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Abstract

In the under uncertainty setting we study problems with imprecise input data

for which precise data can be obtained. There exists an underlying problem with

a feasible solution, but is computable only if the input is precise enough. We are

interested in measuring how much of the imprecise input data has to be updated in

order to be precise enough. We look at the problem for both the online and the

offline (verification) cases. In the verification under uncertainty setting an algorithm

is given imprecise input data and also an assumed set of precise input data. The

aim of the algorithm is to update the smallest number of input data such that if

the updated input data is the same as the corresponding assumed input data (i.e.

verified), a solution for the underlying problem can be calculated. In the online

adaptive under uncertainty setting the task is similar except the assumed set of

precise data is not given to the algorithm, and the performance of the algorithm is

measured by comparing the number of input data that have been updated against

the result obtained in the verification setting of the same problem.

We have studied these settings for a few geometric and graph problems and found

interesting results. Geometric problems include several variations of the maximal

points problem where, in its classical form, given a set of points in the plane we want

to compute the set of all points that are maximal. The uncertain element here is the

actual location of each point. Graph problems include a few variations of the graph

diameter problem where, in its classical form, given a graph we want to calculate a

farthest pair of vertices. The uncertain element is the weight of each edge.
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Chapter 1

Introduction

1.1 Motivation

Most classical algorithms produce an output with an assumed precise input, for

example the sorting of n numbers. However, this assumption is untrue in many

scenarios. For example the data on which algorithms run is increasingly being

obtained automatically, or by automatic pre-processing of raw data. Such data

has many uncertainties. Some reasons are that sensors have errors, data may be

out-of-date or missing and may have to be ”guessed” by inference procedures.

There are many approaches to dealing with uncertainty. For example one may

model data probabilistically, or allow the algorithm to produce only approximate

answers. Of course one can get uncertain answers given uncertain data, however,

can we get exact answers to problems when the data is uncertain? The approach

taken in this thesis is somewhat different from the majority of other approaches

on dealing with uncertainty. The main assumption is that although data may be

uncertain, the precise value of any particular datum may be obtained by an update

operation, but this comes at a (significant) cost. At any point an algorithm may

have some precise data while at the same time some uncertain data. The algorithm

is then asked to act based on the current, possibly uncertain, information and if

the current information is insufficient then updates must be considered. So the task

of the algorithm is to request updates until the information allows for a provably

correct solution of the underlying problem to be calculated. Of course the algorithm

can always provide such a solution by updating all of the data, but this is assumed

to be too expensive. Generally, minimizing the use of updates is desired. Problems

under uncertainty capture this setting which is the setting considered in this thesis.

Precision may be time, energy and bandwidth consuming, require large compu-

tational power or for other reasons even infeasible. Accurate and timely stock quotes

cost money. Remote access to the state of network queues costs time and bandwidth.

4



Chapter 1 1.2. Thesis Overview

Querying battery-powered units of sensor networks unnecessarily uses up precious

energy. Furthermore there are cases where data might change over time, but only

slightly such that the new data is guaranteed to be somewhat close to the old data.

With GPS sensors in mind, the current measurement may be sent automatically if

this exceeds some predefined bounds of the latest sent one. Hence, based on the last

sent information, a possible band or area is known where the current measurement

of the sensor is within.

We refer to such uncertain data as uncertainty areas or areas of uncertainty. We

say the set of all uncertainty areas that have been updated after an algorithm has

finished its execution is an update solution and if this set is also of minimal size (i.e.

there is no algorithm that can make less updates even by having knowledge of what

the updates produce) then we say this is an optimal update solution. We may also

call the algorithm an update strategy.

1.2 Thesis Overview

In Chapter 2 we give the background and preliminaries of problems under uncer-

tainty in general. This includes the various categories and evaluation measures, for-

mal definitions and a general solving method for this type of problems. In Chapter

3 we give a survey of known results in our field. In Chapter 4 we give the definitions

and general notation for the maximal points problem, which we use throughout the

following chapters (Chapter 5, 6, 7 and 8) where we study various different aspects

of the problem.

Our results on Maximal Points. In Chapter 5 we look at the verification

setting of the problem and show that it is NP-Hard if there are no restrictions in

place for the accepted areas of uncertainty. This work has been published in [9]. In

Chapter 6 we propose a new model for the accepted input and we give an update

strategy for the verification setting that runs in polynomial time whilst for the online

adaptive setting the 3-update competitive strategy by Bruce et al. [6] still applies.

For this new model, in Chapter 7, we also give a strategy with optimal competitive

ratio for the slightly different problem where one can perform coordinate-specific

updates. Finally in Chapter 8 we look at the problem in dimensions higher than

2D, showing specifically that in 3-dimensional space there is no update strategy with

constant competitive ratio.

Our results on Farthest Pair of Vertices. In Chapter 9 we study the problem

of finding a farthest pair of vertices in graphs with uncertain edge weights. In Section

9.3 we show for trees matching lower and upper bounds if the input consists of only

combinations of open intervals or singletons, and if closed intervals are allowed we

show that there is no update strategy with constant competitive ratio. We further
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Chapter 1 1.2. Thesis Overview

show in Section 9.4 the lower bound for cycle graphs.

Finally in Chapter 10 we give a few ideas for possible directions of future work.
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Chapter 2

Preliminaries

2.1 Categories and Evaluation Measures

Work in computing under uncertainty falls in three main categories/settings: adap-

tive online, non-adaptive online and verification.

In the adaptive online setting an algorithm initially knows only the uncertainty

areas and performs updates one by one (determining the next update based on the

information from previous updates) until it has obtained sufficient information to

determine a solution. In the non-adaptive online setting an algorithm is again given

only the uncertainty areas initially, but it must determine a set of updates such that

after performing all updates in the set, it is guaranteed to have sufficient information

to determine a solution.

Usually, to assess the performance of an algorithm in the adaptive / non-adaptive

online setting, we compare the number of updates that the algorithm makes to the

optimal number of updates which we denote as OPT ; which follows the common

approach of competitive analysis for online algorithms [4]. Here optimality is defined

in terms of a prescient adversary who, knowing the values of all input parameters,

makes the fewest updates needed to present a solution to the problem that is prov-

ably correct. In other words, after the updates claimed by the adversary are made,

no additional uncertainty areas need to be updated to verify the correctness of the

solution, and this could not have been achieved with less updates. We say that an

algorithm is k-update competitive or has a competitive ratio of k if, for each input

instance, the algorithm makes at most k times as many updates as OPT for that

input instance. Formally, an algorithm is k-update competitive if it makes at most

k ∗OPT +O(1) updates for every instance of the problem, where O(1) is a constant

independent of the instance.

When studying online problems under uncertainty, bounds can be constructed

that reason about what is the best possible by any online algorithm and what is the

7



Chapter 2 2.2. Definition of a Problem Under Uncertainty

worst case for a specified online algorithm. In this context, we call the former the

lower bound and the latter the upper bound. The upper bound is another term to

what we have already mentioned earlier as competitive ratio. Similarly, the lower

bound is the performance ratio against OPT that can achieved, but by any possible

online algorithm. For an online problem under uncertainty, it is ideal to construct

an algorithm that solves the problem with upper bound that matches the problem’s

lower bound. If this is the case then we say the algorithm achieves an optimal

competitive ratio.

In the verification setting an algorithm is not only given the uncertain informa-

tion, but also an assumed set of precise input data. If after an update operation the

precise value obtained is equal to the corresponding assumed value, we say that the

update verifies the assumed value. The objective of an algorithm in the verification

setting is to produce an optimal update solution, under the assumption that all

updates are verified. It is worth noting that the solution size of the verification set-

ting for a problem under uncertainty is essentially OPT , which can be used for the

competitive analysis of that problem in the adaptive/non-adaptive online setting.

For a verification under uncertainty problem usually we aim to construct an

algorithm that solves the problem in polynomial time, or failing that, to show that

the problem is NP-hard.

Note that there are no results in this thesis that fall under the non-adaptive

online setting. We give formal definitions in the next section.

2.2 Definition of a Problem Under Uncertainty

We now give the formal definitions of a problem under uncertainty and a witness

algorithm, as were also given in [16, 9, 29].

An instance (S, U,A,w) of a problem under uncertainty consists of the following

components. S represents some structural information and U is a set of elements

with uncertain values. For each element u ∈ U the function A maps u to an

uncertainty area Au and the function w maps u to its precise value wu. Note that

wu ∈ Au is required and depending on the nature of the problem considered wu may

be a real number, coordinates in the plane or any other type of input data. An

algorithm is able to update u which can be seen as the operation of replacing the

contents of Au with the singleton set {wu}. After this we also say Au is trivial.

For a given instance I = (S, U,A,w) we let φ(S, U, w) denote the set of all

solutions for I. The input of an algorithm in the adaptive/non-adaptive online

setting is (S, U,A) and the task is to perform enough updates such that an element

of φ(S, U, w) is computable (or such that all of them are computable depending

on the variation of the problem). The output is the set containing all the updates
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Chapter 2 2.3. A General Observation

performed during its execution which we call, as mentioned in Section 1.1, an update

solution. After updating all elements of U then obviously the output is an update

solution but we aim to minimize the use of updates and evaluate the performance

of an algorithm as per the previous section. On the other hand the input of an

algorithm in the verification setting is (S, U,A,w) and the output set additionally

has to be minimal, or in other words the algorithm has to produce an optimal update

solution. Finally we say I is a solved instance if ∅ is an update solution for I.

For example definitions see maximal points in Chapter 4 and farthest pair of

vertices in Section 9.2.

2.3 A General Observation

If for a problem under uncertainty the task of an online algorithm is to find just

a single update solution, which is usually the case, we often observe the follow-

ing behaviour. There is no algorithm with constant competitive ratio under the

assumption that closed intervals are allowed as uncertainty areas; whereas if each

uncertainty area is guaranteed to be either trivial or an open interval, there exists an

update competitive algorithm. Examples of problems where this is observed include

the minimum spanning tree by Erlebach et al. [29] and our farthest pair of vertices

in Chapter 9.

The difficulty with closed intervals appears where situations can exist such that

multiple non-trivial uncertainty areas share the same upper (or lower) limit l, and

there exists one of them which, when updated, is actually reduced to {l}. If this

single update can prove the corresponding element is maximum (or minimum) among

the candidates considered, then it might be enough to solve the problem. So the

prescient adversary only chooses such an update, but no online update strategy has

a way of determining which one it is and therefore can be forced to make a large

number updates.

If an online algorithm is instead asked to find all update solutions, then a constant

competitive ratio is often achievable also for when closed intervals are allowed as

uncertainty areas. An example for this is the problem of finding the maximum, the

median, and the minimal gap between any two numbers by Kahan [32].

Furthermore if the task is to compute the lexicographically smallest solution a

constant competitive ratio might also be possible for closed intervals, as shown for

some cases of the minimum spanning tree and selection problems by Gupta et al.

[25]. This notion is a natural version in many problems where the initial ordering is

important and it was shown in [25] that this has the desired effect of limiting non-

deterministic guessing powers of OPT .

9



Chapter 2 2.4. The Witness Algorithm

2.4 The Witness Algorithm

Usually, online update strategies that handle problems under uncertainty are based

on a general method called the witness algorithm. The witness algorithm was first

introduced by Bruce et al. [6] and described in a more general setting along with

some of its properties by Erlebach et al. [29]. Using this method, a witness set W

is a set of uncertainty areas such that, in order to verify a solution, at least one

element of W needs to be updated. The algorithm updates all areas in W and if

the problem is not solved then repeats the process to construct and update the next

W . Assuming then that at any state either the problem is solved or a set W can be

found, the algorithm is k-update competitive where k is the maximum size of any

witness set W . Following the above we remark:

Remark 2.1. If a witness algorithm computes t witness sets during its execution,

then OPT ≥ t.

For an instance I = (S, U,A,w) of a problem under uncertainty with φ(S, U, w)

denoting the set of all solutions for I, the set W ⊆
⋃
u∈U

Au is a witness set if no

element of φ(S, U, w) can be verified without updating an element of W . The general

witness algorithm is shown below:

Algorithm 1 The general witness algorithm

Initialize: Input (S, U,A)
while An element of φ(S, U, w) cannot be verified do

Find a witness set W ; Update all elements of W ;
Input changes to (S ′, U ′, A);

end while
return The set of all uncertainty areas that have been updated.

Note that the above algorithm is not consistent with the non-adaptive online

setting. The difference is that an algorithm does not get to make multiple iterations

but instead must determine an update solution in a single iteration, as all updates

must be made in parallel.

As mentioned in the beginning of this section, most of the results in the litera-

ture regarding online algorithms with constant competitive ratio for problems under

uncertainty are based on the template of the witness algorithm. Furthermore the

competitive ratio is directly linked with the maximum size of witness sets, in other

words:

Lemma 2.2. If the size of every witness set used by a witness algorithm is bounded

by k, then the witness algorithm is k-update competitive.

10



Chapter 2 2.4. The Witness Algorithm

Lemma 2.2 can be proved, for a particular problem considered, by showing that

every update solution must contain from each computed witness set a distinct ele-

ment.
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Chapter 3

Related Work

3.1 Under Uncertainty Problems

Kahan [32] presented a model for handling imprecise but updateable input data.

He demonstrated his model on a set of real numbers where instead of the precise

value of each number an interval was given. That interval when updated reveals

that number. The aim is to determine the maximum, the median, or the minimal

gap between any two numbers in the set, using as few updates as possible. His work

included a competitive analysis for this type of online algorithm, where the number

of updates is measured against the optimal number of updates. For the problems

considered, he presented online algorithms with optimal competitive ratio (or lucky

ratio as he has defined it).

Feder et al. [19] also studied the problem of computing the value of the median of

an uncertain set of numbers up to a certain tolerance. Each input number lies in an

interval and an update reveals the exact value, but different intervals have different

update costs. They consider offline algorithms, which must decide the sequence of

updates prior to seeing the answers, as well as online ones, aiming to minimize the

total update cost.

Olston and Widom [44] consider selection and aggregation problems in the non-

adaptive online case, motivated by the situation where one maintains in a local cache

intervals containing the actual data values stored at a remote location. For a given

tolerance δ, the aim is to determine a range [L,H] which contains the exact solution

such that H − L ≤ δ.

Khanna and Tan [35] extend some of the results for the selection and sum prob-

lems, focusing on other precision parameter formulations.

In the setting of geometric problems with points where their location in the plane

is imprecise, Bruce et al. [6] studied the problems of computing maximal points and

the convex hull of a set of points. Here, the input consists of 2-dimensional points

12



Chapter 3 3.1. Under Uncertainty Problems

in the plane, and the uncertainty information is for each point of the input an area

that contains that point. They presented update strategies for both problems with

competitive ratio of 3 and shown that this is the best possible. They introduced a

general method, called the witness algorithm, for dealing with problems involving

uncertain data and derived their update strategies using that method. Chapter 5,

6, 7 and 8 in this thesis further analyse other aspects and different settings of the

maximal point problem.

Löffler and van Kreveld [41] have studied the problem of computing the largest

or smallest convex hull over all possible locations of points inside their uncertainty

areas. Here, the option of updating a point does not exist, and the goal is to design

fast algorithms computing an extremal solution over all possible choices of exact

values of the input data.

Examples of under uncertainty applications to graphs include Feder et al. [18]

where they investigated algorithms for computing the length of a shortest path from

a source s to a given vertex t on graphs with uncertain edge weights. They allowed

a precision factor limiting the deviation from the actual shortest path and they

studied the computational complexity of minimizing the total update cost.

Erlebach et al. [29] studied the adaptive online setting for minimum spanning

trees (MST ) under two types of uncertainty: the edge uncertainty setting, which

is the same as the one considered by Feder et al. [18], and the vertex uncertainty

setting. In the latter setting, all vertices are points in the plane and the graph is a

complete graph with the weight of an edge being the distance between the vertices it

connects. The uncertainty is given by areas for the location of each vertex. For both

problems they presented algorithms with optimal competitive ratio. The competitive

ratios are 2 for edge uncertainty and 4 for vertex uncertainty, and the uncertainty

areas must satisfy certain restrictions for example in the edge uncertainty case each

uncertainty area must be either open or trivial.

Erlebach et al. [15] further worked on the MST problem, for both edge and ver-

tex uncertainty, this time studying the verification setting. They give a polynomial-

time optimal algorithm for the MST verification under edge uncertainty problem

by relating the choices of updates to vertex covers in a bipartite auxiliary graph. For

MST verification under vertex uncertainty they show that the problem is NP-hard

even if the uncertainty areas are trivial or open disks. The proof is by reduction

from the vertex cover problem for planar graphs with maximum degree 3.

Megow et al. [42] also worked on the MST under uncertainty showing that

randomized query strategies can beat the competitive ratio 2 of deterministic algo-

rithms. Their randomized algorithm achieves expected competitive ratio 1 + 1
√

2 ≈
1.707. Moreover, they gave an optimal algorithm for the related problem of com-

puting the exact weight of an MST at minimum query cost. Finally they show the

13



Chapter 3 3.1. Under Uncertainty Problems

results also hold for the more general setting of matroids.

Gupta et al. [25] studied a variant of the MST problem under uncertainty, along

with the selection problem, where updates yield more refined estimates in the form of

sub-intervals instead of precise values. They generalized the update model in several

directions, classifying models based on the types of the inputs allowed and the return

type of the updates. In the generalized model they present 2-update competitive

algorithms that do not depend on the lengths or distribution of the sub-intervals.

They further show that for models with closed intervals, update-competitive algo-

rithms become possible if the output is required to be a lexicographically smallest

solution.

Kirkpatrick [36] considered a basic list-searching problem: given a set of lists with

unknown lengths, traverse to the end of any one of the lists with as little total ex-

ploration as possible. They introduced a novel process interleaving technique, called

hyperbolic dovetailing that achieves a competitive ratio that is within a logarithmic

factor of optimal on all inputs in the worst, average and expected cases, over all

possible deterministic (and randomized) dovetailing schemes. They also show that

no other dovetailing strategy can guarantee an asymptotically smaller competitive

ratio for all inputs.

A problem under uncertainty where updates yield more refined estimates was

also considered by Tseng and Kirkpatrick [50]. They study the complexity of one-

dimensional extrema testing: given one input number, determine if it is properly

contained in the interval spanned by the remaining input numbers. They assume

that each number is given as a finite stream of bits, in decreasing order of significance.

The performance of an algorithm is measured by the total number of bits that it

needs to consume from its input streams. and an input-thrifty algorithm is one that

performs favourably with respect to this measure. They present an algorithm for

the extrema testing problem that is within a logarithmic factor of the intrinsic cost

of the given instance. They further mention that their results also hold in a more

general model where the query results are nested uncertainty intervals, instead of a

query yielding an extra bit of a number.

Erlebach et al. [17] studied under uncertainty the problem of identifying a cheap-

est set among a given collection of feasible sets using a minimum number of updates

of element weights. For the general case they present an algorithm that makes at

most kOPT + k updates, where k is the maximum cardinality of any given set.

For the minimum multi-cut problem in trees with k terminal pairs, they give an

algorithm that makes at most kOPT + 1 updates. For the problem of computing

a minimum-weight base of a given matroid, they give an algorithm that makes at

most 2OPT updates, generalizing the result in [29] for the minimum spanning tree

problem. For each of their algorithms they further give matching lower bounds.

14



Chapter 3 3.2. Classical Maximal Points

A survey of known results and techniques for the design of query-competitive

algorithms in the model of computing under uncertainty was given in [16].

3.2 Classical Maximal Points

The problem is simple: Given a set of points, return all that are not dominated. In

the literature this is also called the problem of computing the maxima (or maximum)

of a set of vectors (or points). Other names include the Pareto optimum and, more

recently, the skyline operator. A formal definition of the maximal points problem

in the plane can be found in Chapter 4.

The problem was introduced by Kung et al. [38] and was noted in [46] that it has

a variety of applications in statistics, economics, and operations research. In two

and three dimensions, the best known algorithm solves the problem in O(n log n)

time which is optimal since the problem exhibits a sorting lower bound as shown in

[46, 38]. For higher dimensions it was shown by Kung et al. [38] and Gabow et al.

[23] that the problem can be solved in O(n logd−2 n) time and O(n logd−3 n log log n)

time respectively.

This problem has subsequently been studied in many other contexts, including

solutions for parallel computation models [31], for point sets subject to insertions

and deletions [33], and for moving points [21]. Output-sensitive algorithms and

algorithms that find the maxima for a random set of points are described in [1, 12,

24, 37].

The problem was first introduced to the database community in [5] as the SQL

skyline operator. It has since received a lot of research attention for various settings

and many different approaches to efficiently compute skyline queries with over a

hundred publications in recent times. A 2012 survey of skyline processing in highly

distributed environments can be found in [30]. More recent work in the area includes

[2, 3] where they exploit the computational power of the GPU, [43, 10, 53] using the

MapReduce platform and [39, 40, 54] for skyline queries over distributed uncertain

data.

3.3 Classical Graph Diameter

Computing the diameter and, more generally, computing distances, are among the

most fundamental algorithmic graph problems. A survey can be found in [55] for

many different settings and models. In Chapter 9 we look at a problem under uncer-

tainty that is directly related to the problem of computing the diameter of a graph.

Specifically we are interested in finding a farthest pair of vertices in undirected and

non-negatively real-weighted graphs, where the edge weights may be uncertain.
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Chapter 3 3.3. Classical Graph Diameter

The best known algorithm for finding the diameter exactly is by running an al-

gorithm for the all-pairs shortest paths problem (APSP) and returning the largest

distance. It is a long-standing open problem whether one can compute the diam-

eter faster than APSP [11]. APSP is unquestionably one of the most well known

problems in algorithm design, frequently studied in textbooks. For arbitrary dense

real-weighted graphs with n vertices, Floyd [20] and Warshall [51] proposed an algo-

rithm for ASPS in 1962 that runs in O(n3) time (for a recent publication see [13]).

Over the years there has been a tremendous amount of work to improve its running

time [7, 8, 14, 22, 26, 27, 28, 47, 48, 49, 52, 56]. The best known algorithm so far

has been proven by Williams [52] to run in O( n3

2c
√
logn ) time for some constant c.

For sparse graphs an algorithm with O(mn logα(m,n)) time for any graph with m

edges has also been achieved by Pettie and Ramachandran [45].
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Maximal Points Introduction

In this chapter we give an introduction of the general maximal point under uncer-

tainty problem that was first introduced by Bruce et al. [6] and further studied by

us in the following chapters. We will give some definitions for the classical prob-

lem as well as for the problem under uncertainty, and we will use this terminology

throughout Chapter 5, 6, 7 and 8.

In its simple form, without uncertainty, it can be stated as follows: Given a set

of points in the plane, return all points that are maximal (we say a point is maximal

if there does not exist some other point with one coordinate greater and all other

coordinates not lower). Considering points in a plane, a point p may be written

in the coordinate form (px, py). We say a point p = (px, py) is higher than a point

q = (qx, qy) if px ≥ qx and py ≥ qy and p 6= q. This may also be written as p > q and

this notion naturally extends to higher dimensions. We are interested in finding all

points such that there does not exist a point higher; that is find all points in a set

that are maximal. Formally:

Definition 4.1. Let p be a point and let P be a set of points. Point p is said to

be maximal among P if there does not exist a point in P that is higher than p.

Otherwise p is non-maximal among P .

We now use the under uncertainty setting in the context of the maximal points

problem, as by our definitions in Section 2.2, motivated by scenarios where the

location of a point may not be directly known precisely, but instead a region is

directly available such that this point is guaranteed to lie within. Let I = (S, U,A,w)

be an instance of the maximal points under uncertainty problem. Then S is a set

of points in the plane with their actual coordinates and U consists of the points

that have uncertain location. For each u ∈ U function w maps u to its actual x

and y coordinates wu = (wx
u, w

y
u) and function A maps u to a region in the plane.

Here the set φ(S, U, w) actually only contains one element as, for the underlying

problem, a set which contains all maximal points is unique. For the rest of this
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thesis concerning the maximal points under uncertainty problem we redefine an

instance of the problem for convenience as I = (P,A) where P = S ∪
⋃
u∈U

wu and

A = S ∪
⋃
u∈U

Au. Assuming now that P = {p1, . . . , pn} and A = {A1, . . . , An} are

ordered similarly, we note for every 1 ≤ i ≤ n that pi ∈ Ai. Furthermore we do

not refer to an update operation taking place on some u ∈ U but rather on some

Aj ∈ A which then changes the instance of the problem from (P,A) to (P,A′) such

that A′ = {A1, . . . , Aj−1, {pj}, Aj+1, . . . , An}. But we should note that this does

not apply for Chapter 7 as an update there does not necessarily retrieve the precise

location of a point.

If an uncertainty area A ∈ A consists of a singleton set, we say A is trivial and

otherwise A is non-trivial. The aim is to be able to produce the set of all points

that are maximal among P based solely on the information of A. If A is insufficient

then at least one of its elements must be updated, which then reduces the updated

uncertainty area to trivial. If then the resultant set is precise enough to calculate all

maximal points, the recorded set which indicates which areas have been updated is

an update solution. Updating all non-trivial areas would reveal the precise location

for all points and therefore this would obviously be an update solution.

In the adaptive online setting an algorithm is not given the set P initially, but

only the set A and must perform updates on A continuously until an update solution

has been achieved. In the non-adaptive online setting an algorithm is not able to

modify A during the process, and thus an update solution has to be computed for

the initial set A. In the verification setting, however, an algorithm is also given a set

of assumed precise location of points P ′ = {p′1, . . . , p′n} and therefore knows what

the location of a point in P will be without modifying A, under the assumption

that p′i = pi for every 1 ≤ i ≤ n. As such, the aim in the verification setting is to

produce an optimal update solution. Formally:

Definition 4.2. A Maximal Point Verification problem, MPV for short, is a pair

(P,A), where P is a set of points and A is a set of uncertainty areas for P . The aim

is to identify a minimal set of areas in A, that when updated verifies the maximal

points among P as maximal based on the information of A and the results of the

updates.

We extend the notion of a point being higher than another point to be also used

on uncertainty areas:

Definition 4.3. Let p be a point and A and B be uncertainty areas.

• If for every point a ∈ A we have p > a then p > A.

• If for every point a ∈ A we have a > p then A > p.
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• If for every point a ∈ A and every point b ∈ B we have a > b then A > B.

We will further use the following notation:

Definition 4.4. Let A be the set of all uncertainty areas with some A ∈ A.

• We say A is maximal among A if for every point p that is higher than a point

in A, p is not inside an area of A \ {A}.

• We say A is dominated among A if for every point p ∈ A there exists an area

B ∈ A \ {A} such that B > p.

We also note that an uncertainty area might be neither maximal nor dominated

among a set of areas, whereas a point is either maximal or non-maximal among a

set of points as given in Definition 4.1. If this is the case then the set of all maximal

points cannot be computed. In other words:

Remark 4.5. A maximal point under uncertainty problem is solved if and only if

all areas in A are either maximal or dominated among A.

For further convenience we say an area A is potentially higher than an area B if

there exists a point in A higher than a point in B.
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Maximal Points Verification -

Unrestricted Problem

5.1 Introduction

In this chapter we study the Maximal Point Verification problem (MPV), as given

in Definition 4.2, where any type of uncertainty areas are allowed. We will use the

maximal point notation as defined in Chapter 4. Our main result is, as stated later

on in Theorem 5.8, that by a reduction from the Minimum Set Cover problem the

MPV problem is also NP-hard. In our construction of the reduction each uncertainty

area contains either a single point (i.e. the data is known precisely) or contains just

two points. Hence, an MPV problem remains NP-hard even when restricted to

areas of uncertainty that contain at most two points. It remains, however, open if

the same holds when each uncertainty area is connected.

The effect of our result is significant for experimental evaluation of algorithms in

the online and verification setting of the maximal point problem under uncertainty.

It strengthens the role of constant competitive online algorithms, as they also rep-

resent a constant approximation algorithm for the verification setting. Finally it

gives rise to find new restrictions on the uncertainty areas, such that the verifica-

tion problem becomes solvable in polynomial time, and captures a large variety of

applications for maximal points under uncertainty.

MPV example. In the example shown in Figure 5.1, the problem consists of

three points p1, p2, p3 and three areas A1, A2, A3. Area A2 consists of only point p2

and hence A2 is a trivial area and the location of p2 is already verified. For every

point in area A1 there does not exist a point in A2 or A3 that is higher. Therefore,

regardless of where p1 lies in A1 and where p3 is located in A3, point p1 will be

maximal among P . Based only on the areas of uncertainty, point p3 may or may

not be maximal among P . So updates have to be requested to verify some points,
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Chapter 5 5.2. Construction

and therefore to make the problem solvable based on the initial areas of uncertainty

and the information retrieved by the updates. The set {A1, A3} is clearly an update

solution as after updating these two sets the location of p1 and p3 are verified and

both are maximal points in P . However the set {A1} is also an update solution as

after verifying the location of p1, neither p1 nor p2 are higher than any point in A3.

Hence even without verifying the location of p3 within area A3 both p1 and p3 must

be both maximal among P . In this example the set {A1} is also an optimal update

solution as without any update the maximal points cannot be calculated. We finish

this example by noting that updating just A3 is not an update solution. While this

verifies the exact location of p3, area A1 still contains some points that are higher

than p3 and some that are not. So without also verifying the location of p1 it is not

clear whether p3 is a maximal point among P or not.

A1

A3

p2

A2={p2}

p3

p1

Figure 5.1: Example of an MPV problem

In the last part of this section we recall the classical Minimum Set Cover problem:

Definition 5.1. An instance of the Minimum Set Cover (MSC) problem consists

of the pair (U,S) where U = {1, . . . , n} is the universe of n members and S =

{S1, . . . , Sk} is a family of subsets of U . We say C ⊆ S is a cover if
⋃
C∈C

C = U .

The aim is to compute a cover C such that |C| is minimal.

5.2 Construction

In this section we give the construction of an MPV problem out of an MSC problem.

We call the instance of the MSC problem MC = (U,S) with U = {1, . . . , n} and

S = {S1, . . . , Sk}. The instance of the MPV will be denoted by MP.

The idea behind the construction is to have different types of areas in MP rep-

resenting different aspects of MC. A set of areas (B’s) will correspond to elements

of U and another set of areas (A’s) will correspond to elements of each Sj ∈ S. The

areas are positioned such that for each area corresponding to an element i of U , at

least one area corresponding to the occurrence of i in the set Sj must be included
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in any update solution. With the help of another set of areas (D’s), the areas cor-

responding to elements of a set Sj are linked together. So, if an update solution

contains one area corresponding to an element of a set Sj the update solution can be

modified to include all areas that correspond to elements of Sj without increasing

the size of the update solution.

The construction is done by using three different types of gadgets, and each

gadget is placed in its own rectangular region. These regions are located in the

plane in such a way that no point in one gadget is higher than any point in another

gadget. This can be achieved by placing all gadgets in regions diagonally top-left to

bottom-right in the plane and we note the order of the placement is not important,

see Figure 5.2.

Figure 5.2: Placement of gadgets

Type 1 gadget. For each i ∈ U there exists one gadget of type 1. This contains

the point bi, which is the lower left corner of the gadget, and multiple distinct points

along the diagonal of the gadget. For each set Sj ∈ S that contains i, a point aij is

placed on the diagonal. See Figure 5.3.

b i

a

a

a

a

a

j1

i

j2

i

j3

i

i

j4

i

j5

Figure 5.3: Type 1 gadget

Type 2 gadget. For each set Sj ∈ S there exists one gadget of type 2. This

contains for every i ∈ Sj a point cij along the diagonal of the gadget such that all
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points are pairwise distinct. In addition points d1j , . . . , d
t
j with t = |Sj|−1 are placed

in such a way that for each drj with 1 ≤ r ≤ t there exist exactly two points cij and

ci
′
j that are higher. Furthermore any two neighbouring points cij and ci

′
j are higher

than exactly one point drj . This can be done easily by placing the points d1j , . . . , d
t
j

along a line that is parallel to the diagonal, and closer to the bottom-left corner of

the gadget than the diagonal. See Figure 5.4.

c

c

c

c

j

i1

j

i2

j

i3

i4

j

c
|S  |

j

d
j

1

d
j

2

d
j

t

d
j

3

j

Figure 5.4: Type 2 gadget

Type 3 gadget. For each set Sj ∈ S there exists one gadget of type 3. This

gadget just consists of |Sj| − 1 distinct points e1j , . . . , e
t
j placed along the diagonal.

See Figure 5.5.

e

e

e

e

j

1

j

2

j

3

t

j

Figure 5.5: Type 3 gadget

The various points placed in the three gadgets, are now used to define the areas

of uncertainty A, and the set of precise location points P for MP.

Out of the points from the different gadgets we build the following sets where

each set corresponds to an uncertainty area for MP. For every i ∈ U let Bi be the

set containing only bi. For every i ∈ U and Sj ∈ S with i ∈ Sj let Ai
j be the set

containing the two points aij and cij. For every Sj ∈ S and 1 ≤ r ≤ |Sj| − 1 let Dr
j

be the set containing the two points drj and erj .

To handle these sets better in the remaining part of this chapter we group some
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of these areas together. We say Aj = {Ai
j | i ∈ Sj} and Dj = {D1

j , . . . , D
t
j} with

t = |Sj| − 1. We also note that |Aj| = |Dj|+ 1 = |Sj|.
Further we say B is the set of all areas that correspond to an element of U (or

formally B = {B1, . . . , Bn}), A is the set of all areas that correspond to an element

of any set Sj ∈ S (or formally A = ∪Sj∈SAj) and D is the set of all areas in any Dj

(or formally D = ∪Sj∈SDj).

This allows us to define our instance of the MPV in the following way: MP

= (P,A) with A = B ∪ A ∪D and P = {b1, . . . , bn} ∪ {aij | i ∈ Sj} ∪ {erj | 1 ≤ r ≤
|Sj| − 1}.

We are now analysing the constructed problem MP and highlight properties that

are needed in the further section.

Size of MP. There exist exactly n type 1 gadgets where each contains one

point bi with some i ∈ U . Each type 1 gadget contains at most k further points

{aij | i ∈ Sj}. There exist exactly k type 2 gadgets. Each contains at most 2n − 1

points c1j , . . . , c
|Sj |
j and d1j , . . . , d

|Sj |−1
j , since |Sj| ≤ n. There exist exactly k type 3

gadgets. Each contains at most n− 1 points e1j , . . . , e
|Sj |−1
j since |Sj| ≤ n.

Hence for the MP constructed we have n+ 2k gadgets and at most n ∗ (1 + k) +

k ∗ (2n − 1) + k ∗ (n − 1) = n + 4nk − 2k points. As each point only lies in one

area of uncertainty also |A| is at most n+ 4nk − 2k and so the input size of MP is

polynomial in the size of MC.

Maximal points among P . A point aij for some j and i is part of a type 1

gadget and is clearly maximal among all points placed in the gadget. As two different

gadgets are located so that no point of one is higher than a point of another, all

points aij are maximal among P . The same follows for the all points erj in type 3

gadgets and therefore all such points are also maximal among P .

As for every i ∈ U there must exists at least one Sj ∈ S with i ∈ Sj, by the

construction of the type 1 gadget for i, also point aij was added to that gadget. As

all such points are higher than bi, point bi is non-maximal among P .

Maximal areas among A. Each area in A consists of two points aij and cij.

One is located inside a type 1 gadget and the other inside a type 2 gadget. For both

points there is no area in A with a higher point, and therefore even without any

updates all areas in A are maximal.

For each area Bi ∈ B there exist areas in A which contain both a point higher

and a point not higher than Bi. So area Bi is neither maximal nor dominated among

A and, by Remark 4.5, further updates are needed.

Each area in D has two points. One is located in a type 3 gadget for which there

is no point from some other area higher. The other is located in a type 2 gadget

where there are two areas in A that contain points that are higher. So among A it

is neither maximal nor dominated and further updates are needed.
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Update solutions for MP. Following the above analysis of maximal among A
areas, we give the following remark:

Remark 5.2. A set of areas is an update solution if and only if it contains for each

i an area Ai
j ∈ A for some j, and also for each area in D either this area or the two

areas in A that are potentially higher.

Following from this only updates of areas in Aj and Dj will help to identify areas

of Dj as maximal among A. Based on the construction of type 2 gadgets, updating

k areas of Aj can at most identify k − 1 areas of Dj as maximal among A. Hence

the smallest update set that identifies all areas of Dj as maximal among A, is Dj

itself. Any other set of updates must be bigger. Formally:

Remark 5.3. Let R be an update solution. Then for every j the set R must contain

either Dj or it must contain at least |Dj|+ 1 areas of Dj ∪ Aj.

This leads to the following Lemma:

Lemma 5.4. Let R be an update solution for MP and let Ai
j ∈ R for some j and i

be an area. Then R′ = (R \Dj) ∪ Aj is also an update solution with |R′| ≤ |R|.

Proof. Since R is an update solution, by Remark 5.2 for every i ∈ U the set R must

contain an area Ai
j′ for some j′. As R′ is constructed by potentially removing areas

of D and adding areas of A the set R′ must also contain area Ai
j′ .

Let Dr
j′′ ∈ D. Again by Remark 5.2 either Dr

j′′ ∈ R or the two areas in A that

are potentially higher than Dr
j′′ are in R. If R contains the two areas in A that are

potentially higher than Dr
j′′ then also R′ must contain these areas as no area in A

was removed when creating R′. If Dr
j′′ ∈ R also R′ must contain Dr

j′′ unless j′′ = j.

In that case as all areas in Aj were added to R′, it must also contain the two areas in

Aj that are potentially higher than Dr
j′′ . Hence by Remark 5.2 also R′ is an update

solution.

We now show that |R′| ≤ |R|. By our assumption Ai
j ∈ R. So as R already

contains at least one element of Aj, there will be at most |Aj| − 1 elements of Aj

added to R′. We noted in the construction of MP that |Aj| = |Dj|+ 1. Therefore it

must follow that |(R \Dj) ∪ Aj| ≤ |R|.

5.3 Relating Update Solutions to Covers

In this section we show how to construct a cover of MC out of an update solution

of MP and vice versa. We will also note how the size of the update solutions and

covers relate to each other.

From update solution to cover. Let R be an update solution for MP.
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Before creating the cover we create a different update solution R′. The set R′

is based on R but for every j such that there exists an i with Ai
j ∈ R all potential

areas of Dj are removed from R and all areas of Aj are added. By Lemma 5.4, we

have that R′ is also an update solution with no greater size than R. Furthermore

by doing so, the update solution R′ contains for every index j either the set Aj or

Dj but never a mixture.

The cover C is constructed based on R′ in the following way. For each index j

such that Aj ⊆ R′ we choose the set Sj ∈ S to be included in C and otherwise not.

This is denoted as:

C = {Sj ∈ S | Aj ⊆ R′}

We now show that C is a cover, in other words that every element of U is found

in at least one set of C.
Let some i ∈ U for the MC. Then in MP there exists area Bi. By Remark 5.2

there exists a j with Ai
j ∈ R′. Since this area Ai

j was constructed in the creation of

MP we have that i ∈ Sj. As Ai
j is also in R′ the set Aj must be a subset of R and

Sj ∈ C.
We note that the construction of C is done in polynomial time and the sizes of

R,R′ and C relate to each other in the following way.

By the construction of R′ we have:

|R′| =
∑

Aj⊆R′

|Aj| +
∑

Aj 6⊆R′

|Dj|

As |Aj| = |Dj|+ 1 = |Sj| for every j we get by the construction of C that:

|R′| =
∑
Sj∈C

|Sj| +
∑

Sj∈S\C

(|Sj| − 1)

= |C|+
∑
Sj∈C

(|Sj| − 1) +
∑

Sj∈S\C

(|Sj| − 1)

= |C|+
∑
Sj∈S

(|Sj| − 1)

Since by Lemma 5.4 we get |R| ≥ |R′| we have:

|R| ≥ |C| +
∑
Sj∈S

(|Sj| − 1)

We summarise our results on the construction of C in the following Lemma:

Lemma 5.5. Let R be an update solution for MP. Then a cover of MC can be
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constructed in polynomial time with |R| ≥ |C|+
∑
Sj∈S

(|Sj| − 1).

From cover to update solution. Similarly to the construction of a cover for

MC out of a given update solution of MP, we now show how to construct an update

solution for MP out of a given cover for MC.

Let C be a cover for MC.

The set R of areas in MP is based on C as follows: For each index j such that

Sj ∈ C we choose the set Aj to be included in R. For each index j such that

Sj ∈ (S \ C) we choose the set Dj to be included in R.

This is denoted as:

R = (
⋃
Sj∈C

Aj)
⋃

(
⋃

Sj∈(S\C)

Dj)

We note the following: Firstly, let i ∈ U . Since C is a cover there exists a j such

that Sj ∈ C and i ∈ Sj. Hence, by the construction of MP, area Ai
j exists in MP. As

Sj ∈ C we have that Aj ⊆ R and in particular Ai
j ∈ R.

Secondly, let Dr
j ∈ D. If Sj /∈ C the set R contains Dj and therefore also Dr

j .

Otherwise R contains Aj and therefore also the two areas in Aj that are potentially

higher than Dr
j .

So R satisfies both condition of Remark 5.2 and is hence an update solution for

MP.

We recall from the MP-construction that for every set Sj there is a set Aj and a

set Dj such that |Aj| = |Dj|+ 1 = |Sj|. So,

|R| =
∑
Sj∈C

|Sj| +
∑

Sj∈S\C

(|Sj| − 1)

= |C|+
∑
Sj∈C

(|Sj| − 1) +
∑

Sj∈S\C

(|Sj| − 1)

= |C|+
∑
Sj∈S

(|Sj| − 1)

This leads to the following lemma:

Lemma 5.6. Let C be a cover of MC. Then there exists an update solution R for

MP with |R| = |C|+
∑
Sj∈S

(|Sj| − 1).

5.4 NP-Hardness Proof

We have shown so far how an instance MP of the Maximal Point Verification problem

can be constructed out of an instance MC of the Minimum Set Cover problem, how
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one can build a solution for one of these two problem instances based on the solution

of the other, and how the sizes of the solutions are related. We now argue that an

optimal update solution corresponds to a minimal cover.

Lemma 5.7. Let R be an optimal update solution for MP. Then the cover C con-

structed out of R is a minimal cover for MC.

Proof. Let’s assume there exists a cover C for MC such that |C| < |C|. Further let

R be the update solution for MP constructed from C as shown in Section 5.3.

By Lemma 5.5:

|C| ≤ |R| −
∑
Sj∈S

(|Sj| − 1)

And by Lemma 5.6:

|C| = |R| −
∑
Sj∈S

(|Sj| − 1).

Since |C| < |C| so must |R| < |R|. This is a contradiction as R was an optimal

update solution. So C must be a minimal cover of MC.

We are using the established results to prove Theorem 5.8.

Theorem 5.8. Solving the Maximal Point Verification problem is NP-hard.

Proof. In Section 5.2 we have presented the construction of a MPV problem for

a given MSC problem. As noted in Section 5.2 the size of the MPV problem is

polynomial in the size of the MSC problem and also choosing coordinate values for

the points is fairly trivial. So the construction can be done in polynomial time.

By Lemma 5.7 a solution of the MPV can be used to construct a solution of the

MSC problem. As remarked in Section 5.3 that construction is polynomial in the

size of the MPV problem.

Hence, if the MPV problem is solvable in polynomial time, then this must also

be the case for the MSC problem. The MSC problem is shown to be NP-hard in

[34] and therefore the MPV problem is also NP-hard.
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Maximal Points - Direct Product

6.1 Introduction

In this chapter we consider the maximal point under uncertainty problem with a

new restriction. We will use again the maximal point notation as defined in Chapter

4. As in Chapter 4 and Chapter 5, we are still working with 2-dimensional points.

However, in this chapter, instead of restricting to either trivial areas or connected,

open areas, we restrict to areas that are the direct product of uncertain areas in the

x and y coordinates. Note that this is incomparable with the restriction of Bruce et

al. [6]. On the one hand, this restriction allows disconnected areas of uncertainty.

On the other hand, the shapes of uncertainty areas are restricted to be a specific

kind of union of rectangles.

Our contribution is the new restriction to the problem which is update competi-

tive for the online case. We also show that there exists a polynomial time algorithm

that solves the verification problem. In this section we give the motivation and the

definition for the new restriction. In Section 6.2 we give an example of the prob-

lem. In Section 6.3 we give details about the process of classifying precise locations

among P and uncertainty areas among A. In Section 6.4 we show that the witness

algorithm by Bruce et al. [6], for the online adaptive setting of the problem, is also

3-update competitive for our new restriction. And finally in Section 6.5 we analyse

our algorithm for the verification problem under the new restriction. The effect

of our results for the verification setting is significant for experimental evaluation

of algorithms in the online adaptive setting of the maximal point problem under

uncertainty.

Background - Motivation. The problem of finding maximal points under

uncertainty was introduced by Bruce et al. [6] and an update strategy with optimal

competitive ratio was given for the restricted online problem, as also it was shown

that a constant update competitive ratio is impossible for unrestricted areas. The
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proposed restriction in [6] is to have only uncertainty areas which are either trivial

or closures of connected, open areas. Further study of the problem by us in Chapter

5 has shown that the verification problem is NP-hard if there are no restrictions

on the areas of uncertainty. This is shown to be the case even if the areas of

uncertainty contain at most two points. Following the previous results for maximal

points under uncertainty, there was the expectation of restricting the accepted input

set A such that: an algorithm can solve the verification problem in polynomial time,

an algorithm can solve the online problem with the 3-update competitive strategy of

Bruce et al., and also accept other types of uncertainty areas which the restriction

by Bruce et al. was unable to do so.

Although the restricted problem as studied by Bruce et al. yields nice results,

it does not capture scenarios where the uncertain information about an area may

contain non-consecutive values. We want to have a model where the categorized

information does not have to be continuous. Furthermore, while uncertain informa-

tion may contain non-consecutive values, often this information is categorized into

properties which are independent of each other.

This scenario can be seen where, given a list of products or services, we want to

distinguish all the options that are as good or better from all the others. Each prod-

uct or service has two properties, which are of the same type as all others considered,

and a rough estimate is effortlessly available for which the precise measurement can

be obtained but for some reason doing this involves some sort of cost/effort. A

product or service is distinguished if, with the current information, we can establish

that no other is better in one property and at least as good in the other.

Real life example 1. Given a list of similar products, where each has a price and

rating, one wants to distinguish those that are maximal in terms of low price and high

rating. A product may have an uncertain price in non-consecutive ranges depending

on availability from different sellers, time of purchase, total number or combination

of products purchased, etc. An update retrieves the precise price and rating by, for

example, visiting a store that can provide it. Independence of properties can be

observed here as when comparing products the price of a product should not affect

its rating.

Real life example 2. Given a list of hotels with distance to the beach (the closer

the more desirable) and rating of service (the higher the more desirable), one wants

to distinguish those that are maximal in terms of close proximity to the beach and

rating of service. A hotel may have an uncertain rating given in non-consecutive

ranges depending on when a survey was last taken, or it might fluctuate significantly

between the high and low seasons. Furthermore the distance from a hotel to the

beach might be uncertain due to GPS accuracy factors, or even the specific location

not at all available at times as the coastline might be closed to the public due to
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coastal hazards (e.g pollution, trawling, weather condition). An update retrieves

the precise distance to the beach by, for example, verifying it from google maps and

checking the coastal condition for the specific dates considered. The update further

retrieves the rating of service by, for example, retrieving data from multiple sources

instead of just one and then producing an average, or even narrow the results to

consider only recorded data for similar dates in previous years. Independence of

properties can be observed here as when comparing hotels the distance of a hotel to

the beach should not affect its service rating.

Real life example 3. Two people wanting to stay together are searching for a

place. These people have to commute to their individual places of work. They want

to find a place to live that is as close as possible to both places of work. From their

options they would like to eliminate those for which there exists some other option

that is at least as good for both of them. For each location they can get a rough

estimate on commuting time. An update can be the actual test run which would

give the precise value. Independence of properties can be observed here as of course

a place for which the commuting time is low for one person is not necessarily low

for the other.

With the maximal points under uncertainty in mind, independence between the

x and y coordinates can be modelled as constructing an area of uncertainty from

the direct product of two sets; one containing x coordinate values and another con-

taining y coordinate values. This further allows non-consecutive values. This kind

of restriction captures problems like the three real life examples mentioned. It is an

interesting idea for a new model for studying the maximal points under uncertainty

problem, provided that efficient algorithms for both the online and verification set-

tings are possible.

Considering the above we introduce the following restriction for the accepted

input areas for the maximal points under uncertainty problem. Given that we are

still studying the problem in 2-dimensional space only, a point has two coordinates

namely x and y. The areas of uncertainty may only be composed of all points made

up by the direct product of possible x and y values. Formally:

Definition 6.1. An instance of the Maximal Point Direct Product (MPDP) problem

consists of the pair (P,A) such that:

• P = {p1, p2, . . . , pn} is the set of all precise location points

• A = {A1, A2, . . . , An} is the set of all uncertainty areas where pi ∈ Ai for

every 1 ≤ i ≤ n such that each area Ai is the direct product {Ax
i × A

y
i } where

Ax
i is a set of x values and Ay

i is a set of y values.

Given for example uncertain values for x-coordinate Ax
i = {1, [2, 4]} and y-

coordinate Ay
i = {2, [4, 6]}, area Ai can be depicted as shown in Figure 6.1. Note
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that the upper and lower limits of both Ax
i and Ay

i are closed in this example but

this is not a restriction throughout this chapter.

1

2

3

4

5

6

7

8

0
1 2 3 4 5 6 7 8

y

x

Figure 6.1: Example of area Ai = {1, [2, 4]} × {2, [4, 6]}

6.2 MPDP Example

Figure 6.2 illustrates an instance (P,A) of the MPDP problem where it consists

of the three points p1, p2, p3 and the three uncertainty areas A1, A2, A3 such that

A = {A1, A2, A3} and P = {p1, p2, p3} and by definition p1 ∈ A1, p2 ∈ A2, p3 ∈ A3.

As shown area A3 consists of two disconnected regions. Furthermore area A2 overlaps

with area A1 and area A3 overlaps with area A1, or in other words they share some

points about where their precise location might be. We note that updating an area

which overlaps with some other area does not reduce the uncertain information of

the latter, for example updating area A3 does not affect the uncertain information

of A1 about where p1 might be located.

We can see that points p2 and p3 are both maximal among P since there is no

point in P that is higher than either of them. Also p1 is non-maximal among P

since p2 and p3 are higher. However without verifying any of the points in P (i.e.

updating the corresponding area which in turn reduces its size to trivial), each of

the points in P may or may not be maximal based only on the areas of uncertainty.

We can also observe that by updating every area except of A1 the problem will not

be solved since point p1 could still potentially be maximal or non-maximal based on

32



Chapter 6 6.2. MPDP Example

the initial area of uncertainty A1 and the points p2 and p3 (Figure 6.3). Updating

only A1 on the other hand validates that p1 is indeed non-maximal, since A1 is now

reduced to trivial size and wherever p2 lies in A2, point p2 will always be higher. This

brings us to Figure 6.4 having performed one update so far that the problem could

not have been solved without. Now we can also see that p2 is maximal regardless

where it lies in A2 since there is no longer an area containing a point higher than a

point in A2. It is therefore only left to show that p3 is maximal and we now have a

choice. Further updating either A2 or A3 will achieve this with a similar reasoning

as before. So the problem has so far two update solutions {A1, A2} and {A1, A3}.
These update solutions area also optimal because by our previous reasoning area A1

must be updated and also updating only A1 does not suffice.
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Figure 6.2: Example of an MPDP problem
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Figure 6.4: Updating A1
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6.3 Classifying Precise Locations and Uncertainty

Areas

In this section we give two more classifications of uncertainty areas which we will

use in Chapter 6, 7 and 8. Furthermore we give the process for determining the

status of a point among P and the status of an uncertainty area among A. Finally

we note the time complexity for each of the two processes.

We have a closer look at the uncertainty areas which are neither maximal nor

dominated among A. These areas can be further divided into the following two

classifications:

Definition 6.2. Let A be the set of all uncertainty areas with some A ∈ A. If A is

neither maximal nor dominated among A:

• We say A is partly among A, if further there exists a point a ∈ A such that

there does not exist a point in any areas in A \ {A} that is higher than a.

• We say A is dependent among A, if further for every point a ∈ A there exists

an area B ∈ A \ {A} with a point b ∈ B such that b > a.

In Figure 6.5 we can see an example with the four different classifications of

uncertainty areas A = {A1, A2, A3, A4}. Note that the areas here appear rectangular

and connected just for ease and this is not a restriction throughout Chapter 6, 7

and 8 unless specifically stated.

A

A 2

4

A

A 1

3

x

y

A1 : maximal among A
A2 : partly among A
A3 : dependent among A
A4 : dominated among A

Figure 6.5: Classification of uncertainty areas A = {A1, A2, A3, A4}
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6.3.1 Status of Points Among P

To determine if the status of a precise location p ∈ P is either maximal or non-

maximal among P , we have to compare the x and y coordinates of p against at most

all other points in P \ {p}. Specifically:

• Point p = (px, py) is maximal among P if every q = (qx, qy) in P is such that

either px > qx or py > qy or p = q.

• Point p = (px, py) is non-maximal among P if there exists q = (qx, qy) in P

such that qx ≥ px and qy ≥ py and q 6= p.

We also note:

Remark 6.3. Determining the status of all points in P is done in polynomial time.

6.3.2 Status of Uncertainty Areas Among A

Let A1 be an uncertainty area of a given instance (P,A) of the MPDP problem. By

Definition 6.1, area A1 is made up by the direct product of a coordinate x values

set Ax
1 and a coordinate y values set Ay

1. Therefore Ax
1 and Ay

1 are available out of

which we can obtain their upper and lower limits, as well as whether each limit is

inside the set or not (i.e. open or closed limits). We denote the lower and upper

limits of Ax
1 as lx1 and hx1 respectively. Similarly we denote the lower and upper

limits of Ay
1 as ly1 and hy1 respectively. We note that if A1 is trivial then all limits are

closed and lx1 = hx1 and ly1 = hy1. These four values for each uncertainty area, along

with whether they are inside their respective sets, is essentially all the information

needed to know in order to determine the status of an area among A.

Specifically we give the cases for each of the four classifications for an uncertainty

area Ai ∈ A:

• Ai is maximal among A if for every Aj ∈ A \ {Ai}:

– lxi > hxj or lyi > hyj or

– lxi = hxj and either lxi or hxj is open or

– lyi = hyj and either lyi or hyj is open or

– lxi = hxj and lyi = hyj and all of lxi , lyi , hxj , hyj are closed

• Ai is dominated among A if there exists Aj ∈ A \ {Ai} such that:

– lxj ≥ hxi and lyj > hyi or

– lxj > hxi and lyj ≥ hyi or
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– lxj = hxi and lyj = hyi and one of lxj , lyj , hxi , hyi is open

• Ai is partly among A if:

– for every Aj ∈ A \ {Ai}:

∗ hxi > hxj or hyi > hyj or

∗ hxi = hxj and hyi = hyj and

· all of hxi , hyi , h
x
j , hyj are open or

· both hxi and hyi are closed or

· hxi is closed and hxj is open or

· hyi is closed and hyj is open or

· hxi is closed, hyi is open, hxj is closed and hyj is open or

· hxi is open, hyi is closed, hxj is open and hyj is closed

– and furthermore there exists Aj ∈ A \ {Ai} such that:

∗ hxj > lxi and hyj > lyi or

∗ lxi = hxj and both lxi , hxj are closed and hyj > lyi or

∗ lyi = hyj and both lyi , hyj are closed and hxj > lxi

• Ai is dependent among A if:

– for every Aj ∈ A \ {Ai}:

∗ hxi > lxj or hyi > lyj or

∗ hxi = lxj and hyi = lyj and all of hxi , hyi , l
x
j , lyj are closed

– and furthermore there exists Aj ∈ A \ {Ai} such that:

∗ hxj > hxi and hyj > hyi or

∗ hxj = hxi and hyj = hyi and both hxj , hyj are closed and either hxi or hyi
is open or

∗ hxj = hxi and hyj > hyi and hxj is closed or

∗ hxj = hxi and hyj > hyi and both hxj , hxi are open or

∗ hyj = hyi and hxj > hxi and hyj is closed or

∗ hyj = hyi and hyj > hyi and both hyj , h
y
i are open

We also note:

Remark 6.4. Determining the status of all uncertainty areas in A is done in poly-

nomial time.
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6.4 Online Problem

The restriction of the maximal point problem as studied by Bruce et al. [6] is that

the areas of uncertainty are either trivial or closures of connected open areas. It

is interesting that our restriction allows disconnected areas, whereas this is not the

case in the restriction proposed in [6]. In Subsection 6.4.1 we show that the 3-update

competitive witness algorithm of Bruce et al. also applies for the online setting of

the MPDP problem. Furthermore it is shown that this is the best possible by any

deterministic online algorithm in Subsection 6.4.2, which then brings us to Theorem

6.12 in Subsection 6.4.3.

6.4.1 Upper Bound

Overview. In this subsection we use the material as in [6], that is the witness

algorithm for the maximal points under uncertainty problem (given in Algorithm 2)

and a series of lemmas used to establish its update competitiveness. The proofs for

the lemmas, however, are our own adapted for the MPDP problem. Lemma 6.6 and

6.9 are used to establish witness sets for the two cases of Algorithm 2 (recall from

Chapter 2 a witness set is a set of updates such that every update solution must

contain at least one of those). Furthermore Lemma 6.7 and Lemma 6.8 are used to

help the proof of Lemma 6.9. Moreover we give Definition 6.5 for when a horizontal

or vertical line splits an area which is being used for Lemma 6.8 and consequently

Lemma 6.9.

We begin with stating the algorithm:

Algorithm 2 Witness algorithm for Maximal Points under Uncertainty

1: while There exists at least one partly or one dependent area among A do
2: if There exists a partly area among A then
3: Find a witness set W ; Update all areas in W
4: else(There must exists a dependent area among A)
5: Find a witness set W ; Update all areas in W
6: end if
7: end while

The split in these two cases helps to identify witness sets. Note that the idea is

to concentrate first on areas that are partly among A and witness sets concerning

these areas. Only if there are such areas left in the given instance, will a strategy

based on the existence of dependent among A areas be used to find witness sets.

We now give our own definition for when a horizontal or vertical line splits an

uncertainty area, which will be used later on for the proof of Lemma 6.9:
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Definition 6.5. Let l1 be a vertical line with equation x = n and let l2 be a horizontal

line with equation y = m. Further let A be an uncertainty area. If there exist two

points a = (ax, ay) and b = (bx, by) in A such that ax ≥ n > bx then point b exist

also with ay = by (due to the direct product restriction as in Definition 6.1) and we

say l1 splits A. Similarly if ay ≥ m > by then also ax = bx and we say l2 splits A.

The following three lemmas (Lemma 6.6 , Lemma 6.8 and Lemma 6.9) are taken

from [6] and adapted for the MPDP problem. Lemma 3 in [6] states that if there

exists an area that is partly among A then there exists a witness set of size at most

2. This is equivalent to our Lemma 6.6:

Lemma 6.6. Let A be a partly among A area, then there exists a witness set of size

at most 2.

Proof. Since A is partly among A, it must contain a point h such that there does not

exist a point in any area of A \ {A} that is higher than h (as otherwise it would be

either dependent or non-maximal instead of partly among A). For the same reason

it must further contain another point l such that there exists at least one point b in

an area B ∈ A\{A} with b > l (as otherwise it would be maximal instead of partly

among A). We note that it is possible that every point in B is higher than l, and

not just point b. In other words potentially B > l. We now separate the two cases

where either B > l (Case 1) or B 6> l (Case 2).

Case 1: B > l. By not updating area A, both points h and l remain in A. As

B > l then even after updating area B, the condition B > l remains. We also know

that there is no point in any area of A\ {A} that is higher than point h. Therefore

without updating A itself this area cannot change its status to either maximal or

dominated among A, as needed for an update solution by Remark 4.5. Hence {A}
is a witness set. See Figure 6.6.

x

y

A

h

B

l

Figure 6.6: Case B > l

Case 2: B 6> l (but still b > l). With a similar reasoning as for Case 1, by only

updating areas in A \ {A,B} the points b ∈ B and l ∈ A remain such that b > l.

38



Chapter 6 6.4. Online Problem

Therefore, as point h ∈ A also remains, at least A or B has to be updated to change

the status of area A to either maximal or dominated among A. Hence {A,B} is a

witness set. See Figure 6.7.
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Figure 6.7: Case b > l

We note a general property for dominated among A areas which we will use later

on:

Lemma 6.7. Let area A be dominated among A and let B be another area. If there

exists a point a ∈ A such that a > B then area B is also dominated among A.

Proof. Since A is dominated among A then there exists an area C ∈ A \ {A} with

C > A and as a ∈ A then also C > a. As C > a and a > B then it must follow

C > B. Hence B is also dominated among A.

Lemma 4 and Lemma 5 in [6] state that if there are no partly among A areas

but there exists a dependent among A area, then there exists a witness set of size

at most 3. This is equivalent to our Lemma 6.8 and Lemma 6.9 respectively:

Lemma 6.8. A horizontal or vertical line can split at most one area that is maximal

among A.

Proof. Let l1 be a vertical line with equation x = n and let A1 and A2 be areas

maximal among A. Further let l1 split both areas A1 and A2.

As l1 splits area A1 then there exist points a1 = (ax1 , a
y
1) and b1 = (bx1 , b

y
1) such

that a1, b1 ∈ A1 where ax1 ≥ n > bx1 and ay1 = by1. It also follows that ax1 > bx1 .

As l1 also splits area A2, with the similar reasoning as for A1, there exist points

a2 = (ax2 , a
y
2) and b2 = (bx2 , b

y
2) such that a2, b2 ∈ A2 where ax2 ≥ n > bx2 and ay2 = by2.

It also follows ax2 > bx2 .

We now have that either ay1 ≥ ay2 = by2 or ay2 ≥ ay1 = by1, which follows that either

ay1 ≥ by2 or ay2 ≥ by1.
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Furthermore as ax1 ≥ n > bx1 and ax2 ≥ n > bx2 then also ax2 > bx1 and ax1 > bx2 .

With the above properties we have that either ax1 > bx2 ∧ ay1 ≥ by2 or ax2 >

bx1 ∧ ay2 ≥ by1 must be true. Therefore either a1 > b2 or a2 > b1. This is a

contradiction as both areas A1 and A2 are maximal among A and therefore there

must be no point in areas A \ {A1} higher than b1, and no point in areas A \ {A2}
higher than b2. As such if l splits A1 and A2, one of them cannot be maximal among

A.

In a similar way if l2 is a horizontal line with equation y = m and splits two

areas A1 and A2, then there exist points a1, b1 ∈ A1 and a2, b2 ∈ A2 such that

ax1 ≥ ax2 = bx2 or ax2 ≥ ax1 = bx1 holds. As a1, a2 would lie on or above of l2 and b1, b2

below l2, then it follows that either a2 > b1 or a1 > b2. Therefore A1 and A2 cannot

be both maximal among A.

Lemma 6.9. If there are no partly areas but there exists a dependent area among

A, then there exists a witness set of size at most 3.

Proof. Assume there are no partly areas among A and let Ai be a dependent area

amongA such that no other dependent area contains a point higher than Ai. Further

let hi = (hxi , h
y
i ) be the point made by the upper limits of the coordinate sets that

make the direct product for Ai. We note that either hi ∈ Ai (upper limits for both

x and y are closed) or hi /∈ Ai (upper limit for either x or y is open). Further let l1

be the vertical line starting at hi and going upwards, and l2 be the horizontal line

starting at hi and going to the right. Let Q be the top right quadrant of l1 and l2

including these lines. Further if hi ∈ Ai then let hi /∈ Q, and if hi /∈ Ai then let

hi ∈ Q. In both cases Q contains all the points that are higher than Ai. Also let Q

denote the complement of Q. We show later in Figure 6.8 examples. The bounds

of Q (lines l1 and l2) are shown with dotted lines, and non-inclusive limits of an

uncertainty area are shown with dashed lines.

Since Ai is dependent among A, there exists an area Aj ∈ A\ {Ai} with a point

aj ∈ Aj such that aj > Ai. If this was not the case, then Ai would be partly among

A as it would contain a point for which there does not exist a point in some other

area such that is higher. As all points that are higher than Ai are inside Q, then

aj ∈ Q and hence Aj ∩Q 6= ∅.
Furthermore there must exist another point bj ∈ Aj such that bj 6> Ai, as

otherwise Aj > Ai and therefore Ai would be dominated instead of dependent

among A. Hence also Aj ∩Q 6= ∅.
We show examples of Ai and Aj in Figure 6.8:
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Figure 6.8: Construction of Q with either hi ∈ Ai or hi /∈ Ai

By our assumptions there are no other dependent among A areas with a point

higher than Ai, and also no partly among A areas. Furthermore an area with a

point in Q cannot be dominated among A as, by Lemma 6.7, this would make Ai

also dominated instead of dependent among A. Hence every area in A that contains

a point in Q must be maximal among A. Therefore Aj is maximal among A.

In order to solve the problem we have to determine about area Ai, i.e. we have to

perform updates until area Ai changes its status from dependent to either maximal

or dominated among A, as by Remark 4.5. We note that Ai can only change its

status by updating Ai itself or an area which intersects with Q.

We first show the witness set for the special case where Aj ∩ Q = {hi}. In this

case we note that hi ∈ Ai as otherwise, by our construction of Q, we would have

hi ∈ Q instead of hi ∈ Q. So we have that hi ∈ Ai ∩ Aj. As hi ∈ Aj and Aj is

maximal among A, there does not exist a point in any area of A\{Aj} that is higher

than hi. Therefore no other area in A \ {Aj} can intersect with Q and we have the

witness set {Ai, Aj}. See Figure 6.9.
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Figure 6.9: Case Aj ∩Q = {hi}
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We now look at the case Aj ∩Q 6= {hi}. As Aj ∩Q 6= {hi} then Aj ∩Q contains

a point cj = (cxj , c
y
j ) such that cj 6= hi. Therefore, by our construction of Q, either

cxj < hxi or cyj < hyi and hence, by Definition 6.5, Aj is split by either l1 or l2.

Without loss of generality lets assume cxj < hxi and Aj is split by l1. Further let Ak

be another area with a point in Q. With the similar arguments for Aj we have that

Ak ∩Q 6= ∅, Ak ∩Q 6= ∅ and Ak contains a point ck = (cxk, c
y
k) such that ck 6= hi and

either cxk < hxi or cyk < hyi . As Aj is maximal among A and split by l1, by Lemma

6.8, then cyk < hyi and Ak must be split by l2. So no other area in A \ {Aj, Ak} can

intersect with Q and in this case we have the witness set {Ai, Aj, Ak}. If Ak does

not exist then at least Aj exists and {Ai, Aj} is a witness set. See Figure 6.10.
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Figure 6.10: Case Aj ∩Q 6= {hi}

We note that the proofs of the above Lemmas required a somewhat different

approach than the ones in [6] because of the different uncertainty area restrictions.

For example in [6] it was stated that a line l splits an area A if A−l is not connected,

which we had to redefine in Definition 6.5 as the MPDP problem allows disconnected

areas.

Following Lemma 6.6 and Lemma 6.9 we have:

Remark 6.10. Algorithm 2 is 3-update competitive for the MPDP online problem.

6.4.2 Lower Bound

We now argue that there does not exist a k-update competitive algorithm for k < 3

in Lemma 6.11. The reasoning of the proof is again taken from [6] which also applies

for MPDP.

Lemma 6.11. There exist configurations for the MPDP problem such that every

deterministic online update strategy performs three times as many updates as needed.
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Proof. First we construct a gadget that contains three uncertainty areas A1, A2 and

A3 as shown in Figure 6.11. We can see that areas A1 and A3 are both maximal

among A, but updates are needed to determine about area A2. Note that this figure

demonstrates an instance with no partly among A areas, but with one dependent

area (A2) and is therefore an example of Lemma 6.9. We show with Figures 6.12,

6.13 and 6.14 that for any update strategy S there exists a configuration of precise

location points for these three areas such that S requires three updates where only

one was needed. Depending on the order in which S chooses to update areas, a

precise location point p1 ∈ A1 or p2 ∈ A2 or p3 ∈ A3 is given as follows:

• If S updates A1 first, we choose either Figure 6.12 or Figure 6.14 to be the

input, and in both cases further updates are needed. If S updates A2 next, we

give Figure 6.12 to be the input. In this case S is forced to further update A3,

as area A2 does not change its status to either maximal or dominated among

A after the updates of areas A1 and A2. However the update of area A3 on its

own from Figure 6.12 is enough to change the status of area A2 to dominated

among A. Similarly updating first area A1 and then area A3, Figure 6.14 is

given to S to be the input, S must further update area A2 and the single

update of A2 would have been enough to determine about A2.

• If S updates A2 first, we choose either Figure 6.12 or Figure 6.13 to be the

input, and in both cases further updates are needed. If S updates A1 next, we

give Figure 6.12 to be the input. In this case S is forced to further update A3,

as area A2 does not change its status to either maximal or dominated among

A after the updates of areas A2 and A1. However the update of area A3 on its

own from Figure 6.12 is enough to change the status of area A2 to dominated

among A. Similarly updating first area A2 and then area A3, Figure 6.13 is

given to S to be the input, S must further update area A1 and the single

update of A1 would have been enough to determine about A2.

• If S updates A3 first, we choose either Figure 6.13 or Figure 6.14 to be the

input, and in both cases further updates are needed. If S updates A1 next, we

give Figure 6.14 to be the input. In this case S is forced to further update A2,

as area A2 does not change its status to either maximal or dominated among

A after the updates of areas A3 and A1. However the update of area A2 on its

own from Figure 6.14 is enough to change the status of area A2 to dominated

among A. Similarly updating first area A3 and then area A2, Figure 6.13 is

given to S to be the input, S must further update area A1 and the single

update of A1 would have been enough to determine about A2.

43



Chapter 6 6.4. Online Problem

A

1

3

A

A2

x

y

Figure 6.11: Lower Bound - Main Configuration

A

p3

p1

1

3

A

A2

p
2

x

y

Figure 6.12: Config. 1

A

1

3

A

A2

p
2

x

y

p3

1p

Figure 6.13: Config. 2

A

1

3

A

A2

x

y

p3

2
p

p1

Figure 6.14: Config. 3

To show the lower bound we simply construct multiple gadgets where each is

placed below and to the right of the previous one (see Figure 6.15). This guarantees

that no area from one gadget contains a point higher than a point from an area

of some other gadget. Hence, for each gadget, OPT performs 1 update and any

deterministic online algorithm performs 3 updates. Therefore for j gadgets of this

construction OPT = j and any algorithm is 3j. This concludes our proof that there

does not exist a k-update competitive algorithm for the MPDP problem with k < 3.

Figure 6.15: Placement of gadgets
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6.4.3 Conclusion

Following Remark 6.10 and Lemma 6.11, we summarize our results for this section

with Theorem 6.12, which is equivalent to Theorem 1 by Bruce et al. [6]:

Theorem 6.12. The witness algorithm for the online problem of MPDP is 3-update

competitive. Furthermore, this is the best possible.

6.5 Verification Problem

6.5.1 Introduction

In this section we look at the verification setting of the maximal points problem

under uncertainty, with the direct products restriction in place as proposed in Sec-

tion 6.1. An instance of the Maximal Point Direct Products Verification problem

(MPDPV for short) is the pair (P,A), defined by combining Definition 4.2 (MPV)

and Definition 6.1 (MPDP). In other words P is a set of points in the plane and A
is a set of uncertainty areas for P , such that each uncertainty area consist only of

points produced by the direct product of a set of x and a set of y coordinate values.

The aim is to identify a minimal set of areas in A, that when updated verifies the

maximal points among P as maximal based on the information of A and the results

of the updates (optimal update solution). As the precise locations are also directly

given, in contrast with the online setting, we note that the algorithm can look up

at the effect of including or not including a particular area to be part of an update

solution.

We will present a polynomial time algorithm that finds a solution for MPDPV

and argue about its correctness and time complexity. As shown earlier for Theorem

5.8 in Chapter 5 the MPV problem is NP-Hard, even if the uncertainty areas contain

at most two points, and the proof for the NP-Hardness takes advantage of the dis-

connectivity of the areas. So it is interesting that them MPDPV problem allows

disconnected areas and there exists a polynomial time algorithm for it.

The algorithm runs in two phases summarized as follows. In the first phase the

algorithm collects and simulates updates under some criteria, which we will analyse

later on, hence altering the set A in the process. In this phase the algorithm further

collects a series of choices between updates, where all choices are such that every

update solution would need to satisfy. The second phase then establishes a minimal

set of areas that need to be updated in order to satisfy all the choices collected from

the first phase. Thus, the set of updates performed in the first phase along with a

minimal set of updates that satisfies all the choices, together form a solution for the

MPDPV problem.
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We will show that after Phase 2 of the MPDPV algorithm (Algorithm 4) has

finished execution, each uncertainty area has status of either maximal or dominated

among A. Hence, by Remark 4.5, the set of all the updates performed is indeed an

update solution. Furthermore this set of updates is of minimal size and therefore

solves the MPDPV problem. Finally we show that all steps of the algorithm can be

done in polynomial time and hence satisfy Theorem 6.38.

As defined earlier in Chapter 4 with Definition 4.4 the uncertainty areas are

classified into maximal, partly, dependent and dominated among A, as also, by

Definition 4.1, their precise location point is classified as either maximal or non-

maximal among P . Furthermore, as A changes during the process of the algorithm

when updates are simulated, the classification of the uncertainty areas changes. To

emphasize this we combine the two classifications into one, for example an uncer-

tainty area A is D-M if A is dependent among the current set A and its precise

location p ∈ A is maximal among P . In the same way we have the following types

for area A: D-N if A is dependent among A and p is non-maximal among P , P-M

if A is partly among A and p is maximal among P , and P-N if A is partly among

A and p is non-maximal among P . Note that there are also areas of type M-M

(A maximal among A, p maximal among P ) and N-N (A dominated among A, p

non-maximal among P ) which the algorithm does not deal with. This is because,

as derived by Remark 4.5, when the current state of A consists only of areas that

are either maximal or dominated among A, no further updates are needed to solve

a maximal point under uncertainty problem. Therefore we concentrate on how each

of the types D-M/D-N/P-M/P-N is dealt by the algorithm.

We also define the self determined areas. A self determined uncertainty area

A ∈ A belongs to one of the four types D-M/D-N/P-M/P-N but it also has the

following property which renders it essential to be included in every update solution.

If A′ is the set of uncertainty areas after updating every area in A \ {A} and there

exists an area B ∈ A′ which is neither maximal nor dominated among A′ then A

must be inside every update solution. Formally:

Definition 6.13. Area A is self determined if A \ {A} is not an update solution.

Lemma 6.14. Let A ∈ A be an uncertainty area. If A \ {A} is not an update

solution, then every update solution must contain A.

Proof. This is quite easy to see, however we give a more detailed analysis.

Let A \ {A} not be an update solution and lets assume there exists an update

solution that does not contain A.

By updating A\{A} all areas except A become trivial. Area A cannot be trivial

as well since then, after updating A \ {A}, there would not be any uncertainty in
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A and the set of all maximal points would obviously be computable; but by our

assumption A \ {A} is not an update solution.

Since A \ {A} is not an update solution, by the reasoning of Remark 4.5, after

updating A \ {A} there exists an area that is either partly or dependent among A.

So lets assume that A \ {A} have been updated.

No area in A\{A} can be partly among A since, by Definition 6.2, a partly area

contains at least two points and therefore only A can be partly. Area A cannot be

dependent among A since there must be another area in A\{A} containing a point

higher and a point not higher than A, but they are all now trivial. So we have the

two cases as follows:

Case 1. Area A is partly and hence A itself must be updated to change its status

to either maximal or non-maximal among A. Therefore there does not exist an

update solution that does not contain A, contradiction.

Case 2. There exists area B ∈ A \ {A} which is dependent among A. As B

is dependent there exists an area in A \ {B} with a point higher and a point not

higher than B (also no area currently in A is higher than B as it would be dominated

instead of dependent among A). Since A is now the only non-trivial area in A then

A is the one with this property. So without updating A area B cannot change its

status to either maximal or non-maximal among A. Therefore there does not exist

an update solution that does not contain A, contradiction.

The outline of the algorithm is as follows:
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Algorithm 3 MPDPV algorithm - Phase 1

1: Initialize: Problem instance (P,A)
2: Step 1. Update all self determined areas;
3: Classify all areas to D-M/D-N/P-M/P-N;
4: for all i such that Ai is a D-N area do
5: if no other D-N area has precise location higher than Ai then
6: if there exists exactly one area B with precise location higher than Ai

then
7: Step 2. Update area B;
8: Classify all areas to D-M/D-N/P-M/P-N;
9: else (there exist exactly two areas B and C with precise location higher

than Ai)
10: Step 3. Record choice: B or C;
11: end if
12: end if
13: end for
14: for all i such that Ai is a P-M area do
15: if there exists exactly one area B with a point higher than a point in Ai

then
16: Step 4. Record choice: Ai or B;
17: else (there exist exactly two areas B and C that contain a point higher than

a point in Ai)
18: Step 5. Record choice: Ai or {B,C};
19: end if
20: end for

return The modified instance (P,A′), the set of areas updated and the set of
choices.

Algorithm 4 MPDPV algorithm - Phase 2

1: Initialize: From Phase 1 - Problem instance (P,A′), set of areas updated and
set of choices;

2: Step 1. Sort all areas found in the choices by the x increasing order of their
precise location;

3: Step 2. Link all recorded choices in chains;
4: Step 3. Update the second and every other area in every chain;

return The set of all areas updated.

6.5.2 Algorithm Phase 1

Overview.

The algorithm first establishes a set of updates that have to be in every update

solution. Then a series of choices between updates are encountered in the following

way. If out of the choices there is a clear better one, i.e. there exist an update which

yields at least as much new information as the other matched choices, then this

update is performed and otherwise the choice between some updates is recorded.
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So the first phase simulates some updates and hence A changes accordingly during

the process. All these updates and choices, along with the updated instance of the

problem, are then going to be used for Phase 2.

Step 1 - Self determined areas.

For the first step we establish a set of updates that has to be a subset of every

update solution. Let A ∈ A be an area such that after updating every area in A
except A does not solve the problem. Formally, A \ {A} is not an update solution

and so any update solution must contain A as by Lemma 6.14. The update of all

such areas in this step is simulated by the algorithm, and therefore the set

A is now modified with the updated data. As by Lemma 6.14, and as an effect of

the action performed we have Remark 6.15 and Lemma 6.16:

Remark 6.15. All updates performed in Step 1 are needed in every update solution.

Lemma 6.16. After the updates of Step 1, A does not contain any D-M or any

P-N areas.

Proof. Let’s assume there exists an area A1 such that it is D-M after Step 1. As

A1 is dependent among A, there exists an area A2 ∈ A \ {A1} with a point q2 ∈ A2

such that q2 > A1. As the precise location point p1 ∈ A1 is maximal among P , then

the precise location p2 ∈ A2 is such that p2 6> p1, and we note p2 6= q2. Without

updating A2, though, area A1 cannot be identified as maximal among A since q2

remains in A2 and q2 > A1. So A\ {A2} is not an update solution and therefore A2

must have been updated by Step 1. This is a contradiction since A2 is non trivial

as q2, p2 ∈ A2 and p2 6= q2.

Let’s assume that after Step 1 there exists a P-N area A1. As A1 is partly among

A it must contain a point h1 such that no point in any other area of A \ {A1} is

higher than h1. Furthermore the precise location p1 ∈ A1 is non-maximal among P

and therefore p1 6= h1. Without updating A1 itself, this area cannot be identified as

dominated among A, as point h1 would remain in A1. So A\{A1} is not an update

solution and therefore A1 must have been updated by Step 1. This is a contradiction

since A1 is non trivial as h1, p1 ∈ A1 and p1 6= h1.

Steps 2 and 3 - D-N areas.

In the second and third steps we focus on dependent among A areas with precise

location non-maximal among P (D-N). Some D-N areas might have already changed

their status after Step 1. We now focus on the remaining D-N areas. Let A1 be a

D-N area after Step 1 is performed. As A1 is D-N then its precise location p1 is not

maximal among P and therefore there exists p2 ∈ P such that p2 > p1. Note that
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there may be another D-N area with precise location higher than A1. We will only

take action when this is not the case and we will show later on with Lemma 6.25

why this suffices for not leaving any D-N areas. At this stage there exist either one

or two areas with precise location higher than A1. Formally:

Lemma 6.17. Let Ai be a D-N area after the updates of Step 1, such that there

does not exist another D-N area with precise location higher than Ai. Then there

exist either one or two areas with precise location higher than Ai.

Proof. Recall the restriction for the uncertainty areas. Area Ai is made by the direct

product of a set Ax
i and a set Ay

i .

Let hi = (hx, hy) be the point such that hx is the upper limit of Ax
i and hy is the

upper limit of Ay
i . We note point hi may or may not be in Ai, depending on if both

upper limits of Ax
i and Ay

i are inclusive or not, and hi is higher than all other points

in Ai. Further Ai does not contain a point that is maximal among P as otherwise

the instance cannot be solved without updating Ai and hence Ai would have been

updated in Step 1.

Case hi ∈ Ai: As Ai does not contain a point that is maximal among P then hi

is also not maximal among P . As hi is not maximal among P there exists a pj in P

that is higher than hi and also pj > Ai.

Case hi /∈ Ai: As hi is made by the upper limits of Ax
i and Ay

i , either the upper

limit of Ax
i is not in Ax

i or the upper limit of Ay
i is not in Ay

i , or both limits are

not in their sets. As Ai does not contain any point that is maximal among P , there

must exist a point pj in P that is higher or equal than hi. As pj ≥ hi and hi /∈ Ai

then also pj > Ai.

By the condition of this lemma area Aj (the area of which pj is the precise

location), cannot be a D-N area. Furthermore it cannot be a N-N area as pj would

be a non-maximal point with respect to the current uncertain information and hence

Ai would also be N-N instead of D-N since pj > Ai. Also Aj cannot be P-N area

by Lemma 6.16. So Aj is either an M-M, P-M or D-M area. In all cases point pj is

maximal among P .

As area Ai is dependent among A, area Aj must contain a point q′j that is

not higher than Ai. We now choose a point qj ∈ Aj with either qj = (pxj , q
′y
j ) or

qj = (q′xj , p
y
j ) such that qj 6> Ai and qj < pj (see Figure 6.16). As Aj is a product of

possible x and y values point qj exists in Aj. We note that as qj 6> Ai, it is also not

higher than hi. Figure 6.16 below shows these properties.
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Let ln1 and ln2 be horizontal and vertical lines respectively such that they cross

at point hi. The two points pj and qj are separated by either ln1 or ln2 or both.

Due to symmetry, without loss of generality lets assume they are separated by ln1

(the horizontal line through hi).

Let’s assume there exists another area Ak such that pk is also higher than Ai.

With the reasoning as for Aj, point pk is maximal among P and there exists qk in

Ak such that qk 6> Ai and qk < pk.

Further let’s assume pk and qk are also separated by ln1. Then either pxk ≥ pxj ≥
qxj or pxj ≥ pxk ≥ qxk . As pk and pj lie on or above ln1 and qk and qj lie below ln1 we

have that either pk > qj or pj > qk. Without loss of generality let pk > qj, see Figure

6.17. So area Aj contains a point that is dominated by a point in P from another

area, while its precise location is maximal among P . Therefore without updating

Aj itself, this area cannot change status to maximal among A. In other words area

Aj is self determined and would have been updated in Step 1 becoming trivial.
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Figure 6.17: Example of D-N area Ai. Step 1 of the algorithm would update area
Aj

So qk and pk cannot be separated by ln1 and must therefore be separated by

ln2. Following the same argument, there cannot be any further areas with precise

location above hi.
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Figure 6.18: D-N area Ai after Step 1 of the algorithm where pj ∈ Aj and pk ∈ Ak

such that pj, pk > Ai

Hence there exist at most two areas with precise location higher than Ai, one

separated by a horizontal line crossing hi and another separated by a vertical line

crossing hi. Figure 6.18 shows the formation.

We now give the definition of neighbouring areas and note a property from the

proof of Lemma 6.17 in Remark 6.19:

Definition 6.18. Let A1 and A2 be two uncertainty areas with precise location points

p1 ∈ A1 and p2 ∈ A2. Further let l be the line starting at p1 and ending at p2. For

every point q ∈ l, if there does not exist a precise location point p ∈ P \{p1, p2} such

that p ≥ q then we say A1 and A2 are neighbouring areas.

Remark 6.19. Let A1 be a D-N area such that there does not exist another D-N

area with precise location higher than A1, but there exist two areas A2 and A3 with

precise location higher than A1. Then areas A2 and A3 are neighbouring areas and

furthermore have precise locations maximal among P .

Following Lemma 6.17, we separate the cases where there is one such area (Step

2) and where there are two such areas (Step 3).

Step 2. Let A1 be a D-N area such that there exists exactly one area A2 with

precise location p2 such that p2 > A1. As A1 is dependent among A, then A2 must

contain at least one point that is not higher than A1. As p2 is the only point in

P that is higher than A1, without updating neither A1 nor A2, area A2 remains

dependent among A. So any update solution must contain at least either A1 or A2.

The action the algorithm takes here is to update A2, and therefore set A is

now modified with the updated data.

The definition of a choice that will be recorded by Step 3,4 and 5 of the algorithm

is as follows:

Definition 6.20. A choice is a pair of sets of areas. We say a set of updates S

satisfies a choice C = (S1, S2) if S contains either S1 or S2. We distinguish between

52



Chapter 6 6.5. Verification Problem

two types of choices: A choice where each set is of size one is called type A, and

where one set has size one and the other size two is called type B.

Step 3. Let A1 be a D-N area such that there exist exactly two areas (namely

A2 and A3) with precise location higher than A1. Similar to the arguments in Step

2 every update solution must contain at least one of the three areas A1, A2 and A3.

At this stage no updates are simulated but instead the algorithm records the

choice between A2 and A3 (type A choice). We will use Lemma 6.21 and Lemma

6.22 to justify the actions taken for Step 2 and Step 3.

Lemma 6.21. Let U be an update solution for an instance of the MPDPV problem

with A1 ∈ U , and let area A1 be dominated among A after the updates of U \ {A1}.
Then U \ {A1} is also an update solution.

Proof. Let U \{A1} not be update solution and let this set of updates be performed

on the instance of the problem. As this is not an update solution there must exist

now an area A2 that is neither maximal nor dominated among A (we note that it

is other than A1 as A1 is dominated among A). Also, as U is an update solution

and U \{A1} is not, the further update of A1 must change the status of A2 to either

maximal or dominated among A. Therefore there must exist a point a1 ∈ A1 and a

point a2 ∈ A2 such that a1 > a2.

As A1 is dominated among A and as a1 ∈ A1, a2 ∈ A2 with a1 > a2, then there

exists an area A3 ∈ A \ {A1, A2} such that A3 > A1 and therefore also A3 > a1.

Furthermore it must follow that A3 > a2, since A3 > a1 > a2. As such, area A2

cannot change status to maximal amongA after updating A1, since A3 > a1 remains.

Hence A2 must change to dominated among A after updating A1. Therefore the

precise location point p1 ∈ A1 is higher than A2 whereas A1 6> A2.

As area A1 is dominated amongA with p1 ∈ A1 and p1 > A2 then, by Lemma 6.7,

area A2 must already be dominated among A, before updating A1. A contradiction.

Lemma 6.22. Let A1 be a D-N area and let A2 be another area with precise location

point p2 such that p2 > A1. If there exists a set of areas U that is an update solution

with A1 ∈ U then (U
⋃
{A2}) \ {A1} is also an update solution.

Proof. Since U is an update solution the set U
⋃
{A2} is also an update solution. As

A1 ∈ U , it follows that A1 ∈ U
⋃
{A2}. Since p2 > A1 and p2 is the precise location

of A2, after updating area A2, area A1 will have the status of dominated among A.

This is also the case after updating (U
⋃
{A2})\{A1} since A2 ∈ (U

⋃
{A2})\{A1}.

Finally since U
⋃
{A2} is an update solution, A1 ∈ U

⋃
{A2} and A1 is dominated

among A after updating (U
⋃
{A2}) \ {A1}, by Lemma 6.21, (U

⋃
{A2}) \ {A1} is

also an update solution.
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For Step 2, as by Lemma 6.22, an update solution containing A1 can be modified

by replacing A1 with A2 with the resultant set still being an update solution. The

size does not increase since we are replacing one area with another, and so the update

of A2 is not in every update solution but there must be an optimal update solution

that contains A2. For Step 3, as by Lemma 6.22, an update solution containing A1

can be modified by replacing A1 with either A2 or A3 with the resultant set still

being an update solution. The size again does not increase and so there must be an

optimal update solution that contains either A2 or A3. We give our conclusions for

Step 2 and 3 in Remark 6.23, Remark 6.24 and Lemma 6.25:

Remark 6.23. There exists an optimal update solution that contains the updates of

Step 2.

Remark 6.24. Every update solution must satisfy all choices collected by Step 3.

Lemma 6.25. After the updates of Step 2 and the updates of a set that satisfies all

recorded choices of Step 3, a D-N area does not exist.

Proof. Let’s assume there exists an area A1 such that it is D-N after the updates of

Step 2 and after the updates of a set that satisfies the choices of Step 3.

If A1 contains a point a that is maximal among P then A \ {A1} would not be

an update solution and therefore, by Lemma 6.14, A1 would be updated in Step 1,

become trivial and no longer have a. So it does not contain a point that is maximal

among P , and we now have two cases: either there does not exist another D-N area

with precise location higher than A1 (Case 1) or there exists one (Case 2).

Case 1: As by Lemma 6.17 there exists either one or two areas with precise

location higher than A1. If there is one then Step 2 would update an area A2 with

precise location p2 such that p2 > A1 and therefore A1 would change status to N-N.

So there must exist two areas with precise location higher than A1. As the choices

of Step 3 are satisfied then again an update must have been made on at least one of

the two areas with precise location higher than A1, which again changes the status

of A1 to N-N. So A1 cannot be dependent among A, contradiction.

Case 2: Out of all D-N areas with precise location higher than A1, there must

exist an area A2 with precise location p2 such that for itself there does not exist a

D-N areas with precise location higher than A2. Hence A2 falls to Case 1 and has

changed status to dominated among A. As area A2 is dominated among A with

p2 ∈ A2 and p2 > A1 then, by Lemma 6.7, area A1 must be already be dominated

instead of dependent among A. A contradiction.
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Steps 4 and 5 - P-M areas.

In the fourth and fifth steps the remaining partly among A areas with precise

location maximal among P (P-M) are considered. After Step 3 for each P-M area

Ai there exist either one or two areas that contain a point higher than a point in

Ai, formally:

Lemma 6.26. Let Ai be a P-M area. There exist either one or two areas that

contain a point higher than a point in Ai.

Proof. Recall the restriction for the uncertainty areas. Area Ai is made by the direct

product of a set Ax
i and a set Ay

i .

Let li = (lx, ly) be the point such that lx is the lower limit of Ax
i and ly is the

lower limit of Ay
i . We note point li may or may not be in Ai, depending on if both

lower limits of Ax
i and Ay

i are inclusive or not, and it is dominated by all other points

in Ai. Formally if li ∈ Ai then qi ≥ li for every point qi ∈ Ai, and if li /∈ Ai then

qi > li for every point qi ∈ Ai.

Furthermore each point in Ai is maximal among P as otherwise the instance

cannot be solved without updating Ai and hence Ai would have been updated in

Step 1.

Also as Ai is partly among A there must exist an area Aj with a point q′j ∈ Aj

such that q′j > qi. As each point in Ai is maximal among P , the precise location

pj ∈ Aj is such that pj 6> qi. We now choose a point qj ∈ Aj with qj = (pxj , q
′y
j )

if qyi > pyj , or with qj = (q′xj , p
y
j ) if qyi > pyj , and therefore qj > qi and qj > pj (see

Figure 6.19). As Aj is a product of possible x and y values point qj exists in Aj.

We note that also qj > li as qi ≥ li. The figure below shows these properties.
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Figure 6.19: P-M area Ai with qj = (pxj , q
′y
j ) or qj = (q′xj , p

y
j )

Area Aj cannot be N-N as it contains a point higher than a point in Ai. If Aj

was N-N then there must have been a point in P higher than Aj, which in turn

would also be higher than a point in Ai and contradict the fact that each point in

Ai is maximal among P . Furthermore by Lemma 6.25 it cannot be D-N after the

updates of Step 2 and the set of updates that satisfy the choices of Step 3. Also Aj

cannot be D-M or P-N as by Lemma 6.16 after the updates of Step 1 there are no
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D-M and P-N areas left. So Aj is either a M-M or P-M area. In all cases point pj

is maximal among P .

In both cases li ∈ Ai and li /∈ Ai we have that pj 6> Ai, as Ai only contains

points that are maximal among P .

Case li ∈ Ai: As pj 6> Ai then also pj 6> li.

Case li /∈ Ai: As li is made by the lower limits of Ax
i and Ay

i , either the lower

limit of Ax
i is not in Ax

i or the lower limit of Ay
i is not in Ay

i , or both limits are not in

their sets. As pj 6> Ai, if pxj > lxi then pyj ≤ lyi and if pyj > lyi then pxj ≤ lxi . Otherwise

pj 6> li.

Let ln1 and ln2 be horizontal and vertical lines respectively such that they cross

at point li. The two points pj and qj are separated by either ln1 or ln2. Due to

symmetry, without loss of generality lets assume they are separated by ln1 (the

horizontal line through li).

Let’s assume there exists another area Ak such that it contains a point qk with

qk > qi for some qi ∈ Ai. With the reasoning as for Aj, we have qk > pk and pk 6> Ai.

Further let’s assume pk and qk are also separated by ln1. Then either pxk ≥ qxj ≥
pxj or pxj ≥ qxk ≥ pxk. As pk, pj lie below ln1 (or on ln1 for case li /∈ Ai) and qk, qj

lie above ln1 (or on ln1 for case li ∈ Ai) we have that either qk > pj or qj > pk.

Without loss of generality let qk > pj, see Figure 6.20. So although area Aj has its

precise location maximal among P , without updating Ak, area Aj cannot change

status to maximal among A. In other words area Ak is self determined and would

have been updated in Step 1 becoming trivial.
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Figure 6.20: Example of P-M area Ai. Step 1 of the algorithm would update Ak

So qk and pk cannot be separated by ln1 and must therefore be separated by ln2.

Following the same argument, there cannot be any further areas containing a point

higher than a point in Ai.
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Figure 6.21: P-M area Ai after Step 1 of the algorithm where qj ∈ Aj and qk ∈ Ak

such that qj, qk > qi

Hence there exist at most two areas with precise location higher than Ai, one

separated by a horizontal line crossing hi and another separated by a vertical line

crossing hi. Figure 6.21 shows the formation.

By Lemma 6.26, at this point, if A is a P-M area there exist either one or

two areas that contain a point higher than a point in A. Furthermore the precise

locations of those areas are not higher than any point in A (as A \ A would not be

an update solution and A would be updated by Step 1). Again we separate these

cases accordingly (Step 4 for one area and Step 5 for two areas.)

Step 4. Let A1 be a P-M area such that there exists exactly one area, namely

A2, containing a point higher than a point in A1. As the precise location of A2 is not

higher than any point in A1, updating A2 will change the status of A1 to maximal

among A. Furthermore by updating A1 this is also the case as there is no point

higher than the precise location of A1. As A2 contains at least one point higher

than a point in A1, without updating neither A1 nor A2, area A1 will remain partly

among A and hence every update solution must contain at least one of the two.

At this stage an update cannot be simulated and therefore the algorithm records

the choice between A1 and A2 (type A choice).

Step 5. We now consider two areas, namely A2 and A3, where each contains a

point higher than a point of the P-M area A1. With a similar reasoning as in Step

4 we have that without updating neither A1 nor both A2 and A3, area A1 remains

partly among A and so every update solution must contain at least either A1 or

both A2 and A3. Again an update cannot be simulated and therefore the algorithm

records the choice between area A1 and the set of areas {A2,A3} (type B

choice).

With the collection of all choices of Step 4 and 5 and the proof of Lemma 6.26

we have the following properties in Remark 6.27, Remark 6.28 and Lemma 6.29:
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Remark 6.27. Let A1 be a P-M area. By Lemma 6.26 either there exists one

(namely A2) or two (namely A2 and A3) areas which contain a point higher than a

point in A1. The precise locations of A2 and A3 are maximal among P . Further:

• If there exists one then A1 and A2 are neighbouring areas.

• If there exist two then A1 is the middle neighbouring area of A2 and A3

Remark 6.28. Every update solution must satisfy all choices of Step 4 and Step 5.

Lemma 6.29. A set of updates that satisfies all choices collected by Step 4 and Step

5, does not leave any P-M areas.

Proof. Let’s assume there exists an area A1 ∈ A such that A1 is P-M after satisfying

the choices of Step 4 and 5.

As A1 is partly among A, it contains a point h1 such that no point in any area of

A is higher than h1. Area A1 further contains a point l1 such that some other area

A2 ∈ A \ {A1} contains a point l2 with l2 > l1 (as otherwise A1 would be maximal

instead of partly among A). Therefore l1 6= h1 and hence A1 is not trivial.

We note that the precise location p2 ∈ A2 cannot be higher than any point in

A1, as otherwise A \ {A1} would not be an update solution (since h1 is maximal

among P ) and therefore A1 would have been updated in Step 1 and become trivial.

This follows that p2 6> l1 and as also l2 > l1 then l2 6= p2. Therefore A2 is not trivial

either.

As by Step 4 and 5, either A1 itself must have been updated to satisfy the choice

or all areas with a point higher than a point in A1 must have been updated. As both

A1 and A2 are not trivial then neither has been updated and therefore the choice

was not satisfied, contradiction.

Having analysed all the steps of Phase 1, we now combine the results to show

the desired outcome in Lemma 6.30 and Lemma 6.31:

Lemma 6.30. All updates made in Phase 1 together with a set of updates that

satisfies the choices collected, is an update solution.

Proof. It was shown after updating various areas and satisfying the collected choices

how each of the types D-M/D-N/P-M/P-N can no longer be a type for an uncertainty

area. Specifically: By Lemma 6.16 after Step 1 there are no D-M and no P-N areas

in A. By Lemma 6.25 after the updates of Step 2 and the updates of a set that

satisfies all recorded choices of Step 3, a D-N area does not exist. Finally by Lemma

6.29 a set of updates that satisfies all choices of Step 4 and Step 5 does not leave
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any P-M areas. Therefore only the types M-M and N-N (i.e. either maximal or non-

maximal among A) are left, as required for an update solution stated in Remark

4.5.

Lemma 6.31. All updates made in Phase 1 together with a minimal set of updates

that satisfies all the choices, is an optimal update solution.

Proof. In Lemma 6.30 we have shown that these update indeed form an update

solution and we now argue about an optimal update solution.

At actions which perform updates it has been shown that either the updates

must be in every update solution (Step 1 by Remark 6.15) or the updates must be

in at least one optimal update solution (Step 2 by Remark 6.23). Hence the set of

updates so far is minimal and let U1 be this set.

By Remark 6.24 every update solution must satisfy all choices collected by Step

3, and by Remark 6.28 every update solution must satisfy all choices collected by

Step 4 and Step 5. Let U2 be a set of updates that satisfies all choices collected by

Step 3, Step 4 and Step 5.

So if U2 is of minimal size then, as U1 is also minimal, so must be U1 ∪ U2 and

hence this is an optimal update solution.

We further give the time complexity for the procedure of classifying all uncer-

tainty areas, before we argue about the overall time complexity of Phase 1.

Classifying uncertainty areas to D-M/D-N/P-M/P-N. To classify an un-

certainty area to one of D-M, D-N, P-M and P-N we have to look at its status among

A and the status of its precise location among P separately. We have given details

about the process for both in Section 6.3. By Remark 6.3 the status among P takes

polynomial time and by Remark 6.4 the status among A takes polynomial time. As

both steps of the this process can be done in polynomial time then we note:

Remark 6.32. Classifying uncertainty areas to D-M/D-N/P-M/P-N is done in

polynomial time.

Finally in this subsection we show the time complexity for Phase 1:

Lemma 6.33. Phase 1 runs in polynomial time.

Proof. The time complexity for the various steps of Phase 1 - Algorithm 3 is as

follows:

Classifying areas. By Remark 6.32 the process of classifying uncertainty areas

to D-M/D-N/P-M/P-N is done in polynomial time. In the algorithm this takes place
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once right after Step 1, and furthermore every time after Step 2 occurs. Therefore

this process is done in polynomial time.

Step 1. For Step 1 the algorithm performs updates in case for each uncertainty

area Ai ∈ A the set A \ {Ai} is not an update solution. So it compares Ai, with

precise location point pi, against all pj ∈ P \ pi. This is done in a similar way as

the process of classifying areas, that is find the lowest point li ∈ Ai and the highest

point hi ∈ Ai, determine whether they are inclusive and compare them against point

pj. For example, if the limits are inclusive, there is a match if pj 6> hi and pj > li.

Therefore this process is done in polynomial time.

Step 2 and Step 3. We have a particular D-N area A1 with precise location

p1 ∈ A1. The algorithm needs to find the one or two areas which have their precise

location point higher than A1. This is done in a similar way as the process of

classifying areas, that is find the highest point h1 ∈ A1, determine whether it is

inclusive and compare it against each point pi ∈ P \ {p1}. For example, if the limit

is inclusive, there is a match if pi > h1. Therefore this process is done in polynomial

time.

Step 4 and Step 5. We have a particular P-M area A1. The algorithm needs

to find the one or two areas which contain a point higher than a point in A1. This

is done in a similar way as the process of classifying areas, that is find the lowest

point l1 ∈ A1 and for each Ai ∈ A \ {A1} find the highest point hi ∈ Ai, determine

whether they are inclusive and compare hi against l1. For example, if the limits are

inclusive, there is a match if li > h1. Therefore this process is done in polynomial

time.

As we have shown that each step runs in polynomial time, so must Phase 1

overall.

6.5.3 Algorithm Phase 2

After the completion of Phase 1 a set of updates and a of set choices have been

established. The set of updates so far is minimal and so now in Phase 2, in order to

produce an optimal update solution, we compute a minimal set of updates to satisfy

all the recorded choices. We give a summary for the properties of choices from the

previous subsection:

Remark 6.34. Choices from Phase 1 are such that:

• They are between two sets of areas and either of type A, where each set is of

size one, or of type B, where one set is of size one and the other of size two.

• Choosing neither of the two sets of a choice does not satisfy the choice.

60



Chapter 6 6.5. Verification Problem

• Choosing either of the two sets of a choice is enough to satisfy the choice.

• All have to be satisfied in order to produce an update solution.

• By Remark 6.19 and Remark 6.27

– In a type A choice the two areas involved are neighbouring.

– In a type B choice the singleton is the middle neighbouring area of the

two areas in the other set.

– Each area within each choice has precise location maximal among P .

We define the following to link the choices together. We say two choices overlap

if they share an uncertainty area and we further say a chain is a sequence of choices

{C1, . . . , Ck} if Ci overlaps with Ci+1 for every 1 ≤ i ≤ k− 1 and the sequence is of

maximal length.

The three steps of Phase 2, as seen in Algorithm 4, are as follows:

Step 1. The first step is to sort all areas in the choices by the x value of their

precise location in increasing order.

Step 2. The second step is to link the choices into chains. In Figure 6.22 we

show an example of a chain with the various types of choices recorded by steps of

Phase 1.

Step 3. The third and final step of Phase 2 is to update every other area in

every chain starting with the second.
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step 5, type B

step 4, type A

step 3, type A

step 4, type A

step 5, type B

Figure 6.22: Example of a chain of choices

Assuming Step 1 and Step 2 of Phase 2 have been completed, we give the follow-

ing properties for the resultant chains of choices in Lemma 6.35 and Lemma 6.36,

and thus justify the action taken in Step 3:

Lemma 6.35. By omitting two consecutive areas in a chain, there exists a choice

which remains unsatisfied.

Proof. As by Remark 6.19 and 6.27, the areas in a choice are neighbouring and their

precise locations are maximal among P . Choices are between two (type A) or three

(type B) areas. Furthermore for type B the choice can only be between the middle

area and its two neighbouring side areas.

As such, by sorting these areas (for example by increasing order of the x value

of their precise locations) and then linking them into chains, effectively any two

consecutive areas in the same chain are shared in at least one choice together. So if

two consecutive areas form a type A choice, then clearly by omitting both of them

a choice remains unsatisfied. If two consecutive areas are part of a type B choice,

then that means that one of them is the middle area in the choice and the other

is either the left or right area of the choice. Therefore, again, by omitting both of

them a choice remains unsatisfied.
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Lemma 6.36. By choosing every other area in a chain starting with the second, all

choices in the chain are satisfied with a minimal number of areas.

Proof. By Lemma 6.35, we cannot omit two consecutive areas of a chain. So every

update solution must contain at least all odd or at least all even areas of each chain.

By choosing all even areas in the chain, for every choice in the chain either every

odd or every even area is chosen. For a choice of type A choosing the odd or the

even area satisfies the choice as it is between two areas that are found consecutively

in the chain. For a choice of type B choosing the odd or the even areas again satisfies

the choice as it is between a middle and its two side areas. Hence, by choosing each

even area in a chain, all choices in the chain are satisfied.

As each chain must contain at least two areas (i.e. at least one choice of type

A), choosing all even areas in a chain is also minimal.

We further show the time complexity of Phase 2:

Lemma 6.37. Phase 2 runs in polynomial time.

Proof. The time complexity for Phase 2 - Algorithm 4 is as follows. First the

the areas are are sorted, for example, by increasing order of the x value of their

precise locations. Each choice is then compared against the next one to decide if

the next one should be linked in the same chain or to a new chain. This will take

at most n iterations, in the case there is n number of areas in total for all choices.

Satisfying the chains of choices and returning the collection of every other area in

a chain starting with the second, takes at most n/2 iterations. So Phase 2 runs in

polynomial time.

By combining Lemma 6.31 and Lemma 6.36, the algorithm produces an optimal

update solution. Furthermore, by Lemma 6.33 and Lemma 6.37 the whole process

takes polynomial time and hence Theorem 6.38 is satisfied.

Theorem 6.38. There exists a polynomial time algorithm that solves the MPDPV

problem.
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Maximal Points - Coordinate

Specific Updates

7.1 Introduction

In this chapter we look at the maximal point under uncertainty problem, still consid-

ering only 2-dimensional points, where the update operations are performed slightly

differently. Here the updates do not obtain the precise location of a point but in-

stead updates on an uncertainty area are done separately for each of its coordinates.

We use the same basic notation for maximal points under uncertainty as in Chapter

4, with the difference that an update does not necessarily reduce all the uncertain

information of an area to trivial, but instead it reduces the uncertain information

on the specified coordinate, in this case either x or y. So effectively one update as

performed concerning maximal points in Chapter 4, 5 and 6 here corresponds to two

updates. We look at the problem under the same restriction as by Definition 6.1

in Chapter 6, that is the areas of uncertainty are being restricted to be the direct

product of a set of x and a set of y coordinate values.

Motivation. This setting of coordinate specific updates can be seen as a refine-

ment update operation model. These models are motivated by scenarios of uncer-

tainty problems where, given an uncertainty area for each input item, it is possible

to update only part of it instead of obtaining the precise measurement. This may

be more suitable if, for example, the cost of an update is dependent on the amount

of uncertainty it reduces.

Overview. We will give results for the online problem showing the upper bound

in Subsection 7.2.1 and a matching lower bound in Subsection 7.2.2 (following sim-

ilar techniques as in Subsection 6.4.1 and 6.4.2 respectively), which then brings us

to Theorem 7.8 in Subsection 7.2.3. We further briefly look at the verification prob-

lem is Section 7.3 where we show why our previous algorithm of Section 6.5 does
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not trivially carry over for coordinate specific updates. We denote the Maximal

Point problem with this Coordinate Specific updates setting by MPCS, and for the

Verification problem by MPCSV.

Update operation. Recall (P,A) is an instance of a maximal points under

uncertainty problem where A is the set of uncertainty areas and P is the set of

precise locations. Following Definition 6.1 each uncertainty area Ai ∈ A is produced

by the direct product of a set of x and a set of y coordinate values. Let these

sets for Ai be Ax
i and Ay

i respectively, in other words Ai = {Ax
i × Ay

i }, and let

the precise location pi ∈ P of Ai be pi = (pxi , p
y
i ). For Ai there is the option of

updating either Ax
i or Ay

i . So the effect of updating Ax
i is that area Ai is altered

such that Ai = {pxi ×A
y
i }. Similarly, after updating Ay

i , area Ai is altered such that

Ai = {Ax
i × p

y
i }. Finally after updating both Ax

i and Ay
i , area Ai becomes trivial

with Ai = {pi}.

7.2 Online Problem

7.2.1 Upper Bound

Overview. In this subsection we use the material as in Subsection 6.4.1, that is

the witness algorithm for the maximal points under uncertainty problem (given in

Algorithm 5) and a series of lemmas used to establish its update competitiveness.

To some extend the proofs for the lemmas follow trivially from 6.4.1 and we show

how to extend their use for the coordinate specific updates setting. Lemma 7.2

and 7.5 are used to establish witness sets for the two cases of Algorithm 5 (recall

from Chapter 2 a witness set is a set of updates such that every update solution

must contain at least one of those). Furthermore Lemma 7.3 and Lemma 7.4 are

used to help the proof of Lemma 7.5. Moreover we give again Definition 7.1 for

when a horizontal or vertical line splits an area which is being used for Lemma 7.4

and consequently Lemma 7.5. Since in the MPCS model two different updates on

the same area correspond to one made on the MPDP model in Subsection 6.4.1,

where we presented a 3-update competitive strategy, one can deduce that the same

witness algorithm can be slightly modified and applied to MPCS producing a 6-

update competitive algorithm. We will use similar reasoning and show that actually

a 4-update competitive algorithm is possible.

We begin with restating the witness algorithm:
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Algorithm 5 The witness algorithm for MPCS

1: while there exists at least one partly or one dependent area among A do
2: if there exists a partly area among A then
3: find a witness set W ; update all areas in W
4: else(there must exists a dependent area among A)
5: find a witness set W ; update all areas in W
6: end if
7: end while

The split in these two cases helps to identify witness sets. Note that the idea is

to concentrate first on areas that are partly among A and witness sets concerning

these areas. Only if there are such areas left in the given instance, will a strategy

based on the existence of dependent among A areas be used to find witness sets.

We now simply restate the definition for when a horizontal or vertical line splits

an uncertainty area, which will be used later on for the proof of Lemma 7.5:

Definition 7.1. Let l1 be a vertical line with equation x = n and let l2 be a horizontal

line with equation y = m. Further let A be an uncertainty area. If there exist two

points a = (ax, ay) and b = (bx, by) in A such that ax ≥ n > bx then point b exist

also with ay = by (due to the direct product restriction as in Definition 6.1) and we

say l1 splits A. Similarly if ay ≥ m > by then also ax = bx and we say l2 splits A.

If there exists an area that is partly among A for MPDP then as by Lemma 6.6

there exists a witness set of size at most 2. We extend this to Lemma 7.2 for MPCS:

Lemma 7.2. Let A = {Ax × Ay} be a partly among A area, then there exists a

witness set of size at most 4.

Proof. Since A is partly among A, it must contain points h and l such that: there

does not exist a point in any area of A \ {A} that is higher than h; there exists at

least one point b in an area B ∈ A\ {A} with b > l. Furthermore, potentially point

l ∈ A and area B exist such that B > l. If instead B 6> l then at least b > l with

b ∈ B. We separate the cases for B > l (Case 1) and b > l (Case 2):

Case 1: B > l. By not updating both Ax and Ay, both points h and l remain

in A. As B > l then even after updating area B, the condition B > l remains. We

also know that there is no point in any area of A \ {A} that is higher than point

h. Therefore without updating A itself this area cannot change its status to either

maximal or dominated among A, as needed for an update solution by Remark 4.5.

Hence {Ax, Ay} is a witness set. See Figure 7.1.
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Figure 7.1: Case B > l

Case 2: B 6> l but still b > l. With a similar reasoning as for Case 1, by only

performing updates in areas of A\ {A,B}, the points b ∈ B and l ∈ A remain such

that b > l. Therefore, as point h ∈ A also remains, at least one of {Ax, Ay, Bx, By}
has to be updated to change the status of area A to either maximal or dominated

among A. Hence {Ax, Ay, Bx, By} is a witness set. See Figure 7.2.
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Figure 7.2: Case b > l

We recall a general property for dominated among A areas in Lemma 7.3 which

we will use later on:

Lemma 7.3. Let area A be dominated among A and let B be another area. If there

exists a point a ∈ A such that a > B then area B is also dominated among A.

Proof. Same as for Lemma 6.7.

We also recall a property about uncertainty areas produced from a direct product

in Lemma 7.4:
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Lemma 7.4. A horizontal or vertical line can split at most one area that is maximal

among A.

Proof. Same as for Lemma 6.8.

If there are no partly among A areas but there exists a dependent among A area

then as by Lemma 6.9 there exists a witness set of size at most 3 for MPDP. We

extend this to Lemma 7.5 for MPCS:

Lemma 7.5. If there are no partly areas but there exists a dependent area among

A, then there exists a witness set of size at most 4.

Proof. Assume there are no partly areas among A and let Ai = {Ax
i × Ay

i } be a

dependent area among A such that no other dependent area contains a point higher

than Ai. Further let hi = (hxi , h
y
i ) be the point made by the upper limits of the

coordinate sets that make the direct product for Ai. We note that either hi ∈ Ai

(upper limits for both x and y are closed) or hi /∈ Ai (upper limit for either x or y

is open). Further let l1 be the vertical line starting at hi and going upwards, and l2

be the horizontal line starting at hi and going to the right. Let Q be the top right

quadrant of l1 and l2 including these lines. Further if hi ∈ Ai then let hi /∈ Q, and if

hi /∈ Ai then let hi ∈ Q. In both cases Q contains all the points that are higher than

Ai. Also let Q denote the complement of Q. We show later in Figure 7.3 examples.

The bounds of Q (lines l1 and l2) are shown with dotted lines, and non-inclusive

limits of an uncertainty area are shown with dashed lines.

Since Ai is dependent among A, there exists some other area Aj = {Ax
j × A

y
j}

in A with a point aj ∈ Aj such that aj > Ai. If this was not the case, then Ai

would be partly among A as it would contain a point for which there does not exist

a point in some other area such that is higher. As all points that are higher than

Ai are inside Q, then aj ∈ Q and hence Aj ∩Q 6= ∅.
Furthermore there must exist another point bj ∈ Aj such that bj 6> Ai, as

otherwise Aj > Ai and therefore Ai would be dominated instead of dependent

among A. Hence also Aj ∩Q 6= ∅.
We show examples of Ai and Aj in Figure 7.3:
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Figure 7.3: Construction of Q with either hi ∈ Ai or hi /∈ Ai

By our assumptions there are no other dependent among A areas with a point

higher than Ai, and also no partly among A areas. Furthermore an area with a

point in Q cannot be dominated among A as, by Lemma 7.3, this would make Ai

also dominated instead of dependent among A. Hence every area in A that contains

a point in Q must be maximal among A. Therefore Aj is maximal among A.

In order to solve the problem we have to determine about area Ai, i.e. we have to

perform updates until area Ai changes its status from dependent to either maximal

or dominated among A, as by Remark 4.5. We note that Ai can only change its

status by performing updates that alter Ai itself or an area which intersects with Q.

We first show the witness set for the special case where Aj ∩ Q = {hi}. In this

case we note that hi ∈ Ai as otherwise, by our construction of Q, we would have

hi ∈ Q instead of hi ∈ Q. So we have that hi ∈ Ai ∩ Aj. As hi ∈ Aj and Aj is

maximal among A, there does not exist a point in any area of A\{Aj} that is higher

than hi. Therefore no other area in A \ {Aj} can intersect with Q and we have the

witness set {Ax
i , A

y
i , A

x
j , A

y
j}. See Figure 7.4.
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Figure 7.4: Case Aj ∩Q = {hi}
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We now look at the case Aj ∩Q 6= {hi}. As Aj ∩Q 6= {hi} then Aj ∩Q contains

a point cj = (cxj , c
y
j ) such that cj 6= hi. Therefore, by our construction of Q, either

cxj < hxi or cyj < hyi and hence, by Definition 7.1, Aj is split by either l1 or l2.

Without loss of generality lets assume cxj < hxi and Aj is split by l1. Further let

Ak = {Ax
k × A

y
k} be another area with a point in Q. With the similar arguments

for Aj we have that Ak ∩ Q 6= ∅, Ak ∩ Q 6= ∅ and Ak contains a point ck = (cxk, c
y
k)

such that ck 6= hi and either cxk < hxi or cyk < hyi . As Aj is maximal among A and

split by l1, by Lemma 7.4, then cyk < hyi and Ak must be split by l2. So no other

area in A \ {Aj, Ak} can intersect with Q and we split the witness set cases for

when there exists one area (Aj) and when there are two areas (Aj and Ak) which

intersect with Q. If only Aj exists then {Ax
i , A

y
i , A

x
j , A

y
j} is a witness set. If both

Aj and Ak exist (assuming that cj ∈ Aj and ck ∈ Ak with cxj < hxi and cyk < hyi ),

then {Ax
i , A

y
i , A

x
j , A

y
k} is a witness set. The argument for not including Ay

j in the

witness set is that for every point in Aj the y coordinate value must be greater than

the y coordinate of every point in Ai (as otherwise Aj would also be split by l2 and

therefore, by Lemma 7.4, Ak would not exist) and hence whatever the update of Ay
j

is cannot change the status of area Ai. With the similar reasoning but for the x

coordinate we discard the update of Ax
k from the witness set. See Figure 7.5.
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Figure 7.5: Case Aj ∩Q 6= {hi}

As all witness sets are at most size 4 this concludes our proof.

Following Lemma 7.2 and Lemma 7.5:

Remark 7.6. Algorithm 5 is 4-update competitive for the MPCS online problem.
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7.2.2 Lower Bound

We now argue that there does not exist a k-update competitive algorithm with k < 4

for the MPCS problem:

Lemma 7.7. There exist configurations for the MPCS problem such that every

deterministic online algorithm performs four times as many updates as needed.

Proof. We first give the construction of a gadget which consists of three uncertainty

areas where updates are needed to solve the problem. The uncertainty areas are

placed in such a way that, no matter in which order they are chosen to be updated

by an update strategy, there exist configurations where 4 updates are made until

the problem is solved. In addition to that, these configurations are such that the

fourth update performed would by itself be enough to solve the problem. Then we

conclude our reasoning by showing that this process can be repeated for an arbitrary

number of times, without having an impact on the properties of each gadget.

Each gadget consists of three uncertainty areas denoted by A, B and C. See

Figure 7.6.

x

y A

C

B

Figure 7.6: Areas A,B and C in the gadget

The uncertainty areas A and C are maximal among A and area B is dependent

among A. Furthermore both areas A and C contain points higher and not higher

than B. As such no updates are needed to determine about A and C but updates are

needed to determine about area B. While there are six different updates that can

be performed in this instance (Ax,Ay,Bx,By,Cx and Cy), we note that updating Ay

or Cx does not influence the status of area B. This is because even the lowest values

of Ay and Cx are still higher than the highest value of By and Bx respectively.

Also, as all uncertainty areas are the direct product of possible x and y values,

updating a coordinate of an area does not reduce the possible values of the other

coordinate of that area. So we will only consider performing updates out of the

set U = {Ax, Bx, By, Cy}. We will use the Figures 7.7, 7.8, 7.9, 7.10 and 7.11 to

illustrate how the updates are given to the update strategy. The dashed horizontal
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and vertical lines in the figures show what the uncertainty areas will look like after

the chosen updates. The point where the dashed horizontal and vertical lines meet

in an uncertainty area, is the precise location of the corresponding point in P . In

other words this is the precise location when an area becomes trivial, revealed when

both coordinates of that area have been updated.

Configuration 0. This configuration provides updates as seen in Figure 7.7.

It is easy to see that if one update of U has not been made either area B remains

dependent among A (if Ax or Cy is left out) or it changes status to partly among

A (if Bx or By is left out). As by Remark 4.5 the problem is solved only if all

areas are either maximal or dominated among A, and therefore a further update is

needed. As such we use Configuration 0 to provide the first three updates

requested. While not all the updates in this configuration are given to an update

strategy, this shows that any deterministic online algorithm would require a fourth

update to solve the problem.

x

y A

C

B

Ax

yC

xB

yB

Figure 7.7: Configuration 0

We show that 4 updates are made where only one is needed as follows. For the

first three update requests the strategy will return the result of the update as given

in Configuration 0, regardless of the order in which the updates were requested. By

our previous observation a fourth update is needed. The following 4 configurations

(1 − 4) of Figures 7.8, 7.9, 7.10 and 7.11 correspond to the situation where one

update of {Ax, Bx, By, Cy} was not requested in the first three updates. We now

argue that the fourth update is enough by its own to determine about B.

Configuration 1. Cy is the fourth update requested. See Figure 7.8. The

update of Cy reveals that the y coordinate of every point in C is greater than the

y coordinate of every point in B and also every point in C already had before the

updates a greater x coordinate than the x coordinate of every point in B. As such,

after only updating Cy, area B changes status to dominated among A.
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Figure 7.8: Configuration 1

Configuration 2. Ax is the fourth update requested. See Figure 7.9. The

update of Ax reveals that the x coordinate of every point in A is greater than the

x coordinate of every point in B and also every point in A already had before the

updates a greater y coordinate than the y coordinate of every point in B. As such,

after only updating Ax, area B changes status to dominated among A.

x

y A

C

B

yC

xB

yB

Ax

Figure 7.9: Configuration 2

Configuration 3. By is the fourth update requested. See Figure 7.10. The

update of By reveals that the y coordinate of every point in B is lower than the

y coordinate of every point in C and also every point in C already had before the

updates a greater x coordinate than the x coordinate of every point in B. As such,

after only updating By, area B changes status to dominated among A.
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Figure 7.10: Configuration 3

Configuration 4. Bx is the fourth update requested. See Figure 7.11. The

update of Bx reveals that the x coordinate of every point in B is lower than the

x coordinate of every point in A and also every point in A already had before the

updates a greater y coordinate than the y coordinate of every point in B. As such,

after only updating Bx, area B changes status to dominated among A.
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Figure 7.11: Configuration 4

For each case we have shown that the fourth update request made out of the

set U = {Ax, Bx, By, Cy} would have been enough to change the status of B to a

dominated area among A, even without the previously made requests. Hence, in all

cases OPT is 1 and any deterministic online algorithm needs 4 updates.

To show the lower bound we simply construct multiple gadget where each is

placed below and to the right of the previous one (see Figure 7.12). This guarantees

that no area from one gadget contains a point higher than a point from an area

of some other gadget. Hence, for each gadget, OPT performs 1 update and any

deterministic online algorithm performs 4 updates. Therefore for j gadgets of this

construction OPT = j and any algorithm is 4j. This concludes our proof that there

does not exist a k-update competitive algorithm for the MPCS problem with k < 4.
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Figure 7.12: Placement of gadgets

7.2.3 Conclusion

Following Remark 7.6 and Lemma 7.7, we summarize our results for this section

with Theorem 7.8:

Theorem 7.8. The witness algorithm for the online problem of MPCS is 4-update

competitive. Furthermore, this is the best possible.

7.3 Verification Problem

7.3.1 Introduction

We now have a look at the problem of Maximal Point Coordinate Specific Verifi-

cation (MPCSV). We still consider the model of Definition 6.1 where the areas of

uncertainty are the direct product of x and y coordinate values. It is unclear at the

moment if our polynomial time algorithm from Section 6.5 in Chapter 6 that solves

the MPDPV problem can be modified to produce an algorithm for the MPCSV

problem. We focus on the difficulties why this might not be possible. We show var-

ious figures with instances of areas where the problem becomes more complicated

for MPCSV than MPDPV. In the figures we denote an uncertainty area with an

upper case letter and its corresponding precise location with the matching lower

case letter. The dashed lines show how an area is updated for the specified x or y

coordinate.

In Section 6.5 we have combined the status of areas among A with the sta-

tus of their precise location among P to create the new classifications of M-M/D-

M/D-N/P-M/P-N/N-N. We note that these classifications also apply to the MPCSV

problem, as the way the updates are performed does not affect them. Recall the

75



Chapter 7 7.3. Verification Problem

classifications are as follows. Let A be an uncertainty area with precise location p,

then A is:

• M-M if A is maximal among A and p is maximal among P

• D-M if A is dependent among A and p is maximal among P

• D-N if A is dependent among A and p is non-maximal among P

• P-M if A is partly among A and p is maximal among P

• P-N if A is partly among A and p is non-maximal among P

• N-N if A is dominated among A and p is non-maximal among P

7.3.2 Overview

After all areas have been classified to the above, the first action for MPDPV was to

update each area A ∈ A such that A \ A is not an update solution. This was done

following the reasoning of Lemma 6.14 that A must be inside every update solution,

and with Lemma 6.16 we have shown that after all such areas are updated there

are no D-M or P-N areas found in A. Performing a similar action for MPCSV the

equivalent would be as follows. For area A let UAx be the set that contains every

update for A excluding Ax and similarly let UAy be the set that contains every

update for A excluding Ay. If UAx is not an update solution (i.e. there exists an

area that is neither maximal nor dominated among A by Remark 4.5), then every

update solution must contain Ax. Similarly, if UAy is not an update solution then

every update solution must contain Ay. After this action takes place we show with

various examples that D-M and P-N areas can exist for MPCSV (Example 1, 2 and

3), and we further show some types of D-N areas that can exist for MPCSV but not

MPDPV (Example 4 and 5), all of which create more choices in order to solve the

MPCSV problem. Also with Example 6 we show for Step 2 of Algorithm 3 where

one update is made for MPDPV, there can be a choice between two updates for

MPCSV.

7.3.3 D-M and P-N Areas

Example 1. In Figure 7.13 area A is P-N, area B is D-M and areas C and D are

both M-M. For MPDPV A\A is not an update solution and therefore area A would

be updated by Step 1 of Algorithm 3 and the problem would be solved. Whereas

for MPCSV sets UAx and UAy are both update solutions and there is the choice here

of either updating Ax or Ay to solve the problem. Therefore, Lemma 6.16 does not
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apply here as there can exist an area that is D-M or P-N after the procedure of

performing all updates that have to be inside every update solution.

B={b}

C={c}

D={d}

A A

a
A

x

y

Figure 7.13: Example 1

Example 2. In Figure 7.14 area A is P-N, areas B and C are P-M and area D is

D-M. For MPDPV the set A\A is not an update solution and therefore A would be

updated by Step 1 of Algorithm 3. As such the problem would be solved as areas B,

C and D would change status to M-M and area A would change to N-N. For MPCSV

the sets UAx and UAy are both update solutions and so there is no update that exists

is every update solution, but we note the optimal update solution for this instance

is {Ax, Ay} which is consistent with MPDPV. However the sets {Bx, By, Ax} and

{Cx, Cy, Ay} are also update solutions and although not optimal for this instance

they could be preferable for constructing an optimal update solution if Example

2a is part of a bigger configuration of the problem. Looking at Figure 7.15, the

problem is similar except updates also need to be made to change the status of the

additional area E to M-M. Considering separately the problem that consists of only

areas E and B, updates need to be made such that no longer there exists a point in

one area higher than a point in the other. To accomplish this at least two updates

need to be made with the following optimal update solutions: {Ex, Ey}, {Bx, By},
{Ex, By} and {Bx, Ey}. Combining our observations for optimal update solutions

for Example 2a and areas E and B, to solve the problem of Example 2b, the only

optimal update solution is {Bx, By, Ax}. With a similar reasoning for Example 2c,

in Figure 7.16, the optimal update solution is {Cx, Cy, Ay}. So our argument is that

to determine about area A in a MPCSV problem where there exist areas such as B,

C and D, a choice has to be made between the update sets {Ax, Ay}, {Bx, By, Ax}
and {Cx, Cy, Ay}.
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Figure 7.14: Example 2a
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Figure 7.15: Example 2b
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Figure 7.16: Example 2c

Example 3. In Figure 7.17 area A is P-N, areas B and C are M-M, areas D and

E are P-M and area F is D-M. For MPDPV the set A\A is not an update solution

and therefore A would be updated by Step 1 of Algorithm 3. As such the problem

would be solved as areas D, E and F would change status to M-M and area A would

change to N-N. For MPCSV the sets UAx and UAy are both update solutions and

we note there are multiple optimal update solutions: {Ax, Ay}, {Ax, Bx}, {Ax, Dy},
{Ay, Ex} and {Ay, Cy}.

78



Chapter 7 7.3. Verification Problem

a C
y

C

C
x

c

E
y

E
x

e

E

by
B

x
BB

F={f}

x
A

y
A

D
y d

DD
x

A

Figure 7.17: Example 3

7.3.4 D-N Areas

Example 4. In Figure 7.18 area A is D-N and areas B and C are M-M. For MPDPV

the set A \ A is not an update solution and therefore A would be updated by Step

1 of Algorithm 3 and the problem would be solved. Whereas for MPCSV sets UAx

and UAy are both update solutions and there is the choice here of either updating

Ax or Ay to solve the problem.
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Figure 7.18: Example 4

Example 5. In Figure 7.19 area A is D-N and area B is P-M. For MPDPV the set

A\A is not an update solution (because A becomes P-N) and therefore A would be

updated by Step 1 of Algorithm 3 and the problem would be solved. Whereas for

MPCSV sets UAx and UAy are both update solutions and we note there are multiple

optimal update solutions: {Ax, Ay}, {Ax, By} and {Ay, Bx}.
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Figure 7.19: Example 5

Finally we show in Example 6 that for Step 2 of Algorithm 3 where one update

is made for MPDPV, there is a choice between two updates for MPCSV.

Example 6. In Figure 7.20 area A is D-N and area B is M-M. For MPDPV the

algorithm would update in this instance area B, using the reasoning of Lemma 6.22

that every update solution for an instance of the problem with these properties can

be modified to include B without increasing the size. However for MPCSV there is

the choice here of doing this by either updating Bx or By. In case areas A and B

were part of a larger configuration of the problem, it is not clear by looking at only

A and B if Bx or By is a better update, and therefore no update should be made

but instead a choice recorded between {Bx} and {By}.

B
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A A

A

B
x

x

ya

B
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Figure 7.20: Example 6

7.3.5 Properties of Choices

Following our examples we also note the different kinds of choices encountered for

MPCSV that are not present in MPDPV (recall Remark 6.34). By Example 1, 2, 3,

4 and 5 there exists in a choice a set which contains an update in an area of which

the precise location is non-maximal among P . By Example 2, 3 and 5 there exist

choices between 3, 4 or even 5 sets of updates. By Example 2 there exists in a choice

a set of updates with size 3. By Example 2 and 3 two areas involved in different sets
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of updates of the same shared choice are not neighbouring (recall Definition 6.18 of

neighbouring areas).

7.3.6 Conclusion

For MPCSV we have shown that D-M, P-N and some types of D-N areas can exist

after performing all updates that must be inside every update solution, which is not

the case for MPDPV. Furthermore for MPDPV, after Algorithm 3 finishes execution,

we highlighted in Remark 6.34 the properties of the choices collected. Phase 2,

in Subsection 6.5.3, provides a solution for the MPDPV problem based on those

properties and as they are not consistent with the properties shown in Subsection

7.3.5, our solution for the MPDPV problem cannot be trivially converted to produce

a solution for the MPCSV problem.
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Maximal Points - Higher

Dimensions

So far we have studied the maximal points problem under various settings, however

all settings involved 2-dimensional points. We now have a look at the problem where

more than 2 dimensions are considered, specifically we study the maximal point

under uncertainty problem in 3-dimensional space. We will give a construction for

the online problem showing that a constant update competitive ratio is impossible.

We will use our notation as in Chapter 4 which naturally extends to higher

dimensions, with the difference being a point p = (px, py, pz) is higher than a point

q = (qx, qy, qz) if px ≥ qx and py ≥ qy and pz ≥ qz and p 6= q. Also recall set A
contains all the areas of uncertainty and set P contains the precise location for each

area in A.

Constructing a single gadget. We first construct a gadget with n uncertainty

areas. Let some a ≥ 1, and let some b be sufficiently large such that b ≥ n. We

place uncertainty areas A1, A2, A3, . . . , An where for each we fix the coordinates x

and y to be precise and the coordinate z to be uncertain as follows: A1 = (a +

1, b − 1, [1, 3]), A2 = (a + 2, b − 2, [1, 3]), A3 = (a + 3, b − 3, [1, 3]), . . . , An =

(a + n, b − n, [1, 3]). For convenience we group these areas together in the set A =

{A1, A2, A3, . . . , An}. We further construct a trivial area B such that B = (a, b −
n − ε, 2), with some 0 < ε < 1. So the construction so far contains i + 1 areas and

we highlight the following properties.

The areas in A are placed in the construction in such a way that for each area in

A, any other area in A that has a greater x coordinate also has a lower y coordinate,

and each that has a greater y coordinate also has a lower x coordinate. Furthermore

there are no two areas in A that have same x or the same y coordinate and these

coordinates are precise. Therefore each area in A consists only of points such that

there does not exist a point in some area of A that is higher, and we note that this

is the case regardless of what their coordinate z is set to be. As such we note the
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following remark:

Remark 8.1. Every area in set A is maximal among A.

Let some area Ak ∈ A. As by the construction, we have that Ak has both x

and y coordinates precise and greater than those of area B. Also area Ak has an

uncertain coordinate z that contains a value equal or greater than the z coordinate

of area B. Therefore there exists a configuration where the precise location of Ak is

higher than the precise location of B. In other words:

Remark 8.2. Every area in set A contains a point higher than area B.

However the coordinate z of area Ak also contains a value lower than the coor-

dinate z of area B. Therefore there exists a configuration where area B is maximal

among A, this is potentially the case where every area in A is updated with the

z coordinate being reduced to a value less than 2. As such updates are needed to

solve the problem constructed as:

Remark 8.3. Area B is neither maximal nor dominated among A.

We can assume that the precise location p ∈ B, and recall B is trivial, is non-

maximal among P . However, as there exist configurations such that area B is

maximal among A, updates are needed to show that there exists an area that is

higher than B, or more specifically we need to show an area in A has a greater z

coordinate than the z coordinate of B. Therefore, in order to solve the problem

constructed, any online strategy has to update at least one of the areas in A. For

the first n − 1 update requests, the adversary reveals that the z coordinate of all

the updated areas is lower than the z coordinate of area B, and therefore a further

update is needed. The nth update request reveals that an area of A has a greater z

coordinate than B which solves the problem showing that B is dominated among A.

However this last update by its own would have been enough, so for our construction

with input n we have that OPT performs 1 update whereas any deterministic online

algorithm can be forced to perform n updates.

Constructing multiple gadgets. We now show how to replicate this con-

struction with multiple gadgets such that they do not interfere with each other. Let

m be the number of gadgets. As before each gadget contains n uncertainty areas

and let some a ≥ 1. Further let some b be sufficiently large such that b > nm.

We construct the uncertainty areas for each 1 ≤ i ≤ n and 1 ≤ j ≤ m as

Aj
i = (a + n(j − 1) + i, b − n(j − 1) − i, [1, 3]) and let each group of areas be

the set Aj accordingly. Finally, we also construct for each 1 ≤ j ≤ m a trivial area

Bj = (a+ n(j − 1) + ε, b− jn− ε, 2).

Example of a construction. An example of a construction with m = 4, n = 3,

a = 1, b = 13 and ε = 0.1 will give us the following uncertainty areas:
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Gadget 1:

A1
1 = (2, 12, [1, 3])

A1
2 = (3, 11, [1, 3])

A1
3 = (4, 10, [1, 3])

B1 = (1.1, 9.9, 2)

Gadget 2:

A2
1 = (5, 9, [1, 3])

A2
2 = (6, 8, [1, 3])

A2
3 = (7, 7, [1, 3])

B2 = (4.1, 6.9, 2)

Gadget 3:

A3
1 = (8, 6, [1, 3])

A3
2 = (9, 5, [1, 3])

A3
3 = (10, 4, [1, 3])

B3 = (7.1, 3.9, 2)

Gadget 4:

A4
1 = (11, 3, [1, 3])

A4
2 = (12, 2, [1, 3])

A4
3 = (13, 1, [1, 3])

B4 = (10.1, 0.9, 2)

Result of an update. Let a gadget j be made as by our construction with the

set of areas Aj and area Bj. To determine about area Bj we only consider updates

made on the areas of Aj, as only these areas have x and y (and also potentially z)

coordinate values greater than those of Bj, and therefore can change the status of

Bj to dominated among A. The first n− 1 updates made on the gadget reduce the

z coordinate of each area in the set Aj to be a value 2− ε (in our example above this

is 1.9). The nth update that has been made in the gadget reduces the z coordinate

of an area to be a value 2 + ε (in our example above this is 2.1).

Properties of areas. We now analyse the various area properties in the con-

struction. We begin with the following lemma:

Lemma 8.4. Let some area C ∈ Aj ∪ {Bj} for some gadget j with the set of areas

Aj and an area Bj as by the construction. Further let some area D ∈ A\(Aj∪{Bj}).

Then either area C has greater x coordinate and lower y coordinate than area D or

area C has lower x coordinate and greater y coordinate than area D.

Proof. This is quite easy to see. Recall that for all areas considered in the construc-

tion, there is no uncertainty about the x and y coordinates. When constructing
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the areas we have the pattern of increasing x and decreasing y coordinates, which

follows continuously for all gadgets.

We show that our established Remark 8.1, Remark 8.2 and Remark 8.3 also

apply for m > 1 number of gadgets for our construction. For those three remarks we

replace set A with set Aj and also replace area B with area Bj, for each 1 ≤ j ≤ m.

Let some area Aj
i ∈ Aj for some i. Following the reasoning for Remark 8.1 we know

that area Aj
i is maximal among Aj ∪ {Bj}. As by Lemma 8.4 it also follows that

area Aj
i is maximal among A. Similarly, following the reasoning for Remark 8.2,

area Aj
i contains a point higher than area Bj. We give the following lemma

to establish our last property:

Lemma 8.5. Let j be some gadget with the set of areas Aj and an area Bj as by the

construction. Then Bj is neither maximal nor dominated among A and updating all

areas in A\Aj does not change the status of area Bj to either maximal or dominated

among A.

Proof. Following the reasoning for Remark 8.3, we have that area Bj is neither

maximal nor dominated among Aj ∪ {Bj}. Assume that area Bj is either maximal

or dominated among A. We look at each case separately:

Case Bj is maximal among A: This implies that Bj is maximal among Aj∪{Bj}
as well, a contradiction.

Case Bj is dominated among A: There must exist an area C ∈ A \ (Aj ∪ {Bj})
such that every point in C has one coordinate greater than Bj and all other not

lower than Bj. This is a contradiction as, by Lemma 8.4, either area C has a greater

x coordinate and a lower y coordinate than Bj, or area C has a lower x coordinate

and a greater y coordinate than Bj.

As both cases come to a contradiction, Bj is neither maximal nor dominated

among A, and we now argue that updating all areas in A \Aj does not change the

status of area Bj to either maximal or dominated among A.

Assume that after updating all areas in A\Aj, area Bj becomes either maximal

or dominated among A. We look at each case separately:

Case Bj becomes maximal among A: After the updates there cannot exist a

point in an area of A that is higher than Bj. This is a contradiction as, by our

previous property based on Remark 8.2, every area in Aj contained a point higher

than Bj before the updates and they have not been updated.

Case Bj becomes dominated among A: After the updates there must exist an

area C ∈ A \ Aj such that every point in C has one coordinate greater than Bj

and all other not lower than Bj. By Lemma 8.4, before the updates either area

C had a greater x coordinate and a lower y coordinate than Bj, or area C had a

lower x coordinate and a greater y coordinate than Bj. As all x and y coordinates
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of all areas were precise before the updates, it follows that these coordinates are

unaffected after the updates. A contradiction.

As both cases come to a contradiction, updating all areas in A \ Aj does not

change the status of area Bj to either maximal or dominated among A.

With Lemma 8.5 we have effectively shown that any update in a gadget does not

affect the status of an area among A found is some other gadget. Further we have

established how to create an arbitrary number m of gadgets where for each gadget

OPT = 1 but any deterministic online update strategy makes n updates. Hence

for the whole construction OPT = m where an update strategy makes mn updates.

Following these properties of our construction we give our result:

Theorem 8.6. There does not exist a deterministic online algorithm with constant

competitive ratio for the 3-dimensional maximal points under uncertainty problem.

We note that it is also trivial that our result is carried over to dimensions higher

than 3D. Furthermore this is also the case for when either open or closed intervals

are considered and even for areas of uncertainty that contain at most 2 points. Our

result motivates the investigation of new ways to restrict the areas of uncertainty

when considering the maximal point problem in higher than 2 dimensions.
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Farthest Pair of Vertices

9.1 Introduction

In this chapter we study graphs which are weighted, undirected and connected.

With this in mind a graph contains vertices and edges such that there exists a path

of edges between any two vertices and each edge has the attribute of weight. The

distance then between two vertices is the sum of all edge weights found along a path

between them, such that the sum is minimum among all paths between the two

vertices. The distance between a pair of vertices that is the maximum among the

distances of all pairs of vertices is said to be the diameter of the graph and this pair

of vertices is a farthest pair of vertices. We note that there could be multiple such

pairs.

Under uncertainty, the idea is that each edge weight could be given in an un-

certain form and update operations can be made on edge weights which obtain the

precise measurement. We are interested in finding a farthest pair of vertices with

this uncertainty element in mind, which is directly related to the classical problem

of finding the diameter of a graph. In our case, however, the task does not involve

the actual value of the diameter, but the task is rather to perform enough updates

such that a farthest pair of vertices is computable.

Motivation. This kind of graph problems rise naturally in problems such as

finding in a wireless network the most expensive pair of communicating devices.

Expenses could be in terms of transmitter output power needs, which is affected for

example by distance or other physical obstructions. Uncertainty can be modelled

here as the devices may often be in motion but guaranteed to not travel far from a

specific location. Finding the most expensive pair of devices could be useful if one

wants to make changes to reduce overall expenses.

Outline. In Section 9.2 we give formal definitions. In Section 9.3 we study the

problem for trees, specifically we give matching upper and lower bounds in Subsec-
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tion 9.3.1 under the assumption that each uncertainty area is either a singleton or

an open interval and in Subsection 9.3.2 we show the lower bound if closed intervals

are allowed. In Section 9.4 we show the lower bound for cycle graphs.

9.2 Preliminaries

We first give definitions for the problem of finding a farthest pair or vertices in a

graph without uncertainty. We write G = (V,E,w) for a weighted graph with vertex

set V , edge set E ⊆ V × V and weight function w : E → R. We also write we for

w(e) of an edge e ∈ E.

The length of a path between two vertices in G is the sum of weights for all edges

in the path. The distance between two vertices is the length of a smallest path. As

we noted before, we only consider undirected graphs and further all edge weights are

non-negatives. We use the following to refer to the distance between two vertices:

Definition 9.1. For two vertices u, v of a weighted graph (V,E,w), we write dw(u, v)

for the distance between u and v.

A pair of vertices (u, v) in a weighted graph G is said to be a farthest pair of

vertices if there is no pair of vertices such that the distance between them is greater

than the distance between u and v. Formally:

Definition 9.2. In a weighted graph (V,E,w) with vertices u, v ∈ V , the pair (u, v)

is a farthest pair of vertices such that dw(u, v) ≥ dw(x, y) for every x, y ∈ V .

We now use the under uncertainty setting in the context of weighted graphs, as

by our definitions in Section 2.2. Let (S, U,A,w) be an instance of the farthest pair

of vertices under uncertainty problem. Then S = (V,E,w) is the weighted graph

as above and U consists of the edges that have uncertain weight. For each u ∈ U
function w maps u to its precise edge weight wu and area function A maps u to

Au. Throughout this chapter we assume that Au is an open interval, apart from

Subsection 9.3.2 where it can also be a closed intervals. Here the set φ(S, U, w)

contains all the farthest pairs of vertices. For the remainder of this chapter we

redefine for convenience an instance of the problem to (V,E,w,A), and also define

an edge uncertainty graph as U = (V,E,A) from the above. We further say a

weighted graph (V,E,w) is consistent with an uncertainty graph (V,E,A) if for

every e ∈ E we have that we ∈ Ae. This brings us to the two following definitions:

Definition 9.3. An instance of the Farthest Pair of Vertices under uncertainty

problem (FPV for short) consists of (V,E,w,A) where (V,E,w) is a weighted graph

that is consistent with the uncertainty graph (V,E,A).
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Definition 9.4. An edge uncertainty graph U = (V,E,A) is solved if there exists

u, v ∈ V such that (u, v) is a farthest pair of vertices in every weighted graph that is

consistent with U .

And we further note an instance (V,E,w,A) of FPV is solved if the uncertainty

graph (V,E,A) is solved.

In an instance (V,E,w,A) of FPV updating an edge e ∈ E changes the instance

to (V,E,w,A′) where A′u = Au for every e 6= u and A′e = {we}. We also say we

is the actual weight of the edge e. The input of an algorithm is (V,E,A) (we only

study the online setting in this chapter) and hence the aim is to keep updating edges

iteratively, until the instance of the problem becomes a solved instance or in other

words until a farthest pair of vertices is computable on (V,E,A).

Any set of updates that changes the initial instance of the problem to a solved

instance is called an update solution. An update solution of minimal size is also

called an optimal update solution and we denote the number of elements in this

case by OPT . An algorithm for the FPV problem is evaluated by comparing the

size of the update solution it produces in the worst case against OPT . This is either

expressed as a ratio or by a bounding function over OPT .

9.3 FPV for Trees

Introduction. As stated in Section 9.1 we consider a specific type of graphs for the

FPV problem such that they are weighted, undirected and connected. In addition to

that, in this section we look specifically at trees. Naturally, here, any farthest pair

of vertices are leaves, under the assumption that all edge weights are non-negative.

We use the abbreviation FPVT for the Farthest Pair of Vertices in a Tree under

uncertainty, which is in line with Definition 9.3. We look at two different restrictions

for the uncertainty areas of the FPVT problem. In Subsection 9.3.1 we assume that

each uncertainty area is either trivial or an open interval, and in Subsection 9.3.2

we assume that this is not the case.

We use throughout this section the following notation:

Definition 9.5. For two vertices u, v in a tree, we write P (u, v) for the set of all

edges that lie on the path between u and v.

Definition 9.6. In an edge uncertainty graph U = (V,E,A) we say the distance

between two vertices u, v ∈ V is potentially greater than the distance between two

vertices x, y ∈ V , if there exists a weighted graph G = (V,E,w) consistent with U
such that dw(u, v) > dw(x, y). We write for convenience (u, v) >? (x, y). Similarly

we write (u, v) ≥? (x, y) for dw(u, v) ≥ dw(x, y).
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Definition 9.7. Let U = (V,E,A) be an edge uncertainty tree with some u, v ∈ V
and for any e ∈ E let Le denote the lower limit and Ue the upper limit of the

uncertainty area Ae. Further let Smin
u,v =

∑
e∈P (u,v) Le and Smax

u,v =
∑

e∈P (u,v) Ue.

We write dA(u, v) = (Smin
u,v , S

max
u,v ) if P (u, v) contains an edge with uncertainty area

which is an open interval and otherwise we write dA(u, v) = [Smin, Smax]. We also

say this is the uncertainty distance between u and v.

Note on Definition 9.7: We use this definition to obtain the lower and upper

limit of where the actual distance between two vertices lies. This can be used for

any combination of types of uncertainty areas for consecutive edges in a set; whether

they are open intervals, closed intervals or trivial (a trivial area is basically the same

as a closed interval which has the same lower and upper limit).

For vertices x, y, u, v in an edge uncertainty graph, we write dA(x, y) ≥ dA(u, v) if

the sum of the lowest possible values of all uncertainty areas of edges in P (x, y), is

at least as great as the sum of the highest possible values of all uncertainty areas

of edges in P (u, v). Furthermore we use this definition throughout this section to

make comparisons of uncertainty distances only where P (x, y) ∩ P (u, v) = ∅.
Specifically we compare uncertainty distances in the following way. Let Smin

x,y be the

lower limit of dA(x, y) and let Smax
u,v be the upper limit of dA(u, v). If Smin

x,y > Smax
u,v

then obviously dA(x, y) > dA(u, v). For Smin
x,y = Smax

u,v we have the following 3 cases:

If at least one edge in P (x, y)∪P (u, v) has an open interval for an uncertainty area

then dA(x, y) > dA(u, v). If all edges in P (x, y) ∪ P (u, v) have trivial uncertainty

areas then dA(x, y) = dA(u, v). Otherwise there must exist a non-trivial closed

interval uncertainty area and then dA(x, y) ≥ dA(u, v).

We may also write dA(x, y) 6≥ dA(u, v) or dA(x, y) 6> dA(u, v) to show that the

relations cannot hold.

Definition 9.8. The hopping diameter in a tree is the maximal number of edges

that any two vertices are apart.

The following is a general property of trees:

Lemma 9.9. A tree with hopping diameter k and l leaves has at most
⌊
k
2

⌋
· l + (k

mod 2) edges.

Proof. Base Case: For l = 1 leaf there are no edges in the tree and the hopping

diameter is k = 0. So, as 0 ≤
⌊
k
1

⌋
· 2 + (k mod 2), lemma is correct for l = 1. For

l = 2 leaves the tree is a line for any hopping diameter k and the total number of

edges must be the same as the hopping diameter. So as k ≤
⌊
k
2

⌋
· 2 + (k mod 2)

lemma is correct for l = 2 and any k.

Induction Hypothesis: Assume lemma is correct for l ≥ 2 leaves.
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Inductive step: Let G = (V,E) be a tree with hopping diameter k and l + 1

leaves.

We need to show |E| ≤
⌊
k
2

⌋
· (l + 1) + (k mod 2).

We note that since G contains at least 3 leaves then there exists a vertex with

degree at least 3. Among all pairs of vertices in G where one vertex is a leaf and the

other vertex has degree at least 3, let (x, y) be a pair of vertices such that |P (x, y)|
is the smallest. Without loss of generality let x be the leaf and y have degree 3 or

more.

We argue that |P (x, y)| ≤
⌊
k
2

⌋
: Assume that |P (x, y)| >

⌊
k
2

⌋
. Since |P (x, y)|

is minimal, for each leaf z in G then |P (z, y)| ≥ |P (x, y)| >
⌊
k
2

⌋
. As there is

a unique path between any two vertices then |P (x, z)| = |P (x, y)| + |P (z, y)| ≥⌊
k
2

⌋
+ 1 +

⌊
k
2

⌋
+ 1 ≥ k + 1. A contradiction as the hopping diameter of G is k,

therefore |P (x, y)| ≤
⌊
k
2

⌋
.

Now let G′ = (V ′, E ′) be the tree after removing from G all edges of P (x, y)

along with all vertices in their path except vertex y. So we have taken away leaf x

along with at most
⌊
k
2

⌋
edges. See Figure 9.1.

x

y y

G G’

Figure 9.1: Tree G′ from G

Let k′ be the hopping diameter of G′.

By the Induction Hypothesis |E ′| ≤
⌊
k′

2

⌋
· l + (k′ mod 2) for every l ≥ 2

We argue that
⌊
k′

2

⌋
· l + (k′ mod 2) ≤

⌊
k
2

⌋
· l + (k mod 2): We know that

k′ ≤ k as we have only removed some edges and vertices to a tree and have not

added anything. Let A be the left-hand side and B be the right-hand side of the

inequality. If k′ = k then A = B and so it remains to show for k′ < k. We separate

for k′ < k the cases where 1) k′ is odd and k is odd, 2) k′ is odd and k is even, 3) k′

is even and k is odd, 4) k′ is even and k is even. So B is greater than A by at least

1) l + 0, 2) l − 1, 3) 0 + 1 and 4) l + 0. As l ≥ 2 the inequality holds for every

case.

Then |E| ≤ |E ′| +
⌊
k
2

⌋
≤

⌊
k′

2

⌋
· l + (k′ mod 2) +

⌊
k
2

⌋
≤

⌊
k
2

⌋
· l + (k

mod 2) +
⌊
k
2

⌋
=
⌊
k
2

⌋
· (l + 1) + (k mod 2)

And so the lemma holds for any l leaves and hopping diameter k.
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9.3.1 Open Intervals

9.3.1.1 Upper Bound

We propose an online update strategy for solving the FPVT problem under the re-

striction of trivial or open uncertainty areas, using a similar technique as by Erlebach

et al. [17]. We will compare the number of updates performed by the algorithm

against OPT , showing that the algorithm builds an update solution of size at most⌊
k
2

⌋
·OPT + (k mod 2) + k where k is the hopping diameter of the graph.

Before giving the algorithm we establish some notations and properties that are

needed to define and analyse the algorithm.

First we establish the following property of FPVT:

Lemma 9.10. Let U = (V,E,A) be a solved edge uncertainty graph and let G =

(V,E,w) be a weighted graph that is consistent with U . If (x, y) is a farthest pair of

vertices in G then (x, y) is a farthest pair of vertices in every weighted graph that is

consistent with U .

Proof. As U is a solved edge uncertainty graph there exists a pair of vertices (u, v)

that is a farthest pair of vertices in every weighted graph that is consistent with U .

Let (x, y) be some other pair of vertices that is a farthest pair of vertices in G.

Note that as we are only considering trees there is a unique path between any two

vertices and we use P (u, v) for the set of edges between u, v and similarly P (x, y)

for the set of edges between x, y. We now distinguish the following two cases for

edge sets P (u, v) and P (x, y):

Case 1: Assume there exists an edge f ∈ P (u, v) \ P (x, y) with non trivial area

of uncertainty. Then let w′ be a new weight function which is identical to w except

for the edge f such that w′f < wf with w′f ∈ Af . Such a function exists as Af is non

trivial and hence open. The weighted graph (V,E,w′) is also consistent with U and

as dw′(u, v) < dw′(x, y) the pair (u, v) is not a farthest pair of vertices in (V,E,w′).

A contradiction.

Case 2: Assume there exists an edge f ∈ P (x, y) \ P (u, v) with non trivial area

of uncertainty. Then let w′′ be a new weight function which is identical to w except

for the edge f such that w′′f > wf with w′′f ∈ Af . Such a function exists as Af is non

trivial and hence open. The weighted graph (V,E,w′′) is also consistent with U and

as dw′′(u, v) < dw′′(x, y) the pair (u, v) is not a farthest pair of vertices in (V,E,w′′).

A contradiction.

By combining Case 1 and Case 2, all edges in P (x, y) 4 P (u, v) are trivial and

the distance between u, v is the same as the distance between x, y in all weighted

graphs that are consistent with U . Hence (x, y) must also be a farthest pair of

vertices in every weighted graph that is consistent with U .
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Following Lemma 9.10, Definition 9.4 and Definition 9.6 we remark:

Remark 9.11. Let I = (V,E,w,A) be an instance of the FPVT problem such that

(u, v) is a farthest pair of vertices in (V,E,w). If there exist two vertices x, y such

that (x, y) >? (u, v) then I is not solved.

We define the following to be used by the algorithm for updates:

Definition 9.12. Let U = (V,E,A) be an edge uncertainty graph where (u, v) is a

pair of vertices. We say (u, v) is a Robust Potential Farthest Pair (RPFP) if for all

possible weights of edges in E \ P (u, v) there exist possible weights for the edges in

P (u, v) such that (u, v) is a farthest pair of vertices in the resultant weighted graph.

And we use the following for to obtain a set of edges in a tree:

Definition 9.13. For two pairs of vertices (x, y) and (u, v) in a tree, we define Qx

and Qy to be the edge sets as follows:

Qx = P (x, y) \ (P (u, y) ∪ P (v, y))

Qy = P (x, y) \ (P (u, x) ∪ P (v, x))

And we note Qx ∩Qy = ∅.
Furthermore for an edge uncertainty graph we define Q̄x to be the subset of Qx

such that Q̄x only contains edges with non-trivial uncertainty area.

At this point we recall the concept of a witness set for problems under uncertainty

which we will use for the FPVT problem: a witness set is a set of uncertainty areas

such that at least one element from the set needs to be inside every update solution.

We argue why the following is a witness set and then we give our algorithm:

Lemma 9.14. Let (x, y) be a RPFP in an edge uncertainty graph U = (V,E,A),

and let I = (V,E,w,A) be an instance of the FPVT problem such that (u, v) is a

farthest pair of vertices in (V,E,w) with x 6∈ {u, v}. Further let Qx be the edge set

for the two pairs (x, y) and (u, v). Then Q̄x is either empty or a witness set for I.

Proof. The set Qx either contains an edge with non-trivial uncertainty area in U
(an open interval by our restriction) or it consists of only edges that have trivial

uncertainty area and thus Q̄x is empty. So it remains to show that if Q̄x is not empty

then it is a witness set, and therefore for the rest of the proof lets assume Qx contains

at least one edge with non-trivial uncertainty area. Moreover let U ′ = (V,E,A′) be

the edge uncertainty graph after updating in U all edges of E \P (x, y). We will use

the potentially greater notation of Definition 9.6 for (x, y) and (u, v) in U ′.
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We recall that, as we are only considering trees, there is a unique path between

any two vertices and separate the cases of y ∈ {u, v} in Case 1 and y /∈ {u, v} in

Case 2.

Case 1: y ∈ {u, v}. Without loss of generality lets assume y = v and let a be

the vertex that joins the two paths, see example in Figure 9.2.
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Figure 9.2: Case 1

Since (x, y) is a RPFP then we have (x, y) ≥? (u, v). By our assumption Qx

contains an edge e such that Ae is an open interval, and we have e ∈ P (x, y) \
P (u, v). Therefore, similarly with the arguments in the proof of Lemma 9.10, we

have (x, v) >? (u, v). That is, as Ae is an open interval, there exists a weighted

graph (V,E,w′′) consistent with U ′ such that dw′′(x, v) > dw′′(u, v).

It must hold that (x, v) >? (u, v) even after further updating all edges in P (a, y)

since the sub-path between a, y is shared among the paths x, y and u, v and hence,

by Remark 9.11, Q̄x is a witness set.

Case 2: y /∈ {u, v}. By our assumption x 6∈ {u, v} and so we note the path

between x, y does not share endpoints with the path between u, v. In Figure 9.3

we can see an example where the two paths do not share edges (Case 2a) and

in Figure 9.4 another where they share an edge (Case 2b). Let a be the vertex

such that P (x, a) = Qx. For Case 2a let b be the vertex such that P (a, b) =

P (x, u) \ (P (x, y) ∪ P (u, v)) and for Case 2b let a = b, to help our analysis apply

for both.
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Figure 9.3: Case 2a
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Figure 9.4: Case 2b

We give the following analysis which covers both Case 2a and Case 2b. Since (x, y)

is a RPFP then we have (x, y) ≥? (u, y). As the sub-path between a, y is shared

among the paths between x, y and u, y, then also (x, a) ≥? (u, a). It follows that

(x, b) ≥? (u, b) by switching the sub-path between a, b to be contained in the left-

hand side of the inequality instead of the right for Case 2a, and for Case 2b we had

a = b. By including the sub-path between b, v for both sides we have (x, v) ≥? (u, v).

By our assumption Qx contains an edge e such that Ae is an open interval, and we

have e ∈ P (x, v) \ P (u, v). Therefore, similarly with the arguments in the proof of

Lemma 9.10, we have (x, v) >? (u, v). That is, as Ae is an open interval, there exists

a weighted graph (V,E,w′′) consistent with U ′ such that dw′′(x, v) > dw′′(u, v).

It must hold that (x, v) >? (u, v) even after further updating all edges in P (a, y)

as this set only contains edges that are either inside P (x, v) ∩ P (u, v) or not inside

P (x, v) ∪ P (u, v) and hence, by Remark 9.11, Q̄x is a witness set.

Algorithm action. A RPFP can be found for every edge uncertainty graph.

We outline our algorithm as follows:

Algorithm 6 The witness algorithm for FPVT

1: while Current edge uncertainty graph is not solved do
2: Find a RPFP (x, y);
3: Update every edge in the set P (x, y).
4: end while

Algorithm analysis. For our analysis we do not argue about the maximum

size of the set of updates the algorithm makes in any iteration, as usually done

in uncertainty problems, but rather compare against OPT the overall number of

updates the algorithm made after it has finished execution. This brings us to the

following lemma:

Lemma 9.15. Under the restriction of open or trivial uncertainty areas and k hop-

ping diameter, Algorithm 6 makes at most
⌊
k
2

⌋
·OPT + k + (k mod 2) updates for

any instance the FPVT problem.
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Proof. Let (V,E,w,A) be an instance of the problem and let (u, v) be a farthest

pair of vertices in (V,E,w). In each iteration the algorithm finds a RPFP (x, y) for

(V,E,A) and updates every edge in P (x, y).

By Definition 9.13, for pairs (x, y) and (u, v), we have the edge sets Qx and Qy

and their respective subsets Q̄x and Q̄y. By Lemma 9.14, for x 6∈ {u, v} we have

that Q̄x is either empty or a witness set and similarly for y 6∈ {u, v} we have that

Q̄y is either empty or a witness set.

Let l be the number of different vertices encountered in RPFPs in the full run

of the algorithm, such that for pairs (x, y) and (u, v) the set Q̄x was not empty (i.e.

at least one edge of Qx had a non-trivial uncertainty area). So at least l − 2 such

vertices are not u or v.

Updates by OPT. Therefore there have been at least l−2 witness sets updated

and, by Remark 2.1, OPT ≥ l − 2.

Updates by algorithm. All edges updated by the algorithm lie in a sub-graph

(forest) with l leaves and hopping diameter at most k. In that sub-graph, by Lemma

9.9, there are at most
⌊
k
2

⌋
· l + (k mod 2) edges.

Comparison. So compared to OPT the algorithm made at most
⌊
k
2

⌋
· l + (k

mod 2) =
⌊
k
2

⌋
· (l − 2) + k + (k mod 2) ≤

⌊
k
2

⌋
·OPT + k + (k mod 2) updates.

Performance of algorithm in other scenarios. The algorithm relies on the

property we have established with Lemma 9.10 to achieve the upper bound we have

shown in Lemma 9.15. The proof of Lemma 9.10 is based on the fact that between

any two vertices there is a unique path, and further makes use of the restriction of

each uncertainty area being either trivial or an open interval. One would assume

that Lemma 9.10 does not hold without those settings, nor for arbitrary graphs.

Therefore it is expected that our algorithm does not perform the same under other

settings. We give the following two examples for justification.

Example 1. Lets consider the edge uncertainty graph U = (V,E,A) in Figure

9.5, which is a star with V = {g, h, p, q}. U consists of one edge with non-trivial

uncertainty area value [1, 3] and two more edges with trivial uncertainty areas values

{4} and {3}. Here, for every weighted graph G = (V,E,w) that is consistent with

U , we can see that dw(g, p) ≥ dw(g, q) and dw(g, p) > dw(p, q) and therefore the

problem is solved without any updates with (g, p) being a farthest pair of vertices

in G. However as the update of the edge with uncertainty area value [1, 3] allows

both actual weights {3} and {2}, there exist two weighted graphs G′ = (V,E,w′)

and G′′ = (V,E,w′′) consistent with U such that dw′(g, p) = dw′(g, q) = 7 and

dw′′(g, p) = 7, dw′′(g, q) = 6 and so dw′′(g, p) > dw′′(g, q). Therefore (g, p) and (g, q)

are both farthest pairs of vertices in G′ but not in G′′. Hence Lemma 9.10 does not
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hold if closed intervals are allowed as uncertainty areas.

���� ����

����

��

{4}

{3}

[1,3]

g h

p

q

Figure 9.5: Tree with a closed interval

Example 2. Lets consider the edge uncertainty graph U = (V,E,A) in Figure

9.6, which contains a cycle. U contains in its cycle an edge with the non-trivial

uncertainty area value (2, 10). Let e be this edge and so Ae = (2, 10). We note that

in case the actual weight of e is more than 8 then the alternative path between h and

r would be cheaper. Therefore the distance between g and q in every weighted graph

G = (V,E,w) that is consistent with U cannot be more than 20 + 8 + 1 + 1 = 30.

With similar arguments as in Example 1, since dw(g, p) = 30, we can see that (g, p)

is a farthest pair of vertices in G and the problem is solved without any updates.

Furthermore, as the update of the edge e allows both actual weights {8} and {7},
there exist two weighted graphs G′ = (V,E,w′) and G′′ = (V,E,w′′) consistent with

U such that dw′(g, p) = dw′(g, q) = 30 and dw′′(g, p) = 30, dw′′(g, q) = 29 and so

dw′′(g, p) > dw′′(g, q). Therefore (g, p) and (g, q) are both farthest pairs of vertices

in G′ but not in G′′. Hence Lemma 9.10 does not hold in graphs where between two

vertices there can exist multiple paths, even if all uncertainty areas are either trivial

or open intervals.

�� ��

��

��

��

��

��

{20}

{1}

{1}{8}

(2,10) {1}

qrhg

{10}p

Figure 9.6: Graph with a cycle
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9.3.1.2 Lower Bound

For the lower bound of this subsection we construct a non-solved edge uncertainty

graph U = (V,E,A) of the FPVT problem and compare the number of updates

any deterministic online algorithm is forced to perform against OPT . Recall that

in this subsection we assume that every uncertainty area is either trivial or an open

interval. We will only use the two different open intervals (1, 2) and (2 − 1
2n
, 4) for

all uncertainty areas of E and three different actual weights which we give later on.

For convenience we say an edge e ∈ E is either of type L if Ae = (1, 2) or of type H

if Ae = (2− 1
2n
, 4).

For the construction we take n ≥ 2 as a parameter for the number of consecutive

edges in every distinct branch of the graph, and r ≥ 2 for the number of branches

that consists of type L edges.

We start by placing 2n type H edges consecutively, and let m be the vertex

in the middle. Then we place r number of distinct branches of edges, where each

branch consists of n type L edges and let all these branches share vertex m as one of

their endpoints. This construction makes the hopping diameter to be k = 2n. We

note that this construction forms a generalised version of a star, where each branch

contains n edges instead of just 1. See Figure 9.7 for the example of n = 3 and

r = 4.
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Figure 9.7: Construction with type L and type H edges

Next we give the details about the three actual weights used. Let a = 1 + 1
4n

,

b = 2− 1
4n

and c = 3. We note that for each edge e ∈ E if it is of type L then only

a, b ∈ Ae, or if it is of type H then only b, c ∈ Ae. Furthermore a < b < c.

So the information of an uncertainty area is the same for all type L and the

same for all type H edges, however the precise information obtained with an update
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operation varies depending in the order an online strategy chooses the updates. An

uncertainty area is reduced to contain only an actual weight given by the adversary

according to Algorithm 7:

Algorithm 7 Adversary for the lower bound of FPVT

1: if Type L edge then
2: if Last available update in the construction then
3: Receive a;
4: else
5: if Last update on current branch then
6: if Last update of all type L edges then
7: Receive b;
8: else
9: Receive a;
10: end if
11: else
12: Receive b;
13: end if
14: end if
15: else if Type H edge then
16: if Last available update in the construction then
17: Receive c;
18: else
19: if Last update on current branch then
20: if Last update of all type H edges then
21: Receive b;
22: else
23: Receive c;
24: end if
25: else
26: Receive b;
27: end if
28: end if
29: end if

Following the reasoning of how the result of an update is given we have the

following property:

Lemma 9.16. Let U ′ be the edge uncertainty graph after updating every edge in

U in any order, with actual weights obtained as determined by Algorithm 7. Then

exactly one of the following holds for U ′′:
a)In every branch i of type L edges and leaf si, there exists exactly one edge

e ∈ P (si,m) with trivial uncertainty area Ae = {a}.
b)In every branch j of type H edges and leaf tj, there exists exactly one edge

e ∈ P (tj,m) with trivial uncertainty area Ae = {c}.
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Proof. We argue that at least a) or b) condition holds. Either the last update in

the construction was made for a type L edge or for a type H. First we assume

it was for type L. Then line 3 of the adversary must have occurred once at the

last branch considered and line 9 must have occurred once for every branch before

that (following the conditions in the previous lines). Therefore each branch of type

L edges contains an edge with uncertainty area {a}. Similarly, if the last update

in the construction was made for a type H edge, then line 17 must have occurred

once at the last branch considered and line 23 must have occurred once for every

branch before that. Therefore each branch of type H edges contains an edge with

uncertainty area {c}. So either a) or b) must be true.

To show that not both conditions a) and b) can be true we argue that there

exist a branch that consists of only edges with uncertainty area {b}. In case the

last update made in the construction was for a type L edge, then that means line

17 cannot have occurred before and the only line other than 17 which yields a {c}
update is line 23. As line 23 cannot occur for the last update of all type H edges,

and as it only occurs for the last in a particular branch update of type H edges, then

there must be a branch of type H edges that consists of only edges with uncertainty

area {b}. Similarly if the last update made in the construction was for a type H

edge instead, line 3 cannot have occurred before and the only line other than 3 which

yields an {a} update is line 9. As line 9 cannot occur for the last update of all type

L edges, and as it only occurs for the last in a particular branch update of type L

edges, then there must be a branch of type L edges that consists of only edges with

uncertainty area {b}. So not both a) and b) can be true.

The construction has the following property:

Lemma 9.17. After updating every edge in U in any order, with actual weights

obtained as determined by Algorithm 7, the pair (t1, t2) is the only farthest pair of

vertices in that weighted graph.

Proof. Let U ′ = (V,E,A′) be the edge uncertainty graph after every edge in U has

been updated. We note that since for every edge in U ′ the uncertainty area is trivial,

there exists only one weighted graph (V,E,w′) that is consistent with U ′.
By Lemma 9.16, in U ′ either (Case 1:) P (t1, t2) contains 2n − 1 edges with

uncertainty area value {b} and one more with {c}, or (Case 2:) P (t1, t2) contains

2n−2 edges with uncertainty area value {b} and two more with {c}. So the distance

between t1 and t2 is:

Case 1: dw′(t1, t2) = (2n−1)(2− 1
4n

)+3 = 4n− 2
4
−2+ 1

4n
+3 = 4n+ 1

4n
+ 2

4

Case 2: dw′(t1, t2) = (2n−2)(2− 1
4n

)+2(3) = 4n− 2
4
−4+ 2

4n
+6 = 4n+ 2

4n
+ 6

4

See also Figure 9.8 and Figure 9.9:
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Figure 9.8: Example of Case 1
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Figure 9.9: Example of Case 2

Next let x, y ∈ V be two leaves in the construction such that either x 6∈ {t1, t2}
or y 6∈ {t1, t2}. For U ′, as by the construction, P (x, y) contains at least 2n − 2

edges with uncertainty area value {b}. Further P (x, y) contains two more which we

note are dependent to what P (t1, t2) contains. We separate the 6 cases according

to what the uncertainty areas of the remaining two edges are, when combined with

our previous cases. Let the remaining two edges have the uncertainty area values:

Case 1.1: {a} and {a}. So

dw′(x, y) = (2n−2)(2− 1
4n

)+2(1+ 1
4n

) = 4n− 2
4
−4+ 2

4n
+2+ 2

4n
= 4n+ 1

n
− 10

4

And as 4n + 1
n
− 10

4
< 4n + 1

4n
+ 2

4
then, by Definition 9.2, (x, y) cannot be a

farthest pair of vertices.

Case 1.2: {a} and {b}. So

dw′(x, y) = (2n−1)(2− 1
4n

) + 1 + 1
4n

= 4n− 2
4
−2 + 1

4n
+ 1 + 1

4n
= 4n+ 2

4n
− 6

4

And as 4n + 2
4n
− 6

4
< 4n + 1

4n
+ 2

4
then, by Definition 9.2, (x, y) cannot be a

farthest pair of vertices.

Case 1.3: {a} and {c}. So

dw′(x, y) = (2n−2)(2− 1
4n

)+1+ 1
4n

+3 = 4n− 2
4
−4+ 2

4n
+1+ 1

4n
+3 = 4n+ 3

4n
− 2

4

And as 4n + 3
4n
− 2

4
< 4n + 1

4n
+ 2

4
then, by Definition 9.2, (x, y) cannot be a

farthest pair of vertices.

Case 2.1: {a} and {b}. So

dw′(x, y) = (2n−1)(2− 1
4n

) + 1 + 1
4n

= 4n− 2
4
−2 + 1

4n
+ 1 + 1

4n
= 4n+ 2

4n
− 6

4

And as 4n + 2
4n
− 6

4
< 4n + 2

4n
+ 6

4
then, by Definition 9.2, (x, y) cannot be a

farthest pair of vertices.

Case 2.2: {a} and {c}. So

dw′(x, y) = (2n−2)(2− 1
4n

)+1+ 1
4n

+3 = 4n− 2
4
−4+ 2

4n
+1+ 1

4n
+3 = 4n+ 3

4n
− 2

4
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And as 4n + 3
4n
− 2

4
< 4n + 2

4n
+ 6

4
then, by Definition 9.2, (x, y) cannot be a

farthest pair of vertices.

Case 2.3: {b} and {c}. So

dw′(x, y) = (2n− 1)(2− 1
4n

) + 3 = 4n− 2
4
− 2 + 1

4n
+ 3 = 4n+ 1

4n
+ 2

4

And as 4n + 1
4n

+ 2
4
< 4n + 2

4n
+ 6

4
then, by Definition 9.2, (x, y) cannot be a

farthest pair of vertices.

Following our case analysis, (t1, t2) is the only farthest pair of vertices for U ′.

Let si be the leaf for the ith branch of type L edges for every 0 < i ≤ r, and

let t1, t2 be the leaves for the two branches of type H edges. We note the following

uncertainty distances of the construction:

dA(si,m) = (n, 2n)

dA(tj,m) = (n(2− 1
2n

), 4n) = (2n− 1
2
, 4n)

This brings to the following:

Lemma 9.18. Let U ′ = (V,E,A′) be an edge uncertainty graph after updating any

number of edges in U in any order, with actual weights obtained as determined by

Algorithm 7. Then U ′ is solved if and only if dA′(tj,m) ≥ dA′(si,m) for every i and

j.

Proof. We first note dA′(tj,m) ∩ dA′(si,m) = ∅.
Following our case analysis in Lemma 9.17, the pair (t1, t2) is the only farthest

pair of vertices after updating every edge in U . This means that if U ′ is solved then

in every weighted graph (V,E,w′) that is consistent with U ′, the pair (t1, t2) is a

farthest pair of vertices and therefore dw′(t1, t2) ≥ dw′(x, y) for every x, y ∈ V . If this

is the case then, as dw′(t1, t2) = dw′(t1,m) + dw′(t2,m), also dw′(tj,m) ≥ dw′(si,m).

Hence if U ′ is solved then dA′(tj,m) ≥ dA′(si,m) holds.

If dA′(tj,m) ≥ dA′(si,m) then in every weighted graph (V,E,w′′) that is con-

sistent with U ′ we have dw′′(tj,m) ≥ dw′′(si,m) and as dw′′(t1,m) + dw′′(t2,m) =

dw′′(t1, t2) then also dw′′(t1, t2) ≥ dw′′(si, tj) ≥ dw′′(si, sq) for every 0 < q ≤ r. If

this is the case then the pair (t1, t2) is a farthest pair of vertices for (V,E,w′′), and

hence if dA′(tj,m) ≥ dA′(si,m) then U ′ is solved.

We now show:

Lemma 9.19. After (r+2)n−1 updates on U by any deterministic online algorithm

with actual weights obtained as determined by Algorithm 7, the edge uncertainty

graph is not solved.
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Proof. Following the proof of Lemma 9.16, every branch of type L edges except one

contains one edge with uncertainty area {a}, and every branch of type H edges

except one contains one edge with uncertainty area {c}.
Let U ′ = (V,E,A′) be the edge uncertainty graph after these (r+2)n−1 updates

have been made on U . As E consists of exactly (r+2)n edges, if (r+2)n−1 updates

have been made then there is exactly one edge that has not been updated. Let the

non-updated edge be e′ and we note that either e′ is of type L (Case 1) or e′ is of

type H (Case 2).

Case 1: As e′ is of type L and not been updated then Ae′ = (1, 2). Let s1

be the leaf of this particular branch that contains e′. This branch further contains

n−1 edges with the trivial uncertainty area {b} and we note its uncertainty distance:

dA′(s1,m) = (n−1)(2− 1
4n

)+(1, 2) = 2n+ 1
4n
− 9

4
+(1, 2) = (2n+ 1

4n
− 5

4
, 2n+ 1

4n
− 1

4
).

Further let t1 be the leaf of the branch of type H edges that does not contain an

edge with uncertainty area {c} and we note its uncertainty distance:

dA′(t1,m) = n(2− 1
4n

) = [2n− 1
4
, 2n− 1

4
].

Since [2n − 1
4
, 2n − 1

4
] 6≥ (2n + 1

4n
− 5

4
, 2n + 1

4n
− 1

4
) then, by Lemma 9.18,

U ′ is not solved.

Case 2: As e′ is of type H and not been updated then Ae′ = (2− 1
2n
, 4). Let t1

be the leaf of this particular branch that contains e′. This branch further contains

n−1 edges with the trivial uncertainty area {b} and we note its uncertainty distance:

dA′(t1,m) = (n− 1)(2− 1
4n

) + (2− 1
2n
, 4) = 2n + 1

4n
− 9

4
+ (2− 1

2n
, 4) = (2n−

1
4n
− 1

4
, 2n+ 1

4n
+ 7

4
).

Further let s1 be the leaf of the branch of type L edges that does not contain an

edge with uncertainty area {a} and we note its uncertainty distance:

dA′(s1,m) = n(2− 1
4n

) = [2n− 1
4
, 2n− 1

4
].

Since (2n − 1
4n
− 1

4
, 2n + 1

4n
+ 7

4
) 6≥ [2n − 1

4
, 2n − 1

4
] then, by Lemma 9.18,

U ′ is not solved.

Lemma 9.20. OPT is at most r, for the edge uncertainty graph U with actual

weights obtained as determined by Algorithm 7.

Proof. By Lemma 9.19 every online strategy is forced to update (r + 2)n to reach

a solved instance, and by Lemma 9.16 after (r+ 2)n updates either every branch of

type L edges contains exactly one edge with uncertainty area {a}, or every branch

of type H edges contains exactly one edge with uncertainty area {c}.
We argue that OPT is either the number of all edges that have the uncertainty

area {a}, if there exists one in every branch of type L edges, or the number of all

edges that have the uncertainty area {c}, if there exists one in every branch of type
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H edges. As there are exactly 2 branches for type H edges and r ≥ 2 branches of

type L edges then it follows OPT ≤ r.

It remains to show that if U ′ = (V,E,A′) is the edge uncertainty graph after

updating these edges in U , even if all other edges are not updated, U ′ is solved. By

Lemma 9.18, it suffices to show that the condition dA′(tj,m) ≥ dA′(si,m) holds for

every i and j.

We split the two cases to compare uncertainty distances for where there exists

one uncertainty area with value {a} in every branch of type L edges (Case 1, see

also Figure 9.8), and where there exists one uncertainty area with value {c} in every

branch of type H edges (Case 2, see also Figure 9.9).

Case 1: Each branch j of type H edges has the same uncertainty distance from

leaf to vertex m as it is composed of n non-updated edges with uncertainty area

(2− 1
2n
, 4). So dA′(tj,m) = n(2− 1

2n
, 4) = (2n− 1

2
, 4n).

Further each branch i of type L edges has the same uncertainty distance from leaf

to vertex m as it is composed of n − 1 non-updated edges with uncertainty area

(1, 2) and one more edge that has been updated and now has the trivial uncertainty

area {1 + 1
4n
}. So dA′(si,m) = (n− 1)(1 , 2) + (1 + 1

4n
) = (n− 1 , 2n− 2) + (1 +

1
4n

) = (n+ 1
4n
, 2n+ 1

4n
− 1).

As (2n − 1
2
, 4n) > (n + 1

4n
, 2n + 1

4n
− 1) for any n then condition dA′(tj,m) ≥

dA′(si,m) holds.

Case 2: Each branch j of type H edges has the same uncertainty distance from

leaf to vertex m as it is composed of n − 1 non-updated edges with uncertainty

area (2− 1
2n
, 4) and one more edge that has been updated and now has the trivial

uncertainty area {3}. So dA′(tj,m) = (n− 1)(2− 1
2n
, 4) + (3) = (2n− 1

2
− 2 +

1
2n
, 4n− 4) + 3 = (2n+ 1

2n
+ 1

2
, 4n− 1).

Further each branch i of type L edges has the same uncertainty distance from leaf

to vertex m as it is composed of n non-updated edges with uncertainty area (1, 2).

So dA′(si,m) = n(1 , 2) = (n , 2n).

As (2n+ 1
2n

+ 1
2
, 4n−1) > (n , 2n) for any n then condition dA′(tj,m) ≥ dA′(si,m)

holds.

We now use the established Lemmas to show the desired lower bound for FPVT:

Lemma 9.21. Under the restriction of open or trivial uncertainty areas, there exist

configurations of the FPVT problem such that every deterministic online algorithm

performs
⌊
k
2

⌋
· OPT + (k mod 2) + k updates to solve the problem, where k is the

hopping diameter.

Proof. By Lemma 9.19 every online strategy requires nr + 2n updates to solve an

FPVT problem as by our construction, and by Lemma 9.20 the optimal update
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solution of the same instance contains at most r updates. Therefore we get a lower

bound of n · OPT + 2n. Furthermore, as the hopping diameter is k = 2n for that

construction, the lower bound is also bounded by k so k
2
·OPT + k. Moreover as k

is even for any n then k
2

=
⌊
k
2

⌋
and (k mod 2) = 0, and therefore k

2
· OPT + k =⌊

k
2

⌋
·OPT + (k mod 2) + k.

9.3.1.3 Conclusion

Following Lemma 9.15 and Lemma 9.21, we summarise our results for this subsection

with Theorem 9.22:

Theorem 9.22. Under the restriction of open or trivial uncertainty areas, the wit-

ness algorithm for the FPVT problem performs at most
⌊
k
2

⌋
·OPT + (k mod 2) + k

updates, where k is the hopping diameter. Furthermore, this is the best possible.

Note. Following Lemma 9.10, for a solved edge uncertainty graph U , all farthest

pairs of vertices in weighted graphs that are consistent with U are computable

without further updates. Therefore we note Theorem 9.22 must carry over to the

variation of the FPVT problem where not just one but all farthest pairs of vertices

need to be computable.

9.3.2 Closed Intervals

Introduction. We now look at the FPVT problem without restricting the un-

certainty areas to be either trivial or open intervals. Specifically we show with a

construction of an edge uncertainty graph U = (V,E,A) that there does not exist a

deterministic online algorithm with bounding function over OPT , using uncertainty

areas which are either trivial or closed intervals.

For this construction we first place an edge with trivial uncertainty area con-

taining a large weight such that one vertex is the leaf x and the other vertex m is

connected to n branches where each branch contains n consecutive edges. Let all

these n · n edges have the uncertainty area [1, 2] and we can fix the large weight to

be {2n+1}. Further let Y = {y1, y2, . . . , yn} denote the set of all leaves of these n ·n
edges. So the constructed tree contains 1 + n leaves and n · n edges with non-trivial

uncertainty areas. We denote the constructed uncertainty graph throughout this

subsection by U = (V,E,A). See Figure 9.10.
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Figure 9.10: Construction of lower bound for FPVT

We highlight the properties of the construction before any updates are consid-

ered. For every weighted graph G = (V,E,w) that is consistent with U , we have

dw(x,m) > dw(yi,m) for every 0 < i ≤ n. So we note the following:

dA(x,m) = {2n+ 1}
dA(yi,m) = (n, 2n)

dA(x,m) > dA(yi,m)

As such x must be a vertex in every farthest pair of vertices in every weighted

graph that is consistent with U . Thus, in order to determine a farthest pair of

vertices for every weighted graph that is consistent with U , it remains to find a

vertex yj for some 0 < j ≤ n. However, with the uncertainty distance dA(yi,m)

being the same for every i, there exist weighted graphs that are consistent with

U such that each vertex in Y is inside and not inside a farthest pair of vertices.

Therefore U is not solved.

These properties bring us to the following Lemma:

Lemma 9.23. Let U ′ = (V,E,A′) be an edge uncertainty graph after updating any

number of edges in U in any order. Then U ′ is solved if and only if there exists

yj ∈ Y such that dA′(m, yj) ≥ dA′(m, yk) for every yk ∈ Y \ {yj}.

Proof. As in every weighted graph that is consistent with U the vertex x is inside

every farthest pair of vertices, then this must also be the case for U ′. Further we

have the set Y contains all leaves that are not x.

So in order for U ′ to be solved, there must exist a pair (x, yz) for some yz ∈ Y such

that for every weighted graph (V,E,w′) that is consistent with U ′ then dw′(x, yz) ≥
dw′(a, b) for every a, b ∈ V . Since the sub-path between x and m is shared among

all possible farthest pairs and furthermore P (m, yj) ∩ P (m, yk) = ∅ then it suffices

to show dA′(m, yj) ≥ dA′(m, yk).

With similar arguments if U ′ is solved then dA′(m, yj) ≥ dA′(m, yk) holds.
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The idea behind the construction is to force any deterministic online algorithm

to perform n · n updates (i.e. update every non-trivial uncertainty area in the

construction) where OPT is only n. To achieve this, when an algorithm requests

to update an edge, an uncertainty area is reduced to contain only an actual weight

given by the adversary according to Algorithm 8:

Algorithm 8 Adversary for the lower bound of FPVT with closed intervals allowed

1: if Last available update in the construction then
2: Receive 2;
3: else
4: if Last update on current branch then
5: Receive 1.1;
6: else
7: Receive 2;
8: end if
9: end if

We look at further properties of the construction in the following two lemmas.

Lemma 9.24. After n · n − 1 updates on U by any deterministic online algorithm

with actual weights obtained as determined by Algorithm 8, the edge uncertainty

graph is not solved.

Proof. Let U ′ = (V,E,A′) be the edge uncertainty graph after n ·n−1 updates have

been made on U . Graph U contains exactly n · n edges with non-trivial uncertainty

areas, so if n · n − 1 updates have been made there exists exactly one edge e with

non-trivial uncertainty area in U ′. So, as by Algorithm 8, every branch (other than

P (x,m)) contains n − 1 edges with uncertainty area value {2} and further either

contains the trivial uncertainty area with value {1.1} or the non-updated edge e

with uncertainty area A′e = [1, 2]. Let y1 be the leaf of a branch for the former,

and let y2 be the leaf of the branch for the latter. The uncertainty distances are as

follows:

dA′(m, y1) = (n− 1)2 + 1.1 = 2n− 2 + 1.1 = [2n− 0.9 , 2n− 0.9]

dA′(m, y2) = (n− 1)2 + [1, 2] = 2n− 2 + [1, 2] = [2n− 1 , 2n]

So, as [2n−1 , 2n] 6≥ [2n−0.9 , 2n−0.9] and [2n−0.9 , 2n−0.9] 6≥ [2n−1 , 2n],

the condition of Lemma 9.23 does not hold and therefore U ′ is not solved.

Lemma 9.25. OPT is at most n, for the edge uncertainty graph U with actual

weights obtained as determined by Algorithm 8.

Proof. As by the construction there are n branches with leaves in Y . Furthermore

exactly one of those branches consists only of edges which when updated their area

of uncertainty will be reduced to {2}, and let the leaf for this branch be y1 ∈ Y .
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Moreover the rest n− 1 branches consist of n− 1 edges which when updated their

area of uncertainty will be reduced to {2} and for the remaining edge to {1.1}.
We argue that P (m, y1) is an optimal update solution by showing that after

updating all edges in P (m, y1) the instance is solved with |P (m, y1)| = n updates.

Let U ′ = (V,E,A′) be the edge uncertainty graph after updating in U every edge

in P (m, y1). The uncertainty distance between m and y1 becomes:

dA′(m, y1) = n(2) = [2n , 2n]

And the uncertainty distance between m and yi for every yi ∈ Y \ {y1} remains:

dA′(m, yi) = n[1, 2] = [n , 2n]

As [2n , 2n] ≥ [n , 2n], by Lemma 9.23, U ′ is solved with n updates.

Following Lemma 9.24 and Lemma 9.25, any online strategy can be forced to

make n·n updates to reach a solved instance where, if the results of the updates were

known beforehand, the problem could have been solved with just n. This brings us

to the following conclusion for this subsection:

Theorem 9.26. If closed intervals are allowed as uncertainty areas, there does not

exist a deterministic online algorithm for the FPVT problem with constant update

competitive ratio.

It remains however open if the problem was to determine all farthest pairs of

vertices instead of just one.
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9.4 FPV for Cycle Graphs

Introduction. In this section we give a lower bound for finding a farthest pair

of vertices on a different kind of graphs. The setting is very similar to Section 9.3

with the difference being that now there is a single cycle through all vertices, and

so there are exactly two paths between any two vertices instead of just one. We

use the abbreviation FPVC for the Farthest Pair of Vertices in a Cycle graph under

uncertainty, which is in line with Definition 9.3. We will make a construction of

an edge uncertainty graph and show that any deterministic online algorithm has to

update all n edges with non-trivial uncertainty area, whereas OPT is just k where

n ≥ k ≥ 1.

We modify Definition 9.7 to be used for cycle graphs:

Definition 9.27. For a set S of consecutive edges in an edge uncertainty graph

U ′ = (V,E,A′), we say the sum of all uncertainty areas of the edges in S is the

uncertainty distance of S. We write dA′(S).

And we note the uncertainty distance of a set S is either in the form of a closed

interval, if all edges in S have uncertainty areas that are trivial or closed intervals,

or in the form of an open interval, if at least one of the edges in S has its uncertainty

area to be an open interval. We also note that we use this notation for comparison

between two edge sets only when they do not share an element.

Placement of edges and vertices. For this construction we first take n ≥ 1

as a parameter and construct the set of edges H = {h1, h2, h3, . . . , hn} such that

each edge hi ∈ H has the non-trivial uncertainty area Ahi = (1, 3) and placed

consecutively forming a horizontal line. Let s1 and t1 be the leaves of this line. Now

we place the edge l with trivial uncertainty area Al = {n + 1} below and parallel

to the edges in H, without sharing any edges or vertices with them. Let s2 and

t2 be the leaves of this edge (without loss of generality t2 is closer to t1 than s2

to t1). Next step is to connect t1 with t2 forming the edge q which has the trivial

uncertainty area Aq = {4n}. Finally we connect vertices s1 and s2 with two more

edges g1 and g2 respectively meeting on vertex m. The uncertainty area for each of

these two edges is trivial and set to be Ag1 = Ag2 = {10n}.
The construction of the edge uncertainty graph in now complete and we denote

it throughout this section with U = (V,E,A). The construction can be seen in

Figure 9.11. The set E contains exactly 4 edges with trivial uncertainty area and

further n edges with non-trivial uncertainty area.
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Figure 9.11: Construction of lower bound for FPVC

We highlight some properties before any updates are considered. For every

weighted graph G = (V,E,w) that is consistent with U :

• Vertex m is inside every farthest pair of vertices in G, as the distance to m

from any other vertex is at least 10n, whereas the distance between any other

two vertices must be less. For example from s1 to s2 there are two paths:

one with visiting m and weight 20n, and the alternative path cannot be more

than n(1, 3) + (4n) + (n + 1). So as 10n > n(1, 3) + (4n) + (n + 1) then

10n > dw(s1, s2).

• Since 4n > n(1, 3) and 4n > n+ 1, it follows that dw(t1, t2) > dw(s1, t1) and

dw(t1, t2) > dw(s2, t2). So there exists a path from vertex m to every other

vertex such that visiting edge q is more expensive than the alternative path.

Combining the above properties, we have that (m, t1) and (m, t2) are the only

potential farthest pairs of vertices for weighted graphs consistent with U . This brings

us to the following Lemma:

Lemma 9.28. Let U ′ = (V,E,A′) be an edge uncertainty graph after updating

any number of edges in U in any order. Then U ′ is solved if and only if either

dA′(H) ≥ dA′({l}) or dA′({l}) ≥ dA′(H).

Proof. The last property we have highlighted implies that U ′ is solved if and only

if for every weighted graph (V,E,w′) that is consistent with U ′, either dw′(m, t1) ≥
dw′(m, t2) or dw′(m, t2) ≥ dw′(m, t1).

Furthermore in the properties it is shown that dw′(m, t1) must contain the weight

of edge g1 and dw′(m, t2) must contain the weight of edge g2. Therefore, as Ag1 =

Ag2 = {10n} for U and also for U ′, it follows that U ′ is solved if and only if either

dw′(s1, t1) ≥ dw′(s2, t2) or dw′(s2, t2) ≥ dw′(s1, t1).

This further implies that U ′ is solved if and only if either dA′(H) ≥ dA′({l}) or

dA′({l}) ≥ dw′(H).
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Next we give the details about the two actual weights used for the edges in

H. We take k as another parameter such that n ≥ k ≥ 1. Let a = 1 + 1
2nk

and

b = 1 + 1
k
, and we note that a, b ∈ hi for each edge hi ∈ H. Furthermore a < b.

When a deterministic online algorithm requests to update an edge, an uncertainty

area is reduced to contain only an actual weight given by the adversary according

to Algorithm 9:

Algorithm 9 Adversary for the lower bound of FPVC

1: if n− k edges in H have been updated then
2: Receive b;
3: else
4: Receive a
5: end if

This brings us to the following two lemmas:

Lemma 9.29. After n− 1 updates on U by any deterministic online algorithm with

actual weights obtained as determined by Algorithm 9, the edge uncertainty graph is

not solved.

Proof. Let U ′ = (V,E,A′) be the edge uncertainty graph after n − 1 updates have

been made on U . In U ′ the set H consist of n − k updated edges with trivia

uncertainty area {a}, further k− 1 updated edges with trivial uncertainty area {b},
and one more edge that has not been updated and therefore it still has the non-trivial

uncertainty area (1, 3). So the uncertainty distance of H in U ′ is:

dA′(H) = (n− k)(1 + 1
2nk

) + (k − 1)(1 + 1
k
) + (1 , 3) = (n+ 1

2k
− k − 1

2n
) + (k +

1− 1− 1
k
) + (1 , 3) = (n− 1

2k
− 1

2n
) + (1 , 3) = (n+ 1− 1

2k
− 1

2n
, n+ 3− 1

2k
− 1

2n
)

Since (n+ 1− 1
2k
− 1

2n
, n+ 3− 1

2k
− 1

2n
) 6≥ [n+ 1 , n+ 1] and

[n + 1 , n + 1] 6≥ (n + 1− 1
2k
− 1

2n
, n + 3− 1

2k
− 1

2n
) then, by Lemma 9.28, U ′ is

not solved.

Lemma 9.30. OPT = k for the edge uncertainty graph U with actual weights

obtained as determined by Algorithm 9.

Proof. We argue that OPT is the number of edges which when updated the uncer-

tainty area becomes {b}. U contains k such edges and so let U ′ = (V,E,A′) be the

edge uncertainty graph after updating them in U . U ′ further contains n − k edges

which have not been updated and therefore each still has the non-trivial uncertainty

area (1, 3). So the uncertainty distance of H in U ′ is:

dA′(H) = k(1+ 1
k
)+(n−k)(1 , 3) = k+1+(n−k , 3n−3k) = (n+1 , 3n−2k+1)

Since (n+ 1 , 3n− 2k + 1) > [n+ 1 , n+ 1] then, by Lemma 9.28, U ′ is solved.

It remains to show that for k − 1 updates the edge uncertainty graph is not

solved, even if the results of the updates were known beforehand. Since a < b, for a

111



Chapter 9 9.4. FPV for Cycle Graphs

number of updates that yield a combination of a’s and b’s, the uncertainty distance

of H cannot be greater than the one of having the same number of updates that

yield only b’s. So it suffices to show just for the case where k− 1 updates that yield

b’s have been made. So let U ′′ = (V,E,A′′) be the edge uncertainty graph after

updating k − 1 such edges in U . We note U ′′ further contains n− k + 1 edges that

have not been updated and therefore still have the uncertainty area value (1, 3). So

the uncertainty distance of H in U ′′ is:

dA′′(H) = (k − 1)(1 + 1
k
) + (n− k + 1)(1 , 3) = k − 1

k
+ (n− k + 1 , 3n− 3k +

3) = (n+ 1− 1
k
, 3n− 2k − 1

k
+ 3)

Since (n+ 1− 1
k
, 3n− 2k − 1

k
+ 3) 6≥ [n+ 1 , n+ 1] and

[n + 1 , n + 1] 6≥ (n + 1 − 1
k
, 3n − 2k − 1

k
+ 3) then, by Lemma 9.28, U ′′ is not

solved.

Following Lemma 9.29 and Lemma 9.30, there exist configurations of the FPVC

problem such that any online strategy can be forced to make n updates to solve the

problem whereas, if the results of the updates were known beforehand, given k with

n ≥ k the problem could have been solved with just k updates. This brings us to

the following conclusion for this section:

Theorem 9.31. There does not exist a deterministic online algorithm for the FPVC

problem with constant update competitive ratio.

We note that our construction could be easily modified to use closed instead of

open intervals for the non-trivial uncertainty areas. It remains however open if the

problem was to determine all farthest pairs of vertices instead of just one.
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Concluding Remarks and Future

Work

10.1 Maximal Points

• For the maximal points verification we have shown in Chapter 5 that, by a

reduction from the Minimum Set Cover problem, the problem is NP-hard. In

our reduction each uncertainty area is either a singleton or contains two points

but it remains open if the same holds when each uncertainty area is connected.

Perhaps new results can be found for this case.

• In Chapter 6 we proposed a new model for the maximal point problem and in

Section 6.5 of that chapter we presented a polynomial time strategy to solve

the verification problem for the new model (MPDPV). In Chapter 7 we have

studied the same model but in the setting of coordinate specific updates. In

Section 7.3 of that chapter we had a look at the verification problem (MPCSV)

and highlighted a few properties that make it harder to construct an algorithm,

which are not present in MPDPV. However our results, for the time being, are

inconclusive whether a polynomial time strategy is possible. This could be

something to further look at in the future.

• In dimensions higher than 2D we have shown in Chapter 8 that there does

not exist a deterministic online algorithm with constant competitive ratio.

It would be interesting to find new kind of restrictions that allow update-

competitive algorithms.
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10.2 Convex Hull

• The problem of computing the convex hull of a set of points under uncertainty

has been studied in [6]. They present a 3-update competitive algorithm and

show that this is the best possible. The result applies only if the input consists

of uncertainty areas which are either trivial or closures of connected open areas.

Perhaps new results can be found for different restrictions of the problem

and/or for its verification setting. Maybe even for dimensionality higher than

2.

10.3 Farthest Pair of Vertices

• We have studied the problem of finding ”a” farthest pair of vertices in Chapter

9 for a few different restrictions/types of graphs. It would be interesting to also

study the problem where ”all” farthest pairs of vertices need to be computable.

For example, in Subsection 9.3.2, we have shown that if closed intervals are

allowed for uncertainty areas in a tree, and just one farthest pairs of vertices

needs to be determined, there does not exist a deterministic online algorithm

with constant competitive ratio. This might not be the case if all pairs need

to be computable.

10.4 Other Directions

• So far we have seen problems under uncertainty where an update reduces the

uncertainty element only on a single input item and has no impact on the

uncertainty of others. It would be interesting to find and research a problem

in the setting where an update may also influence the uncertainty of other

input items. For example lets consider the construction of valid puzzles for

the popular number-placement game of sudoku. An instance of the puzzle

contains 9× 9 cells and is considered valid only if it is uniquely solvable with

numbers 1 to 9. So if one wants to create a valid instance, starting possibly

from an empty grid, has to place numbers iteratively which not only remove

the uncertainty of the current cell but may also reduce the uncertainty of other

cells.

• So far we have only studied deterministic algorithms where they behave pre-

dictably. The study of randomised algorithms where there is employment of a

degree of randomness as part of their logic seems interesting for improvement

in the average case.
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Rajeev Raman. Computing minimum spanning trees with uncertainty. In

Susanne Albers and Pascal Weil, editors, STACS 2008, 25th Annual Symposium

on Theoretical Aspects of Computer Science, Bordeaux, France, February 21-

23, 2008, Proceedings, volume 1 of LIPIcs, pages 277–288. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, Germany, 2008.

[30] Katja Hose and Akrivi Vlachou. A survey of skyline processing in highly dis-

tributed environments. VLDB J., 21(3):359–384, 2012.

[31] Ju-wook Jang, Madhusudan Nigam, Viktor K. Prasanna, and Sartaj Sahni.

Constant time algorithms for computational geometry on the reconfigurable

mesh. IEEE Trans. Parallel Distrib. Syst., 8(1):1–12, 1997.

[32] Simon Kahan. A model for data in motion. In Cris Koutsougeras and Jef-

frey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Symposium on

Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages

267–277. ACM, 1991.

117



Chapter 10 Bibliography

[33] Sanjiv Kapoor. Dynamic maintenance of maximas of 2-d point sets. In Proceed-

ings of the tenth annual symposium on Computational geometry, pages 140–149.

ACM, 1994.

[34] Richard M. Karp. Reducibility among combinatorial problems. In Michael
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