Development of an *in vitro* assay for detection of Resuscitation-promoting factor dependent mycobacteria induced by treatment with antimicrobial agents

Jessica Loraine^{\$}, Feifei Pu[&], Obolbek Turapov, Galina V. Mukamolova

Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK

^{\$}Current address: UCL School of Pharmacy, University College London, London, UK

[&] Current address: Department of Clinical Training Center Diagnostics Division, Siemens China, Shanghai, China

*To whom correspondence should be addressed. E-mail: gvm4@le.ac.uk

Running Title: Drug-induced Rpf-dependency

Content

Table S1. Primers used in the study.

Table S2. Viable counts for mycobacterial cultures prior to drug exposure

Figure S1. Effect of drug treatment on viability of *M. tuberculosis*.

Figure S2. Effect of drug treatment on viability of *M. smegmatis*

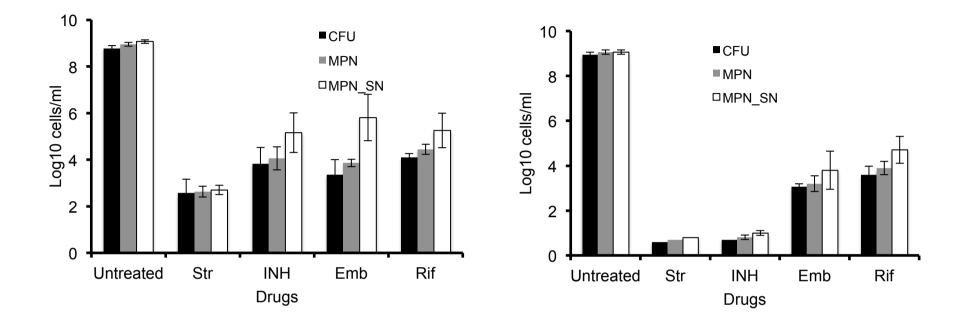
Figure S3. Effect of Rpf over-expression on *Msm* growth in Sauton's medium.

Figure S4. Viable counts of untreated, rifampin- and ethambutol- treated *M.smegmatis*

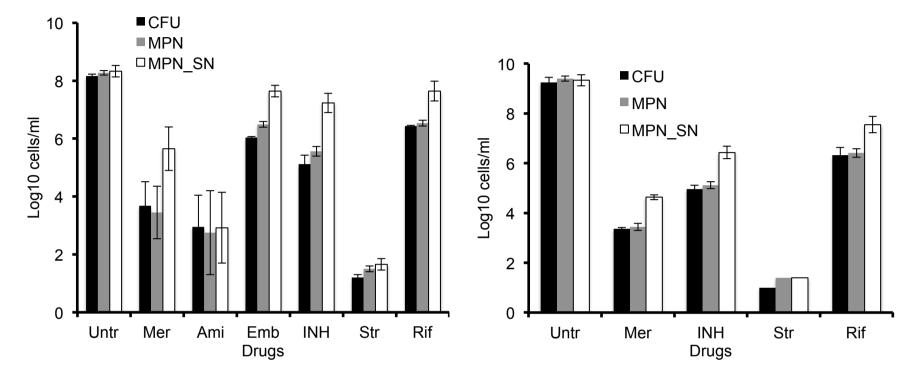
Figure S5. Viable counts of *M. smegmatis* strains exposed to different concentrations of isoniazid and rifampin.

Table S1. Primers used in the study

Primer	Sequence 5'-3'	Description		
RpfAF	AGT <u>GGATCC</u> ATGTTGCGCCTGGTAGTCGGTGCG	Mtb rpfA cloning in pMind		
RpfAR	ATA <u>ACTAGT</u> TCAACGCGTGCGCGCACCCGCTCGT	Mtb rpfA cloning in pMind		
	GCAGC			
RpfBF	AGT <u>GGATCC</u> ATGTTGCGCCTGGTAGTCGGTGCG Mtb rpfB cloning in pM			
RpfBR ATA <u>ACTAGT</u> TCAACGCGTGCGCGCACCCGCTCGT		Mtb rpfB cloning in pMind		
	GCAGC			
RpfCF	AGT <u>GGATCC</u> GTGCATCCTTTGCCGGCCGACCAC	Mtb rpfC cloning in pMind		
RpfCR	TAT <u>ACTAGT</u> TCACATATGGCGCGGAATACTTGCCT	Mtb rpfC cloning in pMind		
	GAAT			
RpfDF	AGT <u>GGATCC</u> CAGCAAGGTGGAGCTGCTATG	Mtb rpfD cloning in pMind		
RpfDR	CAT <u>ACTAGT</u> TCAACGCGTATCGTCCCTGCTCCCC	Mtb rpfD cloning in pMind		
	GAACA			
RpfEF	TCG <u>GGATCC</u> GCGAAAGGAACAACGTTGAAGAAC	Mtb rpfE cloning in pMind		
RpfER	TGC <u>ACTAGT</u> TCACGCGTGCCGCGGCGGCCGCAG	Mtb rpfE cloning in pMind		
RpfF	TGCC <u>GGATCC</u> GCCGATCAGCGAGGA	rpf cloning in pMind		
RpfR	GTC <u>ACTAGT</u> TCAGGCCTGCGGCAG	rpf cloning in pMind		
RT-RpfAF	CGG <i>ACTAGT</i> CTA GCCAACGATGATGAT	qRT-PCR Mtb rpfA		
RT-RpfAR	TCAGAACGGAATCATCCACCGTGA	qRT-PCR Mtb rpfA		
RT-RpfBF	GCGATGCCGAAATCCATCACCTTT	qRT-PCR <i>Mtb rpfB</i>		


RT-RpfBR	AGAACCTCAACGTCTACGGCTTCA	qRT-PCR Mtb rpfB
RT-RpfCF	AGCTGCCTCTCGGGAACAA	qRT-PCR Mtb rpfC
RT-RpfCR	GACCACAGTGCGATCGGAAGG	qRT-PCR Mtb rpfC
RT-RpfDF	GCAACAGATCGAGGTCGCAG	qRT-PCR Mtb rpfD
RT-RpfDR	CGAGGAACGTCAGGATGTGG	qRT-PCR Mtb rpfD
RT-RpfEF	T GGCCTACAGCGTGAACTGG	qRT-PCR Mtb rpfE
RT-RpfER	GAACGCAGCACGTTCTCCAGC	qRT-PCR Mtb rpfE
16srRNAF	TCCGGGCCTTGTACACA	qRT-PCR 16s rRNA
16srRNAR	TAACACCCGAAGCCAGTGG	qRT-PCR 16s rRNA
MindF	TGAGTCATAGTTGCACTTTATCAT	Primer for pMind
MindR	TCCGAATCAATACGGTCTAGAGA	Primer for pMind

*Restriction sites are outlined


Table S2. Viable counts for mycobacterial cultures prior to drug exposure

Strain	Log10 CFU	Log10 MPN	Log10 MPN_SN ±STDV	Figures for treated
	±STDV	±STDV		samples
<i>M. tuberculosis</i> H37Rv	7.65±0.3	7.68±0.41	7.8	Figure 1 A, B; S1
M. smegmatis	7.54±0.21	7.48±0.27	7.6±0.19	Figure 1 C, D; S2
<i>M. smegmatis</i> pMind	7.42±0.23	7.37±0.21	N/D	Figure 4B, C; S5
M. smegmatis	7.21±0.03	7.17±0.05	N/D	Figure 4B, C; S5
pMind:: <i>rpfD</i>				

N/D – not determined

Figure S1. Effect of drug treatment on viability of *M. tuberculosis*. Log phase cultures were inoculated in 7H9 medium without (untreated control) or with drugs and incubated at 37°C with shaking for 3 days (left panel) or 7 days (right panel). Cells were pelleted and washed with 7H9 medium before determination of CFU counts on 7H10 agar or MPN counts in 7H9 medium (MPN) or in 7H9 supplemented with 50% (v/v) culture supernatant. Average of three independent experiments (done in duplicates) are shown. Error bars indicate standard deviations. Drugs were added at the following concentrations (µg/ml): streptomycin (Str) 20, rifampin (RIF) 5, isoniazid (INH) 10, ethambutol (Emb) 20.

Figure S2. Effect of drug treatment on viability of *M. smegmatis.* Log phase cultures were inoculated in 7H9 medium without (untreated control) or with drugs and incubated at 37°C with shaking for 24 hours (left panel) or 48 hours (right panel). Cells were pelleted and washed with 7H9 medium before determination of CFU counts on 7H10 agar or MPN counts in 7H9 medium (MPN) or in 7H9 supplemented with 50% (v/v) culture supernatant. Average of three independent experiments (done in duplicates) are shown. Error bars indicate standard deviations. Drugs were added at the following concentrations (µg/ml): streptomycin (Str) 20, rifampin (RIF) 100, isoniazid (INH) 10, ethambutol (Emb) 20, meropenem (Mer) 50, amikacin (Ami) 100.

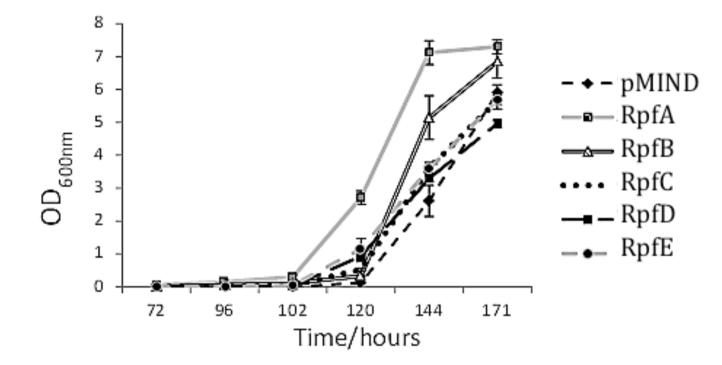
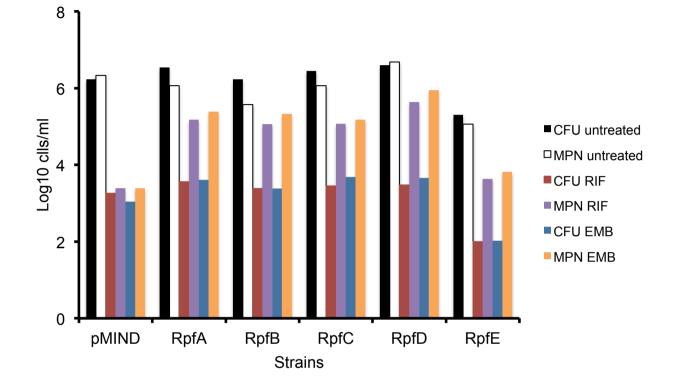



Figure S3. Effect of Rpf overexpression on *M. smegmatis* growth in Sauton's medium. 10 ml *M. smegmatis* cultures were grown in Sauton's medium supplemented with 50 μ g/ml kanamycin and 20 ng/ml tetracycline. Average OD₆₀₀ values of three independent experiments are shown, error bars indicate standard deviation.

Figure S4. Viable counts of rifampin-, ethambutol-treated and untreated *M.smegmatis.* Mycobacteria from logarithmic growth phase were treated with antimicrobials and their viable counts determined as described in Methods. Drugs were added at the following concentrations (µg/ml): rifampin (RIF) 100 and ethambutol (Emb) 20.

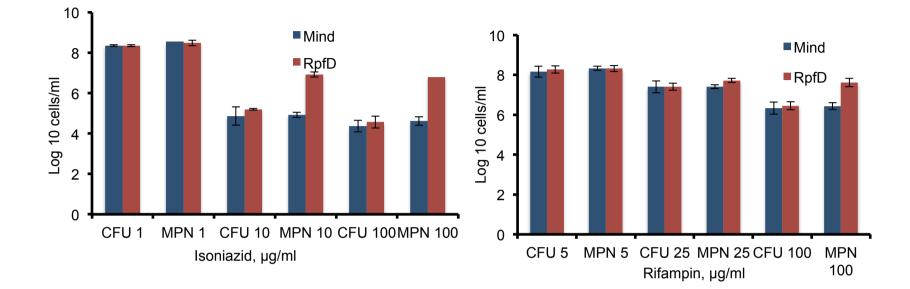


Figure S5. Viable counts of *M. smegmatis* strains exposed to different concentrations of isoniazid (left panel) and rifampin (right panel). Mycobacteria from logarithmic growth phase were treated with antimicrobials for 24 hours and their viable counts determined as described in Methods. Drugs were added at the following concentrations (µg/ml): isoniazid 1, 10 and 100; rifampin 5, 25 and 100.