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A new family of prefactored cost-optimized schemes is developed to minimize the com-

putational cost for a given level of error in linear wave propagation applications, such as

aerodynamic sound propagation. This work extends the theory of Pirozzoli1 to the pref-

actored compact high-order schemes of Hixon,2 which are MacCormack type schemes that

use discrete Padé approximations. An explicit multi-step Runge-Kutta scheme advances

the states in time. Theoretical predictions for spatial and temporal error bounds are used

to drive the optimization process.

Theoretical comparisons of the cost-optimized schemes with a classical benchmark scheme

are made. Then, two numerical experiments assess the computational efficiency of the cost-

optimised schemes for computational aeroacoustic applications. A polychromatic sinusoidal

test-case verifies that the cost-optimized schemes perform according to the design high-

order accuracy characteristics for this class of problems. For this test case, upwards of a

50% computational cost-saving at the design level of error is recorded. The final test case

shows that the cost-optimized schemes can give substantial cost savings for problems where

a fully broadband signal needs to be resolved.

I. Introduction

A. Challenges in modelling wave generation and propagation phenomena

Models for the propagation of waves in a continuum are developed across the full spectrum of physical
sciences, including aeroacoustics, where increasingly stringent aircraft noise regulations3, 4 promote the de-
velopment of accurate and affordable methods for predicting aerodynamically generated noise. Enhanced
Computational Aeroacoustic (CAA) schemes are sought that can model sound generation and its propa-
gation as part of the industrial design process, where predictions of accuracy compatible with the design
specifications are required at an affordable cost, produced within specific time-constraints, earlier in the
design process, using multi-processor computer clusters.

Computational aeroacoustic schemes that model the sound generation and propagation as one simulation
typically face a number of challenges, such as in the direct approach to modelling trailing edge noise, which
is a typical exemplary aeroacoustic problem. Small–scale flow structures, of the size of the boundary layer
thickness, cross a trailing edge, where they experience large amplitude fluctuations in momentum. The
interaction generates small amplitude acoustic pressure perturbations of long wavelength, compared to the
boundary layer thickness. These radiate at the speed of sound, which is much larger than the flow structure
mean convection speed.

In a direct computational aeroacoustic simulation of the trailing edge problem, the computational domain
size scales with the long wavelength of the acoustic pressure perturbation whereas the spatial discretization
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scales with the small flow structures. This separation of length scales results in large sized computational
meshes. Furthermore, supporting large amplitude localised momentum fluctuations and small amplitude
acoustic perturbations in the same solution requires numerical schemes with low dispersion and low dissi-
pation characteristics, to prevent the low–amplitude acoustic signal from being distorted and/or suppressed
by the flow solver numerical viscosity.

B. Prefactored compact finite-difference schemes

Different aeroacoustic problems exhibit different flow physics. Therefore no single algorithm is available
to model all problems with adequate resolution and accuracy. Low Mach number acoustically active flows
typically involve capturing complex features that are nevertheless computationally smooth, that is, these
features do not involve any sharp change in the flow state, such as from a shock. In these circumstances,
it is computationally advantageous to use higher than second-order (high-order) schemes that can achieve
exponential (e−aN ) convergence rates by increasing the scheme’s order as opposed to algebraic (N−b) con-
vergence rates by increasing the spatial mesh refinement; here, N is the number of degrees of freedom and a
and n are positive real numbers. Several numerical methods for aeroacoustics have emerged in the last two
decades5–7 with attendant applications documented in four proceedings of the Computational Aeroacoustic
(CAA) workshops on benchmark problems.8–10 Lele11 pioneered the use of Padé type compact and explicit
optimized schemes in aeroacoustics. This work highlighted the requirement for special near-boundary treat-
ment, driven by the longer finite-difference stencils used in these high-order methods. Hixon2 introduced in
1996 a prefactorization method to reduce the non-dissipative central-difference stencil of the compact schemes
to two lower-order biased stencils which have easily soluble matrices of reduced size. The advantages of these
schemes over traditional compact schemes arise from their reduced stencil size and the independent nature
of the resultant factored matrices. By reducing the stencil size of the compact schemes, the prefactoriza-
tion method reduces the depth of the boundary frame over the perimeter of the computational domain
where ad-hoc boundary stencils are required. This simplifies the specification of the boundary conditions.12

Ashcroft and Zhang13 has extended the prefactorization method to a broader class of compact schemes
using a more general derivation strategy, which combines Fourier analysis with the notion of a numerical
wavenumber. This class of optimized prefactored schemes exhibits better wave propagation characteristics
than the standard prefactored compact ones.

C. Optimization of the numerical methods

Several finite-difference explicit and compact methods are now available for solving wave propagation prob-
lems in a low Mach number flow. It is typical to involve a high performance computer cluster for such a
computation, where the cost of the computation is important. It is therefore of interest to develop and
implement an optimization strategy on the computational cost, based on an acceptable level of numerical ac-
curacy of the results. The issue of computational efficiency of finite-difference schemes has been investigated
in details by Colonius and Lele7 and by Spisso and Rona.14 These authors considered the dispersive and
dissipative characteristics of several types of spatial discretization. The error associated with approximate
time integration is usually considered separately from the spatial error. Spatial and temporal errors combine
in finite difference time-marching schemes to determine the overall numerical accuracy of the solution. Piroz-
zoli1 developed in 2007 a general strategy for the analysis of finite-difference schemes for wave propagation
problems, trying to involve time integration in the analysis in a natural way. The analysis of the global
discretization error has shown the occurrence of two approximately independent sources of error, associated
with the discretizations in space and time. The improvement of the performance of the global scheme can
be achieved by trying to separately minimize the two contributions. The analysis leads to logical and simple
criteria for deriving optimized space- and time-discretization schemes, based on the concepts of spatial and
temporal resolving efficiencies. That is a achievable by a careful design of the space- and time-discretization
schemes, as well as an appropriate choice of the grid spacing and of the time step. This analysis points
towards a substantial computer time saving.

D. Obtaining and testing optimized pre-factored compact schemes

The objectives of the present work are to extend the computational cost optimization method of Pirozzoli1

to prefactored compact schemes, assess by numerical experiment the actual computational cost of the newly
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developed optimized schemes, and verify that the desired level of numerical accuracy of the solution is
achieved. In completing this aim, several challenges were overcome. For the spatial differentiation, the
compact stencils optimized for set levels of error required an analytical pre-factorization that retained the
non-dissipative characteristics of the equivalent compact centred scheme and satisfied additional symmetry
relationships of pre-factored functions. Secondly, the coupling of the optimized spatial discretization with a
separately optimized temporal integration by Bernardini and Pirozzoli15 for Runge-Kutta schemes was used
to obtain a space and time cost-optimized time-marching scheme for a given design level of error.

The numerical tests for verifying the level of numerical accuracy and computational cost of the optimized
schemes posed a number of challenges. Each accuracy set-point used for optimizing the scheme produced
one set of coefficients for the discrete pre-factored spatial differentiation and temporal integration. Each
set required testing over a discrete Courant and wavenumber space of 8030 points to obtain numerically
iso-cost and iso-accuracy maps to compare with the a-priori analytical predictions. These computations
were performed on the High Performance Computer cluster Alice at the University of Leicester. The cluster
is an assembly of 208 pairs of 2.6 GHz CPUs with 64GB RAM per node pair. One segregated node with
segregated memory was used for all the numerical tests to prevent other jobs running concurrently on the
cluster from affecting the assessment of the computational cost.

E. Paper outline

The paper is organized as follows: in Section II, the theory of the cost-optimization of Pirozzoli,1 based on
the optimization of the computational cost for a given error level, is reviewed and the approximate decoupling
of the spatial and temporal error is introduced. The de-coupled errors are used in Section III to obtain a
new family of prefactored cost-optimized schemes, with three different levels of numerical accuracy. In this
section, the algebraic symmetry properties of the prefactorized stencils from Hixon2 are used to define a new
spatial differentiation for the cost-optimized compact schemes that is prefactored. The spatial differentiation
is coupled with a Runge-Kutta time integration that is cost-optimised to a matching level of accuracy by
the cost-optimization process of Bernardini and Pirozzoli.15 The theoretical performance of the optimised
schemes are then investigated for a range of cost-levels. Numerical tests in one spatial dimensions are
reported in Section IV and compare the numerical accuracy achieved by the computational schemes against
the design values from Section III. Section IV also addresses whether the analytic cost function used for the
cost-optimization is a good representation of CPU time recorded during the actual computations. Finally,
Section IV investigates the performance gain achieved by the optimised schemes versus their non-optimized
counterparts. Conclusions from the current work and future perspectives are presented in Section V.

II. Optimization of finite-difference schemes for wave propagation phenomena

A. Compact finite difference schemes

By performing a Taylor’s expansion of a smooth function f : R→ R, its derivatives can be shown to satisfy
the following relations

Q
∑

j=−P

αj
∂f

∂x
(x+ jh) =

1

h

S
∑

j=−R

ajf(x+ jh) +O(hn), (1)

where (S + R) ≥ 1, Q ≤ S, P ≤ R, P and Q are non-negative integers, and h > 0. Consider now a set
of uniformly spaced nodes indexed by i along the R axis, as shown in Figure 1, where xi = (i − 1)h, for
1 ≤ i ≤ N and h = L/(N − 1). Letting fi = f(xi), then finite difference approximations f ′

i of the first order
derivatives ∂f

∂x (xi) can be found using the (R+ S + 1) stencil:

Q
∑

j=−P

αjf
′
i+j =

1

h

S
∑

j=−R

ajfi+j . (2)

Selecting P = Q = 0 gives an explicit scheme, while other choices yield implicit schemes, otherwise known
as Padé or compact schemes. Formally, from Eq. (1), the approximations f ′

i have a truncation error of
O(hn) and standard techniques seek to choose coefficients αj and aj , which give the largest possible n for
a given stencil width. For brevity, we use CPQRS to denote compact schemes. Of particular interest in
CAA is the measure of error in the wave propagation characteristics of a single Fourier component of f(x).
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A monochromatic wave of wavelength λ and wavenumber k has a scaled wavenumber κ = kh with support
0 ≤ κ ≤ π. Upon taking Fourier coefficients of Eq. (1) and ignoring the contributions from the higher order
terms, the scaled pseudo-wavenumber of scheme Eq. (2) can be defined by

κ̄(κ) =
1

i

∑S
j=−R aje

ijκ

∑Q
j=−P αjeijκ

. (3)

If κ̄ = κ could be achieved over the entire wavenumber range, then the finite difference estimate of f ′
i by

Eq. (2) would be exact. In practice, the discrepancies between κ and κ̄ increase as κ → π, driven by the
analytical form of the Padé approximation by which k̄ = 0 at κ = π. κ̄ is, in general, complex valued
and its real part corresponds to dispersive error, while its imaginary part is related to dissipation error.
In computational aeroacoustics, where disturbances are transmitted over large distances, it is important to
minimise dissipative error. Selecting R = S, Q = P and letting aj be antisymmetric and αk be symmetric
produces a scheme with zero dissipation. This desirable property is included in the current work by restricting
the stencil optimisation to tridiagonal compact schemes (P = Q = 1) with five point stencil (R = S = 2)
i.e., C1122 schemes. In this case the scaled pseudo-wavenumber is a real value given by

κ̄(κ) =

∑2
j=1 2aj sin(jκ)

1 + 2α1 cos(jκ)
. (4)

This work shows the optimization of the prefactored compact stencils to the one parameter family of C1122
schemes given by



















α0 = 1,

a0 = 0,

a1 = −a−1 = 1
3 (α1 + 2),

a2 = −a−2 = 1
12 (4α1 − 1).

(5)

The choice α1 = 1/3 yields the sixth-order C1122 scheme. The analysis in this article is, in principle,
extensible to more general CPQRS compact schemes.

x1 x2 xi−2 xi−1 xi xi+1 xi+2 xN−1 xN

◦——–◦·················◦——–◦——–•——–◦——–◦···············◦——–◦
← h →

← −−−−−−−−−−−−−−−L−−−−−−−−−−−−−− →
f1 f2 fi−2 fi−1 fi fi+1 fi+2 fN−1 fN

◦——–◦·················◦——–◦——–•——–◦——–◦···············◦——–◦

Figure 1. Variation of discrete function fi = f(xi) along uniformly discretised streamwise length L.

B. Runge–Kutta time stepping

The semi-discretisation of a general conservation law by means of finite differences gives rise to a non-
autonomous system of ODEs of the form

dU

dt
= F(U(t), t), (6)

U(t0) = U0, (7)

where U represents the vector containing the solution values at spatial nodes. The solution can be time-
marched from t = tn to t = tn +∆t by means of an explicit p-stage, two level Runge-Kutta scheme, which
is formulated as

U(0) = Un, (8)

U(l) = Un + βl∆tF(U(l−1)), l = 1, . . . , p, (9)

Un+1 = U(p), (10)
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where the coefficients αl can be determined to achieve a given formal order of accuracy by means of a Taylor
expansion, or, for example, to minimise dissipation and phase errors.16, 17 Assuming F(U) = AU, where A
is linear, the scheme can be rewritten as

Un+1 = Un +

p
∑

j=1

(∆t)pγjA
pUn, (11)

where γj = Πp
l=p−j+1βl. This article uses the 4-stage Runge-Kutta scheme with γ1 = 1, γ2 = 1/2 and γ3, γ4

free parameters. Setting γ3 = 1/3! and γ4 = 1/4! yields a formally 4th order accurate scheme.

C. Linear advection equation analysis

The one dimensional single-scale problem

The one dimensional linear advection equation (LAE)

∂u

∂t
+ c

∂u

∂x
= 0, u(x, 0) = u0(x), (12)

where c is the wave speed, is a simple platform for developing and testing appropriate schemes for more
complicated, multi-dimensional, multi-variable problems. Imposing the sinusoidal monochromatic initial
condition u0(x) = û0e

ikx on infinite and periodic domains gives rise to the solution u(x, t) = û0e
i(−ωt+kx),

where the angular frequency ω and the wavenumber k are related by the dispersion relation ω = ck.
For the p-stage Runge-Kutta scheme defined in Eq. (11) and the compact scheme from Eq. (1), the

amplification factor r(κ, σ) from one time level to the next can be obtained18 as

r(κ, σ) = 1 +

p
∑

j=1

γj(−iσκ̄(κ))
j , (13)

where σ = c∆t/h is the Courant number and j = 1, . . . , p. In the case of null spatial error, i.e., when κ̄ = κ,
the amplification factor is

rt(z, γj) = 1 +

p
∑

j=1

γj(−iz)
j, (14)

where z = σκ. The stability limit zs is then given by the following condition:

zs = max{z : 0 < z̄ ≤ z, |rt(z̄, γj)| ≤ 1}. (15)

Let uh(·, ·) denote an approximation to u(·, ·). Following the work of Pirozzoli,1 we consider the relative
error in the L2-norm across one wavelength defined as

E =
‖uh(·, T )− u(·, T )‖2

‖u0(·)‖2
, (16)

where

‖w‖2 =

(

1

λ

∫ x0+λ

x0

|w(x)|2 dx

)1/2

,

and λ = 2π/k is the wavelength. It can then be shown,1 that, to a good approximation,

E ≈ (ckT )
|r(k, σ) − e−iσκ|

σκ
. (17)

Multi-dimensional single-scale problem

For a problem in d space dimensions, the cost Cd of its numerical solution can be shown by dimensional
arguments7 to scale as

Cd ∝ pNop

(

T

∆t

)(

L

h

)d

, (18)
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where (L/h)d is the number of points in the domain, Nop is the required number of operation per mesh
node, p is the number of RK stages and T/∆t is the number of time steps. By introducing non-dimensional
groups ckT and kL, which are, respectively, measures of the number of wavelengths travelled by a wave in
time T and the number of wavelengths contained in the computational domain L, the normalized error e
and normalized cost cd are obtained

e(κ, σ) ≡
E

ckT
=
|r(k, σ) − e−iσκ|

σκ
, (19)

cd(κ, σ) ≡
Cd

(cKT )(kL)d
= pNop

1

σκd+1
. (20)

The normalized error represents the numerical error incurred in advecting the wave over one period. Similarly,
the normalized cost represents the cost of advecting the wave in one dimension over the same period.

Multi-dimensional multi-scale problems

In practice, aeroacoustic signals are composed of a number of waves of differing wavelengths. It is therefore
of interest to extend the error and cost definitions from Eq. (19) and Eq. (20) so they apply to broadband

signals, supposing these have a spectrum of finite width |k| ≤ k̂ and varying propagation velocities |c| ≤ ĉ.

Let κ̂ = k̂h, σ̂ = ĉ∆t/h, then the formulae for the normalized global error and the normalized global cost
metric for a broadband signal can be defined as

ê(κ̂, σ̂) =
1

σ̂κ̂
max

(κ,σ)∈[0,κ̂]×[0,σ̂]
|r(k, σ) − e−iσκ|, (21)

ĉd(κ̂, σ̂) = pNop
1

σ̂κ̂d+1
. (22)

D. Optimal performance for multi-scale problems

In this work, optimising the performance of a scheme is taken as minimising the computational cost for a
given level of error, for given values of p and Nop and a given problem, i.e., for specific non-dimensional
groups ckT and kL values. To do this, a target level for the relative error ǫ is specified so that

ê(κ̂, σ̂) =
ǫ

ckT
≡ ǫ̃,

and the optimization consists of finding a pair of values (κ∗(ǫ̃),σ∗(ǫ̃)) that minimise the cost metric and
satisfy the stability condition Eq. (15).

An illustration of this optimisation process is depicted in Figure 2(a), which shows iso-lines of the nor-
malised global error ê(κ̂, σ̂) and normalised cost ĉ1(κ̂, σ̂) in the wavenumber-Courant number (κ̂, σ̂)-plane,
where the support is given by [0 ≤ σ̂ ≤ σ̂max, 0 ≤ κ̂ ≤ κ̂max]. Results are shown for the sixth-order compact
spatial discretisation scheme coupled with the four-stage, fourth-order RK method, denoted by C12RK4,
for which σ̂max = 1.42 and κ̂max = π. For the C12RK4 scheme, the iso-cost curves are convex whereas the
iso-error curves are concave.1 Under such topology, the cost minima occur at the single point of tangency
between the iso-lines and the circles in Figure 2(a) show the ‘optimal’ working condition for a number of
relative error values.

Let
ê(κ̂, σ̂) ≈ max(ê0(κ̂), êt(ẑ)) ≡ êa(κ̂, σ̂), (23)

be an approximation1 of ê(κ̂, σ̂) from Eq. (21) where ê0(κ̂) is the spatial error (assuming no temporal error)
and êt(ẑ) is the temporal error (assuming no spatial error). ê0(κ̂) and êt(ẑ) are given by

ê0(κ̂) ≡
1

κ̂
max

0≤κ≤κ̂
|κ̄− κ|, êt(ẑ) ≡

1

ẑ
max
0≤z≤ẑ

∣

∣

∣

∣

∣

∣

P
∑

j=0

(−iz)j − e−iz

∣

∣

∣

∣

∣

∣

, (24)

where ẑ = σ̂κ̂. êa(·, ·) enables a decoupling of the error into spatial and temporal contributions, which will
lead to a simplification of the computations that follow. Figure 2(b) shows a comparison of the optimal
working points for the C12RK4 scheme for the same levels of error as in Figure 2(a), when êa(κ̂, σ̂) is used
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Figure 2. (a) Iso-lines of normalized ‘global’ error function ê(κ̂, σ̂) (solid lines) and normalized cost function
ĉ1(κ̂, σ̂) (dashed lines), for C12RK4 scheme; circles indicate ‘optimal’ working condition. (b) Iso-lines of nor-
malized ‘global’ error function ê(κ̂, σ̂) (solid lines) and approximate normalized ‘global’ error function êa(κ̂, σ̂)
(dashed lines); circles and squares indicate the respective ‘optimal’ working conditions.

in place of ê(κ, σ). The dashed lines show the maximum of the spatial and temporal errors. The vertical
segments are where the spatial error is dominant and the dashed curves are where the temporal error is
dominant. The circles correspond to the error ê(κ̂, σ̂) estimated by Eq. (21) and the squares to êa(κ̂, σ̂).
Table 1 shows the optimal values (κ̂+, σ̂+) and (κ̂∗, σ̂∗), corresponding to (κ̂, σ̂) from Eq. (21) and Eq. (23),
respectively, and the relative distance between them defined by

D((κ̂+, σ̂+), (κ̂∗, σ̂∗)) =

[

(

κ̂+ − κ̂∗

κ̂+

)2

+

(

σ̂+ − σ̂∗

σ̂+

)2
]1/2

. (25)

For the errors considered, there is a maximum of 17% difference in the location of the ‘optimal’ working
conditions when using the two error definitions. Whereas such a discrepancy has an appreciable magnitude,
it still enables operating a finite difference time-marching scheme in the ball-park of its optimal design point,
as verified in a propagation of a monochromatic wave.19 This allows the splitting of the derivation of the
cost-optimized coefficients into a spatial component and a temporal component.

ê(κ̂, σ̂) êa(κ̂, σ̂)

ǫ κ̂+ σ̂+ κ̂∗ σ̂∗ D((κ̂+, σ̂+), (κ̂∗, σ̂∗))

1× 10−1 2.064 0.922 2.203 0.849 0.10

1× 10−2 1.384 0.686 1.577 0.633 0.14

1× 10−3 0.954 0.548 1.103 0.534 0.16

1× 10−4 0.656 0.446 0.762 0.432 0.16

1× 10−5 0.449 0.365 0.522 0.354 0.17

1× 10−6 0.307 0.301 0.356 0.291 0.17

Table 1. Comparison between the optimal pair (κ̂+, σ̂+) based on ‘true’ global error ê(κ̂, σ̂) and the optimal
pair (κ̂∗, σ̂∗) based on ‘approximate’ global error êa(κ̂, σ̂) for the classical C12RK4 scheme.
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III. Optimized compact, time-marching schemes and extension to prefactored

compact schemes

A. Optimized compact schemes

This section describes the optimisation of compact finite difference schemes, by which κ̂ is maximised for
a given normalised error level ǫ̃, assuming that time integration is exact. This is equivalent to finding the
maximum resolving efficiency κ̂opt so that all wavenumbers κ̂ ≤ κ̂opt are resolved with an error less than ǫ̃.
For this purpose, the error ê0(κ̂) from Eq. (24) is used.

The baseline spatial scheme is the compact C1122 scheme of Eq. (5) with the free parameter α1. The
new class of optimised schemes will be denoted C1122–n, where n represents the exponent in the target
ǫ̃ = 10−n. Optimisation in this setting is a non-trivial matter, as can be seen in Figure 3. In fact, the
values (αn

1 , κ̂
n
opt) at which κ̂ is highest occur at a corner point of the 10−n error contour. In addition, near

this corner point, for each α1, there can be multiple values of κ̂ which lie on the desired error contour. As
such, a standard local minimisation routine will not necessarily locate the optimum. The procedure used
for estimating (αn

1 , κ̂
n
opt) is as follows. For a given α1 the maximum κ̂, which gives the prescribed level

error, is found by utilising a number of local function solves starting at different initial guesses. A global
pattern search algorithm, which does not require the objective function to be smooth, is then used in the
αn
1 variable. The optimised values (αn

1 , κ̂
n
opt), for n = 4, 5 and 6 are shown as the filled symbols in Figure 3

and are presented in Table 2. Table 2 shows that the optimised values for α1 are above the ‘standard’ value
of 1/3 for all error levels, asymptoting toward α1 = 1/3 as the desired error level is reduced. This trend is
indicated by the dotted line in Figure 3. In addition, Table 2 shows the maximum resolving efficiency κ̂n for
a normalised error level ǫ̃ = 10−n, when the non-optimised C1122 scheme is used. Using the cost-optimized
coefficients increases the spatial resolving efficiency κ̂ from 47% up to 49% over the range 10−6 ≤ ǫ ≤ 10−4,
indicating a gain in spatial resolving efficiency from the spatial cost-optimization.

0

0.2

0.4

0.6

0.8

1

1.2

0.25 0.3 0.3̇ 0.35 0.4 0.45

ǫ̃ = 1× 10−4

ǫ̃ = 1× 10−5

ǫ̃ = 1× 10−6

Trajectory of (αn

1 ,κ
n

opt)

α1

κ̂

Figure 3. Iso-lines of ‘global’ spatial error ê0(κ̂) for the C1122 scheme from Eq. (5) with varying α1. The
filled symbols indicate the optimised working conditions. The dotted line indicates the locus of the optimised
working conditions that asymptotes to α1 = 1/3 as κ̂ → 0.

C1122–n C1122 RK4–n RK4

n αn
1 κ̂n

opt α1 κ̂n γn
3 γn

4 zns ẑnopt γ3 γ4 zs ẑn

4 0.354740 1.121 1/3 0.762 0.165242 0.0402486 2.826 0.436 1/6 1/24 2.83 0.331

5 0.337838 0.776 1/3 0.522 0.166106 0.0411119 2.828 0.272 1/6 1/24 2.83 0.186

6 0.335419 0.533 1/3 0.357 0.166486 0.0414859 2.829 0.160 1/6 1/24 2.83 0.105

Table 2. Coefficients and resolving efficiencies of optimised spatial C1122–n schemes and temporal RK4–n
schemes.
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B. Spatial differentiation by prefactored compact finite-difference schemes

In the C1122 scheme of Eq. (5) above, the approximation of the derivatives at the nodal points requires
the solution of a tridiagonal system of equations. In this section, following the methodology of Hixon,2

the tridiagonal system of equations is recast as two (upper and lower) bidiagonal systems. This gives a
prefactored compact scheme. Let the derivative f ′

i be split into a backward component f ′B
i and a forward

component f ′F
i so that

f ′
i =

1

2

(

f ′F
i + f ′B

i

)

. (26)

Suppose that f ′B
i and f ′F are found by using, respectively, the following backward and forward finite differ-

ence formulae:

αF
0 f

′
i + αF

1 f
′F
i+1 =

1

h

[

aFi−1fi−1 + aFi fi + aFi+1fi+1

]

, (27)

αB
−1f

′B
i−1 + αB

0 f
′
i =

1

h

[

aBi−1fi−1 + aBi fi + aBi+1fi+1

]

. (28)

The coefficients (αF , αB) and (aF , aB) in Eqs. (27) and (28) are determined so that the real (dispersive)
components of the scaled pseudo-wavenumbers of the forward and backward stencils are equal to the scaled
pseudo-wavenumbers of the original central scheme, and the imaginary (dissipative) components of the scaled
pseudo-wavenumbers are equal in magnitude and opposite in sign. Such schemes are termed MacCormack
schemes20. The scaled pseudo-wavenumber of the generic C1122 scheme of Eq. (5) is given by

κ̄(κ) =

2(α1+2)
3(1+2α1)

sin (κ) + (4α1−1)
6(1+2α1)

sin (2κ)

1
(1+2α1)

+ 2α1

(1+2α1)
cos (κ)

. (29)

In a similar manner, the scaled pseudo-wavenumber of the generic forward and backward operators are

Re
(

κ̄F (κ)
)

=

(

aF1 α
F
0 − aF0 α

F
1 − aF−1α

F
0

)

sin(κ)− aF−1α
F
1 sin(2κ)

(αF
0 )

2 + (αF
1 )

2 + 2αF
1 α

F
0 cos(κ)

, (30)

Im
(

κ̄F (κ)
)

=
−
(

aF1 α
F
1 + aF0 α

F
0

)

−
(

aF1 α
F
0 + aF0 α

F
1 + aF−1α

F
0

)

cos(κ)− aF−1α
F
1 cos(2κ)

(αF
0 )

2 + (αF
1 )

2 + 2αF
1 α

F
0 cos(κ)

, (31)

and for the backward stencil:

Re
(

κ̄B(κ)
)

=

(

aB1 α
B
0 + aB0 α

B
−1 − aB−1α

B
0

)

sin(κ) + aB1 α
B
−1 sin(2κ)

(αB
−1)

2 + (αB
0 )

2 + 2αB
−1α

B
0 cos(κ)

, (32)

Im
(

κ̄B(κ)
)

=
−
(

aB0 α
B
0 + aB−1α

B
−1

)

−
(

aB1 α
B
0 + aB0 α

B
−1 + aB−1α

B
0

)

cos(κ)− aB1 α
B
−1 cos(2κ)

(αB
−1)

2 + (αB
0 )

2 + 2αB
−1α

B
0 cos(κ)

. (33)

Imposing the following conditions

αF
j = αB

−j , aFj = −aB−j , −1 ≤ j ≤ 1,

ensures that the imaginary components of the forward and backward operators are equal in magnitude and
opposite in sign and that the real components are equal to one another. Further, by imposing

1
∑

j=−1

aFj = 0,

guarantees that the spatial derivatives vanish in regions of zero gradient. Finally, by matching corresponding
terms between Eq. (30) and Eq. (29) the following system of algebraic equations is obtained































aF1 α
F
0 − aF0 α

F
1 − aF−1α

F
0 = 2(α1+2)

3(1+2α1)
,

−aF−1α
F
1 = 4α1−1

6(1+2α1)
,

(αF
0 )

2 + (αF
1 )

2 = 1
(1+2α1)

,

2αF
1 α

F
0 = 2α1

(1+2α1)
,

aF1 + aF0 + aF−1 = 0.

(34)
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The quadratic terms mean that Eq. (34) has two solutions. The lower value solution for αF is selected
to minimize the ratio αF

1 /α
F
0 , so that the influence of errors at the boundaries on the interior scheme is

minimized, in problems that require closure at the computational domain boundaries.
Substituting αn

1 from Section III.A, Table 2, for α1 in Eq. (34), the prefactored coefficients for the C1122-
n schemes are obtained. The resultant prefactored coefficients are listed in Table 3, in double precision
(16 digits) format. It is noticeable that the standard C1122 scheme appears to exhibit a greater central
dominance in the stencil, confirmed by the higher valued aF0 coefficient. The coefficients in Table 3 together
with Eqs. (26), (27) and (28) fully define the prefactored compact finite difference approximation f ′

i of the
first-order spatial derivatives ∂f/∂x in the f domain interior, (i + 1)h ≤ x ≤ (N − 1)h.

Figure 4 shows the dispersive characteristics of the classical C1122 and the cost-optimised C1122-n
schemes. Figure 4(a) shows the real component of the scaled pseudo-wavenumber Re(κ̄(κ)) of the compact
scheme from Eq. (29) over the scaled wavenumber range 0 < κ ≤ π. The dashed line shows κ̄(κ) = κ
for the case of exact differentiation, and the lines with symbols the prefactored compact finite difference
approximations using different levels of target error 10−n. The insert in Fig. 4(a) shows that the maximum
value of the the real part of the scaled pseudo-wavenumber Re(κ̄(κ)) does not vary significantly among
the cost-optimized schemes. Due to the symmetric properties of the MacCormack schemes,20 the real
component of the scaled pseudo-wavenumber of the prefactored forward stencil from Eq. (30) is equal to
the real component of the scaled pseudo-wavenumber of the prefactored backward stencil from Eq. (32) and
is, by Eq. (26), also equal to the real part of the scaled pseudo-wavenumber of the original C1122 scheme
of Eq. (29), that is Re(κ̄(κ)) = Re(κ̄F (κ) = Re(κ̄B(κ)). Hence, each line with symbols shows Re(κ̄(κ)) =
Re(κ̄F (κ) = Re(κ̄B(κ)). Additionally, the two imaginary components of scaled pseudo-wavenumber of the
prefactored forward and backward stencils, respectively from Eqs. (30) and (32), are equal in magnitude and
opposite in sign and they cancel each other out by summing of Eq. (26), to give a dissipation-free scheme.

Figure 4(b) shows the spatial error ê0 for the classical C1122 and cost-optimized C1122-n schemes against
the discrete number of points per wavelength Nλ = 2π/κ. The classical scheme C1122 displays a straight
line (constant logarithmic roll-off rate), whereas the cost-optimized schemes C1122-n feature local ê0 minima
of 10−n for selected wavenumbers. At these wavenumbers the spatial error ê0 is reduced approximately by
one order of magnitude compared to the C1122 scheme. Similar ê0 − Nλ plots with single and multiple ê0
minima are reported in the literature for optimized finite-difference schemes.5, 11, 13, 21

C1122 C1122–4 C1122–5 C1122–6

αF
1 0.276393202250021 0.284319733102085 0.280029458740805 0.278074448732061

αF
0 0.723606797749979 0.715680266897915 0.719970541259195 0.721925551267939

aF1 0.87939886704167 0.870514243234187 0.875204935692797 0.877434323134828

aF0 -0.758797734083341 -0.741028486468374 -0.750409871385594 -0.754868646269656

aF−1 -0.12060113295833 -0.129485756765813 -0.124795064307203 -0.122565676865172

Table 3. Prefactored spatial discretization coefficients of the classical C1122 and optimized C1122–n schemes.

C. Cost-optimized Runge-Kutta time integration

The optimisation approach of Section III.A is herein extended to the Runge-Kutta time integration schemes
of Eqs. (8–10). Assuming a zero spatial differentiation error, the coefficients γm are sought that maximise
the temporal resolving efficiency ẑopt(ǫ̃) for a given value of the normalised error ǫ̃

ẑopt = max{z̃ : êt(z̃, γm) ≤ ǫ̃},

under the following stability constraint
ζẑopt(ǫ̃) ≤ zs, (35)

where zs is the stability limit defined in Eq. (15). The factor ζ ≥ 1.0 has been introduced to guarantee
a greater stability margin beyond the range of well resolved angular frequencies z. The four-stage, fourth-
order RK scheme is selected as the baseline temporal solver. To preserve formal second-order time integration
accuracy, let γ1 = 1 and γ2 = 1/2. This leaves two free parameters γ3, γ4 to be determined from ζẑopt.
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Figure 4. Dispersive characteristics of the prefactored classical C1122 and cost-optimized C1122–4, C1122–5
and C1122–6 schemes. (a) Real component of the prefactored compact scheme from Eq. (29). (b) Spatial error
e0 versus number of points per wavelengths Nλ.
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Figure 5. ‘Optimal’ working conditions of the generic RK4 schemes and corresponding temporal resolving
efficiency ẑ∗opt for a range of errors ǫ̃.

To find optimal values for differing levels of target error ǫ̃ = 1× 10−n, a global pattern search algorithm
similar to the one in Section III.A is used, in which an additional nonlinear constraint is incorporated to
satisfy Eq. (35). In this case, ζ = 1.1 was found heuristically to provide a good balance between performance
and stability. The results are plotted in Figure 5, these show that the cost-optimised time integration schemes
have smaller values of coefficients γ3 and γ4 than the classical fourth-order accurate RK scheme, indicated
by the discontinuous lines. As the level of normalised error ǫ̃ decreases, the cost-optimised coefficients γn

3 ,
shown by the lines with symbols, tend asymptotically to γ3 and γ4 respectively.

The coefficients of the optimised RK4–n schemes, their respective temporal resolving efficiencies and the
stability limits zs of Eq. (15) are listed in the Table 2. The stability limits of the temporal cost-optimized
schemes are marginally lower than the limit of the classical RK4 scheme, which is zs = 2.83. Using the
cost-optimised coefficients increases the temporal resolving efficiencies between 31% and 52% over the range
10−6 ≤ ǫ̃ ≤ 10−4, indicating a gain in temporal resolving efficiency from the temporal optimisation.

D. Theoretical performance of the cost–optimised schemes

Sections III.B and III.C considered the potential benefits of cost optimization in solving ordinary differential
equations in space and in time, respectively. This section explores combining C1122–n and RK–n schemes
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in a single numerical procedure, denoted C12RK4–n to solve the partial differential equation Eq. (12). The
application of the finite difference/Runge-Kutta schemes to a signal composed of waves all with κ < κ̂ can
give rise to numerical round-off errors, which manifest as spurious waves with κ > κ̂. In order to counter
this, the Courant number, which represents the time step advancement in the RK4 scheme, is restricted to
maintain numerical stability so that σ < σmax, where typically for the schemes considered σmax ≈ 1.5.

Figure 2(a) has shown that, given a target level of normalised error ê(κ̂, σ̂), it is possible to determine
the optimal working conditions (κ̂∗, σ̂∗) that give the smallest normalised cost ĉ1(κ̂, σ̂) and Figure 2(b) has
shown that the normalised approximate error êa(κ̂, κ̂) can be used in place of ê(κ̂, σ̂) for estimating (κ̂∗, σ̂∗).
Following the same procedure, the normalised cost c1(κ̂

∗, σ̂∗) of operating the C12RK4 and the C12RK4–n
schemes for different levels of normalised approximation of êa(κ̂, σ̂) were determined and the results reported
in Fig. 6(a). For each C12RK4–n scheme, the filled symbols denotes the normalised cost ĉ1(κ̂

∗, σ̂∗) of
operating this scheme at the normalised approximate error êa(κ̂

∗, σ̂∗) = 10−n, which is the designed error
level of the C12RK4–n scheme. Figure 6(a) confirms that for each C12RK4–n scheme, the designed level of
error 10−n of its spatial differentiation C1122–n and temporal integration RK4–n constituents is retained
once the spatial differentiation and temporal integration are coupled together in one partial differential
equation solver.

Whereas it is encouraging to notice that the C12RK4–n schemes retain their design level based on the
approximation êa(κ̂

∗, σ̂∗) at their design point, it is of interest to discuss the error trend away from the
êa = 10−n level, in comparison with the conventional C12RK4 scheme. All C12RK4–n schemes exhibit a
rate of convergence higher than the C12RK4 scheme up to their respective design error levels. Thereafter,
the C12RK4–n schemes exhibit a êa plateau with increasing ĉ1, followed by a convergence rate that is lower
than that of C12RK4. The êa trend is monotonically decreasing for all schemes. The variable error roll-off of
the C12RK4–n schemes offers some advantages and limitations in computational physics applications. The
monotonicity of the numerical error indicates that the scheme can be operated with confidence in wavenumber
bandwidth limited problems knowing the design error will not be exceeded. The variable error roll-off rate,
however, prevents the implementation of classical roll-off rate checks for mesh convergence computations as
constant error roll-off rates exhibit only at a normalised cost ĉ1 about two orders of magnitude higher than
the scheme’s optimal operating point. This cost difference is likely to amount to an onerous mesh resolution
in a practical computation, the rate of convergence of which requires testing by alternative means. Note,
the convergence rates are not linear in any case, but would just appears linear on a log-log plot.

Table 4 shows the computational cost c∗1 required by each of the optimised schemes to achieve their design
level of error ǫ̃. This is then compared with the corresponding cost ĉ∗1(C12RK4) required by the standard

C12RK4 scheme to obtain the same level of error; the percentage improvement (∆ĉ1) is between 48% and
56% and increases with increasing error level. In addition, the smallest error ǫ̃(C12RK4) achieved by the
standard scheme for the same costs c∗1 is shown, and the percentage improvement offered ∆ǫ̃ is seen to be in
the region of 80% for all the optimised schemes.

Let space-only optimised schemes be denoted by C12RK4–Sn, where the standard RK4 scheme is used
with the space optimised schemes of Section III.A, and time-only optimised schemes be denoted by C12RK4–
Tn where the standard C1122 spatial discretisation is combined with the temporal optimised schemes of
Section III.C; consistently n represents the exponent of the error level. Figure 6(b) shows a comparison
between the fully-optimised C12RK4–5 scheme and C12RK4–S5 and C12RK4–T5. The filled symbols and
dotted lines show the smallest normalised cost ĉ1 required by each scheme to give a normalised error of
êa = 10−5. To achieve an error of 10−5, the fully optimised scheme shows a cost advantage of 32.9% and
37.4%, over the C12RK4–T5 and C12RK4–S5 schemes, respectively. Similar results hold for other error
levels n, but these are omitted from Figure 6(b) for clarity. These results highlight the advantages achieved
when a scheme fully optimised in both space and time is used.

scheme ǫ̃ ĉ∗1 ĉ∗1 (C12RK4) ∆ĉ1(%) ǫ̃(C12RK4) ∆ǫ̃

C12RK4–4 10−4 73.65 142.67 48.45 4.98× 10−4 79.92

C12RK4–5 10−5 170.63 370.19 53.91 6.48× 10−5 84.57

C12RK4–6 10−6 422.36 963.55 56.17 7.28× 10−6 86.26

Table 4. Theoretical performance of cost-optimized schemes C12RK4–n for different target errors in one
dimensional space and comparisons with standard C12RK4 scheme.
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Figure 6. (a) Error estimated from Eq. (23) as a function of c1 for C12RK4–n schemes, one-dimensional
implementation. (b) Comparison of the estimated error among the C12RK4–5, C12RK4–T5 and C12RK4–S5
schemes.

IV. Numerical Experiments

This section presents a series of numerical examples to highlight the improvement in computational
efficiency that is attainable by using cost-optimised prefactored schemes.

A. Polychromatic wave

The first example solves numerically the one-dimensional LAE equation Eq. (12), on the interval (0, 1) with

c = 1, periodic boundary conditions u(0, t) = u(1, t), t > 0 and initial condition u(x, 0) =
∑4

j=1 sin(2
(j+1)πx).

The solution is a polychromatic wave with k̄ = 32π. For a given theoretical cost level ĉ1, a simulation is run
with the optimal Courant numbers σ̂∗ and optimal pseudo-wavenumber κ̂∗ found in Section III.D. Once an
approximate solution uh(x, t) has been found, the normalised relative numerical error ē can be calculated.
Here, ē is given by

ē2 =

∑N−1
i=1 (uh(xi, T )− u(xi, T ))

2

∑N−1
i=1 (u(xi, 0))2

, (36)

where N is the number of nodes in the computational domain.
Figure 7(a) and Figure 7(b) show respectively the iso-lines of the theoretical error function êa(·, ·) and

the iso-lines of the numerical error ē(·, ·) for the C12RK4–4 scheme. The locus of optimal points (σ̂∗, κ̂∗)
and the design point (κ̂opt, σ̂opt) for the C12RK4–4 scheme are overlaid on both figures. The a posteriori
computed numerical error ē(κ̂, σ̄) is dependent on the wavenumber spectrum of the problem being solved.
Still, the comparison between Figure 7(a) and Figure 7(b) shows that there is a strong correlation between the
theoretical error êa(κ̂, σ̂) and the numerical error ē(κ̂, σ̂) for this polychromatic wave propagation problem.
Figure 7(b) shows that, in the range 1 ≤ κ̂ ≤ 1.2, there is a valley of error lower than the theory predicts.
There are two branches to the locus of optimal points. The design point (κ̂opt, σ̂opt) lies on the right hand
branch and is located close to the valley of low error. The discontinuity in the locus of optimal points is due
to the non-monotonicity of the approximate spatial error function êa(·, ·) as κ̄ increases from 0.75 to 1.2 for
a fixed σ̄ < 0.5. This is shown in Figure 7(b) by the contour error labels over the range 0.75 < κ̂ < 1.2. The
non-monotonic error variation is lower in magnitude than the error change outside this region, as indicated
by the packing of the contour lines in Figure 7(b), so that this region can be regarded as featuring an
error plateau. In practice, by increasing the normalised cost ĉ1 above that given by the design point, the
theoretical error initially plateaus until the jump from the left to right branch. By increasing the cost above
that given by the design point, the theoretical error initially plateaus, until the jump from the right to the
left branch occurs. Thereafter, the error monotonically decays with the reduction of both κ̂ and σ̂ as shown
in Figure 6(a).
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Scheme ē ĉ∗1 ĉ∗1 (C12RK4) ∆ĉ1(%) ē(C12RK4) ∆e(%)

C12RK4–4 6.443× 10−5 74.376 170.56 56.39 4.706× 10−4 86.31

C12RK4–5 7.702× 10−6 171.7987 412.19 58.32 6.332× 10−5 87.84

C12RK4–6 9.565× 10−7 424.136 981.3 56.78 7.191× 10−6 86.71

Table 5. Example A. Performance of cost-optimised schemes at their operating points (κ̂∗, σ̂∗) and comparison
with the standard C12RK4 scheme.

Figure 8(a) plots the numerical error ē against cost ĉ1 for the optimised schemes C12RK4–n and the
standard C12RK4 scheme at a non-dimensional time T = 1 and overlays the theoretical results from Figure
8(a). The normalised numerical errors ē(κ̂∗, σ̂∗) computed a posteriori compare very favourably with the
approximate error estimates êa(κ̂

∗, σ̂∗). Each of the optimised schemes gives a significant improvement over
the C12RK4 scheme close to their respective design level of error, although the maximum cost reduction
is seen at error levels slightly below the design level of error. The approximate error êa(κ̂

∗, σ̂∗) in Figure
8(a) is shown to be consistently of the same order of magnitude of the a posteriori numerical error ē(κ̂∗, σ̂∗)
over the normalised cost range 101 ≤ ĉ1 ≤ 104. More specificially êa ≥ ē. This is a desirable feature, as it
indicates that êa can be used as an upper bound indicator for the normalised error for the application of
a cost optimized prefactored compact scheme to linear advection problems. It implies that the numerical
solution will not exceed an acceptable level of numerical error ǫ̃ = 10−n that is arbitrarily set by the
numerical modeller selecting a specific C12RK4–n scheme. The a posteriori numerical error trends shown
in Figure 8(a) can be explained by considering the iso-error maps in the (κ̂, σ̂) plane. For instance, in the
case of the C12RK4–4 scheme, the initial rapid decrease in error corresponds to moving along the right hand
branch of the locus of optimal points in Figure 7(b), until the design point is reached. The a posteriori
normalized numerical error would be then expected to plateau with increasing cost, based on the trend from
its approximation êa, however, the numerical error continues to decrease, due to the locus of optimal points
(κ̂∗, σ̂∗) just beginning to enter the valley of low numerical error. As the locus of points ‘climbs’ back out of
the valley, the a posteriori normalised error ē increases with cost until êa ≈ ē then begins to plateau until
the jump from the left to the right branch, where the a posteriori normlised numerical error converges at
increasing ĉ1 and decreasing κ̂. A similar discussion applies to both the C12RK4–5 and C12RK4–6 curves in
Figure 6(a). Table 5 reports the performance of the C12RK4–n schemes benchmarked against the C12RK4
scheme at their respective design points. For each optimised scheme operating at their design point, the
numerical error ē is close to the corresponding design level of error; in fact, the error is slightly below the
design level. For example, the C12RK4–4 scheme has an error of 6.443× 10−5 at its design point, compared
with the theoretical error 1× 10−4.

Figure 8(b) shows the normalized numerical error ē against computational time, at the same (κ̂∗, σ̂∗) as
in Figure 8(a). Computations were carried out on a machine with an Intel Xeon Ivy Bridge CPU running at
2.6GHz and the computational time was averaged over 100 runs per (κ̄∗, σ̄∗) pair to ensure the consistency
of the results. Qualitatively, Figure 8(b) is very similar to Figure 8(a). This indicates that ĉ1 is a good
pseudo-variable for the CPU time; this is confirmed in Figure 8(c), where the CPU time, t, is plotted against
ĉ1 for the C12RK4–5 scheme and shows ĉ1 ∝ t. The computations were repeated for the C12RK4–4 and
C12RK4–5 schemes and the constant of proportionality was found to be the same for all three schemes.

Table 5 that the percentage cost reduction ∆ĉ1 over the standard C12RK4 scheme in achieving the same
numerical error level ē attained by the optimised schemes operated at their design points. This cost reduction
varies from 50% to 60% and it increases with the scheme number n. Similarly, the percentage error reduction
∆e achieved by the optimised schemes over the C12RK4 scheme for the same cost ĉ∗1 is over 80% for each of
the optimised schemes. Using the t ∝ ĉ1 relationship from Figure 8(c), each of the optimised schemes offers
the same (percentage) reduction in CPU time over the C12RK4 scheme as the ∆ĉ(%) reported in Table 5.

B. Gaussian pulse

The second sample application of the C12RK4–n schemes is derived from Test case B from.15 A numerical
solution is sought for the one-dimensional LAE equation Eq. (12), over the domain (−100, 100), with c = 1,

periodic boundary conditions, and the initial condition u(x, 0) = 1
2e

−(x/3)2 . The solution has a broadband
Fourier decomposition and provides a good test of the C12RK–n schemes applied to a broadband signal. The
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Figure 7. (a) Iso-lines of global approximate error êa(κ̂, σ̂) for the C12RK4–4 scheme and (b) iso-lines of
polychromatic wave numerical error. The iso-lines are equally spaced on a log-scale and the levels shown are
the exponent of 10. Bold (magenta) lines indicate the locus of optimal (κ∗, σ∗) for the C12RK4–4 scheme, while
the filled circle corresponds to (κ̂opt, σ̂opt).

characteristic length scale for this problem is λ = 6, which corresponds to k̄ = π/3. For a given cost level
ĉ1, the optimal Courant number σ̂∗ and optimal pseudo-wavenumber κ̂∗ have been chosen based on those
computed in Section III.D. Figure 9(a) plots the normalised numerical error ē, computed using Eq. (36),
against cost ĉ1 for each of the optimised schemes C12RK4–n and the standard C12RK4 scheme at the final
time T = 100. In Figure 9(a), all optimal operating points of the C12RK4–n schemes, denoted by the filled
symbols, lie to the left of the continuous line, therefore, numerical solutions with the same level of normalised
numerical error ē can be obtained for a lower computational cost than when using the C12RK4 scheme. In
this case the reduction in computational cost ĉ1 obtained by using the optimised schemes is not as large as
in the polychromatic wave test case, but there is still a clear advantage in using the optimised schemes at
their respective design points. This is better appreciated in the enlargement of Figure 9(b) in the vicinity
of ē = 1× 10−6 and ē = 1× 10−5. Table 6 shows a comparison between the optimised schemes C12RK4–n,
n = 4, 5, 6, operating at their design points and the standard C12RK4 scheme. Table 6 confirms that, when
operating at their design points, all optimised schemes require a 15% to 25% lower cost than the C12RK4
scheme to achieve the same normalised numerical error ē. Similarly, when the optimised schemes are run at
their design point, they offer between a 30% and 50% reduction in normalized numerical error for the same
normalized cost ĉ∗1 when compared with C12RK4 scheme.

Notwithstanding the positive outcome from this broadband wave propagation test, which points to a
consistent performance advantage of the C12RK4–n schemes over the C12RK4 scheme, this performance
advantage is significantly lower than that predicted by the theory in Table 4. The background of this lower
performance gain is explored by reporting in Figure 9(a) by the dotted lines the approximate normalised error
êa(κ̂, σ̂) versus the normalised cost ĉ1 for the C12RK4–n and C12RK4 schemes. The approximate normalised
error in an a priori estimate that assumes equal contributions from all wavenumbers below k̄ = π/3. Recall
that Figure 4(a) indicates an increase in dispersion with increasing wavenumber. Given that the Gaussian
pulse has a definite roll-off at high wavenumbers, êa(κ̂, σ̂) overestimates ē, as shown by the dotted curves
lying above the continuous and discontinuous line in Figure 9(a). The approximate errors can be considered
to be upper bound estimates for ē because êa assumes the equal weighting of wavenumbers over the whole
wavenumber spectrum, which is not necessarily the case in a physical problem. Given that the baseline a
posteriori normalised numerical error is lower than êa, a more modest reduction in ē = 10−n appears to be
a reasonable outcome by the use of a C12RK4–n scheme.
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Figure 8. Example A: (a) Numerical error as a function of cost function ĉ1 (b) Numerical error as a function
of CPU time for the classical C12RK4 and optimised C12RK4–n schemes. (c) CPU time compared with
theoretical cost.

V. Conclusion

In this paper, cost-optimized prefactored schemes C12RK4–n have been developed based on both spatial
and temporal a priori error estimates. Numerical experiments have verified that, for representative test
cases, these cost-optimized schemes show significant reductions in theoretical cost compared to the non-
optimized scheme when an a posteriori numerical error is computed. In addition, the numerical experiments
verified that the theoretical cost used to derive the cost-optimized schemes is a good representative for CPU
time. For a problem with a polychromatic wave solution, each of the cost-optimised C12RK4–n schemes
achieve upwards of a 50% reduction in cost to achieve the same error level as the classical non-optimized
C12RK4 scheme, when operated at their design points. For the Gaussian pulse test case, where the solution
spans the full wavenumber spectrum, a cost reduction of between 15% and 25% is obtained. Such levels
of improvement in performance are attractive for both computationally expensive aeroacoustic applications
and for those applications requiring a high resolution both in frequency and in wavenumber space. Further
studies are required to investigate how the computational advantage of the cost-optimized schemes is affected
by the use of different computational boundary conditions and by the application of these schemes to model
multi-dimensional and non-linear wave propagation phenomena.
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Figure 9. Example B: (a) Numerical error as a function of one-dimensional cost function c1 with theoretical
results overlaid (dotted lines) and (b) zoom around the C12RK4–4, C12RK4–5 and C12RK4–6 design points.

Scheme ē ĉ∗1 ĉ∗1 ((C12RK4) ∆ĉ1(%) ē(C12RK4) ∆e(%)

C12RK4–4 6.784× 10−5 74.677 88.29 15.42 9.954× 10−5 31.85

C12RK4–5 7.7647× 10−6 173.227 218.78 20.82 1.365× 10−5 43.12

C12RK4–6 8.2525× 10−7 424.245 554.45 23.48 1.573× 10−6 47.54

Table 6. Example B: Performance of cost-optimised schemes at their operating points (κ∗, σ∗) and comparison
with standard C12RK4 scheme.
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