upon their kinematics, and
to quantify the effect upon the shape of the resultant density distri-
bution. The disc potential is grown as per equation (7), with a total
growth time tgrow = 40. This is substantially longer than the dynam-
ical time tdyn in the vicinity of the disc (e.g. at R = 3, tdyn ∼ 6).

Fig. 2 shows the evolution of the density profiles of halo and bulge.
Both are maintained to within a high degree of accuracy through the
growth of the full potential, and then remain close to unchanged for
a long period of time. The halo density is slightly raised in the inner
∼0.02rh = 0.12 and the bulge density is slightly lowered in the inner
∼0.3rb = 0.06, in each case corresponding to only a few softening
lengths. This is approximately the same as observed in simulations
with no disc growth and is likely caused by mass segregation due to
(artificial) two-body relaxation.

To quantify the flattening of halo and bulge due to the growth of
the full disc potential, we determine the axis ratios of the halo and
bulge as a function of radius. To this end, we first estimate the local
density at each particle’s position by the nearest-neighbour method
of Casertano & Hut (1985), using the 15 nearest neighbours (of the
same component). Next, we bin the particles in estimated density
and evaluate the axis ratios in each bin as the square roots of the
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Figure 2. Spherically averaged density profile of the halo (left-hand side) and bulge (right-hand side) shown just before growth of the full disc potential (t =
0), and at 100 and 200 time units. The disc component was not populated in this simulation. The density profiles remain more or less unchanged by the growth
of the full potential, except at radii only slightly larger than the respective softening length (εh = 0.0066rh and εb = 0.1rb, indicated by the dotted vertical line).

Figure 3. Minor and intermediate axis ratios (c/a < b/a, respectively), for both the halo (left-hand side) and bulge (right-hand side) in the same simulations
as in Fig. 2. Particles are binned in density, and the values plotted here are the axis ratios of these bins against their median radius. Deviations from sphericity
(c/a = b/a = 1) at t = 0 are entirely due to discreteness noise.

ratios of the eigenvalues of the moment-of-inertia tensor.1 Fig. 3
plots the axis ratios such as obtained for halo and bulge versus the
radius (the median radius of the corresponding density bin).

Obviously, there is some small effect on the bulge and halo shape
from the growth of the disc. In both the cases, the shortest (c) axis
is very close to the z-axis as expected. The degree of flattening is
relatively modest, with c/a � 0.8 in the most flattened shells. In
the case of the halo, this is within the inner ∼0.3rh = 1.8Rd. In the
case of the bulge, the most flattened shells are at ∼3rb = 0.6Rd.

1 In the literature, one often finds axis ratios computed for bins in spherical
radius (e.g. Kazantzidis et al. 2004a). This not only requires accurate knowl-
edge of the centre position, but also requires, more importantly, results in a
substantial bias (because of the usage of spherical symmetry). For a triaxial
body, for example, the axis ratios at small radii are drastically overestimated
(Athanassoula 2007). Binning in potential energy gives somewhat better but
still unsatisfactory results (since the gravitational potential is less flattened
than the density).

The bulge is less flattened at smaller radii because the disc is of
finite thickness (scaleheight zd = 0.1Rd), which means that the full
potential is less flattened – when compared to the spherical average –
in the inner parts of the bulge than in the outer. The same effect would
be observable in the halo with sufficient resolution.

For both halo and bulge, Fig. 4 shows the evolution of the ra-
dial profile of the velocity anisotropy parameter β as determined
from spherical shells. Both components are initially isotropic and,
to within numerical accuracy, remain so during and well after the
growth of the full disc potential.

3.2 Testing the disc model

Before testing the full compound galaxy, we test the disc model in
isolation, i.e. we follow the evolution of the populated disc compo-
nent in the static external potential �(R, z), the cylindrically sym-
metrized potential in which the distribution function of the disc was
constructed. The purpose of this test is to ensure that the approximate

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 378, 541–550

 at :: on N
ovem

ber 19, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


546 P. J. McMillan and W. Dehnen

Figure 4. Anisotropy parameter β, determined from spherical shells, plotted
against radius for the halo and bulge in the same simulations as in Fig. 2.
Initial conditions were defined as having β = 0 and variation from that at
t = 0 is due to discreteness noise.

nature of our disc distribution function (the assumption that the pla-
nar and vertical energies are separately conserved) does not com-
promise our approach, i.e. that the disc N-body model is close to
equilibrium.

The main difficulty here is that we want the disc model to be
stable to axisymmetric perturbations, but not to non-axisymmetric
instabilities, such as spiral waves and bar modes, both of which
one would expect to see. These instabilities cause redistribution
of the mass of the disc in both the R- and z-directions (e.g. Hohl
1971; Athanassoula & Misiriotis 2002). In the tests presented here,
we prevent non-axisymmetric modes from growing by a technique
pioneered by Athanassoula (private communication): the azimuth
of every disc particle is randomized after every block-step, thus
destroying any coherent non-axisymmetric perturbation.

The distribution function defined by equation (10) allows for
many possible σ R(R). In practice, our current implementation re-
stricts the possibilities to either σ R ∝ exp (− R/Rσ ), or σ R is such
that the Toomre (1964) stability parameter

Q ≡ σR κ

3.36 G�
(17)

is constant throughout the disc (this should not be confused with
the Osipkov–Merritt Q in equation 1). A stellar disc is known to be
unstable to axisymmetric waves if Toomre’s Q < 1.

We test two models, one with constant Q = 1.2 and one with
σ R ∝ exp(−R/2Rd) (i.e. Rσ = Rd/2 so that σ 2

R ∝ �), with the
constant of proportionality defined such that Q(R = Rσ ) = 1.2.
The two give qualitatively similar results, so only the results from
the latter distribution function are shown in Fig. 5 for simplicity. The
surface density of the disc model is preserved to within the inner
∼0.1–0.2Rd, and out to beyond 6Rd. The radial-velocity dispersion
σ R is preserved over a similar range.

In the middle panel of Fig. 5, we plot the rms value of z as a
measure of the disc thickness. For a disc with ρ ∝ sech2(z/zd), one
expects zrms = π zd/

√
12 ≈ 0.907zd, indicated by a dotted line.

The disc thickness remains near constant in the range 0.3 � R � 4,
with a slight warming which can reasonably be attributed to particle
softening. The disc becomes somewhat flattened in its very inner
(∼0.3Rd) and outer (R > 4Rd) parts. This is presumably caused by
too low initial z-velocities, which were assigned assuming that the

Figure 5. Radial profiles of surface density (top), thickness (middle)
and radial-velocity dispersion (bottom) for an isolated disc model. The
randomizing-azimuth method has been used to prevent the growth of bar
or spiral modes.

vertical force is dominated by the local disc. In the inner parts of
the disc, the bulge has a non-negligible contribution to the vertical
force field, and in the outer parts the local disc is very tenuous,
so the contribution of the halo (and the monopole of the disc) to
the vertical force field is significant. It should also be noted that
the approximation that the planar and vertical motion decouple is
worst in the inner parts of the disc, which may well contribute to
the flattening there.

3.3 Testing the full model

3.3.1 A constrained model

Finally, we test the complete compound model. First we wish to
examine the behaviour of the system in the absence of bar or spi-
ral instabilities. In order to do so, we utilize the same method of
randomizing the azimuth (of disc particles only) as in Section 3.2.

However, using this method with a live halo and bulge is not
straightforward, since a live N-body simulation will often drift
slightly from its original centre. When this happens, the disc will
be pulled in the same direction as the inner halo, so that random-
izing azimuths around the origin would alter the model structure.
In order to prevent such a drift, we employed another symmetriza-
tion method: the distribution of particles in halo and bulge was kept
reflection symmetric about the origin at all times. To this end, we
treated particles in bulge and halo as pairs and enforced, initially
and after each time-step (during both the disc growth and the fully
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populated simulation), that for each pair positions and velocities
both add up to zero.

In this test, we set the velocity dispersion σ R of the disc such that
Toomre’s Q = 1.2 at all radii. The full disc potential was grown over
a period tgrow = 40, as in Section 3.1, and then kept in place for a
time thold = 20 to ensure that the halo and bulge had fully relaxed
in its presence. Only then was the disc populated with particles.
Simulations were then run to observe the evolution over another
200 time units. Times quoted in Figs 6–9 take t = 0 to be the time
when the fully populated simulation begins (not the start of the
growth of the full disc potential, as in Section 3.1).

Figs 6 and 7 show that the properties of the halo and bulge are
maintained to within a high degree of accuracy throughout the simu-
lation. The halo density is slightly raised in the inner ∼0.02rh = 0.12
and the bulge density is slightly lowered in the inner ∼0.3rb = 0.06,
much as they were in simulations with an unpopulated disc (Fig. 2).
Both components remain isotropic (with some noise; Fig. 8), and

Figure 6. Spherically averaged density profile of the halo (left-hand side) and bulge (right-hand side) in a fully populated simulation with non-axisymmetric
perturbations suppressed (see text). The profiles are shown at t = 0, when the full N-body model was populated but before it has evolved; and at two times
during the full N-body simulation. Symmetry about the origin was enforced to avoid numerical difficulties relating to off-centring.

Figure 7. Minor and intermediate axis ratios (c/a < b/a, respectively) for both the halo (left-hand side) and bulge (right-hand side) in the same simulations
as in Fig. 6. Particles are binned in density, and the values plotted here are the axis ratios of these bins against their median radius.

while they are non-spherical, they do not become significantly more
or less aspherical over the course of the simulation (Fig. 7).

Fig. 9 (top panel) shows that the surface density of the disc is
nearly unchanged at all radii throughout the simulation. Also, the
disc thickness remains near constant over the full radial range. The
small deviations are similar to those observed for the disc in isolation
(Fig. 5). In particular, the disc does not thicken up as one might ex-
pect from heating due to collisions with (more massive) interloping
halo particles. This is probably a side effect of the randomization of
the azimuthal angle of the disc particles. This randomization has the
effect that disc particles are rarely close to any halo particle crossing
the disc for more than one time-step.

The radial-velocity dispersionσ R in the disc (Fig. 9, bottom panel)
is nearly unchanged in the range 0.5 < R < 3. In the outer parts
of the disc, there is some variation, but no consistent warming or
cooling. In the inner parts of the disc, there is a clear increase in
σ R. This warming clearly does not affect the density distribution. It
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Figure 8. Anisotropy parameter β as determined from spherical shells
versus radius for the halo and bulge in the same simulations as Figs 6
and 7.

Figure 9. Radial profiles of surface density (top), thickness (middle) and
radial-velocity dispersion (bottom) of the disc component in a full N-body
model, whose halo and bulge properties are shown in Figs 6 to 8. The
randomizing-azimuth method has been used to prevent the growth of bar
or spiral modes (see text).

can reasonably be attributed to the facts that the decoupling of the
vertical and planar motion is a poor approximation in the inner disc,
and that, while the choice of a distribution function with constant Q
can be useful in that it avoids the inner parts of the disc being very
hot, it does lead to the velocity dispersion being unrealistically low
at the very inner radii.

Figure 10. Surface density profiles for the discs in unconstrained simu-
lations with four different values of Toomre’s Q initially. Results for the
different simulations are offset by a constant.

3.3.2 Unconstrained tests

Finally, we run simulations in which the galaxy model is uncon-
strained from the moment the disc component is populated. This
means that the disc component is free to develop bar modes and
other instabilities.

In Fig. 10, we plot the surface density profiles of discs with various
initial σ R profiles. In each case, σ R was defined such that Q was
constant across the disc. Simulations are shown with Q = 1.2, 2, 3
and 4. For hotter discs (larger Q), it becomes increasingly difficult to
iterate the particle positions such that the surface density is close to
that desired, using the method described in Section 2.3. This is why
the initial surface density of the Q = 4 disc (and to a lesser extent the
Q = 3 disc) is not an exponential in radius. It should also be noted
that the motivation of warming an initially cold distribution function
is increasingly invalid as the disc becomes hotter. Moreover, such
hot axisymmetric discs are less realistic, given the observed fraction
of barred galaxies (which cannot form from such hot discs).

It has long been recognized that numerical simulations of cool
discs are much more susceptible to bar formation than those of warm
discs (e.g. Hohl 1971). This is what we observe in our models. The
scatter plot of particle positions for the Q = 1.2 case, Fig. 11, shows
spiral structure forming within 50 time units, and the formation of
a strong bar within 100. This has the effect of substantially altering
the surface density profile, dramatically increasing the disc’s surface
density in the inner ∼0.3 scalelengths (as seen in Fig. 10). The
Q = 3 disc shows no signs of developing spiral structure within
200 time units (Fig. 12), and the density profile remains nearly
unchanged throughout the simulation.

3.3.3 On the origin of disc thickening

It is instructive to compare the disc thickening in the four differ-
ent cases we have looked at in this study (populated/rigid halo;
randomized azimuth/unconstrained model; see Fig. 13). Simula-
tions which are constrained so that non-axisymmetric modes are
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Figure 11. Scatter plot of disc particle positions in the x–y plane at various
times in an unconstrained simulation with initial Q = 1.2. Only one in every
20 particles is plotted in the interests of clarity.

Figure 12. Scatter plot of disc particle positions in the x–y plane at various
times in an unconstrained simulation with initial Q = 3. As in Fig. 11, only
one in every 20 particles is plotted.

suppressed show hardly any disc thickening, strongly suggesting
that the dominant cause of disc thickening in our models is the action
of non-axisymmetric modes within the disc, rather than the impact
of halo particles crossing the disc. Athanassoula (2002) showed that
a populated halo can stimulate bar growth by absorbing angular mo-
mentum (which a rigid halo cannot). This is a likely explanation for
the greater increase in disc thickness seen in the unconstrained sim-

ulation with live halo compared to that with a rigid halo (right-hand
panels in Fig. 13).

Possibly the randomization of the disc particles’ azimuths is also
a direct cause of a reduction in disc thickening, because of the rapid
jumps it causes in the disc particles’ positions (rather than just an
indirect cause, through preventing non-axisymmetric instabilities).
Why this would be the case, however, is unclear.

4 C O N C L U S I O N S

We have described and tested a new method for constructing an
equilibrium N-body representation of a galaxy with halo, disc and
bulge components.

We have used a distribution function for the halo and bulge based
upon Cuddeford (1991) inversion, while the distribution function of
the disc is based on the work of Dehnen (1999b). One advantage over
previous methods is that our method avoids the use of a Maxwellian
approximation, and produces models which tend to stay very close to
their original states, though non-axisymmetric instabilities develop
in the disc if it is unconstrained and reasonably dynamically cold.

Another advantage of our method is that the density distributions
of the various components are straightforward to prescribe. That is,
the way the models are constructed guarantees that the equilibrium
N-body model has bulge, halo and disc components the density pro-
files (as well as the velocity-anisotropy profiles) of which follow
the target models very closely. Having said that, we have little con-
trol with our method over the degree of non-sphericity of halo and
bulge, introduced by the disc’s gravitational potential. We find that
typically bulge and halo are mildly oblate (axis ratio ∼0.8) in the
region dominated by the disc.

The choice of disc distribution function, while physically mo-
tivated, and clearly in equilibrium (though potentially unstable to
non-axisymmetric modes), causes problems when creating a warm
disc (Toomre’s Q � 4) since it becomes increasingly difficult to
tailor the distribution function to the desired density and velocity
dispersion profiles. However, we are not aware of any other method
to create such warm N-body disc with a truly exponential surface
density profile.

We performed several tests to validate that the N-body model
created by our method meets our expectations. These tests suggest
that the growth of the disc thickness is predominantly driven by non-
axisymmetric modes in the disc itself rather than direct interactions
with halo particles.

The computer programs generated in the course of this project
will be publicly available under the NEMO computer package
(www.astro.umd.edu/nemo).
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Figure 13. Evolution of the disc thickness in four different simulations: constrained (by randomizing the azimuth) and unconstrained, with rigid or live halo.
In all cases, the initial velocity dispersion of the disc was set such that Q = 1.2 everywhere. The lower left panel corresponds to the middle panel of Fig. 9 (but
note the different scales).
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