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Context |

CAA concerns with the accurate numerical prediction of aerodynamically generated
noise as well as its propagation and far-field characteristics.

Example: scattering problems (trailing/leading edge noise, modalscatterig in
turbomachinery blade row), non-linear problems of flow acoustics (high-speed jet
noise)



Context Il

e Aeroacoustic problems are inherently unsteady by definition

e Aeroacoustic problems typically involve frequencies over a wide bandwidth.

e Acoustic waves usually have small amplitudes. They are very small compared to
the mean flow dynamic pressure. Often, the sound intensity is five to six orders
smaller than dynamic pressure.

o In most aeroacoustic problems, interest is in the sound waves radiated to the far
field. This requires a solution that is uniformly valid from the source region all
the way to the measurement point many acoustic wavelengths away.

o CAA algorithms must have minimal numerical dispersion and dissipation.

e Stable and accurate boundary conditions are of utmost importance in CAA.




Aim and Objectives |

e To develop a novel algorithm based on the prefactoriztion of [?] to reduce the
computational cost for a given level of error [?].

e To evaluate the line solver kernel performance for the propagation of one- and
two-dimensional perturbations.

e Formulate and implement an optimization procedure for the spatial differentiation
and the temporal integration of time-marching pre-factored compact centred
finite-difference schemes;

o Test the procedure on the bi-diagonal prefactored compact scheme of [?] and
evaluate its performance with respect to the same scheme optimized for
maximum formal accuracy;

e Test the variation in scheme performance with the number of spatial dimensions.
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Model problem |

1)

of of P
—+c—=0, f(x,0) = fe*,
ot “ox (x,0) = foe
e with wavelength A, wavenumber k = 27/, and scaled wavenumber k = kh

e uniformly discretized both in space (grid spacing h) and time (time step At)

e method of lines, two-stages discretization

x1 X2 Xi—2  Xi—1 X Xi41  Xiy2 XN—1 XN
o Orerenrnnnnnnnnnes o ° Orernnrnnnnnnnns o o
<~ h—
- —— = = [ — —
fi f fi_2 fire  f firn fiyao fyo1
° Orerrnrennnrnnns o o

Figure: 1. Variation of discrete function f; = f(x;) along uniformly discretised length L.



Spatial Discretization |

O (x;)
ax

(R + S + 1) point stencil, depends on the function values at the nodes near i of [?]:

The finite difference approximation f/ to the first derivative at node J/, using a

Z ajfly; = Z aj fiyj + O(h"), ()

j=—P J_—R

The spatial scheme is CPQRS. If P = Q = 0, then the scheme is explicit. Implicit or
compact schemes have (P V Q) # 0
Taking the Fourier transform of both sides of eq. (2) gives:
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"2 = paje

where % = k h is the scaled pseudo-wavenumber. The scaled wavenumber & and the
scaled pseudo-wavenumber % are both non-dimensional values, k € R, 0 < |s| <,

and generally & € C, with real and imaginary part R[<] and S[&].




It is desirable to make & equal to k. It is impossible to build up a perfect match
between K and x over the entire wavenumber range due to the limitation of
numerical discretization.

In practice, the scaled pseudo-wavenumber K implies a certain deviation from the
true scaled wavenumber k, which increases as k — 7 (for k = 7, & = 0)

This deviation results in spatial numerical error eg(x), where the real part
represent the dispersive error eg(x) and the imaginary part the dissipative error
ei(k)

the coefficients «j, a; that appear in eq. (2) are chosen to give the largest
possible order of accuracy or to reduce the dispersive and dissipative error [?]
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Time marching scheme |

Runge-Kutta schemes are considered as time-advancing schemes in the present

work [?].

An explicit p-stage, single-step, two-level, RK scheme advances the solution from the
time level t = t, to t, + At as

yun

Ut =un+ AY T — 4
Z’YJ ot (4)
j=1
o U represents the vector containing the solution values at spatial mesh nodes
e ~; are the coefficients of the RK algorithm with
P
H a for j=1,...,p. (5)

I=p—j+1
e the coefficients ~; that appear in eq. (5) are chosen to give the maximum order of

accuracy (ym = % m=1,---,p) for a given p-stage RK scheme, or to minimize
the temporal dissipation and phase error [?]




Time marching scheme ||

Applying a temporal Fourier transform to eq. (4), the amplification factor of the
algorithm is obtained as [?]:

P .

L J
r(n,o‘):l—l-z'yj (—lo’n(n)) , (6)

Jj=1
where o is the Courant number:
cAt )
o= .
h

The amplification factor in the case of null spatial error, for which & = « in eq. (3), is:

() =143 (—i2Y ®)

Jj=1

with z = ok € C complex plane. The stability limit zs is given by the following
condition:

zs:max{z, |rt(Z,’y_,-)|§ 1} (9)
The linear FD approximation of eq. (1) has the approximate solution

v(x, T) = fip €*r". (10)




Performance analysis of finite-difference schemes
Following [?], let E be the relative Ly error norm at time T = nAt:

|V(‘,T)—U(‘,T)|2 — (CkT) Ir(h‘”o-)_e_io-'i" (11)

[uo(-)]2 oK

E =

where n = (ckT) /(oK)
The computational cost C of solving numerically eq. (10) is assumed to be
proportional to: the total number of points, L/h, the number of operations per node
Nop required by the spatial discretization, the number of RK stages p, the number of
time steps n = T /At [?]. This gives:

C Nop TL L Nop - (ckT) - (kL) ! (12)

% i . . L
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It is possible to derive, with a few approximations, the expression for the normalized
cost and error metrics:

__E (ko) —e"|

e(r, o) = (ckT) — oK ’ (132)
_ C _ 1

al(k,o) :m = pNop Pl (13b)




Cost-performance trade-off for CAA algorithms |

Optimizing the performance of a given scheme (i.e. for given values of p, Nop), for a
given problem (i.e. for a given value of ckT, kL) requires that the computational cost
is minimum for a given error level.

This can be done by specifying a target level for the relative error, say €, which implies

e(k,0) = CL =¢ (14)

and finding a pair of values (k*(€),c*(€)) that minimize the cost metric and that
satisfy both the stability limitation |r(k,0)|< 1, Vk € [0, 7] and the limitation on the
maximum value of Courant number o < omax:

Omax = L_v (15)
max & (k)
~€E(0,m)

A graphical interpretation of the the optimization problem is given by inspection of the
iso-lines e(k, o) and c(k, o) in the (k, o) plane, as shown in the next slide for
C1122/RK4 scheme.




Cost-performance trade-off for CAA algorithms |1

- " . . . 1
e For any specified value of €, a pair of values (k*,0*) is sought to minimize —
and which corresponds to the tangency point of the two families of curves
e |so-error — solid line. Iso-cost — dashed lines

e The normalized cost function is concave and the normalized error function is
(almost always) convex in the [k, o] plane, therefore for any iso-error curve there
is a unique point in which a curve of the iso-cost family is tangent to it [?].




e Aeroacoustic signals are typically broadband and can feature a range of
propagating velocities c.

e Provided the spectrum can be taken as of finite width |k| < k and |c| < &, the
normalized cost and error metrics for a bandwidth-limited signal is estimated as:

ca(ity ) =pNep ﬁ (163)
&(%, &) = max(a(R), &(2)). (16b)

where d is the number of spatial dimensions, Ny, the number of operations per mesh
node, & = hh, 6 = &At/h, 2 = 6~. &(R) and &(2) are

a1 _
& (R :gogn:i(k|n—n|, (17a)
1 L . )
s () =1 iV —oiz| 1
8:(2) > 0223%(2 E (—iz)y —e (17b)




Approximate spatial and temporal error analysis |

¢ [?] has shown that, with a good approximation

e where ey(r) is the spatial error, the error in case of exact time integration,
defined in eq. (19) [?]. eg(x) is shown by the vertical long-dash dark line,

e and e;(z) is the temporal error, the error in case of exact space integration,
defined in eq. (20) [?]. e:(z) is shown by the light blue line.

e(k,0) ~ max(ep(k), et(2)). (18)
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e(k,0) = eo(K), (19)

o—0

e(r,0) = er(z) = M7

o ‘ (20)



Approximate spatial and temporal error analysis ||

The problem of determining the optimal performance of a given scheme can be
approximately decoupled into two sub-problems, by considering the influence of space
and time discretization separately, by

e computing the optimal reduced wavenumber according to

k(6 =& '(9) (21)
e and computing the optimal Courant number by:
55 (&) = 2" (&)/k*(8); 2*(&) = & (&) (22)

The quantities £*(€) and 2*(€) will be denoted, respectively, as ‘spatial resolving
efficiency’ and ‘temporal resolving efficiency’ for a given value of normalized error €.
The associated ‘optimal’ normalized cost is

2(0) = oo (9 2°(9) = plop . (23)

Equations (18) allows to consider the spatial and temporal discretization separately in
the present analysis to develop cost-optimized schemes.
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Optimization of finite-difference schemes |

e The optimization is achieved by maximizing the ‘spatial resolving efficiency’ £*(€).
e The authors have adopted as baseline spatial scheme the C1122 where a; is a
free-parameter. With a; = 1/3 the sixth-order C1122 scheme is obtained.
1
af_ +f +af, = h (a—2fi—2 +a_1fiiy + arfipy + axfira) + O(HY), (24)

e The new class of schemes is labelled as C1122epsmn, where nis € = 10~ ".

The optimal value of «y is plotted with solid line. The non-optimal ¥* by the
dashed-line, and the optimal ¥* by the dashed-dotted line.

o Cost-optimized spatial discretizations can outperform a C1122 sixth-order
scheme, yielding a 40% to 50% increase in K*(€).
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ag = —a_1= 3(041 + 2)




Optimization of finite-difference schemes ||

_ 1.2

e C1122 is the baseline scheme, with 078  [i=ix10 T

——E=1x10""

the free parameter a;. 1he0.74 =110
Trajectory of (af, kg, )

e For a target level of error
€ =& = 107", find oy that
maximises <.

o (af, Rgpt) are determined for the
range 1076 < &, <104,

Table: 1. Coefficients and resolving efficiencies of
optimised spatial C1122—n schemes.

0.25 0.3 0.3 0d35 0.4 0.45
1
C1122-n C1122
Otf . a1 An Figure: 2. lIso-lines of & (A) with varying a;.
op

Symbols show optimised «;. Dotted line shows
the o locus that asymptotes to a; = 1/3.

0.354740 | 1.121 | 1/3 | 0.762
0.337838 | 0.776 | 1/3 | 0.522
0.335419 | 0.533 | 1/3 | 0.357

[ BN C I ]




Extension to prefactored schemes

e To obtain the finite difference approximation fi/ from equation (24), a tridiagonal
linear system of the form Ax = b has to be solved.

e An alternative approach to the inversion of the A matrix has been proposed
by [?], consisting in a prefactorization that splits the derivative operator fil in a
backward component f,.’B and a forward component f,.’F.

This way, the inversion of the matrix is replaced by two independent matrix
operations that involve bi-diagonal matrices.

e This class of prefactored schemes has been optimized by [?].

e To derive the cost-optimized prefactored compact schemes, the authors follow
from previous work of [?] using the properties of the the MacCormack scheme.




Optimization of the temporal solver

o RK4 is the baseline time integration
scheme, with +3 and ~4 as free

parameters.

For the same target error

€ =& = 107", find v3 and 4 that

maximise 2.

® (73 ’ 74 ) opt
range 10~

) are determined for the
6<e, <1074
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Figure: 3. Optimized RK4 and corresponding
temporal resolving efficiency 2

target errors € = 107",

ope for a range of

Table: 2. Coefficients and resolving efficiencies of optimised temporal RK4—n schemes.

RK4-n RK2
n 3 A z7 Zopt, 73 V4 Zs 2"
4 | 0165242 | 00402486 | 2826 | 0436 | 1/6 | 1/24 | 283 | 0331
5 | 0166106 | 00411119 | 2828 | 0272 | 1/6 | 1/24 | 2.83 | 0.86
6 | 0166486 | 00414850 | 2829 | 0160 | 1/6 | 1/24 | 283 | 0.105




Dispersive spatial

error characteristics |
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Figure: 4. Real component of non-dimensional
wavenumber & from the prefactored compact
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Combined spatial and temporal error characteristics

e Combined space and time cost-optimization schemes for the same level of error €
have been developed, labelled as epsmn, where nis € = 10~ ".

e A computational advantage is predicted by using cost-optimized schemes to
model wave propagation problems at their design operational points.

e The suggestion is to use the cost-optimized schemes at their design level of error
and not beyond the intercept with their classical counterpart scheme.
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Figure: 6. Estimated error &, versus
computational cost & for the C12RK4-n
schemes, one-dimensional implementation.
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Figure: 7. Comparison of the estimated error &,
versus computational cost & among C12RK4-5,
C12RK4-S5, and C12RK4-T5 schemes.
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Polychromatic wave propagation

—— C12RK4-6

o Numerical solution of the linear

advection equation 107E
ou ou w107 F

T =0 0) = ;
ot + 5 , u(x,0) = up(x) i
(26) 100}

e Periodic boundary conditions w07k ™.
u(0,t) = u(1,t), t > 0. ™

e Initial condition . - 10'101 0 ) e 10t
u(x,0) =377 sin(2U+ D). &

. Error & computed as the normalised Figure: 8. Computed numerical error (lines with
relative L2 norm of symbols) as a function of the one-dimensional
up(xi, T) — u(x;, T). cost function &, overlaid with theoretical

ol predictions (dotted lines).




Verification of computational cost estimator
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Figure: 9. Numerical error as a function of CPU Ca
time for the classical C12RK4 and optimised
C12RK4-n schemes. Figure: 10. CPU time compared with cost

estimator ¢&;.



One-dimensional Gaussian pulse |

e Numerical solution of the linear
advection equation (26) with ¢ = 1.

e Periodic boundary conditions
u(—100, t) = u(100, t), t > 0.

e [nitial condition )
u(x,0) = (1/2)e~ /3",
o Broadband spectrum, k = /3.

—— CI2RK4

—=s—CI12RK4-4
——C12RK4-5
——C12RK4-6

w107k

Figure: 11. Numerical error as a function of the
one-dimensional cost function &; with error
estimates &, overlaid (dotted lines).



One-dimensional Gaussian pulse |l

e Numerical solution of the linear
advection equation (26) with ¢ = 1.

e Periodic boundary conditions
u(—100, t) = u(100, t), t > 0.

e |[nitial condition )
u(x,0) = (1/2)e= /3",

e Broadband spectrum, k = /3.

107

——C12RK46

0107

1

Figure: 12. Detail in the vicinity of the
C12RK4-4, C12RK4-5 and C12RK4-6 design
points.



1D performance analysis summary

Table: 3. Polychromatic wave. Performance of cost-optimised schemes at their operating points
(#*,8") and comparison with the standard C12RK4 scheme. A¢;(%) and A&(%) indicate the

percentage cost and error reduction with respect to the C12RK4 scheme.

Scheme e e e Ae e Ae
C12RK4 | % C12RK4 %
CI2RK4-4 | 6.443 x 10~ ° | 74.376 170.56 56.39 | 4.706 x 10~% | 86.31
C12RK4-5 | 7.702 x 10~° 171.7987 | 412.19 58.32 | 6.332 x 107> 87.84
CI12RK4-6 | 9.565 x 107 | 424.136 981.3 56.78 | 7.191 x 106 | 86.71
Table: 4. Gaussian pulse. Performance of cost-optimised schemes at their operating points
(k*,0™) and comparison with standard C12RK4 scheme.
Scheme e o & A& e Ae
C12RK4 % C12RK4 %
C12RK4-4 6.784 x 10~> 74.677 88.29 15.42 | 9.954 x 10~ ° 31.85
C12RK4-5 | 7.7647 x 10~ ° 173.227 218.78 20.82 1.365 x 10~ ° | 43.12
CI2RK4-6 | 8.2525 x 10~ 7 | 424.245 554.45 23.48 | 1.573 x 10~° | 47.54




Two-dimensional Gaussian pulse

e Numerical solution of the
two-dimensional normalized linearized
Euler equations

U au U
i 1B —0 (27
ar TH0% TP%, @7

e The unperturbed flow Mach number
My =M, =0 [7].

e Eq. (27) is solved in (—100, 100)2.
e Initial conditions are

o )63 +y%) /0

0

e— )0 +y%)/9
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Figure: 13. Propagation of a two-dimensional
acoustic pulse in an unbounded domain at
non-dimensional T = 40, fixed o = 0.05.



Verification of computational cost estimator in 2D
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Figure: 14. Comparison of the estimated error &,

versus computational cost &.
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Figure: 15. Computed numerical error (lines with
symbols) as a function of two-dimensional cost
function &.



2D performance analysis summary

Table: 5. Theoretical performance of cost-optimised schemes for different target errors in two
dimensional space. A& (%) and A&,(%) indicate the estimated percentage cost and error
reduction with respect to the C12RK4 scheme.

Scheme H & & A% 2, Ag,
C12RK4 | % C12RK4 %
C12RK4-4 | 10~% | 65.69 187.19 64.91 | 6.215 x 10~ % | 83.91
C12RK4-5 | 10~% | 219.98 | 708.56 68.95 | 7.557 x 10~° | 86.77
C12RK4-6 | 1076 | 792.86 | 2699.30 | 70.63 | 8.238 x 10° | 87.86

Table: 6. Two-dimensional Gaussian pulse. Performance of cost-optimised schemes at their design
point (R, 60p,) and comparison with the standard C12RK4 scheme. A&(%) and AZ(%)
indicate the percentage cost and error reductions with respect to the C12RK4 scheme.

Scheme é & & A& (%) | & Ag
C12RK4 | % C12RK4 %
C12RK4-4 | 7.581 x 1075 | 66.93 97.85 31.61 1.449 x 10~ % | 47.67
C12RK4-5 | 8.207 x 1076 | 221.72 | 352.74 37.14 1.850 x 1075 | 55.16
C12RK4-6 | 8.540 x 10~7 | 799.93 | 1317.42 | 39.28 2.020 x 107¢ | 57.73
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Conclusions

o Cost-optimized prefactored compact time-marching schemes C12RK4-n have
been developed based on a-priori cost and error estimates.

Numerical experiments on 1D and 2D problems verified the cost-advantage of the
optimized schemes.

e On a polychromatic wave test, > 50% cost reduction is achieved by C12RK4-n
for the same level of error.

e On the broadband test of a Gaussian pulse, between 15% and 20% cost reduction
is obtained.

e The cost estimator &4 is found to be a good predictor of the actual CPU time
saved.
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Track record and further/on-going work Il

e Extension to real flow physics:

e Boundary conditions effects
e three-dimensionality
® non-linearity

¢ Implement a slab decomposition (no error introduced by the parallelization
strategy to be used into HPC cluster, 2D pencil domain decomposition). [?, ?]).
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