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ABSTRACT
The made-to-measure N-body method slowly adapts the particle weights of an N-body model,
whilst integrating the trajectories in an assumed static potential, until some constraints are
satisfied, such as optimal fits to observational data. I propose a novel technique for this
adaption procedure, which overcomes several limitations and shortcomings of the original
method. The capability of the new technique is demonstrated by generating realistic N-body
equilibrium models for dark matter haloes with prescribed density profile, triaxial shape and
slowly outwardly growing radial velocity anisotropy.

Key words: stellar dynamics – methods: N-body simulations – galaxies: haloes – galaxies:
kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

A standard problem in contemporary galaxy dynamics is the in-
terpretation of kinematic observations of galaxies in terms of their
orbital structure as well as their dark and luminous matter distri-
bution. There are several methods one can employ for this prob-
lem. First, moment-based methods find solutions of the Jeans
equations (or higher order velocity moments of the collisionless
Boltzmann equation) that best fit the observed moments, such as
density and velocity dispersion. Secondly, distribution-function-
based methods directly fit the distribution function to the data, which
can be more general than mere moments, e.g. the line-of-sight ve-
locities of many individual objects. Both techniques are usually
restricted to spherical or, under certain simplifying assumptions,
axisymmetric systems (though for different reasons1). However,
distribution-function models are technically much more challeng-
ing (since an integral equation has to be solved instead of differential
equations) and hence much less used than the moment-based ap-
proach. In both cases, astrophysically unjustified assumptions, such
as velocity isotropy, are often made in order to make the problem
tractable.

Thirdly, Schwarzschild’s (Schwarzschild 1979, 1993) orbit-based
method constructs a dynamical model by first integrating many or-
bits over many orbital times in an assumed gravitational potential,
whereby recording their properties in an orbit library, and then su-
perposing them such that a best fit to the data is obtained. This is a

�E-mail: walter.dehnen@astro.le.ac.uk
1 For moment-based models, symmetry reduces the number of indepen-
dent moments and enables simple assumptions necessary to close the Jeans
equations. For non-spherical distribution-function models, knowledge of
isolating integrals of motion other than energy is necessary, and angular
momentum is available only for axial symmetry.

powerful method, since it comes, in principle, without restrictions
on the symmetry, and one may even obtain the distribution func-
tion (Häfner et al. 2000). However, in practice most applications
are restricted to axisymmetry, since there are several technical sub-
tleties to overcome when applying the method to potentials with a
complex phase-space structure, the typical situation for triaxial or
barred systems (though this is not impossible and has been done,
e.g. Häfner et al. 2000).

Fourthly, in 1996, Syer & Tremaine (hereafter ST96) introduced
the ‘made-to-measure (hereafter M2M) N-body method’, which
slowly adapts an N-body model to fit the data. The first application
of this method came as late as 2004, when Bissantz, Debattista &
Gerhard used it to construct a dynamical model for the Milky Way’s
barred bulge and inner disc. More recently, De Lorenzi et al. (2007,
hereafter DL07) refined the method to incorporate observational
errors; this has since been applied for modelling elliptical galax-
ies to assess their dark matter content (De Lorenzi et al. 2008a,b).
The M2M method is as powerful as Schwarzschild’s orbit-based
method, and in fact is closely related. Whereas in Schwarzschild’s
approach orbits are first separately integrated and then superim-
posed, these two steps are merged in the M2M method: trajectories
are integrated and their weights adapted at the same time. As a
consequence, there is no need for an orbit library and all the techni-
cal difficulties associated with it. However, with the M2M method
as proposed by ST96 and DL07 some problems remain, as I shall
discuss, in particular the appropriate time-scale for adapting the
particle weights of the N-body model.

Finally, Rodionov, Athanassoula & Sotnikova (2009) introduced
a variation of the M2M technique (though the authors did not
make this association), which they dubbed the ‘iterative method’.
Their method starts from a near-equilibrium dynamical model (con-
structed by any other method), which is alternately relaxed un-
der self-gravity (to evolve towards equilibrium) and adapted to
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prescribed properties. In practice, this method too employs the
N-body approach and, like the traditional M2M technique, suffers
from the time-scale problem.

Another application of all the aforementioned techniques is the
generation of N-body initial conditions representing a galaxy or
galaxy component (though moment-based models additionally re-
quire the incorrect assumption of a Gaussian velocity distribution
and should not be used for this purpose). However as mentioned
above, distribution-function models, which are the most commonly
employed technique for generating N-body galaxy models, are re-
stricted to spherical (or, under simplifying assumptions, axial) sym-
metry, which seriously limits their realism. Since the M2M tech-
nique works directly with N-body data, it offers a simple and natural
way to generate N-body initial conditions with prescribed properties
(ST96), in particular non-spherical shape and non-isotropic velocity
structure. As we shall see, however, this requires some modification
to the traditional M2M technique.

In this paper, I revisit the M2M method and propose several
modifications aimed at improving it, in particular in view of its
application for tailoring N-body initial conditions. I present the
traditional ST96 and DL07 version of M2M in Section 2 and my
modifications to the method in Section 3, while Section 4 presents
some tests of tailoring non-spherical and/or velocity-anisotropic N-
body models. Finally, Section 5 discusses the results and concludes.

2 TR A D I T I O NA L M 2 M

In this section, the M2M method as laid out by DL07 (which in
turn was based on ST96) is outlined, though with slightly different
notation and conventions.

The fitting of the N-body model to the data is expressed as max-
imization problem: the N-body model shall maximize the merit
function

Q = μS − 1

2
C. (1)

Here, C is the constraint function, which measures the goodness of
fit of the N-body model to some target. There are many possible
choices for C, but for now let us follow DL07 and consider a χ 2-
like measure of the deviation of moments of the N-body model from
target values

C =
n∑

j=1

(
Yj − yj

σj

)2

. (2)

Here,

yj =
∑

i

wiKj (xi ,υ i) (3)

are some moments of the model defined via the kernel Kj(xi, υ i)
and the particle weights wi ≡ mi/M tot, while Yj are the targets for
those moments and represent the observed data2 with uncertain-
ties σ j.

Simply minimizing C is not a well-defined procedure for two
reasons: first, there is no point in reducing C well below the ex-
pectation value even if this were possible (this would amount to
‘fitting the noise’); secondly, minimizing C may not be uniquely

2 This standard practice restricts the data to be just moments of the dis-
tribution function, and excludes, for example, the line-of-sight mean and
dispersion velocity, which are functions of moments. However, this restric-
tion is not fundamental and the method can easily be extended to fit any
function of moments, see Section 4.2 for an example.

constraining the N-body model: there are, for instance, many possi-
ble equilibrium models with the same density. Thus, in order to yield
a well-defined problem, one has to regularize the merit function by
a penalty functional S times a Lagrange multiplier μ, which controls
the amount of regularization. The penalty function is traditionally
taken to be the pseudo-entropy

S = −
∑

i

w�
i log

w�
i

ŵi

, (4)

with w�
i ≡ wi/

∑
j wj the normalized weights and {ŵi} a predeter-

mined set of normalized weights, the so-called priors. For general
priors, S defined in this way is the Kullback & Leibler (1951) in-
formation distance (also known as ‘K–L divergence’) of the model
corresponding to wi = ŵi from the actual N-body model, i.e. S pe-
nalizes against deviations of the normalized weights from the priors.
Only for ŵi ∝ f −1

i , where fi denotes the value of the equilibrium
distribution function corresponding to wi = 1/N , does S reduce to
the true entropy of the N-body model (plus a constant; this corrects
statements made by ST96 and DL07).

The idea of the M2M method is now to adjust the weights slowly
such that Q is maximized. The standard method is to evolve the
weights according to

ẇi = ε wi Ui (5)

with some rate of change ε and the velocity of change3

Ui = ∂Q

∂wi

. (6)

For the particular choice (2) of the constraint function, this gives

Ui = μ
∂S

∂wi

−
n∑

j=1

Yj − yj

σ 2
j

Kj (xi , υ i). (7)

For sufficiently small ε, integrating (5) will increase Q and even-
tually result in an N-body model for which Q is maximal and the
wi no longer change. This method is similar to (and was in fact
inspired by) Richardson (1972)–Lucy (1974) iteration, though with
a much reduced step size.

Unfortunately, it is not as simple as that, because the merit func-
tion, being a function of the randomly sampled particle trajectories,
is itself a random variable and fluctuates even with fixed weights. In
order to suppress these fluctuations, traditional M2M replaces the
model moments yj in (2) with their time-averaged values ȳj , which
are obtained by integrating the differential equation

˙̄yj = α(yj − ȳj ) (8)

starting with4 ȳj = yj at t = 0. If fitting to observed data with
finite uncertainties σ j, this method has the virtue that the model
uncertainties due to N-body shot noise (which have been ignored in
the definition of the constraint function) are much reduced.

A problem with this time averaging is that the computation of
the derivatives required for the velocity of change (6) is no longer
straightforward. In fact, ∂ȳj /∂wi is simply the time-averaged kernel

3 Unfortunately, ST96 dubbed εwiUi the ‘force of change’, which is an
inaccurate analogy since it is proportional to the first time derivative of
the dependent variable. Below I introduce a method which indeed uses the
second time derivative, for which the expression ‘force of change’ is much
more appropriate.
4 Corresponding to ȳj (t) = yj (0) e−αt + α

∫ t

0 eα(t ′−t)yj (t ′) dt ′; ST96 and

DL07 give ȳj (t) = α
∫ t

−∞ eα(t ′−t)yj (t ′) dt ′ which results from integrating
(8) from t = −∞, a practical impossibility.
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– the quantity which in Schwarzschild’s method is stored in the orbit
library. In traditional M2M, one simply replaces yj with ȳj directly
in equation (7). Even though, this means that weight adaption is
not strictly along the gradient of the merit function, it appears that
the method still converges in practice, though it is not completely
obvious that it always does (DL07 introduce the time averaging only
after they argue for convergence), in particular for other forms of the
constraint function than simple χ 2 expressions on model moments.

3 A N OV E L M2 M M E T H O D

In this section, I criticize the traditional M2M method and propose
alternatives and/or modifications, which ultimately cumulate in a
novel method.

3.1 Time-scales

An important issue is the appropriate choice for the adjustment rate
ε. The velocity of change (6) varies on the orbital time-scale of
the ith trajectory, because different parts of the orbit contribute dif-
ferently to the merit function. Clearly, the weight adaption should
happen adiabatically, i.e. ε < �i with �i the natural (orbital) fre-
quency of trajectory i. Unfortunately, the orbital frequencies of the
N trajectories may easily vary by many orders of magnitude, such
that meeting this condition for all of them becomes a serious prob-
lem. In traditional M2M, this is not really solved: using a very low
adaption rate ε ensures that the weights for all but the outermost
trajectories are adapted adiabatically.

One may think that using individual adjustment rates εi ∝ �i

would solve the problem. However, this is not the case: the method
no longer converges (it does initially, but eventually convergence
stalls well before reaching the optimum), presumably because such
an alteration changes the direction of adjustment away from the
gradient of Q. Instead, I turn the tables and achieve ωi ∝ ε by
integrating each trajectory on its own dynamical time-scale. To this
end, I introduce the dimensionless time

τ = t/Ti (9)

with Ti = 2π/�i the orbital period, such that with respect to this
new dimensionless time each trajectory has natural frequency ω =
2π. The equations of motion for the N-body system expressed in τ

are

x ′′
i = −T 2

i ∇
(xi), (10)

where a prime denotes derivative with respect to τ . Conversely, the
M2M equation remains

w′
i = εwiUi (11)

such that now ε is a dimensionless rate per orbit for each particle.
In practice, a rough estimate for the orbital period, e.g. based on the
epicycle approximation, is sufficient for Ti.

3.2 Enforcing total-weight conservation

With the traditional M2M formulation, conservation of the total
weight is not guaranteed, as the maximum of Q may occur at∑

i wi �= 1. This problem has not been discussed by ST96 and
DL07, and I assume that it is dealt with by simply renormalizing
the weights after each step.

While this may be a viable method, I propose a somewhat dif-
ferent approach which incorporates the total-weight constraint into

the adjustment step. I start by observing that the unconstrained
maximum of the modified merit function

Q�(w) ≡ Q(w�) + ln
∑

k wk − ∑
k wk (12)

maximizes Q(w) subject to the constraint 1 = ∑
k wk (e.g. Dehnen

1998). Thus, the total-weight constraint can be incorporated by
replacing Q with Q� in equation (6). Note that since Q� depends on
the constraints only through the w�

i , the N-body system must still
be renormalized after each adaption step, but the step hardly carries
the system away from normalization.

Alternatively, the total weight of the N-body system may be
allowed to float freely and be constrained only by the data via the
constraint function.

3.3 An alternative adjustment

As discussed in the last paragraph of Section 2, the traditional time-
averaging procedure interferes with the computation of the gradient
of the merit function. Moreover, as I shall discuss in the next subsec-
tion, the time averaging is particularly undesirable when using the
M2M method for tailoring N-body initial conditions. These consid-
erations lead me to consider a different time-averaging approach:
instead of averaging the moments, I consider suppressing fluctu-
ations in the merit function by averaging Q� (or Q) itself and its
derivatives. In analogy to the moment-averaging equation (8), this
would yield

U ′
i = η

(
∂Q�

∂wi

− Ui

)
with the dimensionless averaging rate η. Combining this with the
weight-adjustment equation (11) results in a second-order differen-
tial equation for ϕi ≡ ln wi:

ϕ′′
i = εη

∂Q�

∂wi

− η ϕ′
i .

Thus, ∂Q�/∂wi acts like a force for the ϕi. I now take this analogy
even further and replace it with the gradient of Q� with respect to
the dependent variable ϕi:

ϕ′′
i = λ

∂Q

∂ϕi

�

− η ϕ′
i (13)

(where I have substituted λ for εη), corresponding to

U ′
i = η

(
wi

∂Q�

∂wi

− Ui

)
. (14)

For η = 0, equation (13) is equivalent to the familiar equation of
motion under the influence of the ‘potential’ −λQ�. Thus, if the
time dependence of Q� were solely due to temporal changes in the
weights, then the energy-like quantity

E ≡ 1
2

∑
i ϕ

′2
i − λ Q� (15)

is conserved. The frictional term proportional to η in equation (13)
in fact ensures that E is not conserved but decreases, thus ultimately
leading to the maximum of Q�, as desired. Thus, unlike the situation
for traditional M2M, where the time averaging of model moments
may interfere with the convergence (see the discussion in the last
paragraph of Section 2), the time averaging in my approach provides
the damping term required for convergence.

3.4 Tailoring N-body initial conditions

As already mentioned in the introduction, the M2M technique offers
a natural and powerful way to generate N-body initial conditions
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1082 W. Dehnen

with prescribed properties. There is, however, a fundamental differ-
ence compared to employing M2M for fitting data: the target values
Yj now represent these prescribed properties and, unlike observed
data, have no natural uncertainties. A common practice with model
fits without known uncertainties is to simply set σ j = 1 (alterna-
tively, setting σ j = Yj alters C to measure the relative error and
yields ST96’s original method). However, this is rather unsatisfac-
tory here, as the value obtained for C then no longer provides insight
about the goodness of fit.

Moreover, unlike most parametric model fits, an N-body model,
being a Monte Carlo representation, does have its own natural un-
certainties. This suggests that the σ j should be set to the uncertain-
ties expected from shot noise in the N-body model itself. If this
is done, C retains its interpretability: a good fit corresponds to C
equalling to the number of constraints. While this sounds natural
and straightforward, it introduces some subtle problems. One prob-
lem with traditional M2M is that the time averaging of the model
moments intentionally reduces the shot noise, which invalidates the
interpretability of C.

With the alternative time averaging of the merit function itself
(see Section 3.3), this is no longer the case, but the shot noise in the
N-body model causes temporal variations of Q� additional to those
induced by changing the weights. This means that equation (13)
corresponds to following a frictional trajectory (in N-dimensional
ϕ-space) in a temporally fluctuating potential. The fluctuations are
of the same order as the optimal value for C and prevent the al-
gorithm to converge in the sense that ϕ

′
i ∝ Ui → 0. However, the

examples in Section 4 suggest that this is not a serious problem.

3.5 Resampling

The adjustment of the weights in the M2M technique may lead
to a wide range of weights (or for ŵi �= N−1 to a wide range
of wi/ŵi). This potentially reduces the effective resolution of the
N-body model substantially and is particularly undesirable if the
σ j represent the uncertainties expected for an N-body system with
weights following the priors. A wide range in wi/ŵi (corresponding
to unequal masses for a flat prior) is also undesirable with N-body
initial conditions. Therefore, it is useful to resample the N-body
model from time to time during and after the adjustment process.
This is easily done by drawing phase-space points for the new
model from the original set (x, υ)i with probability proportional to
the relative normalized weight

γi = w�
i,old/ŵi, (16)

and subsequently setting the weights to wi = ŵi if the total weight
is constraint to unity and wi = ŵiN

−1
∑

k wk,old otherwise.
In this process, some trajectories of the original set will not be

resampled, others get copied exactly once, yet others several times.
In this latter case, I make the first copy a straight clone of the original
phase-space point, but for any additional copies, I first randomize
position and velocity as far as the underlying symmetry allows
(for spherical symmetry, e.g. rotate them by a random angle about a
random axis), and secondly add a small random velocity component.
This added velocity component prevents multiple trajectories to be
on identical orbits, and allows the model to explore phase-space
regions of high weights.

In order for the M2M method to still maximize the same merit
function, one has to alter the definition of the pseudo-entropy to

S = −
∑

i

w�
i log

�i w
�
i

ŵi

, (17)

with �i the product of the factors γ i from each resampling so far. In
this way, the contributions to S from each trajectory are on average
the same before and after resampling. However, the actual value for
S may increase (in particular if a trajectory with γ i 
 1 happens to
be resampled).

3.6 Technicalities

The description of my M2M method is completed by giving some
technical details. The M2M adjustment step is taken to be δτ =
2−6, which appears to be sufficiently short. Between these, the tra-
jectories are integrated using individual adaptive time-steps (which
are required despite the fact that every trajectory is integrated on its
own orbital time). While this could be implemented with any type of
method, I use the traditional N-body block-step scheme with a kick-
drift-kick leap-frog and a time-step δτ = 2πf

√
x2/|x · ∇
|/Ti

with f = 1/400. In this way, trajectories are automatically synchro-
nized at M2M adjustment steps and the simultaneous computation
of gravitational forces for many positions allows some optimization.

The M2M equations are also integrated using a kick-drift-kick
leap-frog – note that equation (14) can be integrated exactly at fixed
wi. In practice, ε is grown slowly over δτ = 1 to its final value, but
also limited to ε ≤ η max {|Ui|} at any time.

The N-body model is resampled whenever the ratio between
maximum and minimum w�

i /ŵi exceeds a certain threshold (4 in
the runs of Section 4) and a minimum interval has elapsed since the
last resampling (δτ = 10 in Section 4). The phase-space coordinates
for the kth resampled trajectory are set to those of the ith original
trajectory where

Gi < γ̄

(
k − 1

2

)
≤ Gi+1, i, k ∈ [1, N ], (18)

with γ̄ ≡ N−1
∑

k γk the mean relative normalized weight and Gi =∑
k<i γk the cumulative relative normalized weight of the original

model. Trajectories with γi < γ̄ generate at most one copy, while
those with γi > γ̄ get copied once or more. The random component
added to the velocities of extra copies is drawn from a normal
distribution with standard deviation 0.05 exp(−τ/10) times the local
escape velocity (but avoiding generation of unbound trajectories).
In the case of a flat prior ŵi = N−1, which I used in Section 4, these
relations simplify somewhat (in particular γ̄ = N−1).

The M2M method is ideally suited for distributed-memory paral-
lelization, since the gravitational potential is fixed (no interactions
between trajectories) and the evaluation of the merit function and its
derivatives require only minimal communications. I implemented
my method using the message-passing interface (MPI) and found the
resulting code to be superscaling: doubling the number of proces-
sors at fixed problem size reduces the execution time to less then
half. This is presumably a result of the increase in total cache, re-
ducing the total sum of computation times, which outweighs the
small communication overhead.

4 A PPLI CATI ON: TA I LORED N- B O DY
I N I T I A L C O N D I T I O N S

Almost all published N-body simulations featuring individual
galaxies use initially spherical dark matter haloes with isotropic ve-
locity distributions. This is because for these settings distribution-
function models, on which N-body initial conditions are usually
based, are relatively simple to obtain. However, there is no physical
justification for these simplifications and triaxial dark matter haloes
with anisotropic velocity distributions are certainly more realistic.
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A novel made-to-measure method 1083

Here, I apply my novel M2M method to tailor such N-body initial
conditions.

4.1 A triaxial halo model

Let us first consider the problem of designing a triaxial equilibrium
with prescribed shape and density profile, but without constraining
its velocity structure. The aim is to construct a triaxial truncated
Dehnen & McLaughlin (2005) model, which has density

ρ ∝
(

q

rs

)−7/9
[(

q

rs

)4/9

+ 1

]−6

sech
q

rt
, (19)

with scale radius rs, truncation radius rt and ‘elliptical radius’

q2 ≡ x2

a2
+ y2

b2
+ z2

c2
, (20)

with abc = 1. For this model, the radius at which −d ln ρ/d ln q =
2, often referred to as the scale radius for dark matter haloes, equals
r2 = (11/13)9/4r s ≈ 0.687r s. I choose r t = 10r s and axis ratios c/a

= 0.5 and b/a = 0.7.
A convenient way to constrain the full three-dimensional den-

sity distribution of the model is by means of an expansion in bi-
orthonormal potential-density basis functions ψnlm(x) and ρnlm(x).
These satisfy the Poisson equation as well as the bi-orthonormality
and completeness conditions

−∇2ψn(x) = 4πρn(x), (21)

∫
d3x ψn(x) ρn′ (x) = δnn′ , (22)

∑
n

ψn(x) ρn(x ′) = δ(x − x ′), (23)

where n ≡ (n, l, m). In this study, I use Zhao’s (1996) basis set,
whose lowest order functions satisfy

ψ0 ∝ 1(|x|1/a + s1/a
)a , ρ0 ∝ 1

|x|2−1/a
(|x|1/a + s1/a

)2+a
(24)

with scale radius s and a free parameter a, which controls the density
profile. The expansion coefficients

An =
∑

i

wi ψn(xi) (25)

are moments of the model and of the form (3), such that the resulting
constraint function

Cρ =
∑

n

(
An − Bn

σn

)2

(26)

is of the form (2). Note that the calculation of the derivative

∂Cρ

∂wi

= 2
∑

n

An − Bn

σ 2
n

ψn(xi) (27)

is equivalent to computing the gravitational potential due to the
coefficients 2(An − Bn)/σ 2

n at the position xi. This has the ben-
efit that the functionality of an existing basis-function-based N-
body force solver (dubbed ‘self-consistent field code’ by Hernquist
& Ostriker 1992) can be readily utilized. I use s = r s and a =
9/4 for the parameters of the expansion and include terms up to
nmax = 20 and lmax = 12. Since the model is forced to have triaxial

Figure 1. Triaxial model: time evolution of the constraint function Cρ ,
pseudo-entropy S and rms value of the velocities of change for the M2M
adjustment of N = 106 particles with μ = 100, ε = 0.5, η = 0.5.

symmetry already by the assumed underlying gravitational poten-
tial (see below), one does not need to constrain this symmetry. This
considerably reduces the number of terms in equation (26), since
coefficients with odd l or m can be ignored (they vanish for triaxial
symmetry) as well as those with m < 0 (since An l m = An l−m), which
leaves just 588 independent constraints for N = 106 particles.

In order to prepare for the M2M adjustment, I sample N = 106

positions from the target density model and evaluate the resulting
An. This is repeated many times to obtain the target values Bn and
the expected errors σn from ensemble averaging. Next, also the
velocities are sampled from the equivalent spherical (and velocity-
isotropic) distribution-function model and scaled in each dimension
such that the tensor virial theorem is satisfied (whereby correcting
for unbound particles). Lastly, to achieve phase-mixing the resulting
trajectories are integrated for several orbital times in the potential
of the target model computed from the expansion


(x) = −GMtot

∑
n

Bn ψn(x). (28)

I hoped this procedure already results in a model close to the target,
but this was not the case at all: the resulting value for the constraint
function (26) is ∼5 × 104 � 588.

Finally, I run the M2M scheme of equations (5) and (14) with
ε = 0.5, η = 0.5 and various values for μ, whereby integrating
the trajectories in the target potential (28). Fig. 1 shows the time
evolution of Cρ , S and the rms value of Ui for an adjustment run
with μ = 100. After a quick reduction of the error (as measured
by Cρ), convergence becomes somewhat slower. Cρ fluctuates with
amplitude similar to its good-fit value of 588, as the discussion in
Section 3.4 suggested, and does not reach this value.

In order to independently assess whether the adjustment success-
fully produced a stable N-body model with the desired properties, I
run it for 200 time units5 (corresponding to ∼6 dynamical times at
the scale radius) under self-gravity, whereby monitoring shape and

5 I use a unit system with rs = 1, G = 1 and M = 1, the total halo mass.
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1084 W. Dehnen

Figure 2. Triaxial model: density (top) and axis ratios (middle) plotted
versus elliptical radius for the target model (dotted lines) and the N-body
model just after M2M adjustment (t = 0) and after running them stand-alone
(under self-gravity) for 200 time units. Also plotted is the velocity anisotropy
parameter β ≡ 1 − (σ 2

θ + σ 2
φ )/2σ 2

r (bottom). Note that the density at very
small and large values is overestimated: an artefact of the density estimation
procedure.

density profile. This latter is done by first estimating the density
at each particle using a kernel-estimator from its 32 nearest neigh-
bours and then binning particles in density (with 5000 per bin) to
estimate the rms radius and axis ratios (from the eigenvalues of the
moment-of-inertia tensor) of density shells. As evident from Fig. 2,
the N-body model matches the target very well, except for too little
flattening in the outermost regions. It appears thus that the failure of
convergence of Cρ close to its good-fit value is caused by the model
being too round at very large radii (well outside the virial radius
of a CDM halo). The model appears stable: there is no significant
change over 200 time units.

4.2 A spherical halo model with anisotropic velocities

Next, I consider the problem of generating a spherical halo model
with specified velocity anisotropy. I use the spherical version of
the model (19) and aim to constrain Binney’s anisotropy parameter
β ≡ 1 − (σ 2

θ + σ 2
φ)/2σ 2

r to have radial profile

βmodel(r) = β∞
(r/rs)4/9

1 + (r/rs)4/9
. (29)

This corresponds to isotropy (β = 0) in the very centre, and a slowly
increasing radial anisotropy (for β∞ > 0), reaching β → β∞ at r →
∞, which describes simulated dark matter haloes remarkably well
(Dehnen & McLaughlin 2005). If one wants to retain the traditional
M2M approach of constraining model moments, one must constrain
the moments ρσ 2

r , ρσ 2
θ and ρσ 2

φ to values obtained from solving
the Jeans equation. However, this latter step requires spherical sym-
metry and hence cannot be generalized to non-spherical systems.
Instead, I directly constrain the anisotropy via

Cβ =
∑

j

(
βj − βmodel(rj )

σ 2
j

)2

, (30)

Figure 3. Similar to Fig. 1, but for the M2M adjustment of the spherical
model with anisotropic velocities.

where j indexes radial bins with rms radius rj and measured
anisotropy

βj = 1 −
∑

i wi(υ2
θi + υ2

φi)

2
∑

i wiυ
2
ri

, (31)

where the sums are over all particles in the jth radial bin. Since β j is
not a moment of the model, but a function (ratio) of moments, it is
not of the form (3). However, the derivatives ∂β j/∂wi, needed for
∂Cβ/∂wi, can still be easily computed. The uncertainties σ j could
be estimated from the N-body model, but since such an estimate
depends on the wi and hence adds to ∂Cβ/∂wi, this would com-
plicate matters unnecessarily. Instead, I simply assume (with nj the
number of particles in the bin)

σj = (1 − β)

√
3

nj − 1
, (32)

which is the standard deviation expected for a multivariate normal
velocity distribution6 with anisotropy β.

Fig. 3 shows the time evolution of the various quantities for an
M2M run with N = 106, nmax = 20 in Cρ (only terms with l =
m = 0 are considered) and 100 radial bins for Cβ with β∞ =
0.75, i.e. increasing radial anisotropy. The values for the constraint
functions converged to their best-fit values relatively quickly and
after τ ∼ 100 hardly any improvement is made. This is different from
the situation for the triaxial halo model in the previous subsection,
which took much longer to reduce Cρ and required much smaller μ.
The reason for this difference is not clear, but possibly it is because

6 This standard deviation also depends on the ratio σ 2
θ /σ

2
φ . The minimum

occurs for σ 2
θ = σ 2

φ and corresponds to equation (32), while the maximum

(arising at vanishing σ 2
θ or σ 2

φ) is only a factor
√

4/3 larger.
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A novel made-to-measure method 1085

Figure 4. Spherical anisotropic model: radial profiles of density and ve-
locity anisotropy parameter for the target model (dotted lines) and those
measured for the N-body model just after M2M adjustment (t = 0) and after
running them stand-alone (under self-gravity) for 200 time units.

the solution space for spherical models with anisotropic velocities
is larger than that for triaxial models with the assumed axis ratios.

The resulting radial profiles for ρ and β for the N-body model
provide an excellent match to the target values both just after the
M2M adjustment and after running the model in isolation (under
self-gravity) for 200 time units, as demonstrated in Fig. 4.

4.3 A triaxial halo model with anisotropic velocities

Finally, I want to generate a triaxial halo with the same triaxial den-
sity distribution as in Secton 4.1 but with the velocity anisotropy
profile given by equation (29) with β∞ = 0.75, though with r re-
placed with the elliptical radius q defined in equation (20). To this
end, I take the N-body models generated in Section 4.1 as starting
point for the M2M adjustment. Just as in the previous subsection,
the constraint function now consists of two terms, constraining the
density and velocity anisotropy, respectively. Figs 5 and 6 show,
respectively, the M2M adjustment and the comparison of the fi-
nal model with the target. Evidently, the model matches the target
excellently, even the shape in the outermost parts, which was too
round in Section 4.1.

5 D ISCUSSION

The basic idea of the M2M method is to adjust the N-body weights
until the model satisfies some constraints, expressed as maximiza-
tion of a merit function. This is achieved by changing the weights
slowly in the uphill direction of the merit function. While any M2M
algorithm must follow this basic recipe, there is significant freedom
in the details of how this is done. The purpose of this study was to
improve these details compared to the original method as proposed
by ST96 and slightly further developed by DL07.

A significant problem of this original method originates from the
fact that the natural time-scale for the adjustment (and moment-
averaging) is some small multiple of the orbital time. Since the
latter varies substantially between orbits and, in particular, has no
finite upper limit, any finite value for the adjustment time results
in too slow or too fast an adjustment for most orbits. I solved this
problem by introducing a dimensionless time variable, which effects
to integrating each trajectory for the same number of orbital times.
This is similar to Schwarzschild’s method, where usually each orbit

Figure 5. Similar to Figs 1 and 3, but for M2M adjustment of triaxial model
with anisotropic velocities.

Figure 6. Triaxial model with anisotropic velocities: radial profiles of den-
sity, axis ratios and velocity anisotropy parameter for the target model (dotted
lines) and those measured for the N-body model just after M2M adjustment
(t = 0) and after running them stand-alone for 200 time units.

considered is integrated for a fixed amount of orbital times. In
fact, the number of orbital time-scales in Schwarzschild’s method
is of the same order (∼100, depending on details, such as orbital
symmetries) as with my M2M technique, indicating that for typical
orbits this number is required to gather sufficient information.

Note that the iterative method of Rodionov et al. (2009), men-
tioned in the introduction, suffers from the same basic problem:
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1086 W. Dehnen

evolving the model over some (short) time-scale will bring the inner
parts, where the dynamical time is short, much closer to equilibrium
than the outer parts. In order to gather sufficient information about
the dynamics in the outer parts, one would need to integrate orbits
(or evolve the model) over a considerably longer time than is often
practical.

Another issue with the original M2M method is that the averag-
ing of the model moments, required to suppress N-body shot noise,
interferes with the adjustment process, though apparently this did
not lead to practical problems so far. However, if the M2M method
is used to tailor N-body initial conditions, the uncertainties entering
the constraints are not observational errors but those due to shot
noise in the N-body model itself. In this case, time averaging the
model moments reduces this shot noise and renders the interpreta-
tion of the χ 2-like constraint meaningless. I have overcome both
these problems by introducing a novel adjustment algorithm which
effects to time averaging the merit function instead of the model
moments and corresponds to following an orbit in N-dimensional
weight space with the merit function representing the potential. A
damping term, which emerges from the averaging, guarantees that
the maximum of the merit function will be reached.

I also propose to (optionally) modify the merit function such that
it automatically meets the total-mass conservation constraint. Fi-
nally, I propose to resample the N-body model from time to time
during the M2M adjustment process to (1) avoid a loss of resolution
because of unequal weights and (2) to allow the model to explore
phase-space in regions of high weights. This latter is achieved by
adding a small random velocity to extra copies of trajectories, ef-
fecting to probe another orbit close to a highly weighted one.

Certainly, one can think of further improvements to the M2M
method. One issue is an automatic adaption of the parameters ε and
η to achieve optimal convergence (a technique to adapt μ such that
the constraint function obtains a certain numerical value was already
proposed by ST96). The priors for the weights can be used to allow
the N-body model to have different mass resolution in different
phase-space regions, which is a common technique (e.g. Zemp et al.
2008; Zhang & Magorrian 2008) for increasing the resolution in,
say, the inner parts of models for dark matter haloes. A significant
speed-up may be achieved by starting with a relatively low number
of particles and increasing N (essentially like resampling) only later
after the merit function is close to maximal.

Finally, one would like to adapt not only the weights of the
N-body model, but also the underlying mass distribution generating
the gravitational potential, for instance when interpreting kinematic
data in terms of the underlying (dark) matter distribution. Unfortu-
nately, changes in the orbits induced by changes of the gravitational
potential are not straightforward to anticipate and hence to take into
account in the adjustment process. In a spherical setting, one may,
for instance, rescale the phase-space coordinates of every particle
such that the eccentricity, inclination and mean radius are preserved
when the gravitational potential is changed. Unfortunately, however,

something similar can no longer be done in the general, i.e. triaxial,
case. Thus, it seems that this is a really hard problem and that one is
forced to ‘jump’ from one mass model to the next whereby starting
from the best-fit N-body model of a ‘nearby’ potential. In this case,
convergence may be fast, i.e. only a few ten orbital times, leading
to significant speed-up.

As the practical examples of the previous section demonstrated,
my novel M2M algorithm is a powerful tool to construct N-body
models with specified properties. One may use the method to ex-
plore possible stellar-dynamical equilibrium solutions and their
properties. For instance, the triaxial models of Section 4.1 exhibit
a significant radial velocity anisotropy (Fig. 2 bottom panel), even
though the initial conditions fed to the M2M adjustment proce-
dure were created from a velocity isotropic model and the velocity
structure was not constrained. This strongly suggests that radial ve-
locity anisotropy is an inevitable property of (non-rotating) triaxial
equilibrium models. This can be qualitatively understood from the
inevitable prevalence of box orbits, which are the only orbital family
supporting a triaxial shape, but a more quantitative understanding
would be desirable.
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