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Abstract

Background: MR-Egger regression has recently been proposed as a method for

Mendelian randomization (MR) analyses incorporating summary data estimates of

causal effect from multiple individual variants, which is robust to invalid instruments. It

can be used to test for directional pleiotropy and provides an estimate of the causal effect

adjusted for its presence. MR-Egger regression provides a useful additional sensitivity

analysis to the standard inverse variance weighted (IVW) approach that assumes all vari-

ants are valid instruments. Both methods use weights that consider the single nucleotide

polymorphism (SNP)-exposure associations to be known, rather than estimated. We call

this the�NO Measurement Error’ (NOME) assumption. Causal effect estimates from the

IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate

the NOME assumption, which can be reliably measured using the F-statistic. The effect

of NOME violation on MR-Egger regression has yet to be studied.

Methods: An adaptation of the I2 statistic from the field of meta-analysis is proposed to

quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indi-

cates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-

sample MR context. We call it I2
GX . The method of simulation extrapolation is also

explored to counteract the dilution. Their joint utility is evaluated using simulated data

and applied to a real MR example.

Results: In simulated two-sample MR analyses we show that, when a causal effect exists,

the MR-Egger estimate of causal effect is biased towards the null when NOME is violated,

and the stronger the violation (as indicated by lower values of I2
GX ), the stronger the dilu-

tion. When additionally all genetic variants are valid instruments, the type I error rate of
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the MR-Egger test for pleiotropy is inflated and the causal effect underestimated.

Simulation extrapolation is shown to substantially mitigate these adverse effects. We

demonstrate our proposed approach for a two-sample summary data MR analysis to es-

timate the causal effect of low-density lipoprotein on heart disease risk. A high value of

I2
GX close to 1 indicates that dilution does not materially affect the standard MR-Egger

analyses for these data.

Conclusions: Care must be taken to assess the NOME assumption via the I2
GX statistic

before implementing standard MR-Egger regression in the two-sample summary data

context. If I2
GX is sufficiently low (less than 90%), inferences from the method should be

interpreted with caution and adjustment methods considered.

Key words: Mendelian randomization, MR-Egger regression, measurement error, I2 statistic, simulation extrapolation

Introduction

Mendelian randomization (MR)1 has become an estab-

lished method for probing questions of causality in obser-

vational epidemiology. By making use of genetic variants

satisfying the instrumental variable (IV) assumptions, it is

possible to test whether an exposure causally influences a

health outcome by circumventing the problem of con-

founding that compromises standard associational meth-

ods. The explosion in publicly available summary data

estimates of genetic association from large international

genome-wide association (GWA) consortia2,3 has made

MR ever more popular for two reasons. First, summary

data estimates of causal effect from multiple genetic vari-

ants can be simply and transparently combined to yield

results that closely mirror what would be obtained with in-

dividual participant data.4,5 Second, a dramatic rise in the

number of variants available for the analysis has led to an

increased power for testing causal hypotheses.6 In this

paper we focus on the most common form of summary

data MR study, whereby genetic associations with the ex-

posure and outcome are gleaned from independent samples

to furnish a�two-sample’ analysis.4

The standard method for MR with summary data

[referred to as the standard inverse variance weighted

(IVW) approach5,7] makes the fundamental assumption

that each included variant is a valid IV. That is, it is (i)

associated with the exposure, (ii) not associated with any

confounders of the exposure and outcome, and (iii) is only

Key Messages

• MR-Egger regression provides a simple method for Mendelian randomization of summary data estimates that is ro-

bust to invalid instruments.

• MR-Egger regression is not designed to replace the standard approach as the primary analysis, but is an important

sensitivity analysis to probe whether the IV assumptions have been violated in a meaningful way.

• MR-Egger assumes, like the standard implementation of the IVW method, that the variance of SNP-exposure associ-

ation estimates is negligible (the NOME assumption).

• In the two-sample MR setting, if NOME is violated (as quantified by an I2
GX much less than 1) but InSIDE is satisfied,

MR-Egger regression will tend to underestimate the causal effect and potentially inflate the type I error rate of the

MR-Egger test for pleiotropy.

• An I2
GX value of 0.9 indicates a relative bias in the MR-Egger causal effect estimate of 10%. It provides an appropriate

measure of instrument strength in the two-sample context.

• Like all statistics, I2
GX is an estimate: its variability will be affected by the strength of the instruments (as measured by

the F-statistic) and the total number of instruments.

• Simulation extrapolation can be used to correct MR-Egger regression parameters for NOME violation, and in doing

so reduce the type I error rate of the MR-Egger test for pleiotropy. Further research is required to find the optimal

method of bias correction.

• NOME violation does not affect the type I error rate of the MR-Egger causal effect estimate.

• Further research is required to assess the effect of NOME violation in the single-sample MR context.
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associated with the outcome through the exposure (see

Figure 6 available as Supplementary data at IJE online). If

(i–(iii) hold, then an inverse variance weighted average of

the individual causal effect estimates (e.g. as in a meta-

analysis) is both efficient and unbiased. Unfortunately,

assumptions (ii)–(iii) are unlikely to hold in an MR study,

particularly in the summary data setting when large num-

bers of variants are harvested from GWA studies and

included in the analysis. For example, as part of a repertoire

of MR analyses, Holmes et al.8 conduct an MR-analysis of

high density lipoprotein cholesterol on heart disease risk by

liberally including many genetic variants that were also

associated with other lipid fractions (e.g. triglycerides). This

could introduce�horizontal pleiotropy’9 and lead to violation

of assumption (ii) or (iii) due to variants affecting the out-

come via a different biological pathway. This could in turn

lead to bias, type I and type II error inflation, if unaccounted

for. MR-Egger regression10 is a recently proposed method

to both detect and adjust for pleiotropy in an MR-analysis.

Like all IV methods, the IVW approach is known to be

vulnerable to weak instrument bias, which can be quanti-

fied for each genetic variant included in the analysis via its

F-statistic.11 However, the F-statistic is not a sufficient indi-

cator of instrument strength for MR-Egger. In this paper we

clarify that instrument strength has a very different meaning

for MR-Egger in the two-sample summary data context; it

is a collective property of all genetic variants included in the

analysis, and a�weak set’ of instruments can be understood

as inducing regression dilution bias12,13 into its estimate

of causal effect. We formalize the cause of this dilution by

defining it as a violation of the �NO Measurement Error’

(NOME) assumption. The I2 statistic14 is proposed to

quantify the strength of NOME violation for a set of instru-

ments used for MR-Egger regression, and the expected

magnitude of regression dilution that will occur. We also

describe how the established method of simulation extrapo-

lation (SIMEX)15,16 can be used for bias-adjusted inference.

In the Methods section, we review the IVW and MR-

Egger regression approaches to Mendelian randomization in

the two-sample summary data context. We then explain the

consequences of NOME violation for both methods for

several hypothetical but general scenarios. In the Results sec-

tion, we first show the impact of NOME violation on MR-

Egger causal estimates using simulated data and the perform-

ance of bias adjustment via SIMEX. We then demonstrate

our methods for a real two-sample summary data MR ana-

lysis on the effect of low-density lipoprotein and heart dis-

ease, using summary data from the Global Lipids Genetics

and CARDIoGRAM consortia.2,3 We conclude with a dis-

cussion of the issues raised and point to future research.

Technical details are kept to a minimum in the main

body of the paper; the interested reader is directed to the

Appendix (available as Supplementary data at IJE online)

for further clarification where appropriate.

Methods

Modelling assumptions

We assume that normally distributed summary data esti-

mates are available for the single nucleotide polymorphism

(SNP)-exposure associations (bc1,. . .,bcL) and SNP-outcome

associations (bC1,. . .,bCL) of L uncorrelated variants, and

have been obtained in independent samples of non-

overlapping participants for the purposes of a two-sample

MR study. We allow the precision of these estimates to dif-

fer across variants (for example due to allele frequency),

denoting the variance of the jth SNP-exposure association

and SNP-outcome association as r2
Xj and r2

Yj, respectively.

We assume throughout that each variant is truly associated

with the exposure [IV assumption (i) holds] so that the

underlying SNP-exposure association parameters c1; . . . ; cL

are all non-zero. Furthermore, we assume that the genetic

data have been coded so that SNP-exposure associations

are all positive. Our models for the jth SNP-exposure and

SNP-outcome associations are as follows:

bcj � Nðcj;r
2
XjÞ; bCj � Nðaj þ bcj; r

2
YjÞ: (1)

Here b represents the true causal effect that we wish to

estimate and aj allows for the possibility that genetic vari-

ant j could affect the outcome via a separate molecular

pathway from the exposure X. We refer to aj as the pleio-

tropic effect of variant j. A more detailed description of the

modelling assumptions is provided in the Appendix (avail-

able as Supplementary data at IJE online).

The ratio estimate for the causal effect derived from the

jth variant only, bbj, is equal to the SNP-outcome associ-

ation divided by the SNP-exposure association, bCj=bcj.
17 If

variant j is a valid IV, then it is a consistent estimate for the

causal effect b. It is common practice to assume that the

variance of the SNP-exposure association is negligible.5–7

We call this the NO Measurement Error (NOME) assump-

tion. Taken at face value, NOME implies r2
Xj ¼ 0 and

therefore the estimate bcj is identical to the true value cj for

all j. Under the NOME assumption, the variance of the jth

ratio estimate varðbbjÞ ¼ r2
Yj=bc2

j because bcj is treated as a

constant. This is equivalent to only the first term from a

full Taylor series expansion of varðbbjÞ.

The IVW approach

The inverse variance weighted (IVW) estimate, bbIVW , is a

weighted average of the ratio estimates bb1; . . . ; bbL. The
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IVW method (as originally proposed) assumes that all vari-

ants are valid IVs so that none of the genetic variants ex-

hibit pleiotropy and hence aj ¼ 0 for all j. It is common

practice to use inverse variance weights derived via

NOME5,7 so that it has the form:

bbIVW ¼

XL

j¼1

wj
bbj

XL

j¼1

wj

; wj ¼ bc2
j =r

2
Yj: (2)

The IVW estimate can be equivalently obtained as the

slope from a linear regression of the SNP-outcome associ-

ation estimates on the SNP-exposure association estimates

with the intercept term constrained to zero.

If the above assumptions are satisfied, bbIVW is an un-

biased estimate for b. However, NOME will never be per-

fectly satisfied in practice. In the presence of substantial

measurement error, the IVW estimate is known to suffer

from weak instrument bias,18 where instrument strength is

typically represented by the F-statistic. In the two-sample

summary data context and with uncorrelated genetic vari-

ants, the F-statistic for variant j can be approximated as Fj

¼ bc2
j =r

2
Xj. We use this approximation for the remainder of

the paper. In the two-sample context considered here, the

effect of weak instrument bias is to attenuate the causal ef-

fect towards the null.4

MR-Egger regression

In contrast to the IVW method, MR-Egger regression10

does not assume that all of the SNP-outcome associations

are unaffected by pleiotropy, so the ajs are all allowed to

be non-zero. Put simply, it assumes that the magnitude of

the pleiotropic effects are independent of their strengths as

instruments. That is, the size of cj for variant j provides no

information as to the size of its corresponding aj. This is

referred to as the InSIDE (Instrument Strength Independent

of Direct Effect) assumption;10 see also the Appendix for a

more detailed discussion (available as Supplementary

data at IJE online). In common with the IVW method,

MR-Egger makes the NOME assumption. It performs a

regression of the SNP-outcome associations on the SNP-

exposure association of the form bCj ¼ b0E þ b1Ebcj.

Weighting the regression by the precision of bCj improves

efficiency and is recommended, but for simplicity of ex-

planation, we ignore this extra complication for now.

The intercept estimate bb0E can be interpreted as the

average pleiotropic effect across all variants and the slope

estimate bb1E provides an estimate for the true causal par-

ameter b. MR-Egger can only detect pleiotropy when it is

�directional’ (i.e. it has a non-zero average value), since only

then will b0E be non-zero. It could be, for example, that all

variants exhibit pleiotropy, but on average it cancels out.

This is referred to as�balanced’ pleiotropy.10 When InSIDE

and NOME are perfectly satisfied, MR-Egger returns an

unbiased estimate for the causal effect b. However, when

InSIDE holds but NOME is violated, it will not be un-

biased; its expected value will equal the true value b multi-

plied by a scale factor between 0 and 1, as below:

Expected value of MR-Egger slope:

bb1E � b
VarðcÞ
VarðbcÞ¼b

r2
c

r2
cþs2

: (3)

Here, r2
c is the variance of the set of true SNP-exposure

associations c1; . . . ; cL and s2 represents the additional

�average’ variability among bc1; . . . ;bcL due to estimation (or

measurement) error. Only when s2 is zero will NOME be

satisfied. When the SNP-exposure estimates are more vari-

able than the underlying parameter values, so that s2 is

non-zero, the resulting NOME violation leads to the MR-

Egger estimate being attenuated towards zero, as per for-

mula (3). This attenuation can be understood as an arche-

typal case of regression dilution bias. A more detailed

explanation of formula (3) is given in the Appendix (avail-

able as Supplementary data at IJE online).

Assessing regression dilution with I2
GX

The ratio varðcÞ=varðbcÞ in equation (3), and hence the mag-

nitude of the regression dilution, can be approximated

using the I2 statistic,14 a well-known tool for assessing be-

tween study heterogeneity in meta-analysis. First, define

Cochran’s Q statistic for the SNP-exposure associations to

be:

QGX ¼

XL

j¼1

ðbcj � �bcÞ2

r2
Xj

where �bc is the mean of the SNP-exposure associations

(weighted by 1/r2
Xj). Our corresponding I2 statistic is then

defined to be I2
GX ¼ ðQGX � ðL� 1ÞÞ=QGX. Our approxi-

mation implies that, on average, bb1E is roughly equal to

bI2
GX, as suggested by formula (3); see the Appendix for

further details and the slightly adapted formula for I2
GX

under a weighted analysis, available as Supplementary

data at IJE online.

In order to clarify the definition of I2
GX in the MR con-

text, we refer to Figure 1. The solid black dots show a scat-

ter plot of the SNP-outcome association estimates (the bCs)
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versus the true SNP-exposure associations (the cs). The

hollow black dots show the SNP-outcome association esti-

mates versus the SNP-exposure association estimates (the

bcs). In practice, we only observe the hollow black dots

(estimate versus estimate). The horizontal dashed lines cen-

tred at each solid black dot represents the region within

which we would expect to find the estimate bcj (hollow

black dot) with 95% probability, given that it is generated

from equation (1). These lines are proportional in length to

the standard error of each SNP-exposure association esti-

mate. Note that there is variation in the length of the

dashed lines, because each SNP-exposure standard error is

unique, depending on factors such as allele frequency. The

I2
GX statistic represents the true variance of the SNP-

exposure associations, r2
c (or spread of black dots) divided

by the variance of the SNP-exposure association estimates,

r2
c þ s2 (or spread of hollow black dots).

The I2
GX statistic therefore offers a convenient interpret-

ation. When the underlying SNP-exposure associations are

sufficiently heterogeneous, and the uncertainty in the SNP-

exposure association estimates is small in comparison with

this underlying variability, I2
GX will be close to 1 and the at-

tenuation due to NOME violation will be negligible. If the

underlying associations are generally similar in magnitude,

or if their estimates are relatively imprecise (or both), then

I2
GX could be much less than 1 and the attenuation will be se-

vere. An I2
GX statistic of 0.9 provides the assurance that the

likely bias in bb1E due to measurement error is around 10%

of the true value of b. This is, equivalent to the assurance

provided by an F-statistic of 10 in traditional IV analyses.

The impact of regression dilution: further

examples

In order to gain further insight into the impact of regres-

sion dilution for MR-Egger, consider the scatter plots of

hypothetical summary data shown in Figure 2. Here we

have removed error bars indicating the uncertainty in the

SNP-exposure association estimates for clarity. In each

scatter plot, InSIDE is assumed to hold.

In Figure 2 (top left), we imagine that all variants are in-

valid instruments but the pleiotropy is balanced. That is,

a1; . . . ; aL are all non-zero but their average value is zero.

Furthermore, the causal effect b is positive. We also assume

that all the variants are strong instruments in the trad-

itional sense of having large F-statistics, but that NOME is

violated to the extent that I2
GX ¼ 0.75. As before, each hol-

low black dot represents (bcj; bCj) [the SNP-exposure associ-

ation estimates versus the SNP-outcome association

estimates] whereas the solid black dots show the true cjs

plotted against the bCjs. Note again that the hollow black

dots are more variable than the solid black dots.

Since all instruments are strong and the pleiotropy is

balanced (b0E ¼ 0), the IVW estimate perfectly aligns with

the true slope, which is denoted by the solid black line.

However, because NOME is violated, we expect the MR-

Egger estimate to be diluted towards zero by a factor of

I2
GX ¼ 3/4. This is shown by the solid blue line. Since the

slope and intercept parameter estimates from MR-Egger

are negatively correlated, this means that the intercept par-

ameter estimate is positively biased. In the Results section,

we show that this leads to an inflation in the type I error

rate of the MR-Egger test for directional pleiotropy.

Figure 2 (top right) shows the same scenario as Figure 2

(top left) except instead of balanced pleiotropy, there is

now negative directional pleiotropy. As before, the MR-

Egger slope parameter is diluted towards zero from b by a

factor of 3/4. In this case the intercept estimate is also atte-

nuated, meaning that the power of the MR-Egger test to de-

tect true directional pleiotropy is reduced. In this example

the IVW estimate (shown by the red line) is much closer to

the null, due to the pleiotropy acting in the opposite direc-

tion of the causal effect. Its bias is solely due to the incorrect

assumption that all variants are valid IVs, and not because

of regression dilution. Figure 2 (bottom left) shows the case

where there is positive directional pleiotropy and a positive

causal effect. In this example the IVW estimate is further

from the null, since the pleiotropy acts in the same direction

as the causal effect. The MR-Egger slope parameter is

diluted towards zero as before but the intercept estimate is

increased. However, since it is truly non-zero, this does not

lead to type I error inflation. Figure 2 (bottom right) shows

the case where there is positive directional pleiotropy, but

the causal effect is zero. In this case, violation of the

NOME assumption has no effect; if the causal effect is truly

zero then it cannot be attenuated any further. As in Figure

2 (bottom left), the IVW method mistakenly attributes the

positive pleiotropy to a causal effect.

Figure 1. Illustrative diagram showing the SNP-exposure associations (es-

timates ¼ hollow black dots, true values ¼ solid black dots) plotted against

the SNP-outcome association estimates for a fictional MR analysis.
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Bias adjustment via simulation extrapolation

An intuitive but crude bias-corrected estimate for the causal

effect would be bb1E=I
2
GX. In a preliminary investigation,

however, this approach did not work well. Even when the

true value of I2
GX is large, its estimate is a random quantity

and can sometimes be close or equal to zero (as we will sub-

sequently illustrate and explain in Figure 3). Therefore, sim-

ply dividing the original MR-Egger estimate by I2
GX can

yield unstable results. We found that the well-established

technique of simulation extrapolation (SIMEX)15 to be

more reliable. Under SIMEX, new data sets are created by

simulating SNP-exposure association estimates under

increasing violations of the NOME assumption. That is, for

each new data set, a new SNP-exposure estimate for variant

j is generated with a mean value equal to the observed esti-

mate ðbcjÞ, but with a variance that is (1þk) times as large as

r2
Xj (where k is a non-negative number). The simulated data

are combined with the observed SNP-outcome estimates to

yield a new value for bb1E. This is repeated many times for

the same value of k to get an average value for bb1E, and the

whole process is repeated for a range of ks. The average

value of bb1E tends to get smaller as the magnitude of k in-

creases, since the regression dilution effect will be stronger.

A statistical model is then fitted to the set of average values

obtained across the ks, by treating them as data points. The

fitted model then enables the user to extrapolate back and

estimate the value of bb1E that would have been obtained if

NOME had been satisfied. This can be viewed conceptually

as setting k to -1 to perfectly remove the measurement

error: see Figure 5 for an illustration of the method in prac-

tice and the Appendix for further technical details (avail-

able as Supplementary data at IJE online). R and Stata

packages exist to implement SIMEX16,19, providing point

estimates as well as accompanying standard errors to en-

able full inference after bias adjustment.

Results

Simulations

In this section we demonstrate the impact of NOME viola-

tion (as measured by I2
GX) on the performance of MR-

Egger regression and the IVW approach, and show the

utility of bias adjustment for MR-Egger regression via

SIMEX. Data sets of 25 SNP-exposure and SNP-outcome

associations were generated to furnish two-sample sum-

mary data MR analyses in the following manner.

SNP-exposure associations for a given �F and I2
GX

SNP-exposure standard errors rX1,. . .,rX25 and SNP-

exposure parameters c1; . . . ; c25 were drawn from Uniform

distributions and then used to generate SNP-exposure esti-

mates bc1; . . . ;bc25 from model (1). The lower and upper

bounds of these distributions were chosen in order to fix

Figure 2. Illustrative diagram showing the SNP-outcome association estimates plotted against both the SNP-exposure association estimates (hollow

black dots) and their true values (solid black dots). Top left: positive causal effect, balanced pleiotropy. Top right: positive causal effect, negative direc-

tional pleiotropy. Bottom left: positive causal effect, positive directional pleiotropy. Bottom right: no causal effect, positive directional pleiotropy.
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the true mean F-statistic (�F) and I2
GX to the specific values

desired. Initially, we fix �F to be close to that of the lipids

data analysed in the following section (�F ¼ 125) and then

consider four values of I2
GX: 95%, 90%, 85% and 75%.

Both Table 4 and Figure 7 (left) in the Appendix (available

as Supplementary data at IJE online) show, for each value

of I2
GX, the precise sampling distributions for r2

X1,. . .,r2
X25,

c1; . . . ; c25 and the resulting distribution of F-statistics

(with mean value 125). By letting r2
X1,. . .,r2

X25 take a range

of values, we can account for heterogeneity in the preci-

sions of SNP-exposure estimates present in real data due to

differing allele frequency.

SNP-outcome associations for a given pattern of pleiotropy

SNP-outcome standard errors were generated by setting

rYj equal to 2 � rXj in order to reflect a common allele fre-

quency for a given variant j but different sample sizes in

the underlying SNP-exposure and SNP-outcome cohorts.

Pleiotropy parameters a1; . . . ; a25 were randomly generated

from a Uniform distribution under five distinct scenarios.

For a fixed causal effect, b, a1; . . . ; a25 and rY1; . . . ;rY25

were then used to generate SNP-outcome association esti-

mates bC1; . . . ; bC25 from model (1). The five simulation

scenarios explored were:

• Scenario 1: balanced pleiotropy [aj � Uniform(-0.2,0.2)]

and a positive causal effect: consistent with b ¼ b1E ¼ 1;

b0E ¼ 0;

• Scenario 2: negative directional pleiotropy [aj �
Uniform(-0.2,0)] and a positive causal effect: consistent

with b ¼ b1E ¼ 1; b0E ¼ �0:1;

• Scenario 3: positive directional pleiotropy [aj �
Uniform(0,0.2)] and a positive causal effect: consistent

with b ¼ b1E ¼ 1; b0E ¼ 0:1;

• Scenario 4: positive directional pleiotropy [aj �
Uniform(0,0.2)] and a zero causal effect: consistent with

b ¼ b1E ¼ 0;b0E ¼ 0:1;

• Scenario 5: no pleiotropy [all aj ¼ 0] and a zero causal ef-

fect: consistent with b ¼ b1E ¼ 0; b0E ¼ 0:

Note that in each scenario, the MR-Egger intercept par-

ameter b0E is equal to the arithmetic mean of the plei-

otropy parameter distribution. Scenarios 1, 2, 3 and 4

mirror the situations highlighted in Figure 2 (top-left, top-

right, bottom-left and bottom-right, respectively). The add-

itional scenario (scenario 5) is strictly the only one where

the assumptions underlying the IVW approach (as origin-

ally proposed) are satisfied.

An important facet of our simulations is that, for each

summary data set, SNP-exposure and pleiotropy param-

eters (the cs and as) are generated from independent distri-

butions, as in reference (10). Following this procedure

enables us to see how MR-Egger regression would work on

average across different MR data sets of the same size, as

opposed to a single data set with fixed parameter values.

This means we avoid having to pick specific values for the

cs and as, which could be seen as arbitrary. It also guaran-

tees that, across the simulations, the average correlation be-

tween instrument strength and pleiotropy parameters will

be zero (so that InSIDE is satisfied�on average’). However,

for any single data set, this correlation will be non-zero and

InSIDE will be strictly violated. We therefore refer to this

data-generating procedure as satisfying the �weak’ InSIDE

assumption, a concept which is further clarified in the

Appendix, available as Supplementary data at IJE online.

Exploring all five scenarios under the four values of I2
GX

gave 20 simulation settings in total. For the IVW approach,

we report the average causal effect estimate bbIVW and the

probability of rejecting the causal null hypothesis b ¼ 0.

For MR-Egger regression (with and without adjustment

via SIMEX) we report: the average estimate for the inter-

cept parameter bb0E and the probability of rejecting the null

hypothesis of no directional pleiotropy (b0E ¼ 0); and the

average estimate of the slope parameter bb1E and the

Figure 3. Left: distribution of I2
GX estimates under scenario 1 for �F ¼ 20 and I2

GX ¼ 0.60 when L ¼ 25 (blue), 50 (red) and 100 (black). Right: distribution

of I2
GX estimates under scenario 1 for �F ¼ 125 and I2

GX ¼ 0.95 when L ¼ 25 (blue), 50 (red) and 100 (black).

International Journal of Epidemiology, 2016, Vol. 0, No. 0 7

 at L
eicester U

niversity L
ibrary on O

ctober 5, 2016
http://ije.oxfordjournals.org/

D
ow

nloaded from
 

http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw220/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw220/-/DC1
http://ije.oxfordjournals.org/


probability of rejecting the causal null (b ¼ 0). All methods

were implemented as described in the Results section, using

t-tests for hypothesis testing at the 5% significance level.

The results, which are the average of 5000 simulations, are

shown in Table 1. We label the rejection probabilities as P:

when the null hypothesis is true, P equals the type I error

rate, and when the null hypothesis is false, P equals the

power. The first two columns of Table 1 show the true

value of I2
GX and its average estimated value (they are close

but not exactly equal). The most striking single observa-

tion is that, across all simulation settings, the average un-

adjusted MR-Egger estimate of causal effect, bb1E, is

approximately equal to b times the average I2
GX estimate,

in line with our theoretical prediction.

IVW results

Columns 3–4 of Table 1 show the performance of the IVW

method. Since the 25 instruments are very strong, as meas-

ured by �F, the IVW method has an almost 100% rejection

rate of the causal null for scenarios 1–4 (which all contain

pleiotropy). However, this is its type I error rate for scen-

ario 4, since the causal null is true. The type I error rate of

the IVW estimate is preserved at the 5% level under scen-

ario 5, when no pleiotropy or causal effect exists. Across all

scenarios, the average value of bbIVW is very insensitive to

changes in I2
GX. Under scenarios 1 and 5, it is approximately

unbiased and out-performs MR-Egger. Under scenarios

2–4, it is biased by a consistent amount due to the presence

of directional pleiotropy and is inferior to MR-Egger.

MR-Egger results

Columns 5–8 of Table 1 show the performance of the

standard MR-Egger method, and columns 9–12 show the

performance of MR-Egger with SIMEX adjustment. Under

scenario 1, there is balanced pleiotropy and a positive

causal effect (b0E ¼ 0, b ¼ 1). The results show that

increasing NOME violation (decreasing I2
GX) leads to type

I error inflation of the MR-Egger test for pleiotropy above

the 5% level, due to over-estimation of b0E. When I2
GX ¼

75%, the type I error rate is over 10%. Over-estimation of

Table 1. Results for simulation scenarios 1–5, �F ¼ 125. P equals power for bb1E and bb IVW in scenarios 1, 2 and 3 and type I error

in scenarios 4 and 5. P equals power for bb0E in scenarios 2, 3 and 4 and type I error in scenarios 1 and 5

MR-Egger regression

I2
GX IVW Standard approach SIMEX adjusted

True Est bbIVW (P) bb0E(P) bb1E(P) bb0E(P) bb1E(P)

Scenario 1: Balanced pleiotropy, b ¼ b1E ¼ 1, b0E ¼ 0

0.95 0.95 0.99 (1.00) 0.02 (0.06) 0.95 (1.00) 0.00 (0.05) 1.00 (1.00)

0.90 0.90 0.99 (1.00) 0.04 (0.07) 0.89 (0.94) 0.00 (0.05) 0.99 (0.94)

0.85 0.84 0.99 (1.00) 0.07 (0.08) 0.84 (0.73) 0.01 (0.06) 0.98 (0.73)

0.75 0.73 0.99 (1.00) 0.11 (0.10) 0.73 (0.41) 0.02 (0.06) 0.95 (0.44)

Scenario 2: Negative directional pleiotropy, b ¼ b1E ¼ 1, b0E ¼ -0.1

0.95 0.95 0.78 (1.00) �0.08 (0.28) 0.95 (1.00) �0.10 (0.38) 1.00 (1.00)

0.90 0.90 0.76 (1.00) �0.06 (0.12) 0.89 (1.00) �0.10 (0.20) 0.99 (1.00)

0.85 0.84 0.75 (1.00) �0.03 (0.07) 0.84 (0.94) �0.09 (0.14) 0.98 (0.94)

0.75 0.73 0.75 (1.00) 0.01 (0.05) 0.73 (0.69) �0.08 (0.09) 0.94 (0.71)

Scenario 3: Positive directional pleiotropy, b ¼ b1E ¼ 1, b0E ¼ 0.1

0.95 0.95 1.20 (1.00) 0.12 (0.56) 0.95 (1.00) 0.10 (0.39) 1.00 (1.00)

0.9 0.90 1.22 (1.00) 0.14 (0.46) 0.90 (1.00) 0.10 (0.24) 1.00 (1.00)

0.85 0.84 1.23 (1.00) 0.16 (0.41) 0.84 (0.94) 0.10 (0.19) 0.99 (0.94)

0.75 0.73 1.23 (1.00) 0.21 (0.41) 0.73 (0.68) 0.12 (0.16) 0.94 (0.69)

Scenario 4: Positive directional pleiotropy, b ¼ b1E ¼ 0, b0E ¼ 0.1

0.95 0.95 0.21 (0.98) 0.10 (0.46) 0.00 (0.05) 0.10 (0.43) 0.00 (0.05)

0.90 0.90 0.23 (0.99) 0.10 (0.29) 0.00 (0.05) 0.10 (0.25) 0.00 (0.05)

0.85 0.84 0.24 (1.00) 0.10 (0.20) 0.00 (0.05) 0.10 (0.17) 0.00 (0.06)

0.75 0.73 0.24 (1.00) 0.10 (0.15) �0.01 (0.05) 0.10 (0.12) �0.01 (0.06)

Scenario 5: No pleiotropy, b ¼ b1E ¼ 0, b0E ¼ 0

0.95 0.95 0.00 (0.06) 0.00 (0.04) 0.00 (0.05) 0.00 (0.05) 0.00 (0.05)

0.90 0.90 0.00 (0.05) 0.00 (0.05) 0.00 (0.05) 0.00 (0.05) 0.00 (0.05)

0.85 0.84 0.00 (0.06) 0.00 (0.05) 0.00 (0.05) 0.00 (0.05) 0.00 (0.05)

0.75 0.73 0.00 (0.05) 0.00 (0.05) 0.00 (0.05) 0.00 (0.06) 0.00 (0.06)
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b0E coincides with under-estimation of the causal effect for

MR-Egger and a reduction in the power to reject the causal

null. SIMEX is able to mitigate the bias in bb1E caused by

measurement error, reduce the type I error rate of the MR-

Egger test for pleiotropy and leave the power to detect a

causal effect unchanged.

Under scenario 2, there is negative directional plei-

otropy and a positive causal effect (b0E ¼ -0.1, b ¼ 1).

Increasing NOME violation (decreasing I2
GX) has the effect

of reducing the power to detect directional pleiotropy and

the power to detect a causal effect for MR-Egger. By ad-

justing for bias in bb1E, SIMEX is able to marginally in-

crease the power to detect directional pleiotropy and leave

the power to detect a causal effect unchanged. Under scen-

ario 3, there is positive directional pleiotropy and a posi-

tive causal effect (b0E ¼ 0.1, b ¼ 1). The results are

broadly similar to scenario 1. However, since there is true

directional pleiotropy, the power to detect it increases with

increasing NOME violation for MR-Egger. Applying

SIMEX to successfully correct for bias in bb0E and bb1E then

actually reduces the power to detect pleiotropy.

Under scenario 4, there is positive directional pleiotropy

and a zero causal effect (b0E ¼ 0.1, b ¼ 0). The results con-

firm that when the causal null hypothesis is true, the MR-

Egger estimate bb1E is unbiased and consequently the type I

error rate of the MR-Egger causal effect estimate is main-

tained at its nominal level. This is true regardless of the

strength of NOME violation. Applying SIMEX in this case

has no effect on inference for the causal effect, but slightly

reduces the power to detect directional pleiotropy. Under

scenario 5 there is no pleiotropy, and a zero causal effect

(b0E ¼ 0, b ¼ 0). In this case, the IVW method and MR-

Egger (with and without SIMEX) all unbiasedly estimate

their model parameters and their tests maintain the correct

type I error rate.

Further results for �F 5 20

Table 2 shows the results for a near identical simulation

study, except that the mean instrument strength �F is fixed

at 20 and the true I2
GX values are varied between 60% and

40%. The strength and effect of the NOME violation are

now much more severe.

Both Table 4 and Figure 7 (right) in the Appendix

(available as Supplementary data at IJE online) show, for

each value of I2
GX, the precise sampling distributions for

rX1,. . .,rX25, c1; . . . ; c25 and the resulting distribution of F-

statistics (with mean value 20). Higher values of I2
GX are

not mathematically possible when �F is low, without letting

the strength of individual genetic variants get unnaturally

Table 2. Results for simulation scenarios 1–5. �F ¼ 20. P equals power for bb1E and bbIVW in scenarios 1, 2 and 3 and type I error in

scenarios 4 and 5. P equals power for bb0E in scenarios 2, 3 and 4 and type I error in scenarios 1 and 5

MR-Egger regression

I2
GX IVW Standard approach SIMEX adjusted

True Est bbIVW (P) bb0E(P) bb1E(P) bb0E(P) bb1E(P)

Scenario 1: Balanced pleiotropy, b ¼ b1E ¼ 1, b0E ¼ 0

0.60 0.56 0.95 (1.00) 0.18 (0.22) 0.56 (0.38) 0.08 (0.10) 0.81 (0.41)

0.50 0.47 0.94 (1.00) 0.21 (0.28) 0.47 (0.24) 0.11 (0.12) 0.71 (0.29)

0.40 0.35 0.94 (1.00) 0.26 (0.33) 0.35 (0.14) 0.17 (0.15) 0.57 (0.19)

Scenario 2: Negative directional pleiotropy, b ¼ b1E ¼ 1, b0E ¼ -0.1

0.60 0.56 0.73 (1.00) 0.08 (0.09) 0.56 (0.42) �0.03 (0.08) 0.81 (0.46)

0.50 0.47 0.72 (1.00) 0.11 (0.13) 0.47 (0.29) 0.01 (0.09) 0.72 (0.34)

0.40 0.36 0.71 (1.00) 0.16 (0.19) 0.35 (0.16) 0.07 (0.10) 0.57 (0.21)

Scenario 3: Positive directional pleiotropy, b ¼ b1E ¼ 1, b0E ¼ 0.1

0.60 0.56 1.17 (1.00) 0.28 (0.54) 0.56 (0.42) 0.18 (0.22) 0.81 (0.46)

0.50 0.47 1.17 (1.00) 0.31 (0.56) 0.47 (0.28) 0.21 (0.24) 0.71 (0.33)

0.40 0.35 1.17 (1.00) 0.35 (0.62) 0.37 (0.18) 0.26 (0.28) 0.59 (0.24)

Scenario 4: Positive directional pleiotropy, b ¼ b1E ¼ 0, b0E ¼ 0.1

0.60 0.56 0.22 (0.54) 0.10 (0.12) 0.00 (0.05) 0.10 (0.11) 0.00 (0.07)

0.50 0.46 0.23 (0.56) 0.10 (0.12) 0.01 (0.06) 0.10 (0.11) 0.01 (0.08)

0.40 0.35 0.23 (0.57) 0.10 (0.11) 0.00 (0.06) 0.10 (0.12) �0.01 (0.09)

Scenario 5: No pleiotropy, b ¼ b1E ¼ 0, b0E ¼ 0

0.60 0.56 0.00 (0.05) 0.00 (0.05) 0.00 (0.06) 0.00 (0.07) 0.00 (0.07)

0.50 0.46 0.00 (0.05) 0.00 (0.06) 0.00 (0.06) 0.00 (0.09) 0.00 (0.08)

0.40 0.36 0.00 (0.06) 0.00 (0.05) 0.00 (0.06) 0.00 (0.09) 0.00 (0.09)
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close to zero [in the sense that they would not be chosen as

instruments in the first place due to violation of IV assump-

tion (i)].

Across all simulations settings, the average estimated

value of I2
GX (column 2) multiplied by the causal effect b

still perfectly predicts the average MR-Egger causal esti-

mate bb1E (column 8). However, SIMEX adjustment is less

effective in correcting the MR-Egger parameters for bias

when a causal effect exists (scenarios 1–3). In scenarios 4

and 5, where the causal null is true, unadjusted MR-Egger

estimates are well behaved with the correct type I error

rate, whereas SIMEX adjustment slightly increases the type

I error rate above the nominal level. Thus, under the causal

null and when �F and I2
GX are low, bias adjustment can ac-

tually be worse than no adjustment at all.

Estimation of I2
GX as a function of �F and L

The I2
GX statistic is estimated from the data, and is there-

fore subject to error. Its variability will be affected by the

strength of the instruments (as measured by F) and the

total number of instruments, L. Figure 3 (left) shows the

distribution of I2
GX estimates under scenario 1 when �F ¼

20, the true value of I2
GX ¼ 0.6 and when L is 25, 50 and

100. Figure 3 (right) shows the distribution of I2
GX esti-

mates under scenario 1 when �F ¼ 125, the true value of

I2
GX ¼ 0.95 and when L is 25, 50 and 100. In both plots it

is apparent that, as L increases, the variability in I2
GX esti-

mates decreases and its distribution becomes less skewed.

Crucially, for the �F ¼ 20 case, increasing L removes the

possibility of estimating I2
GX to be zero. This clarifies why

the crude adjustment for NOME violation (dividing bb1E by

the estimated I2
GX) can fail when �F and L are low. On the

contrary, we see in Figure 3 (right) that, when �F, L and

I2
GX are high, the variability in estimated I2

GX is sufficiently

small for crude bias adjustment to work well.

Assessing the causal effect of LDL-c on CAD

There is a long and extensive literature on the association

between various lipid fractions and coronary artery disease

(CAD), but still far from universal agreement as to whether

all these associations have a causal basis. We focus on the

possible role of the least controversial lipid, low-density

lipoprotein cholesterol (LDL-c), in modifying CAD risk.

Using summary data from the Global Lipids Genetics

Consortium (GLGC)3 to provide SNP-LDL-c association

estimates, and summary data from CARDIoGRAM2 to

provide SNP-CAD association estimates, we perform a

two-sample MR analysis to illustrate the utility of MR-

Egger regression and the I2
GX statistic.

Since LDL-c levels are closely related and highly corre-

lated with other lipid fractions, we selected the 57 variants

that were more strongly associated with LDL-c than with

triglycerides or high density lipoprotein. This strategy (al-

though not foolproof) aimed to reduce the possibility that,

if pleiotropy existed among the variants, it is operating via

a confounder of LDL-c and CAD. This would violate IV

assumption (ii) and lead to violation of InSIDE. This would

in turn bias the results from MR-Egger regression (regard-

less of the value of I2
GX) as explored in reference (10). The

minimum P-value for the strength of association across all

variants was 8.3�10�7. The mean F-statistic across all

included variants was 132, the weakest being 30 and the

strongest being 1325.

Figure 4 (left) shows a scatter plot of the SNP-outcome

log-odds ratio associations (bCj) versus the SNP-exposure

associations (bcj) across all 57 included variants. The data

are scaled so that the causal effect estimates represent log-

odds ratios of CAD for a standard deviation increase in

LDL-c. Figure 4 (right) shows a funnel plot20 of the causal

effect estimates bbj ¼ bCj=bcj on the x-axis versus their inverse

standard error (a measure of their strength as instruments)

on the y-axis. The funnel representation is a convenient

Figure 4. Left: scatter plot of the summary data estimates, with IVW and MR-Egger slope estimates shown. Right: funnel plot of the causal effect esti-

mates, with overall estimates under the IVW and MR-Egger approaches (with and without SIMEX correction).
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tool for assessing the presence of directional pleiotropy.

This would induce a correlation between effect size and

instrument strength, leading to asymmetry in the plot.10

The IVW method estimates a strong positive causal effect

of 0.45. However, there is reason to believe this analysis

to be misleading, given that some asymmetry exists.

Applying MR-Egger regression using code provided in

online supplementary material accompanying reference

(10) (and weighting by the inverse standard error of the

SNP-outcome association to improve efficiency), negative

directional pleiotropy is detected, although the evidence is

not particularly strong. Consequently, the point estimate

for b1E is adjusted upward to 0.63.

We now assess the potential for regression dilution bias to

attenuate the MR-Egger estimate for the causal effect. Under

the weighted analysis considered here, I2
GX is calculated from

QGX using the weighted SNP-exposure associations and cor-

responding standard errors (bcj=rYj, rXj=rYj), whereas the un-

weighted analysis uses (bcj, rXj); see the Appendix for further

details, available as Supplementary data at IJE online. For

these data, I2
GX equals 0.971 for the standard weighted ana-

lysis and 0.974 for an unweighted analysis. A crude bias ad-

justment would therefore be 0.63/I2
GX ¼ 0.65. We used the

simex() package in R19 to implement the SIMEX method,

choosing the quadratic model for the extrapolation (see

Appendix). The SIMEX estimate was in very close to agree-

ment with the crude bias-adjusted estimate of 0.65, as illus-

trated in Figure 5. Indeed, this is exactly what our

simulations predicted given the observed values of I2
GX, �F and

L (see Figure 3). Full results for all three methods are shown

in Table 3. As in the supplementary material accompanying

reference (10), causal effect estimates (Est), standard errors

(SE), P-values and t-test values are calculated for each

method under a multiplicative random effects model that ac-

counts for over-dispersion (in this case due to pleiotropy).

In conclusion, although borderline evidence of plei-

otropy exists across the included variants, there is still

strong evidence that LDL-c is causally related to CAD risk.

MR-Egger regression revises the causal effect of LDL-c up-

wards, because the apparent causal effect is masked by

pleiotropy acting in the opposing direction. Applying the

SIMEX algorithm revises the estimate slightly further still,

although a corresponding small increase in the standard

errors leaves inference largely unchanged. We can at least

confidently state that NOME violation is not a problem

for these data.

It is of course perfectly possible that our strategy for

including (and excluding) variants in the analysis could in

fact be unduly influencing the results by inducing collider

bias. We do not therefore claim that this approach is super-

ior to the more liberal inclusion policy adopted by Holmes

et al.8 in their main analysis, or that any single approach

should be relied upon. Holmes et al. sensibly consider a

range of analyses to address the problem of pleiotropy, for

example by constructing both�restricted’ and�unrestricted’

gene scores. A spectrum of possible rules for including vari-

ants in an MR study are also discussed and implemented

for very similar data by Bowden et al.21 Although we en-

courage such sensitivity analyses, they are beyond the

scope of this paper.

Discussion

The standard IVW method of Mendelian randomization

with summary data makes the strong assumption that all

variants are valid instruments, due to a complete absence

of pleiotropy. However, if pleiotropy is present but bal-

anced (as in Scenario 1 of the simulation study), it can still

return unbiased estimates of causal effect and is consider-

ably more powerful than MR-Egger regression.

Unfortunately, the IVW method can give biased results

under cases of directional pleiotropy and incorrectly infer

causality (as in Scenario 4 of the simulations). MR-Egger

Figure 5. Simulation extrapolation applied to the MR-Egger regression

analysis of the lipids data. The adjusted estimate is that predicted by

the model at the value k ¼ -1.

Table 3. IVW and MR-Egger regression analysis (with and

without SIMEX adjustment) of the lipids data

Model

Parameter Est SE t-value p-value

IVW approach

bIVW 0.45 0.053 8.51 1.13e-11

MR-Egger regression

b0E �0.0102 0.0046 �2.23 0.0298

b1E 0.632 0.0975 6.481 2.66e-08

MR-Egger regressionþSIMEX

b0E �0.0109 0.0047 �2.33 0.0236

b1E 0.6500 0.10000 6.47 2.76e-08
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regression, by contrast, is more robust to directional plei-

otropy. It is not designed to replace the standard approach

in the primary analysis, but is an important sensitivity ana-

lysis tool to probe whether the IV assumptions have been

violated in a meaningful way.

Both the IVW and MR-Egger regression methods are

traditionally implemented by assuming the SNP-exposure

association is measured without error (the NOME assump-

tion). Unfortunately, the price paid for MR-Egger’s

increased robustness to pleiotropy is a corresponding de-

crease in its robustness to violations of NOME, which

manifests itself as regression dilution bias. Our work sug-

gests that, in two-sample MR studies, the I2
GX statistic is a

much more relevant summary measure for MR-Egger

regression than the traditional F-statistic. Whereas the F-

statistic is defined for each genetic variant and provides an

independent assessment of its strength within an IVW ana-

lysis, I2
GX tells us that instrument strength is a singular, col-

lective property of all variants within an MR-Egger

analysis. Although better measures of instrument strength

may still be developed for MR-Egger regression, the simpli-

city of I2
GX in calculation and interpretation make it an at-

tractive option.

Limitations and further work

Our focus in this paper was to explain the effect of viola-

tions to the NOME assumption on the performance of

MR-Egger regression in the two-sample summary data

context, and its connection to I2
GX. Further work is

required to understand the effect of NOME violation on

MR-Egger regression when using a single-study popula-

tion. The picture is likely to be more complex in this set-

ting, since weak variants will induce bias towards the

observational estimate, with the magnitude of the bias

depending on the (unknown) strength of confounding. It

may therefore be hard or impossible to find a statistic (like

I2
GX) to quantify this bias.

In order to make things as clear as possible, we purpose-

fully simplified our two-sample MR data-generating model

in several ways. First, data were simulated under the

InSIDE assumption, so that we could be sure MR-Egger

would return unbiased estimates when NOME is satisfied.

If InSIDE is violated, for example due to pleiotropic effects

acting via a confounder as explored in reference (10), an

MR-Egger analysis would yield biased estimates even if

I2
GX were equal to 1. In practice, for I2

GX values less than 1,

its bias will likely be due to violations of InSIDE and

NOME. Second, we generated summary SNP-exposure

and SNP-outcome association estimates from independent

normal distributions with known variance, rather than

simulating the individual participant data directly, to

furnish�idealised’ two-sample MR analyses. This removed

the two further issues of non-collapsibility and ascertain-

ment bias which are often encountered in practice when

the outcome is binary and case-control data are used to es-

timate log-odds ratios for the SNP-outcome associations.22

Extending methods such as MR-Egger regression to prop-

erly account for these issues is an important line of future

research.

In this paper we showcased just one method of bias ad-

justment in the presence of measurement error, namely the

SIMEX approach.15,16 We chose this because of its wide-

spread use across statistics, its intuitive nature and its ap-

plicability to a wide range of statistical models. Software is

also readily available to implement the approach in prac-

tice with very little computational burden. Of course, users

may simply wish to implement a naive correction by divid-

ing the observed MR-Egger causal estimate by I2
GX.

Although this will often be sufficient with a large number

of strong instruments (as seen in the simulations and the

lipids analysis) we do not think it is a reliable method in

general. Furthermore, an estimate for the variance of the

naive correction would also be needed to enable full statis-

tical inference.

It is possible that alternative methods of bias adjustment

could work better in the MR context, such as the plethora

of approaches discussed in references13,23,24. For example,

Sharp25 recommends a natural Bayesian formulation of the

problem, where the bias issue can be circumvented by

focusing directly on the parameters which subsequently

generate the observed data affected by measurement error.

However, it is worth noting that, by virtue of being shrunk

towards zero, uncorrected estimates tend to have a smaller

variance. Viewed through this lens, bias adjustment can

then be seen as applying the appropriate correction factor

to �reverse’ the shrinkage, but at the cost of a reduced

precision.

Model selection techniques have recently been proposed

for MR analysis with the purpose of detecting and adjust-

ing for invalid instruments, using methods that assume at

least half of the genetic variants are valid instru-

ments.21,26,27 MR-Egger regression can work even if all

variants are invalid (under InSIDE), but our work has

shown that its performance will be best when the I2
GX stat-

istic is large. An obvious follow-on question, therefore, is

whether it is sensible to adopt a strategy to increase the

value of I2
GX for the analysis at hand. For example, it

would be possible to combine variants together into a

number of separate allele scores and to perform MR-Egger

regression on them instead. The SNP-exposure estimates

obtained from the individual allele scores would be smaller

in number but more precise than those based on the indi-

vidual variants, and could therefore give rise to a higher
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I2
GX, as desired. These ideas naturally complement allele

score approaches that have been shown to successfully

mitigate weak instrument bias when performing standard

two-stage least squares or IVW analyses.18,28

In conclusion, assessing the strength of NOME violation

is an important prerequisite to performing causal inference

with summary data, especially with MR-Egger regression. It

is unfortunate that this fact was not clarified in the original

publication by Bowden et al.,10 and we suspect the data ex-

amples contained in this paper would benefit from a more

considered analysis in light of our increased understanding.

It is comforting to note that standard MR-Egger regression

remains a reliable method for testing the causal null hypoth-

esis, even when NOME is violated. We recommend evaluat-

ing the I2
GX statistic alongside an MR-Egger analysis. If it is

sufficiently low (less than 90%), point estimates of causal

effect should be interpreted with caution due to regression

dilution, and adjustment methods such as SIMEX should be

considered as part of a sensitivity analysis.

Supplementary Data

Supplementary data are available at IJE online.
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