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Abstract

Several infrequent genetic polymorphisms in the SERPINA1 gene are known to substantially reduce concentration of alpha1-
antitrypsin (AAT) in the blood. Since low AAT serum levels fail to protect pulmonary tissue from enzymatic degradation,
these polymorphisms also increase the risk for early onset chronic obstructive pulmonary disease (COPD). The role of more
common SERPINA1 single nucleotide polymorphisms (SNPs) in respiratory health remains poorly understood. We present
here an agnostic investigation of genetic determinants of circulating AAT levels in a general population sample by
performing a genome-wide association study (GWAS) in 1392 individuals of the SAPALDIA cohort. Five common SNPs,
defined by showing minor allele frequencies (MAFs) .5%, reached genome-wide significance, all located in the SERPINA
gene cluster at 14q32.13. The top-ranking genotyped SNP rs4905179 was associated with an estimated effect of
b= 20.068 g/L per minor allele (P = 1.20*10212). But denser SERPINA1 locus genotyping in 5569 participants with
subsequent stepwise conditional analysis, as well as exon-sequencing in a subsample (N = 410), suggested that AAT serum
level is causally determined at this locus by rare (MAF,1%) and low-frequent (MAF 1–5%) variants only, in particular by the
well-documented protein inhibitor S and Z (PI S, PI Z) variants. Replication of the association of rs4905179 with AAT serum
levels in the Copenhagen City Heart Study (N = 8273) was successful (P,0.0001), as was the replication of its synthetic
nature (the effect disappeared after adjusting for PI S and Z, P = 0.57). Extending the analysis to lung function revealed a
more complex situation. Only in individuals with severely compromised pulmonary health (N = 397), associations of
common SNPs at this locus with lung function were driven by rarer PI S or Z variants. Overall, our meta-analysis of lung
function in ever-smokers does not support a functional role of common SNPs in the SERPINA gene cluster in the general
population.
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Introduction

Alpha1-antitrypsin (AAT) is a serum marker for inflammation

produced in the liver. Its main function is to inhibit neutrophil

elastase and consequently protect pulmonary tissue. The SER-

PINA1 gene encoding the AAT protein is known to be

polymorphic in the general population. The best studied single

nucleotide polymorphisms (SNPs) causing a reduction in AAT

serum levels are the protease inhibitor S (PI S, rs17580) and the

protease inhibitor Z (PI Z, rs28929474) variants [1]. The loss of

function mechanism is especially well investigated for the PI Z

variant. The resulting amino acid change in AAT leads to the

protein’s intracellular polymerization in hepatocytes and therefore

to a reduced level of secreted serum AAT [2]. Homozygosity for

PI Z (PI ZZ genotype) with a frequency of about 0.01% in

Caucasian populations [3] causes blood AAT levels below 30% of

normal. This genotype is clearly associated with elevated chronic

obstructive pulmonary disease (COPD) risk accounting for 1–2%

of all cases [4,5]. There is also strong evidence that accelerated

lung function decline and increased obstructive disease risk can be

caused by compound heterozygosity of PI Z and PI S (PI SZ

genotype). The case is less clear for PI MZ, PI MS or PI SS

genotypes (PI M standing for the normal allele), which cause a less

pronounced reduction in AAT concentration, as previous studies

produced inconsistent evidence [6–9].

Further of note, large-scale genome-wide association studies

(GWAS) on COPD or on cross-sectional or longitudinal lung

function have not identified the SERPINA1 gene to be a major

Genetic Determinants of a1-antitrypsin Serum Level
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genetic determinant [10–12]. But a recent GWAS on emphysema

[13] and a comprehensive evaluation of candidate regions for lung

function [14] reported rs4905179 and rs3748312, two common

SNPs (minor allele frequencies (MAFs) .5%) located in the

SERPINA gene cluster on 14q32.13, among their most strongly

associated results. This locus encompasses SERPINA1 and ten

other genes (SERPINA2 to SERPINA6 and SERPINA9 to

SERPINA13) encoding extracellular ‘clade A’ serpins with very

heterogeneous functions [15]. It is currently not known whether

such association signals observed for this locus reflect a causal role

of common variants or whether they are merely synthetic,

reflecting effects of rarer causal variants [16]. Towards that aim,

but also to detect further chromosomal loci of potential relevance

to circulating levels of AAT, we first performed a GWAS on AAT

serum level using a subset of the population-based Swiss Cohort

Study of Air Pollution and Lung Disease in Adults (SAPALDIA) as

discovery sample, and a second subset of SAPALDIA as well as an

independent cohort, the Copenhagen City Heart Study (hence-

forth referred to as Copenhagen), as replication sample. We also

conducted fine mapping analyses of the SERPINA1 gene in the

SAPALDIA cohort. Finally, we meta-analyzed the lung function

effect of common and low-frequent SERPINA1 SNPs previously

observed to be associated with pulmonary health in ever-smokers,

based on data provided by several population- and patient-based

studies.

Results

The discovery population and the design used to determine

AAT-associated genetic variants are depicted in Figure S1 and

further described in the Materials and Methods section. A

comparison between the characteristics of the genome-wide

analyzed sample (SAPALDIA discovery arm, N = 1392) and the

remainder of the SAPALDIA cohort (SAPALDIA replication arm,

N = 4245) did not reveal substantial differences in AAT serum

levels or covariate distribution (Table S1), although asthmatics

were overrepresented (39.4%) in the SAPALDIA discovery arm

and absent in the replication arm, which is due to previous study

design [17]. The participants of the independent replication cohort

Copenhagen (N = 8273) were on average five years older and had

twice as many current smokers (Table S1). This was in line with

substantially lower lung function levels (more than 800 mL lower

forced expiratory volume in 1 second, FEV1, compared to both

SAPALDIA subsets) and slightly elevated AAT blood levels

(1.339 g/L vs. 1.257 and 1.255 g/L, respectively). The charac-

teristics of the study populations contributing to the genetic

association analyses with lung function are given in Table S2.

GWAS on AAT Serum Level
The association of more than 2.1 million genome-wide SNPs

with AAT serum levels is shown in Figure 1. The ten most

strongly associated SNPs were all located in the SERPINA gene

cluster, half of them reached genome-wide significance

(P,5*1028, Table 1). The top 100 ranking SNPs are provided

in Table S3. A regional association plot for the SERPINA gene

cluster is shown in Figure 2. Both the top-ranking imputed SNP,

rs2736887, and the top-ranking genotyped SNP, rs4905179, were

located in close proximity to the SERPINA6 gene and approx-

imately 33 kb and 50 kb downstream of SERPINA1 (effect

estimates b= 20.071 and 20.068 g/L per minor allele;

P = 2.48*10213 and 1.20*10212, respectively). Linkage disequi-

librium (LD) between these two variants based on HapMap2

CEU (Utah residents with Northern and Western European

ancestry) derived haplotype data [18] was strong (r2 = 0.88,

D9 = 1), but Figure 2 suggests that the LD, expressed in r2 values,

between the top-ranking SNP and the other SNPs in the region is

generally modest. The genomic inflation factor lambda was low

(l= 1.02), suggesting minimal population stratification. The

quantile-quantile plot (Q-Q plot) showed good adherence to null

expectation and substantial positive deviation between observed

and expected p-values for the top-ranking SNPs (Figure S2). In a

sensitivity analysis adjusting for additional covariates, including

high sensitivity C-reactive protein (hs-CRP), body mass index

(BMI), passive smoking and alcohol intake, the genome-wide

association results did not show an increase in the strength of the

top-ranking loci, nor did they point to additional loci (data not

shown). Even though this GWAS was enriched with asthma

patients, GWAS stratification according to asthma status did not

show heterogeneity for the top-ranking signals between partici-

pants with and without asthma (data not shown).

Association of 1000 Genomes Imputed Data for the
SERPINA Gene Cluster with AAT Serum Level

In order to further refine association signals in this region, we

imputed additional SNPs on chromosome 14 using haplotype

data from the 1000 Genomes Project (1000G) [19]. The 1000G

imputation yielded a three times higher number of imputed

variants with reasonable quality scores (imputation-r2.0.5)

compared to HapMap-derived imputed variants. A region

defined by 1 Mb up- and downstream of the SERPINA1 gene

revealed 24 additional variants that were associated below a

local significance level of P,3*1025, adjusting for approximately

1800 SNPs covering a region of 2 Mb (Table S4). Among them,

four low-frequent variants and one rare variant showed p-values

reaching genome-wide significance level, and interestingly, none

of them was in high LD (r2.0.8) with any other regional variant

tested. The most strongly associated signal came from the PI Z

variant, which is well known to be associated with reduced

AAT serum levels (b= 20.620 g/L per minor allele,

P = 4.61*10243, MAF = 0.84%). The other well established

Author Summary

Low levels of alpha1-antitrypsin (AAT) in the blood are a
well-established risk factor for accelerated loss in lung
function and chronic obstructive pulmonary disease. While
a few infrequent genetic polymorphisms are known to
influence the serum levels of this enzyme, the role of
common genetic variants has not been examined so far.
The present genome-wide scan for associated variants in
approximately 1400 Swiss inhabitants revealed a chromo-
somal locus containing the functionally established vari-
ants of AAT deficiency and variants previously associated
with lung function and emphysema. We used dense
genotyping of this genetic region in more than 5500
individuals and subsequent conditional analyses to unravel
which of these associated variants contribute indepen-
dently to the phenotype’s variability. All associations of
common variants could be attributed to the rarer
functionally established variants, a result which was then
replicated in an independent population-based Danish
cohort. Hence, this locus represents a textbook example of
how a large part of a trait’s heritability can be hidden in
infrequent genetic polymorphisms. The attempt to transfer
these results to lung function furthermore suggests that
effects of common variants in this genetic region in ever-
smokers may also be explained by rarer variants, but only
in individuals with hampered pulmonary health.
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causal polymorphism, the PI S variant, was less prominently

ranked (b= 20.110 g/L per minor allele, P = 1.95*1026,

MAF = 5.70%) and exhibited an insufficient imputation quality

(imputation-r2 = 0.45).

GWAS on AAT Serum Level, Conditional on PI S and PI Z
Variants

Accuracy of the imputed PI S and PI Z results was confirmed by

direct genotyping of the samples [20]. The discovery arm revealed

33 PI Z carriers, 111 PI S carriers and two compound

heterozygous carriers of PI S and PI Z (MAF = 1.26% for PI Z

and 4.06% for PI S, respectively). No homozygous PI S or PI Z

genotypes were detected.

To test the influence of these variants on the initially reported

GWAS results (Figure 1), we performed a conditional GWAS by

additionally adjusting the regression models for the presence of PI

S and PI Z alleles. We observed a drastic change in the

association of the SERPINA gene cluster SNPs with AAT serum

Figure 1. Manhattan plot of genome-wide -log(10) p-values for association with AAT serum level. SNPs reaching genome-wide
significance are shown in green. They all belong to the SERPINA gene cluster.
doi:10.1371/journal.pgen.1003585.g001

Table 1. The ten most strongly associated SNPs in the unconditional GWAS on AAT serum level in SAPALDIA (N = 1392).

SNP Chromosome Position Gene Location Determination MAF Imp-r2
Allele
Effect P

rs2736887 14 93882733 intergenic imputed 0.185 0.950 0.071 2.48E-13

rs926144 14 93883155 intergenic imputed 0.186 0.950 0.071 2.72E-13

rs7151526 14 93933389 SERPINA1 59UTR imputed 0.065 0.769 0.116 6.78E-13

rs4905179 14 93865245 SERPINA6 59UTR genotyped 0.180 1.000 0.068 1.20E-12

rs11621961 14 93839229 SERPINA6 39UTR genotyped 0.355 0.945 0.052 1.37E-11

rs17751837 14 93937997 SERPINA1 59UTR genotyped 0.097 0.995 0.063 8.56E-08

rs1028580 14 93919635 SERPINA1 intron imputed 0.154 0.979 0.051 4.87E-07

rs8010121 14 93920367 SERPINA1 intron genotyped 0.155 0.999 0.049 6.64E-07

rs3748312 14 93924017 SERPINA1 intron imputed 0.148 0.846 0.053 9.84E-07

rs17752593 14 94007781 SERPINA9 intron genotyped 0.129 0.997 0.053 1.59E-06

Abbreviations: AAT, alpha1-antitrypsin; GWAS, genome-wide association study; MAF, minor allele frequency; SNP, single nucleotide polymorphism.
Imp-r2 is an indicator for imputation quality. SNPs with MAF,0.05 or imp-r2,0.5 were excluded.
Chromosomal position is based on reference panel, NCBI build 36.3. Allele effects are shown in absolute numbers.
doi:10.1371/journal.pgen.1003585.t001
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level (Figure 3 and Table 2). The strong signal on chromosome

14 observed in the original GWAS disappeared completely and

the top-ranking imputed and genotyped SNPs (rs2736887 and

rs4905179) were no longer significant (P = 0.44 and 0.31,

respectively). In fact, no SNP was found near the SERPINA gene

cluster among the 100 most strongly associated common variants

(Table S5). In addition, the 1000G imputed data, comprising

sequences 1 Mb up- and downstream of the SERPINA1 gene, did

not show evidence of other independent AAT-associated SNPs.

An alternative approach that excluded all PI S and PI Z carriers

from the GWAS sample (N = 146), instead of adjusting for them,

confirmed the results. Both analyses revealed an intergenic region

on chromosome 3 with borderline genome-wide significance (top-

ranking SNP rs2566347, b= 20.043 g/L per minor allele,

P = 7.88*1028, in the adjusted GWAS). The top SNPs in this

region were located in proximity to MFSD1 and RARRES1, which

are two genes with sparsely annotated function. The 1000G

imputation of this region did not reveal further variants. In

addition, we were unable to replicate this association signal in the

SAPALDIA replication arm (N = 4245, b= 20.004 g/L per

minor allele, P = 0.46).

Replication in the Copenhagen City Heart Study
The effect of rs4905179, the top genotyped SNP in our GWAS,

on AAT serum levels was tested for replication in Copenhagen

(Table 3). The minor allele was associated with b= 20.097 g/L

(P,0.0001, N = 8332). As observed in the GWAS, adjustment for

PI S and Z polymorphisms resulted in a complete loss of this signal

(b= 0.003 g/L, P = 0.57, N = 8273).

Impact of Common and Low-Frequent SERPINA1 Genetic
Variants on AAT Serum Level

In a first fine mapping step, 16 SERPINA1 SNPs (see Materials

and Methods section for a description of the SNP selection) were

successfully genotyped in 5569 SAPALDIA subjects (discovery and

replication arm combined). The genotype results in the discovery

arm allowed us to compare allele frequencies with imputed results

derived from the 1000G data. Table S6 shows that the agreement

was very high. Stepwise conditional regression analyses were then

applied to evaluate the independent effects of each of these SNPs

on AAT serum levels (Table 4). The PI Z variant was most

strongly associated with circulating levels of AAT. The PI S

variant remained strongly associated after conditioning on PI Z.

Two variants located in the 59 non-coding gene region (rs2896268

and rs1956707) were marginally associated with the phenotype in

two further steps after conditioning on PI S and PI Z. The total

variance of AAT explained by statistical models increased from

8.8% (model with only non-genetic factors) to 32.6% (adding PI S

and PI Z alleles), and to 32.8% adding rs2896268 and rs1956707.

Based on genotype data from the SAPALDIA cohort, the

SERPINA1 gene contains three haplotype blocks using D9-based

block definition (Figure 4). The AAT deficiency variants PI S and

PI Z are located in block 1, while rs2896268 and rs1956707 are

located in block 3, roughly 8 kb upstream of exon 1.

Impact of Rare SERPINA1 Genetic Variants on AAT Serum
Level

In a second fine mapping step, exon sequencing was performed

in 410 subjects with low AAT levels that were independent of the

Figure 2. Regional plot for the SERPINA gene cluster (93.8–94.2 Mb on chromosome 14q32.13, reference panel: NCBI build 36.3).
Presented are -log(10) p-values and LD (r2) with top-ranking SNP rs2736887 (purple diamond) for all SNPs in this region. The blue line shows
recombination rate.
doi:10.1371/journal.pgen.1003585.g002

Genetic Determinants of a1-antitrypsin Serum Level

PLOS Genetics | www.plosgenetics.org 5 August 2013 | Volume 9 | Issue 8 | e1003585



presence of PI S or PI Z alleles [21]. 16 additional SERPINA1

variants (two deletions and 14 SNPs) were detected, of which all

but one had already been described [21–29] (Table S7). Three

of the SNPs were synonymous, and five had no accession

numbers in public databases (as of April 1st, 2013). Most of the

non-synonymous SNPs have already been described as poten-

tially lowering AAT serum level, and computational tools only

classified one of them as no damaging to the protein’s tertiary

structure. In order to estimate the phenotypic influence of these

rare variants, we compared mean AAT blood levels, adjusted for

sex, age, study center, current smoking, as well as for the

presence of PI S and Z alleles, between samples without rare

variants (N = 346) and those with a single rare variant (N = 63)

or more than one (N = 1). The subjects with rare variants had a

lower adjusted mean AAT level (0.904 g/L, 95% CI 0.884 to

0.924 g/L) compared to those without rare variants (0.992 g/L,

95% CI 0.984 to 1.000 g/L, P,0.001). Although this difference

is small, the range covers the recently proposed upper limit of

intermediate AAT deficiency (0.92 g/L), a value with some

clinical relevance [20]. AAT levels of carriers of synonymous

mutations or non-synonymous mutations without predicted

damaging consequences to protein structure (N = 20) were not

different from those carrying no rare variants (0.985 vs. 0.990 g/

L, P = 0.77). Assuming that unsequenced samples were negative

for mutations with predicted deleterious functional effects, the

total variance of explained AAT further increased from 32.8%

to 35.4% (based on a statistical model adding all rare

mutations with predicted damaging consequences to the protein

structure).

Common and Low-Frequent SERPINA1 SNPs Previously
Associated with Lung Function

Results from a previous GWAS on emphysema [13] and a

large-scale evaluation of candidate loci on lung function [14]

pointed to a role of common variants in the SERPINA gene cluster.

The SNPs rs4905179 (associated with emphysema in smokers [13])

and rs3748312 (associated with cross-sectional lung function

among ever smokers [14]) were strongly associated with AAT in

our study (Tables 1 and 4), but both signals disappeared upon

adjustment for the low-frequent variants PI S and Z. In order to

clarify whether the association of the two common SNPs with

pulmonary health could also be explained by effects of the rarer

SNPs, we conducted a meta-analysis for cross-sectional lung

function in ever-smokers across 17 studies with a total sample size

of N = 24,446 (Table S2). We included nine studies which had

contributed to the original finding on lung function [14] and had

available genotypes or 1000G imputed genotype data on PI S and

Z. The meta-analysis in cohorts of general population study design

showed that rs4905179 was not associated with lung function in

ever-smokers (P = 0.90 in the fixed-effect meta-analysis,

N = 20,153, Figure 5). Yet smaller studies recruited within

population isolates showed a trend for the rare allele to be

associated with low lung function (random-effect P = 0.02,

N = 1623, Figure 5), and in contrast to the association with AAT

serum levels, adjusting for PI S and Z alleles did not modify the

association of rs4905179 with lung function (Figure 6). For the

second common SNP, rs3748312, we could nominally replicate

the statistically significant allele effect on FEV1 in the general

population of ever-smokers (P = 0.02, N = 15,450), and the

Figure 3. Manhattan plot of genome-wide -log(10) p-values for association with AAT serum level, conditional on PI S and PI Z
alleles.
doi:10.1371/journal.pgen.1003585.g003
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stronger effect that was published [14] seems to be driven by

population isolates (Figure 7). Again, as for rs4905179, the

associations were not dependent on S and Z alleles (Figure 8).

Meta-analyses of the associations of PI S and Z alleles with lung

function revealed no consistent associations between these

functional AAT level determining variants and reduced FEV1

(Figures S3 and S4). Remarkably, the significant associations of

rs4905179 and rs3748312 with lung function assessed in two

additional studies with patients featuring compromised pulmonary

health and undergoing lung resection, showed evidence for

synthetic associations of the common SNPs with lung function

that are consistent with our results for circulating AAT (Table 5).

The minor alleles were associated with lower lung function and the

association completely disappeared when conditioned on the

presence of PI S and Z alleles.

Discussion

We present here the first GWAS on circulating AAT blood

levels. Our results confirm that genetic variation in the SERPINA1

gene is a strong determinant of serum AAT levels. Fine mapping

of SERPINA1 and subsequent stepwise regression analyses further

revealed that the associations with common variants in the

SERPINA locus could be attributed to rarer variants previously

identified to be causally linked with AAT deficiency.

There is an ongoing debate about whether rare variants are

responsible for the missing heritability observed in GWAS on

many complex outcomes [30]. We show here an example in which

the polymorphisms PI S and PI Z seem to account for basically all

observable effects of common variants in the SERPINA gene

cluster on AAT serum level. The top-ranking genotyped SNP in

our GWAS, rs4905179, was in low r2-based LD with PI S

(r2 = 0.18) and PI Z (r2 = 0.06), reflecting in part the unequal allele

frequencies of these SNPs. However, PI S and PI Z showed very

high LD in terms of D9 with the GWAS top signals (e.g. D9 = 0.95

and 0.96, respectively, with rs4905179) and generally with many

common variants in this locus (Figure 4), suggesting little genetic

recombination. This proof-of-principle approach, revealing that

signals of common variants in fact merely reflect rarer variants, has

recently also been shown for some of the loci regulating low-

density lipoprotein (LDL) cholesterol [31,32]. Yet for other loci

linked to LDL cholesterol, as well as for loci influencing other

traits, both common and low-frequent variants contributed

independently of the original GWAS signal to the phenotypic

trait [31,33,34].

Using regional 1000G imputation within the top-ranking loci

can allow the identification of additional association signals of

stronger size to support the initial GWAS top result, as observed

here for the SERPINA cluster, but not for the locus near MFSD1,

an association which was not confirmed in the SAPALDIA

replication arm. The resequencing strategy of the GWAS-

identified locus in a sample with low AAT concentrations yielded

in the identification of rare variants being strongly associated with

reduced AAT blood levels. Such an accumulation of rare variants

in the extreme range of the respective phenotype has also been

reported by others [35,36]. As for the relative contribution of

Table 2. The ten most strongly associated SNPs in the GWAS on AAT serum level, conditional on PI S and PI Z alleles in SAPALDIA
(N = 1392).

SNP Chromosome Position Gene Location Determination MAF Imp-r2
Allele
Effect P

rs2566347 3 159974071 intergenic imputed 0.192 0.998 0.043 7.88E-08

rs1560417 3 159972476 intergenic imputed 0.200 0.998 0.042 1.11E-07

rs1560418 3 159972335 intergenic genotyped 0.200 1.000 0.042 1.11E-07

rs1430414 3 159987697 MFSD1 59UTR imputed 0.137 0.984 0.045 9.26E-07

rs6761989 3 159983253 intergenic imputed 0.137 0.993 0.044 1.14E-06

rs17643917 3 159968433 intergenic imputed 0.137 1.000 0.044 1.23E-06

rs17643860 3 159967954 intergenic imputed 0.137 1.000 0.044 1.24E-06

rs17700475 3 159967627 intergenic genotyped 0.137 1.000 0.044 1.25E-06

rs3863076 3 159969394 intergenic genotyped 0.145 1.000 0.042 1.69E-06

rs2206593 1 184909052 PTGS2 39UTR genotyped 0.065 0.956 0.060 4.60E-06

Abbreviations: AAT, alpha1-antitrypsin; GWAS, genome-wide association study; MAF, minor allele frequency; SNP, single nucleotide polymorphism.
Imp-r2 is an indicator for imputation quality. SNPs with MAF,0.05 or imp-r2,0.5 were excluded.
Chromosomal position is based on reference panel, NCBI build 36.3. Allele effects are shown in absolute numbers.
doi:10.1371/journal.pgen.1003585.t002

Table 3. Minor allele effects of PI S, PI Z and rs4905179 on AAT serum levels in the Copenhagen City Heart Study.

SNP N MAF (genotyped) Allele Effect (g/L) 95% Confidence Intervals P

rs17580 (PI S) 8338 0.029 20.188 20.211 to 20.165 ,0.0001

rs28929474 (PI Z) 8338 0.027 20.492 20.514 to 20.470 ,0.0001

rs4905179 8332 0.186 20.097 20.107 to 20.087 ,0.0001

rs4905179, adjusted for PI S and Z 8273 0.186 0.003 20.007 to 0.013 0.57

Abbreviations: MAF, minor allele frequency; SNP, single nucleotide polymorphism.
doi:10.1371/journal.pgen.1003585.t003
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genetic variants on the phenotype, we confirmed that effect sizes of

PI S and Z on AAT serum levels were comparably strong,

explaining alone a high proportion of the total variability (24.2%).

We estimated that rare variants explained at least another 2% in

our population-based sample, but since we did not sequence the

entire SAPALDIA sample for rare variants, we cannot reliably

quantify this contribution. In terms of blood markers, similar

examples exist in which one genetic variant could explain well

above 5% of the phenotype’s variability (e.g. lipoprotein(a) [37],

bilirubin [38] or adiponectin [39]), but for many other markers

like serum lipid levels, only variants with small effects have been

detected so far [40].

Association patterns between SERPINA1 variants and circulat-

ing AAT did not translate to according associations with lung

function level in a straightforward manner. Lung function is a

complex phenotype associated with numerous genetic variants

[11,12]. Studies on the associations of SERPINA1 polymorphisms

with lung function and COPD have produced mixed results. It is

well accepted that severe AAT deficiency caused by PI null

mutations or by the presence of two PI Z alleles puts a subgroup of

carriers at higher risk of emphysema and COPD, especially when

smoking [5]. Studies on COPD found suggestive evidence for an

association with heterozygous status for the PI Z allele [6,8], but

we observed no associations in our meta-analysis between PI Z

and lung function level in ever-smokers. In the SAPALDIA

general population sample, we had previously reported that an

effect of the PI Z allele on lung function decline is restricted to

persistent smokers and primarily observed for forced expiratory

flow 25–75% [9]. Other variation in or close to the SERPINA1

gene has been proposed to play a role for pulmonary health. First,

a haplotype pattern of five common SNPs was reported to be more

frequent in COPD cases than in controls in a study with limited

statistical power [41]. The only SNP which was also separately

associated with COPD in that analysis was not associated with

reduced serum levels in our study (rs8004738, Table 4). Second,

the minor allele of rs4905179, which was the top signal in the

current AAT GWAS, was positively associated with emphysema

assessed by chest tomography in three independent cohorts

consisting of smoking COPD patients without severe AAT

deficiency (PI ZZ) [13]. Finally, the minor allele of the intronic

SNP rs3748312 was positively associated with lung function in

ever-smokers from different population-based studies of the

SpiroMeta Consortium [14]. The association of these two SNPs

with lung function in ever-smokers was heterogeneous across

studies in our meta-analysis. Dependency on PI S and Z was

limited to studies in patients with lung resection (Groningen,

UBC), consistent with the notion that SERPINA1 may only confer

risk in selected population subgroups.

There are several possible explanations for the poor translation

of genetic association patterns with serum AAT to lung function

and for the heterogeneity of associations between SERPINA1

variants and lung function. First, lung function is influenced by

mechanisms in addition to protease-antiprotease disequilibrium.

Second, the contribution of the SERPINA1 gene variants as a

Table 4. Common and low-frequent SERPINA1 SNPs and their association with AAT serum level, univariate and conditional on
significantly associated SNPs (N = 5569a), in SAPALDIA.

SNP Location Position Selectionb MAF Univariatec Conditionald

Allele Effect P
Allele
Effect P

rs2896268 59UTR 93935461 C 0.495 0.006 0.10 0.013 4.1E-05

rs1956707 59UTR 93933946 C 0.038 0.016 0.10 0.029 5.0E-04

rs8004738 exon 1 93926667 D 0.490 0.005 0.15 0.001 0.81

rs1570142 intron 1 93926015 A,B,C 0.488 0.005 0.19 0.001 0.88

rs3748312 intron 1 93924017 A,B 0.153 0.035 2.4E-12 0.002 0.70

rs3748316 intron 1 93923617 A,C 0.181 0.011 0.02 0.002 0.63

rs3748317 intron 1 93923432 A 0.158 0.020 5.5E-05 0.004 0.36

rs1980617 intron 1 93922287 A 0.389 0.030 5.0E-16 0.003 0.31

rs1980618 intron 1 93922176 A,C 0.383 0.030 1.3E-16 0.005 0.15

rs2753935 intron 1 93920690 A 0.435 0.012 9.7E-04 0.004 0.24

rs2144831 intron 1 93919723 A,C 0.240 0.021 9.8E-07 0.002 0.71

rs709932 exon 2 93918954 A,C 0.169 0.021 1.2E-05 0.003 0.50

rs6647 exon 3 93917168 A,C 0.200 0.026 7.2E-09 0.003 0.51

rs17580 (PI S) exon 3 93917015 D 0.041 0.210 1.9E-127 0.218 1.9E-163

rs28929474 (PI Z) exon 5 93914700 D 0.013 0.483 1.3E-240 0.482 5.2E-269

rs1303 exon 5 93914596 A,C 0.247 0.015 4.7E-04 0.001 0.89

Abbreviations: AAT, alpha1-antitrypsin; MAF, minor allele frequency; SNP, single nucleotide polymorphism.
Chromosomal position is based on reference panel, NCBI build 36.3.
aIncludes subjects for whom all the 16 SNPs have been successfully genotyped.
bSNP selection was based on extreme trait sequence data (A), tagging SNPs according to HapMap (B), TAMAL software (C) and publication about functionality (D); see
Materials and Methods for a more detailed description.
cUnivariate analyses were adjusted for non-genetic factors only (sex, age, recruiting area and current smoking status). Allele effects are shown in absolute numbers and
P,0.005 was considered statistically significant.
dIn a forward selection approach of stepwise regression, the four SNPs in bold contributed statistically significantly to the variability in AAT serum levels and were
included in the final statistical model. Allele effects and p-values refer to this final model.
doi:10.1371/journal.pgen.1003585.t004
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determinant of lung function likely depends on both the

evolutionary pressure in isolated populations and the prevalence

of effect modifiers in the respective study populations. These

include smoking and smoking intensity, and likely other markers of

inflammation. AAT itself plays a dual role in its relationship with

lung function. While chronic AAT deficiency is etiologically

associated with adverse pulmonary health, individuals with lung

function impairment in fact exhibit higher AAT levels for a given

genetic background due to AAT’s role as an acute-phase

inflammation marker [42,43]. Third, tissue-specific regulation of

the SERPINA1 locus may play an important role. Serum AAT

levels are driven by SERPINA1 expression, protein formation and

secretion in hepatocytes, so that regulatory SNPs associated with

serum AAT likely reflect processes in the liver. One way to infer

causality of potentially regulatory SNPs is by testing if they are

simultaneously associated with health outcome and gene expres-

sion in the relevant tissue [44]. We therefore conducted a look-up

in an expression quantitative loci (eQTL) database of lung tissue

[45], but could not find any common variant which was

significantly associated in cis with the transcripts deriving from

the SERPINA1 locus. In a recent study on networks of blood

metabolites, the SNPs rs11628917 and rs1884549 were the most

strongly associated blood and liver eQTLs with respect to

SERPINA1 expression [46]. They both lie in the 39 untranslated

region of SERPINA1, but were not associated with blood AAT in

our GWAS (P = 0.80 and P = 0.21, respectively). Moreover, we

could not detect epistasis between those variants and the

deleterious coding variants PI S and Z in terms of AAT serum

levels. The absence of such an interaction does not point to

regulatory function of the common SNPs [47] and argues in favor

of tissue-specific heterogeneity. Forth, the role of SERPINA1 in

selected subgroups of persons exhibiting accelerated lung function

decline or COPD needs to be considered from a perspective

beyond genetic variation, as a recent study investigating epigenetic

mechanisms of disease revealed methylation status of the

SERPINA1 gene to be most strongly associated with cross-sectional

lung function and COPD [48].

The strength of this study is that it combines the report of a

GWAS on AAT serum levels with meta-analyses of the

associations of some of the GWAS top variants with lung

function. The effects of the underlying functional variants are

thoroughly investigated resulting in the hitherto largest meta-

Figure 4. LD plot among common and low-frequent SNPs in the SERPINA1 gene within the SAPALDIA study. Shading represent r2

values, whereas numbers represent D9 values (no number equals D9 = 1). Red framed SNPs are independently associated with AAT serum levels after
forward selection stepwise regression modeling. Rs17580 is the PI S variant and rs28929474 is the PI Z variant.
doi:10.1371/journal.pgen.1003585.g004
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analysis of PI S and Z on FEV1 in ever-smokers. Ascertainment

and study design of the many participating studies were

sufficiently diverse to informatively address heterogeneity in

association of common and rarer variants in the SERPINA gene

cluster with lung function. The strength of the discovery sample

is the population-based study design and the detailed charac-

terization of the participants. Sex, age and smoking are

important modifiers of AAT blood levels in the general

population [43] and were included in all regression models.

More refined smoking variables covering smoking intensity were

not included as this information is less complete than smoking

status in SAPALDIA and would lower the sample size. By

excluding samples with elevated hs-CRP values we avoided the

masking of AAT deficiencies due to a chronic or acute

inflammation. On the methodological side, conditional analysis

is a well-established tool for identifying independent signals

within a certain locus [38,49,50]. Furthermore, 1000G imputa-

tion was able to point to the causal variant demonstrating its

reliability to correctly assign alleles close to the 1% MAF

threshold.

The limitations of this investigation include firstly the small

sample size of the GWAS discovery arm, resulting in a high

susceptibility to false negative findings. We calculated 63% power

to detect SNPs with an allele effect of 0.1 g/L AAT serum level

( = 2.4% of the phenotypic variance) to a genome-wide significance

level of 5*1028. However, if we define the clinically important

threshold of AAT as the upper limit of intermediate AAT

deficiency, which has been recently suggested as 0.92 g/L [20], we

have more than 99.9% power to detect such a large-impact

variant. Nevertheless, genes that contribute to AAT serum levels

with smaller effects than SERPINA1 were likely to be missed. This

could be a reason why neither SNPs in interleukin 6 (IL-6) nor in

hepatocyte nuclear factor 1a (HNF-1a)/HNF-4, both important

regulators of AAT expression [51], were associated with circulat-

ing AAT concentrations. Furthermore, by sequencing only the

coding region of SERPINA1, rare variants in introns and outside

the gene could not be determined. Another potential limitation of

our GWAS on AAT serum level is the overrepresentation of

asthmatics in the discovery sample. Asthma patients usually show

higher levels of inflammatory markers in their lungs. However, we

did not find heterogeneity in the effects of the most strongly

associated SNPs when comparing asthmatics with non-asthmatics.

Moreover, AAT mean values between the discovery and the

replication arm were not significantly different, as participants

with elevated hs-CRP had been excluded.

In conclusion, our study confirms the SERPINA1 locus as the

major genetic determinant of AAT blood levels. Methodolog-

ically, it represents a powerful example how low-frequent

variants, separated by several kilobases from the top-ranking

GWAS signals, can create purely synthetic associations which

do not add to the variance of the respective outcome. In terms

of lung function, our data do not support a functional role of

Figure 5. Forest plot of meta-analyzed results for the effect per minor allele of rs4905179 on FEV1 in ever-smokers, adjusted for
sex, age, height and population stratification factors. Studies based on population isolates with a high degree of cryptic relatedness are
presented separately. Effect estimates of meta-analyses are shown with green diamonds. I2 is a measure of the heterogeneity between studies.
Random effect meta-analyses are included if I2.0.5. Study weights (blue squares) correspond to fixed effect meta-analyses.
doi:10.1371/journal.pgen.1003585.g005
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any common SNP in the SERPINA cluster in the general

population.

Materials and Methods

Ethics Statement
SAPALDIA was approved by the Swiss Academy of Medical

Sciences, the national ethics committee for clinical research

(UREK, Project Approval Number 123/00) and the Cantonal

Ethics Committees for each of the eight examination areas

(Ethics commissions of the cantons Aargau, Basel, Geneva,

Grisons, Ticino, Valais, Vaud and Zurich). Participants were

required to give written consent before any part of the health

examination was conducted either globally (for all health

examinations) or separately for each investigation. For ethics

statements of the additional studies contributing to this work, see

Table S8.

Study Population
SAPALDIA. In 1991, a random sample of 9651 adults,

aged 18–60 years, from eight areas in Switzerland responded

to a questionnaire about respiratory health, occupational and

lifestyle exposures. 99.0% of them also underwent spirometry

testing [52]. Eleven years later, 8047 persons were reassessed

and 6058 subjects provided blood samples and consented to

DNA analysis [53]. In the present study, we used a subgroup of

the second survey (N = 1640) that underwent genotyping in the

context of the GWAS on asthma by the GABRIEL consortium

[17]. This sample included all asthmatics (positive answer to

the question ‘‘Have you ever had asthma?’’ at either survey) as

well as a random sample of non-asthmatic controls. 248

participants were removed due to several reasons, including

elevated levels of the inflammatory marker hs-CRP (.10 mg/

L, N = 54), leading to a discovery arm of 1392 individuals

(Figure S1). The discovery arm contained 548 (39.4%) self-

declared asthmatics, whereas there were no self-declared

asthmatics in the replication arm. Both the discovery and the

replication sample were submitted to a first step of fine

mapping of SERPINA1 resulting in 5569 individuals from

whom all the selected SNPs could be successfully determined.

In a second step, a subsample with abnormally low AAT

measurements additionally underwent SERPINA1 exon se-

quencing.

Additional Studies. The populations are briefly described in

Table S8.

Phenotype Measurements
AAT serum levels in SAPALDIA were determined by latex-

enhanced immunoturbidimetric assays (Roche Diagnostics, on a

Roche Cobas Integra analyzer) with interassay coefficients of

Figure 6. Forest plot of meta-analyzed results for the effect per minor allele of rs4905179 on FEV1 in ever-smokers, adjusted for
sex, age, height, population stratification factors and the presence of PI S and Z alleles. Studies based on population isolates with a high
degree of cryptic relatedness are presented separately. Effect estimates of meta-analyses are shown with green diamonds. I2 is a measure of the
heterogeneity between studies. Random effect meta-analyses are included if I2.0.5. Study weights (blue squares) correspond to fixed effect meta-
analyses.
doi:10.1371/journal.pgen.1003585.g006
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variation below 5% and lower detection rate of 0.21 g/L. Serum

concentrations in Copenhagen were measured by immunoturbidi-

metric assays (Thermo Scientific, on a Thermo Scientific Konelab

analyzer) with coefficients of variation below 5% and lower

detection rate of 0.10 g/L.

Lung function was measured in all participating studies by

spirometry without bronchodilation ([52] and Table S8). In the

patient-based studies, in which a lung resection was carried out

(Groningen, UBC), lung function measurements were carried out

prior to the intervention.

Genotyping
SAPALDIA. Genomic DNA was extracted from blood sam-

ples using the Puregene DNA Isolation Kit (Gentra Systems).

Genotyping of the GWA-bound subset was performed on the

Illumina Human 610quad array. Asthmatic and non-asthmatic

samples were tested in random blinded order to avoid systematic

array-related artifacts. 567,589 autosomal SNPs were satisfactorily

genotyped (mean call rate: 99.7%). 69,892 were excluded from

analysis due to violation of Hardy Weinberg Equilibrium (HWE,

P,1024), low call rate (,97%) or MAF,5%.

Genotyping of GWAS finding rs2566347 on chromosome 3 in

the SAPALDIA replication arm was carried out using the

MassARRAY iPLEX Gold (Sequenom).

The SNPs selected in the first fine mapping step were genotyped

by polymerase chain reaction (PCR) with fluorescently labeled

Taq-Man probes (Vic or Fam labels) on a Light Cycler 480 (Roche

Diagnostics). All SNPs were in HWE (P.0.01) [20].

Additional Studies. PI S and Z genotypes were determined

by PCR in Copenhagen and LHS as previously described [54,55].

The SNP rs4905179 was genotyped in the course of GWAS

projects in B58C, BHS, Copenhagen, Korcula, KORA S3,

KORA F4, LBC36, LHS, NSPHS, ORCADES, Split, UBC,

and Vis.

Imputation
SAPALDIA. We have carried out genome-wide imputation

from 60 CEU HapMap2 (release 22, NCBI build 36) reference

panels [18] using MACH 1.0.16 [56] resulting in 2,588,592

autosomal HapMap-based SNPs. 2,168,668 SNPs fulfilled the

quality criteria, which are as mentioned above for genotyped SNPs

and additionally consisted of an imputation-r2.0.5.

Further imputation was carried out in the most promising loci

using 566 EUR reference haplotypes from the August 2010 release

of 1000G on the MACH (pre-phasing) and Minimac-omp

programs. SNPs with an imputation-r2.0.5 and MAF.0.1%

passed the quality check.

Additional Studies. Rs4905197 was imputed based on

1000G reference panels in Groningen, NFBC66, and SHIP

(imputation-r2$0.99). Rs3748312, rs17580 (PI S) and rs28929474

(PI Z) were 1000G imputed in B58C, BHS, Groningen, Korcula,

KORA S3, KORA F4, LBC36, NFBC66, NSPHS, ORCADES,

Figure 7. Forest plot of meta-analyzed results for the effect per minor allele of rs3748312 on FEV1 in ever-smokers, adjusted for
sex, age, height and population stratification factors. Studies based on population isolates with a high degree of cryptic relatedness are
presented separately. Effect estimates of meta-analyses are shown with green diamonds. I2 is a measure of the heterogeneity between studies.
Random effect meta-analyses are included if I2.0.5. Study weights (blue squares) correspond to fixed effect meta-analyses.
doi:10.1371/journal.pgen.1003585.g007

Genetic Determinants of a1-antitrypsin Serum Level

PLOS Genetics | www.plosgenetics.org 12 August 2013 | Volume 9 | Issue 8 | e1003585



Split, SHIP, UBC, and Vis (imputation-r2 0.86–0.98, 0.69–0.83,

and 0.82–0.98, respectively).

SERPINA1 SNP Selection for Fine Mapping in SAPALDIA
In an attempt to find AAT modifying SERPINA1 gene variants

acting independently of each other, a multiple strategy to

optimally cover the gene was applied. Sequencing of the whole

SERPINA1 gene in 25 unrelated samples from the Italian registry

of AAT deficiency which demonstrated extreme phenotypes was

used to identify common SNPs not present in HapMap. Extreme

phenotypes consisted of 11 samples with AAT.1.60 g/L and hs-

CRP ,8 mg/L, 3 samples with PI ZZ or PI SZ genotype and

AAT,0.20 g/L, 2 samples with PI MZ genotype and

AAT,0.60 g/L, as well as 9 non-carriers of PI S or PI Z alleles

Figure 8. Forest plot of meta-analyzed results for the effect per minor allele of rs3748312 on FEV1 in ever-smokers, adjusted for
sex, age, height, population stratification factors and the presence of PI S and Z alleles. Studies based on population isolates with a high
degree of cryptic relatedness are presented separately. Effect estimates of meta-analyses are shown with green diamonds. I2 is a measure of the
heterogeneity between studies. Random effect meta-analyses are included if I2.0.5. Study weights (blue squares) correspond to fixed effect meta-
analyses.
doi:10.1371/journal.pgen.1003585.g008

Table 5. Minor allele effects on FEV1 of low-frequent and common SNPs in the SERPINA gene cluster in ever-smokers undergoing
lung resection.

SNP MAF Imp-r2
Allele
Effect (L) P MAF Imp-r2

Allele
Effect (L) P

Groningen (N = 133) University of British Columbia, UBC (N = 264)

rs17580 (PI S) 0.055 0.72 0.42 0.10 0.079 0.76 20.15 0.29

rs28929474 (PI Z) 0.123 0.98 20.68 ,0.001 0.032 0.98 20.81 ,0.0001

rs4905179 0.299 1.00 20.22 0.04 0.249 naa 20.23 0.002

rs4905179, adjusted for PI S and Z 20.07 0.65 20.08 0.36

rs3748312 0.233 0.95 20.34 0.008 0.148 0.94 20.16 0.07

rs3748312, adjusted for PI S and Z 0.16 0.37 0.09 0.35

Abbreviations: FEV1, forced expiratory volume in one second; MAF, minor allele frequency; SNP, single nucleotide polymorphism.
Imp-r2 is an indicator for imputation quality. The analyses were adjusted for age, sex and height.
aRs4905179 was genotyped in UBC.
doi:10.1371/journal.pgen.1003585.t005
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with blood levels .0.65 and ,1.10 g/L. In these 25 samples, a

total of 129 mutations were identified in the SERPINA1 gene. After

removing SNPs which were monomorphic in our data, SNPs

deviating from HWE or lying in high LD with an adjacent marker

(D9.0.8 and r2.0.4 according to JLIN [57]), we finally obtained a

list of 22 common SNPs (Table 4, selection A). In a second

strategy, HapMap CEU data was used to select tagging SNPs

(Haploview 3.32) [58], resulting in 8 polymorphisms (selection B).

Third, TAMAL [59] was used to identify promising SNPs in the

region of the SERPINA1 gene (selection C). Pairwise LD and the

feasibility of designing a corresponding TaqMan assay reduced the

number of SNPs to 13. Two established (PI S and Z) and one

suggestive (rs8004738 [60]) functional SNPs were added (selection

D), resulting in 16 SNPs used in the conditional analysis. Three of

them were already part of the SNP array genotyped for the

GWAS. The 5 SNPs in coding regions (exons 2–5) were all non-

synonymous.

Exon Sequencing in SAPALDIA
We sequenced 410 individuals with abnormally low AAT levels

with the Sanger chain-termination method. Different thresholds

according to the deficiency genotypes and hs-CRP values were

applied to define an abnormally low AAT concentration (PI MM:

1.13 g/L if hs-CRP .8 mg/L and 1.00 g/L if hs-CRP #8 mg/L;

PI MS: 0.85 g/L; PI MZ: 0.65 g/L) [21]. The cut-off of 1.13 g/L

was earlier reported to be the best to differentiate AAT-deficient

patients from healthy individuals [61]. Since exon 1 is non-coding,

the sequencing procedure was only applied to exons 2 to 5.

Statistical Analysis
AAT serum levels were only marginally skewed to the right,

and a log-transformation of these data was omitted since it led to

a stronger deviation from normality. Student’s t-test was used to

compare adjusted mean AAT levels between different subgroups

of the sequenced samples. The genome-wide association of 2.17

million quality-controlled SNPs with serum AAT levels was

assessed using fixed effects linear regression with ProbABEL [62].

An additive genetic model was applied and the association was

adjusted for sex, age, study center, dichotomous current smoking

status, as well as population stratification factors. To account for

population stratification, we relied on previously inferred

ancestry-informative principal components using EIGENSTRAT

2.0 software [63] and HapMap data, as well as additional

reference European samples [64]. Cryptic relatedness was

detected based on identity-by-state (IBS) analysis. Influence of

additional suggestive determinants of AAT, such as hs-CRP,

BMI, alcohol intake and passive smoking was assessed in a

sensitivity analysis. We also performed genome-wide analysis

conditioned on the functionally established PI S and PI Z

variants. Bonferroni correction for multiple testing was applied,

resulting in P,5*1028 to designate genome-wide significance,

taking account of one million independent tests for common

variants across the genome. For the SNPs imputed by using

1000G reference samples, we considered a three times lower p-

value as adequate as roughly three times more SNPs on

chromosome 14 passed an imputation-r2 threshold of 0.5

(219,471 1000G-derived variants vs. 82,296 HapMap2-derived

variants). Applying this to a 2 Mb chromosomal stretch (with

approximately 600 HapMap2-derived SNPs) resulted in a

significance threshold of roughly 3*1025.

For the replicated SNP in the SAPALDIA replication arm, as

well as for the lung function analysis, a two-sided p-value of 0.05

was considered significant. We investigated heterogeneity between

asthmatics and non-asthmatics in the discovery arm by testing for

a difference between the two effects, using a chi-square test with

one degree of freedom.

Replication analysis for AAT in Copenhagen, as well as

association analyses of the 16 genotyped SERPINA1 SNPs in both

the SAPALDIA discovery and replication arm, was carried out

applying the same statistical model as in the GWAS apart from the

adjustment for population stratification factors. Stepwise condi-

tional analyses were conducted by testing each SNP for AAT

association after including at each step the most significantly

associated SNP in the model. As some of these SNPs turned out to

be in unexpectedly high LD, we applied a threshold level for

statistical significance of P = 0.005, accounting for approximately

ten independent tests [65].

To be as close as possible to the calculations carried out in the

original publication [14], multivariate linear regression models for

lung function analyses were used adjusted for sex, age, height and

population stratification factors (if available).

All the SAPALDIA regression analyses were performed with

STATA 12.1 IC.

Further Software
Manhattan, Q-Q and forest plots were created with the help of

R 2.15.1 (www.r-project.org). Regional association plots were

drawn using LocusZoom [66]. Pairwise LD was calculated for

HapMap2 and 1000G CEU data using SNAP [67]. The LD plot

was produced with HaploView 4.2 [58]. The effect of non-

synonymous SNPs on protein structure was predicted by SIFT

[68]. Finally, Quanto 1.2.4 (hydra.usc.edu/gxe/) was used for

power calculations for the GWAS.

Supporting Information

Figure S1 SAPALDIA study design for the determination of

AAT associated genetic variants.a consisting of subjects with

abnormally low AAT levels independent of PI S or Z alleles (see

Materials and Methods).

(TIF)

Figure S2 Q-Q plot of genome-wide -log(10) p-values for

association with AAT serum level.

(TIF)

Figure S3 Forest plot of meta-analyzed results for the effect per

minor allele of rs17580 (PI S) on FEV1 in ever-smokers, adjusted

for sex, age, height and population stratification factors. Studies

based on population isolates with a high degree of cryptic

relatedness are presented separately. Effect estimates of meta-

analyses are shown with green diamonds. I2 is a measure of the

heterogeneity between studies. Random effect meta-analyses are

included if I2.0.5. Study weights (blue squares) correspond to the

fixed effect meta-analyses.

(TIF)

Figure S4 Forest plot of meta-analyzed results for the effect per

minor allele of rs28929474 (PI Z) on FEV1 in ever-smokers,

adjusted for sex, age, height and population stratification factors.

Studies based on population isolates with a high degree of cryptic

relatedness are presented separately. Effect estimates of meta-

analyses are shown with green diamonds. I2 is a measure of the

heterogeneity between studies. Random effect meta-analyses are

included if I2.0.5. Study weights (blue squares) correspond to the

fixed effect meta-analyses.

(TIF)
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Study (N = 8273).

(DOC)
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the SNP association analyses with FEV1.

(XLS)

Table S3 The top 100 ranking SNPs associated with AAT

serum level in SAPALDIA (N = 1392).

(DOC)

Table S4 SERPINA regional variants based on 1000 Genomes

imputation reaching statistical significance for the association with

AAT serum level in SAPALDIA (N = 1392).

(DOC)

Table S5 The top 100 ranking SNPs associated with AAT

serum level, conditional on PI S and Z alleles in SAPALDIA

(N = 1392).

(DOC)

Table S6 Accuracy of 1000 Genomes based imputation in the

SERPINA1 region in SAPALDIA (N = 1392).

(DOC)

Table S7 Further variants in the SERPINA1 coding region,

present in a SAPALDIA subsample with abnormally low AAT

serum levels (N = 410).
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