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Context I

What is Computational AeroAcoustics (CAA)

CAA concerns with the accurate numerical prediction of aerodynamically generated
noise as well as its propagation and far-field characteristics.

Example: scattering problems (trailing/leading edge noise, modal scattering in
turbomachinery blade row), non-linear problems of flow acoustics (high-speed jet
noise)



Context II

Challenges in modelling wave generation and propagation phenomena

• Aeroacoustic problems are inherently unsteady by definition

• Aeroacoustic problems typically involve frequencies over a wide bandwidth.

• Acoustic waves usually have small amplitudes. They are very small compared to
the mean flow dynamic pressure. Often, the sound intensity is five to six orders
smaller than dynamic pressure.

• In most aeroacoustic problems, interest is in the sound waves radiated to the far
field. This requires a solution that is uniformly valid from the source region all
the way to the measurement point many acoustic wavelengths away.

• CAA algorithms must have minimal numerical dispersion and dissipation.

• Stable and accurate boundary conditions are of utmost importance in CAA.



Aim and Objectives I

Aim of the present work

• To develop a novel algorithm based on the prefactoriztion of [?] to reduce the
computational cost for a given level of error [?].

• To evaluate the line solver kernel performance for the propagation of one- and
two-dimensional perturbations.

Objectives

• Formulate and implement an optimization procedure for the spatial differentiation
and the temporal integration of time-marching pre-factored compact centred
finite-difference schemes;

• Test the procedure on the bi-diagonal prefactored compact scheme of [?] and
evaluate its performance with respect to the same scheme optimized for
maximum formal accuracy;

• Test the variation in scheme performance with the number of spatial dimensions.
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Model problem I

Model problem: Linear Advection Equation (LAE) of sinusoidal
disturbance

∂f

∂t
+ c

∂f

∂x
= 0, f (x , 0) = f̂0e ikx , (1)

• with wavelength λ, wavenumber k = 2π/λ, and scaled wavenumber κ = kh

• uniformly discretized both in space (grid spacing h) and time (time step ∆t)

• method of lines, two-stages discretization

x1 x2 xi−2 xi−1 xi xi+1 xi+2 xN−1 xN

◦——–◦·················◦——–◦——–•——–◦——–◦···············◦——–◦
← h →

← −−−−−−−−−−−−−L−−−−−−−−−−− →
f1 f2 fi−2 fi−1 fi fi+1 fi+2 fN−1 fN

◦——–◦·················◦——–◦——–•——–◦——–◦···············◦——–◦

Figure: 1. Variation of discrete function fi = f (xi ) along uniformly discretised length L.



Spatial Discretization I

Finite-difference spatial discretization

The finite difference approximation f ′i to the first derivative
∂f (xi )

∂x
at node i, using a

(R + S + 1) point stencil, depends on the function values at the nodes near i of [?]:

Q∑
j=−P

αj f ′i+j =
1

h

S∑
j=−R

aj fi+j + O(hn), (2)

The spatial scheme is CPQRS . If P = Q = 0, then the scheme is explicit. Implicit or
compact schemes have (P ∨ Q) 6= 0
Taking the Fourier transform of both sides of eq. (2) gives:

κ̄ (κ) = k̄ (k) h =
1

i

∑S
j=−R aj e

i j κ∑Q
j=−P αj e i j κ

, (3)

where κ̄ = k̄ h is the scaled pseudo-wavenumber. The scaled wavenumber κ and the
scaled pseudo-wavenumber κ̄ are both non-dimensional values, κ ∈ R, 0 < |κ| ≤ π,
and generally κ̄ ∈ C, with real and imaginary part <[κ̄] and =[κ̄].



Scaled pseudo-wavenumber diagram

• It is desirable to make κ̄ equal to κ. It is impossible to build up a perfect match
between κ̄ and κ over the entire wavenumber range due to the limitation of
numerical discretization.

• In practice, the scaled pseudo-wavenumber κ̄ implies a certain deviation from the
true scaled wavenumber κ, which increases as κ→ π (for κ = π, κ̄ = 0)

• This deviation results in spatial numerical error e0(κ), where the real part
represent the dispersive error εR (κ) and the imaginary part the dissipative error
εI (κ)

• the coefficients αj , aj that appear in eq. (2) are chosen to give the largest
possible order of accuracy or to reduce the dispersive and dissipative error [?]



Time marching scheme I

Runge-Kutta schemes

Runge-Kutta schemes are considered as time-advancing schemes in the present
work [?].
An explicit p-stage, single-step, two-level, RK scheme advances the solution from the
time level t = tn to tn + ∆t as

Un+1 = Un +

p∑
j=1

γj ∆t j ∂
j Un

∂t j
, (4)

• U represents the vector containing the solution values at spatial mesh nodes

• γj are the coefficients of the RK algorithm with

γj =

p∏
l=p−j+1

αl for j = 1, . . . , p. (5)

• the coefficients γj that appear in eq. (5) are chosen to give the maximum order of

accuracy (γm = 1
m!

m = 1, · · · , p) for a given p-stage RK scheme, or to minimize
the temporal dissipation and phase error [?]



Time marching scheme II
Amplification factor and stability limit of the algorithm

Applying a temporal Fourier transform to eq. (4), the amplification factor of the
algorithm is obtained as [?]:

r (κ, σ) = 1 +

p∑
j=1

γj

(
−iσ κ̄ (κ)

)j
, (6)

where σ is the Courant number:

σ =
c∆t

h
. (7)

The amplification factor in the case of null spatial error, for which κ̄ = κ in eq. (3), is:

rt
(
z, γj

)
= 1 +

p∑
j=1

γj

(
−i z

)j
(8)

with z = σκ ∈ C complex plane. The stability limit zs is given by the following
condition:

zs = max
{

z, |rt (z, γj )|≤ 1
}
. (9)

The linear FD approximation of eq. (1) has the approximate solution

v(x ,T ) = û0 e ikx rn. (10)



Performance analysis of finite-difference schemes

Normalized error and computational cost metrics

Following [?], let E be the relative L2 error norm at time T = n∆t:

E =
|v(· ,T )− u(· ,T )|2

|u0(· )|2
= (ckT ) ·

|r (κ, σ)− e−iσκ|
σκ

, (11)

where n = (ckT ) / (σκ)
The computational cost C of solving numerically eq. (10) is assumed to be
proportional to: the total number of points, L/h, the number of operations per node
Nop required by the spatial discretization, the number of RK stages p, the number of
time steps n = T/∆t [?]. This gives:

C ∝ pNopTL
1

∆t h
= pNop · (ckT ) · (kL) ·

1

σκ2
. (12)

It is possible to derive, with a few approximations, the expression for the normalized
cost and error metrics:

e(κ, σ) ≡
E

(ckT )
=
|r (κ, σ)− e−iσκ|

σκ
, (13a)

c1(κ, σ) ≡
C

(ckT ) · (kL)
= pNop

1

σκ2
. (13b)



Cost-performance trade-off for CAA algorithms I

Cost-optimal condition for single scale problems

Optimizing the performance of a given scheme (i.e. for given values of p, Nop), for a
given problem (i.e. for a given value of ckT , kL) requires that the computational cost
is minimum for a given error level.
This can be done by specifying a target level for the relative error, say ε, which implies

e(κ, σ) =
ε

ckT
≡ ε̃, (14)

and finding a pair of values (κ∗(ε̃), σ∗(ε̃)) that minimize the cost metric and that
satisfy both the stability limitation |r(κ, σ)|≤ 1, ∀κ ∈ [0, π] and the limitation on the
maximum value of Courant number σ ≤ σmax :

σmax =
zs

max
κ∈(0,π)

κ̄ (κ)
, (15)

A graphical interpretation of the the optimization problem is given by inspection of the
iso-lines e(κ, σ) and c(κ, σ) in the (κ, σ) plane, as shown in the next slide for
C1122/RK4 scheme.



Cost-performance trade-off for CAA algorithms II

Iso-error and Iso-cost curves

• For any specified value of ε̃, a pair of values (κ∗, σ∗) is sought to minimize
1

σκ2

and which corresponds to the tangency point of the two families of curves

• Iso-error → solid line. Iso-cost → dashed lines

• The normalized cost function is concave and the normalized error function is
(almost always) convex in the [κ, σ] plane, therefore for any iso-error curve there
is a unique point in which a curve of the iso-cost family is tangent to it [?].



Optimal performance for multi-scale problems

• Aeroacoustic signals are typically broadband and can feature a range of
propagating velocities c.

• Provided the spectrum can be taken as of finite width |k| < k̂ and |c| < ĉ, the
normalized cost and error metrics for a bandwidth-limited signal is estimated as:

cd (κ̂, σ̂) ≡pNop
1

σ̂κ̂d+1
, (16a)

êa(κ̂, σ̂) ≡ max(ê0(κ̂), êt (ẑ)). (16b)

where d is the number of spatial dimensions, Nop the number of operations per mesh

node, κ̂ = ĥh, σ̂ = ĉ∆t/h, ẑ = σ̂κ̂. ê0(κ̂) and êt (ẑ) are

ê0(κ̂) ≡
1

κ̂
max

0≤κ≤κ̂
|κ̄− κ|, (17a)

êt (ẑ) ≡
1

ẑ
max

0≤z≤ẑ

∣∣∣∣∣∣
p∑

j=0

(−iz)j − e−iz

∣∣∣∣∣∣ . (17b)



Approximate spatial and temporal error analysis I

Approximate spatial and temporal error analysis

• [?] has shown that, with a good approximation

e(κ, σ) ≈ max(e0(κ), et (z)). (18)

• where e0(κ) is the spatial error, the error in case of exact time integration,
defined in eq. (19) [?]. e0(κ) is shown by the vertical long-dash dark line,

• and et (z) is the temporal error, the error in case of exact space integration,
defined in eq. (20) [?]. et (z) is shown by the light blue line.

e(κ, σ)
σ→0

≡ e0(κ), (19)

e(κ, σ)
κ̄=κ

≡ et (z) =

∣∣∣rt
(
z, γj

)
− e−iz

∣∣∣
z

,

(20)



Approximate spatial and temporal error analysis II

Spatial and Temporal resolving efficiency

The problem of determining the optimal performance of a given scheme can be
approximately decoupled into two sub-problems, by considering the influence of space
and time discretization separately, by

• computing the optimal reduced wavenumber according to

κ̌∗(ε̃) ≡ ě−1
0 (ε̃) (21)

• and computing the optimal Courant number by:

σ̌∗(ε̃) = ž∗(ε̃)/κ̌∗(ε̃); ž∗(ε̃) ≡ ě−1
t (ε̃); (22)

The quantities κ̌∗(ε̃) and ž∗(ε̃) will be denoted, respectively, as ‘spatial resolving
efficiency’ and ‘temporal resolving efficiency’ for a given value of normalized error ε̃.
The associated ‘optimal’ normalized cost is

c̃(ε̃) = cnD (κ̌∗(ε̃), ž∗(ε̃)) = pNop
1

σ̌∗κ̌∗nD +1
. (23)

Equations (18) allows to consider the spatial and temporal discretization separately in
the present analysis to develop cost-optimized schemes.
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Optimization of finite-difference schemes I

Tridiagonal compact scheme C1122

• The optimization is achieved by maximizing the ‘spatial resolving efficiency’ κ̌∗(ε̃).

• The authors have adopted as baseline spatial scheme the C1122 where α1 is a
free-parameter. With α1 = 1/3 the sixth-order C1122 scheme is obtained.

α1f ′i−1 + f ′i + α1f ′i+1 =
1

h
(a−2fi−2 + a−1fi−1 + a1fi+1 + a2fi+2) + O(h4), (24)

• The new class of schemes is labelled as C1122epsmn, where n is ε̃ = 10−n.

• The optimal value of α1 is plotted with solid line. The non-optimal κ̌∗ by the
dashed-line, and the optimal κ̌∗ by the dashed-dotted line.

• Cost-optimized spatial discretizations can outperform a C1122 sixth-order
scheme, yielding a 40% to 50% increase in κ̌∗(ε̃).


a2 = −a−2 =

1

12
(4α1 − 1)

a1 = −a−1 =
1

3
(α1 + 2)

(25)



Optimization of finite-difference schemes II

Maximising the spatial resolving
efficiency

• C1122 is the baseline scheme, with
the free parameter α1.

• For a target level of error
ε̃ = êa = 10−n, find α1 that
maximises κ̂.

•
(
αn

1, κ̂
n
opt

)
are determined for the

range 10−6 ≤ êa ≤ 10−4.

Table: 1. Coefficients and resolving efficiencies of
optimised spatial C1122–n schemes.

C1122–n C1122
n αn

1 κ̂n
opt α1 κ̂n

4 0.354740 1.121 1/3 0.762
5 0.337838 0.776 1/3 0.522
6 0.335419 0.533 1/3 0.357
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0.25 0.3 0.3̇ 0.35 0.4 0.45
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ǫ̃ = 1× 10−6

Trajectory of (αn

1 ,κ
n

opt)

0.336 0.338
0.7

0.74

0.78

α1

α1

κ̂

κ̂

Figure: 2. Iso-lines of ê0 (κ̂) with varying α1.
Symbols show optimised α1. Dotted line shows
the αn

1 locus that asymptotes to α1 = 1/3.



Extension to prefactored schemes

Prefactored compact finite difference schemes

• To obtain the finite difference approximation f
′

i from equation (24), a tridiagonal
linear system of the form Ax = b has to be solved.

• An alternative approach to the inversion of the A matrix has been proposed

by [?], consisting in a prefactorization that splits the derivative operator f
′

i in a

backward component f ′Bi and a forward component f ′Fi .

• This way, the inversion of the matrix is replaced by two independent matrix
operations that involve bi-diagonal matrices.

• This class of prefactored schemes has been optimized by [?].

• To derive the cost-optimized prefactored compact schemes, the authors follow
from previous work of [?] using the properties of the the MacCormack scheme.



Optimization of the temporal solver

Maximising the temporal resolving
efficiency

• RK4 is the baseline time integration
scheme, with γ3 and γ4 as free
parameters.

• For the same target error
ε̃ = êa = 10−n, find γ3 and γ4 that
maximise ẑ.

•
(
γn

3 , γ
n
4 , ẑ

n
opt

)
are determined for the

range 10−6 ≤ êa ≤ 10−4.

10
-6

10
-5

10
-4

10
-3

10
-2

0.16

0.161

0.162

0.163

0.164

0.165

0.166

0.167

0.168

0.034

0.035

0.036

0.037

0.038

0.039

0.04

0.041

0.042

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ǫ̃

γ
3 γ
4 ẑ

γn
3

γn
4

γRK4
3

γRK4
4
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ẑRK4

Figure: 3. Optimized RK4 and corresponding
temporal resolving efficiency ẑn

opt for a range of

target errors ε̃ = 10−n.

Table: 2. Coefficients and resolving efficiencies of optimised temporal RK4–n schemes.

RK4–n RK4

n γn
3 γn

4 zn
s ẑn

opt γ3 γ4 zs ẑn

4 0.165242 0.0402486 2.826 0.436 1/6 1/24 2.83 0.331
5 0.166106 0.0411119 2.828 0.272 1/6 1/24 2.83 0.186
6 0.166486 0.0414859 2.829 0.160 1/6 1/24 2.83 0.105



Dispersive spatial error characteristics I
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Figure: 4. Real component of non-dimensional
wavenumber κ̄ from the prefactored compact
schemes.
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Combined spatial and temporal error characteristics
• Combined space and time cost-optimization schemes for the same level of error ε̃

have been developed, labelled as epsmn, where n is ε̃ = 10−n.
• A computational advantage is predicted by using cost-optimized schemes to

model wave propagation problems at their design operational points.
• The suggestion is to use the cost-optimized schemes at their design level of error

and not beyond the intercept with their classical counterpart scheme.
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Figure: 6. Estimated error êa versus
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Polychromatic wave propagation

Analytical formulation

• Numerical solution of the linear
advection equation

∂u

∂t
+ c

∂u

∂x
= 0, u(x , 0) = u0(x),

(26)

• Periodic boundary conditions
u(0, t) = u(1, t), t > 0.

• Initial condition
u(x , 0) =

∑4
j=1 sin(2(j+1)πx).

• Error ē computed as the normalised
relative L2 norm of
uh(xi ,T )− u(xi ,T ).
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Figure: 8. Computed numerical error (lines with
symbols) as a function of the one-dimensional
cost function ĉ1, overlaid with theoretical
predictions (dotted lines).



Verification of computational cost estimator
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One-dimensional Gaussian pulse I

Analytical formulation

• Numerical solution of the linear
advection equation (26) with c = 1.

• Periodic boundary conditions
u(−100, t) = u(100, t), t > 0.

• Initial condition
u(x , 0) = (1/2)e−(x/3)2

.

• Broadband spectrum, k̄ = π/3.
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Figure: 11. Numerical error as a function of the
one-dimensional cost function ĉ1 with error
estimates êa overlaid (dotted lines).



One-dimensional Gaussian pulse II

Analytical formulation

• Numerical solution of the linear
advection equation (26) with c = 1.

• Periodic boundary conditions
u(−100, t) = u(100, t), t > 0.

• Initial condition
u(x , 0) = (1/2)e−(x/3)2

.

• Broadband spectrum, k̄ = π/3.
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Figure: 12. Detail in the vicinity of the
C12RK4-4, C12RK4-5 and C12RK4-6 design
points.



1D performance analysis summary

Table: 3. Polychromatic wave. Performance of cost-optimised schemes at their operating points
(κ̂∗, σ̂∗) and comparison with the standard C12RK4 scheme. ∆ĉ1(%) and ∆ē(%) indicate the
percentage cost and error reduction with respect to the C12RK4 scheme.

Scheme ē ĉ∗1 ĉ∗1 ∆ĉ1 ē ∆ē
C12RK4 % C12RK4 %

C12RK4–4 6.443× 10−5 74.376 170.56 56.39 4.706× 10−4 86.31
C12RK4–5 7.702× 10−6 171.7987 412.19 58.32 6.332× 10−5 87.84
C12RK4–6 9.565× 10−7 424.136 981.3 56.78 7.191× 10−6 86.71

Table: 4. Gaussian pulse. Performance of cost-optimised schemes at their operating points
(κ∗, σ∗) and comparison with standard C12RK4 scheme.

Scheme ē ĉ∗1 ĉ∗1 ∆ĉ1 ē ∆ē
C12RK4 % C12RK4 %

C12RK4–4 6.784× 10−5 74.677 88.29 15.42 9.954× 10−5 31.85
C12RK4–5 7.7647× 10−6 173.227 218.78 20.82 1.365× 10−5 43.12
C12RK4–6 8.2525× 10−7 424.245 554.45 23.48 1.573× 10−6 47.54



Two-dimensional Gaussian pulse

Analytical formulation

• Numerical solution of the
two-dimensional normalized linearized
Euler equations

∂U

∂t
+ A0

∂U

∂x
+ B0

∂U

∂y
= 0 (27)

• The unperturbed flow Mach number
Mx = My = 0 [?].

• Eq. (27) is solved in (−100, 100)2.

• Initial conditions are

U0 =


e− ln(2)(x2+y2)/9

0
0

e− ln(2)(x2+y2)/9

 (28)

-50 -25 0 25 50
-50

-25

0

25

50

x

y

Figure: 13. Propagation of a two-dimensional
acoustic pulse in an unbounded domain at
non-dimensional T = 40, fixed σ = 0.05.



Verification of computational cost estimator in 2D
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Figure: 14. Comparison of the estimated error êa

versus computational cost ĉ2.
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Figure: 15. Computed numerical error (lines with
symbols) as a function of two-dimensional cost
function ĉ2.



2D performance analysis summary

Table: 5. Theoretical performance of cost-optimised schemes for different target errors in two
dimensional space. ∆ĉ2(%) and ∆êa(%) indicate the estimated percentage cost and error
reduction with respect to the C12RK4 scheme.

Scheme ε̃ ĉ∗2 ĉ∗2 ∆ĉ2 êa ∆êa

C12RK4 % C12RK4 %
C12RK4–4 10−4 65.69 187.19 64.91 6.215× 10−4 83.91
C12RK4–5 10−5 219.98 708.56 68.95 7.557× 10−5 86.77
C12RK4–6 10−6 792.86 2699.30 70.63 8.238× 10−6 87.86

Table: 6. Two-dimensional Gaussian pulse. Performance of cost-optimised schemes at their design
point (κ̂n

opt, σ̂
n
opt) and comparison with the standard C12RK4 scheme. ∆ĉ2(%) and ∆ē(%)

indicate the percentage cost and error reductions with respect to the C12RK4 scheme.

Scheme ē ĉ∗2 ĉ∗2 ∆ĉ2(%) ē∗ ∆ē
C12RK4 % C12RK4 %

C12RK4–4 7.581× 10−5 66.93 97.85 31.61 1.449× 10−4 47.67
C12RK4–5 8.297× 10−6 221.72 352.74 37.14 1.850× 10−5 55.16
C12RK4–6 8.540× 10−7 799.93 1317.42 39.28 2.020× 10−6 57.73
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Conclusions

Conclusions

• Cost-optimized prefactored compact time-marching schemes C12RK4-n have
been developed based on a-priori cost and error estimates.

• Numerical experiments on 1D and 2D problems verified the cost-advantage of the
optimized schemes.

• On a polychromatic wave test, > 50% cost reduction is achieved by C12RK4-n
for the same level of error.

• On the broadband test of a Gaussian pulse, between 15% and 20% cost reduction
is obtained.

• The cost estimator ĉd is found to be a good predictor of the actual CPU time
saved.
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Track record and further/on-going work II

To do List

• Extension to real flow physics:

• Boundary conditions effects
• three-dimensionality
• non-linearity

• Implement a slab decomposition (no error introduced by the parallelization
strategy to be used into HPC cluster, 2D pencil domain decomposition). [?, ?]).
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