
MODEL-BASED TESTING USING VISUAL

CONTRACTS

Thesis Submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Tamim Ahmed Khan

Department of Computer Sciences

University of Leicester, UK

2012

Abstract

Web services only expose interface level information, abstracting away implemen-
tation details. Testing is a time consuming and resource-intensive activity. Therefore, it
is important to minimize the set of test cases executed without compromising quality.
Since white-box testing techniques and traditional structural coverage criteria require
access to code, we require a model-based approach for web service testing.

Testing relies on oracles to provide expected outcomes for test cases and, if imple-
mented manually, they depend on testers’ understanding of functional requirements to
decide the correct response of the system on every given test case. As a result, they are
costly in creation and maintenance and their quality depends on the correct interpreta-
tion of the requirements. Alternatively, if suitable specifications are available, oracles
can be generated automatically at lower cost and with better quality. We propose to
specify service operations as visual contracts with executable formal specifications as
rules of a typed attributed graph transformation system. We associate operation signa-
tures with these rules for providing test oracles.

We analyze dependencies and conflicts between visual contracts to develop a de-
pendency graph. We propose model-based coverage criteria, considering this depen-
dency graph, to assess the completeness of test suites. We also propose a mechanism to
find out which of the potential dependencies and the conflicts were exercised by a given
test case. While executing the tests, the model is simulated and coverage is recorded
as well as measured against the criteria. The criteria are formalized and the dynamic
detection of conflicts and dependencies is developed. This requires keeping track of
occurrences and overlaps of pre- and post-conditions, their enabling and disabling, in
successive model states, and interpreting these in terms of the static dependency graph.

Systems evolve over time and need retesting each time there is a change. In order
to verify that the quality of the system is maintained, we use regression testing. Since
regression test suites tend to be large, we isolate the affected part in the system only
retesting affected parts by rerunning a selected subset of the total test suite. We analyze
the test cases that were executed on both versions and propose a mechanism to trans-
fer the coverage provided by these test cases. This information helps us to assess the
completeness of the test suite on the new version without executing all of it.

Acknowledgements

In the name of Allah, the most merciful, the most beneficent

I am thankful to Almighty Allah that I landed here in Leicester and was in the able

and kind hearted support of Prof Dr. Reiko Heckel. I was ready to do the hard work but

was, like many other PhD students, wondering in a pointless manner. It was him who

brought me to a proper direction and guided me throughout my degree. Few words or

few sentences cannot do justice to what the Professor has done not only for me but all

of the students who worked with him. I wish him all the best in his life and in his future

pursuits. I would also like to thank Dr. Artur Boronat who was my second supervisor

and Dr. Fer-Jan DeVres who was my course tutor for their kind help and support. I

would like to thank Olga Runge who was extremely helpful and provided me a sound

and prompt support whenever required.

When I came and joined computer sciences department, I noticed that the out-

fit was more towards theoretical aspects and less towards the application side. It was

through a systematic support and guidance in the shape of regular Friday afternoon

seminars, for which Dr. Alexander Kurz must be thanked besides many others, and

short courses from all senior faculty members especially from Prof Dr. Jose Fiadeiro,

Prof Dr. Rick Thomas, Prof Dr. Rajeev Raman, and Prof Dr. Thomas Erlebach that we

were able to dope ourselves into theoretical domain. I would also like to thanks Prof

Dr. Rick Thomas, Dr. Irek Ulidowski, Dr. Emilio Tuosto, Dr. Stephan Reiff-Marganiec,

Dr. Alexander Kurz, Dr. Monika Solanki and Dr. Neil Walkinshaw for allowing to sit in

their taught modules, besides courses from my first and second supervisors, and learn

from them. I would like to express my gratitude to all of the rest of the staff members

for their help and support in the shape of short courses, healthy discussions and shar-

ing of information. I would also like to express my gratitude to help and support by

Rodrigo Machado in understanding the basic concepts of category theory and graph

transformation.

I would like to thank both of my parents who must be happily seeing me progress to

completing my PhD from heavens and I would like to thank all of my family members

especially Inaam Bhai, Fariha, Kashif and Kiran for their prayers and support. I express

my gratitude to Khala and Khaloo. Last but not least, I am grateful to my wife, Madiha,

for her continual support through thick and thin and I dedicate my thesis to my parents

and to my boys - Talal and Qaseem.

ii

Declaration of Authorship

I hereby declare that this submission is my own work and that is the result of work

done during the period of registration. To the best of my knowledge, it contains no

previously published material written by another person. None of this work has been

submitted for another degree at the University of Leicester or any other University.

Part of this thesis appeared in the following conjoint publications, to each of which

I have made substantial contributions:

• Tamim Ahmed Khan and Reiko Heckel, “A Methodology for Model-Based Re-

gression Testing of Web Services", in Proceedings of the 2009 Testing: Aca-

demic and Industrial Conference - Practice and Research Techniques, TAIC-

PART 09, IEEE Computer Society.

• Tamim Ahmed Khan and Reiko Heckel, “On Model-Based Regression Testing of

Web-Services Using Dependency Analysis of Visual Contracts", in Proceedings

of the Fundamental Approaches to Software Engineering - 14th International

Conference, FASE 2011, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March

26-April 3, 2011, LNCS Vol. 6603, pp.341-355.

• Reiko Heckel, Tamim Ahmed Khan, Rodrigo Machado, “Towards test coverage

criteria for visual contracts", In Proceedings of the Graph Transformation and

Visual Modeling Techniques, GTVMT 11, Electronic Communications of the

EASST, Vol. 41/2011

• Tamim Ahmed Khan, Olga Runge, Reiko Heckel, “Visual Contracts as Test Or-

acle in AGG 2.0", In Proceedings of the Graph Transformation and Visual Mod-

eling Techniques, GTVMT 12, Electronic Communications of the EASST, Vol.

47/2012

• Tamim Ahmed Khan, Olga Runge, Reiko Heckel, “Testing Against Visual Con-

tracts: Model-based Coverage", in Proceedings of the 6th International Confer-

ence on Graph Transformation, ICGT 12, University of Bremen, Germany 24 -

29 September, 2012, LNCS (to appear).

ii

Contents

I Introduction and Preliminaries 1

1 Introduction 2

1.1 Motivation . 2

1.2 Approach . 5

1.2.1 Visual Contracts as Test Oracles 5

1.2.2 Model-based Coverage . 6

1.2.3 Regression Testing . 7

1.3 Contributions . 8

1.4 Thesis Outline . 9

2 Background 11

2.1 Testing . 11

2.2 Visual Contracts . 12

2.3 Graph Transformation . 12

2.3.1 Graphs, rules, and transformations 13

2.4 Running Example . 16

2.5 Independence and Critical Pairs . 18

2.6 Summary . 21

i

II Model-Based Testing 22

3 Typed Attributed Graph Transformation Systems with Rule Signatures 23

3.1 Rule Signatures . 23

3.2 Summary . 30

4 Test Oracles Using Visual Contracts 31

4.1 Challenges . 32

4.1.1 Model as Oracle . 33

4.1.2 Partiality of Visual Contracts 34

4.1.3 Failure Handling . 34

4.1.4 Adaptation of Output Types 36

4.2 Using AGG as an Oracle . 37

4.2.1 Model as Oracle . 37

4.2.2 Partiality of Visual Contracts 39

4.2.3 Failure Handling . 40

4.2.4 Adaptation of Output Types 42

4.3 Implementation . 43

4.4 Application to the Running Example 46

4.5 Limitations of the Approach . 48

4.6 Summary . 49

5 Model-Based Coverage Criteria 50

5.1 Dependency Graphs . 50

5.2 Coverage Criteria . 55

5.3 Summary . 58

6 Dynamic Analysis of Dependencies and Conflicts 59

6.1 Dynamic Analysis of Dependencies and Conflicts 60

ii

6.2 Implementation . 61

6.3 Application to the Running Example 68

6.4 Limitations of the Approach . 70

6.5 Summary . 71

7 Model Based Regression Testing 72

7.1 Evolution Scenarios . 73

7.1.1 Scenario I . 73

7.1.2 Evolution Scenarios II . 74

7.2 Classification of Test Cases . 74

7.3 Coverage Analysis . 76

7.4 Application to the Running Example 79

7.4.1 Generation of Test Suite . 79

7.4.2 Validation of Quality of Entire Test Suite 80

7.4.3 Classification of test cases into OB, RU, and RQ 83

7.4.4 Validation of the quality and required size of RQ 84

7.4.5 Coverage Analysis . 84

7.5 Limitations of the Approach . 85

7.6 Summary . 86

8 Case Study: Bug Tracking System 87

8.1 Bug Tracking System . 87

8.1.1 Service Implementation . 87

8.1.2 Model Artifacts . 89

8.2 Test Oracles . 90

8.2.1 Setup and Execution . 91

8.2.2 Results and Evaluation . 93

8.2.3 Threats to Validity . 98

iii

8.3 Coverage Analysis . 99

8.3.1 Setup and Execution . 99

8.3.2 Results and Evaluation . 101

8.3.3 Threats to Validity . 104

8.4 Regression Testing . 105

8.4.1 Setup and Execution . 106

8.4.2 Results and Evaluation . 110

8.4.3 Threats to Validity . 111

8.5 Summary . 112

III Comparison and Conclusion 113

9 Comparison to the State of the Art 114

9.1 Test Oracles . 115

9.2 Model-based Coverage Criteria . 118

9.3 Regression Testing . 122

9.4 Summary . 125

10 Conclusion and Outlook 127

10.1 Conclusion . 127

10.2 Outlook . 128

10.2.1 Test Case Analysis and Generation 129

10.2.2 Learning Visual Contracts 130

10.2.3 Rules Signature for Multi Objects 130

10.2.4 Application Conditions . 131

10.2.5 Evaluation of Effectiveness of Proposal 131

A Visual Contracts: Bug Tracker Service 132

iv

References 146

v

List of Figures

1.1 Software testing process diagram adapted from [66] 3

2.1 E-Graph (Left) and condition for A-graph morphisms (Right) 14

2.2 Visual Contracts for Hotel Example 17

2.3 Type Graph . 17

2.4 Rule to query information . 18

2.5 Optional caption for list of figures 20

3.1 Optional caption for list of figures 25

3.2 An example transformation sequence 26

3.3 An example transformation sequence and an observation sequence . . 27

3.4 Start graph for test case example . 29

4.1 Schematic diagram of proposed driver 32

4.2 Component diagram . 33

4.3 Additional rule for finding all rooms 33

4.4 Optional caption for list of figures 37

4.5 Additional rule for finding all rooms 38

4.6 Start Graph . 39

4.7 Additional rule for finding all rooms 47

5.1 Critical pairs and dependencies . 51

vi

5.2 Dependency Graph of T AGTS representing hotel web service 54

5.3 Start graph . 56

5.4 Cov(DG, T) . 57

6.1 Dependencies in a transformation sequence 60

6.2 Optional caption for list of figures 67

6.3 Method Coverage . 68

6.4 Code Coverage with cr + cd . 69

6.5 Code Coverage with all paths . 70

7.1 Optional caption for list of figures 74

7.2 Optional caption for list of figures 75

7.3 Fault seeding with L-Care . 78

7.4 Start graph for version V2 . 80

7.5 Fault seeding with L-Care . 82

7.6 Coverage analysis output for version V1 85

7.7 Coverage analysis output for version V2 86

8.1 Model level signatures . 90

8.2 Optional caption for list of figures 91

8.3 Initial state of the model . 93

8.4 Initial model state . 94

8.5 Test Case Execution Time . 97

8.6 Optional caption for list of figures 98

8.7 Optional caption for list of figures 100

8.8 Dependency graph for ≺ relation. 101

8.9 Dependency graph for↗ relation. 102

8.10 Unreachable code example . 103

vii

8.11 Optional caption for list of figures 107

8.12 BugTracker, evolution to Version 2 108

8.13 BugTracker, evolution to Version 3 108

8.14 Fault seeding with L-Care . 109

10.1 Test Case Generation Example . 129

10.2 Test Case Generation Example . 131

A.1 Visual Contract for Rule AddProject 132

A.2 Visual Contract for Rule AssignProject 132

A.3 Visual Contract for Rule DeleteProjectById 133

A.4 Visual Contract for Rule GetProjectByProjectTitle 133

A.5 Visual Contract for RuleScheme GetProjects 133

A.6 Visual Contract for GetProjectsForUsers 134

A.7 Visual Contract for Rule UpdateProject 134

A.8 Visual Contract for Rule AddBug . 135

A.9 Visual Contract for Rule DeleteBug 135

A.10 Visual Contract for Rule DeleteBugsForProjectAndUsers 136

A.11 Visual Contract for RuleScheme GetAllBugs 136

A.12 Visual Contract for RuleScheme GetAllBugsForProject 137

A.13 Visual Contract for RuleScheme GetAllBugsForProjectAndUser . . . 137

A.14 Visual Contract for Rule UpdateBug 138

A.15 Visual Contract for AddUser . 138

A.16 Visual Contract for RuleScheme DeleteUserById 138

A.17 Visual Contract for RuleScheme GetUsers 139

A.18 Visual Contract for Rule IsValidPassword 139

A.19 Visual Contract for Rule GetLogins 140

A.20 Visual Contract for Rule GetUserInfo 140

viii

A.21 Visual Contract for Rule GetUserInfoForUserName 140

A.22 Visual Contract for Rule GetUserInfoForUserId 140

A.23 Visual Contract for Rule UpdateUser 141

A.24 Visual Contract for Rule AddIssue 141

A.25 Visual Contract for Rule DeleteIssues 142

A.26 Visual Contract for Rule DeleteIssuesForProjectAndUser 142

A.27 Visual Contract for RuleScheme GetAllIssues 143

A.28 Visual Contract for Rule UpdateIssue 143

A.29 Visual Contract for RuleScheme GetUsersForProject 144

A.30 Visual Contract for RuleScheme GetPossibleStatusses 144

A.31 Visual Contract for Rule UpdateXUserProject 145

ix

Part I

Introduction and Preliminaries

1

Chapter 1

Introduction

1.1 Motivation

Software testing is a verification and validation approach in which the system under

test (SUT) is executed with sample data such that the implemented behavior can be

examined against a specification. The intention is to uncover the presence of defects in

the SUT and to validate the implementation against the requirements. The testing pro-

cess, as shown in Figure 1.1, consists of activities to design test cases, the preparation

of test data, executing the SUT using test data, and validating the results [66].

In order to design test cases and prepare test data, artifacts related to specification

or implementation are considered. Since testing is a time and cost intensive process, we

need to select adequately many test cases such that they are likely to reveal faults [8].

There are several methods for assessing the completeness of test suites of which cover-

age analysis is one particular method [44]. Once test cases are selected, inputs that are

generated to execute these test cases and expected results are computed. The expected

outcomes are used to provide test oracles which are an essential part of the software

testing process [70]. The SUT is executed with test data and the actual outcomes are

validated against the expected results in the last two activities shown in Figure 1.1.

2

Figure 1.1: Software testing process diagram adapted from [66]

Service-oriented systems pose a variety of challenges to client-side testing due to

lack of control over the service implementation [15]. A user’s view of a web service

is through provided interfaces, which abstract away the implementation details and

prevent the use of white-box testing methods [15]. Therefore, we require a model-

based approach to test oracles for web services.

Web services testing incurs additional overheads in terms of service invocation

costs and resource consumption through network traffic [57]. Therefore, we need to

assess the completeness of a given set of test cases. There are several methods for as-

sessing the completeness of test suites, e.g., structural coverage criteria, fault-based

approaches. Coverage provides a metric to see what portions of a software artefact,

with respect to a given test requirement, the test cases in a test suite are able to exer-

cise [3]. Traditionally, a test requirement is defined in terms of code elements such as

statements, branches, data definitions, data usages, etc. Coverage criteria are used to

enforce test requirements [3]. Since traditional structural coverage criteria require ac-

cess to code, we need a model-based alternative for web services and component-based

systems.

Software systems evolve as a consequence of repairing faults or adapting the soft-

ware to a different system/environment. Evolution may also be in response to addition

or modification of functionality. These maintenance activities are an integral part of the

3

software development process contributing significant overheads as identified in [66].

Maintenance starts as soon as a software system is developed and delivered to the

production environment. Large portion of the total software cost (up to 85 - 90%) is

devoted to this activity [25]. Often, changes made to a system are local, arising from

fixing bugs or specific additions or changes to the functionality. Rerunning the entire

test set in such cases is wasteful. Instead, we would like to be able to identify the parts

of the system that were affected by the changes and select only those test cases for

rerun which test functionality that could have been affected.

When verifying that the quality of a web service under test has not regressed during

maintenance, we are again faced with the problem of non-availability of code. There-

fore, we require a model-based regression testing approach for web services, providing

a test suite reduction mechanism based on analyzing the impact of the change. For the

two versions of the SUT before and after the maintenance, there are test cases which

are executable on both versions, but are not selected for retesting since they do not ex-

ercise the affected part of the system. However, we need to consider them to determine

the coverage for the evolved version. We therefore require a mechanism to transfer

coverage information to the next version.

In summary, the thesis addresses the problem as follows:

Web services hide implementation details preventing the use of white-

box testing methods. We propose a model-based approach to support or-

acles, coverage analysis, and regression testing. We specify web service

operations by visual contracts, i.e., pre- and post-conditions formalized

as rules in a graph transformation system. This provides us with an exe-

cutable model as oracle and allows analysis of conflicts and dependencies

for assessing coverage and regression.

4

1.2 Approach

We propose a model-based approach to test oracles, coverage criteria and regression

testing of web services. Analysis of visual contracts formally specified as transforma-

tion rules in a typed attributed graph transformation system (TAGTS) has been used

for interface specification [31], model-based testing [33], and test case generation [29]

previously. We have used visual contracts for executing models to propose test oracles.

Specifications are analyzed for model-based testing considering additional semantic

information e.g., resource description framework (RDF) in [49], semantic web descrip-

tions (WSDL-S) in [65] and specifications using business process execution language

(BPEL) in [36]. The gathered information is either represented as control-flow graph

or as extended finite state machine. Our treatment to the problem is different in the

sense that we make use of visual contracts for model-based coverage criteria. We con-

sider dataflow information and represent it as a dependency graph. Next, we provide a

high-level introduction to our approach.

1.2.1 Visual Contracts as Test Oracles

Software testing relies on test oracles to predict expected test results [11]. Oracles can

be implemented manually relying on testers’ understanding of functional requirements

to decide the correct response of the system on every given test case. As a result,

they are costly in creation and maintenance and their quality depends on the correct

interpretation of the requirements. Alternatively, if suitable specifications are available,

oracles can be generated automatically at lower cost and with better quality [6].

Visual contracts specified as rules in a typed attributed graph transformation sys-

tem (TAGTS) are directly executable and therefore suitable for generating automated

oracles. However, the gap in abstraction between service implementation and visual

models poses a number of challenges in implementing this basic idea. This includes the

5

requirement to convert operation invocations into rule applications, passing and con-

verting parameters and interpreting replies. This conversion is also required because

model and implementation signatures may differ, with the implementation requiring

extra parameters, providing additional results, or using different types, especially for

collections.

Since the model is only concerned with functional aspects, we also have to filter

out technical failures of the implementation, such as problems with the server or trans-

port layer, distinguishing them from logical failures corresponding to non-applicable

rules due to violation of preconditions. However, with visual contracts providing a par-

tial specification only, even the functional aspect may be under-specified. As a further

challenge, different web service implementations may report success and failure differ-

ently. Adapter and test driver both need to be flexible enough to accommodate different

styles of error handling and reporting, allowing for a degree of customization. We an-

alyze and overcome these challenges and propose model-based test oracles for web

service testing in Chapter 4.

1.2.2 Model-based Coverage

Model-based testing relies on model-level artifacts to derive test cases and assess cov-

erage [69]. Considering the classification of approaches into black-box and white-box,

model-based testing is a special case of black-box testing [16] in which the system

is tested considering its externally visible behavior. Test cases and coverage criteria

are therefore derived from the model of the system. White-Box strategies, on the other

hand, access implementation details.

Complete testing of software systems is not possible due to the infinite number

of values that can be considered as inputs [3]. Therefore, we require a mechanism to

establish the completeness of test cases. Coverage provides us with a metric to see

6

what portion of a software artefact, with respect to a given test requirement, the test

suite was able to exercise [3].

Our approach to model-based testing relies on the execution of models to assess

completeness of test suites. The coverage criteria are based on static dependency anal-

ysis and dynamic analysis of actual coverage. We represent service specifications as

TAGTS to analyze dependencies and conflicts between operations. We are then able

organize this information as a graph where data definition, usage, and deallocation by

different operations can be visualized by edge labels. Once a graph is constructed, we

propose model-based coverage criteria based on combinations of such labels. To as-

sess coverage, we need information from the model’s execution, since individual test

cases may or may not observe a dependency or a conflict. Our approach of model-

based coverage analysis is therefore a natural extension of the use of executable visual

contracts as test oracles. In line with most approaches to testing, we assume that our

models are correct, i.e., if a discrepancy occurs between model and implementation,

the assumption is that the implementation is at fault. Moreover, for some parts of our

method, visual contracts are required to be complete. In particular, the use as test oracle

requires complete post-conditions.

1.2.3 Regression Testing

Regression testing verifies if systems under evolution retain their existing functional-

ity [40, 41, 30, 28]. Regression testing may be broadly classified into two types: one in

which the specification of the system does not change, called corrective regression test-

ing, and another in which the specification may change, called progression regression

testing [62]. The former arises from activities like corrective maintenance or refactor-

ing, whereas the later is required where there is a modification, addition, or deletion of

functionality.

7

If we use a full set of test cases to reevaluate every new version, especially when

test suites are accumulated over time, this can be resource and cost intensive. Since

our knowledge about the implementation is limited to the interface-level, we need to

consider the available information for selecting the relevant subset of existing test cases

to exercise the functionality affected by the changes. For this, we need information

about the change and a mechanism for analyzing the impact of change. We analyze

what has changed in the model, i.e., what operations are affected at the model-level

and what what operations have been impacted at the implementation level. We use this

information to isolate the affected part of the system to find out which of the test cases

need to be executed again.

Following the classification in [48], a test case in a regression test suite can be ob-

solete if it is no longer applicable to the new version, reusableif it is still applicable and

required if it tests functionality affected by the changes. We only execute the required

test cases for the latest version and, in order to retain coverage, we need to transfer

coverage due to reusable test cases that were not rerun.

1.3 Contributions

This thesis presents the following contributions that have been made while addressing

the research objectives.

Rule Signatures: We introduce signatures for visual contracts and a way to link them

to rules in a TAGTS. This allows to provide an executable model with an inter-

face comparable to that of the system under test.

Test Oracles: We propose an approach to test oracles based on visual contracts for-

mally represented by graph transformation rules. We make use of the Attributed

Graph Grammar (AGG) [2] to provide executable specifications as test oracles.

8

Coverage Criteria: We introduce model-based coverage criteria by analyzing con-

flicts and dependencies between visual contracts. We propose a visual repre-

sentation in the shape of a dependency graph, based on static information about

potential dependencies and conflicts between operations. Additional information

about the nature of conflicts and dependencies is provided by edge labels, which

we use to define coverage criteria. A given set of test cases may or may not ex-

ercise these dependencies or conflicts at runtime. We propose a mechanism by

which we can find out the completeness of our test cases using dynamic depen-

dencies and conflicts analysis.

Regression Testing: Since there are additional costs involved [57] in case of web ser-

vice testing, we cannot afford to rerun all of the existing test cases. Hence we

propose a model-based approach for test suite reduction for regression testing of

web services. We also propose to analyze coverage by test cases individually so

that we can consider the coverage due to reusable test cases for the version after

evolution.

1.4 Thesis Outline

The thesis is organized as follows. Following this introduction, the background knowl-

edge deemed required for a general readership is discussed in Chapter 2. These two

chapters form the first part of the thesis.

The second part contains six chapters pertaining to the main contributions submit-

ted in this thesis. Chapter 3 provides our basis for associating rules with signatures

whereas Chapter 4 explains our approach for using visual contracts to provide model-

based test oracles. The theoretical basis for model-based coverage criteria are discussed

in Chapter 5 where the dynamic dependency analysis is explained in Chapter 6. Our

9

approach to model-based regression testing is discussed in Chapter 7. An evaluation of

our approach using a case study is given in Chapter 8, which also contains a critical

analysis of the presented results as well as of the threats to the validity of the evaluation.

The third part contains two chapters in which related work and conclusions are

provided. Related work and a critical comparison are presented in Chapter 9 whereas

conclusion and outlook are discussed in Chapter 10.

10

Chapter 2

Background

This chapter introduces existing concepts of software testing with emphasis on test

oracles, model-based testing, coverage criteria and regression testing. We also explain

basic graph transformation concepts and visual contracts and introduce our running

example.

2.1 Testing

A Failure is the inability of a system under test (SUT) to perform a function as per

requirements specifications, whereas a fault is the incorrect part of the source code

which presents itself as a failure [1]. A Test Case is a set of inputs together with the

expected outputs. A mechanism that provides knowledge about expected or “correct”

outputs by means of an automated program, a model checker, a manual activity, a

program specification, a table of examples, etc., is called test oracle [11]. A Test Run

is an execution of a particular test case, whereas a Test Driver is a program that executes

a test case on an SUT.

In model-based testing approaches, we consider specification artifacts for test-

ing [21, 44]. Considering graph based structural testing techniques, coverage criteria

11

can be defined on the basis of selection of different paths through the system. Having

this information, appropriate inputs are selected so that these paths through the S UT

could be exercised. Example coverage criteria include all de f s paths in which we se-

lect inputs such that we exercise all paths exercising all occurrences of de f nodes in

dataflow graph of our S UT etc.

2.2 Visual Contracts

Design by Contract (DbC) was introduced by Meyers in [53] for Eifel, where Require

and Ensure are used to specify assertions consisting of pre- and post-conditions. This

tells the developer what state of the system a particular method expects before and what

it should leave after invocation. Several methods for specification of the pre- and post-

conditions have been proposed including the Object Constraint Language (OCL), Z

and VDM. Visual contracts provide a visual representation of pre- and post-conditions

using a pair of graphs, such that the pre-condition represents the left-hand side and

the post-condition the right-hand side of a graph transformation rule. The two graphs

represent the system state in terms of object diagrams with attribute values. Our use

of visual contracts specified as typed attributed graph transformation system (TAGTS)

for analysis is motivated by examples demonstrated, e.g., in [51, 5, 23, 51, 34, 24]. We

use AGG to execute system described as a TAGTS which allows rule application only

if match is found. This becomes an important aspect of our analysis since we do not

need to filter out infeasible paths from a given test set.

2.3 Graph Transformation

This section introduces existing concepts of graph transformation with emphasis on

conflicts and dependency analysis. We also explain visual contracts and introduce our

12

running example.

2.3.1 Graphs, rules, and transformations

In this chapter we recall the basic definitions regarding typed attributed graph transfor-

mation systems as presented in [22].

A graph is a set of nodes connected by edges. For example, a class diagram is a

graph providing typing information for object diagrams, which can also be seen as

graphs.

Definition 2.3.1 (Graph) A graph is a tuple (V, E, src, tgt) where V is a set of nodes

(or vertices), E is a set of edges and src, tgt : E → V associate, respectively, a source

and target node to each edge in E. Given graphs G1 and G2, a graph morphism is a

pair (fV , fE) of total functions fV : V1 → V2 and fE : E1 → E2 such that sources and

targets of edges are preserved, i.e., fE ◦ src1 = fV ◦ src2 and fE ◦ tgt1 = fV ◦ tgt2.

An E-graph is additionally equipped with a set of data nodes, used to provide the

values of node and edge attributes.

Definition 2.3.2 (E-Graph) An E-graph is a graph equipped with an additional set VD

of data nodes (or values) and special sets of edges EEA (edge attributes) and ENA (node

attributes) connecting, respectively, edges in E and nodes in V to values in VD. An E-

graph corresponds to a diagram in the category S ets, as shown in Fig. 2.1(a). An E-

graph morphism f : EG1 → EG2 is a 5-tuple (fV , fE, fVD , fEEA , fENA) of total functions

between E-graph components such that all sources and targets are preserved.

Intuitively, an attributed graph is an E-graph where VD corresponds to elements of

the carrier set of D sorted by S . This way the components D and S define the data

values that can be attributed to nodes and edges in the E-graph part.

13

E
source ++
target

33 V D1
s

fD,s //
� _

��

D2
s
� _

��
EEA

sourceEA

77

targetEA --

EVA

sourceEA

gg

targetEAqqVD V1
D fG,VD

// V2
D

(a) (b)

Figure 2.1: E-Graph (Left) and condition for A-graph morphisms (Right)

Definition 2.3.3 (A-graph) An attributed graph (A-graph) is a tuple (EG,D, S) where

EG is an E-graph, D is an algebra with signature Σ = (S ,OP) and S 0 ⊆ S is a subset

of sort names such that
⊎

s∈S 0
Ds = VD. An A-graph morphism f : AG1 → AG2 is a

pair (fEG, fD) such that fEG : EG1 → EG2 is a E-graph morphism, fD : D1 → D2 is an

algebra morphism and, for every sort name s ∈ S 1
0, the diagram shown in Fig. 2.1(b)

commutes.

We restrict the set of graphs under consideration by a type graph.

Definition 2.3.4 (TA-graph) An attributed type graph is an A-graph ATG = (EG,Z)

where Z is the final algebra of its signature. A typed attributed graph (TA-graph) over

ATG is a pair (AG, t) where AG is an A-graph and t : AG → ATG is an A-graph

morphism. Given two TA-graphs T AG1, T AG2 over ATG, a TA-graph morphism f :

T AG1 → T AG2 is an A-graph morphism f : AG1 → AG2 such that t2 ◦ f = t1.

Let us denote by X = (Xs)s∈S a family of countable sets of variables, indexed by

sorts s ∈ S . The sort s represents the type of all variables in Xs. We also write x : s ∈ X

for x ∈ Xs. Considering a fixed attributed type graph (ATG) with signature Σ = (S ,OP)

and variables X, an ATG-typed graph rule (or production) is a span L
l
←− K

r
−→ R

where l, r are monomorphisms, the algebra component of L,K,R is TΣ(X) (the term

algebra of Σ with variables in X), and the algebra component of the rule morphisms

14

lD = rD = idTΣ(X) is the identity on the term algebra [22]. This means that, in particular,

the names of variables are preserved across the entire rule. The class of all rules over

ATG with variables in X is denoted Rules(ATG, X). We define typed attributed graph

transformation system (TAGTS) as follows:

Definition 2.3.5 (TAGTS) A typed attributed graph transformation system (TAGTS) is

a tuple (ATG, P, π) where ATG is an attributed typed graph, P is a set of rule names

and π : P→ Rules(ATG, X) maps rule names to ATG-typed graph rules.

We define a single-step transformation and a transformation sequence as follows:

Definition 2.3.6 (Transformation) Given an ATG-typed graph G, an ATG-typed rule

L
l
← K

r
→ R and a match (i.e. a ATG-typed graph morphism) m : L→ G, a transfor-

mation step from G to H using q (based on m) exists if and only if the diagram below

can be constructed, where both squares are pushouts in AGraphATG such that G, C, H

share the same algebra D and the algebra components l∗D, r
∗
D of morphisms l∗, r∗ are

identities on D. In this case the transformation step is denoted by G
q,m
=⇒ H. A trans-

formation sequence is a sequence G0
r1,m1
=⇒ G1

r2,m2
=⇒ . . .

rn,mn
=⇒ Gn of transformation steps.

L

(1)m=dL

��

Kloo r //

dK

��
(2)

R

m∗=dR

��

G Cl∗
oo

r∗
// H

This ensures that data elements are preserved across transformation sequences,

which allows their use as actual parameters within a global namespace.

15

2.4 Running Example

We introduce an example, which we also treat as a running example throughout the rest

of the thesis. We consider a service for managing hotel guests. A registered guest can

book a room subject to availability. There are no booking charges and the bill starts

to accumulate once the room is occupied. Since credit card details are already with

the hotel management, the bill is automatically deducted when the guest announces

their intention to check out. The guest can check out successfully only when the bill

is paid. The operation signatures for some of the operations are shown in Listing 8.1.

We call the web service implementation “implementation” and TAGT specifying the

visual contracts “model” throughout the rest of the document.

Listing 2.1: HotelImplementationInt
. . .

p u b l i c i n t e r f a c e IHotel {
. . .

p u b l i c String bookRoom (String name , i n t room_no) ;
p u b l i c String occupyRoom (String name , i n t room , i n t bill) ;
p u b l i c b o o l e a n updateBill (i n t bill_no , i n t amount) ;
p u b l i c b o o l e a n clearBill (i n t bill_no) t h ro ws Exception ;
p u b l i c b o o l e a n checkout (String name , i n t room_no , i n t bill_no) ;
p u b l i c String viewData (i n t room_no) ;

. . .
}

We specify the operations as visual contracts which are discussed in [51, 31, 50].

We associate a signature with each visual contract where we distinguish input and out-

put parameters. The signature is using the name of the visual contract and the variables

in attribute expressions. Consider Figure 2.2, where the signature bookRoom(r:int,

n:String) has parameters r and n which are also used in the contract bookRoom to

represent the possible sets of values for room and name in an abstract manner.

The type graph for this service is shown in Fig. 2.4 using AGG [2] notation. The

signature associated with the visual contract in the Figure 2.4 returns results of running

a query.

16

Figure 2.2: Visual Contracts for Hotel Example

Figure 2.3: Type Graph

We use our running example as a vehicle to explain our contributions and a case

study, introduced in Chapter 8, to evaluate our proposals. The system used as case

study is adopted from a desktop bug tracking application available online such that the

17

Figure 2.4: Rule to query information

GUI is replaced with service interface and is offering more than thirty operations. The

system was selected as a case study since it was big enough to show the limitations

especially in terms of scalability.

2.5 Independence and Critical Pairs

In software systems, there are situations where we need to invoke a particular oper-

ation to apply a certain other operation. Consider, for example, the running example

presented in Figure 2.2 where we need to book a room using bookRoom before occupy-

ing a room using occupyRoom. There is a sequential dependence between operations

bookRoom and occupyRoom. Instead, the operations clearBill and viewData do not

depend on each other for application and therefore, they are sequentially independent.

Definition 2.5.1 (sequential independence) Consider a graph G, and two transforma-

tion steps G
p1,m1
=⇒ H and H

p2,m2
=⇒ I where p1 = (l1, r1) and p2 = (l2, r2). The transforma-

tions are said to be sequential independent iff there exists morphisms i : R1 → D2 and

18

j : L2 → D1 such that m′1 = r′1 ◦ j and m2 = l′2 ◦ i, as shown below:

L1

m1

��

K1
ool1oo // r1 //

k1

��

R1

m′1 ��

i

''

L2

m2
��

j

ww

K2
ool2oo // r2 //

k2

��

R2

m′2

��

G D1l′1
oo

r′1
// H D2l′2

oo
r′2

// I

If a transformation prevents the application of another, we have a conflict. Consider,

the running example presented in Figure 2.2. The room occupied by a guest cannot be

booked or occupied again before the guest checks out. If two transformation steps do

not disable each other, we say they are parallel independent. Below, we define parallel

independence.

Definition 2.5.2 (parallel independence) Consider a graph G, and two transformation

steps G
p1,m1
=⇒ H and H

p2,m2
=⇒ I where p1 = (l1, r1) and p2 = (l2, r2). The transformations

are said to be parallel independent iff there exists morphisms i : L1 → D2 and j : L2 →

D1 such that m′1 = r′1 ◦ j and m2 = l′2 ◦ i, as shown below:

R1

m′1

��

K1
oor1oo // l1 //

k1

��

L1

m1
��

i

''

L2

m2
��

j

ww

K2
ool2oo // r2 //

k2

��

R2

m′2

��

H1 D1r′1
oo

l′1
// G D2l′2

oo
r′2

// H2

A pair P1
p1,m1
⇐= K

p2,m2
=⇒ P2 of transformation steps is called a critical pair if it is

parallel dependent and matches m1 and m2 are jointly surjective [22].

Definition 2.5.3 (critical pairs[47]) A critical pair is pair of transformations G
p1,m1
=⇒

H1 and G
p2,m2
=⇒ H2 such that m1 and m2 are jointly surjective and:

• there’s no i : L1 → D2 with l′2 ◦ i = m1

or

19

• there’s no j : L2 → D1 with l′2 ◦ j = m2

The following types of conflicts can occur [38]:

1. Delete-Use: Application of rule p1 deletes an object subsequently required for

application of rule p2.

2. Change-Use: Application of rule p1 manipulates the attributes that are in the

match of p2.

3. Delete-Delete: Application of rules p1 and p2 delete an object subsequently re-

quired for application of the other rule.

(a) Produce-Use Dependency Example

(b) Change-Use-Attribute Conflict Example

Figure 2.5: Dependencies and Conflicts Example (a) and (b)

An example of conflicts and dependencies is shown in Fig. 2.5 where two rules

bookRoom and occupyRoom are considered in Fig. 2.5(a) to illustrate an example of

produce-use dependencies. The first rule produces an edge which is in the match of

20

the second. The example shown in Fig. 2.5(b) illustrates the conflict where the appli-

cation of bookRoom changes the RoomData variable status from vacant to booked and

disables the second application of bookRoom which uses this attribute.

Change-Use conflicts are handled by deleting the edge between the node represent-

ing the attribute and the value in the data part of the E-graph, as shown by the schematic

diagram in Figure 2.1, and creating another edge between the same node and another

value in the algebra part of the graph. We therefore classify change-use, i.e., a conflict

where the attribute value is changed as a delete-use conflict.

2.6 Summary

This chapter introduced the basic notation of software testing and coverage criteria.

We also introduced basic graph transformation concepts together with visual contracts.

These definitions are required for our theoretical developments and empirical results,

which we discuss in the forthcoming chapters. Finally, we have introduced a running

example that we use to explain our contributions.

21

Part II

Model-Based Testing

22

Chapter 3

Typed Attributed Graph

Transformation Systems with Rule

Signatures

This chapter provides the theoretical basis for the association between visual contracts

and rules of a TAGTS. This is required since we specify service operations as visual

contracts based on signatures, using formal parameters which map to the rules’ lo-

cal variables. We allow to associate more than one rule to a signature for specifying

alternative outcomes of an operation. We introduce a notion of observation on trans-

formation steps based on rule signatures to relate transformation sequences and test

cases.

We first provide our definition of TAGTS with rule signatures, where we differen-

tiate between input and output parameters.

3.1 Rule Signatures

Extending Definition 2.3.5 introducing TAGTS, we define TAGTS with rule signatures.

23

Definition 3.1.1 (TAGTS with rule signatures) A typed attributed graph transforma-

tion system with rule signatures is a tuple G = (ATG, P, X, π, σ) where

• ATG is an attributed type graph with set of node attributes ENA,

• P is a countable set of rule names,

• X is an S -indexed family (Xs)s∈S of sets of variables,

• π : P −→ P f in(Rules(ATG, X)) assigns each rule name a finite set of rules

L
l
←− K

r
−→ R over ATG, X,

• σ : P → ({ε, out} × X)∗ assigns to each rule name p ∈ P a list of formal inout

and output parameters σ(p) = x̄ = (q1x1 : s1, . . . , qnxn : sn) were qi ∈ {ε, out}

and xi ∈ Xsi for 1 ≤ i ≤ n. We write p’s rule signature p(x̄) and refer to the set of

all rule signatures as signature of G.

We distinguish inout and output parameters, the latter being indicated by out in

front of the declaration. Normal parameters are both input and output, that is they are

given in advance of the application, restrict the matching and are still valid after the

rule has been applied. Output parameters are only assigned values during matching.

Since L
l
←− K

r
−→ R is attributed over TΣ(X), rule parameters xi ∈ Xsi are from the

set of variables used in attribute expressions. Hence, actual parameters will not refer to

nodes or edges, but to attribute values in the graph. Since the algebra part of attributed

graphs is preserved, actual parameters have a global name space across transformation

sequences.

We can associate several rules to the same signature to represent alternative actions

inside the same operation, chosen by different input values and the system’s internal

state. In our example, the hotel provides a 10% discount to its guests on every tenth

visit. In order to describe this, two rules are required: One is applicable if the current

visit of a particular guest is the tenth one, while the second is applicable otherwise.

We consider the rules shown in Figure 2.2 where we amend occupyRoom to keep track

24

of the guest’s visits and introduce two rules clearBill_1 and clearBill_2 replacing rule

clearBill shown in Figure 3.1

(a) Rule occupyRoom

(b) Rule clearBill_1 (c) Rule clearBill_2

Figure 3.1: Revised Hotel Example

Example 3.1.1 [TAGTS with rule signatures] For the system in Figure 2.2, the rule

signatures shown below are based on data sorts S = {int, boolean, string} with the

usual operations. Output parameters are indicated by the prefix out in the declaration.

• bookRoom(n:string, out r:int)

• occupyRoom(r:int, n:string, out b:int)

• clearBill(b:int)

• checkout(r:int, n:string, b:int)

• updateBill(b:int, in:int)

25

• viewData(r:int)

The rules updateBill_1 and updateBill_2 in Figure 3.1 are associated with the same

signature, i.e., updateBill(int:b). We can construct transformation sequences by suc-

cessive rule applications starting from the initial graph shown in Figure 3.2.

Figure 3.2: An example transformation sequence

The purpose of signatures is to allow observations on transformations, including in-

formation about rules and their matches. Below we define the labels of a rule signature,

then the observations associated with transformation sequences.

Definition 3.1.2 (labels) Given a rule p : L ← K → R with signature p(q1x1 :

s1, . . . , qnxn : sn) and a Σ-algebra D, we denote by p(D) the set of all rule labels

p(a1, . . . , an) with ai ∈ Dsi . The label alphabet LG,D for a system G is defined as the

union over all rule labels
⋃

p∈P p(D). If D and/or G are understood from the context,

we write LG or just L.

The (usually infinite) alphabet of labels L consists of all possible instances of rule

signatures, replacing their formal parameters by values from the algebra D. Labels in

L may be interpreted as observations of transformation steps, where the instantiation

is given by the algebra component of the matches. Let L∗ denote the Kleene closure

26

over the label alphabet, providing the set of all finite sequences of labels. The follow-

ing definition describes an observational semantics of TAGTS via sequences of labels

produced by its transformation sequences.

Definition 3.1.3 (observations from transformation sequences) Let G
p,m
=⇒ H be a

transformation step of a TAGTS G with algebra component D. The observation func-

tion obs : Tra(G) → L∗
G

is defined on transformation steps by obs(G
p, m
=⇒ H) =

p(a1, . . . , an) if p’s signature is p(q1x1 : s1, . . . , qnxn : sn) with ai = m(xi). The observa-

tion function freely extends to finite sequences of transformations, yielding sequences

of labels.

Consider the transformation sequence shown in Figure 3.2, the observation se-

quence considering n = “Tim” and r = 1 is shown in Figure 3.3

Figure 3.3: An example transformation sequence and an observation sequence

Rule names are instantiated with parameter values to represent the corresponding

observation sequence in the lower part of Figure 3.3. The graphs shown represent sam-

ple states of a hotel with only one room and one registered guest.

A test case combines a graph defining its initial state with a sequence of invocations,

i.e., rule names instantiated by constants or terms TΣ(Y) over a set of program variables

27

Y .

Definition 3.1.4 (invocation sequence, test case) Given a rule p : L ← K → R with

signature p(q1x1 : s1, . . . , qnxn : sn) with qi ∈ {ε, out} and a sort-indexed family of

variables Y = (Ys)s∈S , an invocation of p is of the form p(t1, . . . , tn) where ti ∈ TΣ(Y)si

are terms with operations from Σ over the variables Y, such that qi = out implies that

ti ∈ Y, i.e., output parameters are instantiated by variables only.

Given a sequence of m invocations, s = p1(t11, . . . , t1n1); . . . ; pm(tm1, . . . , tmnm), for a

prefix si of s we say that a variable is bound by si if it occurs in si as output parameter.

An invocation sequence is ground if for each invocation p1(ti1, . . . , tini), all variables

occurring in inout parameters are bound by si−1.

A test case is a pair t = (G0, s) of a graph G0, called start graph, and a ground

invocation sequence s.

Therefore, only input parameters are instantiated and output parameters as well as

their subsequent occurrences are not initialized until the execution reaches the point

where the parameter’s value is computed.

Example 3.1.2 [test case] Considering the transformation sequence in Figure 3.2, a

test case t = (G0, s) is shown below where the graph G0 is given in Figure 3.4.

s = bookRoom(“Tim”, 1); occupyRoom(“Tim”, 1, bNo); updateBill(bNo, 250);

clearBill(bNo); checkout(“Tim”, 1, bNo)

A test case, once executed, becomes an observation sequence as shown in the lower

part of Figure 3.3.

Definition 3.1.5 (instantiation and run of test case) Given a test case t =

(G0, p1(t11, . . . , t1n1); . . . ; pm(tm1, . . . , tmnm) with program variables in Y and

28

Figure 3.4: Start graph for test case example

sort-indexed assignment a : Y → D, the instantiation of s via a is given by

a(t) = (G0, p1(a(t11), . . . , a(t1n1)); . . . ; pm(a(tm1), . . . , a(tmnm))).

Given a transformation sequence ts = (G0
p1,m1
=⇒ G1

p2,m2
=⇒ . . .

pn,mn
=⇒ Gn) of a TAGTS G

and a test case t as above, ts is a run of t if there exists an assignment a : Y → D such

that a(t) = obs(ts).

Example 3.1.3 [run of a test case] We obtain an observation sequence by instanti-

ating invocations. Considering the invocation sequence given in Example 3.1.2 and

assuming bNo = 1023, we get a run of a test case as shown below:

bookRoom(“Tim′′, 1); occupyRoom(“Tim′′, 1, 1023); updateBill(1023, 250);

clearBill(1023); checkout(“Tim′′, 1, 1023)

The test run is the same as the observation sequence shown in the lower part of

Figure 3.3.

Definition 3.1.5 is used to define under what conditions a transformation sequence

can be seen as the result of executing a test. A test case contains the information about

the initial state of system as a start graph. An observation sequence is achieved by

29

applying the observation function, as defined in Definition 3.1.3, on a sequence of

transformation steps.

The variables in a test case represent placeholders which are assigned values de-

pending upon the state of the model. While executing the test case, we consider the

first invocation in the test case and find the match of the corresponding rule in the start

graph considering the parameter values in the attribute expressions. In case the match is

found, we apply the match and find the comatch. The match and the comatch together

provide the values for the abstract parameters in the invocation. For the next invoca-

tion, the match has to consider the values assigned to abstract parameters in previously

executed invocation. The invocations in a test case become labels resulting in an obser-

vation sequence. We represent a test case as an observation sequence throughout the

rest of the thesis where rule signatures are instantiated with all variables instead of just

the input variables.

3.2 Summary

We have presented a way to associate signatures with rules in a TAGTS and defined a

relation between observation sequences and test cases. We have provided an informal

but operational explanation of these concepts. We use this formal basis in the following

chapters for introducing our approaches to test oracles, dependency graphs, model-

based coverage and regression testing.

30

Chapter 4

Test Oracles Using Visual Contracts

This chapter is dedicated to use of visual contracts as test oracles. We execute graph

transformation rules using the application programming interface (API) of AGG [2].

We provide an adapter to AGG such that the model’s functionality is comparable to

the interface of the service to be tested. The system under test (SUT) is tested in a

three staged process. The oracle is invoked for obtaining the expected result of the test.

Then, the corresponding operation of the SUT is executed and finally, the two results

are compared to see if there was any deviation. The adapter is required to translate invo-

cations of services under test into rule applications, passing and converting parameters

and interpreting replies.

There are two fundamental differences, at the conceptual level, between visual con-

tracts as models and implementations. Firstly, models specify functional requirements

and, secondly, they do not include error handling or reporting. Graph transformation

rules can be executed using AGG [2], either through its graphical user interface or via

an API. Using AGG to execute our model, we provide an adapter to present the model’s

functionality in a way that is comparable to the interface of the services to be tested.

The test driver shown in Figure 4.1 implements a three step process. First, it invokes

the oracle, obtaining the expected result of the test. Then, the corresponding operation

31

of the system under test (SUT) is executed. The third step is to compare this response

with the expected one and record any deviations.

Figure 4.1: Schematic diagram of proposed driver

The adapter is required to translate invocations of services under test into rule ap-

plications, passing and converting parameters and interpreting replies. Conversion is

required because model and implementation signatures may differ, with the implemen-

tation requiring extra parameters, providing additional results, or using different types.

Since the model is only concerned with functional aspects, we also have to filter out

technical failures of the implementation, such as problems with the server or transport

layer, distinguishing them from logical failures corresponding to non-applicable rules

due to violation of preconditions. However, with visual contracts providing a partial

specification only, even the functional aspect may be under-specified. Moreover, differ-

ent web services implementations may report success and failure differently. Adapter

and test driver need to be flexible enough to accommodate different styles of error

handling and reporting, for example, allowing for a degree of customization.

4.1 Challenges

In our approach, the oracle executing the TAGTS is invoked through an adapter to uti-

lize the API of AGG 2.0 as shown in Figure 4.2. The driver invokes the oracle through

32

the adapter and the system under test through the provided interface. The adapter is

a generic component which uses the exposed API of AGG for executing the model.

However, the comparison of the expected with the actual result raises a number of

challenges, which we will discuss below.

Figure 4.2: Component diagram

We also consider visual contracts which return result as a multi-object. AGG pro-

vides their implementation as rule schemes. We add one more rule to our hotel example

we have taken as a running example, as shown in Figure 4.3.

Figure 4.3: Additional rule for finding all rooms

The comparison between the expected and the actual output is performed using

JUnit assert statements where required.

4.1.1 Model as Oracle

We represent visual contracts as production rules in a TAGTS using AGG. The tool

does not provide a mechanism to associate a rule with a signature. The driver, however,

requires to invoke the model by the same inputs used to invoke the implementation and

needs to receive the computed outputs to compare the predicted and actual results.

This is only possible if we can provide a mapping between the inputs and outputs of

the model signature to the rule inputs and outputs, which is the role of the adapter in

Figure 4.2.

33

4.1.2 Partiality of Visual Contracts

A visual contract may specify the intended behavior of the implementation only par-

tially. Therefore, if the oracle predicts success and the implementation reports logical

failure, this could either be due to an error in the implementation or the under-specified

precondition of the contract. While comparing model and implementation responses,

such a case should not be reported as a failed test, but as a warning, providing sufficient

details so that the developer can decide the correct interpretation. Table 4.1 details all

possible cases and will be more fully explained in the next subsection. The 5th row

represents the situation where the oracle gives a response while the implementation

reports a logical failure.

An under-specified postcondition would lead to a lack of synchronization between

model and implementation state, because changes performed on the latter would not

have to be matched by the former. Therefore, post-conditions are assumed to be com-

plete.

4.1.3 Failure Handling

There are different ways in which failures can be reported to the test driver or client.

We distinguish them by raising the following questions.

1. What is the origin of the failure?

2. How was the failure presented?

3. How is the failure interpreted?

A failure may have its origin either on the server or in communication. Server-

side failure can be due to logical or technical reasons. Logical failures occur if the

pre-condition of an operation is not satisfied, i.e., the application is invoked, but not

executed correctly or not at all. Technical failures can be down to a variety of reasons,

34

such as the database being off-line, server-side system failures, power fluctuations,

hardware issues, etc. Communication failures result from loss of network access, con-

gestion causing delays, etc.

A server-side failure presents itself as an exception, a fault message, or an

application-specific error code, while a communication failure shows as an exception

(timeout) on the client side.

We interpret these failure presentations as follows. If the client-side receives a log-

ical failure, we expect a violation of the contract’s pre-condition. If the client receives

a technical failure, the oracle cannot provide a matching response since the model only

covers the functional aspect. Similarly, if the client receives a communication failure,

the comparison between expected and actual response is meaningless.

Table 4.1: Exception response table
Oracle response Result S UT response
r = r
r1 ,post r2

non-applicable = logical-failure
non-applicable undefined technical failure
r ? logical failure
r undefined technical failure
non-applicable ,pre r

We list the cases in Table 4.1, where r indicates equal responses from oracle and im-

plementation in case of successful execution and r1, r2 represent successful responses

that differ from each other. Equality “=" shows that the test was executed and success-

ful whereas “undefined" means that, for all we know, the test case was not executed.

If responses do not match due to non-applicability of a pre-condition in the model,

this is represented by “,pre", whereas if model and implementation produce different

responses, this is represented by “,post". The first and the third rows represent cases

where both responses match, i.e., both show either successful execution or failure. The

second row represents cases where the pre-condition was satisfied, yet the output was

35

different. The forth and the sixth rows represent cases where the SUT experienced a

technical failure and hence the test case was not executed. The fifth row represents

cases where the oracle generated a response and the SUT returned a logical error. This

case is reported to the developer as a possible failure that needs further investigation,

as it may be due to a faulty implementation or a partially specified visual contracts.

This is marked with “?" in the results column. Lastly, the seventh row represents cases

where the oracle reported non-satisfaction of pre-condition, whereas the implementa-

tion generated a response.

4.1.4 Adaptation of Output Types

If implementation and model share the same signature, expected and actual output can

be compared directly. However, there are cases where the implementation returns a

result in the form of a complex type, such as a collection of objects. In such cases, the

oracle returns its response as a set of nodes and the adapter needs to process this set

into a suitable form for the driver to carry out the comparison.

The implementation signatures can extend the model signatures by providing an

additional response to indicate if the operation was successful. This response can be

in the form of a numerical error code, a string, or a Boolean. One example from our

running example is bookRoom(. . .), where the success message of the implementation

is a string “Room Booked...". The model instead reports successful execution of a rule

by means of a Integer return (the room number booked) via the AGG API. We therefore

not only need to maintain separate signatures, but also adapt the results to make them

comparable.

36

4.2 Using AGG as an Oracle

Having listed the challenges in using visual contracts as oracles, we discuss how we

have used the AGG 2.0 1 engine [2] and appropriate adapter and driver implementations

to overcome these challenges.

4.2.1 Model as Oracle

In order to link model signatures with production rules in AGG, we map their formal

parameters to the parameters and variables in the attribute context of the rules. An

example is shown in Figure 4.4.

(a) Visual Contract as Rule in AGG

(b) Attribute Context

Figure 4.4: Visual Contract as Rule and Attribute Context Example (a) and (b)

This enables the driver to use the same input parameters to invoke the model and the
1available at http://user.cs.tu-berlin.de/~gragra/agg/

37

http://user.cs.tu-berlin.de/~gragra/agg/

implementation operations. This is enabled by the adapter, which wraps an invocation

of the AGG API inside a call to an operation based on the model signature. Examples

of such invocations are shown in Listing 8.2 (e.g., on line 11).

However, if the signatures involve multi-objects as shown in Figure 2.4, we make

use of rule schemes where an amalgamated transformation [27] returns the set of nodes

corresponding to the multi-object on the right-hand side of the rule. This is shown in

Figure 4.5 where the start graph, as shown in Figure 4.7 contains four rooms and the

right-hand side of the amalgamation shows all of them selected as nodes. Our rule

schemes implement all-quantified operations on recurring graph patterns. The kernel

rule is a common subrule of a set of multi-rules. It is matched only once, while multi-

rules are matched as often as suitable matches are found. In AGG an amalgamated rule

is constructed from all matches found for multi-rules that share the match of the kernel

rule. The rule scheme for operation viewAllRooms(. . .) is shown in Figure 2.4. Our

adapter is written such that we access the resulting set of nodes and process them to

provide appropriate response as a structure containing the data values.

Figure 4.5: Additional rule for finding all rooms

In the example of Figure 2.4, the kernel rule of the rule scheme for operation

viewAllRooms(. . .) is the empty rule. That means the kernel rule (and so the rule

38

scheme) is applicable to every graph, including the empty graph. In AGG, the multi-

rule of the rule scheme viewAllRooms identifies a room. When the multi-rule is

matched to all rooms, we get as many room nodes in the left- and right-hand side

of the amalgamated rule. Our adapter provides access to the list of these nodes and

processes them to return the data for comparison to the driver.

Figure 4.6: Start Graph

At the start of testing, we assume that the start graph of the model and the ini-

tial state of the implementation are in sync. Typically, neither of them have any non-

mandatory data. The synchronization of model and implementation states is maintained

by their co-evolution as long as the results match, assuming that post-conditions of vi-

sual contracts are completely specified. We consider a start state of the system, as

shown in Figure 4.7, for the model as well the implementation.

4.2.2 Partiality of Visual Contracts

It remains to deal with under-specified preconditions. The adapter allows to observe

applicability of rules and their generated output. If the intended behavior is specified

only partially, the model may generate a response while the implementation returns a

logical failure. In this case, we provide developers with both responses and the stack

trace detailing the reasons for the mismatch. The developers can choose to ignore the

results and subsequent test executions using annotation @Ignore if a detailed analysis

reveals that the response is due to a partially specified visual contract.

39

Listing 4.1: JUnit Test:AddProject

SN Test Case Oracle SUT Result

== ========= ====== === ======

1 bookRoom("Tim", 1) 1 Room Booked ... =

2 bookRoom("Tim", 1) not−applicable Already Booked... =

...

Based on the information in a log file, we can also compile a summary report where

all detailed test reports are condensed as shown in Listing 4.1, referring to the test cases

in Listing 8.2. The first row represents a successful execution of model and implemen-

tation. The second row represents logical failure responses from model and implemen-

tation. Hence, the system passes both tests.

4.2.3 Failure Handling

Our discussion in subsection 4.1.3 revealed that comparison between the responses of

oracle and implementation is possible only in a subset of cases. In case of a technical

server or communication failure, there is either no response or a timeout on the imple-

mentation side. Since the oracle only covers functional aspects, in this case comparison

is not possible. In order to avoid further processing, we check that there is no timeout

and use an assert statement assertNotNull(. . .) before comparing the oracle’s with the

implementation’s output, as shown in Listing 8.2 (e.g., line 6 and line 18).

If the client receives a logical failure from the server, we check the response of the

oracle. If the oracle returns true, our custom assertion assertBothSucceededOrBoth-

Failed(. . .) evaluates to false since there is a mismatch between the two responses.

However, if the oracle also reports a logical failure, our custom assertion evaluates to

true. Listing 8.2, line 20, demonstrates the usage of the assertion. We have already

booked a room (line 5 and line 12) and are trying to book it again (line 17 and line 18)

with the same credentials. Since the oracle’s response is false and the implementation

returns “Already booked", our custom assertion returns true.

40

It is important to point out that we do not perform literal comparison between the

expected and the actual result since the implementation can report a failure in a vari-

ety of ways. Examples include error messages, e.g., "error occurred..." or "Error code:

9876, check documentation", etc. Therefore, our custom assertions are general enough

to be able to compare a variety of different failure representations coming from the

implementation with the oracle’s response. The composition of assertBothSucceede-

dOrBothFailed(. . .) is such that it has two parts, assertBothSucceeded(. . .) to compare

the successful cases and assertBothFailed(. . .) to compare the failure cases. The sec-

ond part deals with cases where the oracle gives a Boolean response. We allow the

developer to define how the implementation reports failure, based on a set of prede-

fined alternatives.

Listing 4.2: JUnit Test:bookRoomTests

. . .

1 . log . info (" − T e s t Case run : " + t h i s . getClass () + " : IMPL . RESP . −\n ") ;

2 . BookRoom bookRoom43 = new BookRoom () ;

3 . bookRoom43 . setName (name) ; bookRoom43 . setRoom_no (room_no) ;

4 . myAssert . successMessage = result ;

5 . HotelServiceExampleStub . BookRoomResponse bRes = stub . bookRoom (bookRoom43) ;

6 . assertNotNull (bRes) ;

7 . String res1 = bRes . get_return () ;

. . .

8 . aggEngine agg = new aggEngine () ;

9 . ArrayList<String> list = new ArrayList<String > () ;

1 0 . list . add (" \ " " + name + " \ " ") ;

1 1 . list . add (Integer . toString (room_no)) ;

1 2 . b o o l e a n res2 = agg . aggResult ("C : \ \ h o t e l T h e s i s . ggx " , " bookRoom " , list) ;

1 3 . myAssert . assertBothSucceededOrBothFailed ((Object) res2 , (Object) res1) ;

. . .

1 4 . BookRoom bookRoom44 = new BookRoom () ;

1 5 . bookRoom44 . setName (name) ; bookRoom44 . setRoom_no (room_no) ;

1 6 . myAssert . customFaultCode = " a l r e a d y booked " ;

1 7 . HotelServiceExampleStub . BookRoomResponse bRes2=stub . bookRoom (bookRoom44) ;

41

. . .

1 8 . b o o l e a n res4 = agg . applyRule (" bookRoom " , list) ;

1 9 . t r y {

2 0 . assertNotNull (res4) ;

2 1 . assertFalse (res4) ;

2 2 . myAssert . assertBothSucceededOrBothFailed ((Object) res4 , (Object) res3) ;

2 3 . }

2 4 . c a t c h (AssertionFailedError e1) {

2 5 . System . out . println ("−−−−−− TEST FAILURE −−−−−− \ n ") ;

2 6 . System . out . println ("−−−−−− STACK TRACE −−−−−−− ") ;

2 7 . e1 . printStackTrace () ;

2 8 . throw e1 ;

2 9 . }

. . .

We are left with cases where both implementation and oracle have reported suc-

cessful invocation. The next subsection discusses the different cases for comparing

output values.

4.2.4 Adaptation of Output Types

If the signatures of model and implementation are the same, the output value is passed

to the driver through the variable result. The standard assertEquals(. . .) can deal with

this case.

If the implementation signature is an extension of the model signature, we proceed

as follows. The oracle informs the driver that the pre-condition was satisfied or not. The

custom assertions allow us to compare the oracle’s response with the implementation’s,

recording the latter. This allows the driver to know how a particular implementation re-

sponds in success cases. This is demonstrated in Listing 8.2 where we first check, by

using assertNotNull, if the service invocation was successful and by using assertTrue

if the rule application was successful. The driver then uses a custom assertion assert-

BothSucceededOrBothFailed(. . .) by initializing the expected result string to see if the

42

results were compatible (lines 4 to 16).

Listing 4.3: JUnit Test:viewAllRooms

. . .

1 . HotelServiceExampleStub . ViewAllRoomsDataResponse vRes=stub . viewAllRoomsData () ;

. . .

2 . List<List<String>> roomsList = new ArrayList<List<String> >() ;

3 . f o r (i n t i = 0 ; i < result . length ; i++) { . . . }

. . .

4 . b o o l e a n res2 = agg . aggEngineGetAll ("C : \ \ l o c a l a p p \ \ h o t e l T h e s i s . ggx " , "←↩

viewAllRooms ") ;

5 . List<List<String>> roomList = new ArrayList<List<String> >() ;

6 . roomList = agg . nodeStruct ;

7 . assertNotNull (res2) ; assertTrue (res2) ;

8 . myAssert . assertSetEquivalent (roomsList , roomList) ;

. . .

If the implementation returns execution results in terms of a complex type, we

access the data in the response object and the resulting set of nodes from a collection

named nodeStruct in the oracle and use custom assertion assertSetEquivalent(. . .) to

compare the two sets of values. Listing 4.3 presents an example. We receive the multi-

object from the implementation (Listing 4.3, line 1) and extract the result in the form

of a list. We invoke our oracle and access the result as another list (Listing 4.3, line

6) and test by using our custom assertion, assertSetEquivalent(. . .) (line 8), if the two

responses were the same.

4.3 Implementation

We have implemented an adapter which makes use of the API exposed by AGG. The

role of the adapter is to receive information about the name of the rule and the parame-

ter values from the driver. The adapter invokes the rule by instantiating the variables in

43

the attribute context for a possible rule application. Listing 4.4 explains how the input

variables are instantiated.

Listing 4.4: Setting input parameters

. . .

VarTuple vars = (VarTuple) r . getAttrContext () . getVariables () ;

f o r (i n t i=0; i<vars . getNumberOfEntries () ; i++) {

VarMember var = (VarMember) vars . getMemberAt (i) ;

i f (var . isInputParameter ()) {

i f (! var . isSet ()) {

inputPars . add (value) ;

var . setInputParameter (t r u e) ;

var . setExprAsText (value) ; varset = varset + value + " , " ;

}

e l s e {

. . .

Once the input parameters are instantiated, the next step is to find a match consis-

tent with the variable binding. The system needs to find out if the selected operation

corresponds to a rule or a rule scheme. The program execution follows two different

paths depending upon the outcome. The process of finding out if the selected rule was

a rule scheme is shown in Listing 4.5.

Listing 4.5: Executing Step considering rule scheme

. . .

Rule r = gragra . getRule (rulename) ;

i f (r i n s t a n c e o f RuleScheme) {

RuleScheme rs = (RuleScheme) r ;

i f (doStepOfAmalgamatedRule (rs , gragra . getGraph () , gragra .←↩

getMorphismCompletionStrategy ()))

System . out . println (" RuleScheme , Name : " + rs . getName () +" was a p p l i e d ") ;

}

. . .

44

If the rule considered for application is a rule scheme, the API call finds and applies

the match differently and the result is also obtained from the system in a different way.

In case of a rule scheme, we apply match considering the rule scheme. Listing 4.6

shows how the match is found and how the result is obtained from the rule scheme

whereas the Listing 4.7 (line-1) shows how a match is found in case for a normal rule.

Listing 4.6: Rule scheme application

. . .

1 . AmalgamatedRule amalgamRule = rs . getAmalgamatedRule (g , s) ;

2 . i f (amalgamRule != n u l l)

3 . {

4 . Match match = amalgamRule . getMatch () ;

5 . t r y {

6 . Morphism co = StaticStep . execute (match) ;

7 . HashSet<Node> nodeList = co . getOriginal () . getNodesSet () ;

8 . Node node = n u l l ;

9 . Iterator<Node> iterator = nodeList . iterator () ;

. . .

In case the rule is not a rule scheme, the adapter finds a match which considers the

values passed to all the input variables in the attribute context of the rule. In case, a

valid match is not found, the rule is not applicable and the adapter returns a Boolean

response “false” to the driver indicating that the rule application considering the given

set of input data was not successful.

In case of a successful match, the transformation step is performed and the value

assignment to the output parameter is found out and shared with the driver. This is in

addition to the result information in the shape of a Boolean showing that the transfor-

mation was possible by the adapter.

The driver is responsible for a comparison between the response returned by the

implementation and the model. Listing 4.7 shows the steps involved in this process.

45

Listing 4.7: Rule Application

. . .

1 . Match match = gratra . createMatch (r) ;

2 . gragra . setGraTraOptions (t h i s . strategy) ;

3 . match . setCompletionStrategy (t h i s . strategy , t r u e) ;

4 . w h i l e (match . nextCompletion ())

5 . {

6 . i f (match . isValid ())

7 . {

8 . t r y {

9 . Morphism co = StaticStep . execute (match) ;

1 0 . didTransformation = t r u e ;

1 1 . outPar = getOutputParameters (r , outPar) ;

1 2 . f o r (i n t i = 0 ; i<outPar . size () ; i++) {

1 3 . VarMember p = outPar . get (i) ;

1 4 . String result = getValueOfOutputParameter (p , r , (←↩

OrdinaryMorphism) co) ;

. . .

The difference in extracting the return values is also presented in Listing 4.6 and

Listing 4.7 where the former returns the result as a node set which needs to be treated to

extract the required information whereas the API is used for extracting the return value

in the later case. We have also implemented custom assertions to support a variety

of success as well as failure response as discussed in the preceding section. These

custom assertions also allow us to compare sets of values from the model and the

implementation.

4.4 Application to the Running Example

We implemented our hotel example as a web service written in C# using MS Visual

Studio which is a software development tool by Microsoft2. We developed unit test

cases using JUnit and tested the application as shown in Listing 8.2 and Listing 4.3.

2http://www.microsoft.com/visualstudio/en-gb

46

http://www.microsoft.com/visualstudio/en-gb

Our initial result was reporting failures in bookRoom and occupyRoom where a mis-

match was found between the server and the model responses. Referring to Table 4.1,

both were example of row 2, where there are responses different from each other.

Figure 4.7: Additional rule for finding all rooms

The structure of the unit test cases is already presented and discussed in detail for

Listing 8.2 and Listing 4.3. We first invoke the service considering a particular opera-

tion and then we execute the model, using AGG, considering the corresponding rule,

passing the parameters using our adapter. We then use our custom assertions to find

out if the two responses could be considered as a success or failure. We implemented

12 test cases for the hotel example presented in Figure 2.2.

47

4.5 Limitations of the Approach

Our oracle consists of models in AGG which does not support directly the association

of rule signatures to productions rules. We have proposed a way to associate signatures

but, currently, it is a manual process. An automation would provide better support for

our proposal since it would eliminate the possibility of a mismatch between the rule and

the signature. Another weakness is that we can only use basic data types as signature

inputs while associating the rule signatures with production rules. AGG allows basic

data types supported by Java but the programmatic solutions to consider complex data

types as inputs can also be implemented. The adapter is designed such that it receives

information about the name of the rule and the parameter values from the driver and

it also takes care of the difference of the rule signatures between the model and the

implementation.

In order to make the approach applicable in practice, a solution is required to bridge

the gap in abstraction level and scope between model-based oracle and implementation

automatically. That means for the adapter implementing the model interface to be gen-

erated automatically. Adopting the techniques described in Chapter 4, this is straight-

forward except for contracts containing multi-objects which are realized in AGG by

means of amalgamated rules and for which the extraction of input and output param-

eters has to be implemented manually. More generally, this would require integrating

into AGG and its API the concept of rule signatures defined over the attribute context

of a rule. The test driver on the other hand, with its customizable assertions, is required

to accommodate variations in the use of exceptionts and implementation-specific er-

ror messages, which can vary widely based on the conventions of the application at

hand. Automation here is meaningful only if these conventions could be formalized

and made part of the model.

48

4.6 Summary

In this chapter, we have used high level visual specifications for oracle development.

Our proposal can equally be adopted to test component-based systems since the idea is

based on executing visual contracts using AGG.

In Chapter 6, we make use of the oracle for finding out if a conflict or a dependency

between two rule applications is exercised at runtime.

49

Chapter 5

Model-Based Coverage Criteria

This chapter is devoted to introducing our model-based coverage criteria. A user’s

view of a web service is through provided interfaces, which abstract from implemen-

tation details and prevent us from using traditional testing methods based on source

code [15]. We propose to replace code-based by model-based coverage criteria using

semantic service descriptions at the interface level. Specifying the provided operations

by visual contracts, formally typed attributed graph transformation rules, we analyze

their potential conflicts and dependencies [22]. We generate a dependency graph whose

nodes represent rules while its edges indicate potential conflicts or dependencies be-

tween them. They also carry labels showing the nature of the relation, allowing us to

record where data was defined, used, updated, or deleted. Our coverage criteria will

make use of this information.

5.1 Dependency Graphs

In this section, we show how to extract a dependency graph for a system under test

(SUT) from the available interface specification based on visual contracts. A depen-

dency graph (DG) provides us with a visual representation of conflicts and dependen-

50

cies allowing us to study coverage criteria at the interface level. The nodes represent

rules while its edges indicate the nature of the relation between the nodes i.e., a conflict

or dependency. The edges also bear annotations at the start and the end of the edge to

represent if the data was created, read, updated or deleted by these rule applications.

We use conflicts and dependency analysis explained in Section 2.5 and take ≺ and↗

to represent asymmetric versions of these relations. We make use of dependencies and

conflicts analysis to find out if two rule applications depend on each other or disable

each other. Consider rules p and q, if q depends upon p, we write p ≺ q and if q

disables p, we write p ↗ q. The theoretical basis behind this analysis are provided

below.

Figure 5.1: Critical pairs and dependencies

Definition 5.1.1 (asymmetric dependencies and conflicts) Given two rules p1, p2 we

say that p2 may disable p1 , written p1 ↗ p2, if there are steps G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2

51

without k : L1 → D2 such that m1 = l∗2 ◦ k.

R1

m∗1
��

K1
r1oo l1 //

k1
��

L1

m1

��
k

''

L2

m2

��

K2
l2oo r2 //

k2
��

R2

m∗2
��

H1 D1r∗1
oo

l∗1
// G D2l∗2

oo
r∗2
// H2

We say that p1 may enable p2, written p1 ≺ p2, if there are steps G0
p1,m1
=⇒ G1

p2,m2
=⇒ G2

without j : L2 → D1 such that m2 = r∗1 ◦ j.

L1

m1

��

K1
l1oo r1 //

k1
��

R1

m∗1

L2

m2
~~

j

vv

K2
l2oo r2 //

k2
��

R2

m∗2
��

G D1l∗1
oo

r∗1
// G1 D2l∗2

oo
r∗2
// G2

We have represented conflicts and dependencies between rules in our running ex-

ample in Table 5.1. For example we find a dependency

bookRoom ≺ occupyRoom

Similarly, there exists a conflict

updateBill↗ checkout

i.e., updateBill reads the BillData object, changing the unpaid amount, while checkout

deletes the object.

Using our definition of asymmetric conflicts and dependencies, we define the de-

pendency graph as follows:

Definition 5.1.2 (dependency graph) A dependency graph DG = 〈G,OP, op, lab〉 is a

structure where

52

Table 5.1: Conflicts↗ and dependencies ≺ between rules
First/Second bookRoom occupyRoom clearBill checkout updateBill viewData

(↓) / (→)

bookRoom ↗ ≺ ≺ ≺

occupyRoom ↗ ≺ ≺ ≺ |

clearBill ↗ ≺ ≺↗ ↗ ≺ |

checkout ≺ ≺ ↗ ↗ ↗

updateBill ↗ ≺ ↗ ≺ ↗ ≺ |

viewData | | ↗ | |

• G = 〈V, E, src, tar〉 is a graph,

• OP is a set of (names of) operations,

• op : V → OP maps vertices to operation names,

• lab : E → {c, r, d} × {≺,↗}× {c, r, d} is a labeling function distinguishing source

and target types create, read, delete and dependency types ≺,↗.

We use the visual contracts specifying the interface to extract a dependency graph,

where rules are represented by nodes labeled by operation names while edges represent

dependencies and conflicts between them. Edge labels tell us whether an edge repre-

sents a dependency (≺) or a conflict (↗) and what roles are played by the source and

target nodes.

Definition 5.1.3 (dependency graph of TAGTS with rule signatures) Given a TAGTS

with rule signatures G = (ATG, P, X, π, σ), its dependency graph DG(G) =

〈G,OP, op, lab〉 with G = (V, E, src, tar) is defined by

• V =
⋃
p∈P

({p}×π(p)) as the set of all rule spans tagged by their names. If s1 ∈ π(p)

we write p1 : s1 ∈ V.

• E ⊆ V × V such that:

– e = (p1 : s1, p2 : s2) ∈ E if there are steps G
p1:s1,m1
=⇒ H1

p2:s2,m2
=⇒ H2 such that

the second step requires the first. The role labels are defined as follows.

1. If an element created by the first step is read by the second, lab(e) =

〈c,≺, r〉.

53

2. If an element created by the first step is deleted by the second, lab(e) =

〈c,≺, d〉 such that label d takes precedence over r.

– e = (p1 : s1, p2 : s2) ∈ E if there are steps H1
p1:r1,m1
⇐= G

p2:r2,m2
=⇒ H2 such that

the second disables the first. The role labels are defined as follows.

1. If an element deleted by the first step is also deleted by the second,

lab(e) = 〈d,↗, d〉.

2. If an element read by the first step and deleted by the second, lab(e) =

〈r,↗, d〉 such that label d takes precedence over r.

• OP = P is the set of rule names.

• op : V → OP is defined by op(p : s) = p

Example 5.1.1 [dependency graph] Using the example in Fig. 2.2 we can draw a de-

pendency graph as shown in Fig. 5.2. Consider edge between nodes bookRoom and

Figure 5.2: Dependency Graph of T AGTS representing hotel web service

occupyRoom where the labeling is 〈c,≺, r〉. That means, an object created during the

54

first operation bookRoom is read by the second operation occupyRoom with ≺ rep-

resenting the dependency relation. Similarly, consider an edge between clearBill and

checkout where the labeling is 〈r,↗, d〉. It means, clearBill reads an object which is

deleted by checkout. An examination of the rules reveals that clearBill operates on a

BillData object which is deleted by checkout.

Consider the cr edge between updateBill and checkout which is due to attribute

unpaid. The first rule sets it to a value 0 whereas the second reads it, as part of the

match, to operate.

5.2 Coverage Criteria

Dataflow graphs contain annotations on the nodes to mark places where data is defined

and used in a program [3], [20], [67]. The locations where a variable is defined are

annotated by def, use is indicated by use, and deallocated by kill. Paths are identified

through the system such that they exercise particular coverage criteria. For example,

de f −use coverage requires to find test cases such that all edges in the dataflow graph

from nodes annotated with def to nodes annotated with use are exercised at least once.

Our dependency graphs carry information about dependencies between operations.

We have annotated sources and targets of edges with c (create), r (read), and d (delete).

These annotations are analogous to def, use and kill annotations for traditional versions

of dataflow graphs which also represent the places where the data is defined, used, and

deallocated. Using these labels on edges rather than nodes, we can focus on the type of

access that gives rise to the particular dependency or conflict represented by the edge.

Hence, the information contained in our DG allows us to propose model-based criteria

which are suitable to the platform-independent nature of web services. If we consider

a given set of test cases, we can analyze its coverage if we construct the sub-graph of

DG covered by the set. The possibilities are summarized in Table. 5.2.

55

Table 5.2: Label combinations indicating conflicts and dependencies
Label Combination Conflict Dependency

cr ×
√

cd ×
√

rd
√

×

dd
√

×

Using the DG, we can devise different coverage criteria such as cr, cd, etc. The

question is, which of these pairs to include into our criteria. If we demand all cr (create-

read), and cd (create-delete) edges in DG(G), we exercise all dependencies based on

data being defined and used subsequently. If we add cd (create-delete) and rd (read-

delete), we also cover situations of asymmetric conflict. In order to see if a set of test

cases T provides the required coverage, we record all the nodes and edges that T is

exercising.

Figure 5.3: Start graph

Example 5.2.1 [coverage of test cases] Consider criterion cr + cd and the start state

as shown in Figure 5.3, let T be the set of test runs shown in Table. 5.3.

In the graph in Fig. 5.4, dotted red and the black lines of the show the edges not

covered by the test cases in Table. 5.3, while the dotted blue indicate the edges in the

dependency graph covered by T . This includes all the nodes, but we need to add test

56

Table 5.3: Test cases providing node coverage
test runs set-I
bookRoom(1,“J”);occupyRoom(1,“J”,3);updateBill(3,100)
occupyRoom(2,“K”,4);viewData(2);clearBill(4)
clearBill(3);updateBill(3,100)
updateBill(3,100);clearBill(3)
occupyRoom(3,“M”,5);checkout(3,“M”,5)
updateBill(3,100);updateBill(3,100);clearBill(3)

cases in order to get the required coverage cr + cd. In order to achieve this we add the

Figure 5.4: Cov(DG, T)

test cases in Table 5.4 and analyze the resulting coverage.

Table 5.4: Additional test cases to cover cr + cd
test runs set-II
bookRoom(3,“M”);occupyRoom(3,“M”,5);viewData(5)
bookRoom(4,“N”);occupyRoom(4,“N”,6);checkout(4,“N”,6)
checkout(1,“J”,3);bookRoom(1,“J”)
viewData(1);checkout(1,“J”,3)
updateBill(6,100);clearBill(6);checkout(4,“N”,6)

The first two test cases in Table 5.4 are required to cover the cr edges between

bookRoom and viewData and between bookRoom and checkout and the inclusion of

57

occupyRoom is required. The third and forth test cases are required to cover the edges

between checkout and bookRoom and between viewData and checkout. The last test

case is required to exercise edges between updateBill, clearBill and checkout. Notice

that the dotted green edges are not covered by any of the test cases as well as the

edge between checkout and occupyRoom is not covered. We need stronger criteria to

include test cases covering these edges, too.

5.3 Summary

In this chapter, we have explored the use of graph transformation systems specifying

service interfaces for the derivation of model-based coverage criteria. We have already

discussed our approach to provide test oracles using the visual contract analysis. In the

next chapter, we record if test runs exercised a statically existing dependency. We also

record which of the steps within the test runs disables matches for the rules within the

graph grammar to assess coverage of conflict relations.

58

Chapter 6

Dynamic Analysis of Dependencies

and Conflicts

In this chapter, we discuss how we use dependency graphs providing static information

about conflicts and dependencies and dynamic analysis of dependencies and conflicts

to assess the coverage of a given set of test runs. We make use of AGG for simulating

the model while tests are executed. In the course of the simulation, which also serves

as a test oracle, conflicts and dependencies are observed and recorded. This allows us

to see if the statically detected potential dependencies and conflicts are exercised at

runtime. For evaluation purposes, we compare coverage with respect to model-based

criteria and traditional structural ones.

The static information about dependencies and conflicts between rules does not

guarantee that they are exercised during execution. We analyze the model state after

each rule application and record if dependencies were exercised. We also examine if a

step in the considered sequence has disabled a match for any other rule in the TAGTS.

Our approach to coverage hence combines static and dynamic analysis of models.

59

... Li

©
pi

((

mi

��

Ki
oo //

��

Ri

©
p j−1 ◦ ... ◦ pi+1

((

m∗i

��

m j−1
i ©

��

m j
i

©

$$

... L j

©
p j

((

m j

��

K joo //

��

R j

m∗j

��

...

... Gi−1
©
p∗i

66Di
oo // Gi

©
p∗j−1 ◦ ... ◦ p∗i+1

55
... G j−1

©
p∗j

66D joo // G j ...

Figure 6.1: Dependencies in a transformation sequence

6.1 Dynamic Analysis of Dependencies and Conflicts

We use AGG [2] as an oracle simulating the model while tests are executing. Monitor-

ing the transformation sequences created, we can detect conflicts and dependencies at

runtime and therefore measure the coverage of the dependency graph with respect to a

given set of criteria. We consider dependencies and conflicts separately.

Definition 6.1.1 (coverage of dependencies) A dependency edge p ≺ q is covered by a

transformation sequence G0
p1,m1
=⇒ G1

p2,m2
=⇒ · · ·

pn,mn
=⇒ Gn if there are i < j ≤ n such that

p = pi, q = p j and the residual comatch m j−1
i of pi into G j−1 overlaps with the match

m j of p j in accordance with the source and target types of the relation. That means,

there exist a node or edge x or an attribute a in m j−1
i (Li) ∩ m j(L j) ⊆ G j−1 such that

cr: x is created by pi and read by p j

cd: x is created by pi and deleted by p j

The residual comatch m j−1
i of pi into graph G j−1 is obtained by composing comatch

m∗i with the tracking morphism p∗j−1 ◦ p∗i+1 between Gi and G j−1 as illustrated in the

diagram of Fig. 6.1.

This definition is implemented by Algorithm 1, whose input is a sequence of in-

vocations s as generated by the test as well as the start graph of the grammar. The

60

dynamic detection of conflicts is based on finding, for each graph in the sequence, all

matches for all rules and comparing them via the tracking morphisms. If, for a given

step G
p,m
=⇒ H, rule q has a match into graph G which is not present in H, this match is

disabled by p. In this case, we have observed a conflict q↗ p.

Definition 6.1.2 (coverage of conflicts) A conflict edge q ↗ p is covered by a trans-

formation sequence G0
p1,m1
=⇒ G1

p2,m2
=⇒ · · ·

pn,mn
=⇒ Gn if there exists a step Gi−1

pi,mi
=⇒ Gi such

that p = pi and for any match m of q into Gi−1 there is no match m′ of q in Gi such that

p∗i ◦ m = m′.

The source and target labels of the edge are determined according to one of the

following cases, for a node or edge x or an attribute a in mi(Li) ∩ m(L) ⊆ G j−1.

rd: x is read by q and deleted by pi

dd: x is deleted by both q and pi

The implementation is presented in Algorithm 2 with the same input as before and

executing the same sequence of steps on invocation.

6.2 Implementation

We first discuss two algorithms that we use to mark the dependencies and conflicts at

runtime. Algorithm 1 considers the input which is a sequence of invocations s as part

of the test case as well as the start graph of the grammar. For each step in s we apply

the corresponding rule schema or basic rule. AGG stores (co-)matches as mappings

into a pool of graph elements. If an element is deleted it is removed with its details,

leaving a hash value assigned upon creation of the element. We use these hash values to

represent matches and comatches and to calculate their difference and intersection after

each step to find out what was created, preserved, and deleted. We detect dependencies

61

of type cr and cd by maintaining a list of partial comatches into all subsequent steps

of the sequence, computing the overlaps between matches and partial comatches. The

output of the algorithm is stored in the dynamic dependency matrix and compared

to the static dependency matrix created by AGG when the model was first loaded.

Note that the host graph can change without requiring to recalculate the stored static

information, saving considerable execution time. The comparison of the two matrices

provides the coverage data.

We make use of rule schemes if the signatures involve multi-objects as shown in

Fig. 2.2. The concept of amalgamated transformations is already presented in [10, 27]

where the implementation of this concept in AGG is explained in [63]. An amalga-

mated transformation returns the set of the nodes corresponding to the multi-object on

the right-hand side of the rule. Rule schemes implement all-quantified operations on

recurring graph patterns. The kernel rule is a common subrule of a set of multi-rules.

It is matched only once, while multi-rules are matched as often as suitable matches

are found. In AGG an amalgamated rule is constructed from all matches found for

multi-rules that share the match of the kernel rule.

Consider the dependency graph in Fig. 5.2 and rules bookRoom(r: int, n: String),

occupyRoom(r: int, n: String, out int bNo), checout(r: int, n: String, out int bNo) with

the following test runs.

1. bookRoom(1, “Tim”); occupyRoom(1, “Tim”, 100); checkout(1, “Tim”, 100)

2. bookRoom(1, “Tim”); occupyRoom(2, “Fim”, 100); checkout(3, “S im”, 200)

The first sequence exercises a direct cr dependency between steps bookRoom(. . .)

and occupyRoom(. . .) since the first produces a mapping between the nodes RoomData

and Guest while the second uses it and creates a bill object. Steps bookRoom(. . .) and

62

Algorithm 1 algorithm for marking dependencies
Input: size(s)>= 2

set host graph to start graph of GraphGrammar
for <i=0; i<size(s); i++> do

if Rule ri instanceo f RuleScheme then
apply Rule Scheme

else
apply Rule ri

end if
store hash values of involved graph elements in arrays matches and comatches

end for
for <i=0; i<size(s); i++> do

createdElements[i] = difference(matches[i], comatches[i])
deletedElements[i] = difference(comatches[i], matches[i])
preservedElements[i] = intersection(matches[i], comatches[i])

end for
for <i=size(s); i>0; i- -> do

for <j=0; j<size(s); j++> do
if (intersection(createdElements[j], matches[i-1] <> φ)) then

mark dependency between Rule r[i] and r[j]
repeat the intersection calculation for attributes lists

end if
if (intersection(preservedElements[j], matches[i-1] <> φ)) then

mark dependency between Rule r[i] and r[j]
repeat the intersection calculation for attributes lists

end if
end for

end for

checkout(. . .) have an indirect cd dependency since the mapping between RoomData

and Guest is created by the first invocation and is deleted by the third. Observe that

these dependencies rely on the matches of the steps as determined by the parameters

of the operations. The second sequence does not exercise the dependency between

bookRoom and occupyRoom because here the guest is assigned is allowed to check

in and a bill object is created for a previously existing booking instead of one done

by bookRoom(1,“Tim"). Similarly, steps bookRoom(1, “Tim") and checkout(3, “Sim",

200) are unrelated since the latter considers a different guest, room and a bill number

not produced by any of the first two.

63

Algorithm 2 is used for marking conflicts at the runtime which takes the input of

a sequence of invocations s as generated by the test as well as the start graph of the

grammar as in the case of Algorithm 1. At each step we find and store all matches for

all rules in the grammar, computing the difference between the sets of matches into

graph i and graph i + 1 to find out those that were disabled by that step. Each disabled

match represents an asymmetric conflict, which is recorded in the dynamic conflict

matrix. Like for dependencies, this is compared to the result of the static analysis to

calculate the coverage.

Algorithm 2 algorithm for marking conflicts
Input: size(s)>= 2

set host graph to start graph of GraphGrammar
for <i=0; i<size(s); i++> do

if Rule ri instanceo f RuleScheme then
apply Rule scheme

else
apply Rule ri

end if
store the hash value of graph elements in an array
for all Rule r in GraphGrammar do

find all possible matches and store in an array
end for

end for
for (i=0; i<size(s)-1; i++) do

select all the matches found for ith row
select all the matches found for (i + 1)th row
for (j=0; j<size(row);j++) do

analyze matches details to mark conflict between rule[i] and rule[j]
end for

end for

Consider the following two test runs.

64

1. occupyRoom(1, “Tim”, 100); clearBill(100); checkout(1, “Tim”, 100)

2. occupyRoom(1, “Tim”, 100); checkout(1, “Tim”, 100)

An rd conflict between clearBill(. . .) and checkout(. . .) in the first sequence means

that these operations are not executable in the reverse order. Step occupyRoom(. . .) has

a dd conflict with itself, meaning that it can only occur once in that sequence. The sec-

ond sequence results from choosing checkout(. . .) before, and instead of, clearBill(. . .)

in the rd conflict.

We consider a test run containing three invocations for explaining our implementa-

tion, as given below. We have numbered the invocations within the test run for ease of

referring to them in the forthcoming discussion and we assume that the matches for all

of the invocations were found with a bill number 100 assigned to the output variable in

occupyRoom(. . .).

1. bookRoom(1, “Tim”);

2. occupyRoom(1, “Tim”, 100);

3. checkout(1, “Tim”, 100);

Considering the first and the second invocation in the above test run, we record the

graph elements in the match and the co-match of the rule application. We record them

in terms of the hash values they were assigned on creation. We keep the hash values

of the nodes and of the attribute lists in two separate lists. The code for storing hash

values for attribute lists involved in a (co-)match is shown in Listing 6.1.

65

Listing 6.1: Hash Values for Attributes Lists

. . .

ArrayList<GraphObject> l = new ArrayList<GraphObject >(m . getCodomainObjects ()) ;

f o r (i n t i=0; i<l . size () ; i++)

{

i f (l . get (i) . isNode () == t r u e)

{

List<String> result = new ArrayList<String > () ;

i n t hCode = l . get (i) . hashCode () ;

result . add (Integer . toString (hCode)) ;

Node n = (Node) l . get (i) ;

f o r (i n t j=0; j<n . getNumberOfAttributes () ; j++)

result . add (Integer . toString (n . getAttribute () . hashCode ()))

. . .

Once, we have stored hash values for matches and co-matches for all of the invoca-

tions in our test run, we check if a dependency was exercised following Algorithm 1.

Our analysis of the test run reveals that there exists a create-read dependency between

the first two and a create-delete dependency between the first and the third invocations.

While processing the same test run for conflicts, we consider the start graph and the list

of rules in the graph grammar and find out all possible matches. We require this infor-

mation since each rule application can destroy matches. Consider the first invocation

in our test run, bookRoom(1, “Tim") and visual contract for bookRoom in Figure 2.2,

this creates an edge between nodes RoomData and Guest and therefore the application

of bookRoom with same data, i.e., (1, “Tim") is not possible. We capture this informa-

tion together with the reason and record which of the invocations have disabled any

matches. we record the number of matches after each rule application, together with

the details for each of the matches, to verify if a match is disabled and a new match is

enabled reporting same number of matches before and after application. Our approach

for dynamic conflict analysis is shown in Algorithm 2. Examining the considered test

run, we find out that the first invocation, i.e, bookRoom(1,“Tim") renders match of its

successive use, i.e., use of bookRoom(1,“Tim") again with the same parameters as dis-

66

abled and same is the case for the second and the third invocation. Similarly, the third

invocation, i.e., checkout(1,“Tim",100) renders updateBill(100) and clearBill(100) dis-

abled since it is deleted by the third invocation in the considered sequence. Considering

the considered sequence, the SUT should not allow the booking of the same room by

the same guest again or creating bill 100 again and inclusion of a negative test run is

indeed required to test the SUT.

(a) Covered and uncovered code example

(b) Dead code example

(c) Uncovered alternate behavior code example

Figure 6.2: (Un)covered code (a), Dead and alternate code(b) and (c)

67

6.3 Application to the Running Example

In order to evaluate the effectiveness of our coverage criteria, we selected the test runs

such that our coverage criteria was to cover all cr + cd edges through the dependency

graph. In order to compare model level coverage with traditional code based coverage

criteria, we implemented our running example as a web service. We calculated the

latter using NCover 2.0 1. The resulting symbol coverage, branch coverage and method

coverage is shown in Figure 6.4. We inspected the instrumented code of the application

using NCover to see which of the statements were not covered. Our analysis revealed

the following reasons for a lower coverage metric.

1. Exceptions handling code was not executed. This is shown in Figure 6.2(a) and

in Figure 6.2(c) respectively.

2. Some dead code shown in Figure 6.2(b) was no more accessible in the final

version of the service.

3. Additional glue code added by the IDE and default constructors in the classes.

An example of constructors that are present in the code, but not executed during

testing is shown in Figure 6.3.

Figure 6.3: Method Coverage

1http://www.ncover.com/download/current

68

http://www.ncover.com/download/current

Figure 6.4: Code Coverage with cr + cd

We repeated the same experiment with criteria rd +dd paths. We consider the same

hotel example and the test runs we have already used in Chapter 5. We additionally

consider the test runs resulting from our conflicts analysis. However, it is important

to note that we are still not able to attain a complete statement or branch coverage.

Our analysis of the instrumented code reveals that there are the following reasons for

a lower than complete statement or branch coverage.

1. The exception related code, as shown in Figure 6.2(a) was also not exercised by

any of the test run. Exception handling code was triggered by technical errors

outside the specification, e.g., a failure to connect to a flat file on the disk drive.

2. The unreachable or dead code, as shown in Figure 6.2(b) (Chapter 5) was still

not exercised.

There is however an improvement in the symbol and the branch coverage but the

method coverage remains the same which reflects that only the test runs were added

with negative expectation.

69

Figure 6.5: Code Coverage with all paths

6.4 Limitations of the Approach

We have proposed an approach to model-based coverage based on a two-step process

combing static and dynamic analysis. Statically, we use AGG’s critical pair and mini-

mal dependency analysis to create a dependency graph over rules representing visual

contracts. These graphs, which distinguish different types of dependencies and con-

flicts, are the basis for coverage criteria. The evaluation of a set of tests based on the

criteria is performed dynamically while executing the model as an oracle.

The approach requires further evaluation in particular in terms of scalability to

longer sequences. It is clear that improvements are possible by reducing the number of

matches kept and compared, using information from the static analysis which provides

a conservative approximation of the real dependencies and conflicts.

The major cost factor is the creation and maintenance of the models. If and when

these costs are outweighed by the benefits can only be evaluated in a more realistic

industrial setting. However, scenarios where specifications are created once and used

repeatedly, e.g., as part of standards, are likely to provide good tradeoffs. In particular,

model-driven development provides a framework where models are core artefact. In

this case the use of models for testing becomes an issue of reusing rather than creating

70

models.

We need to consider the negative application conditions which would strengthen

the visual contracts specification. This will create additional types of dependency, such

as create-forbid, where one rule creates part of the structure preventing the application

of another, resulting in new coverage criteria.

6.5 Summary

We have proposed, in this chapter, an approach to model-based coverage based on a

two-step process combing static and dynamic analysis. Statically, we use AGG’s crit-

ical pair and minimal dependency analysis to create a dependency graph over rules

representing visual contracts. These graphs, which distinguish different types of de-

pendencies and conflicts, are the basis for coverage criteria. The evaluation of a set of

tests based on the criteria is performed dynamically while executing the model as an

oracle.

In the next chapter, we work on the proposal for a regression testing approach

considering the model-level information and focussing on web services.

71

Chapter 7

Model Based Regression Testing

This chapter introduces our approach to model-based regression testing of services.

We discuss two evolution scenarios to our running example to explain our analysis of

impact of evolution. Since regression testing is the process of verifying the quality of

the evolved system, there is a preexisting test suite.

Following the classification in [48], a test case in a regression test suite can be

obsolete (OB) if it is no longer applicable to the new version, reusable (RU) if it is still

applicable and required (RQ) if it tests functionality affected by the changes. Assuming

that the version before evolution is S UT and the version after evolution is S UT ′, our

assumption is that we have the model, the analysis information and the set of test

cases for S UT . The analysis of visual contracts for S UT ′ allows us to differentiate the

operations that have been added or deleted.

Our approach considers an operation with modified signature as obsolete and the

same operation with revised signature as newly added. We select those operations

where we do not see any evolution in the pre- or the post-condition as not affected

by the evolution at the model level. We collect information about the implementation

related changes to operations which do not impact the model-level information as well.

Based on our model-level information about the evolution, we categorize test cases as

72

obsolete, reusable and required from the regression test suite, RTS , which contains all

the test cases for the new version. The method is applicable to all software systems that

have interfaces specified in this way, but is particularly relevant for services because of

the lack of access to implementation code and the potential cost involved in running a

large number of tests through a remote and potentially payable provider.

7.1 Evolution Scenarios

In order to explain our treatment of regression testing, we present two evolution sce-

narios.

We consider our running example as the base version V1 shown in Figure 2.2. This

allows us to do room bookings, check-in and checkout. The model also provides rules

for updating and clearing bills as well as a rule to query the stored data. The type graph

is shown in Figure 2.4 and a selection of rules are shown in Figure 2.2 and Figure 2.4.

7.1.1 Scenario I

As an evaluation scenario, we start to record the number of visits of each customer to

the hotel, to introduce a promotional 10% discount on all payments of every 10th visit.

This is achieved by an update to rule occupyRoom to count visits, and a change to

clearBill to distinguish the cases where the bill is paid with or without discount. Note

the use of a conditional expression for calculating the value of the paid attribute. The

evolved part of the type graph and the concerned rule are highlighted and shown in

Figure 7.1. We refer to this evolution scenario as version V2 throughout the rest of this

chapter.

73

(a) Rule occupyRoom After Evolution

(b) Rule clearBill

Figure 7.1: Rules occupyRoom and clearBill after evolution

7.1.2 Evolution Scenarios II

For the second evolution scenario, there is a requirement for querying information

about the bills and guests, just as operation viewData already provides information

about rooms. The additional rules are shown in Fig. 7.2. We also allow the manager to

give an additional discretionary discount of up to 5% to the guests if he thinks it would

have a positive impact on the overall sales.

We refer to this evolution scenario as version V3 throughout the rest of this chapter.

7.2 Classification of Test Cases

Given a regression test suite RTS for one version S UT of the system under test, we

are going to provide a classification of test cases with respect to an evolution of S UT

into S UT ′ that will distinguish

74

(a) Additional Rules

(b) Revised Rule clearBill

Figure 7.2: Additional Rules and clearBill after evolution

• obsolete test cases OB, that are no longer executable in S UT ′, either because

signatures have changed or part of the functionality has seized to exist;

• reusable test cases RU = RTS \ OB, that are still executable in S UT ′;

• required test cases RQ ⊂ RU, that are still executable and test new or modified

functionality in S UT ′.

Test runs may become obsolete because of changes in the operation signatures.

Assuming P is the set of signatures for S UT , P \ P′ are signatures that are valid for

S UT , but invalid in S UT ′, e.g., due to missing or incorrectly typed parameters where

P′ represents the set of signatures of the new version. All test runs containing obsolete

signatures are obsolete.

75

In the evolution step V1 → V2, all operations are preserved with their signatures.

Hence all tests are preserved and therefore OB = ∅. For V2 → V3, signatures have

evolved and some new rules have been added. In particular, operation clearBill(bill_no)

is obsolete, so all test cases containing its invocations are obsolete as well. Instead there

are new invocations based on the extended signature clearBill(bill_no, discount).

Test runs in RQ, which exercise operations that have changed are classified as re-

quired. Denote by M ⊆ P′ the set of operations such that either their specification or

implementation has changed. The set of required test cases is therefore given by the set

of all reusable ones RU which contain at least one affected rule invocation.

In evolution V1 → V2, RQ is set of all test runs involving occupyRoom and

clearBill since there are modifications in the visual contracts of these. Considering

V2 → V3, we find that clearBill has been modified and therefore any test runs involv-

ing its invocations are required.

7.3 Coverage Analysis

We have presented model-based coverage criteria in Chapter 5 and a mechanism to

assess the coverage achieved by a test suite in Chapter 6. Considering two versions

V1 and V2 of a system as presented in Section 7.1, we already know the coverage

provided by the existing test suite for V1. For version V2, coverage is affected due

to test cases becoming obsolete. However, there are test cases that are executable for

both the versions, i.e., V1 and V2. Therefore, coverage provided by these test cases for

version V1 could be considered for V2 as well. This information is helpful in deciding

where to add test cases in order to retain the required coverage.

Example 7.3.1 Consider evolution scenario V2→ V3 together with a set of test cases

as given in Table 7.1. From V2 to V3, we notice that the operation clearBill(bNo) has

evolved to clearBill(bNo, desc) and some new operations are added.

76

Table 7.1: Example test runs for V2
S No test runs
1 bookRoom(1,“J”);occupyRoom(1,“J”,3);viewData(1)
2 checkout(1,“J”,3);bookRoom(1,“J”)
3 occupyRoom(1,“J”,3); updateBill(3,100)
4 clearBill(3);updateBill(3,100)
5 occupyRoom(2,“K”,4);clearBill(4);checkout(2,“K”,4)
6 bookRoom(2,“K”);occupyRoom(2,“K”,4);viewData(2)
7 bookRoom(3,“M”);occupyRoom(3,“M”,5);checkout(3,“M”,5)
8 updateBill(3,100);clearBill(3);checkout(1,“J",3)

We notice that test runs {1, 2, 3, 6, 7} are reusable for version V3 whereas test

runs 4,5 and 8 have gone obsolete. However, we cannot retain the coverage by required

set of test runs since we need to rerun them again and we do not know if their execution

would be successful. Therefore, we can consider the coverage provided by RU \RQ for

V3. Inspecting Table 7.1, we find out that the test runs going obsolete due to clearBill

have also rendered updateBill(. . .) not covered. We, therefore, need to add test cases,

so that operation updateBill(. . .) is also covered.

Algorithm 3 algorithm for marking conflicts
Input: Coverage report for each test case
Input: sequence numbers of OB and RQ

for (i=0; i<size(OB + RQ); i++) do
for (j=0; j<size(total test cases); j++) do

if coverage due to OB OR coverage due to RQ then
mark potentially uncovered

end if
end for

end for
for (i=0; i<size(total test cases); i++) do

for (j=0; j<size(OB + RQ); j++) do
if RU cover edges marked as potentially uncovered then

mark as covered
end if

end for
end for

77

If we record and analyze coverage with respect to RU \ RQ, we can execute the

required set of test cases and update the coverage accordingly. We can reuse coverage

information of reusable test cases if we maintain information about the coverage by

each test case separately. We record which of the test cases have gone obsolete and

which ones are required for retesting.

Algorithm 3 presents how we implement our coverage analysis for regression test

suites. The algorithm considers coverage information for each test case and the set of

obsolete as well as required test cases as the input. We first mark which of the edges

in the dependency graph have become potentially uncovered by dropping obsolete and

required test cases. We take one more iteration where we consider all the reusable test

cases removing markings if they exercise the marked edges.

Example 7.3.2 Considering versions V2 and V3 and test cases given in Table 7.1; our

coverage analysis is shown in Figure 7.3.

Figure 7.3: Fault seeding with L-Care

Here, the symbol C reflects that the edge was previously covered and is still covered

78

by the reusable set of test cases, N means that it was previously not covered and U

means that the edge was previously covered but has become uncovered due to test

cases going obsolete.

7.4 Application to the Running Example

For each evolution, the evaluation is performed in five steps that are outlined below

and explained in more detail throughout the section.

1. Generation of test cases.

2. Validation of the quality of the entire test suite.

3. Classification of test cases into OB, RU, and RQ.

4. Validation of the quality and required size of RQ by comparing the results of

executing RQ and RU.

5. Analyzing resulting coverage.

7.4.1 Generation of Test Suite

We generate test cases manually, based on the information in the model, but without

applying a formal notion of coverage. The completeness of the test set is evaluated

instead trough fault seeding, i.e., deliberate introduction of faults to be detected by

the execution of test cases. We generate 11 test cases for version V1, 11 test cases for

version V2 and 14 test cases for version V3. The test runs for V1 are shown in Table 7.2

from which we select RQ for rerunning on V2 and the start state of the model is shown

in Figure 7.4.

79

Table 7.2: Example test runs for V1
S No test runs for V1
1 bookRoom(1,“J”);occupyRoom(1,“J”,3);updateBill(3,100)
2 occupyRoom(2,“K”,4);viewData(2);clearBill(4)
3 clearBill(3);updateBill(3,100)
4 updateBill(3,100);clearBill(3)
5 occupyRoom(3,“M”,5);checkout(3,“M”,5)
6 updateBill(3,100);updateBill(3,100);clearBill(3)
7 bookRoom(3,“M”);occupyRoom(3,“M”,5);viewData(5)
8 bookRoom(4,“N”);occupyRoom(4,“N”,6);checkout(4,“N”,6)
9 checkout(1,“J”,3);bookRoom(1,“J”);occupyRoom(1,“J”,3)
10 viewData(1);checkout(1,“J”,3)
11 updateBill(4,100);clearBill(4);checkout(2“K”,4)

Figure 7.4: Start graph for version V2

7.4.2 Validation of Quality of Entire Test Suite

The percentage of the seeded faults detected provides a statistical measure of the ca-

pability of the test set to find similar errors in the system, i.e., a measure of confidence

in our test suite [59]. In order to decide which faults to introduce we identified suitable

fault types, and then developed rules for seeding them automatically. After applying

the rules to the code of the system, we execute the entire test suite to assess its quality.

In an iterative process we add test cases until all of the seeded errors were detected.

Faults are classified by [37], into domain and computation faults. A domain fault

results from control flow errors, where programs follow the wrong path, while a com-

80

putation fault occurs when the programme delivers incorrect results while following a

correct path (usually due to errors in assignments or invocations). More specifically,

we have followed the fault types discussed in [56], which also supports calculating a

measure of confidence in a test suite as shown in Table 7.3.

Table 7.3: Distribution of seeded faults
Code Examples

Correct Statement Mutant Statement
(int i = 0; i < x; i++) (int i = 0; i < x; i+=2)
return true //return false
filename = path + "tak12"; filename = “C:" + “tak12";
if (this.bill[i].getBillNo() == billNo) if (this.bill[i].getBillNo() != billNo)
file_read() //file_read()

Our choice of fault based techniques for evaluation was motivated by our require-

ment to select a subset of test cases as RQ and see if they can uncover all of the seeded

faults to ensure that they execute all parts of the code identified as impacted by the

change.

We develop rules for seeding them automatically. After applying the rules to the

code of the system, we execute the entire test suite to assess its quality. In an itera-

tive process we add test cases until all of the seeded errors were detected. Rules for

seeding faults according to these types are implemented in the source code transforma-

tion tool L-Care1, which allows to define markers based on XPath queries as shown in

Fig. 8.14(a) on an XML representation of the code.

A sketch of this XML in tree form is shown in Fig. 7.5(b). Examples of the original

and the fault-seeded code are shown in Fig. 7.5 (c) and (d) respectively. Table 7.4 shows

the total number of faults seeded for each version where a breakdown into the different

types along with typical representatives is shown in Table 7.3.

We added test cases such that they were enough to uncover all the seeded faults.

used fault seeding technique introduced by Mills (1972) as explained in [59]. Fault

1A product of http://www.atxtechnologies.co.uk/

81

http://www.atxtechnologies.co.uk/

Figure 7.5: Fault seeding with L-Care

seeding gives us the confidence measure C = 1 if n > N and S/(S − N + 1) if n ≤ N

where S is the number of seeded faults, N is the total number of non-seeded (indige-

nous) faults. The estimated total number of faults can be found by N = S n/s where

n is actual number of non-seeded faults and s is the number of seeded faults detected

during testing.

We tested all the three versions, extending our test suites until all the seeded faults

were detected. We seed faults in the modified classes of V2 and V3 only and execute the

82

Table 7.4: Distribution of seeded faults
Fault Type # of Seeded Faults

V1 V1 V2
Wrong declaration 26 26 29
Wrong assignment 2 2 2
Wrong proc. handling 8 8 11
Control faults 0 0 2
I/O faults 6 6 9
Total 42 42 53

two sets of required test cases RQ to determine if all of the seeded faults are discovered

and how many test cases are actually required to discover them. We have seeded 13

and 24 faults in V2 and V3, respectively, the smaller numbers owing to the size of

the changed classes in comparison to the entire code base. The results are reported in

Table. 7.5.

7.4.3 Classification of test cases into OB, RU, and RQ

We classified test runs for V1 into OB, RU, and RQ and seeded and repeated the same

for V2. We record the number of test cases in each category produced by our clas-

sification as well as the number of test cases actually successful in finding faults. Of

step V1 → V2 we recall that OB = ∅ because none of the existing operations were

modified but number of tests in RQ are 10 since there was an internal modification in

the rule occupyRoom and clearBill.

Table 7.5: Test case classification and success rate
V1→ V2 V2→ V3

Test cases produced successful produced successful
Obsolete (OB) 0 0 5 0
Reusable (RU) 11 0 6 0
Required (RQ) 10 4 0 0
New (NT) – 0 – 8

With the second evolution step, 5 out of 11 existing test cases were classified as

obsolete OB due to evolution in clearBill. The new test cases required to replace OB

83

were able to find all the seeded faults and none of the remaining test cases in RU found

any fault, but 3 new test cases in NT had to be produced to detect faults seeded into

newly added operations. That means, our reduction in the size of test suites has not

resulted in missing any faults.

7.4.4 Validation of the quality and required size of RQ

After applying to the resulting test set the classification described in Section 7.2, we

validate the completeness of RQ against RU by seeding errors into the classes of our

service implementation that were modified in the recent evolution step. We then run

the tests in both RQ and RU, comparing their results. The evaluation is based on im-

plementations in C# of the three versions of the running example. The programming

environment Pex2 has been used for automated unit testing of individual classes. Pex is

able to generate test cases based on analyzing the source code, with the aim of detect-

ing faults that could lead to runtime errors such as inappropriate exception handling. In

our report below we do not include these tests because unit testing is part of the cod-

ing at the provider’s site while we are concerned with service-level acceptance testing

by the client. Therefore, test cases we have generated are concerned with deviations

from the public specification of the service interface. The actual testing revealed that

a smaller number of tests from RQ i.e., 4 would have been sufficient. For version V2

there was no test case selected as RQ and this was confirmed by our actual executions

as well.

7.4.5 Coverage Analysis

We analyze the coverage by RU \ RQ tests and reapply RQ to find out if the coverage

is retained. For the coverage analysis, we first consider versions V1 and V2. The test

2http://research.microsoft.com/en-us/projects/pex/

84

http://research.microsoft.com/en-us/projects/pex/

runs for V1 are given in Table 7.2. Our test case classification reports 10 out of 11 tests

as required. The only reusable test run is given in the 10th row of Table 7.2 and, there-

fore, the coverage analysis reveals that only the edge between operations viewData and

checkout is still covered as shown in Figure 7.6.

Figure 7.6: Coverage analysis output for version V1

Considering evolution from V2 to V3, we find that the operation signature for clear-

Bill has gone obsolete and three new operations are added. We found that we required

8 new test cases where 5 went obsolete with RQ = ∅. Our coverage analysis shows

that the following edges are covered after this evolution. The coverage analysis re-

vealed that the edges marked as U require test cases to retain the coverage as shown in

Figure 7.7

7.5 Limitations of the Approach

There are a few limitations of the approach. The approach classifies more than the

optimally required number of test cases as required RQ. The reason for this is that

we consider all potential situations where the impact of change in one part could have

affected the quality.

If we can further pinpoint the impact of change, we can provide a more fine tuned

85

Figure 7.7: Coverage analysis output for version V2

version of the selection criteria such that a lower number of test cases are selected as

required for rerunning. Another possibility is to classify different changes and select

the test cases accordingly.

New test cases will be required to validate the newly added operations, but the

generation of test cases is out of the scope of this thesis.

7.6 Summary

In this chapter, we have presented a method to reduce the size of a regression test suite

based on an analysis of the dependencies and conflicts between visual contracts speci-

fying the preconditions and effects of operations. We have also evaluated the approach

through the development of a case study, showing that (1) the reduced test sets could

find all the faults detected by the larger sets while (2) being significantly smaller, which

we present in the following chapter.

86

Chapter 8

Case Study: Bug Tracking System

In this chapter, a case study is presented to evaluate the developed approaches and to

perform a critical analysis of the results. This chapter also presents the limitations as

well as threats to the validity of the evaluation. We first discuss the experimental setup

before we turn to the results and evaluation.

8.1 Bug Tracking System

This section is devoted to introducing the implementation and model of the case study

before we use it for evaluation of our approaches.

8.1.1 Service Implementation

We have derived a web service from an open source desktop application1, originally

called BTsys, and replaced its GUI by a service interface. Such a service could be use-

ful, for example, in order to allow automatic bug reports through applications detecting

faults or in order to integrate bug tracking data into higher level functions. The service

is implemented in C# and it provides operations to manage projects and users, report

1available at http://btsys.sourceforge.net/

87

http://btsys.sourceforge.net/

faults and issues. Development teams can access fault reports and update their status.

The signatures for the operations are shown in Listing 8.1. The complete interface

contains more than 30 operations. Throughout the rest of the chapter, we speak of the

web service as the implementation and refer to the visual contracts as the model.

Listing 8.1: BTSImplementationInt
. . .

p u b l i c String AddProject (String title , String description) { . . . }
p u b l i c string AssignProject (Int32 userID , Int32 projectID) { . . . }
p u b l i c String DeleteProjectByID (i n t projectID) { . . . }
p u b l i c ProjectInfo getProjectByProjectTitle (String projectTitle) { . . . }
p u b l i c List<ProjectInfo> GetProjects () { . . . }
p u b l i c List<ProjectInfo> GetProjectsForUser (Int32 UserId) { . . . }
p u b l i c String UpdateProject (Int32 projectId , String title , String description)
p u b l i c String AddBug (Int32 creatorId , Int32 projectId , String initialIssueMessage ,

s h o r t issueStatusId , Int32 priorityID) { . . . }
p u b l i c String DeleteBug (Int32 bugId) { . . . }
p u b l i c vo id DeleteBugForProjectAndUser (Int32 projectId , Int32 userId) { . . . }
p u b l i c List<Bug> GetAllBugs ()
p u b l i c List<Bug> GetAllBugsForProject (Int32 projectId) { . . . }
p u b l i c List<Bug> GetAllBugsForProjectAndUser (Int32 projectId , Int32 userId) { . . . }
p u b l i c string UpdateBug (Int32 ID , Int32 creatorId , Int32 projectId ,

s h o r t statusId) { . . . }
p u b l i c String AddUser (String fullName , String userName , String password ,

Boolean isDeveloper , Boolean isTester , Boolean isAdmin) { . . . }
p u b l i c String DeleteUserByID (i n t personID) { . . . }
p u b l i c List<String> GetUsers () { . . .
p u b l i c Boolean IsValidPassword (String userName , String password) { . . . }
p u b l i c List<String> GetLogins () { . . . }
p u b l i c UserInfo GetUserInfo (Int32 userId) { . . . }
p u b l i c String GetUserInfoForUserName (String userName) { . . . }
p u b l i c String GetUserInfoForUserId (Int32 userId) { . . . }
p u b l i c String UpdateUser (Int32 userID , String fullName , String userName ,
String password , Boolean isDeveloper , Boolean isTester , Boolean isAdmin) { . . . }

p u b l i c String AddIssue (i n t projectID , String issueMessage ,
Int32 creatorId , i n t statusId) { . . . }

p u b l i c String DeleteIssues (Int32 issueId) { . . . }
p u b l i c String DeleteIssuesForProjectAndUser (Int32 projectId ,

Int32 userId) { . . . }
p u b l i c List<Issue> GetAllIssues () { . . . }
p u b l i c string UpdateIssue (Int32 ID , Int32 projectID , String issueMessage ,

Int32 creatorId , i n t statusId) { . . . }
p u b l i c List<String> GetUsersForProject (Int32 projectId) { . . . }
p u b l i c List<String> GetPossibleStatuses (Int32 userId , Int32 projectId ,

Int32 statusId) { . . . }
p u b l i c vo id UpdateXUserProject (ProjectInfo project , ArrayList users) { . . . }

. . .

88

8.1.2 Model Artifacts

We specify the operations as visual contracts. Visual contracts for a selection of opera-

tions are shown in Figure 8.2 whereas Appendix A is used to represent visual contracts

for all the operations shown in Figure 8.1. We have appended “out” with the output

parameters in the signatures to distinguish them from inout parameters, as shown in

Figure 8.1. Parameters in the operations are used as variables in attribute expressions

in the visual contracts. Consider Figure 8.2(a), where the signature addProject(t:String,

d:String, out Id:int) has parameters t and d which are also used in the contract addPro-

ject to represent the possible sets of values for title and description. The parameter Id

is appended with “out” to represent the fact that it is an output parameter and it rep-

resents the project id which is returned by the system. The signature associated with

the visual contract in Figure 8.2(b) has a set of integers as output. The interface listing

these signatures is shown in Figure 8.1. The signature getAllProjects(out p:Set(int))

associated with the visual contract in the Figure 8.2(b) has a multi-object as output.

The pre-condition of the visual contract shown in Figure 8.2(b) allows us to find a

match for any number of Project nodes. The post-condition states that the rule applica-

tion has no effect. This allows us to model a query to select data from the system state.

The models specifies functional requirements only, without addressing error handling

or reporting. This may result in differences in signatures. For example, at implementa-

tion level addProject has return type String to carry success or error messages of the

operation, while the model only records applicability or otherwise of the corresponding

rule.

89

Figure 8.1: Model level signatures

8.2 Test Oracles

We have presented a model-based approach to test oracles in Chapter 4. This section

discusses the evaluation of our proposal using the bug tracker case study. In particular,

we intend to find out the overheads of using our approach to test oracles. For evaluating

our approach, we ask the following questions:

• Are there cases where the oracle reports false positives?

90

(a) visual contract: addProject

(b) visual contract: getAllProjects

(c) visual contract: assignProject

(d) visual contract: deleteProjById

Figure 8.2: visual contracts (a), (b), (c) and (d)

• What is the execution overhead of the oracle?

8.2.1 Setup and Execution

We tested operations in our bug tracker service by writing a client in Java using the

integrated development environment (IDE) of Eclipse2. A test case is shown in List-

ing 8.2.

2available at http://www.eclipse.org/

91

http://www.eclipse.org/

Listing 8.2: JUnit Test:AddProject

. . .

1 . org . tempuri . BTSysServiceStub . AddProject addProject160 = . . . ;

2 . addProject160 . setTitle (title) ;

3 . addProject160 . setDescription (description) ;

4 . myAssert . successMessage = result ;

5 . AddProjectResponse resp = stub . AddProject (addProject160) ;

6 . assertNotNull (resp) ;

7 . String res1 = resp . getAddProjectResult () ;

8 . aggEngine agg = new aggEngine () ;

9 . ArrayList<String> list = new ArrayList<String > () ;

1 0 . list . add (" \ " " + title + " \ " ") ;

1 1 . list . add (" \ " " + description + " \ " ") ;

1 2 . b o o l e a n res2 = agg . aggResult ("C : \ \ l o c a l a p p \ \ b t s . ggx " , " a d d P r o j e c t " , list) ;

1 3 . assertNotNull (res2) ;

1 4 . assertTrue (res2) ;

1 5 . myAssert . assertBothSucceededOrBothFailed ((Object) res2 , (Object) res1) ;

1 6 . agg . save () ;

. . .

1 7 . org . tempuri . BTSysServiceStub . AddProject addProject161 = . . . ;

1 8 . addProject161 . setTitle (title) ;

1 9 . addProject161 . setDescription (description) ;

2 0 . AddProjectResponse resp2 = stub2 . AddProject (addProject161) ;

2 1 . assertNotNull (resp2) ;

2 2 . String res3 = resp2 . getAddProjectResult () ;

2 3 . b o o l e a n res4 = agg . applyRule (" a d d P r o j e c t " , list) ;

2 4 . assertNotNull (res4) ;

2 5 . assertFalse (res4) ;

2 6 . myAssert . assertBothSucceededOrBothFailed ((Object) res4 , (Object) res3) ;

. . .

In order to provide the test oracle, we need to include, in our project, the AGG

engine3 which provides the API, Our adapter, and our set of custom assertions which

help in comparison. In order to answer the questions stated in the preceding subsection,

we implement unit test cases using the JUnit framework provided by Eclipse. We

provide custom assertions for comparing the model and and execution responses and

3available at http://user.cs.tu-berlin.de/~gragra/agg/down_V203/index.html

92

http://user.cs.tu-berlin.de/~gragra/agg/down_V203/index.html

Figure 8.3: Initial state of the model

we also provide an execution log in case of a failure for the developer to inspect and

decide if the failure is due to under-specification of visual contract. We consider the

initial state of the system as shown in Figure 8.3 for test runs in Table 8.1 and the

initial state as shown in Figure 8.4 for test runs in Table 8.2.

For the second question regarding the execution overheads, we write parameterized

test case trying to add two projects with the same credentials in the model and in

the implementation. We compare the execution responses considering the model as an

oracle and providing the results manually for comparison.

8.2.2 Results and Evaluation

The results are reported based on Table 4.1. The model and the implementation for the

cases shown in Table 8.1 report comparable results. Therefore, the assert statements

report either “true” representing that the model and the implementation report com-

parable responses or both report “false” to represent that both the model as well as

93

Figure 8.4: Initial model state
94

implementation register a failure.

Table 8.1: Successful test runs
Operation Test Run
AssignProject testAssignProject(48, 55)
DeleteProject testDeleteProject(3065)
GetProject testGetProject()
GetProjectByProjectTitle testGetProjectByProjectTitle("Project 2")
GetProjectsForUsers testGetProjectsForUsers(7)
UpdateProject testUpdateProject(3305, "new Unit Testing",

"new project")
DeleteBug testDeleteBug(45)
DeleteBugForProjectAndUser testDeleteBugForProjectAndUser(48,55)
GetAllBugs testGetAllBugs()
... ...

However, the assert statements evaluated to false for the operations shown in Ta-

ble 8.2 considering the start state as shown in Figure 8.4. The model was showing that

the operation execution was successful whereas the implementation was registering a

failure. These operations are shown in Table 8.2.

Table 8.2: Test runs related to under-specified visual contracts
Operation Test Run
AddProject testAddProject("Unit Testing", "project")
AddBug testAddBug(48, 55, "first incident report", 1, 1)
AddUser testAddUser("tim", "occ", "fim")
... ...

Our detailed investigation considering the log files reveals that the failure is due

to a mismatch between the model and oracle response related to 5th row of Table 4.1.

Considering the example of operation addPoject, we find that the visual contract is

under-specified, allowing to add a project with same title twice, whereas the imple-

mentation restricted such entries. The fault trace is shown in Listing 8.3. We do not test

for technical or communication failure since this is out of scope, as the model covers

the functional aspects of the system.

95

Listing 8.3: Stack Trace Example

. . .

INFO : −−− Test Case run : c l a s s org . tempuri . addProjectTests : IMPLEMENTATION RESPONSE←↩

−−−−

12−Jun−2012 1 7 : 4 2 : 0 6

STDOUT : The result was : Error occurred w h i l e saving data . . .

Error Message : The changes you requested to the table were not successful because

they would create duplicate values in the index , primary key , or relationship .

Stack Trace . . .

12−Jun−2012 1 7 : 4 2 : 0 6

STDOUT : File name : C : \ localapp \ aggEngine_V202 \ Examples_V164 \ BasisUsing \ bts . ggx

12−Jun−2012 1 7 : 4 2 : 0 6

STDOUT : Transformation non−deterministically . . .

12−Jun−2012 1 7 : 4 2 : 0 6 STDOUT : The gragra was set or not : t r u e

STDOUT : Rule addProject : step is done

. . .

12−Jun−2012 1 7 : 4 2 : 0 6 STDOUT : −−−−−−−−−−−−−−− TEST FAILURE −−−−−−−−−−−−−−−−−

. . .

12−Jun−2012 1 7 : 4 2 : 0 6 STDOUT : −−−−−−−−−−−−−−− STACK TRACE −−−−−−−−−−−−−−−−−

. . .

12−Jun−2012 1 7 : 4 2 : 0 6 STDERR :

junit . framework . ComparisonFailure : expected : < [t r u e]> but was : < [Error occurred w h i l e ←↩

saving data . . .

. . .

We minimized the execution overhead by creating the object to communicate with

the model and the implementation only once. The total execution time for our unit test

cases was 12.64 seconds as shown in Figure 8.5.

The result of conducting the experiment with and without the use of model as

oracle to find out the execution overheads is shown in Figure 8.6(a) and Figure 8.6(b)

96

Figure 8.5: Test Case Execution Time

respectively. The execution time for a test case using the oracle was around double for

both the successful and the failure case as shown in Figure 4.4.

Referring to the questions raised in Section 8.2 and answering the question regard-

ing false positives, we get a difference in the two responses if the visual contracts are

under-specified. We provide execution logs for all such cases to document false pos-

itives so that the developers can analyze them more carefully. Our results regarding

execution overheads show that the time taken for model execution is double the time it

would take without considering model as an oracle, as shown in Figure 4.4. However,

the maintainability of test cases seems to be an advantage in use of oracles as opposed

to manual oracles since the rules are specified only once and can be executed as many

times as required. Therefore, the execution time does not seem to be a problem if we

97

(a) Execution time running model as oracle

(b) Execution time without running model as oracle

Figure 8.6: Test case execution time

consider the benefits of using automated oracles.

8.2.3 Threats to Validity

Currently the execution time required to execute the tests does not contain the time re-

quired by the developers to understand how visual contracts are developed, how AGG

works, and how to use our oracle proposal. There is a requirement to conduct experi-

ments to see the effectiveness and usefulness of the approach such that one group tests

a web service with the help of our adapter and the second group considers the tradi-

tional measures. For our experiments, we considered an average sized SUT as a case

study and we need to consider bigger examples to see the scalability of the approach.

98

8.3 Coverage Analysis

In this section, we evaluate the relation of our model-based approach with traditional

code-based coverage criteria where the system specifications in terms of T AGTS are

analyzed for conflicts and dependencies between the visual contracts or operation sig-

natures specified as production rules. The DG is developed and the test cases consid-

ering suitable coverage criteria are selected and the code based coverage is analyzed

for results. We also use multiple rules to represent different outcomes of one oper-

ation depending upon different data values passed to the operation signatures which

give us a chance to cover more paths through our S UT . For evaluating the quality of

our coverage criteria as well as the effectiveness of the test cases, we have conducted

experiments considering the following questions.

Since the code is not available for services or components, the tester would not have

access to code-based coverage data. Therefore, using model-based criteria instead, we

are interested in the following:

• We want to compare the model-based coverage reported by dynamic dependency

analysis for a given test suite with code based coverage.

• We also evaluate the scalability of our approach in terms of the size of the speci-

fications, the length of a test case, and number of test cases that can be executed

in a given period of time.

8.3.1 Setup and Execution

The model is formally represented as a typed attributed graph transformation system

(TAGTS) where the visual contracts are specified as production rules over the type

graph representing the class model of the service as shown in Figure 8.7.

We evaluate coverage with respect to model-based coverage criteria in relation to

99

(a) type graph

(b) start graph

Figure 8.7: type graph (a) and start graph (b)

code-based coverage. Using our own AGG-based tool to measure coverage with re-

spect to the selected criteria on the model, we determine code-based coverage with

respect to the most common criteria using the NCover tool.4 In particular, we consider

symbol and branch coverage. The first is essentially a more fine-grained version of

4See http://www.ncover.com/

100

http://www.ncover.com/

statement coverage, including elements in expressions. The second requires that, for

each condition of a branch (such as in an if, while, do while, etc.) both positive and

negative outcome should be tested.

Model-based coverage is based on the dependency graphs in Fig. 8.8 and 8.9.

Figure 8.8: Dependency graph for ≺ relation.

For measuring the scalability of approach, we conduct experiments with large se-

quences of invocations.

8.3.2 Results and Evaluation

Results are reported in Table 8.3, where each row represents a selection of basic or

combined model-based coverage criteria. We report the number of test cases necessary

to achieve this coverage, the average length of these test cases, and the corresponding

code-based coverage achieved with respect to the two criteria.

101

Figure 8.9: Dependency graph for↗ relation.

Table 8.3: Label combinations indicating conflicts and dependencies
SUT

S/N Criteria # of test average length Symbol Branch
cases of test case Coverage Coverage

1. cd 10 3 49.19% 45.07%
2. cr 8 5 52.10% 56.34%
3. cr + cd 10 7 83.50% 87.32%
4. cr + cd 14 9 91.91% 92.96%

+rd + dd

We consider the results discussed Subsection 8.3.2 and present our evaluation of

these results. Considering the first row of Table 8.3 where the coverage criterion cd

is used, we require eight test cases of average length 3 achieving 49.19% symbol and

45.07% branch coverage. For criterion cr the values are slightly higher, while combing

the two coverage jumps above 80%. Obviously, some of the nodes are required by both

criteria, such as addProject which is involved in both cr and cd edges.

102

The forth row represents the results for complete coverage of dependencies and

conflicts in the dependency graph, but failed to provide complete coverage with respect

to code-based criteria. Further analysis revealed that the remaining 8 − 9% correspond

to code that is not executable as part of the normal behavior. This includes exception

handling code triggered by technical errors outside the specification, e.g., a failure

to connect to the data base, or glue code added by the IDE. An example is shown in

Figure 8.10 where the code fragment in the rectangle is triggered by a technical failure.

Since the approach is concerned with testing against functional specifications, technical

exception handling is out of scope and the failure to cover it based on functional testing

is not surprising.

Figure 8.10: Unreachable code example

We have evaluated the scalability of our approach by considering the size of the

specifications in terms of the number of rules and the size of the start graph as well

as the length of the test case. Our case study has 31 rules with the start graph having

12 projects, 9 users, and 1 bug, plus priority and issue objects. We compute the static

information, i.e., critical-pairs and minimal dependencies, only once using AGG’s API

and store them locally for repeated use. The time taken for this calculation is 783.53

seconds, while loading the stored data for subsequent use takes 1.72 seconds. This is

acceptable given that the effort is only incurred once, but we have to be aware that

the runtime is quadratic in the number of rules and exponential in the size of the rules

103

themselves. That means, large numbers of complex operations will continue to pose

challenges. On the other hand, service interfaces should be high-level, and split up if

they become too large.

We also conducted experiments with different lengths of test cases. We produced

a routine to automatically provide inputs for test case repeating only two rules, i.e.,

for adding and deleting a project repeatedly. That means, the size of the graph re-

mains stable. The time taken for executing test cases of lengths 25, 50 and 100 was

4.579, 12.844 and 65.189 seconds, respectively, while the system crashed with an out

of memory exception for a sequence of 106 steps. The problem here is the maintenance

of partial matches for all earlier rules into later graphs of the sequence, which incurs a

cost quadratic in the length of the sequence in terms of the memory used. It should be

noted that in practice, most test cases will be short (e.g., [9] states that the majority of

faults are revealed by test cases of size 2), but the size of the longest possible sequence

is still a limiting factor.

Executing 14 test cases of average length 9, as required but the 4th combination of

criteria in Table 8.3, takes about 15 seconds. The effort is in fact linear in the number

of test cases, so there is no significant barrier to executing large test suites.

8.3.3 Threats to Validity

The validity of the evaluation, in case of model-based coverage criteria and use of

dynamic dependencies is limited by several factors. First, the implementation of the

case study, if non-trivial, is relatively small, although the interface (and model) are of

reasonable size. The sequences for evaluating scalability in terms of the length of test

cases are clearly artificial, but based on our knowledge of the implementation we can

say that the actions of the rules in the sequence are marginal for the effort, which is

caused by maintaining and comparing matches into a large number of graphs. The start

104

graph of 25 nodes used for the evaluation is probably realistic for tests with specifically

created data, but tests using real data will require much larger graphs. These may rep-

resent not only a challenge to scalability, but also call for automation of the generation

of start graphs from initial test data.

8.4 Regression Testing

In this section we evaluate both the correctness of our method and the reduction in the

set of test cases obtained. We have used the same case study to verify our regression test

suite selection methodology. For evaluation purpose, we have measured the sufficiency

of our test suite using fault seeding, i.e., deliberate introduction of faults to be detected

by the execution of test cases. The percentage of the seeded faults detected provides a

statistical measure of the capability of the test set to find similar errors in the system,

i.e., a measure of confidence in our test suite [59].

In order to decide which faults to introduce we identified suitable fault types, and

then developed rules for seeding them automatically. After applying the rules to the

code of the system, we execute the entire test suite to assess its quality. In an iterative

process we add test cases until all of the seeded errors were detected. We evolve the

system and classify the test cases into RQ, RU and OB and rerun the tests in both RQ

and RU for comparison of results. We answer the following questions:

• Do the smaller sets of required test cases RQ find the same faults as the larger

sets of reusable test cases RU?

• What is the difference in size between RQ and RU and what would be the small-

est test set able to find the faults seeded?

For each evolution step the evaluation is performed in four steps that are outlined

below and explained in more detail throughout the section.

105

1. Generation of test cases.

2. Validation of the quality of the entire test suite.

3. Classification of test cases into OB, RU, and RQ.

4. Validation of the quality and required size of RQ by comparing the results of

executing RQ and RU.

5. Analyzing resulting coverage.

We, first of all, introduce three versions of the case study in which the evolution in

the system is discussed below.

8.4.1 Setup and Execution

In this section, we first present an evolution scenario in two steps. Then we use the

scenario to illustrate our approach to regression test suite reduction. The base case for

the Bug Tracker allows us to record projects, users and reported faults. A selection of

rules and type graph are shown in Figure 8.11.

In the first evolution step, the Bug Tracker service is extended in order to record

Issues with the projects, i.e., concerns raised by users that may not be faults yet indicate

deviations from their actual needs. The additional rules and extended type graph are

shown in Fig. 8.12.

In the second evolution step we include a feature to record, among other details, a

priority level while adding a bug. That means, the signature of addBug(. . .) is changed

as well as its specification by the rule. Not surprisingly therefore, the modified oper-

ation will have additional dependencies, such as addUser(. . .) ≺ addBug(. . .). A mi-

nor update to addIssue(. . .) means that the description of the status is preset to “First

Report” when the issue is initially reported. There is no change to the signature in

this case, and the dependencies and conflicts are not affected. The new version of the

changed rule along with the type graph are shown in Fig. 8.13.

106

(a) start graph

(b) addProject (c) addUser

Figure 8.11: type graph (a) and rules addProject (b) and addUser (c)

Generation of test cases: We generated test cases manually, based on the informa-

tion in the model, but without applying a formal notion of coverage. The completeness

of the test set is evaluated instead trough fault seeding, i.e., deliberate introduction of

faults to be detected by the execution of test cases.

Table 8.4: Distribution of seeded faults
Fault Type # of Seeded Faults

V1 V1 V2
Wrong declaration 6 8 9
Wrong assignment 23 34 35
Wrong proc. handling 27 32 35
Control faults 22 27 29
I/O faults 27 32 35
Total 105 133 143

Following the same approach as reported in subsection 7.4.1, we have generated 41

test cases for version V1, 51 test cases for version V2 and 54 test cases for version V3.

107

Figure 8.12: BugTracker, evolution to Version 2

Figure 8.13: BugTracker, evolution to Version 3

Validation of quality of entire test suite: Rules for seeding faults according to these

types are implemented in the source code transformation tool L-Care5, which allows

to define markers based on XPath queries as shown in Fig. 8.14(a) on an XML rep-

resentation of the code. A sketch of this XML in tree form is shown in Fig. 8.14(b).

Examples of the original and the fault-seeded code are shown in Fig. 8.14 (c) and (d)

respectively. Table. 8.5 shows the total number of faults seeded for each version as well

as a breakdown into the different types along with typical representatives.

Classification of test cases into OB, RU, and RQ: We classified the test cases of

one version into obsolete, reusable and required subsets and reran the subset RQ on the

next version. Considering step V1→ V2, we classified 41 test cases that were existing

5A product of http://www.atxtechnologies.co.uk/

108

http://www.atxtechnologies.co.uk/

Figure 8.14: Fault seeding with L-Care

for V1 and we found out that all of them are reusable. The result of classification is

shown in Table 8.6.

Validation of the quality and required size of RQ: We seed faults in the modified

classes of V2 and V3 only and execute the two sets of required test cases RQ to de-

termine if all of the seeded faults are discovered and how many test cases are actually

required to discover them. We have seeded 28 and 18 faults in V2 and V3, respectively,

the smaller numbers owing to the size of the changed classes in comparison to the

109

Table 8.5: Distribution of seeded faults
Code Examples

Correct Statement Mutant Statement
new object[6] new object[0]
args[0] = DateTime.Now; args[0] = “ ”;
throw ex //throw ex
if (conn.Open == ...) if (conn.Open != ...)
conn.Open() conn.Close()

entire code base.

8.4.2 Results and Evaluation

The results are reported in Table. 8.6. We record the number of test cases in each

category produced by our classification as well as the number of test cases actually

successful in finding faults. Of step V1 → V2 we recall that OB = RQ = ∅ because

none of the existing operations were modified. Unsurprising, therefore, none of the re-

maining test cases in RU found any fault, but 10 new test cases NT had to be produced

to detect faults seeded into newly added operations. With the second evolution step, 10

out of 39 existing test cases were classified as required RQ, of which 5 where success-

ful in finding faults. Again, 15 new test cases where added such that 12 were added to

replace the test cases going obsolete due to evolution in signature of addBug and 3 new

ones to cover features not addressed by existing test cases. That means, our reduction

in the size of test suites has not resulted in missing any faults, i.e., the numbers of faults

discovered using RU and RQ are the same.

Table 8.6: Test case classification and success rate
V1→ V2 V2→ V3

Test cases produced successful produced successful
Obsolete (OB) 0 0 12 0
Reusable (RU) 41 0 29 5
Required (RQ) 0 0 10 5
New (NT) – 10 – 15

The reduction in size is significant, but probably still not optimal, because a smaller

110

set of 5 rather than 10 test cases would have been sufficient. This is despite an exhaus-

tive error seeding strategy, which produced faults of the designated types wherever this

was possible in the code. The reason could be in over approximation of dependencies

and conflicts which, like in many static analysis approaches, leads us to err on the

cautious side.

Analyzing resulting coverage: We find that the coverage is retained in case of V1→

V2. However, the edges shown in Table 8.7 have become uncovered due to test cases

going obsolete in case of evolution V2→ V3.

Table 8.7: Uncovered edges
S No Edges
1 Edge between assignProject() and delBug()
2 Edge between addBug() and deleteBug()
3 Edge between addBug and delBugForProjectAndUser()
4 Edge between updateBug() and delBug()
5 Edge between addBug() and getAllBugsForProjAndUser()
6 Edge between addBug() and getPossibleStatuses()
7 Edge between getPossibleStatuses() and delBug()

8.4.3 Threats to Validity

Considering our results of regression test suite reduction, the assessment depends on

the quality of the original test suite, which was evaluated by fault seeding while us-

ing the set of reusable test cases RU as a benchmark for the required ones RQ. But

fault seeding will only deliver relevant results for the types of faults actually sown,

while unexpected or unusual faults are not considered. Our approach here was to use

approaches to fault classification from the literature, but in order to gather relevant

statistics about the costs savings possible we would require data on error distributions

from real projects. Scalability of the approach as well as the coverage analysis needs

to be verified considering large scale case studies

111

8.5 Summary

We considered a publicly available desktop application and converted into a web ser-

vice for evaluation of our presented approaches. We have shown how we can benefit

from the use of a model as an oracle and how effective are our model-based coverage

criteria. We have presented the limitation of the proposal regarding models as ora-

cles and explained treatment to the false positives reported by our approach. We have

demonstrated our coverage analysis based on dynamic dependencies and conflicts and

evaluated the scalability of our approach. We have also applied our regression testing

approach and evaluated its effectiveness and efficiency.

112

Part III

Comparison and Conclusion

113

Chapter 9

Comparison to the State of the Art

In this chapter, we give a critical account of some of the competing approaches for

model-based test oracles, coverage criteria, and regression testing. We also compare

and contrast our results to highlight the salient points as well as the limitations of our

approach. We compare our use of visual contracts for test oracles and model-based

testing. We summarize our research objectives as follows:

• Since web services hide implementation details, we require a model-based ap-

proach to test oracles.

• Web service testing bears additional overheads and testing is, anyway, a time

consuming activity. Therefore, we require model-based coverage criteria to as-

sess the completeness of test suites.

• We also need a model-based approach to regression testing allowing selective

retesting.

Our requirements are motivated by non-availability of implementation details in

case of web services, and the fact that web services testing involves additional costs

such as service invocation costs, usage of network resources, etc. We evaluate our

114

contributions with respect to our objectives, provide a comparison with competing ap-

proaches and comment on the suitability and effectiveness of our proposal.

9.1 Test Oracles

Our approach for test oracles, model-based coverage criteria as well as regression

testing is based on the analysis of visual contracts formalized as a TAGTS. We first

describe how visual contracts have been used previously before commenting on our

approach.

Visual contracts have been used in [31] for interface specification of services as

well as for model-based testing [33, 50, 29]. The use of visual contracts in [33, 50, 29]

is supported by a formal interpretation as graph transformation rules. The approach in-

troduced in [33] specified visual contracts as rules in a TAGTS for deriving functional

tests and used JTest and Parasoft for test execution.

Visual contracts are also used in [29] for formalizing pre- and post-conditions of

use cases to be used as test models for the generation of logical test cases. This work

provides the basis for establishing a relation between UML specifications and visual

contracts and proposes a test suites generation mechanism for required and provided

interfaces. The work reported in [29] proposes to make them executable for the gener-

ation of test cases.

Visual contracts have been used in [50] not only for testing individual operations

but also for operation sequences. The work proposes a mapping between visual con-

tracts and Java modeling language (JML) assertions that can be considered as providing

an oracle. A mapping between visual contracts and the Java classes using JML is also

reported in [51] where the authors have proposed how correctness of the implementa-

tion can be verified against the specification. The proposal considers a runtime asser-

tion checker where the use of visual contracts is to specify the data state transformation

115

between a pair of UML object diagrams representing pre- and post-conditions. Visual

contracts are also used in model-driven development (MDD) e.g., in [24] where the

authors have made use of graph transformation principles for solving horizontal and

vertical model transformation issues. The models are then transformed into JML asser-

tions and monitoring is done through the help of an Eclipse plug-in and JML assertions.

Our use of visual contracts provides a means of executing specifications through

an adapter linking the model signatures with rules in AGG. We derive a dependency

graph (DG) using critical-pair analysis. We base our model-based coverage criteria

on annotations on the start and end points of the edges between nodes in our DG. We

check, dynamically, if a static dependency was exercised. This is novel to our approach.

We exploit the information present in visual contracts for providing a test oracle

by filling gaps in abstraction between service implementation and visual models. Ora-

cles can be realized by a manual process, a separate program implementing the same

process, a simulator producing parallel results, an earlier version of the same software,

checking values against known responses, etc [35]. An oracle should be independent

of the SUT in providing its responses and could be based on specification or the im-

plementation artifacts [72]. Several approaches for test oracles are presented based on

system specifications [61], documentation [58], and parallel implementation [71, 6].

Test oracles for web service testing are proposed in [68] where each service has

several implementations and there is a training phase to make available the oracle in the

first place. Another approach [17] is based on the idea of metamorphic testing which

emphasizes the usage of relations between the inputs and the outcomes of several ex-

ecutions of a method under scrutiny. This allows the reuse of existing test cases to

generate more test cases. [17] use these metamorphic services as access wrappers pro-

viding encapsulation to the actual SUT. The test oracle is in the metamorphic services

which compute the follow-up messages and predicts results of the SUT.

116

Table 9.1: Comparison test oracles approaches

Approach and Author Comparison with Our Proposal

Visual Contracts used for unit test-

ing with JTest [33]

We use visual contracts and provide exe-

cutable specifications for testing

Visual contracts for test oracles us-

ing JML where Graph transforma-

tion rules are translated into JML

assertions [50] and a runtime asser-

tion checker [51]

We use model-level information and pro-

vide model as an oracle where we specify

visual contracts as rules in AGG and exe-

cute them using API

Group testing by applying one test

case to all web services in a group

with outputs stochastically ranked

and oracle established if majority of

web services report the same out-

put [68]

Our proposal does not need a training

phase and the result is not based on a ma-

jority vote

Metamorphic services are used as

access wrappers providing encapsu-

lation to the actual SUT and provid-

ing test oracle by comparing results

of metamorphic service that com-

putes follow-up message and pre-

dict results of actual service [17]

We directly execute the visual contracts

specifying the operation formalized as

rules in TAGTS where the model is made

executable as an oracle

Visual Contracts are used for test

case generation [29]

We execute visual contracts as oracles

117

Test sheets for oracles where UML

and OCL are used to represent the

operational features of web services

under test [4]

Outputs are computed by executing visual

contract considering system start state

given as start graph

Test oracles for web services are also proposed in [4] where tables describing sets

of test cases, called test sheets, are used. These tables contain inputs and the sets of

possible outputs. The approach builds on concepts defined in the Framework for Inte-

grated Test 1. The approach suggests a manual process for the provision of test oracles

for web services [12].

Our approach [43] is different from those mentioned above. We propose a mech-

anism to execute service specifications and do neither rely on a training phase nor do

we require the additional overhead required for metamorphic testing. Our work is also

different from [29] where visual contracts are made executable for generation of test

cases.

We provide a comparison of our approach with the competing approaches in Ta-

ble 9.1. Our objective was to use model-level information to provide test oracles which

neither require additional wrappers, as required in [17], nor depends upon the stochas-

tic analysis of outputs for establishing an oracle. Our proposal of executable specifica-

tions is an automatic process, in contrast to the proposal of [4] where test oracles are

manual.

9.2 Model-based Coverage Criteria

Coverage criteria for dataflow-based methods include all de f paths, all de f −use paths,

etc., where de f and use are the labels on nodes to annotatate where a data element
1available at http://fit.c2.com

118

http://fit.c2.com

was created and used respectively [67, 26, 60]. Coverage criteria for control-flow

graphs are statement coverage, which ensures that all statements are executed at least

once; decision coverage that every decision point is invoked at least once[11, 39, 8],

etc. We have analyzed visual contracts and presented our analysis in the shape of a

dependency graph based on which we determine model-based coverage criteria. For

this, we considered model-level information about dependencies and conflicts between

operations. Dataflow graphs considering specifications are presented in [8], where the

specifications are first analyzed for correctness. A DG is then constructed and the test

paths are identified.

Specifications have been considered for control-flow graph (CFG) development for

web services in [49] using resource description framework (RDF) schema. RDF graphs

are extracted from the functional specifications of web services comprising axioms

defining pre-conditions and effects of invocations. A CFG is derived from these graphs

and the extracted CFG is then interpreted as extended finite state machine (EFSM) to

define coverage criteria. Semantic Web service descriptions in (WSDL-S) are used to

construct a finite state machine (FSM) by first expressing pre-conditions and effects

using the web ontology language (OWL) having semantic web rule language (SWRL)

extensions [65].

There are several approaches to testing web services based on dataflow graphs ex-

tracted from semantic information [7, 65, 36]. The approach discussed in [7] is aimed

at testing service composition using BPEL specifications. BPEL is also considered

in [36], where dependency analysis is carried out over variables acquired from WS DL

interface description to extract paths through the graph of the BPEL specification. Cri-

teria for data flow testing, originally established in [26], are applied by [52] to the

functional testing of services using BPEL and WS DL. The authors of [54] have made

use of call-based dependence graphs for coverage in object-oriented systems. They in-

corporate both control and data dependence. In our approach, the combination of data

119

and control flow analysis could be interesting when considering service specifications

complementing visual contracts with orchestrations. However, our handling of data de-

pendencies is more advanced than what can be extracted from operation signatures in

WS DL.

Rather than using finite state machine or control-flow information, we have con-

structed dependency graphs through visual contracts analysis formalized by rules in

a TAGTS. Approaches to model-based testing using data dependencies for object-

oriented systems are also considered in [18, 13].

Table 9.2: Comparison of model-based coverage approaches

Approach and Author Comparison with Our Proposal

Model-based conformance testing

of web services where extended

WSDL specifications are used to

derive finite state machine for gen-

erating test cases and providing

predicate coverage [65]

We use information about conflicts and

dependencies between visual contracts

specifying operations in a web service

and propose coverage criteria to find out

completeness of a given set of test cases

BPEL processes are analyzed for

collecting dataflow information to

test compositions [36]

We consider model-level information and

analyze visual contracts formally speci-

fied as rules in a TAGTS

Control-flow analysis for coverage

extracted from service specifica-

tions considering RDF schema [49]

We propose a dataflow based coverage

criteria by representing the dataflow re-

lated information as a dependency graph

120

Using Frankl-Weyuker dataflow

criteria to test BPEL services where

BPEL and WSDL are considered

for test case generation and all-

uses is considered as coverage

criteria [52]

We identify data creation, read and dele-

tion for coverage and, instead of all-

uses, we propose create-read, create-

delete, read-delete and delete-delete cri-

teria covering more options than all-uses

Dataflow based analysis for web

service compositions [7]

We propose coverage considering opera-

tions within a web service

Dependence representation for cov-

erage [54] based on control and

dataflow information using notation

for object-oriented systems

We consider dependency graph and use

labels on the edges for the proposal of

coverage criteria for web services

Testing of web service composi-

tions is proposed by considering

BPEL and timed extended finite

state machine for criteria, e.g., tran-

sition coverage [46]

Our proposal of coverage criteria is

dataflow based and does not consider

state machine related coverage

Integration testing using dataflow

information where the authors in-

troduce a formal language to de-

velop dataflow diagram for path

coverage for object-oriented sys-

tems [18]

We formalize dataflow information as

dependency graph to test web services

where the coverage criteria is proposed on

the basis of edge labels resulting from the

use of formal concepts of conflicts and

dependency analysis in theory of graph

transformation [22]

121

Converting UML state machines

into flow graphs based on events

and actions where OCL expres-

sions associated with nodes in the

flow graph are analyzed for refining

state-based criteria [13]

Our focus is web services where we rep-

resent the information as a dependency

graph to propose dataflow based coverage

criteria for a given set of test cases

We have made use of web service specifications by means of visual contracts for

deriving a dependency graph to define coverage [32]. Dependencies and conflicts ex-

tracted by critical pair analysis provide a simple representation of the system at the in-

terface level, abstracting from detailed control flow. Our model-based analysis makes

us independent of programming languages and platform related details, which is suit-

able for the platform-independent nature of web services. We provide a comparison of

our approach [42] with the competing approaches in Table 9.2.

Considering the comparison given in Table 9.2, our approach covers combinations

of create, read and delete effects on data than [52] which only proposes to cover

all-uses as coverage crieteria. We consider operations within one service in contrast

with [7, 36]. Our coverage criteria are based on conflicts and dependency analysis

where approach in [65] uses guard conditions and extended finite state machines to

provide predicate coverage. The approaches in [54, 18] consider dependency graphs

derived through a different process and provide coverage for object-oriented systems

whereas our focus is web services.

9.3 Regression Testing

Several techniques [45, 19, 14] have been using model level information for regression

testing. Extended finite state machine (EFSM) are considered in [45], where interaction

122

patterns between functional elements represented by transitions are used for test set

reduction. Two tests are considered equivalent if they represent the same interaction

pattern. Therefore, whenever a transition is added or deleted, the effect of the model on

the transition, the effect of the transition on the model and any side effects are tested

for. That means test cases are selected with respect to elementary modifications of the

state machine model.

EFSM are also considered in [19] where a set of elementary modifications (EM)

is identified. Two types of dependencies, data dependencies (DD) and control depen-

dencies (CD) are discussed. A state dependence graph (SDG) represents DD and CD

visually and a change in the SDG leads to a regression testing requirement to verify

the effect of the modification.

The technique presented in [14] uses UML use case and class diagrams with op-

erations described by pre and post conditions in object constraint language (OCL). A

unique sequence diagram is associated with a use case to specify all possible object

interactions realizing the use case. Changes in the model are identified by comparing

their XML metadata interchange (XMI) representations. An approach to regression

testing of web services suggested by [57] makes use of unit tests based on JUnit. Test

cases are produced by the developer, who generates QoS assertions and XML-encoded

test suites and monitors I/O data of previous test logs to see if the behavior is changed.

The approach discussed in [64] constructs a global flow graph by requiring a flow-

graph from each party in the collaboration. It then defines call nodes as a special nodes

for remote service calls to record the operation name and the service uniform resource

identifier (URI). A CFG containing a call node is converted by inserting the call graph

corresponding to that call node. Whenever an operation is modified, the previous and

the resulting call graphs are compared to find the differences and all downstream edges

are marked as “dangerous” once a modified node is marked.

123

Table 9.3: Comparison of regression testing approaches

Approach and Author Comparison with Our Proposal

Maintaining JUnit test cases for re-

gression testing where service inte-

grator maintains a log of test cases

and executions and QoS assertions

for preexisting test cases are gen-

erated by a Java toolkit where tests

and assertions constitute executable

contracts [57]

We analyze visual contracts to identify

impact of change and select test cases into

subsets and perform coverage analysis to

see if the resulting test suite retains cover-

age

Develop control-flow graphs for

composite web services where

control-flow information for

web services is considered. The

approach is applicable to web

services compositions where the

change information is analyzed

by maintaining and updating call

graph and by identifying dangerous

edges [64]

We analyze the information in terms of vi-

sual contracts where our focus is how the

change affects the model. We also need

to know which of the code artifacts were

accessed during update. Our focus is dif-

ferent as we consider one web service and

not compositions

Extended finite state machine con-

sidering control and data depen-

dence to construct a state depen-

dence graph which is used to iden-

tify the effect of modification [19]

We evaluate the change in model through

visual contracts and do not consider con-

trol dependence

124

Model-based regression testing us-

ing data dependence analysis where

Extended finite state machine is

used for dependence analysis in

object-oriented systems for reduc-

ing regression test suites [45]

Our analysis is based on visual contracts

analysis and not on extended finite state

machines and the application domain is

web services

UML designs are considered where

pre- and post-conditions are given

as OCL constraints and the changes

in model are analyzed by analyzing

their XML representation [14]

We consider visual contracts to repre-

sent pre- and post-conditions formalizing

them as rules in a TAGTS for analysis and

propose a regression testing approach for

web services

Our approach [41] is different in the sense that not only we consider the impact of

evolution for selective retesting but we also propose a coverage analysis mechanism to

see if there is any requirement of new test cases to retain coverage as well. Dependency

information used, e.g., in [45, 19] is instead derived from state machines. Pre and post

conditions on application data are also used with [14].

While conceptually close, our visual contracts are more easily usable than a textual

encoding in OCL and provide a formal operational semantics with a well-established

theory of concurrency as a basis for verifying formally the correctness of our approach.

We provide a comparison with our approach in Table 9.3.

9.4 Summary

We have presented in this chapter a comparison of our approach to some of the state-

of-the-art approaches. Considering our approach to test oracles, we were able to use

model-level information to provide test oracles which not only handle a variety of

125

challenges. We have also provided a comparison where specifications have been con-

sidered for coverage criteria. We have also covered approaches where visual contracts

were used for testing purposes. Lastly, we have presented a comparison of our ap-

proach with approaches considering model level information as well as approaches for

web services.

Our use of visual contracts for proposing test oracles, coverage criteria and regres-

sion testing is unique for providing an executable model as an oracle. Our analysis of

visual contracts specifying operation in a web service formalized as rules in a TAGTS

to arrive at dependency graph and annotating the edges with labels to propose coverage

criteria is also novel. Our proposal of analyzing visual contracts for regression testing

and coverage analysis for evolved version of the system is also original.

126

Chapter 10

Conclusion and Outlook

This chapter provides a conclusion and discusses possibilities of future extensions to

the work presented in this thesis.

10.1 Conclusion

We have used high level visual specifications for oracle development, in line with the

platform-independent nature of web services and mainstream software modeling lan-

guages. Our contribution is not in the generation of test cases, but in helping the tester

to implement them by automating the decision, if the response from the operation being

tested is correct. This information is present in visual contracts and should be reused

rather than re-implemented. Other test-related activities, such as debugging, are not

directly affected. In order to generate test oracles, an adapter needs to translate invo-

cations of services under test into rule applications, passing and converting parameters

and interpreting replies. We differentiate logical failures from technical or communi-

cation failures and provide support for the developers to handle issues pertaining to

partial specification of visual contracts. We also provide a mechanism to handle differ-

ences in how web services report the success or failure.

127

We have proposed an approach to model-based coverage which is based on a two-

step process that combines static and the dynamic analysis. Statically, we use AGG’s

critical pair and minimal dependency analysis to create a dependency graph over rules

representing visual contracts. These graphs, which distinguish different types of de-

pendencies and conflicts, are the basis for coverage criteria. The evaluation of a set of

tests based on the criteria is performed dynamically while executing the model as an

oracle.

We have presented a method to reduce the size of a regression test suite based on

an analysis of the dependencies and conflicts between visual contracts specifying the

preconditions and effects of operations. The method is applicable to all software sys-

tems that have interfaces specified in this way, but it is particularly relevant for services

because of the lack of access to implementation code and the potential cost involved in

running a large number of tests through a remote and potentially payable provider. Fi-

nally, we have evaluated all of the work on test oracles, model-based coverage criteria

as well as the model-based regression testing on small scale examples as well as using

average sized cases studies.

However, there are a number of future research directions that were identified dur-

ing the course of this doctoral research and which are presented in the forthcoming

section.

10.2 Outlook

The work reported in this thesis has a number of possible future directions. We discuss

a selection, where the order is not significant.

128

10.2.1 Test Case Analysis and Generation

We have assumed a given set of test cases. A future research direction is to consider

test case generation from visual contracts using path expressions over the dependency

graph.

Figure 10.1: Test Case Generation Example

We would allow test cases to be added to the test suite incrementally where we

analyze the resulting coverage for the newly added test case as well as the benefit of

the addition. The process should go on until coverage with respect to selected model-

based coverage criteria is achieved. The automation should also support developers in

finding suitable and minimal sets of test cases that provide them with full dependency

129

graph coverage. In case they intend to add test cases manually, there should also be a

process for manual addition. Automation should also support visual contract analysis

for input space partitioning [55] for test suite generation.

We have made initial progress on a tool shown in Figure 10.1, that proposes test

cases for addition analyzing which additional conflicts and dependencies this new test

case exercises.

10.2.2 Learning Visual Contracts

The research proposed in this thesis assumes that the visual contracts are available. We

can imagine several methods to arrive at visual contracts. Apart from extracting the

contracts from available semantic information, we could make use of learning tech-

niques considering observation sequences from which the pre- and post-conditions

forming visual contracts are learnt.

10.2.3 Rules Signature for Multi Objects

Currently, our theoretical contribution addresses TAGTS with rule signatures returning

basic data types only. The research goal is to extend the theory so that rule signatures

could be associated with rule schemes as well.

This would require to allow the output parameter to be of type S et(s) for a sort

s ∈ S to return a response in case of a rule scheme with a multi object. The mapping

function given in our definition of TAGTS with rule signatures would assign to each

rule name p ∈ P a list of formal input and output parameters σ(p) = x̄ = (q1x1 :

c1s1, . . . , qnxn : cnsn) where qi ∈ {ε, out}, ci ∈ {ε, S et} and xi ∈ Xsi for 1 ≤ i ≤ n.

This would also change the way we handle labels and we would need to extend our

definition of observation from transformation sequences, accordingly introducing rules

with multi objects and their applications.

130

10.2.4 Application Conditions

We plan to extend our theoretical formulation to include negative application condi-

tions (NAC). This would allow us to specify visual contracts in a more expressive

manner. Consider rule occupyRoom in our case study presented in Figure 2.2, addition

of NAC as shown in Figure 10.2 prohibits more than one nodes of type BillData to be

associated with one room booking.

Figure 10.2: Test Case Generation Example

This would require us to introduce more edges in the dependency graph to cover

additional relations between rule applications where one rule produces a graph element

which is forbidden by an application application condition.

10.2.5 Evaluation of Effectiveness of Proposal

We intend to evaluate the approach with developers in order to assess the benefit of

a model-based approach, where oracle and test coverage are provided, against a more

informal documentation of the service interface where no such help is given. Seeding

faults in the service implementation, this would allow us to assess the added value of

the model-based approach.

131

Appendix A

Visual Contracts: Bug Tracker Service

In this appendix, we provide a list of visual contracts for our case study of the Bug

Tracker service in this appendix. In case of rule schemes, we also show how the visual

contract is given by a kernel rule and multi rules. We show this in a square box where

the upper part represents the kernel rule and the lower represents the multi rule, as

shown, e.g., in A.5, below the visual contract.

Figure A.1: Visual Contract for Rule AddProject

Figure A.2: Visual Contract for Rule AssignProject

132

Figure A.3: Visual Contract for Rule DeleteProjectById

Figure A.4: Visual Contract for Rule GetProjectByProjectTitle

Figure A.5: Visual Contract for RuleScheme GetProjects

133

Figure A.6: Visual Contract for GetProjectsForUsers

Figure A.7: Visual Contract for Rule UpdateProject

134

Figure A.8: Visual Contract for Rule AddBug

Figure A.9: Visual Contract for Rule DeleteBug

135

Figure A.10: Visual Contract for Rule DeleteBugsForProjectAndUsers

Figure A.11: Visual Contract for RuleScheme GetAllBugs

136

Figure A.12: Visual Contract for RuleScheme GetAllBugsForProject

Figure A.13: Visual Contract for RuleScheme GetAllBugsForProjectAndUser

137

Figure A.14: Visual Contract for Rule UpdateBug

Figure A.15: Visual Contract for AddUser

Figure A.16: Visual Contract for RuleScheme DeleteUserById

138

Figure A.17: Visual Contract for RuleScheme GetUsers

Figure A.18: Visual Contract for Rule IsValidPassword

139

Figure A.19: Visual Contract for Rule GetLogins

Figure A.20: Visual Contract for Rule GetUserInfo

Figure A.21: Visual Contract for Rule GetUserInfoForUserName

Figure A.22: Visual Contract for Rule GetUserInfoForUserId

140

Figure A.23: Visual Contract for Rule UpdateUser

Figure A.24: Visual Contract for Rule AddIssue

141

Figure A.25: Visual Contract for Rule DeleteIssues

Figure A.26: Visual Contract for Rule DeleteIssuesForProjectAndUser

142

Figure A.27: Visual Contract for RuleScheme GetAllIssues

Figure A.28: Visual Contract for Rule UpdateIssue

143

Figure A.29: Visual Contract for RuleScheme GetUsersForProject

Figure A.30: Visual Contract for RuleScheme GetPossibleStatusses

144

Figure A.31: Visual Contract for Rule UpdateXUserProject

145

References

[1] IEEE Standard Glossary of Software Engineering Terminology. Technical report,

1990.

[2] AGG - Attributed Graph Grammar System Environment. http://tfs.cs.

tu-berlin.de/agg, 2007.

[3] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University

Press, 2008.

[4] C. Atkinson, D. Brenner, G. Falcone, and M. Juhasz. Specifying high-assurance

services. Computer, 41(8):64–71, Aug. 2008.

[5] L. Baresi and R. Heckel. Tutorial introduction to graph transformation: A soft-

ware engineering perspective. In Graph Transformations, Second International

Conference, ICGT 2004, Rome, Italy, September 28 - October 2, 2004, Pro-

ceedings, volume 3256 of Lecture Notes in Computer Science, pages 402–429.

Springer, 2004.

[6] L. Baresi and M. Young. Test oracles. Technical Report CIS-TR-01-02, Uni-

versity of Oregon, Dept. of Computer and Information Science, Eugene, Ore-

gon, U.S.A., August 2001. http://www.cs.uoregon.edu/~michal/pubs/

oracles.html.

146

http://tfs.cs.tu-berlin.de/agg
http://tfs.cs.tu-berlin.de/agg
http://www.cs.uoregon.edu/~michal/pubs/oracles.html
http://www.cs.uoregon.edu/~michal/pubs/oracles.html

[7] C. Bartolini, A. Bertolino, E. Marchetti, and I. Parissis. Data flow-based vali-

dation of web services compositions: Perspectives and examples. In R. Lemos,

F. Giandomenico, C. Gacek, H. Muccini, and M. Vieira, editors, Architecting De-

pendable Systems V, LNCS, pages 298–325. Springer-Verlag, Berlin, Heidelberg,

2008.

[8] B. Beizer. Black-box testing: techniques for functional testing of software and

systems. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[9] F. Belli, N. Güler, and M. Linschulte. Are longer test sequences always better?

- a reliability theoretical analysis. In Secure Software Integration and Reliability

Improvement Companion (SSIRI-C), 2010 Fourth International Conference on,

pages 78 –85. IEEE, June 2010.

[10] E. Biermann, H. Ehrig, C. Ermel, U. Golas, and G. Taentzer. Parallel indepen-

dence of amalgamated graph transformations applied to model transformation.

In G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and B. Westfechtel, editors,

Graph transformations and model-driven engineering, LNCS, pages 121–140.

Springer-Verlag, Berlin, Heidelberg, 2010.

[11] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools (The

Addison-Wesley Object Technology Series). Addison-Wesley Professional, Octo-

ber 1999.

[12] M. Bozkurt, M. Harman, and Y. Hassoun. Testing & verification in service-

oriented architecture: A survey. Software Testing, Verification and Reliability

(STVR), To Appear.

[13] L. Briand, Y. Labiche, and Q. Lin. Improving the coverage criteria of UML state

machines using data flow analysis. Software Testing, Validation, and Reliability

(Wiley), 20(3), 2010.

147

[14] L. C. Briand, Y. Labiche, and S. He. Automating regression test selection based

on UML designs. Information & Software Technology, 51(1):16–30, 2009.

[15] G. Canfora and M. D. Penta. Testing services and service-centric systems: Chal-

lenges and opportunities. IT Professional, 8(2):10–17, 2006.

[16] J. F. Cem Kaner and H. Q. Nguyen. Testing computer software. Second edition,

Van Nostrand Reinhold, October 1993.

[17] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. Towards a metamorphic testing

methodology for service-oriented software applications. In Proceedings of the

Fifth International Conference on Quality Software, QSIC ’05, pages 470–476,

Washington, DC, USA, 2005. IEEE Computer Society.

[18] Y. Chen, S. Liu, and F. Nagoya. An approach to integration testing based on

data flow specifications. In Z. Liu and K. Araki, editors, Theoretical Aspects of

Computing - ICTAC 2004, volume 3407 of Lecture Notes in Computer Science,

pages 235–249. Springer Berlin / Heidelberg, 2005.

[19] Y. Chen, R. L. Probert, and H. Ural. Model-based regression test suite generation

using dependence analysis. In A-MOST ’07: Proceedings of the 3rd interna-

tional workshop on Advances in model-based testing, pages 54–62, New York,

NY, USA, 2007. ACM.

[20] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A Formal Evaluation

of Data Flow Path Selection Criteria. IEEE Trans. Softw. Eng., 15(11):1318–

1332, 1989.

[21] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and

B. M. Horowitz. Model-Based Testing in Practice. In International Conference

on Software Engineering, pages 285–294, 1999.

148

[22] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph

Transformation (Monographs in Theoretical Computer Science. An EATCS Se-

ries). Springer, 2006.

[23] G. Engels and R. Heckel. Graph transformation as a conceptual and formal frame-

work for system modeling and model evolution. In ICALP ’00: Proceedings of

the 27th International Colloquium on Automata, Languages and Programming,

volume 1853 of LNCS, pages 127–150, London, UK, 2000. Springer-Verlag.

[24] G. Engels, M. Lohmann, S. Sauer, and R. Heckel. Model-driven monitoring:

An application of graph transformation for design by contract. In A. Corradini,

H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors, Graph Trans-

formations, Third International Conference, ICGT 2006, Natal, Rio Grande do

Norte, Brazil, September 17-23, 2006, Proceedings, volume 4178 of LNCS, pages

336–350. Springer, 2006.

[25] L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional,

2(3):17–23, 2000.

[26] P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria.

IEEE Trans. Softw. Eng., 14(10):1483–1498, Oct. 1988.

[27] U. Golas, E. Biermann, H. Ehrig, and C. Ermel. A Visual Interpreter Semantics

for Statecharts Based on Amalgamated Graph Transformation. In Proceedings of

Int. Workshop on Graph Computation Models (GCM’10), Electronic Communi-

cations of the EASST, 39, 2011.

[28] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An empirical

study of regression test selection techniques. ACM Trans. Softw. Eng. Methodol.,

10(2):184–208, 2001.

149

[29] B. Güldali, M. Mlynarski, A. Wübbeke, and G. Engels. Model-based system test-

ing using visual contracts. In Proceedings of Euromicro SEAA Conference 2009,

Special Session on “Model Driven Engineering”, pages 121–124, Washington,

DC, USA, 2009. IEEE Computer Society.

[30] R. Gupta, M. Jean, M. J. Harrold, and M. L. Soffa. An approach to regression test-

ing using slicing. In In Proceedings of the Conference on Software Maintenance,

pages 299–308. IEEE Computer Society Press, 1992.

[31] J. H. Hausmann, R. Heckel, and M. Lohmann. Model-based development of web

services descriptions enabling a precise matching concept. Int. J. Web Service

Res., 2(2):67–84, 2005.

[32] R. Heckel, T. A. Khan, and R. Machado. Towards test coverage criteria for vi-

sual contracts. In Proceedings of Graph Transformation and Visual Modeling

Techniques, GTVMT 11, Electronic Communications of the EASST, 41, 2011.

[33] R. Heckel and M. Lohmann. Towards contract-based testing of web services. In

Proc. of the TACoS 2004, Electronics Notes Theory Computer Sciences in Elec-

tronic Notes in Theoretical Computer Science, 116:145–156, 2005.

[34] K. Hölscher, P. Ziemann, and M. Gogolla. On translating uml models into graph

transformation systems. Journal of Visual Languages and Computing, 17(1):78

– 105, 2006.

[35] D. Hoffman. A taxonomy for test oracles. Quality Week 1998, page 8, 1998.

[36] J. Hou, B. Xu, L. Xu, D. Wang, and J. Xu. A testing method for web services

composition based on data-flow. Wuhan University Journal of Natural Sciences,

13:455–460, 2008.

150

[37] W. Howden. Reliability of the path analysis testing strategy. Software Engineer-

ing, IEEE Transactions on, SE-2(3):208 – 215, September 1976.

[38] S. Jurack, L. Lambers, K. Mehner, and G. Taentzer. Sufficient criteria for con-

sistent behavior modeling with refined activity diagrams. In Model Driven Engi-

neering Languages and Systems, 11th International Conference, MoDELS 2008,

Toulouse, France, September 28 - October 3, 2008. Proceedings, volume 5301

of Lecture Notes in Computer Science, pages 341–355, Berlin, Heidelberg, 2008.

Springer.

[39] G. M. Kapfhammer. The Computer Science and Engineering Handbook, chapter

Chapter 105: Software Testing. CRC Press, Boca Raton, FL, second edition,

2004.

[40] T. A. Khan and R. Heckel. A methodology for model-based regression testing

of web services. In Testing: Academic and Industrial Conference - Practice and

Research Techniques, 2009, TAIC PART ’09, pages 123 –124. IEEE, September

2009.

[41] T. A. Khan and R. Heckel. On model-based regression testing of web-services

using dependency analysis of visual contracts. In Fundamental Approaches to

Software Engineering - 14th International Conference, FASE 2011, Held as Part

of the Joint European Conferences on Theory and Practice of Software, ETAPS

2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume

6603 of Lecture Notes in Computer Science, pages 341–355. Springer, 2011.

[42] T. A. Khan, O. Runge, and R. Heckel. Testing against visual contracts: Model-

based coverage. In Proceedings of 6th International Conference on Graph Trans-

formation, ICGT 12, LNCS. Springer, 2012. To Appear.

151

[43] T. A. Khan, O. Runge, and R. Heckel. Visual contracts as test oracle in AGG

2.0. In Proceedings of Graph Transformation and Visual Modeling Techniques,

GTVMT 12, Electronic Communications of the EASST, 47, 2012.

[44] E. Kit and S. Finzi. Software testing in the real world: improving the process.

ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

[45] B. Korel, L. H. Tahat, and B. Vaysburg. Model based regression test reduction

using dependence analysis. In 18th International Conference on Software Main-

tenance (ICSM 2002), Maintaining Distributed Heterogeneous Systems, 3-6 Oc-

tober 2002, Montreal, Quebec, Canada. IEEE Computer Society, 2002.

[46] M. Lallali, F. Zaidi, and A. Cavalli. Timed modeling of web services composition

for automatic testing. In Signal-Image Technologies and Internet-Based System,

2007. SITIS ’07. Third International IEEE Conference on, pages 417 –426, dec.

2007.

[47] L. Lambers, H. Ehrig, and F. Orejas. Conflict detection for graph transformation

with negative application conditions. In Graph Transformations, Third Interna-

tional Conference, ICGT 2006, Natal, Rio Grande do Norte, Brazil, September

17-23, 2006, Proceedings, volume 4178 of Lecture Notes in Computer Science,

pages 61–76. Springer, 2006.

[48] H. Leung and L. White. Insights into regression testing. In Software Maintenance,

1989., Proceedings., Conference on, pages 60 –69. IEEE, October 1989.

[49] L. Li, W. Chou, and W. Guo. Control flow analysis and coverage driven testing for

web services. In Web Services, 2008. ICWS ’08. IEEE International Conference

on, pages 473 –480. IEEE, 2008.

152

[50] M. Lohmann, L. Mariani, and R. Heckel. A model-driven approach to discovery,

testing and monitoring of web services. Test and Analysis of Web Services, pages

173–204, 2007.

[51] M. Lohmann, S. Sauer, and G. Engels. Executable visual contracts. In VLHCC

’05: Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-

Centric Computing, pages 63–70, Washington, DC, USA, 2005. IEEE Computer

Society.

[52] L. Mei, W. Chan, T. Tse, and F.-C. Kuo. An empirical study of the use of Frankl-

Weyuker data flow testing criteria to test bpel web services. In Computer Software

and Applications Conference, 2009. COMPSAC ’09. 33rd Annual IEEE Interna-

tional, volume 1, pages 81 –88, July 2009.

[53] B. Meyer. Applying "design by contract". IEEE COMPUTER, 25:40–51, 1992.

[54] E. Najumudheen, R. Mall, and D. Samanata. A dependence representation for

coverage testing of object-oriented programs. Journal of Object Technology,

9(4):1–23, July 2010.

[55] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and

generating fuctional tests. Commun. ACM, 31(6):676–686, 1988.

[56] A. Pasquini and E. D. Agostino. Fault seeding for software reliability model

validation. Control Engineering Practice, 3(7):993 – 999, 1995.

[57] M. Penta, M. Bruno, G. Esposito, V. Mazza, and G. Canfora. Web services re-

gression testing. In L. Baresi and E. D. Nitto, editors, Test and Analysis of Web

Services, pages 205–234. Springer, 2007.

153

[58] D. Peters, S. Member, I. David, L. Parnas, and S. Member. Using test oracles

generated from program documentation. IEEE Transactions on Software Engi-

neering, 24:161–173, 1998.

[59] S. L. Pfleeger. Software Engineering: Theory and Practice. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 2001.

[60] S. Rapps and E. J. Weyuker. Selecting software test data using data flow infor-

mation. IEEE Trans. Softw. Eng., 11(4):367–375, 1985.

[61] D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-based test oracles

for reactive systems. In Proceedings of the 14th international conference on

Software engineering, ICSE ’92, pages 105–118, New York, NY, USA, 1992.

ACM.

[62] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques.

IEEE Transactions on Software Engineering, 22, 1996.

[63] O. Runge, C. Ermel, and G. Taentzer. AGG 2.0 – new features for specifying and

analyzing algebraic graph transformations. In Applications of Graph Transfor-

mation with Industrial Relevance, 4th International Symposium, (AGTIVE’11),

Proceedings, volume 7233 of LNCS. Springer, 2012.

[64] M. Ruth, S. Oh, A. Loup, B. Horton, O. Gallet, M. Mata, and S. Tu. Towards

automatic regression test selection for web services. In COMPSAC ’07: Pro-

ceedings of the 31st Annual International Computer Software and Applications

Conference, pages 729–736, Washington, DC, USA, 2007. IEEE Computer So-

ciety.

[65] A. Sinha and A. Paradkar. Model-based functional conformance testing of web

services operating on persistent data. In Proceedings of the 2006 workshop on

154

Testing, analysis, and verification of web services and applications, TAV-WEB

’06, pages 17–22, New York, NY, USA, 2006. ACM.

[66] I. Sommerville. Software Engineering: (Update) (8th Edition) (International

Computer Science Series). Addison Wesley, 8 edition, June 2006.

[67] B. Tsai, S. Stobart, and N. Parrington. Employing data flow testing on object-

oriented classes. Software, IEE Proceedings, 148(2):56 –64, Apr. 2001.

[68] W.-T. Tsai, Y. Chen, and R. Paul. Specification-based verification and validation

of web services and service-oriented operating systems. In WORDS05: Proceed-

ings of the 10th IEEE International Workshop on Object-Oriented Real-Time De-

pendable Systems, pages 139–147, Washington, DC, USA, 2005. IEEE Computer

Society.

[69] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing

approaches. Software Testing, Verification and Reliability, 2011.

[70] Q. Xie and A. M. Memon. Designing and comparing automated test oracles for

gui-based software applications. ACM Trans. Softw. Eng. Methodol., 16(1), Feb.

2007.

[71] H. Zhu. A note on test oracles and semantics of algebraic specifications. In

Quality Software, 2003. Proceedings. Third International Conference on, pages

91 – 98, November 2003.

[72] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.

ACM Comput. Surv., 29:366–427, December 1997.

155

	I Introduction and Preliminaries
	Introduction
	Motivation
	Approach
	Visual Contracts as Test Oracles
	Model-based Coverage
	Regression Testing

	Contributions
	Thesis Outline

	Background
	Testing
	Visual Contracts
	Graph Transformation
	Graphs, rules, and transformations

	Running Example
	Independence and Critical Pairs
	Summary

	II Model-Based Testing
	Typed Attributed Graph Transformation Systems with Rule Signatures
	Rule Signatures
	Summary

	Test Oracles Using Visual Contracts
	Challenges
	Model as Oracle
	Partiality of Visual Contracts
	Failure Handling
	Adaptation of Output Types

	Using AGG as an Oracle
	Model as Oracle
	Partiality of Visual Contracts
	Failure Handling
	Adaptation of Output Types

	Implementation
	Application to the Running Example
	Limitations of the Approach
	Summary

	Model-Based Coverage Criteria
	Dependency Graphs
	Coverage Criteria
	Summary

	Dynamic Analysis of Dependencies and Conflicts
	Dynamic Analysis of Dependencies and Conflicts
	Implementation
	Application to the Running Example
	Limitations of the Approach
	Summary

	Model Based Regression Testing
	Evolution Scenarios
	Scenario I
	Evolution Scenarios II

	Classification of Test Cases
	Coverage Analysis
	Application to the Running Example
	Generation of Test Suite
	Validation of Quality of Entire Test Suite
	Classification of test cases into OB, RU, and RQ
	Validation of the quality and required size of RQ
	Coverage Analysis

	Limitations of the Approach
	Summary

	Case Study: Bug Tracking System
	Bug Tracking System
	Service Implementation
	Model Artifacts

	Test Oracles
	Setup and Execution
	Results and Evaluation
	Threats to Validity

	Coverage Analysis
	Setup and Execution
	Results and Evaluation
	Threats to Validity

	Regression Testing
	Setup and Execution
	Results and Evaluation
	Threats to Validity

	Summary

	III Comparison and Conclusion
	Comparison to the State of the Art
	Test Oracles
	Model-based Coverage Criteria
	Regression Testing
	Summary

	Conclusion and Outlook
	Conclusion
	Outlook
	Test Case Analysis and Generation
	Learning Visual Contracts
	Rules Signature for Multi Objects
	Application Conditions
	Evaluation of Effectiveness of Proposal

	Visual Contracts: Bug Tracker Service
	References

