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Abstract 

Background: MR-Egger regression (Bowden et. al. IJE 44: 512--25) has recently been proposed as a 

method for Mendelian randomization (MR) analyses incorporating summary data estimates of 

causal effect from multiple individual variants that is robust to invalid instruments. It can be used to 

test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. 

MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance 

weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights 

that consider the SNP-exposure associations to be known, rather than estimated. We call this the 

`NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach 

exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, 

which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger 

regression has yet to be studied.  

Methods: An adaptation of the 2I  statistic from the field of meta-analysis is proposed to quantify 

the strength of NOME violation for MR-Egger.  It lies between 0 and 1, and indicates the expected 

relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it
2

GXI . The method of Simulation Extrapolation is also explored to counteract the dilution. Their joint 

utility is evaluated using simulated data and applied to a real MR example. 

Results: In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-

Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger 

the violation (as indicated by lower values of 
2

GXI ) the stronger the dilution. When additionally all 

genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is 

inflated and the causal effect underestimated. Simulation Extrapolation is shown to substantially 

mitigate these adverse effects. We demonstrate our proposed approach for a two-sample summary 

data MR analysis to estimate the causal effect of low density lipoprotein on heart disease risk. A high 

value of 
2

GXI  close to 1 indicates that dilution does not materially affect the standard MR-Egger 

analyses for these data.  



Conclusions: Care must be taken to assess the NOME assumption via the 2

GXI  statistic before 

implementing standard MR-Egger regression in the two-sample summary data context. If 2

GXI  is 

sufficiently low (less than 90%), inferences from the method should be interpreted with caution and 

adjustment methods considered. 

Keywords: Mendelian randomization, MR-Egger regression, Measurement error, I2 statistic, 

Simulation Extrapolation. 
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Introduction 

Mendelian randomization (MR) [1] has become an established method for probing questions of 

causality in observational epidemiology. By making use of genetic variants satisfying the 

Instrumental Variable (IV) assumptions, it is possible to test whether an exposure causally influences 

a health outcome by circumventing the problem of confounding that compromises standard 

associational methods. The explosion in publicly available summary data estimates of genetic 

association from large international genome-wide association (GWA) consortia [2,3] has made MR 

ever more popular for two reasons. Firstly, summary data estimates of causal effect from multiple 

genetic variants can be simply and transparently combined to yield results that closely mirror what 

would be obtained with individual participant data [4,5]. Secondly, a dramatic rise in the number of 

variants available for the analysis has led to an increased power for testing causal hypotheses [6]. In 

this paper we focus on the most common form of summary data MR study, whereby genetic 

associations with the exposure and outcome are gleaned from independent samples  to furnish a 

`two-sample' analysis [4]. 

The standard method for MR with summary data (referred to as the IVW approach [5,7]) makes the 

fundamental assumption that each included variant is a valid IV. That is, it is (i) associated with the 

exposure, (ii) not associated with any confounders of the exposure and outcome, and (iii) is only 

associated with the outcome through the exposure. If (i)-(iii) hold then an inverse variance weighted 

average of the individual causal effect estimates (e.g as in a meta-analysis) is both efficient and 

unbiased. Unfortunately, assumptions (ii)-(iii) are unlikely to hold in an MR study, particularly in the 

summary data setting when large numbers of variants are harvested from GWA studies and included 

in the analysis. For example, Holmes et al [8] conduct an MR-analysis of High Density Lipoprotein 

Cholesterol on heart disease risk by liberally including many genetic variants that were also 

associated with other lipid fractions (e.g. triglycerides). This could introduce `horizontal pleiotropy' 

[9] and lead to violation of assumption (ii) or (iii) due to variants affecting the outcome via a 

different biological pathway. This could in turn lead to bias, type I and type II error inflation, if 

unaccounted for. MR-Egger regression [10] is a recently proposed method to both detect and adjust 

for pleiotropy in an MR analysis. 

Like all IV methods, the IVW approach is known to be vulnerable to weak instrument bias, which can 

be quantified for each genetic variant included in the analysis via its F-statistic [11]. However, the F-

statistic is not a sufficient indicator of instrument strength for MR-Egger. In this paper we clarify that 

instrument strength has a very different meaning for MR-Egger in the two-sample summary data 

context; it is a collective property of all genetic variants included in the analysis, and a `weak set' of 

instruments can be understood as inducing regression dilution bias [12,13] into its estimate of causal 

effect. We formalize the cause of this dilution by defining it as a violation of the `NO Measurement 

Error' (NOME) assumption. The 2I statistic [14] is proposed to quantify the strength of NOME 



violation for a set of instruments used for MR-Egger regression, and the expected magnitude of 

regression dilution that will occur. We also describe how the established method of Simulation 

Extrapolation (SIMEX) [15,16] can be used for bias adjusted inference. 

In the Methods section we review the IVW and MR-Egger regression approaches to Mendelian 

randomization in the two-sample, summary data context. We then explain the consequences of 

NOME violation for both methods for several hypothetical but general scenarios. In the Results 

section we firstly show the impact of NOME violation on MR-Egger causal estimates using simulated 

data and the performance of bias adjustment via SIMEX. We then demonstrate our methods for a 

real two-sample summary data MR analysis on the effect of low-density lipoprotein and heart 

disease, using summary data from the Global Lipids Genetics and CARDIoGRAM consortia [2,3]. We 

conclude with a discussion of the issues raised and point to future research. 

Technical details are kept to a minimum in the main body of the paper, the interested reader is 

directed to the Appendix for further clarification where appropriate.  

 

Methods 

Modelling assumptions 

We assume that normally distributed summary data estimates are available for the SNP-exposure 

associations ( 1̂ ,..., ˆL ) and SNP-outcome associations (
1̂ ,..., ˆ

L ) of L  uncorrelated variants, and 

have been obtained in independent samples of non-overlapping participants for the purposes of a 

two-sample MR study. We allow the precision of these estimates to differ across variants (for 

example due to allele frequency), denoting the variance of the j th SNP-exposure association and 

SNP-outcome association as 2

Xj  and 2

Yj  respectively. We assume throughout that each variant is 

truly associated with the exposure (IV assumption (i) holds) so that the underlying SNP-exposure 

association parameters 1,..., L   are all non-zero. Furthermore, we assume that the genetic data has 

been coded so that SNP-exposure associations are all positive. Our models for the j th SNP-

exposure and SNP-outcome associations are as follows: 

                                       2 2ˆˆ ~ ( , ), ~ ( , ).j j Xj j j j YjN N                                                              (1) 

Here   represents the true causal effect that we wish to estimate and j  allows for the possibility 

that genetic variant j  could affect the outcome via a separate molecular pathway than the 

exposure X . We refer to j  as the pleiotropic effect of variant j . A more detailed description of 

the modelling assumptions is provided in the Appendix. 

The ratio estimate for the causal effect derived from the j th variant only, ˆ j , is equal to the SNP-

outcome association divided by the SNP-exposure association, ˆ ˆ/j j  [17]. If variant j  is a valid IV 

then it is a consistent estimate for the causal effect  . It is common practice to assume that the 

variance of the SNP-exposure association is negligible [5,7]. We call this the NO Measurement Error 

(NOME) assumption. Taken at face value, NOME implies 2

Xj  = 0 and therefore the estimate ˆ j  is 

identical to the true value j  for all j . Under the NOME assumption the variance of the j th ratio 



estimate 2 2ˆ ˆ( ) /j Yj jvar     because ˆ j  is treated as a constant. This is equivalent to only the first 

term from a full Taylor series expansion of ˆ( )jvar  .  

The IVW approach 

The inverse variance weighted (IVW) estimate, ˆ
IVW , is a weighted average of the ratio estimates 

1
ˆ ˆ,..., L  . The IVW method (as originally proposed) assumes that all variants are valid IVs so that 

none of the genetic variants exhibit pleiotropy and hence j  = 0 for all j . It is common practice to 

use inverse variance weights derived via NOME [5,7], so that it has the form: 
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The IVW estimate can be equivalently obtained as the slope from a linear regression of the SNP-

outcome association estimates on the SNP-exposure association estimates with the intercept term 

constrained to zero.  

If the above assumptions are satisfied, ˆ
IVW  is an unbiased estimate for  . However, NOME will 

never be perfectly satisfied in practice. In the presence of substantial measurement error, the IVW 

estimate is known to suffer from weak instrument bias [18], where instrument strength is typically 

represented by the F-statistic. In the two-sample summary data context and with uncorrelated 

genetic variants, the F-statistic for variant j  can be approximated as jF  = 2 2ˆ /j Xj  . We use this 

approximation for the remainder of the paper. In the two-sample context considered here, the 

effect of weak instrument bias is to attenuate the causal effect towards the null [4]. 

MR-Egger regression 

In contrast to the IVW method, MR-Egger regression [10] does not assume that all of the SNP-

outcome associations are unaffected by pleiotropy, so the j s are all allowed to be non-zero. Put 

simply, it assumes that the magnitude of the pleiotropic effects are independent of their strengths 

as instruments. That is, the size of the j  for variant j  provides no information on the 

corresponding j . This is referred to as the InSIDE (Instrument Strength Independent of Direct 

Effect) assumption [10]. See also the Appendix for a more detailed discussion. In common with the 

IVW method, MR-Egger makes the NOME assumption. It performs a regression of the SNP-outcome 

associations on the SNP-exposure association of the form 0 1
ˆ ˆ

j E E j     . Weighting the 

regression by the precision of ˆ j  improves efficiency and is recommended, but for simplicity of 

explanation, we ignore this extra complication for now. 

The intercept estimate 0
ˆ

E  can be interpreted as the average pleiotropic effect across all variants 

and the slope estimate 1
ˆ

E  provides an estimate for the true causal parameter  . MR-Egger can 

only detect pleiotropy when it is `directional' (i.e. it has a non-zero average value), since only then 



will 0E   be non-zero. It could be, for example, that all variants exhibit pleiotropy, but on average it 

cancels out. This is referred to as `balanced' pleiotropy [10]. When InSIDE and NOME are perfectly 

satisfied, MR-Egger returns an unbiased estimate for the causal effect  . However, when InSIDE 

holds but NOME is violated, it will not be unbiased; its expected value will equal the true value   

multiplied by a scale factor between 0 and 1 as below: 
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Here, 2

  is the variance of the set of true SNP-exposure associations 1,..., L   and 2s  represents 

the additional `average' variability among 1̂
ˆ,..., L   due to estimation (or measurement) error. Only 

when 2s  is zero will NOME be satisfied. When the SNP-exposure estimates are more variable than 

the underlying parameter values, so that 2s  is non-zero, the resulting NOME violation leads to the 

MR-Egger estimate being attenuated towards zero, as per formula (3). This attenuation can be 

understood as an archetypal case of regression dilution bias. A more detailed explanation of formula 

(3) is given in the Appendix. 

Assessing regression dilution with 2

GXI  

The ratio var var ˆ( ) / ( )   in equation (3), and hence the magnitude of the regression dilution, can 

be approximated using the 2I  statistic [14], a well-known tool for assessing between study 

heterogeneity in meta-analysis. Firstly, define Cochran's Q statistic for the SNP-exposure 

associations to be  
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where ̂  is the mean of the SNP-exposure associations (weighted by 1/ 2

Xj ). Our corresponding 2I  

statistic is then defined to be 
2

GXI  = ( ( 1)) /GX GXQ L Q  . Our approximation implies that, on 

average, 1
ˆ

E  is roughly equal to 
2

GXI , as suggested by formula (3). See the Appendix for further 

details and the slightly adapted formula for 
2

GXI  under a weighted analysis. 

In order to clarify the definition of 
2

GXI  in the MR context we refer to Figure 1. The solid black dots 

show a scatter plot of the SNP-outcome association estimates (the ̂ s) versus the true SNP-

exposure associations (the  s). The hollow black dots show the SNP-outcome association estimates 

versus the SNP-exposure association estimates (the ̂ s). In practice, we only observe the hollow 

black dots (estimate versus estimate). The horizontal dashed lines centred at each solid black dot 

represents the region within which we would expect to find the estimate ˆ j  (hollow black dot) with 

95% probability, given that it is generated from equation (1). These lines are proportional in length 

to the standard error of each SNP-exposure association estimate. 

Note that there is variation in the length of the dashed lines, because each SNP-exposure standard 

error is unique, depending on factors such as allele frequency. The 
2

GXI  statistic represents the true 



variance of the SNP-exposure associations, 2

  (or spread of black dots) divided by the variance of 

the SNP-exposure association estimates, 2 2s   (or spread of hollow black dots). 

The 
2

GXI  statistic therefore offers a convenient interpretation: When the underlying SNP-exposure 

associations are sufficiently heterogeneous, and the uncertainty in the SNP-exposure association 

estimates is small in comparison to this underlying variability, 
2

GXI  will be close to 1 and the 

attenuation due to NOME violation will be negligible. If the underlying associations are generally 

similar in magnitude, or if their estimates are relatively imprecise (or both), then 
2

GXI  could be much 

less than 1 and the attenuation will be severe. An 
2

GXI  statistic of 0.9 provides the assurance that 

the likely bias in 
1
ˆ

E   due to measurement error is around 10% of the true value of  . This is, 

equivalent to the assurance provided by an F-statistic of 10 in traditional IV analyses. 

The impact of regression dilution: further examples 

In order to gain further insight into the impact of regression dilution for MR-Egger, consider the 

scatter plots of hypothetical summary data shown in Figure 2. Here we have removed error bars 

indicating the uncertainty in the SNP-exposure association estimates for clarity. In each scatter plot 

InSIDE is assumed to hold. 

In Figure 2 (top-left) we imagine that all variants are invalid instruments but the pleiotropy is 

balanced. That is, 1, , L   are all non-zero but their average value is zero. Furthermore, the causal 

effect,   is positive.  We also assume that all the variants are strong instruments in the traditional 

sense of having large F-statistics, but that NOME is violated to the extent that 
2

GXI  = 0.75. As before, 

each hollow black dot represents ( ˆˆ ,j j  ) - the SNP-exposure association estimates versus the SNP-

outcome association estimates - whereas the solid black dots show the true j s plotted against the 

ˆ
j s. Note again that the hollow black dots are more variable than the solid black dots. 

Since all instruments are strong and the pleiotropy is balanced ( 0E  = 0), the IVW estimate perfectly 

aligns with the true slope, which is denoted by the solid black line. However, because NOME is 

violated, we expect the MR-Egger estimate to be diluted towards zero by a factor of 
2

GXI  = 3/4. This 

is shown by the solid blue line. Since the slope and intercept parameter estimates from MR-Egger 

are negatively correlated, this means that the intercept parameter estimate is positively biased. In 

the Results section, we show that this leads to an inflation in the type I error rate of the MR-Egger 

test for directional pleiotropy. 

Figure 2 (top-right) shows the same scenario as Figure 2 (top-left) except instead of balanced 

pleiotropy, there is now negative directional pleiotropy. As before, the MR-Egger slope parameter is 

diluted towards zero from   by a factor of 3/4. In this case the intercept estimate is also 

attenuated, meaning that the power of the MR-Egger test to detect true directional pleiotropy is 

reduced. In this example the IVW estimate (shown by the red line) is much closer to the null, due to 

the pleiotropy acting in the opposite direction of the causal effect. Its bias is solely due to the 

incorrect assumption that all variants are valid IVs, and not because of regression dilution. Figure 2 

(bottom-left) shows the case where there is positive directional pleiotropy and a positive causal 

effect. In this example the IVW estimate is further from the null, since the pleiotropy acts in the 



same direction as the causal effect. The MR-Egger slope parameter is diluted towards zero as before 

but the intercept estimate is increased. However, since it is truly non-zero, this does not lead to type 

I error inflation. Figure 2 (bottom-right) shows the case where there is positive directional 

pleiotropy, but the causal effect is zero. In this case, violation of the NOME assumption has no 

effect; if the causal effect is truly zero then it cannot be attenuated any further. As in Figure 2 

(bottom-left) the IVW method mistakenly attributes the positive pleiotropy to a causal effect. 

Bias adjustment via Simulation Extrapolation 

An intuitive but crude bias corrected estimate for the causal effect would be 2

1
ˆ /E GXI . In a 

preliminary investigation, however, this approach did not work well. Even when the true value of 
2

GXI  is large, its estimate is a random quantity and can sometimes be close or equal to zero (as we 

will subsequently illustrate and explain in Figure 3). Therefore, simply dividing the original MR-Egger 

estimate by 
2

GXI  can yield unstable results. We found that the well-established technique of 

Simulation Extrapolation (SIMEX) [15] to be more reliable. Under SIMEX, new data sets are created 

by simulating SNP-exposure association estimates under increasing violations of the NOME 

assumption. That is, for each new data set, a new SNP-exposure estimate for variant j  is generated 

with a mean value equal to the observed estimate ˆ( )j , but with a variance that is (1+ ) times as 

large as 2

Xj  (where   is a non-negative number). The simulated data are combined with the 

observed SNP-outcome estimates to yield a new value for 
1
ˆ

E . This is repeated many times for the 

same value of   to get an average value for 1
ˆ

E , and the whole process is repeated for a range of 

 's. The average value of 1
ˆ

E  tends to get smaller as the magnitude of   increases, since the 

regression dilution effect will be stronger. A statistical model is then fitted to the set of average 

values obtained across the  's, by treating them as data points. The fitted model then enables the 

user to extrapolate back and estimate the value of 1
ˆ

E  that would have been obtained if NOME had 

been satisfied. This is equivalent to setting   to -1. See Figure 5 for an illustration of the method in 

practice and the Appendix for further technical details. R and Stata  packages exist to implement 

SIMEX [16,19], providing point estimates as well as accompanying standard errors to enable full 

inference after bias adjustment.  

Results 

Simulations 

In this section we demonstrate the impact of NOME violation (as measured by 
2

GXI ) on the 

performance of MR-Egger regression and the IVW approach, and show the utility of bias adjustment 

for MR-Egger regression via SIMEX. Data sets of 25 SNP-exposure and SNP-outcome associations 

were generated to furnish two-sample summary data MR analyses in the following manner: 

SNP-exposure associations for a given F  and 2

GXI  

SNP-exposure standard errors 1X ,..., 25X  and SNP-exposure parameters 1 25,...,   were drawn 

from Uniform distributions and then used to generate SNP-exposure estimates 1 25
ˆ ˆ,...,   from 

model (1). The lower and upper bounds of these distributions were chosen in order to fix the true 



F  and 
2

GXI  to the specific values desired. Initially, we fix F  to be close to that of the lipids data 

analysed in the following section ( F  = 125) and then consider four values of 
2

GXI : 95%, 90%, 85% 

and 75%. Table 4 and Figure 7 (left) in the Appendix show, for each value of 
2

GXI , the precise 

sampling distributions for 
2

1X ,...,
2

25X , 1 25,...,   and the resulting distribution of F-statistics (with 

mean value 125). By letting
2

1X ,...,
2

25X  take a range of values, we can account for heterogeneity in 

the precisions of SNP-exposure estimates present in real data due to differing allele frequency. 

SNP-outcome associations for a given pattern of pleiotropy 

SNP-outcome standard errors were generated by setting Yj  equal to  2* Xj  in order to reflect a 

common allele frequency for a given variant j  but different sample sizes in the underlying SNP-

exposure and SNP-outcome cohorts. Pleiotropy parameters 1 25,...,   were randomly generated 

from a Uniform distribution under five distinct scenarios. For a fixed causal effect,  , 1 25,...,   and 

1 25,...,Y Y   were then used to generate SNP-outcome association estimates 
1 25
ˆ ˆ,...,   from model 

(1). The five simulation scenarios explored were: 

 Scenario 1: Balanced pleiotropy ( ~j  Uniform(-0.2,0.2)) and a positive causal effect: 

Consistent with 1E   = 1, 0E  = 0; 

 Scenario 2: Negative directional pleiotropy ( ~j  Uniform(-0.2,0)) and a positive causal 

effect: Consistent with 1E   = 1, 0E  = -0.1; 

 Scenario 3: Positive directional pleiotropy ( ~j  Uniform(0,0.2)) and a positive causal effect: 

Consistent with 1E   = 1, 0E  = 0.1; 

 Scenario 4: Positive directional pleiotropy ( ~j  Uniform(0,0.2)) and a zero causal effect: 

Consistent with 1E   = 0, 0E  = 0.1; 

 Scenario 5: No pleiotropy (all j  = 0) and a zero causal effect: Consistent with 1E   = 0, 

0E  = 0. 

Note that in each scenario, the MR-Egger intercept parameter 0E  is equal to the arithmetic mean 

of the pleiotropy parameter distribution. Scenarios 1, 2, 3 and 4 mirror the situations highlighted in 

Figure 2 (top-left, top-right, bottom-left and bottom-right respectively). The additional scenario 

(scenario 5) is strictly the only one where the assumptions underlying the IVW approach (as 

originally proposed) are satisfied.  

An important facet of our simulations is that, for each summary data set, SNP-exposure and 

pleiotropy parameters (the  s and  s) are generated from independent distributions, as in [10]. 

Following this procedure enables us to see how MR-Egger regression would work on average across 

different MR data sets of the same size, as opposed to a single data set with fixed parameter values. 

This means we avoid having to pick specific values for the  s and  s, which could be seen as 

arbitrary. It also guarantees that, across the simulations, the average correlation between 

instrument strength and pleiotropy parameters will be zero (so that InSIDE is satisfied `on average'). 

However, for any single data set, this correlation will be non-zero and InSIDE will be strictly violated. 



We therefore refer to this data generating procedure as satisfying the `weak' InSIDE assumption, a 

concept which is further clarified in the Appendix. 

Exploring all five scenarios under the four values of 
2

GXI  gave 20 simulation settings in total. For the 

IVW approach we report the average causal effect estimate ˆ
IVW  and the probability of rejecting 

the causal null hypothesis   = 0. For MR-Egger regression (with and without adjustment via SIMEX) 

we report: The average estimate for the intercept parameter 
0
ˆ

E  and the probability of rejecting 

the null hypothesis of no directional pleiotropy ( 0 0E  ); the average estimate of the slope 

parameter 
1
ˆ

E  and the probability of rejecting the causal null (   = 0). All methods were 

implemented as described in the Results section, using t-tests for hypothesis testing at the 5% 

significance level. The results, which are the average of 5,000 simulations, are shown in Table 1. We 

label the rejection probabilities as P: when the null hypothesis is true P equals the type I error rate 

and when the null hypothesis is false P equals the power. The first two columns of Table 1 show the 

true value of 
2

GXI  and its average estimated value (they are close but not exactly equal). The most 

striking single observation is that, across all simulation settings, the average unadjusted MR-Egger 

estimate of causal effect, 1
ˆ

E , is approximately equal to   times the average 
2

GXI  estimate, in line 

with our theoretical prediction.  

IVW results 

Columns 3-4 of Table 1 show the performance of the IVW method. Since the 25 instruments are very 

strong, as measured by F , the IVW method has an almost 100% rejection rate of the causal null for 

scenarios 1-4 (which all contain pleiotropy). However this is its type I error rate for scenario 4, since 

the causal null is true. The type I error rate of the IVW estimate is preserved at the 5% level under 

scenario 5, when no pleiotropy or causal effect exists. 

Across all scenarios the average value of ˆIVW  is very insensitive to changes in
2

GXI . Under scenarios 

1 and 5 it is approximately unbiased and outperforms MR-Egger. Under scenarios 2-4 it is biased by a 

consistent amount due to the presence of directional pleiotropy and is inferior to MR-Egger. 

MR-Egger results 

Columns 5-8 of Table 1 show the performance of the standard MR-Egger method and columns 9-12 

show the performance of MR-Egger with SIMEX adjustment. Under scenario 1 there is balanced 

pleiotropy and a positive causal effect ( 0E  = 0, 1  ). The results show that increasing NOME 

violation (decreasing
2

GXI ) leads to type I error inflation of the MR-Egger test for pleiotropy above 

the 5% level, due to over-estimation of 0E . When 
2

GXI  = 75% the type I error rate is over 10%. 

Over-estimation of 0E  coincides with under-estimation of the causal effect for MR-Egger and a 

reduction in the power to reject the causal null. SIMEX is able to mitigate the bias in 1
ˆ

E  caused by 

measurement error, reduce the type I error rate of the MR-Egger test for pleiotropy and leave the 

power to detect a causal effect unchanged. 

Under scenario 2 there is negative directional pleiotropy and a positive causal effect ( 0E  = -0.1, 

1  ). Increasing NOME violation (decreasing
2

GXI ) has the effect of reducing the power to detect 



directional pleiotropy and the power to detect a causal effect for MR-Egger. By adjusting for bias in 

1
ˆ

E , SIMEX is able to marginally increase the power to detect directional pleiotropy and leave the 

power to detect a causal effect unchanged. Under scenario 3 there is positive directional pleiotropy 

and a positive causal effect ( 0E  = 0.1, 1  ).  The results are broadly similar to scenario 1. 

However, since there is true directional pleiotropy, the power to detect it increases with increasing 

NOME violation for MR-Egger. Applying SIMEX to successfully correct for bias in 
0
ˆ

E  and 
1
ˆ

E  then 

actually reduces the power to detect pleiotropy. 

Under scenario 4 there is positive directional pleiotropy, and a zero causal effect ( 0E  = 0.1, 0  ). 

The results confirm that when the causal null hypothesis is true, the MR-Egger estimate 
1
ˆ

E  is 

unbiased and consequently the type I error rate of the MR-Egger causal effect estimate is 

maintained at its nominal level. This is true regardless of the strength of NOME violation. Applying 

SIMEX in this case has no effect on inference for the causal effect, but slightly reduces the power to 

detect directional pleiotropy. Under scenario 5 there is no pleiotropy, and a zero causal effect ( 0E  

= 0, 0  ). In this case, the IVW method and MR-Egger (with and without SIMEX) all unbiasedly 

estimate their model parameters and their tests maintain the correct type I error rate. 

Further results for F  = 20 

Table 2 shows the results for a near identical simulation study, except that the mean instrument 

strength F  is fixed at 20 and the true 
2

GXI  values are varied between 60% and 40%. The strength 

(and effect of) the NOME violation is now much more severe. 

Table 4 and Figure 7 (right) in the Appendix show, for each value of 
2

GXI , the precise sampling 

distributions for 1X ,..., 25X , 1 25,...,   and the resulting distribution of F-statistics (with mean 

value 20). Higher values of 
2

GXI  are not mathematically possible when F  is low, without letting the 

strength of individual genetic variants get unnaturally close to zero (in the sense that they would not 

be chosen as instruments in the first place due to violation of IV assumption (i)). 

Across all simulations settings, the average estimated value of 
2

GXI  (column 2) multiplied by the 

causal effect   still perfectly predicts the average MR-Egger causal estimate 1
ˆ

E  (column 8). 

However, SIMEX adjustment is less effective in correcting the MR-Egger parameters for bias when a 

causal effect exists (scenarios 1-3). In scenarios 4 and 5, where the causal null is true, unadjusted 

MR-Egger estimates are well behaved with the correct type I error rate, whereas SIMEX adjustment 

slightly increases the type I error rate above the nominal level. Thus, under the causal null and when 

F  and 
2

GXI  are low, bias adjustment can actually be worse than no adjustment at all. 

Estimation of 2

GXI  as a function of F  and L  

The 
2

GXI  statistic is estimated from the data, and is therefore subject to error. Its variability will be 

affected by the strength of the instruments (as measured by F) and the total number of instruments, 

L . Figure 3 (left) shows the distribution of 
2

GXI  estimates under scenario 1 when F =20, the true 

value of 
2

GXI  = 0.6 and when L  is 25, 50 and 100. Figure 3 (right) shows the distribution of 
2

GXI  



estimates under scenario 1 when F =125, the true value of 
2

GXI  = 0.95 and when L  is 25, 50 and 

100. In both plots it is apparent that, as L  increases, the variability in 
2

GXI  estimates decreases and 

its distribution becomes less skewed. Crucially, for the F  = 20 case, increasing L  removes the 

possibility of estimating 
2

GXI  to be zero. This clarifies why the crude adjustment for NOME violation 

(dividing 
1
ˆ

E  by the estimated
2

GXI ) can fail when F  and L  are low. On the contrary we see in 

Figure 3 (right) that, when F , L  and 
2

GXI  are high, the variability in estimated 
2

GXI  is sufficiently 

small for crude bias adjustment to work well. 

Assessing the causal effect of LDL-c on CAD 

There is a long and extensive literature on the association between various lipid fractions and 

coronary artery disease (CAD), but still far from universal agreement as to whether all these 

associations have a causal basis. We focus on the possible role of the least controversial lipid, low 

density lipoprotein cholesterol (LDL-c), in modifying CAD risk. Using summary data from the Global 

Lipids Genetics Consortium (GLGC) [3] to provide SNP-LDL-c association estimates, and summary 

data from CARDIoGRAM [2] to provide SNP-CAD association estimates, we perform a two sample 

MR analysis to illustrate the utility of MR-Egger regression and the 
2

GXI  statistic. 

Since LDL-c levels are closely related and highly correlated with other lipid fractions, we selected the 

57 variants that were more strongly associated with LDL-c than with triglycerides or high density 

lipoprotein. This strategy (although not fool proof) aimed to reduce the possibility that, if pleiotropy 

existed among the variants, it is operating via a confounder of LDL-c and CAD. This would violate IV 

assumption (ii) and lead to violation of InSIDE. This would in turn bias the results from MR-Egger 

regression (regardless of the value of
2

GXI ) as explored in [10]. The minimum p-value for the strength 

of association across all variants was 8.3 10 7 . The mean F-statistic across all included variants was 

132, the weakest being 30 and the strongest being 1325. 

Figure 4 (left) shows a scatter plot of the SNP-outcome log-odds ratio associations ( ˆ j ) versus the 

SNP-exposure associations ( ˆ j ) across all 57 included variants. The data are scaled so that the causal 

effect estimates represent log odds ratios of CAD for a standard deviation increase in LDL-c. Figure 4 

(right) shows a funnel plot [20] of the causal effect estimates ˆ j  = ˆ ˆ/j j  on the x-axis versus their 

inverse standard error (a measure of their strength as instruments) on the y-axis. The funnel 

representation is a convenient tool for assessing the presence of directional pleiotropy. This would 

induce a correlation between effect size and instrument strength, leading to asymmetry in the plot 

[10]. The IVW method estimates a strong positive causal effect of 0.45. However, there is reason to 

believe this analysis to be misleading, given that some asymmetry exists. Applying MR-Egger 

regression using code provided in on-line supplementary material accompanying [10] (and weighting 

by the inverse standard error of the SNP-outcome association to improve efficiency) negative 

directional pleiotropy is detected, although the evidence is not particularly strong. Consequently, the 

point estimate for 1E  is adjusted upward to 0.63. 

We now assess the potential for regression dilution bias to attenuate the MR-Egger estimate for the 

causal effect. Under the weighted analysis considered here,  
2

GXI  is calculated from GXQ  using the 

weighted SNP-exposure associations and corresponding standard errors ( ˆ /j Yj  , /Xj Yj  ) 



whereas the unweighted analysis uses ( ˆ j , Xj ). See the Appendix for further details. For these 

data 
2

GXI  equals 0.971 for the standard weighted analysis and 0.974 for an unweighted analysis. A 

crude bias adjustment would therefore be 0.63/
2

GXI  = 0.65. We used the simex() package in R  [19] 

to implement the SIMEX method, choosing the quadratic model for the extrapolation (see 

Appendix). The SIMEX estimate was in very close to agreement to the crude bias adjusted estimate 

of 0.65, as illustrated in Figure 5. Indeed, this is exactly what our simulations predicted given the 

observed values of 
2

GXI , F  and L  (see Figure 3). Full results for all three methods are shown in 

Table 3. As in the supplementary material accompanying [10], causal effect estimates (Est) standard 

errors (S.E.), p-values and t-test values are calculated for each method under a multiplicative 

random effects model that accounts for over-dispersion (in this case due to pleiotropy). 

In conclusion, although borderline evidence of pleiotropy exists across the included variants, there is 

still strong evidence that LDL-c is causally related to CAD risk. MR-Egger regression revises the causal 

effect of LDL-c upwards, because the apparent causal effect is masked by pleiotropy acting in the 

opposing direction. Applying the SIMEX algorithm revises the estimate slightly further still, although 

a corresponding small increase in the standard errors leaves inference largely unchanged. We can at 

least confidently state that NOME violation is not a problem for these data. 

It is of course perfectly possible that our strategy for including (and excluding) variants in the 

analysis could in fact be unduly influencing the results by inducing collider bias. We do not therefore 

claim that this approach is superior to the more liberal inclusion policy adopted by Holmes et al [8] 

in their main analysis, or that any single approach should be relied upon. Holmes et. al. sensibly 

consider a range of analyses to address the problem of pleiotropy, for example by constructing both 

`restricted’ and `unrestricted’ gene scores. A spectrum of possible rules for including variants in an MR-

study are also  discussed and implemented for very similar data by Bowden et. al.   [21]. Although we 

encourage such sensitivity analyses, they are beyond the scope of this paper.   

Discussion 

The standard IVW method of Mendelian randomization with summary data makes the strong 

assumption that all variants are valid instruments, due to a complete absence of pleiotropy. 

However, if pleiotropy is present but balanced (as in Scenario 1 of the simulation study), it can still 

return unbiased estimates of causal effect and is considerably more powerful than MR-Egger 

regression. Unfortunately the IVW method can give biased results under cases of directional 

pleiotropy and incorrectly infer causality (as in Scenario 4 of the simulations). MR-Egger regression, 

by contrast, is more robust to directional pleiotropy. It is not designed to replace the standard 

approach in the primary analysis, but is an important sensitivity analysis tool to probe whether the 

IV assumptions have been violated in a meaningful way. 

Both the IVW and MR-Egger regression methods are traditionally implemented by assuming the 

SNP-exposure association is measured without error (the NOME assumption). Unfortunately, the 

price paid for MR-Egger's increased robustness to pleiotropy is a corresponding decrease in its 

robustness to violations of NOME, which manifests itself as regression dilution bias. Our work 

suggests that, in two-sample MR studies, the 
2

GXI  statistic is a much more relevant summary 

measure for MR-Egger regression than the traditional F-statistic. Whereas the F-statistic is defined 

for each genetic variant and provides an independent assessment of its strength within an IVW 

analysis, 
2

GXI  tells us that instrument strength is a singular, collective property of all variants within 



an MR-Egger analysis. Although better measures of instrument strength may still be developed for 

MR-Egger regression, the simplicity of 
2

GXI  in calculation and interpretation make it an attractive 

option. 

Limitations and further work 

Our focus in this paper was to explain the effect of violations to the NOME assumption on the 

performance of MR-Egger regression in the two-sample summary data context, and its connection to
2

GXI . Further work is required to understand the effect of NOME violation on MR-Egger regression 

when using a single study population. The picture is likely to be more complex in this setting, since 

weak variants may lead to attenuation of the causal effect towards the null as well as bias towards 

the observational estimate. 

In order to make things as clear as possible, we purposefully simplified our two-sample MR data 

generating model in several ways. Firstly, data were simulated under the InSIDE assumption, so that 

we could be sure MR-Egger would return unbiased estimates when NOME is satisfied. If InSIDE is 

violated, for example due to pleiotropic effects acting via a confounder as explored in [10], an MR-

Egger analysis would yield biased estimates even if 
2

GXI  were equal to 1. In practice, for 
2

GXI  values 

less than 1, its bias will likely be due to violations of InSIDE and NOME. Secondly, we generated 

summary SNP-exposure and SNP-outcome association estimates from independent normal 

distributions with known variance, rather than simulating the individual participant data directly, to 

furnish `idealised' two-sample MR analyses. This removed the two further issues of non-collapsibility 

and ascertainment bias which are often encountered in practice when the outcome is binary and 

case-control data are used to estimate log-odds ratios for the SNP-outcome associations [22]. 

Extending methods such as MR-Egger regression to properly account for these issues is an important 

line of future research. 

In this paper we showcased just one method of bias-adjustment in the presence of measurement 

error, namely the SIMEX approach [15,16]. We chose this because of its widespread use across 

statistics, its intuitive nature and its applicability to a wide range of statistical models. Software is 

also readily available to implement the approach in practice with very little computational burden. 

Of course, users may simply wish to implement a naive correction by dividing the observed MR-

Egger causal estimate by
2

GXI . While this will often be sufficient with a large number of strong 

instruments (as seen in the simulations and the lipids analysis) we do not think it is a reliable method 

in general. Furthermore, an estimate for the variance of the naive correction would also be needed 

to enable full statistical inference. 

It is possible that alternative methods of bias adjustment could work better in the MR context, such 

as the plethora of approaches discussed in [13,23,24]. For example, Sharp [25] recommend a natural 

Bayesian formulation of the problem, where the bias issue can be circumvented by focusing directly 

on the parameters which subsequently generate the observed data affected by measurement error. 

However it is worth noting that, by virtue of being shrunk towards zero, uncorrected estimates tend 

to have a smaller variance. Viewed through this lens, bias adjustment can then be seen as applying 

the appropriate correction factor to `reverse' the shrinkage, but at the cost of a reduced precision.  

Model selection techniques have recently been proposed for MR analysis with the purpose of 

detecting and adjusting for invalid instruments, using methods that assume at least half of the 

genetic variants are valid instruments [26,27,21]. MR-Egger regression can work even if all variants 



are invalid (under InSIDE), but our work has shown that its performance will be best when the 
2

GXI  

statistic is large. An obvious follow on question, therefore, is whether it is sensible to adopt a 

strategy to increase the value of 
2

GXI  for the analysis at hand. For example, it would be possible to 

combine variants together into a number of separate allele scores and to perform MR-Egger 

regression on them instead. The SNP-exposure estimates obtained from the individual allele scores 

would be smaller in number but more precise than those based on the individual variants, and could 

therefore give rise to a higher 
2

GXI  as desired. These ideas naturally complement allele score 

approaches that have been shown to successfully mitigate weak instrument bias when performing 

standard two-stage least squares or IVW analyses [18,28]. 

In conclusion, assessing the strength of NOME violation is an important pre-requisite to performing 

causal inference with summary data, especially with MR-Egger regression. It is unfortunate that this 

fact was not clarified in the original publication by Bowden et al [10], and we suspect the data 

examples contained in this paper would benefit from a more considered analysis in light of our 

increased understanding. It is comforting to note that standard MR-Egger regression remains a 

reliable method for testing the causal null hypothesis, even when NOME is violated. We recommend 

evaluating the 
2

GXI  statistic alongside an MR-Egger analysis. If it is sufficiently low (less than 90%), 

point estimates of causal effect should be interpreted with caution due to regression dilution and 

adjustment methods such as SIMEX considered as part of a sensitivity analysis. 

   

Key messages 

 MR-Egger regression provides a simple method for Mendelian randomization of summary 

data estimates that is robust to invalid instruments. 

 MR-Egger regression is not designed to replace the standard approach as the primary 

analysis, but is an important sensitivity analysis to probe whether the IV assumptions have 

been violated in a meaningful way.  

 MR-Egger assumes, like the standard implementation of the IVW method, that the variance 

of SNP-exposure association estimates is negligible (the NOME assumption).  

 In the two-sample MR setting, if NOME is violated (as quantified by an 
2

GXI  much less than 

1) but InSIDE is satisfied, MR-Egger regression will tend to underestimate the causal effect 

and potentially inflate the type I error rate of the MR-Egger test for pleiotropy. 

 An 
2

GXI  value of 0.9 indicates a relative bias in the MR-Egger causal effect estimate of 10%. 

It provides an appropriate measure of instrument strength in the two-sample context. 

 Like all statistics, 
2

GXI  is an estimate: its variability will be affected by the strength of the 

instruments (as measured by the F statistic) and the total number of instruments. 

 Simulation Extrapolation can be used to correct MR-Egger regression parameters for NOME 

violation, and in doing so reduce the type I error rate of the MR-Egger test for pleiotropy. 

Further research is required to find the optimal method of bias correction. 

 NOME violation does not affect the type I error rate of the MR-Egger causal effect estimate.  

 Further research is required to assess the effect of NOME violation in the single sample MR 

context. 
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Appendix: technical summary 

Assume data on L  uncorrelated genetic variants 1, , LG G , a continuous exposure X  and 

outcome Y  in the presence of a confounder U  for a single sample of individuals. This is 

represented, for variant j , by the causal diagram in Figure 6. The relationships that are either 

required or forbidden by IV assumptions (i)-(iii) are labelled for clarity.  

Further assume the following underlying models linking jG  to X  and Y : 

                                                       0| j j j XjX G G                    

                                                        0| ( )j j j j YjY G G        

                                                                    0 ,j j YjG      

so that j  and j  = ( j j  ) represent jG 's association with the exposure and outcome 

respectively. We assume always that 0j   so IV assumption (i) holds. Let j  be the effect of jG  

on Y  through X , where   is the causal effect of X  on Y  we wish to estimate. The term j  

represents the association between jG  and Y  not through the exposure of interest, thus violating 

IV assumptions (ii) or (iii).  

When G , X  and Y  are collected on a single sample, the error terms Xj  and Yj  are correlated 

due to shared contributions from U . However, we now assume the same models can be applied to 

data collected from two independent populations, to furnish a two sample MR analysis. This means 

that Xj  and Yj  will be uncorrelated. With this in mind, we now move from an individual patient 

data model for G , X  and Y , instead writing models for the L  parameter estimates ˆ j  and ˆ j  

directly, in order to furnish a two-sample MR analysis using summary data. 

                                                              2ˆ , ~ (0, )j j Xj Xj XjN                                    (4) 

                                                            2ˆ , ~ (0, )j j j Yj Yj YjN                           (5) 

Models (4) and (5) are equivalent to model (1) in the main body of the paper. We assume that 

( , )Xj Yj  are mutually independent and independent of j . We also assume that  2

Xj  and 2

Yj  are 

known, not estimated.  The InSIDE assumption [10] states that the pleiotropic effect of each variant 

on the outcome is independent of its strength as an instrument for the exposure. For simplicity, we 



will now assume that InSIDE is perfectly satisfied in the model above. That is, the sample covariance 

of 1,..., L   and 1,...., L  , denoted by cov( , )j j  , is exactly zero.  

Unbiased estimation of the IVW estimate under NOME 

Suppose all variants are valid instruments, ( j  = 0 for all j ). Assume also that the NOME 

assumption holds, so that 2

Xj  = 0 for all j  (or ˆ j j  ). The ratio estimate ˆ ˆ ˆ/j j j    is an 

unbiased estimate for  , since 

ˆ ˆ[ / ] [ ] / .
j

j j i j j

j

E E


  


      

The IVW estimate given in (2) is therefore also unbiased since it is a weighted average of unbiased 

estimates, whose weights ( 2 2/j Yj  ) are uncorrelated with the estimates themselves.   

Unbiasedness of MR-Egger regression under NOME 

The MR-Egger slope estimate 
1
ˆ

E  (from an unweighted analysis for simplicity) is equal to the 

sample covariance of the SNP-outcome and SNP-exposure estimates, divided by the sample variance 

of the SNP-exposure estimates: 

1

ˆ ˆ( , )ˆ .
ˆ( )

j j

E

j

cov

var







  

Let 2( )jvar    be the sample variance of 1,..., L  . When NOME also holds this guarantees that 

ˆ( )jvar   = ( )jvar   =  2

 . When InSIDE holds perfectly we have that   

                                               2ˆ ˆˆ[ ( , )] [ ( , va )r( ,)]j j j j jE cov E cov                              (6) 

and therefore 2 2

1
ˆ[ ] /EE       . 

Estimation for MR-Egger regression when NOME violated 

We now consider the value for 1
ˆ

E  when InSIDE is perfectly satisfied but NOME is violated. We re-

write the MR-Egger estimate as 

                                                      
1

ˆ ˆˆ ˆ( , ) ( , ) ( )ˆ
ˆ ˆ( ) ( ) ( )

E

cov cov var

var var var

  


  

 
   

Taking expectations of this product, assuming that the two terms in the product are uncorrelated, 

and substituting the expectation of the ratio with a ratio of expectations, we get the approximate 

relation 

                                                     

2

1 2 2

( )ˆ[ ] ,
ˆ( )

E

var
E E

var s






  

 

 
    

 



where 2s  is the arithmetic mean of the 2

Xj s. This implies that, if 2

  was known,   could be 

crudely approximated as 

                                                                           

2 2

1 2
ˆ .E

s









 

Direct adjustment for measurement error therefore requires, at the very least, an estimate for 2

 . 

Many estimators of this quantity exist, see for example [29,30,31] . However, the 
2

GXI  statistic 

provides a simple and convenient estimate of the total ratio 2 2 2/ ( )s     instead. The 
2

GXI  

statistic is defined in this context as 
2

GXI  = ( ( 1)) /GX GXQ L Q  , where 

                                                 

2

2
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                                (7) 

Specifically, 
2

GXI  is algebraically equivalent to 2 2 2/ ( )s     when the following substitutions are 

made:  

                               12 2 2

2 2 2

1 1 1

1

1

( 1)
( ( 1))

, , for 1 /

( )

L

j

jGX
j XjL L L

j j jL
j j j

j L

j
j

j

L u
Q L

s u

u u u

u

u

 

  






 

  







  




                                    

Here, 2

  is the DerSimonian and Laird estimate [29] and when the ju 's are all equal, the 

substituted value of 
2s  is equal to their arithmetic mean. 

2

GXI  therefore provides a very simple, well 

known and accurate gauge as to the severity of the regression dilution problem. 

2

GXI  under a weighted analysis 

For simplicity, in the paper and in the Appendix so far, we have assumed that the MR-Egger analysis 

is unweighted. However, Bowden et al [10] recommend weighting the regression to account for 

unequal variances across the SNP-outcome associations. More formally, this involves assuming the 

model 

                                         ˆ / / / /j Yj j Yj j Yj Yj Yj                                                      (8) 

For the InSIDE assumption to be perfectly satisfied under a weighted analysis, the equivalent 

weighted sample covariance must be zero. The regression dilution we would expect to see under the 

weighted analysis can still be quantified by the 
2

GXI  statistic, except we replace  ˆ j  with ˆ /j Yj   

and 2

Xj  with 2 2/Xj Yj   respectively when defining Cochran's Q statistic in equation (7). 



Simulation Extrapolation 

We used the SIMEX approach [15,16] to produce bias adjusted estimates for the MR-Egger estimate 

1
ˆ

E . Under the SIMEX approach, new data sets are created by simulating SNP-exposure association 

estimates under increasing violations of the NOME assumption. That is, for each new data set (and 

non-negative number ), a new SNP-exposure estimate ˆ
j

  is generated using the observed data 

2ˆ( , )j Xj   from the model:  

                                                                2ˆ ˆ~ ( , ),j j XjN                                                                  (9) 

so that ˆ( )jvar   =  2(1 ) Xj  . Note that choosing   = 0 simply returns the original estimate ˆ j  

with known variance 2

Xj . For a given value of  , we combine the simulated ˆ s with the observed 

̂ s to estimate the average value of 1
ˆ

E , 1
ˆ ( )E  . The value of 1

ˆ ( )E   will tend to get smaller as 

the magnitude of   increases. A model is then fitted to the 1
ˆ ( )E  's in order to extrapolate back to 

1
ˆ ( 1)E  , to approximate the value that would have been obtained for 1

ˆ
E  if NOME had been 

satisfied. We used the simex() package in R  [19] to implement the method, choosing the quadratic 

model for the extrapolation.  

Generating data under the weak InSIDE assumption 

So far in the Appendix we have assumed that the parameter values 1,..., L   and 1,...., L    are 

fixed quantities, and that their sample covariance is zero. In our simulations we actually generated 

summary data estimates 1̂
ˆ,..., L   and 

1
ˆ ˆ,..., L   under models (4) and (5) by firstly simulating  

1,..., L   and 1,...., L   from independent Uniform distributions. This meant that, for every specific 

realisation of 1,..., L   and 1,...., L  , the sample covariance ( , )j jcov    was close but not equal 

to zero, so that InSIDE was actually violated in the standard sense. However, the expected value of 

the sample covariance ( , )j jcov    across all simulated pairs of 1,..., L   and 1,...., L   was equal 

to zero. That is:  

                                                                        [ ( , )] 0.j jE cov     

Thus, we refer to the above condition (and our simulations) as being under the weak InSIDE 

assumption. Simulating the data in this way enabled us to gauge how MR-Egger regression would 

work on average across different data sets of the same size. It also means that we avoided having to 

pick arbitrary values for the   and   parameters, or values that forced ( , )j jcov    to be exactly 

zero, which could be seen as unrealistic. 

R code 

Calculating 2

GXI  

We firstly give R  code to calculate the 
2

GXI  statistic, using the function Isq() below 

Isq        = function(y,s){ 



k           =   length(y) 

w          = 1/s^2; sum.w  = sum(w) 

mu.hat   = sum(y*w)/sum.w   

Q          = sum(w*(y-mu.hat)^2) 

Isq        = (Q - (k-1))/Q 

Isq        = max(0,Isq) 

return(Isq) 

} 

 

Assume that BetaXG  and seBetaXG   represent the vector of SNP-exposure estimates and standard 

errors, and  BetaYG  and seBetaYG  represent the vector of SNP-exposure estimates and standard 

errors. We calculate the 
2

GXI  statistic for an unweighted MR-Egger analysis using  Isq()  above as 

Isq(BetaXG,seBetaXG) 

When performing a weighted MR-Egger analysis, we calculate 
2

GXI  identically, except we replace ˆ j  

with  ˆ /j Yj   and Xj  with 2 /Xj Yj   in the formulae above: 

Isq(BetaXG/seBetaYG,seBetaXG/seBetaYG) 

R code to perform Simulation Extrapolation 

R  code to perform the IVW and MR-Egger approaches can be found in the on line appendix of [10]. 

Additional code to perform Simulation Extrapolation and to plot the results can be found below 

# load the simex package 

library(simex) 

# MR-Egger regression (weighted) 

Fit2 = lm(BetaYG~BetaXG,weights=1/seBetaYG^2,x=TRUE,y=TRUE) 

# Simulation extrapolation 

mod.sim <- simex(Fit2,B=1000, 

            measurement.error = seBetaXG, 

            SIMEXvariable="BXG",fitting.method ="quad",asymptotic="FALSE") 

# plot results 

l = mod.sim$SIMEX.estimates[,1]+1 

b = mod.sim$SIMEX.estimates[,3] 

plot(l[-1],b[-1],ylab="",xlab="",pch=19,ylim=range(b),xlim=range(l)) 

mtext(side=2,"Causal estimate",line=2.5,cex=1.5) 

mtext(side=1,expression(1+lambda),line=2.5,cex=1.5) 

points(c(1,1),rep(Fit2$coef[2],2),cex=2,col="blue",pch=19) 

points(c(0,0),rep((mod.sim$coef[2]),2),cex=2,col="blue",pch=3) 

legend("bottomleft",c("Naive MR-Egger","MR-Egger (SIMEX)"), 

       pch = c(19,3),cex=1.5,bty="n",col=c("blue","blue")) 

lsq = l^2; f   = lm(b~l+lsq) 

lines(l,f$fitted) 
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Figure captions 

Figure 1: Illustrative diagram showing the SNP-exposure associations (estimates = hollow black dots, 

true values = solid black dots) plotted against the SNP-outcome association estimates for a fictional 

MR analysis. 

Figure 2: Illustrative diagram showing the SNP-outcome association estimates plotted against both 

the SNP-exposure association estimates (hollow black dots) and their true values (solid black dots). 

Top left: positive causal effect, balanced pleiotropy. Top right: positive causal effect, negative 

directional pleiotropy. Bottom left: positive causal effect, positive directional pleiotropy. Bottom 

right: no causal effect, positive directional pleiotropy. 

Figure 3: Left: Distribution of 
2

GXI  estimates under scenario 1 for F =20 and 
2

GXI  = 0.60 when L  = 

25 (blue), 50 (red) and 100 (black). Right: Distribution of 
2

GXI  estimates under scenario 1 for F =125 

and 
2

GXI  = 0.95 when L  = 25 (blue), 50 (red) and 100 (black). 

Figure 4: Left: Scatter plot of the summary data estimates, with IVW and MR-Egger slope estimates 

shown. Right: Funnel plot of the causal effect estimates, with overall estimates under the IVW and 

MR-Egger approaches (with and without SIMEX correction) 

Figure 5: Simulation extrapolation applied to the MR-Egger regression analysis of the lipids data. The 

adjusted estimate is that predicted by the model at the value   = -1 

Figure 6: Illustrative diagram relating genetic variant jG  to exposure X  and outcome Y  in the 

presence of a confounder U . 

Figure 7:  Left: Distribution of F-statistics for the simulated SNP-exposure data underlying the results 

in Table 1. F  = 125 and 
2

GXI  = 95% (black line), 90% (blue line), 85% (red line) and 75% (green line). 

Right: Distribution of F-statistics for the simulated SNP-exposure data underlying the results in Table 

2. F  = 20 and 
2

GXI  = 60% (black line), 50% (blue line), 40% (red line). 

http://www.hec.unil.ch/documents/seminars/iems/1849.pdf


 

 

 

 

Tables 

 
 

                                                                 MR-Egger regression 

     
2

GXI              IVW          Standard approach              SIMEX adjusted 

True   Est    ˆ
IVW (P)       

0
ˆ

E (P)         1
ˆ

E (P)        
0
ˆ

E (P)       1
ˆ

E (P) 

                 Scenario 1: Balanced pleiotropy, 1E   = 1, 0E  = 0 

0.95 0.95  0.99 (1.00)   0.02 (0.06)   0.95 (1.00)   0.00 (0.05)   1.00  (1.00)  
0.90 0.90  0.99 (1.00)   0.04 (0.07)   0.89 (0.94)   0.00 (0.05)   0.99  (0.94)  
0.85 0.84  0.99 (1.00)   0.07 (0.08)   0.84 (0.73)   0.01 (0.06)   0.98  (0.73)  
0.75 0.73  0.99 (1.00)   0.11 (0.10)   0.73 (0.41)   0.02 (0.06)   0.95  (0.44)  

   Scenario 2: Negative directional pleiotropy, 1E   = 1, 0E  = -0.1  

0.95 0.95  0.78 (1.00)  -0.08 (0.28)   0.95 (1.00)  -0.10 (0.38)   1.00  (1.00)  
0.90 0.90  0.76 (1.00)  -0.06 (0.12)   0.89 (1.00)  -0.10 (0.20)   0.99  (1.00)  
0.85 0.84  0.75 (1.00)  -0.03 (0.07)   0.84 (0.94)  -0.09 (0.14)   0.98  (0.94)  
0.75 0.73  0.75 (1.00)   0.01 (0.05)   0.73 (0.69)  -0.08 (0.09)   0.94  (0.71)  

   Scenario 3: Positive directional pleiotropy, 1E   = 1, 0E  = 0.1 

0.95 0.95  1.20 (1.00)   0.12 (0.56)   0.95 (1.00)   0.10 (0.39)   1.00  (1.00)  
0.9 0.90  1.22 (1.00)   0.14 (0.46)   0.90 (1.00)   0.10 (0.24)   1.00  (1.00)  
0.85 0.84  1.23 (1.00)   0.16 (0.41)   0.84 (0.94)   0.10 (0.19)   0.99  (0.94)  
0.75 0.73  1.23 (1.00)   0.21 (0.41)   0.73 (0.68)   0.12 (0.16)   0.94  (0.69)  

   Scenario 4: Positive directional pleiotropy, 1E   = 0, 0E  = 0.1 

0.95 0.95  0.21 (0.98)   0.10 (0.46)   0.00 (0.05)   0.10 (0.43)   0.00  (0.05)  
0.90 0.90  0.23 (0.99)   0.10 (0.29)   0.00 (0.05)   0.10 (0.25)   0.00  (0.05)  
0.85 0.84  0.24 (1.00)   0.10 (0.20)   0.00 (0.05)   0.10 (0.17)   0.00  (0.06)  
0.75 0.73  0.24 (1.00)   0.10 (0.15)  -0.01 (0.05)   0.10 (0.12)  -0.01  (0.06)  

                     Scenario 5: No pleiotropy, 1E   = 0, 0E  = 0 

0.95 0.95  0.00 (0.06)   0.00 (0.04)   0.00 (0.05)   0.00 (0.05)   0.00  (0.05)  
0.90 0.90  0.00 (0.05)   0.00 (0.05)   0.00 (0.05)   0.00 (0.05)   0.00  (0.05)  
0.85 0.84  0.00 (0.06)   0.00 (0.05)   0.00 (0.05)   0.00 (0.05)   0.00  (0.05)  
0.75 0.73  0.00 (0.05)   0.00 (0.05)   0.00 (0.05)   0.00 (0.06)   0.00  (0.06)  

 
Table 1: Results for simulation scenarios 1-5, F  = 125. P  equals power for 1

ˆ
E  and ˆIVW  in 

scenarios 1,2,3 and type I error in scenarios 4,5. P  equals power for 0
ˆ

E  in scenarios 2,3,4 and type 

I error in scenarios 1,5. 
 
 
 
 



 
 
 
 
 
 
 
 
 

 
                                                                 MR-Egger regression 

     
2

GXI              IVW          Standard approach              SIMEX adjusted 

True   Est    ˆ
IVW (P)       

0
ˆ

E (P)       
1
ˆ

E (P)         
0
ˆ

E (P)       
1
ˆ

E (P) 

                 Scenario 1: Balanced pleiotropy, 1E   = 1, 0E  = 0 

0.60 0.56  0.95 (1.00)  0.18 (0.22)  0.56 (0.38)   0.08 (0.10)   0.81  (0.41)  

0.50 0.47  0.94 (1.00)  0.21 (0.28)  0.47 (0.24)   0.11 (0.12)   0.71  (0.29)  

0.40 0.35  0.94 (1.00)  0.26 (0.33)  0.35 (0.14)   0.17 (0.15)   0.57  (0.19)  

   Scenario 2: Negative directional pleiotropy, 1E   = 1, 0E  = -0.1  

0.60 0.56  0.73 (1.00)  0.08 (0.09)  0.56 (0.42)  -0.03 (0.08)   0.81  (0.46)  

0.50 0.47  0.72 (1.00)  0.11 (0.13)  0.47 (0.29)   0.01 (0.09)   0.72  (0.34)  

0.40 0.36  0.71 (1.00)  0.16 (0.19)  0.35 (0.16)   0.07 (0.10)   0.57  (0.21)  

   Scenario 3: Positive directional pleiotropy, 1E   = 1, 0E  = 0.1 

0.60 0.56  1.17 (1.00)  0.28 (0.54)  0.56 (0.42)   0.18 (0.22)   0.81  (0.46)  

0.50 0.47  1.17 (1.00)  0.31 (0.56)  0.47 (0.28)   0.21 (0.24)   0.71  (0.33)  

0.40 0.35  1.17 (1.00)  0.35 (0.62)  0.37 (0.18)   0.26 (0.28)   0.59  (0.24)  

   Scenario 4: Positive directional pleiotropy, 1E   = 0, 0E  = 0.1 

0.60 0.56  0.22 (0.54)  0.10 (0.12)  0.00 (0.05)   0.10 (0.11)   0.00  (0.07)  

0.50 0.46  0.23 (0.56)  0.10 (0.12)  0.01 (0.06)   0.10 (0.11)   0.01  (0.08)  

0.40 0.35  0.23 (0.57)  0.10 (0.11)  0.00 (0.06)   0.10 (0.12)   -0.01 (0.09)  

                     Scenario 5: No pleiotropy, 1E   = 0, 0E  = 0 

0.60 0.56  0.00 (0.05)  0.00 (0.05)  0.00 (0.06)   0.00 (0.07)   0.00  (0.07)  

0.50 0.46  0.00 (0.05)  0.00 (0.06)  0.00 (0.06)   0.00 (0.09)   0.00  (0.08)  

0.40 0.36  0.00 (0.06)  0.00 (0.05)  0.00 (0.06)   0.00 (0.09)   0.00  (0.09)  

 
 

Table 2: Results for simulation scenarios 1-5, F  = 20. P  equals power for 1
ˆ

E  and ˆIVW  in 

scenarios 1,2,3 and type I error in scenarios 4,5. P  equals power for 
0
ˆ

E  in scenarios 2,3,4 and type 

I error in scenarios 1,5. 

 
Model  

Parameter   Est       S.E.        t-value   p-value  

IVW approach 

IVW           0.45     0.053       8.51   1.13e-11  

MR-Egger regression 

0E          -0.0102  0.0046    -2.23   0.0298  



1E           0.632     0.0975    6.481  2.66e-08  

MR-Egger regression+SIMEX 

0E          -0.0109  0.0047    -2.33   0.0236 

1E           0.6500   0.10000  6.47   2.76e-08 

 
Table 3: IVW and MR-Egger regression analysis (with and without SIMEX adjustment) of the lipids 

data. 

 

 

             Uniform distribution bounds 

                Xj                     j  

2

GXI   lower  upper    lower upper 

 
95%   0.027   0.057    0.100  0.700  

90%   0.027   0.052    0.200  0.600  

85%   0.027   0.052    0.248  0.552  

75%   0.026   0.051    0.291  0.509  

 
60%   0.065   0.139    0.200   0.600  

50%   0.064   0.138    0.235   0.565  

40%   0.064   0.136    0.269   0.531  

 

Table 4: Parameter ranges used to simulate SNP-exposure associations 1 25
ˆ ˆ,...,   for each 

2

GXI  value 

given F  = 125 (rows 1:4) and F  = 20 (rows 5:7). 

 

 


