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ABSTRACT
We can never be certain that a software system is correct
simply by testing it, but with every additional successful test
we become less uncertain about its correctness. In absence of
source code or elaborate specifications and models, tests are
usually generated or chosen randomly. However, rather than
randomly choosing tests, it would be preferable to choose
those tests that decrease our uncertainty about correctness
the most. In order to guide test generation, we apply what is
referred to in Machine Learning as “Query Strategy Frame-
work”: We infer a behavioural model of the system under
test and select those tests which the inferred model is “least
certain” about. Running these tests on the system under test
thus directly targets those parts about which tests so far have
failed to inform the model. We provide an implementation
that uses a genetic programming engine for model inference
in order to enable an uncertainty sampling technique known
as “query by committee”, and evaluate it on eight subject
systems from the Apache Commons Math framework and
JodaTime. The results indicate that test generation using
uncertainty sampling outperforms conventional and Adaptive
Random Testing.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Black-box testing; Test Generation; Machine Learning; Un-
certainty Sampling; Genetic Programming.

1. INTRODUCTION
Testing software components without access to source code

or hand-crafted models is challenging because there is no
guidance for the selection of test inputs. Selection is in-
variably guided by intuition or, if automated, by random
or quasi-random input generation algorithms [1, 3, 4]. Left
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to chance alone, random test sets can easily fail to expose
facets of software behaviour that depend upon specific input
characteristics. Furthermore it can become exceedingly diffi-
cult to reason about the adequacy of a randomly-generated
test set, especially for non-numerical programs without an
operational profile [1].

Recently, several “Learning-Based Testing” (LBT) tech-
niques have emerged [6–9] that aim to address these limita-
tions. LBT techniques are based on the idea, first espoused
by Weyuker [10] and Budd and Angluin [11], that there is
a natural duality between inductive model inference and
software testing. The former seeks to infer a general model
of behaviour for a system from an incomplete sample of
observations of its behaviour. The latter seeks to identify
the smallest possible set of observations that are required to
expose the full range of behaviour. Although the ultimate
purposes are different, both are bound by an intrinsic chal-
lenge: attempting to establish the link between the often
infinite range of externally observable behaviour of a system
and a finite sample of observations (or vice versa).

LBT techniques seek to exploit this duality by using Ma-
chine Learning algorithms to infer input / output models
from test executions. These models can then be used to de-
rive new test cases. The rationale is that this ought to form
a virtuous loop (or, to adopt Popper’s terminology, a cycle of
“conjecture and refutation” [12]) where the inferred models
become increasingly detailed and accurate, and thereby drive
the test generation to produce increasingly rigorous test sets.

The step of generating new test inputs from an inferred
model is especially important. New test inputs ought ideally
to expose ‘new’ aspects of software behaviour that have not
featured in previous test executions. Intuitively, the test
generation approach tends to be closely tied to the type of
inferred model (e.g., if an approach infers a state machine,
it will tend to adopt a state machine testing algorithm to
derive new tests [7, 13]).

Unfortunately, there are two barriers that currently restrict
LBT approaches to relatively specific classes of relatively
small-scale software systems:

1. The dependence between the type of inferred model
and the test generation approach can be highly lim-
iting. Whole families of powerful Machine Learning
algorithms have to be excluded as they do not produce
explicit, ‘testable’ models.

2. The application of model-based test generation ap-
proaches to inferred models can yield large numbers of
test cases, which hampers scalability. Many of the gen-
erated tests are of little utility to the learner. Whereas
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the goal is to find ‘counter-examples’ to the inferred
models, the majority of test cases can merely end up
corroborating what is already known.

In this paper we investigate the possibility of using an
Active Learning query strategy frameworks [15,28] to circum-
vent these limitations. In Machine Learning, query strategy
frameworks provide a means by which to use an existing
inferred model (or set of models) to select further samples
that are most likely to be of “high utility” to the learner – i.e.
provide information that is not already contained within the
training set. These tend to be based on the principle that the
best samples are those whose prediction elicits the highest
degree of uncertainty with respect to the current model. In
the context of LBT, if one accepts the existence of a rela-
tionship between the adequacy of a test set and the accuracy
of a model inferred from it, then it should follow that test
cases selected by an effective uncertainty sampling technique
should form an effective basis for test case selection.

In detail, the contributions of this paper are as follows:
• We introduce the first application of query strategy

frameworks to test generation (Section 4).
• We present an implementation of a query strategy

framework for test generation using Query By Commit-
tee [15] on inferred models (Section 4).
• We propose the use of Genetic Programming [14] as a

basis for model inference, as it directly enables Query
By Committee (Section 4).
• We present an implementation of an LBT-based testing

using query strategy frameworks, based on Genetic
Programming and Query By Committee (Section 4).
• We present an empirical evaluation on eight functions

provided within the Apache Commons Math and Joda-
Time frameworks, using mutation testing to assess the
effectiveness of the generated test cases (Section 6).

Our experiments demonstrate that uncertainty sampling
leads to a higher mean number of mutants detected than
random or adaptive random testing (the baseline techniques
we use in this paper). It also tends to require fewer test
executions to produce higher numbers of mutants. This is
especially valuable for test-scenarios where there is a non-
trivial cost associated with test execution (e.g. tests take
a prohibitive amount of time, or their outputs need to be
checked by a human test-oracle).

2. AUTOMATED BLACK-BOX TESTING
Black-box testing in general refers to the concept of testing

a software system without access to its source code. Ideally,
black-box testing is driven by detailed formal specifications
or test models, which enable techniques to automatically
generate tests, and act as test oracle that decides whether
a given test execution revealed a fault or not. In practice,
such specifications are not always available, in which case
automated generation of tests is limited to few options.

2.1 Random Testing
The most common approach to test automation in the ab-

sence of formal specifications and source code is to randomly
select tests, for example using a uniform distribution on the
input space or an operational profile [1]. The effectiveness
of random testing highly depends on the specifics of the sys-
tem under test: Random testing is generally unlikely to find
specific input values [2], and may perform poorly at covering
the underlying behaviour of the program.

Algorithm 1: Generic LBT procedure

Input: SUT ,TestInputs
Uses: terminate, execute, selectInputs, inferModel
Result: TestInputs
hyp ← ∅ ;
Executions ← ∅ ;
for (input ← TestInputs) do

Executions ← Executions ∪ execute(input);

while (¬ terminate(Executions,hyp,SUT)) do
hyp ← inferModel(Executions);
NewInputs ← selectInputs(hyp,SUT );
Executions ← Executions ∪ execute(SUT ,NewInputs);

TestInputs ← TestInputs ∪NewInputs;

return TestInputs;

Adaptive Random Testing (ART) [3] aims to alleviate these
problems by ensuring that tests are spread out across the
program input space as much as possible. In general, ART
works iteratively by repeatedly sampling a set of random
inputs, and out of this set selecting the input that is most
different to previously executed tests as the next test to
run on the system under test. While there is evidence that
this approach makes the selected tests more effective than
a completely random selection, every test input adds to
complexity of generating the next test input, because there
is an additional point in euclidean space against which to
measure the next group of random inputs.

If running a test on a system under test is cheap, then pure
random testing may be more effective than ART [36] as it
can simply execute significantly more tests in the same time
as ART. However, in practice test execution can often take
a long time, and the absence of an automated oracle (e.g.,
a formal specification) may make it necessary to manually
investigate every single test outcome. Thus, we assume that
it is desirable to generate the most effective set of tests, rather
than relying on the ability to run large sets of potentially
redundant tests.

2.2 Learning-Based Testing
We use the term ‘Learning-Based Testing’ (LBT) to refer

to the (now relatively broad) family of techniques that seek
to use Machine Learning to support the generation of test
cases. The idea was first explored by Weyuker [10] and Budd
and Angluin [11] in the early eighties. For the subsequent 15
years it was the subject of some predominantly theoretical
research [16,17,19]. However, over the subsequent 15 years
it adopted a more practical bent, with several authors devel-
oping accompanying proof-of-concept tools [6–9,13,20,23].

Algorithm 1 shows the main generic LBT steps:
• The algorithm starts with an initial set TestInputs of

inputs to the program. This may be empty, but it may
also be an established test set that we wish to improve.
• The loop of model inference and test generation is exe-

cuted until a stopping criterion terminate(Executions,hyp)
evaluates to true. For example, it might attempt to es-
tablish the equivalence between the inferred model hyp
and the system under test SUT , and return true if the
model is sufficiently similar in some sense [6]. It might
alternatively simply terminate after a fixed number of
iterations, if Tests reaches a particular size, or there
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Figure 1: The relationship between ‘learnability’
and ‘testability’ in LBT.

has been no change to hyp after a certain number of
iterations.
• In this loop, the first step is to infer a predictive in-

put/output model hyp of the program using the func-
tion inferModel(Executions). The type of the model
can vary, and depends on the nature of the system
under test. Proposed techniques have adopted state
machines [6, 7], decision trees [9, 22] and Daikon invari-
ants [24].
• The input to the inferModel function are the execu-

tions, i.e., the input/output pairs resulting from exe-
cuting the test inputs TestInputs on the system under
test SUT using function execute(SUT ,Inputs).
• Finally, selectInputs(hyp,SUT) selects new inputs.

The test generation strategy might be random [23],
driven by source code coverage [9], or using a model-
based test algorithm with respect to Mod [6].

Much of the research on combining inference and testing
has focussed on the interplay between the terminate and
inferModel functions — on the ability to leverage inference
mechanisms to provide more meaningful adequacy criteria.
This is what motivated most of the early research into the
area as well [10,16,17]. Recent inference and test generation
techniques have been combined to guarantee that the be-
haviour of the system has been exercised to a certain extent.
For example, several researchers have combined Angluin’s
L∗ inference technique [18] with established state machine
testing techniques [6,8] and showed that these lead to strong
guarantees that the inferred model accurately represents
what has been explored.

2.3 Limitations of Learning-Based Testing
LBT techniques tend to be limited in their practical ap-

plicability because they rely on the inference of models that
not only approximate the behaviour of the SUT, but are
also usable as a basis for automated test generation. As
illustrated in Figure 1, the processes of inference and testing
are highly interdependent; the model has to be learnable
from the SUT [21], but also has to be testable, in the sense
that it can provide a suitable basis for the generation of
new test cases. This explains why LBT techniques so far
have been largely restricted to state machines [6–8], decision
trees [22,23], and invariants [24]. As a consequence, entire
families of Machine Learning algorithms that infer models
that are harder to subject to symbolic reasoning are excluded,
even if they could potentially infer more accurate models

from a broader class of SUT’s. These include kernel-method
techniques such as SVM [25], Neural Net learners [26], and
Genetic Programming [14].

Aside from the constraints mentioned above, the use of ‘off-
the-shelf’ test generation techniques, coupled with the itera-
tive nature of the approach, can lead to scalability problems.
Test generation algorithms generate test cases without con-
sidering the test cases that have been generated in previous
iterations. This can produce very large test sets, especially
if the testing algorithm in question produces large numbers
of test cases anyway (e.g., the popular W-Method [27] for
state machines is a good example of an algorithm that does
not scale well, and has often used for test-driven model
inference [6]).

The primary challenge addressed in this paper is to find a
means by which to remove the constraints on the classes of
Machine Learners that can be applied to LBT. Although we
want to remove the constraints on the types of models that are
inferred, it is crucial that they can still guide test generation,
and do so in a scalable way that does not needlessly re-test
behaviour that has already been tested.

3. QUERY STRATEGY FRAMEWORKS
In this paper we will show how the above problem can

be solved by the use of query strategy frameworks, a core
facet of active learning techniques [28] in Machine Learning.
Precisely how this is achieved will be described in the next
section. Here we provide a generic introduction to query
strategy frameworks and Query by Committee.

3.1 Query Strategy Frameworks
Machine Learning algorithms can be broadly categorised

into conventional (passive) Machine Learners and active Ma-
chine Learners. Passive learners infer models from data that
is given to them before learning commences. Active learners
might start from some given data, but crucially are also
imbued with the ability to obtain further data. The learner
might surmise that the inferred model is incomplete because
the initial sample lacked data of a certain characteristic, so
the learner can set out to obtain more relevant data, which
it can use to refine its model.

The active learning setting gives rise to the query strategy
problem [28]. The process of obtaining a sample might be
expensive, so it is consequently important to keep the number
of queries (additional samples) down to a minimum. However,
any additional data that is sampled must be of a high utility

— i.e., it must lead to improvements in the model inferred
by the learner. This problem has been the subject of a
large amount of research over the past two decades (a good
overview is provided by Settles [28]). The essential goal is
to avoid selecting a query that fails to add new information
that is of value to the learner. Any new data should ideally
confound the predictions of the current model.

One factor that plays a key role in selecting queries is the
notion of uncertainty. Given a data-point that was not part of
the original training set (referred to as a ‘query’), the degree
of uncertainty exhibited by the current hypothesis model as
to how it should be classified can provide an indication of how
useful it would be to obtain a real sample. The goal is thus
to identify queries for which the level of confidence in the
corresponding output is at its lowest, with the aim of eliciting
aspects of behaviour that were perhaps under-represented in
the training sample.



Algorithm 2: Query By Committee

Input: Train, i , s,comitteeSize,randomPoolSize
Uses: learnMultiple,best , computeUtility , randomPoints
Result: Hyp
Hyp ← ∅ ;
for i iterations do

Hyp ← learnMultiple(Train, comitteeSize);
U ← randomPoints(randomPoolSize);
for s iterations do

// Pick a point u ∈ U with max utility

u = argmaxx∈U || computeUtility(Hyp, x) ||;
l = label(u);
Train ← Train ∪ {l};
U ← U \ {u};

Hyp ← learnMultiple(Train);
return best(Hyp);

One key challenge is to find a suitable metric that can be
used to assess this “uncertainty” for a given model prediction.
For statistical Machine Learners, where the output is often in
the form of a probability distribution, numerous uncertainty
sampling techniques have been developed [28]. However, in
the context of LBT, models such as inferred state machines
tend not to be probabilistic.

3.2 Query By Committee
There is a ‘trick’ that enables the application of uncertainty

sampling even when the inferred models are themselves not
probabilistic. If one can, from a given sample, infer multiple
different models, then it becomes possible to use their mutual
agreement / disagreement to estimate a level of uncertainty
and use this as a basis for uncertainty sampling [15]. Algo-
rithm 2 shows the Query By Committee (QBC) approach
proposed by Seung et al. [15].
• The entire process iterates for a fixed number of itera-

tions (i).
• At each iteration, the learnMultiple function pro-

duces a “committee” of hypothesis models. This is
conventionally achieved by Ensemble Methods [29],
which produce different hypotheses by inferring models
from different samples of the training set (in this pa-
per we will illustrate an alternative approach of using
the population generated by a Genetic Programming
algorithm).
• Once the models have been inferred, the random-

Points function generates a set of random ‘inputs’
U – in Machine Learning terms this is a set of unla-
belled data points. The size of U is determined by the
randomPoolSize parameter.
• The nested for-loop then essentially picks a subset of s

points in U . These are selected by evaluating each point
in U to determine those points about which the inferred
models Hyp are least in agreement (as computed by
the computeUtility function). In other words, these
points would be of most utility to the learner.
• Once these points are selected, they are labelled with

the label function, added to the training set, and the
process iterates.
• After the final iteration, a set of models is inferred from

the aggregate training set, and a model is selected to be
returned by the best function. The selection criteria

Algorithm 3: Testing By Committee

Input: SUT ,Tests,s,i ,comitteeSize,randomPoolSize
Uses: execute,learnMultiple,

randomInputs,computeUtility
Result: Tests
Hyp ← ∅ ;
for i iterations do

Hyp ← learnMultiple(Tests, comitteeSize);
U ← randomInputs(SUT , randomPoolSize);
for s iterations do

u = argmaxx∈U || computeUtility(Hyp, x) ||;
l = execute(u);
Tests ← Tests ∪ {l};
U ← U \ {u};

return Tests;

can vary depending on the inference approach – one
straightforward option (adopted in this paper) is to
return the model that best predicts the outputs (or
‘labels’) produced by Train.

There is a clear similarity between the QBC algorithm
and the LBT algorithm in Algorithm 1. Both involve loops,
where models are inferred at each iteration. In both cases, the
models are used as a basis for selecting more data (test inputs
in the testing context, unlabelled data points in the Machine
Learning case). There are also two significant differences.
In the case of QBC, the output is the final inferred model,
whereas in LBT the output is the data that was used to infer
the model (the test set with its outputs). In LBT, there is
no fixed approach to generate test data – it could be random,
or adopt a model-based testing algorithm. In QBC, there is
only one approach; regardless of the type of model or system,
a random pool of unlabelled data points are generated, and
the best s points are chosen based on the ‘uncertainty’ that
they elicit from the inferred committee of models.

4. APPLYING QBC TO TEST GENERATION
In the context of Machine Learning, QBC enables uncertainty-

based sampling to occur, regardless of the type of model that
is inferred. In this paper we produce the Testing By Commit-
tee approach, which applies QBC to LBT to circumvent the
dependence between the model inference algorithm and the
test-generation algorithm. In principle this enables LBT to
use any model inference algorithm, and to select test cases
based on the combined uncertainty of the inferred models.

In this section we first set out our Test By Committee
algorithm, which combines LBT with QBC. We then pro-
vide technique that implements this approach using Genetic
Programming as a basis for the model inference.

4.1 Test By Committee
Our proposed ‘Test By Committee’ (TBC) algorithm is

shown in Algorithm 3. It clearly combines Algorithms 1 and
2. The key similarities and dissimilarities are as follows:
• As with QBC, we limit the number of iterations to a

fixed number i (though it would certainly be possible
to integrate something more elaborate, along the lines
of the terminate function in Algorithm 1).
• The step of learnMultiple is the same as in Algorithm

2; a population of models are inferred using either en-



semble methods or, as we will demonstrate, population-
based learners such as Genetic Programming.
• To generate the candidate test inputs, we introduce a

new function randominputs. The SUT is only used
to gain information about its interface. Once the types
of the interface are known, inputs are formulated as
combinations of random values of the appropriate types.
• The process of adding new tests to the test set is the

same as in Algorithm 2. For s iterations, the best
candidate is selected from U by seeing which candidate
test case causes the most disagreement amongst models
in Hyp. The chosen test is then executed to identify
its actual output, and this is then added to Tests (it is
also removed from U to avoid re-selection).

Many of the steps are in effect the same as they are in
conventional LBT. However, two steps are very different, and
therefore require a more in-depth discussion. The model infer-
ence step (learnMultiple) requires multiple models. The pro-
cess of selecting the best candidate test case (computeUtility)
is also new in the context of testing, and requires more de-
tails. In both cases, there are many possible ways in which
they could be implemented. In the following two subsections,
we describe how we have chosen to implement them for our
proof of concept.

4.2 Learning Multiple Models by Genetic Pro-
gramming

To produce the models required for Query-by-Committee
it is possible to use a Genetic Programming (GP) inference
engine [31]. A GP evolves programs of a given target language
towards an optimisation goal, specified by a fitness function.
As mentioned previously, in principle any inference technique
could be applied (underpinned by Ensemble Methods [33]).
However, (a) the intrinsic population-based nature of GPs
renders them suitable for QBC, and (b) GPs can easily be
adapted to different types of languages, making them well
suited for modelling programs in different domains.

For space reasons, we only provide the essential details
of GPs here, and refer the reader to Poli et al.’s GP field
guide [31], along with our source code1 for further details.
In (tree-based) GPs, candidate programs are ‘evolved’ as
abstract syntax trees, where branch nodes correspond to ‘non-
terminals’ representing functions, and leaf-nodes represent
atomic values or variables (terminals). The basic loop is as
follows (details on the terms in italics will be elaborated in
the next section):

1. Generate an initial population of programs as random
compositions of non-terminals and terminals.

2. Execute each evolved program and evaluate it according
to some fitness function.

3. Select the best programs from the population.
4. Create a new population by a process of cross-over and

mutation.
5. Repeat from step 2 until some stopping criterion is

met.
In its traditional application, the result of the GP is the

program with the best fitness value, which represents the best
solution. In our case, we can exploit the population-based
nature of the GP: At the end of the search, the population
consists of a range of slightly varied candidate solutions
optimised for the problem at hand.

1https://bitbucket.org/nwalkinshaw/efsminferencetool

4.3 Generating Test Cases by QBC
The first step to applying QBC is to select the committee.

For this we select the fittest set of chromosomes Hyp. The
size of this set is determined by the parameter committeeSize.
The query generation step involves generating a pool of
random inputs U , and then assessing every u ∈ U to find the
one that creates most ‘uncertainty’ according to the set of
inferred models in Hyp (in our case the set of chromosomes
inferred by the GP). Every potential test input u is executed
on every model h ∈ Hyp, and the outputs are recorded. The
input that produces the greatest spread of predictions is then
chosen to be executed on the real SUT.

5. IMPLEMENTATION
We have implemented the approach described in the previ-

ous section. The implementation targets numeric programs
without side-effects returning single outputs. In this section,
we provide details of this implementation.

5.1 A GP for Programs with Primitive Types
In this section we elaborate the detailed aspects of the

generic GP algorithm shown in Section 4.2.
Fitness function: The fitness function provides a metric

for the accuracy of the inferred program to predict the SUT.
Fitness is evaluated by executing a candidate program on
all existing test inputs, and comparing the outputs to those
that were actually observed in the trace data.

Selection: Step 3 selects good candidates from the pop-
ulation, so that they can be fed into the next generation.
A popular approach, which we adopt here, is Tournament
Selection [31]. In our case the selection process is elitist, this
means that the best individual from one generation is always
preserved for the next one.

Crossover and Mutation: The candidates that were
selected in step 3 are subjected to a mixture of crossover
and mutation (the frequency at which they occur is given
in probabilistic terms). We choose to use the most common
form cross-over called subtree-crossover [31]. Mutation is
carried out by selecting a random node in a tree and changing
it. If the selected node happens to be a terminal, its value is
simply changed. If it is a non-terminal, we replace its subtree
with a randomly generated one.

Arbitrary crossover or mutation can easily lead to nonsen-
sical programs - for example by using String terminals with
a function that expects integer parameters. Strongly-typed
GP [31] prevents this from happening by ensuring that every
terminal and non-terminal has a declared type.

Termination and result: The loop terminates once a
candidate has been identified that cannot improve in terms
of fitness, or once the number of iterations hits a given limit.

Terminals and Non-Terminals: The choices of termi-
nals and non-terminals are shown in Table 1. In general, of
course, the choice of GP operators is flexible, and is ideally
informed by knowledge about the system being inferred. In
our case, we sought a reasonably general set that can be
applied across a range of programs. The question of how to
refine the selection of terminals and non-terminals to best
suit a SUT is part of our ongoing work.

5.2 Generating Test Cases by QBC
For the purpose of this work (as a proof of concept), we are

restricting ourselves to a particular class of system that pro-
duces single numerical outputs (either integers or numbers



Table 1: Non-terminals and Terminals chosen for
our experiments

Non-Terminals

Double
(D)

add(x:D,y:D), subtract(x:D,y:D), multi-
ply(x:D,y:D), divide(x:D,y:D), power(x:D,y:D),
root(x:D, y:D), cast(x:I), if(x:B,y:D,z:D),
cos(x:D), exp(x:D),log(x:D)

Integer
(I)

cast(x:D)

Boolean
(B)

and(x:B,y:B), or(x:B, y:B),
LT(x:D,y:D), GT(x:D,y:D), EQ(x:B,y:B),
EQArith(x:D,y:D),EQString(x:S,y:S)

Logic
(all)

if-then-else(a:B,b:D,c:D),if-then-
else(a:B,b:I,c:I),if-then-else(a:B,b:S,c:S),if-
then-else(a:B,b:B,c:B)

Terminals

Double
(D)

all variable names in Vars of type double, one
free variable limited to the interval [−2, 2], -1.0

Integer
(I)

all variable names in Vars of type integer, one
free variable limited to the interval [−2, 2], 0

Booleans
(B)

All variable names in Vars of type Boolean, true,
false.

Strings
(S)

All variable names in Vars of type String, any
customised pre-defined String values.

with decimal places). Our initial use of standard deviation
proved to be problematic, as it could often produce a mis-
leadingly high value for the situation where most of the
models were in fact in agreement, but one “rogue” model had
produced an extreme value.

To address this problem, we instead opted for the Mean
Absolute Deviation (MAD) value [32], which is less vulner-
able to data-spikes. For a set of values X = {x1, . . . , xn},
MAD(X ) = 1

n

∑n
i=1 | xi −m(X ) |, where M (X ) calculates

the mean of X .
It is necessary to select a value to accommodate the situa-

tion where an inferred model returns either infinity or Not
a Number (e.g., because an inferred model divides by zero),
but the SUT returns a valid value. The value should be high,
to indicate that the model is incorrect, but cannot be too
high (e.g., Double.MAX VALUE), because this prevents the
calculation of an accurate mean over multiple outputs. In
this case, we substitute the result with a value of 10,000,000
(this was a somewhat ad-hoc choice, and establishing a more
justified value is part of our future work).

5.3 Example – The BMI Calculator
This section contains a brief walk-through of TBC. As a

SUT we choose a simple BMI calculator. This takes as input
two numbers (height in meters and weight in kilograms), and
returns a “Body Mass Index” value, calculated as weight

height2
. For

our technique to operate, we do not need to be able to look
at the internal implementation, but only need to know of the

interface. However, to provide a complete overview, let us
assume that the calculator is implemented as a bash script,
with the following source code:

#!/bin/bash
awk "BEGIN {print $2 / ($1 * $1)}"

Our implementation accepts a specification of the interface
in the following self-explanatory JSON format.

{
"command": "bmi.sh",
"parameters":[

{
"name": "height",
"type": "double",
"max": "100",
"min": "-100"

},
{

"name": "weight",
"type": "double",
"max": "100",
"min": "-100"

}
],
"output":[

{
"name": "output",
"type": "double"

}
]

}

Finally, we provide an existing basic test set that we wish
to improve upon. Our implementation accepts a space-
separated text file, where the order of values is taken to
be the order of parameters in the specification file (height
followed by weight):

1.7 50
1.8 70
1.9 100
1.7 110
0.0 5
5.0 0

With reference to the TBC process in Algorithm 3, the
BMI represents the SUT , and the above list of test sets
represents TestInputs. For the sake of illustration, we will
only show one iteration (i = 1), and we will only add a single
test set in this iteration s = 1. To illustrate how new test
cases are selected, we set randomPoolSize to 3, although this
would usually be much higher (in the evaluation we will set
it to 1000).

The TBC algorithm begins by inferring the “committee”
Hyp via learnMultiple. In our case, this produces the top 10
chromosomes. To give an idea of what is inferred, two of the
fittest GP programs after the first iteration is as follows:

gp1: Mult(weight,Exp(-1.1518922634307343)))

gp2: Div(height,Exp(height-Log(weight))

Although they are clearly inaccurate, we can assume that
(as the fittest members of their pool of solutions), they at
least approximate the output. This is illustrated in Figure
2, which plots outputs (the dashed and dotted lines) against
the expected output (the plain line), for all test inputs.

As the next step, randominputs produces a set of randomPoolSize
inputs (in this case three). The resulting inputs are shown on
the left in Table 2. For each input, the disagreement between
the models is calculated as the Maximum Average Deviation
(as described previously), shown in the right-hand column.
From this, it is clear that the second input produced a huge
divergence between the two inferred models.
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Figure 2: Comparison of expected versus inferred
outputs after one iteration wrt. BMI example.

Table 2: Proposed inputs and MAD calculation

height weight MAD

87.95 50.49 3.99
-62.41 91.14 1.80E+30
26.44 56.65 4.48

The input with the highest MAD value is thus added to
the test set, and the TBC process moves to the next iteration.
This time, thanks to the new test execution, the inferred
models ought to be more precise, and lead to test cases that
explore new aspects of the input domain.

6. EVALUATION
In this section we seek to assess the effectiveness of TBC

at generating rigorous test sets. Of primary concern is the
question of whether TBC can detect more faults than base-
line testing techniques. In this evaluation we use random
testing and Adaptive Random Testing [3] as the baseline.
Accordingly, the first research question is as follows:

RQ1: Do TBC-generated test sets expose more faults
than random and ART-generated test sets?

One further question is concerned with the efficiency. In
the even that TBC does not ultimately expose a larger num-
ber of errors than other techniques, it might still expose the
same number of faults, but after executing fewer tests, which
would render it more efficient:

RQ2: Are TBC-generated test sets more efficient
at exposing faults than random and ART-generated
test sets?

6.1 Subjects
We chose six units within the Apache Commons Math

framework (version 3.6)2 and two units within JodaTime
(version 2.9.3)3. The units were chosen on the following
criteria:
• It must accept a single (set of) input parameters – i.e.,

it must not require sequences of method calls (apart
from the call to the constructor, which was included in

2https://commons.apache.org/proper/commons-math/
3http://www.joda.org/joda-time/

Table 3: Subject Systems.

Component Functionality Exec. LOC Tests

BesselJ value 1,211 699
Binomial binomialCoefficientDouble 501 3,000*
DerivativeStructure asinh 360 3,000*
Gamma regularizedGammaQ 783 4
Erf erf 763 116
RombergIntegrator RombergIntegrator 735 4
Period toStandardWeeks 1128 5
Days daysBetween 1251 8

Table 4: Mean number of mutants killed after 60
iterations. Highest values are in bold. The sig-
nificance of the Mann-Whitney test is indicated in
parentheses. No significance - p > 0.05 is (-) , p < 0.05
is (*), and p < 0.001 is (***).

SUT TBC Random ART

BesselJ 447.50 442.83 (***) 442.93 (*)
Binomial 30.53 29.03 (***) 29.20 (***)
DerivativeSin 55.93 51.20 (***) 50.07 (***)
Erf 190.52 188.62 (***) 189.33 (***)
Gamma 208.23 206.90 (-) 205.60 (-)
Romberg Integrator 87.77 87.63 (-) 87.46 (-)
periodToWeeks 304.95 249.52 (*) 271.58 (-)
daysBetween 72.13 50 (-) 49.53 (*)

the test-wrapper, see below).
• It must produce a single output value.
• The parameters accepted by the unit under test (and

the output value returned by it) must either be primi-
tive data types that are supported by our GP imple-
mentation, or be complex objects where the constructor
accepts primitive data types.
• The unit in question must be invoked by one of the

Apache Commons Math or JodaTime test sets (so that
we can obtain use these tests to infer the first model).

The eight units in Table 3 represent the first units that
were encountered in each system. Where a package contained
a large number of possible varieties (e.g., calculations of
derivatives), we chose one at random, and avoided choosing
multiple units in the same collection. Where an initial test
set was particularly large (in some cases they contained >
20,000 executions of the SUT), we sampled 3000 executions
at random to ensure that the fitness functions in the GP
could be evaluated in a reasonable amount of time. These
are marked with a ‘*’ in Table 3.

Apache Commons Math and JodaTime were chosen be-
cause they are written in Java, which enables us to use the
Major mutation framework [34] and because they have a rea-
sonably extensive set of unit tests (enabling us to use these as
a starting point for the learning-based testing). Their details
are shown in Table 3. The sizes of the various functionalities
have to be treated as approximate. To provide the LOC
of the entire libraries would be a gross overestimation. To
provide the LOC for a single class would be a gross underes-
timation (especially in the case of Apache Commons Math,
where a large portion of the functionality is contained within
the very large org.apache.commons.math4.util.FastMath

class). We provide the total LOC within the library tracked
(using IntelliJ) when executing all generated test sets for a
given SUT.

It is important to note that these selection criteria are in

https://commons.apache.org/proper/commons-math/
http://www.joda.org/joda-time/


part so restrictive for the sake of control in our experiment. In
practice, if we wanted to test a system for which our current
GP was not sufficient, we would resort to a different Machine
Learner, or add the requisite terminals and non-terminals to
the GP. However, in our case, this special treatment would
obviously bias the results. To avoid bias, we thus restrict
ourselves to a subset of systems that are at least compatible
with our choice of GP.

6.2 Methodology
To gauge the performance of TBC in comparison with the

‘state of the art’, we compared the mutation scores for its
test sets against randomly generated test inputs, and test
sets generated by Adaptive Random Testing (ART) [3]. For
ART, an important factor is the choice of distance function
to distinguish test sets. In our case, since most of the inputs
were numerical, we chose the Euclidean distance function,
which tends to be the distance measure of choice.

All of the techniques were provided with an interface spec-
ification file, which contained the various parameters, and
the ranges for any numerical parameters. If parameters were
strings, the potential value-selections were explicitly enumer-
ated. To avoid biasing results, we did not use any domain to
set numerical variable range boundaries, and adopted a con-
servative approach; we looked at the ranges in the given test
sets, and expanding these ranges with a substantial buffer in
either direction (e.g., if the range of the test cases was from
0 to 10, we would set the range from -100 to 100). The full
configuration files, along with all other materials used for
this experiment are available online4.

To gauge how effective a test set is at exposing faults, we
employed mutation testing [35]. We used the Major Java mu-
tation testing framework (version 1.6, with all mutants) [34].
We seeded mutants conservatively, by selecting any classes
that were executed by the initial set of tests (we could not
seed mutants in every class in the system because of the
resource constraints of mutation testing). It does not make
sense to measure the mutation score as the proportion of
mutants killed, because the conservative seeding strategy
will invariably mean that this proportion is liable to be
very small (for example, all of the units use a fraction of
the org.apache.commons.math4.util.FastMath class). In-
stead, we simply compare the absolute numbers of mutants
detected, which suffices to provide valid answers to our two
research questions.

To prevent any bias arising from configurations, we used
the same configuration for TBC across all experiments. For
the GP configuration we used the set of terminals and non-
terminals detailed in Table 1. We used a population size of
800, with a crossover-rate of 0.9, a mutation rate of 0.1, a
maximum term-depth of 10 and a tournament size of 6 [31].
We set the number of tests generated per iteration 1000, and
the number selected for addition to the test set to 5.

To answer RQ1, we analysed the mutation scores that
were computed after 60 iterations, grouped according to the
technique (TBC, ART, and Random). To compare them we
carried out two (non-parametric) Wilcoxon Rank Sum tests
per SUT (having confirmed that the distributions are not
normally distributed according to the Shapiro Wilks test).
The first null-hypothesis was that the mutation scores for
TBC are smaller than those for random tests. The second
null-hypothesis was that the mutation scores for TBC are

4Omitted for double-blinding

smaller than those for ART tests. The distributions were
also visualised as box-plots.

To answer RQ2 (how much more effective is TBC?), we
recorded the last iteration at which TBC produced the high-
est mutation score (versus ART and Random). We also
plotted the trajectories of the means to show how the trajec-
tories differed over the course of the 60 iterations.

6.3 Results for RQ1: Effectiveness
The mean numbers of mutants killed for each system are

shown in Table 4. The distributions are also visualised as
box-plots in Figure 3. The table shows that, after 60 itera-
tions, TBC has killed the highest mean number of mutants
for every program. The improvement over ART and random
testing varies substantially between the systems. For BesselJ,
Binomial, Derivative Sinh, and ERF, the difference is statis-
tically significant; this is corroborated in the box plots. In
three of these systems (Binomial, Derivative Sinh and ERF),
difference is so marked that the lower quartile for TBC is
higher than the upper quartile for ART and Random.

For Gamma, Romberg, PeriodToWeeks and DaysBetween
although the mean is higher for TBC, the differences are
not statistically significant (they are partially significant for
PeriodToWeeks and DaysBetween). Looking at the box plots,
in all cases apart from PeriodToWeeks the boxes for TBC
are noticeably elevated. In the case of PeriodToWeeks, the
median score for TBC is the same as ART (even thought the
mean score is substantially higher). This is largely due to one
particular execution that achieved a particularly large num-
ber of mutations. In all cases, the difference in distributions
is particularly marked at the lower end; ART and Random
have lower minimum scores, and lower lower-quartiles than
TBC, which indicates that TBC is more consistent.

RQ1: In our experiments, TBC was more effective than
random testing and ART. In all cases there was a higher

mean number of mutants killed, and the difference in
distributions was significant in 4/8 SUTs.

6.4 Results for RQ2: Efficiency
We discuss the relative efficiency of TBC versus ART and

random testing by looking at how rapidly TBC out-performs
the other approaches (by achieving a higher mean number
of mutation faults without being overtaken in subsequent
iterations). Figure 4 shows the average mutation scores and
their standard deviations throughout the 60 iterations. It
is important to note the differences in scales; the different
SUTs give rise to markedly different numbers of mutants.
This means that similar differentials in the mean numbers of
mutants on different plots can appear markedly different. We
discuss the various trajectories by starting with the systems
where the performances are most similar.

In all of the studied systems, TBC eventually kills more mu-
tants on average than random and ART testing. In some sys-
tems the numbers of faults detected remain similar through-
out, whereas in others TBC significantly outperforms ART
and Random from the start. These cases are discussed in
more detail below.

As one might expect from the results for RQ1, the tra-
jectories in the Romberg and Gammaq SUTs are visually
similar; these are the systems where the relative performance
between the techniques is at its closest. In the Romberg
SUT, TBC is consistently better than ART from iteration 20
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Figure 3: Mutation Scores after 60 iterations, starting from given test sets.

onwards, but only outperforms random testing after iteration
50. In Gammaq, TBC consistently outperforms ART and
random from iteration 23 onwards, though only marginally.

Perhaps more surprisingly for both JodaTime systems Pe-
riodToWeeks and DaysBetween the trajectory for TBC is
noticeably higher than for ART and Random. For Period-
ToWeeks, the number of mutants killed for TBC rapidly
increases after 10 iterations to a level that ART and Random
only start to approach after 40-50 iterations.

In ERF, both ART and TBC outperform random testing
from the start. ART and TBC are similar up to iteration
40, where ART continues to plateau at 189 whilst the mean
number of killed mutants for TBC rises to over 190.

In Binomial, BesselJ, and DerivativeSinh, the results for
TBC are markedly better from the start. In the case of
BesselJ the difference may look smaller, but this is because
of the scale of the graphs. In BesselJ the mean TBC score
after 60 iterations is 447.5, whereas for scores for ART and
Random are approximately 443; this difference of 5 is in fact
larger than the differences in the other systems.

RQ2: In our experiments, TBC was significantly more
efficient at exposing faults than random testing and ART.

6.5 Threats to Validity
Threats to external validity: The answers to RQ1

and RQ2 can only validly be applied to systems of a similar
character to those tested here. We have only tested eight
systems from two frameworks. This means that they will
often have shared developers, and they all deal with similar
domains. We have additionally restricted ourselves to units
that are functional, which do not accept sequential inputs
(as discussed in Section 6.1). To attenuate this risk, we
attempted to make the selection of SUTs as indiscriminate
as possible within our broader selection constraints. The
SUTs presented here are the first ones we encountered that

fitted our criteria. However, to truly address this threat
a larger study on a more diverse range of SUTs is needed,
which is what we will be doing in our future work.

As mentioned previously, the choice of value ranges for the
parameters is important for all of the techniques. There is a
high probability that our choice of ranges is not ideal (given
that we avoided using domain knowledge to avoid bias). It
is possible that, for certain range limitations, the differences
between the various techniques are reduced (i.e., if the value
ranges are reduced). Investigating the relationship between
the selection of value ranges and the relative performance of
these techniques is something that we are exploring as part
of our ongoing and future work.

Threats to internal validity: The mutation score
depends upon the seeding of mutants. It is possible that
code was executed that was not seeded with mutants, thus
skewing the results. We attempted to limit this possibility
by tracking the execution of code with profiling tools.

6.6 Discussion
The results indicate that TBC tends to detect more faults

with fewer tests than the baseline techniques. However,
during the experiments a further factor became apparent
that did not favour TBC: time. For ART every test input
adds to complexity of generating the next test input, because
there is an additional point in euclidean space against which
to measure the next group of random inputs. Arcuri and
Briand made this point in their critique of ART [36], where
they showed that if time is taken into account instead of the
number of tests, then ART was by some distance inferior to
conventional random testing.

This question of time is even more pertinent to TBC than
ART (indeed, it applies to every LBT technique). LBT in-
volves the repeated execution of the given (and increasing)
set of tests (Random and ART do not). It involves model
inference, which again takes time. With the use of GP, infer-



Binomial BesselJ Gammaq Romberg

DerivativeSin ERF DaysBetween PeriodToWeeks

28

29

30

350

400

450

50

100

150

200

84

85

86

87

88

48

51

54

57

184

186

188

190

40

60

80

0

100

200

300

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
Step

M
ut

at
io

ns

Technique ART Random TBC

Figure 4: Mutation Scores for every iteration, starting from given test sets.

ence time is tied to the number of available tests (since these
evaluate the fitness function). For the Binomial system (the
most time-consuming system studied), the full 60 iterations
took on average 12 hours. For ERF (one of the least time
consuming systems) it took on average 89 minutes.

The timing question is clearly an important one to address,
and a larger empirical study will be incorporating this. Look-
ing at some of the trajectories in Figure 4 (such as Binomial
and DerivativeSin) it is doubtful whether random tests would
catch up with TBC, even if we did allow for a large disparity
in the number of tests. In any case, it is not necessarily
always possible; some test cases simply take long to execute
(e.g. if they involve complex processing or network commu-
nications), so the ability to execute huge numbers of tests
rapidly is not always an option. Also, even if it is an option,
the availability of many tests is not necessarily desirable
either, especially if checking the outputs is a non-trivial task.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have made an explicit connection between

the problems of test data generation in Software Engineering
and sampling in active Machine Learning. Our solution
proposes the use of uncertainty sampling as a means by
which to generate suitable test data. We have provided a

proof of concept implementation, along with the results of an
empirical study of eight units within the Apache Commons
Math and JodaTime frameworks. The initial results are
encouraging. Our TBC approach outperforms random testing
and Adaptive Random Testing.

Although promising, the approach has also given rise to
several important questions, which were touched upon in
the discussion of the threats to validity for the study. We
have not yet studied the specific relationship between the
variable-range constraints and the strength of the results.
We have not examined the relationship between the amount
of data in the initial test set, and the value of the final model.
We have not studied the relationship between the accuracy
of the final model and the effectiveness of the final test set.

In our ongoing and future work we will seek to explore
these questions. We will carry out experiments to examine
the effect of variable range on the number of mutants killed.
We will look at the accuracy of the inferred model to see if,
in this context, it leads to better test sets (building upon
the work by Fraser et al. [9]). We will also investigate the
adoption of alternative Machine Learning algorithms that
can model more sophisticated types of functionalities, such
as complex data structures and sequential behaviour.
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