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Abstract 40 

 41 

Mathematical models in biology are highly simplified representations of a complex underlying reality 42 

and there is always a high degree of uncertainty with regards to the model function specification. This 43 

uncertainty becomes critical for models in which the use of different functions fitting the same dataset 44 

can yield substantially different predictions—a property known as structural sensitivity. Thus even if 45 

the model is purely deterministic, the uncertainty in the model functions carries through into uncertainty 46 

in model predictions, and new frameworks are required to tackle this fundamental problem. Here, we 47 

consider a framework that uses partially specified models in which some functions are not represented 48 

by a specific form. The main idea is to project infinite dimensional function space into a low dimensional 49 

space taking into account biological constraints. The key question of how to carry out this projection 50 

has so far remained a serious mathematical challenge and hindered the use of partially specified models. 51 

Here we propose and demonstrate a potentially powerful technique to perform such a projection by 52 

using optimal control theory to construct functions with the specified global properties. This approach 53 

opens up the prospect of a flexible and easy to use method to fulfil uncertainty analysis of biological 54 

models. 55 

 56 
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1. Introduction 70 

Mathematical models of various ecological systems based on differential equations often have 71 

the troublesome property of structural sensitivity - in which the use of functional forms which are 72 

quantitatively close and qualitatively similar yields contradictory dynamical behaviour (Wood & 73 

Thomas, 1999; Fussmann and Blasius, 2005; Cordoleani et al., 2011; Adamson and Morozov, 2014a). 74 

Ecological models are particularly vulnerable to structural sensitivity for two main reasons. Firstly, 75 

biological processes have a high level of complexity, and so the precise form of any function chosen to 76 

represent them cannot be justified because it is necessarily a simplification of the true relation. Secondly, 77 

biological data often has substantial error terms, so significantly different functions can fit the same data 78 

set equally well. Generally, although structural sensitivity is fairly well acknowledged, the conventional 79 

approach in mathematical biology is to stick with a particular functional form, with parameter variation 80 

being the full extent of any attempt to deal with uncertainty (Lim et al., 1989; Janssen et al., 1996; 81 

Bendoricchio and Jorgensen, 2001). Simply varying parameters, however, is insufficient to check for 82 

and deal with structural sensitivity, because models have been shown to be highly sensitive to the 83 

formulation of model functions whilst remaining robust with respect to parameter perturbations 84 

(Fussmann and Blasius, 2005; Cordoleani et al., 2011). The use of a particular parameterisation cannot 85 

even be fully trusted if it derived mechanistically, since such mechanistic derivations always involve 86 

many simplifications, so we should not expect it to remain valid if we take into account heterogeneity 87 

of a population, larger time or space scales and fluctuating environmental factors (see the Introduction 88 

to (Adamson and Morozov, 2012) for a more detailed explanation). 89 

A better approach is to explicitly include the uncertainty in model functions by considering 90 

partially specified models (Wood, 2001; Adamson and Morozov, 2014a). In such models, we leave 91 

unknown functions unspecified apart from requiring that they satisfy some qualitative criteria inherited 92 

from the biological problem being modelled - we may require a function to be increasing, for instance, 93 

or to pass through the origin, etc. Note that this approach is based on similar ideas to the seminal works 94 

of Gause and Kolmogorov as early as the 1930s (Gause, 1934, Kolmogorov, 1936). Many properties of 95 

models are locally determined, such as the number and linear stability of equilibrium points, and it is 96 

quite easy to deal with such properties in partially specified models. Note that investigation of the 97 

stability of coexistence stationary states is a central part of ecological modelling (e.g. Rosenzweig and 98 

MacArthur, 1963; Oaten and Murdoch, 1975; Allen, 2007). Near a (hyperbolic) equilibrium the 99 

behaviour of the system is equivalent to that of its linearization, which is completely determined by the 100 

value of the equilibrium density and the local values of the unknown functions and their derivatives at 101 

this point (Kuznetsov, 2004). We can then treat these values as independent parameters and construct a 102 
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generalised bifurcation diagram in this new parameter space. This is the basis of the approach known 103 

as ‘Generalized modelling’ (Gross & Feudel, 2006; Yeakel et al., 2011; Kuehn et al. 2012), which links 104 

generalised bifurcation diagrams to real world data by considering a transformation of model functions 105 

in which the Jacobian depends not on the derivatives of unspecified functions at the equilibrium, but on 106 

the ‘elasticities’, which can theoretically be measured from data. However, since all generalised 107 

parameters still need to be measured at equilibrium states, obtaining these measurements can be 108 

impossible in the case of an unstable equilibrium; so while we can still try to check the range of the 109 

generalised parameters that we consider to be realistic, this will be a somewhat subjective choice.   110 

A more appealing approach would be to consider the entire possible span of the shape of the 111 

unspecified biological function—without a need to take measurements from the whole system in which 112 

the process is embedded. Based on this concept, a new framework was recently developed to perform 113 

bifurcation analysis while taking into account the entire span of the shape of the function (Adamson & 114 

Morozov, 2012; 2014a). The crux of the method is to take the entire infinite dimensional space of 115 

functions admitted by the data and respecting the global constraints of biological realism, i.e. constraints 116 

on the function over its whole domain, and to project it into the generalised bifurcation space. This gives 117 

us a closed region in the bifurcation space that consists only of those generalised parameters that can be 118 

taken by functions fitting the data and the constraints of biological realism. Using this principle, one 119 

can quantify the uncertainty in the system and even carry out a probabilistic bifurcation analysis of the 120 

model, for example defining the probability of having oscillations in the case where the exact shape of 121 

the function is not specified (Adamson & Morozov, 2014a,b). 122 

This new method of structural sensitivity analysis can rigorously cover all possible model 123 

functions, instead of requiring model functions to be restricted to certain (often arbitrary) equations, 124 

which makes it particularly useful when modelling biological systems with a high degree of uncertainty. 125 

However, its widespread practical application will hardly be possible without resolving the key 126 

mathematical question of whether or not functions exist satisfying certain local and global restrictions—127 

that is, they and their derivatives take certain values at certain points, and stay within given bounds 128 

across the whole domain. In previous papers on this framework structural sensitivity analysis, all proofs 129 

and derivations (using geometric arguments) were limited to the particular case where the global bounds 130 

themselves satisfied the properties required from the model function—for instance, for a functional 131 

response of Holling type II shape, the quantitative bounds must themselves be increasing, saturating 132 

and concave-down functions. Another drawback is that for each set of qualitative and quantitative 133 

function properties, we need to carry out analytical calculations which might well be enough to put off 134 

more practically-orientated biological modellers, and this inflexibility obstructs the development of 135 

software to perform the analysis automatically. Finally, there remains the challenge of constructing 136 
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appropriate weightings on the neighbourhood of relevant function values in the generalized parameter 137 

space: some of these values should be treated as marginal because they correspond to functions that fit 138 

the data less well than others, and there is no straightforward way to construct such a weighting. 139 

In this paper, we make a first attempt to develop a general approach to resolve the fundamental 140 

issues raised and to point the way towards the development of automated software to make the structural 141 

sensitivity framework more accessible for both modellers and biologists. The new approach consists of 142 

approximately determining whether a valid function satisfying a set of local and global properties exists 143 

by constructing a functional which ‘rewards’ functions for adhering to our criteria of validity (both 144 

quantitative and qualitative) and penalises them for straying from the criteria, finding the function which 145 

maximises this functional, and checking whether this ‘highest scoring’ function satisfies the constraints. 146 

To find the function maximising the functional, we use optimal control theory—the area of mathematics 147 

concerned with finding control parameters of a differential equation which maximise functionals of the 148 

resulting solution—in particular, the Pontryagin maximum principle. To demonstrate the efficiency of 149 

this method, we consider a Rosenzweig-MacArthur predator prey model (Rosenzweig & MacArthur, 150 

1963, Rosenzweig, 1971) and use our approach to reveal structural sensitivity in this system when we 151 

consider functions within complex bounds. We show that our approach outperforms the usual tactic of 152 

detecting sensitivity by simply varying parameters of fixed functional forms. Finally, we show how 153 

optimal control theory can be used to estimate a relevant ‘weighting’ of each set of functions used in 154 

modelling. 155 

 156 

2. General Framework 157 

 158 

2.1 Defining a partially specified biological model 159 

Partially specified models represent an attempt to include uncertainty in models by considering 160 

one or more model functions as unspecified functions, which aren’t given by a particular equation 161 

(Wood, 2001). In this paper, we shall consider partially specified ordinary differential equation (ODE) 162 

models with only one function left unspecified, 𝑓: [𝑥min, 𝑥max] → ℝ  where 𝑥 is a single real-valued 163 

variable (note that the method can be easily generalised to an arbitrary number of unspecified functions): 164 

�̇� = 𝐺(𝑔1(𝒗), 𝑔2(𝒗), … , 𝑔𝑠(𝒗), 𝑓(𝑥)), 𝒗 ∈ ℝ𝑛,        (1) 165 

 𝑔1,…,𝑔𝑠 are fully specified functions, with only their parameters being unknown; the function G 166 

determines how the subfunctions are assembled together, and is assumed to be known. Our aim is to 167 

check whether the model is sensitive to the functional form of 𝑓, and thereby determine to what extent 168 

we can trust the predictions of a corresponding model with a precise equation chosen for 𝑓. In order to 169 
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link the partially specified model to data and theory we consider that 𝑓 is required to remain between 170 

two boundary functions: 171 

ℎlow
0 (𝑥) ≤ 𝑓(𝑥) ≤ ℎhigh

0 (𝑥), (2) 172 

and satisfy some qualitative properties, which take the form of bounds on its derivatives: 173 

ℎlow
𝑗 (𝑥) ≤ 𝑓(𝑗)(𝑥) ≤ ℎhigh

𝑗 (𝑥).      𝑗 = 1, … , 𝑝.   (3) 174 

Note that the bounds for the derivatives ℎlow

𝑗 (𝑥), ℎhigh

𝑗 (𝑥) can be, in principle, piecewise smooth, i.e. 175 

have jumps at a number of points. An exotic example of two boundary functions ℎlow
0  and ℎhigh

0  are show 176 

as the red curves in Figure 2, together with a function bounded by them. The bounds on 𝑓 can be 177 

specified in different ways, depending on the situation: they may be taken from experimental data, in 178 

which case they will be the corresponding error bounds representing, say, 95% confidence intervals, or 179 

they could be used as a way of representing a purely hypothetical data set in our analysis, so that we 180 

can check how the model reacts to changes in the whole data profile. Alternatively, ℎlow
0  and ℎhigh

0  can 181 

be built by taking a fixed absolute or relative distance 𝜀 from some original ‘base function’, which may 182 

itself have parameters—varying these parameters will shift the bounds and we can check how the model 183 

reacts to a change in parameters, without needing to fix a parameterisation. Bounds on even the first 184 

derivatives are difficult to obtain from data, but may follow from biological theory or hypothesis—e.g. 185 

a feeding term might need to be an increasing function of the available food, and may saturate due to 186 

food handling time requiring a negative second derivative. 187 

We may also want to restrict 𝑓 and its derivatives at a certain set of values: 188 

𝑓(𝑗)(𝑥1) = 𝑓1
𝑗
, 𝑗 ∈ 𝐼1 189 

⋮      (4) 190 

𝑓(𝑗)(𝑥𝑚) = 𝑓𝑚
𝑗

, 𝑗 ∈ 𝐼𝑚, 191 

Where the 𝐼𝑖 are indexing sets which determine which derivatives of 𝑓 we restrict at each point 𝑥𝑖, 𝑖 =192 

1, … , 𝑚. We should introduce these exact local restrictions when we have (or want to postulate) exact 193 

information on the behaviour of the function at certain points. By far the most common example in 194 

biology is that functions should be zero at the origin, since it often makes no sense that there can be 195 

growth, feeding, mortality etc. with no population to begin with. In another case, if we know a function 196 

should have an inflection point, then we should set 𝑓′′(𝑥 𝑖) = 0, where 𝑥𝑖 is the inflection point. Since 197 

we usually can’t know the exact value at which we have an inflection point, we should treat 𝑥𝑖 as a 198 

parameter of the investigation in this case, to be varied over a range. 199 

Naturally, it is more complicated to investigate partially specified models than to investigate 200 

models in which all functions are fixed, and innovative ways are required to deal with this difficulty. 201 

However, when we have high uncertainty in our model functions, the use of only fully specified models 202 
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may not be sufficient. Consider that most generic function spaces are infinite dimensional. If we have a 203 

partially specified model and choose a particular function, determined by two parameters, say, to 204 

represent an unspecified function, then this only encompasses a 2-dimensional subset of the infinite 205 

dimensional space of valid functions. So unless we have a very good reason for choosing this 206 

parameterisation, its analysis is likely to be highly misleading (Fussmann and Blasius, 2005; Cordoleani 207 

et al., 2011). If we can work directly with the partially specified model our analysis will be general, as 208 

any such model necessarily includes every model with a particular valid parameterisation as a special 209 

case.  210 

 211 

2.2 Structural sensitivity analysis of partially specified models 212 

The framework first introduced in (Adamson and Morozov, 2012) for the investigation of 213 

partially specified models centres on the fact that for many system properties we do not need to know 214 

the entire shape of the constituent functions. For instance, local to a hyperbolic equilibrium, system 215 

behaviour is determined solely by the values taken by the functions and their derivatives at this 216 

equilibrium (Kuznetsov, 2004). In the notation of section 2.1, we only need to know the values 𝑥∗ and 217 

𝑓(𝑥∗) to determine if 𝑥∗ is an equilibrium density. Given these values and 𝑓′(𝑥∗), we can compute the 218 

Jacobian matrix at this equilibrium and check whether the real parts of all its eigenvalues are negative, 219 

and so determine the linear stability of the equilibrium without needing to refer to the function 𝑓 itself. 220 

In this way, we can construct bifurcation diagrams in a ‘generalised parameter space’, in which 𝑥∗,  221 

𝑓(𝑥∗) and the relevant derivatives of 𝑓 at 𝑥∗ are treated as if they were model parameters. This idea is 222 

the basis of both the generalized modelling framework (Gross & Feudel, 2006; Kuehn et al. 2012) and 223 

earlier classical works (Gause, 1934, Kolmogorov, 1936).  224 

Given the generalised parameter values 𝑥∗, 𝑓(𝑥∗), …, 𝑓(𝑝)(𝑥∗), the local bifurcation analysis is 225 

relatively simple. Taking into account constraints (2)-(4), however, it’s clear that only a finite region of 226 

the generalized bifurcation space can match the data. For some of these values, no function will exist 227 

that satisfies the imposed global and local constraints: consider Fig. 2, if 𝑥∗ = 0.1 and 𝑓(𝑥∗) = 0.9, 228 

then in this case clearly no function can take these values and lie within the boundaries. A generalised 229 

bifurcation plot should therefore look like Figure 3—with the dark blue region representing impossible 230 

generalised parameter values, surrounding the finite region of possible ones. Finding this finite region 231 

is then the main challenge—afterwards we can determine the range of possible system behaviour, and 232 

compute the relative sizes of the domains of this region which correspond to different dynamical 233 

regimes. In the case where different domains have comparable size (or measure), we have significant 234 

structural sensitivity in the model. Thus, the main idea of this framework for structural sensitivity 235 



8 

 

analysis is finding a projection: from the infinite dimensional space of functions which fit the data and 236 

theoretical assumptions, onto the low-dimensional generalised bifurcation space.  237 

To find such a projection, we need a way to determine whether, given a set of the values 𝑥∗, 238 

𝑓(𝑥∗), …, 𝑓(𝑝)(𝑥∗) which determine the local dynamics, they are attained by a function satisfying 239 

constraints (2)-(4). Equivalently, we include 𝑥∗ as one of the points in (4), at which we locally restrict 240 

𝑓, 𝑓′,…,𝑓(𝑝), and check whether any function exists satisfying these new constraints. Once we have a 241 

criterion for determining the existence of such a function, we can scan the generalised bifurcation space 242 

consisting of the values 𝑥∗, 𝑓(𝑥∗), …, 𝑓(𝑝)(𝑥∗), including each set of these values in turn in the local 243 

restrictions given by equation (4), and checking whether a function satisfying these restrictions exists. 244 

If so, these values are taken by a function that is valid for the data set and theoretical constraints, so 245 

must lie in the finite region giving the possible system behaviour.  246 

The main mathematical challenge for the framework is to prove the existence of a function f 247 

which respects a set of global and local constraints (equations (2)-(3) and (4), respectively). In 248 

(Adamson and Morozov, 2013, 2014a) a geometric approach was used to obtain such a projection up to 249 

the first derivative for a particular class of qualitative constraints, in the case where the boundaries ℎlow
0  250 

and ℎhigh
0  are built by taking a fixed distance 𝜀 from a given base function—where the base function is 251 

itself a valid model function and the bounds for first and the second derivatives are constant. However, 252 

in general the bounds ℎlow
0  and ℎhigh

0  shouldn’t themselves be expected satisfy the global derivative 253 

constraints (3) (if they are error bounds taken from data, for instance), in which case this geometric 254 

approach is not valid. Also, it is desirable to estimate a weighting on the region of the generalised 255 

bifurcation space which measures how well the functions corresponding to these points can fit the data, 256 

which is not easy to do in the geometric framework. Finally, the geometric method is case specific in  257 

the sense that each set of qualitative and quantitative function properties needs its own analytical criteria 258 

for the existence of functions, which is a significant obstacle to the creation of software which would 259 

allow non-mathematicians to implement the method. 260 

   261 

 262 

2.3 Determining the existence or not of a function satisfying global/local constraints 263 

One potential approach to address the issues mentioned above and make the framework of 264 

(Adamson and Morozov 2012, 2014a) more flexible is to use methods from optimal control theory to 265 

find the projection from the space of valid functions into the generalised bifurcation space 266 

approximately. Here we shall propose an algorithm for doing this. In this section, we consider the 267 

equilibrium 𝑥∗ along with 𝑓(𝑥∗), … , 𝑓(𝑝)(𝑥∗) to be fixed (i.e. we deal with one set of generalised 268 

parameters at a time), and to be already included in the set of local restrictions given by (4). Therefore 269 
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the question of whether 𝑥∗, 𝑓(𝑥∗), … , 𝑓(𝑝)(𝑥∗) can be attained by a valid function is reduced to the 270 

question of whether or not there exists a function 𝑓 satisfying a set of global and local constraints in the 271 

form of equations (2)-(4).  272 

In order to address this problem approximately, we apply optimal control theory. Broadly 273 

speaking, optimal control theory aims to find the parameter input of a system of differential equations 274 

such that the solution maximises an objective functional, which scores solutions of the system based on 275 

some desirable criterion (alternatively we can aim to minimise a cost functional penalising undesirable 276 

criteria). The basic idea to check for the existence of a function 𝑓 satisfying (2)-(4) is to create an 277 

objective functional that rewards functions for adhering to the global bounds (2)-(3) and build a set of 278 

differential equations that yield a candidate for the function 𝑓 as a solution (in such a way that all 279 

solutions must satisfy the local restriction provided by (4)). The currently considered values 280 

𝑥∗, 𝑓(𝑥∗), … , 𝑓(𝑝)(𝑥∗) can then be represented by the function taking them which scores best in its 281 

adherence to the global constraints—if this function does not satisfy the global constraints, it can be 282 

assumed that no function attaining these values will. In this case, we should exclude this set of values 283 

from the region of relevant generalised bifurcation parameters because they cannot be taken by a valid 284 

function that fits the data and satisfies the theoretical assumptions. If the optimal function taking the 285 

values 𝑓(𝑥∗), … , 𝑓(𝑝)(𝑥∗) does satisfy the global constraints, then we’ve found such a valid function 286 

for these values, so this set of values must lie inside the region of relevant generalised bifurcation 287 

parameters. The remainder of this subsection concerns the construction of such an optimal control 288 

problem. Readers who are more interested in the applications of the method need not trouble themselves 289 

too much with the precise details, and may wish to skip to 2.4. 290 

We specify our objective functional as taking the following form: 291 

𝐼(𝑓, 𝑓′, … , 𝑓(𝑝), 𝑓(𝑝+1)) ≔ ∫ ∑ 𝐹𝑗 (𝑥, 𝑓(𝑗)(𝑥))

𝑝

𝑗=0

+ 𝜂 ⋅ 𝑅 (𝑓(𝑝+1)(𝑥)) 𝑑𝑥
𝑥max

𝑥min

,                (5) 292 

where the 𝐹𝑖 are given by: 293 

𝐹𝑖 =
1

(𝑒
γ(ℎlow

𝑗 (𝑥)−𝑓(𝑗)(𝑥))
+ 1)  ⋅ (𝑒

γ(𝑓(𝑗)(𝑥)−ℎhigh
𝑗 (𝑥))

+ 1)

, 𝑗 = 0, … , 𝑝.          (6) 294 

The objective term for each derivative 𝑓(𝑗)(𝑥) is chosen as a smooth approximation to a step function 295 

with a high value within the bounds ℎlow
(𝑗)

(𝑥) and ℎhigh
(𝑗)

(𝑥) and a low value without. The parameter 𝛾 296 

describes the width of the transition layer at the boundary around ℎlow
(𝑗)

(𝑥) and ℎhigh
(𝑗)

(𝑥), with higher 297 

values of 𝛾 yielding narrower layers and a steeper transition. The inclusion of the (𝑝 + 1)-th derivative 298 

will be discussed later, along with the form of 𝑅. Such a function 𝐹𝑖   is shown in Fig.1: it imparts high 299 
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values to functions which satisfy the constraints, without discriminating too much between functions 300 

that do (as would be the case if 𝐹𝑗 had a pronounced peak, for instance). The functional 𝐼 will yield a 301 

higher value for a function 𝑓 if it satisfies constraints (2)-(3) for more 𝑥-values. Note that the 302 

construction of this functional involves a softening of the hard bounds in (2)-(3): we no longer demand 303 

our function to satisfy these inequalities strictly. Therefore we could dispense with the hard bounds in 304 

(2)-(3) altogether, and replace (6) with a normal distribution or a similarly peaked function, without 305 

changing the framework. In this case, instead of trying to determine the set of all values in the 306 

generalised bifurcation space that could be taken by functions fitting the hard bounds, we would be 307 

directly assigning these points a score based on how well their optimal functions fit a probability 308 

distribution. 309 

Boundary layers which are too narrow can result in ill-posed problems related to non-uniqueness 310 

of the optimal solution. They can also result in computational difficulties, since in the vicinity of the 311 

optimal solution close functions 𝑓 can provide very close values of 𝐼—as the gradients of the objective 312 

functions are too small (i.e. the top of the function in Fig 1. is too flat). To transform an ill-posed problem 313 

into a well-posed problem we use the standard framework based on Tikhonov regularization (see 314 

Tikhonov and Arsenin (1977) for a general introduction into Tikhonov’s regularization method). In 315 

particular, we insert into the objective functional a function 𝑅 of the highest unrestricted derivative, 316 

which is multiplied by a small parameter 𝜂 ≪ 1, so that it does not affect the value of I too strongly. In 317 

our computation we choose the following equation for R 318 

𝑅 (𝑓(𝑝+1)(𝑥)) ≔ − (𝑓(𝑝+1)(𝑥) −
𝐶

2
)

2𝜎

,           𝜎 ∈ ℕ.                            (7) 319 

This formulation will have a pronounced peak at 
𝐶

2
 (indeed, this is how Tikhonov regularisation works), 320 

so it should give the mid-point in the range of the variation of 𝑓(𝑝+1). In the case where we do not have 321 

information on this derivative, it is natural to consider C to be zero, as we assume in this paper. However, 322 

we should stress that variation of this parameter within a broad range does not strongly affect the results 323 

when 𝜂 is sufficiently small. The parameter σ determines the width of the range of 𝑓(𝑝+1) which is 324 

allowed. In this paper, we set σ=1 for the sake of simplicity. 325 

In order to represent the problem of finding the function maximising (5) as an optimal control 326 

problem, we consider the trivial differential equation linking 𝑓 and each of its derivatives in turn. We 327 

treat the highest derivative considered, 𝑢 = 𝑓(𝑝+1)(𝑥) as the control parameter. The question now is 328 

which input 𝑢(𝑥), after being integrated 𝑝 + 1 times, yields the function which maximises 𝐼? Details 329 

are provided in Appendix A. Taking the notation the notation 𝑦𝑗 = 𝑓(𝑗) for the derivatives of 𝑓, and 330 
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applying the Pontryagin maximum principle, we find that the solutions to the optimal control problem 331 

must satisfy the following boundary value problem: 332 

𝑦0̇ = 𝑦1, 333 

𝑦1̇ = 𝑦2, 334 

⋮ 335 

𝑦𝑝−1̇ = 𝑦𝑝, 336 

𝑦�̇� = −
𝜓𝑝

2𝜂
−

𝐶

2
, 337 

𝜓0̇ =
𝜕𝐹0

𝜕𝑦0
,                        (8) 338 

𝜓1̇ = −𝜓0 +
𝜕𝐹1

𝜕𝑦1
, 339 

⋮ 340 

𝜓�̇� = −𝜓𝑝−1 +
𝜕𝐹𝑝

𝜕𝑦𝑝
. 341 

To incorporate the local restrictions (4), we partition the whole domain [𝑥min, 𝑥max] by the points: 𝑥min <342 

𝑥1 < ⋯ < 𝑥𝑚 < 𝑥max. Given a subdomain [𝑥𝑖, 𝑥𝑖+1], the derivatives in (4) which are fixed at 𝑥𝑖 and 343 

𝑥𝑖+1 must serve as boundary conditions: 344 

𝑦𝑗(𝑥𝑖) = 𝑓(𝑗)(𝑥𝑖) = 𝑓𝑖
𝑗
, 𝑗 ∈ 𝐼𝑖. (9) 345 

The rest of the boundary conditions are given by setting 𝜓𝑗(𝑥𝑖) = 0 whenever 𝑗 ∉ 𝐼𝑖, and the 𝑗th 346 

derivative is therefore left unfixed. In this way we obtain 2𝑝 boundary conditions over each interval, 347 

and each of our boundary value problems is therefore well-posed.  348 

 349 

2.4 Demonstration model 350 

 In order to demonstrate the method, we shall use it to conduct an investigation into structural 351 

sensitivity of the Rosenzweig-MacArthur predator-prey model (Rosenzweig & MacArthur, 1963, 352 

Rosenzweig, 1971). This is a classical model in mathematical ecology, due both to its elegance and to 353 

the complex dynamics it can admit. The equations for the model are: 354 

�̇� = 𝑔(𝑥) − 𝑓(𝑥)𝑧,                             (10-11) 355 

      �̇� = 𝑘𝑓(𝑥)𝑧 − 𝑑𝑧, 356 

where 𝑥 is the prey density and 𝑧 is the predator density;  𝑔 is the growth term (including natural 357 

mortality) for the prey species, while 𝑓 is the functional response of the predator—the rate of prey 358 

consumption as a function of prey density. For our particular choice of growth term 𝑔, we choose the 359 

logistic function, 𝑔(𝑥) ≔ 𝑟𝑥 (1 −
𝑥

𝐾
). The parameters of the model are interpreted as follows: 𝑟 is the 360 
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initial prey growth rate; 𝐾 is the carrying capacity of the prey; 𝑘 is the trophic efficiency coefficient and 361 

𝑑 is the natural predator mortality rate.  362 

We assume that the functional response 𝑓 is unspecified, but we require it to satisfy the following 363 

restrictions: 364 

𝑓(𝑥) ≥ 0  ∀𝑥 ∈ [0, 𝑥max],    (12) 365 

𝑓′(𝑥) ≥ 0  ∀𝑥 ∈ [0, 𝑥max],    (13) 366 

𝐴 ≤ 𝑓′′(𝑥) ≤  0  ∀𝑥 ∈ [0, 𝑥max],   (14) 367 

𝑓(0) = 0.                 (15) 368 

Condition (12) signifies that negative feeding is not possible; (13-14) comes from the assumption that 369 

𝑓 is a functional response with similar shape to a Holling type-II function, therefore it should be 370 

increasing—more prey should always result in a greater consumption rate—and should be saturating 371 

(Gentleman et al., 2003)—the predator gets diminishing returns for large prey numbers due to the 372 

handling time; (15) is a natural requirement. To demonstrate that our method works for complex error 373 

bounds ℎlow
0  and ℎhigh

0 , we have chosen somewhat exotic functions shown by the red lines in Fig. 2. We 374 

should emphasise that these bounds are chosen for demonstration because of their complexity rather 375 

than because they are intended to represent bounds resulting from an actual data set. The formal bounds 376 

on 𝑓′(𝑥) and 𝑓′′(𝑥) are, respectively, ℎlow
1 = 0, ℎhigh

1 = 100 and ℎlow
2 = 𝐴 = −20, ℎhigh

2 = 0. 377 

Our aim is to check the sensitivity of the stability of the interior equilibrium in this partially 378 

specified system to the choice of functional response term. The model is well studied in the literature 379 

(Allen, 2007) with the key results here being that we only have a single interior equilibrium, this 380 

equilibrium is linearly stable if 381 

𝑟 (1 −
2𝑥∗

𝐾
) < 𝑓′(𝑥∗)𝑧∗.                                                          382 

For a given set of model parameters our generalised bifurcation space will consist only of the values 383 

𝑥∗and 𝑓′(𝑥∗), since (11) implies that 𝑓(𝑥∗) =
𝑑

𝑘
. We need to project our space of valid functions onto 384 

this space by scanning the 𝑥∗ and 𝑓′(𝑥∗) values (we set 𝑓′(𝑥∗)=𝑓∗
1) and, for each of these points, 385 

determining whether there exists a function taking these values while still satisfying the restrictions on 386 

the derivatives and staying within the upper and lower error bounds. To do this, we apply the approach 387 

outlined in Section 2.3, and aim to find the function which maximises the functional: 388 

𝐼(𝑓, 𝑓′, 𝑓′′, 𝑓′′′) ≔ ∫ 𝐹(𝑥, 𝑓(𝑥)) + 𝐺(𝑥, 𝑓′(𝑥)) + 𝑄(𝑥, 𝑓′′(𝑥)) + 𝜂𝑅(𝑓′′′(𝑥)))𝑑𝑥
𝑥max

0

,      (16) 389 

where 𝐹, 𝐺 and 𝑄 are given by equation (6) (with 𝐹 = 𝐹0, 𝐺 = 𝐹1, 𝑄 = 𝐹2), with 𝛾 = 50. 𝑅 is defined 390 

as (7), with 𝐶 = 0.  As our local restrictions are at 𝑥 = 0 (from (15)) and 𝑥 = 𝑥∗ (we fix 𝑥∗, 𝑓(𝑥∗) and 391 
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𝑓′(𝑥∗) because we are checking if they correspond to a valid function), we split the domain into [0, 𝑥∗] 392 

and [𝑥∗, 𝑥max], and apply the Pontryagin maximum principle to obtain a boundary value problem over 393 

each of these domains, as per Section 2.3. More details of how we apply the framework outlined in 394 

Section 2.3 here, along with the equations and conditions for the boundary value problem, are contained 395 

in Appendix B. 396 

The resultant non-linear boundary value problem is not easily investigable analytically, but 397 

several numerical techniques exist for the solution of such problems. The method we apply here is the 398 

nonlinear shooting method, a standard technique which is covered in many textbooks on numerical 399 

analysis, for instance (Burden and Faires, 2001). In this way, we can compute the function 𝑓 which best 400 

fits our qualitative and quantitative restrictions given that 𝑓(𝑥∗) =
𝑑

𝑘
 and 𝑓′(𝑥∗) = 𝑓∗

1. An example of 401 

such an optimal function 𝑓, together with the constraints used, is shown in Fig.2. To decide whether or 402 

not to include the point (𝑥∗, 𝑓∗
1) in our projected domain in generalised bifurcation space, we check 403 

whether 𝑓 satisfies constraints (12)-(14). If so, then (𝑥∗, 𝑓∗
1) is attained by at least one valid function, 𝑓, 404 

and so should be included in the projected domain. If not, we can reasonably assume no function 405 

attaining 𝑓(𝑥∗) =
𝑑

𝑘
 and 𝑓′(𝑥∗) = 𝑓∗

1 exists which satisfies (12)-(14)—if such a function did exist, then 406 

it should maximise 𝐼—so (𝑥∗, 𝑓∗
1) should be excluded from the projected domain. 407 

 408 

3. Implementation of the method 409 

3.1 Stability plots 410 

For the Rosenzweig-MacArthur model with the function bounds shown in Fig.2, and parameter 411 

values 𝑑 = 0.1, 𝑘 = 0.3, and 𝐾 = 0.58, the region of generalised bifurcation space corresponding to 412 

valid functions is shown in Fig.3. In this figure, dark blue indicates that the optimal function which 413 

takes these 𝑥∗ and 𝑓′(𝑥∗) values fails to satisfy constraints (12)-(14), so we conclude that no valid 414 

function taking these values exists. For those values which correspond to valid functions, green indicates 415 

that the nontrivial equilibrium will be stable, while red indicates that it will be unstable. The light blue 416 

region represents the area that can be covered by considering only functions with the Monod or ‘Holling 417 

type-II’ parameterisation  418 

𝑓(𝑥) =
𝑎𝑥

𝑏 + 𝑥
,                                                                      (17) 419 

and varying the parameters a and b as far as the function stays within the constraints. Note that the 420 

Monod function is very popular in ecological literature (Gentleman et al., 2003). 421 

From Fig.3 it is immediately clear that there is a high degree of structural sensitivity in the 422 

system—the presence of both green and red regions in our projected domain indicates that the system 423 
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can admit both a stable and an unstable interior equilibrium when different valid functional responses 424 

are chosen. It is also clear that our method outperforms the approach of varying parameters of the fixed 425 

Monod function, since our projected domain covers the entirety of the light blue region, and more 426 

besides. The reason for this is that varying the parameters of the Monod function, or of any other fixed 427 

function, can only perturb the function in an extremely constrained way, which artificially restricts the 428 

range of values 𝑥∗ and 𝑓′(𝑥∗) that can be taken by such a function while staying between the upper and 429 

lower bounds. Fixing the function to a particular equation means that local perturbations cannot be made 430 

without inducing global perturbations elsewhere. For example, with the Monod function, the derivative 431 

at some 𝑥∗ could be increased by decreasing the half saturation constant, 𝑏. But because we have fixed 432 

our function to a precise equation, this decrease in 𝑏 will necessarily increase the slope of the function 433 

at the origin, and might take the function above the upper bounds. Similarly, increasing the maximal 434 

feeding rate 𝑎 may take the function above the upper bound at high values of 𝑥. In the case of Figure 3, 435 

since the light blue region is entirely contained in the stable region, all Monod functions fitting our data 436 

range will yield a stable interior equilibrium and varying its parameters will not detect the structural 437 

sensitivity in the system. 438 

3.2 Probabilistic bifurcation analysis 439 

Based on the stability plot shown in Fig.3 which demonstrates the existence of structural 440 

sensitivity in the system, one can quantify this sensitivity by introducing measures of the probability of 441 

having different model behaviour, i.e. a stable and an unstable equilibrium. Introducing a probability 442 

density function on our generalised bifurcation space also allows us to follow changes in the probability 443 

of having different dynamics with variation of other models parameters. In the simplest case, we can 444 

consider a uniform probability distribution of functions, in which case the probability of having a certain 445 

type of model behaviour will be given by the area/volume of the corresponding proportion of the domain 446 

in generalised bifurcation space taken by valid functions. For instance, in our investigation, the 447 

probability of having a stable equilibrium would be computed from Fig.3 by taking the ratio between 448 

the area of the green region and the area of the red and green regions combined.  449 

One of the salient features of the Rosenzweig-MacArthur model is a loss of stability of the 450 

interior equilibrium through a Hopf bifurcation as the carrying capacity, 𝐾, of the prey species is 451 

increased—a phenomenon known as the ‘paradox of enrichment’ (Oaten and Murdoch, 1975; Fussmann 452 

and Blasius, 2005).  Therefore it is worthwhile to consider how the probability of having a stable 453 

equilibrium in our partially specified model varies with 𝐾 (fixing all the other parameters for simplicity). 454 

This is given by the blue curve in Fig.4. We see that for low carrying capacities, the probability of 455 

stability is 1, as in this case the entire projected domain in generalised bifurcation space yields stable 456 
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dynamics. As 𝐾 is increased, we then see the possibility arises of having an unstable equilibrium, as the 457 

Hopf bifurcation curve enters our projected domain as is the case in Fig.3. A further increase in 𝐾 causes 458 

the red region of the projected domain to advance until it fills the entire domain, at which point all valid 459 

functional responses will yield an unstable interior equilibrium. Therefore we can still observe the 460 

paradox of enrichment in the partially specified Rosenzweig-MacArthur model, but as a monotone 461 

decrease in the probability of observing a stable equilibrium, rather than a concrete stability loss, as 462 

would be the case in the standard Rosenzweig-MacArthur model, with all model functions fixed. The 463 

bifurcation taking place via a shift in probability reflects the fact that we retain the uncertainty in the 464 

formulation of the functional response throughout our analysis. 465 

3.3 The degree of structural sensitivity 466 

To quantify the structural sensitivity in the model, one can evaluate the ‘degree of structural 467 

sensitivity’ which is defined as twice the probability of two randomly chosen functions (according to 468 

the probability distribution we are considering in the generalised bifurcation space) yielding conflicting 469 

model behaviour (Adamson & Morozov, 2012). In the case that we are interested in equilibrium 470 

stability, and considering a uniform distribution over the points in the projected domain for simplicity 471 

of notation, this will be given by: 472 

                                      Δ ≔ 4 ∙
𝑉stable

𝑉total
∙ (1 −

𝑉stable

𝑉total
),                                                   (18) 473 

where 𝑉stable is the volume (or area) of the stable region of the projected domain, and 𝑉total is the volume 474 

of the total projected domain. In the next section we shall consider how to improve the degree of 475 

structural sensitivity by weighting points according to how well the corresponding model functions can 476 

fit the constraints, instead of assuming a uniform distribution. Note that the degree of sensitivity: i) will 477 

equal 0 if the stable region takes up either all or none of the projected domain; ii) has a maximum of 1, 478 

which is attained whenever the stable region takes up exactly half of the projected domain; iii) 479 

essentially only depends on 𝑉stable/𝑉total, the probability of having a stable equilibrium; iv) will be 480 

unaltered if we replace the volume of the stable region with the volume of the unstable region in the 481 

calculation, since we necessarily have: 482 

𝑉unstable

𝑉total
= 1 −

𝑉stable

𝑉total
,                                                                 (19) 483 

and therefore get the same degree of sensitivity whether we compute the probability of having a stable 484 

equilibrium or an unstable one, as should be expected. To demonstrate how the degree of structural 485 

sensitivity in the partially specified model varies with the probability of having a stable equilibrium, we 486 

have plotted the dependence of the degree of sensitivity on the carrying capacity 𝐾 as the red curve in 487 
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Fig.4. Note that the degree of sensitivity will also depend on the other model parameters which are fixed 488 

in this figure. 489 

3.4 Weighting functions in the generalised bifurcation space  490 

Quantification of the degree of sensitivity of a partially specified model may depend strongly on 491 

the choice of the probability density function assumed in the generalised bifurcation space. The 492 

assumption of a uniform probability distribution in (18) is somewhat hard to justify, so we should 493 

introduce a probability distribution 𝜌 that weights points (𝑥∗, 𝑓′(𝑥∗)) according to how well functions 494 

taking these values can fit the constraints. In this case, the degree of structural sensitivity will become 495 

                                      Δ ≔ 4 ∙
∫ 𝜌

 

𝑉stable
𝑑𝑉

∫ 𝜌
 

𝑉total
𝑑𝑉

∙ (1 −
∫ 𝜌

 

𝑉stable
𝑑𝑉

∫ 𝜌
 

𝑉total
𝑑𝑉

),                                                   (20) 496 

One way to introduce a weighting of points in functional space is to use the concept of 497 

‘functional density’ (Adamson & Morozov, 2012). The functional density can be defined as the average 498 

(over the 𝑥-values) fraction of the possible values that has some valid function taking the values 499 

(𝑥∗, 𝑓′(𝑥∗)) passing through it—i.e. the average proportion of the vertical distance between the red 500 

lines in Fig. 2 that can have functions passing through it with the specified density and slope at 𝑥∗. 501 

We can also use optimal control theory to efficiently compute the functional density of points. 502 

We first partition the domain by points 𝑣𝑙, 𝑙 = 1, … , 𝑝, at which we check the range of values 𝑓(𝑣𝑙) can 503 

take. For each point 𝑣𝑙, and for a given value 𝑓𝑙, we can check whether 𝑓𝑙 can be taken by a valid function 504 

satisfying (𝑥∗, 𝑓′(𝑥∗)) and remaining inside our constraints by using the same differential equation 505 

(𝐵1), since we are still aiming to optimise the same functional. We just need to include 𝑣𝑙 in the 506 

partitioning set along with 0, 𝑥∗ and 𝑥max, and specify 𝑦1(𝑣𝑙) = 𝑓𝑙 as a boundary condition at this point. 507 

The appropriate boundary conditions can be easily derived based on the general framework in Appendix 508 

A. The optimal function 𝑓 will be the function passing through (𝑥∗,
𝑑

𝑘
) with derivative 𝑓1

∗ and through 509 

(𝑣𝑙, 𝑓𝑙) that best fits our quantitative and qualitative constraints. If 𝑓 lies within our bounds, then we 510 

have found a valid function and the point (𝑣𝑙, 𝑓𝑙) should count towards the functional density of the 511 

point (𝑥∗, 𝑓1
∗). Checking this for many different values of 𝑓𝑙, we can work out the entire range of points 512 

such a function can pass through at 𝑣𝑙 and take the ratio of this range to the total height of the bound at 513 

𝑣𝑙. After we do this for all 𝑣𝑙, we can then take the average of these values to approximate the functional 514 

density. 515 

Fig. 5 shows the area that can be covered for two sets of values, (𝑥∗, 𝑓1
∗). In Fig. 5A, these values 516 

are 𝑥∗ = 0.15, 𝑓1
∗ = 1.9. This point in the generalised bifurcation space is demarked by the cross in 517 

Fig.3, and represents a low functional density of 0.3895 whereas in Fig. 5B, the values are 𝑥∗ = 0.16 518 

and 𝑓1
∗ = 1.5, correspond to the circle in Fig.3, and representing a higher functional density, 0.4725. By 519 
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computing functional densities at different points in the domains in the stability plots in Fig.3, one can 520 

more accurately estimate the degree of sensitivity by using the functional density as the weighting 𝜌 in 521 

(20). 522 

 523 

4. Discussion and conclusions 524 

In this paper we have presented a method for detecting and quantifying structural sensitivity in 525 

biological models by formulating them as partially specified models and applying optimal control 526 

theory. This method has an advantage over standard parameter-based approaches (e.g. Bendoricchio 527 

and Jorgensen, 2001) since it allows us to cover all function relations and not stick to any particular 528 

mathematical formulation. Interestingly, even more advanced non-parametric methods in statistics, 529 

which take into account constraints on functions, might not be reliable since using two different non-530 

parametric methods can result in rather different predictions (Cadigan, 2013). Partially specified models 531 

work by leaving uncertain functions unspecified apart from some local and global qualitative constraints 532 

and some error bounds which the functions must pass between. In order to analyse such models in terms 533 

of the number of equilibria and their stability, for instance, we can then simply find the isocline 534 

equations and the Jacobian matrix as usual: any values which we need for this which are unknown due 535 

to the function being unspecified can be considered as parameters in a generalised bifurcation space.  536 

In partially specified models, the constraints on the considered functions are an integral part of 537 

the model, and not something to be explored as a supplementary investigation, after the analysis is done. 538 

The main approach is to project the set of functions fitting the constraints into the generalised bifurcation 539 

space. This is in contrast to the well-known framework of generalised modelling and the analogous 540 

structural kinetic modelling (Gross & Feudel, 2006; Steuer et al., 2006; Kuehn et al. 2012). In these 541 

frameworks, unknown model functions are also left unspecified and local bifurcation analysis carried 542 

out by way of incorporating unknown values into a generalised bifurcation space.  However, instead of 543 

incorporating the constraints on the functions into the model, and anchoring our generalised bifurcation 544 

space to these constraints via a projection, the initial model is transformed so that the generalised 545 

bifurcation analysis comes out in terms of general parameters which are more biologically interpretable 546 

and measurable than equilibrium densities, etc. However, there is no escaping the fact that all of these 547 

generalised parameters will necessarily be values that need to be measured at the equilibrium density 548 

itself. With the approach proposed here, considering the whole possible span of functions, this 549 

dependence on measurements at a single density vanishes. It is interesting to briefly compare our 550 

sensitivity analysis results to those using the generalised modelling approach (see Appendix C for 551 

details). We can see that the generalised modelling approach considers a huge range of values of the 552 
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generalised parameters 𝑥∗ and 𝑓′(𝑥∗), the majority of which will not correspond to any valid function 553 

under given constraints, and therefore an analysis based on this approach might be misleading. 554 

The key innovation introduced in this paper concerns how we project the set of valid functions—555 

those satisfying qualitative constraints and staying within certain bounds—into the generalised 556 

bifurcation space. To find such a projection in general, we need to determine whether or not a 557 

differentiable function 𝑓 exists satisfying some global constraints on it and its derivatives (2)-(3), as 558 

well as being fixed at some points (4). The precise solution of this problem in general is an extremely 559 

challenging mathematical endeavour. Here, we construct an approximation to the initial mathematical 560 

problem by constructing a functional which penalises functions for breaking the constraints or leaving 561 

the area between the bounds, finding the function which maximises it, and checking whether this 562 

function satisfies the constraints. This is an optimization problem that can then be solved by standard 563 

numerical methods. 564 

In (Adamson and Morozov, 2012) the projection of the set of valid functions into the generalised 565 

bifurcation space was done exactly, using a geometric method. This approach is computationally very 566 

quick, but requires new calculations by hand for each set of qualitative constraints on functions, and is 567 

only valid for error bounds that satisfy these constraints themselves. The optimal control approach 568 

presented here is more flexible with regards to the shape of error bounds and qualitative constraints it 569 

can handle. In particular, changing the error bounds requires only a small change in the optimal control 570 

problem, since the actual shape of the boundary only determines the precise functional we aim to 571 

optimise. Since the optimal control approach distils all of the functionals inputted into a boundary value 572 

problem to be solved, it opens up the possibility for software to be developed that performs structural 573 

sensitivity analysis without a need for extra analytical work by the user. 574 

We should stress here that when building the objective functional (5) we ‘soften’ the bounds 575 

ℎ𝑖(𝑥) in (2)-(3): functions and their derivatives no longer need to lie between two curves to be valid. 576 

However, the use of smoothed step functions in the objective functional mean that we approximate the 577 

hard bounds. The framework presented here could be altered by dispensing with bounds completely and 578 

replacing the smoothed step functions in the objective functional with Gaussian-type functions. The 579 

generalised bifurcation parameters could then be weighted by how the corresponding optimal functions 580 

score in the objective functional. This score is obtained automatically through the optimal control 581 

approach, and even in the case of approximately hard bounds, it may serve as an alternative weighting 582 

to the functional density introduced in section 3.4 without any extra computation required. However, 583 

this involves giving full voice to the best fitting function, whereas the functional density considers the 584 

range of possible functions taking the given generalised bifurcation values.  585 
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A potential misgiving of the approach to sensitivity analysis presented here is that we have 586 

demonstrated it on a very simple model: the two-component Rosenzweig-MacArthur predator prey 587 

model, where only the functional response is unknown. However, we should stress that we have 588 

presented this model for the sake of simplicity. The same method can certainly be applied when multiple 589 

functions are unspecified, although we need to consider higher-dimensional domains instead of 590 

considering two-dimensional plots such as Figure 3. Such domains would be harder to visualise, but we 591 

can still readily compute the probability of having a given type of dynamics by computing the (higher 592 

dimensional) volumes of the corresponding regions. Moreover, even if the unknown functions are 593 

embedded in complex models containing dozens or hundreds of equations, the analysis presented here 594 

stays the same. 595 

There are several existing issues with regards to smooth numerical execution of the method 596 

presented here. These issues are related to the difficulty of solving high-dimensional boundary value 597 

problems numerically. In particular, more advanced numerical methods would need to be developed for 598 

efficiently solving these problems: here we’ve used the simple shooting method (Burden & Faires, 599 

2001), which requires reasonable initial guesses as inputs, and shows slow convergence near the 600 

margins of the domain of valid functions in the generalized bifurcation space. Creation of more efficient 601 

methods would pay off remarkably, since it would enable the development of software to project 602 

unknown functions into generalised bifurcation spaces automatically, without any analytical work 603 

needed from the user. This would pave the way towards rigorous, flexible and fully automated structural 604 

sensitivity analysis being made available to the entire modelling community. 605 
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Figure Captions 706 

1. Sample plot representing the functions 𝐹𝑗(𝑓(𝑗)(𝑥), 𝑥) defined in (6) to be included in 707 

the functional 𝐼 in (5). At each point 𝑥, 𝐹𝑗 will be high when the 𝑗-th derivative is within its specified 708 

bounds, and low when it lies outside them. Therefore, the functions that yield high values when 𝐹𝑗 is 709 

integrated over all 𝑥 will be ones that adhere to the restrictions. 710 

 711 

2. An example of a valid Holling-type II functional response lying within a complex 712 

bounds, as computed as the function optimising 𝐼 in (16) for given values 𝑥∗ and 𝑓′(𝑥∗), shown in 713 

blue. The global bounds on the function values, ℎlow
0  and ℎhigh

0  are shown in red. The values we are 714 

checking are shown by dashed lines: 𝑥∗, 𝑓(𝑥∗) and the tangent line at this point with slope 𝑓′(𝑥∗). 715 

 716 

3. The region of the generalised bifurcation space—consisting of the prey equilibrium 717 

density, 𝑥∗ and the slope of the functional response at this density, 𝑓′(𝑥∗)—that corresponds to 718 

functional responses satisfying conditions (12)-(15) and remaining within the red bounds in Fig. 2. 719 

Dark blue indicates points that lie outside this region. Within the region, green indicates that the 720 

Rosenzweig-MacArthur system with such a function will have a stable interior equilibrium, and red 721 

indicates it will have an unstable interior equilibrium. The light blue region is that which can be covered 722 

by varying parameters of the Monod function while remaining within the same bounds. The cross and 723 

circle are the points corresponding to a high and low functional density (see section 3.4), as shown in 724 

Fig. 5A and B, respectively. The parameters of the Rosenzweig-MacArthur model are = 0.1, 𝐾 = 0.59, 725 

𝑘 = 0.3, 𝑑 = 0.1. 726 

 727 

4. Plot of the dependence of   the probability of observing a stable equilibrium (blue curve) 728 

and the degree of structural sensitivity (red curve) on the carrying capacity, 𝐾. 1 is the highest possible 729 

degree of structural sensitivity, at which we have maximum uncertainty of the model dynamics, if the 730 

degree of sensitivity is 0 then we have no uncertainty. Explanations of how these are computed are 731 

provided in sections 3.2 and 3.3, respectively. All other parameters are the same as in Fig. 3. 732 

 733 

5. Computing the functional density of a point (𝑥∗, 𝑓′(𝑥∗)) in generalised bifurcation 734 

space. The range of values that can be attained by valid functions passing through 𝑥∗ at the value 
𝑑

𝑘
 with 735 

the slope 𝑓′(𝑥∗), for two such pairs of values: a) 𝑥∗ = 0.15, 𝑓1
∗ = 1.9—given by the cross in Fig. 3, 736 

and corresponding to a functional density of 0.3895, b)   𝑥∗ = 0.16 and 𝑓1
∗ = 1.5—given by the circle 737 

in Fig. 3 and corresponding to a functional density of 0.4725. 738 
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