RELATED FIXED POINTS FOR SET-VALUED MAPPINGS ON TWO UNIFORM SPACES

DURAN TÜRKOĞLU and BRIAN FISHER

Received 20 April 2004

Some related fixed point theorems for set-valued mappings on two complete and compact uniform spaces are proved.

2000 Mathematics Subject Classification: 54H25, 47H10.

1. Introduction. Let (X, \mathcal{U}_1) and (Y, \mathcal{U}_2) be uniform spaces. Families $\{d_1^i : i \in I\}$ being indexing set $\{d_2^i : i \in I\}$ of pseudometrics on X, Y, respectively, are called associated families for uniformities $\mathcal{U}_1, \mathcal{U}_2$, respectively, if families

$$\beta_1 = \{V_1(i,r) : i \in I, r > 0\},\$$

$$\beta_2 = \{V_2(i,r) : i \in I, r > 0\},\$$
(1.1)

where

$$V_{1}(i,r) = \{(x,x') : x,x' \in X, d_{1}^{i}(x,x') < r\},\$$

$$V_{2}(i,r) = \{(y,y') : y,y' \in Y, d_{1}^{i}(y,y') < r\},$$
(1.2)

are subbases for the uniformities \mathcal{U}_1 , \mathcal{U}_2 , respectively. We may assume that β_1 , β_2 themselves are a base by adjoining finite intersections of members of β_1 , β_2 , if necessary. The corresponding families of pseudometrics are called an augmented associated families for \mathcal{U}_1 , \mathcal{U}_2 . An associated family for \mathcal{U}_1 , \mathcal{U}_2 will be denoted by \mathcal{D}_1 , \mathcal{D}_2 , respectively. For details, the reader is referred to [1, 4, 5, 6, 7, 8, 9, 10, 11].

Let A, B be a nonempty subset of a uniform space X, Y, respectively. Define

$$P_{1}^{*}(A) = \sup \{d_{1}^{i}(x, x') : x, x' \in A, i \in I\},$$

$$P_{2}^{*}(B) = \sup \{d_{2}^{i}(y, y') : y, y' \in B, i \in I\},$$
(1.3)

where $\{d_1^i(x,x'): x,x' \in A, \ i \in I\} = P_1^*, \ \{d_2^i(y,y'): y,y' \in B, \ i \in I\} = P_2^*.$ Then, $P_1^*(A), P_2^*(B)$ are called an augmented diameter of A, B. Further, A, B are said to be $P_1^*(A) < \infty, P_2^*(B) < \infty$. Let

$$2^X = \{A : A \text{ is a nonempty } P_1^*\text{-bounded subset of } X\},$$

 $2^Y = \{B : B \text{ is a nonempty } P_2^*\text{-bounded subset of } Y\}.$ (1.4)

For each $i \in I$ and $A_1, A_2 \in 2^X$, $B_1, B_2 \in 2^Y$, define

$$\delta_1^i(A_1, A_2) = \sup \{ d_1^i(x, x') : x \in A_1, \ x' \in A_2 \},
\delta_2^i(B_1, B_2) = \sup \{ d_2^i(y, y') : y \in B_1, \ y' \in B_2 \}.$$
(1.5)

Let (X, \mathcal{U}_1) and (X, \mathcal{U}_2) be uniform spaces and let $U_1 \in \mathcal{U}_1$ and $U_2 \in \mathcal{U}_2$ be arbitrary entourages. For each $A \in 2^X$, $B \in 2^Y$, define

$$U_{1}[A] = \{x' \in X : (x, x') \in U_{1} \text{ for some } x \in A\},\$$

$$U_{2}[B] = \{y' \in Y : (y, y') \in U_{2} \text{ for some } y \in B\}.$$
(1.6)

The uniformities 2^{u_1} on 2^X and 2^{u_2} on 2^Y are defined by bases

$$2^{\beta_1} = \{ \tilde{U}_1 : U_1 \in \mathcal{U}_1 \}, \qquad 2^{\beta_2} = \{ \tilde{U}_2 : U_2 \in \mathcal{U}_2 \}, \tag{1.7}$$

where

$$\tilde{U}_1 = \{ (A_1, A_2) \in 2^X \times 2^X : A_1 \times A_2 \subset U_1 \} \cup \Delta,
\tilde{U}_2 = \{ (B_1, B_2) \in 2^Y \times 2^Y : B_1 \times B_2 \subset U_2 \} \cup \Delta,$$
(1.8)

where Δ denotes the diagonal of $X \times X$ and $Y \times Y$.

The augmented associated families P_1^* , P_2^* also induce uniformities \mathcal{U}_1^* on 2^X , \mathcal{U}_2^* on 2^Y defined by bases

$$\beta_1^* = \{V_1^*(i,r) : i \in I, \ r > 0\},\$$

$$\beta_2^* = \{V_2^*(i,r) : i \in I, \ r > 0\},\$$

(1.9)

where

$$V_1^*(i,r) = \{ (A_1, A_2) : A_1, A_2 \in 2^X : \delta_1^i(A_1, A_2) < r \} \cup \Delta,$$

$$V_2^*(i,r) = \{ (B_1, B_2) : B_1, B_2 \in 2^Y : \delta_2^i(B_1, B_2) < r \} \cup \Delta.$$
(1.10)

Uniformities 2^{u_1} and u_1^* on 2^X are uniformly isomorphic and uniformities 2^{u_2} and u_2^* on 2^Y are uniformly isomorphic. The space $(2^X, u_1^*)$ is thus a uniform space called the hyperspace of (X, u_1) . The $(2^Y, u_2^*)$ is also a uniform space called the hyperspace of (Y, u_2) .

Now, let $\{A_n : n = 1, 2, ...\}$ be a sequence of nonempty subsets of uniform space (X, \mathcal{U}) . We say that sequence $\{A_n\}$ converges to subset A of X if

- (i) each point in a in A is the limit of a convergent sequence $\{a_n\}$, where a_n is in A_n for n = 1, 2, ...,
- (ii) for arbitrary $\varepsilon > 0$, there exists an integer N such that $A_n \subseteq A_{\varepsilon}$ for n > N, where

$$A_{\varepsilon} = \bigcup_{x \in A} U(x) = \{ y \in X : d_i(x, y) < \varepsilon \text{ for some } x \text{ in } A, \ i \in I \}.$$
 (1.11)

A is then said to be a limit of the sequence $\{A_n\}$.

It follows easily from the definition that if A is the limit of a sequence $\{A_n\}$, then A is closed.

LEMMA 1.1. If $\{A_n\}$ and $\{B_n\}$ are sequences of bounded, nonempty subsets of a complete uniform space (X, \mathbb{Q}) which converge to the bounded subsets A and B, respectively, then sequence $\{\delta_i(A_n, B_n)\}$ converges to $\delta_i(A, B)$.

PROOF. For arbitrary $\varepsilon > 0$, there exists an integer N such that

$$\delta_i(A_n, B_n) \le \delta_i(A_{\varepsilon}, B_{\varepsilon}) = \sup \{ d_i(a', b') : a' \in A_{\varepsilon}, \ b' \in B_{\varepsilon} \}$$
 (1.12)

for n > N. Now, for each a' in A_{ε} and b' in B_{ε} , we can find a in A and b in B with $d_i(a',a) < \varepsilon$, $d_i(b',b) < \varepsilon$, and so

$$d_{i}(a',b') \leq d_{i}(a',a) + d_{i}(a,b')$$

$$\leq d_{i}(a',a) + d_{i}(a,b) + d_{i}(b,b')$$

$$\leq d_{i}(a,b) + 2\varepsilon.$$
(1.13)

It follows that

$$\delta_i(A_n, B_n) < \sup \{ d_i(a, b) : a \in A, b \in B \} + 2\varepsilon = \delta_i(A, B) + 2\varepsilon \tag{1.14}$$

for n > N. Further, there exists an integer N' such that for each a in A and b in B we can find a_n in A_n and b_n in B_n with

$$d_i(a, a_n) < \varepsilon, \qquad d_i(b, b_n) < \varepsilon$$
 (1.15)

for n > N', and so

$$d_{i}(a,b) \leq d_{i}(a,a_{n}) + d_{i}(a_{n},b)$$

$$\leq d_{i}(a,a_{n}) + d_{i}(a_{n},b_{n}) + d_{i}(b_{n},b)$$

$$< d_{i}(a_{n},b_{n}) + 2\varepsilon.$$
(1.16)

It follows that

$$\delta_{i}(A,B) = \sup \left\{ d_{i}(a,b) : a \in A, b \in B \right\}$$

$$\leq \sup \left\{ d_{i}(a_{n},b_{n}) : a_{n} \in A_{n}, b_{n} \in B_{n} \right\} + 2\varepsilon$$

$$= \delta_{i}(A_{n},B_{n}) + 2\varepsilon$$

$$(1.17)$$

for n > N'. The result of the lemma follows from inequalities (1.14) and (1.17).

REMARK 1.2. If we replace the uniform space (X, \mathcal{U}) in Lemma 1.1 by a metric space (i.e., a metrizable uniform space), then the result of the second author [2] will follow as special case of our result.

THEOREM 1.3. Let (X, \mathcal{U}_1) and (Y, \mathcal{U}_2) be complete Hausdorff uniform spaces defined by $\{d_1^i, i \in I\} = P_1^*, \{d_2^i, i \in I\} = P_2^*, \text{ and } (2^X, \mathcal{U}_1^*), (2^Y, \mathcal{U}_2^*) \text{ hyperspaces, let } F: X \to 2^Y \text{ and } G: Y \to 2^X \text{ satisfy inequalities}$

$$\delta_{1}^{i}(GFx, GFx') \leq c_{i} \max \{d_{1}^{i}(x, x'), \delta_{1}^{i}(x, GFx), \delta_{1}^{i}(x', GFx'), \delta_{2}^{i}(Fx, Fx')\},
\delta_{2}^{i}(FGy, FGy') \leq c_{i} \max \{d_{2}^{i}(y, y'), \delta_{2}^{i}(y, FGy), \delta_{2}^{i}(y', FGy'), \delta_{1}^{i}(Gy, Gy')\}$$
(1.18)

for all $i \in I$ and $x, x' \in X$, $y, y' \in Y$, where $0 \le c_i < 1$. If F is continuous, then GF has a unique fixed point z in X and FG has a unique fixed point w in Y. Further, $Fz = \{w\}$ and $Gw = \{z\}$.

PROOF. Let x_1 be an arbitrary point in X. Define sequences $\{x_n\}$ and $\{y_n\}$ in X and Y, respectively, as follows. Choose a point y_1 in Fx_1 and then a point x_1 in Gy_1 . In general, having chosen x_n in X and y_n in Y, choose x_{n+1} in Gy_n and then y_{n+1} in Fx_{n+1} for n = 1, 2, ...

Let $U_1 \in \mathcal{U}_1$ be an arbitrary entourage. Since β_1 is a base for \mathcal{U}_1 , there exists $V_1(i,r) \in \beta_1$ such that $V_1(i,r) \subseteq U_1$. We have

$$\begin{aligned} &d_{1}^{i}(x_{n+1},x_{n+2}) \\ &\leq \delta_{1}^{i}(GFx_{n},GFx_{n+1}) \\ &\leq c_{i} \max \left\{ d_{1}^{i}(x_{n},x_{n+1}), \delta_{1}^{i}(x_{n},GFx_{n}), \delta_{1}^{i}(x_{n+1},GFx_{n+1}), \delta_{2}^{i}(Fx_{n},Fx_{n+1}) \right\} \\ &\leq c_{i} \max \left\{ \delta_{1}^{i}(GFx_{n-1},GFx_{n}), \delta_{1}^{i}(GFx_{n},GFx_{n+1}), \delta_{2}^{i}(Fx_{n},Fx_{n+1}) \right\} \\ &= c_{i} \max \left\{ \delta_{1}^{i}(GFx_{n-1},GFx_{n}), \delta_{2}^{i}(Fx_{n},Fx_{n+1}) \right\} \end{aligned}$$

and, similarly let $U_2 \in \mathcal{U}_2$ be an arbitrary entourage. Since β_2 is a base for \mathcal{U}_2 , there exists $V_2(i,r) \in \beta_2$ such that $V_2(i,r) \subseteq U_2$. We have

$$d_{2}^{i}(y_{n+1}, y_{n+2}) \leq \delta_{2}^{i}(FGy_{n}, FGy_{n+1})$$

$$\leq c_{i} \max \{\delta_{2}^{i}(FGy_{n-1}, FGy_{n}), \delta_{1}^{i}(Gy_{n}, Gy_{n+1})\}.$$
(1.20)

It follows that

$$d_{1}^{i}(x_{n}, x_{n+m}) \leq d_{1}^{i}(x_{n}, x_{n+1}) + d_{1}^{i}(x_{n+1}, x_{n+2}) + \dots + d_{1}^{i}(x_{n+m-1}, x_{n+m})$$

$$\leq \delta_{1}^{i}(GFx_{n-1}, GFx_{n}) + \dots + \delta_{1}^{i}(GFx_{n+m-2}, GFx_{n+m-1})$$

$$\leq c_{i} \max \left\{ \delta_{1}^{i}(GFx_{n-2}, GFx_{n-1}), \delta_{2}^{i}(Fx_{n-1}, Fx_{n}) \right\}$$

$$+ \dots + c_{i} \max \left\{ \delta_{1}^{i}(GFx_{n+m-3}, GFx_{n+m-2}), \delta_{2}^{i}(Fx_{n+m-2}, Fx_{n+m-1}) \right\}$$

$$\leq (c_{i}^{n} + c_{i}^{n+1} + \dots + c_{i}^{n+m-1}) \delta_{1}^{i}(x_{1}, GFx_{1})$$

$$(1.21)$$

for n greater than some N. Since $c_i < 1$, it follows that there exists p such that $d_1^i(x_n, x_m) < r$ and hence $(x_n, x_m) \in U_1$ for all $n, m \ge p$. Therefore, sequence $\{x_n\}$ is Cauchy sequence in the d_1^i -uniformity on X.

Let $S_p = \{x_n : n \ge p\}$ for all positive integers p and let \mathfrak{B}_1 be the filter basis $\{S_p : p = 1, 2, \ldots\}$. Then, since $\{x_n\}$ is a d_1^i -Cauchy sequence for each $i \in I$, it is easy to see that the filter basis \mathfrak{B}_1 is a Cauchy filter in the uniform space (X, \mathfrak{U}_1) . To see this, we first note that family $\{V_1(i,r) : i \in I, r > 0\}$ is a base for \mathfrak{U}_1 as $P_1^* = \{d_1^i : i \in I\}$. Now, since $\{x_n\}$ is a d_1^i -Cauchy sequence in X, there exists a positive integer p such that $d_1^i(x_n, x_m) < r$ for $m \ge p$, $n \ge p$. This implies that $S_p \times S_p \subset V_1(i,r)$. Thus, given any $U_1 \in \mathfrak{U}_1$, we can find an $S_p \in \mathfrak{B}_1$ such that $S_p \times S_p \subset U_1$. Hence, \mathfrak{B}_1 is a Cauchy filter in (X, \mathfrak{U}_1) . Since (X, \mathfrak{U}_1) is a complete Hausdorff space, the Cauchy filter $\mathfrak{B}_1 = \{S_p\}$

converges to a unique point $z \in X$. Similarly, the Cauchy filter $\mathfrak{B}_2 = \{S_k\}$ converges to a unique point $w \in Y$.

Further,

$$\delta_{1}^{i}(z, GFS_{p}) \leq d_{1}^{i}(z, S_{m+1}) + \delta_{1}^{i}(S_{m+1}, GFS_{p})$$

$$\leq d_{1}^{i}(z, S_{m+1}) + \delta_{1}^{i}(GFS_{m}, GFS_{p})$$
(1.22)

since $S_{m+1} \subseteq GFS_m$. Thus, on using inequality (1.20), we have

$$\delta_1^i(z, GFS_p) \le d_1^i(z, S_{m+1}) + \varepsilon \tag{1.23}$$

for $n, m \ge p$. Letting m tend to infinity, it follows that

$$\delta_1^i(z, GFS_n) < \varepsilon \tag{1.24}$$

for n > p, and so

$$\lim_{n \to \infty} GFS_p = \{z\} \tag{1.25}$$

since ε is arbitrary. Similarly,

$$\lim_{n \to \infty} FGS_k = \{w\} = \lim_{n \to \infty} FS_p \tag{1.26}$$

since $S_{k+1} \in GS_k$. Using the continuity of F, we see that

$$\lim_{p \to \infty} FS_p = FZ = \{w\}. \tag{1.27}$$

Now, let $W \in \mathcal{U}_1$ be an arbitrary entourage. Since β_1 is a base for \mathcal{U}_1 , there exists $V_1(j,t) \in \beta_1$ such that $V_1(j,t) \subseteq W$. Using inequality (1.14), we now have

$$\delta_1^i(GFS_p, GFz) \le c_i \max\{d_1^i(S_p, z), \delta_1^i(S_p, GFS_p), \delta_1^i(z, GFz), \delta_2^i(Fz, FS_p)\}. \tag{1.28}$$

Letting p tend to infinity and using (1.24) and (1.26), we have

$$\delta_1^i(z, GFz) \le c_i \delta_1^i(z, GFz). \tag{1.29}$$

Since $c_i < 1$, we have $\delta_1^i(z, GFz) = 0 < t$. Hence, $(z, GFz) \in V_1(j, t) \subseteq W$. Again, since W is arbitrary and X is Hausdorff, we must have $GFz = \{z\}$, proving that z is a fixed point of GF.

Further, using (1.26), we have

$$FGw = FGFz = w, (1.30)$$

proving that w is a fixed point of FG.

Now, suppose that GF has a second fixed point z'. Then, using inequalities (1.18), we have

$$\delta_{1}^{i}(z',GFz') \leq \delta_{1}^{i}(GFz',GFz')$$

$$\leq c_{i} \max \left\{ d_{1}^{i}(z',z'), \delta_{1}^{i}(z',GFz'), \delta_{2}^{i}(Fz',Fz') \right\}$$

$$\leq c_{i} \delta_{2}^{i}(Fz',Fz') \leq c_{i} \delta_{2}^{i}(Fz',FGFz') \leq c_{i} \delta_{2}^{i}(FGFz',FGFz') \qquad (1.31)$$

$$\leq c_{i}^{2} \max \left\{ \delta_{2}^{i}(Fz',FGFz'), \delta_{2}^{i}(Fz',FGFz'), \delta_{1}^{i}(GFz',GFz') \right\}$$

$$\leq c_{i}^{2} \delta_{2}^{i}(GFz',GFz'),$$

and so Fz' is a singleton and $GFz' = \{z'\}$, since $c_i < 1$. Thus,

$$d_{1}^{i}(z,z') \leq \delta_{1}^{i}(GFz,GFz') \leq c_{i} \max \{d_{1}^{i}(z,z'),\delta_{1}^{i}(z,GFz),\delta_{1}^{i}(z',GFz'),\delta_{2}^{i}(Fz,Fz')\}.$$
(1.32)

But

$$\begin{split} d_{2}^{i}(Fz,Fz') &\leq \delta_{2}^{i}(FGFz,FGFz') \\ &\leq c_{i} \max \left\{ \delta_{2}^{i}(Fz,Fz'), \delta_{2}^{i}(Fz,FGFz), \delta_{2}^{i}(Fz',FGFz'), \delta_{1}^{i}(GFz,GFz') \right\} \\ &= c_{i} \max \left\{ d_{2}^{i}(Fz,Fz'), d_{2}^{i}(Fz,Fz), d_{2}^{i}(Fz',Fz'), d_{1}^{i}(z,z') \right\} \\ &= c_{i} d_{1}^{i}(z,z'), \end{split}$$

$$(1.33)$$

and so

$$d_1^i(z,z') \le c_i^2 d_1^i(z,z'). \tag{1.34}$$

Since $c_i < 1$, the uniqueness of z follows.

Similarly, w is the unique fixed point of FG. This completes the proof of the theorem.

If we let F be a single-valued mapping T of X into Y and G a single-valued mapping S of Y into X, we obtain the following result.

COROLLARY 1.4. Let (X, \mathcal{U}_1) and (Y, \mathcal{U}_2) be complete Hausdorff uniform spaces. If T is a continuous mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

$$d_{1}^{i}(STx,STx') \leq c_{i} \max\{d_{1}^{i}(x,x'),d_{1}^{i}(x,STx),d_{1}^{i}(x',STx'),d_{2}^{i}(Tx,Tx')\},\$$

$$d_{2}^{i}(TSy,TSy') \leq c_{i} \max\{d_{2}^{i}(y,y'),d_{2}^{i}(y,TSy),d_{2}^{i}(y',TSy'),d_{1}^{i}(Sy,Sy')\}$$

$$(1.35)$$

for all $x, x' \in X$ and $y, y' \in Y$, $i \in I$ where $0 \le c_i < 1$, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

THEOREM 1.5. Let (X, \mathfrak{A}_1) and (Y, \mathfrak{A}_2) be compact uniform spaces defined by $\{d_1^i : i \in I\} = P_1^*$ and $\{d_2^i : i \in I\} = P_2^*$, and, $(2^X, \mathfrak{A}_1^*)$ and $(2^Y, \mathfrak{A}_2^*)$ hyperspaces. If F is a continuous mapping of X into 2^Y and G is a continuous mapping of Y into 2^X satisfying the inequalities

$$\delta_{1}^{i}(GFx,GFx') < \max\{d_{1}^{i}(x,x'),\delta_{1}^{i}(x,GFx),\delta_{1}^{i}(x',GFx'),\delta_{2}^{i}(Fx,Fx')\},\\ \delta_{2}^{i}(FGy,FGy') < \max\{d_{2}^{i}(y,y'),\delta_{2}^{i}(y,FGy),\delta_{2}^{i}(y',FGy'),\delta_{1}^{i}(Gy,Gy')\}$$

$$(1.36)$$

for all $x, x' \in X$ and $y, y' \in Y$, $i \in I$ for which the right-hand sides of the inequalities are positive, then, FG has a unique fixed point $z \in X$ and GF has a unique fixed point $w \in Y$. Further, FGz = $\{z\}$ and GFw = $\{w\}$.

PROOF. We denote the right-hand sides of inequalities (1.35) by h(x,x') and k(y,y'), respectively. First of all, suppose that $h(x,x') \neq 0$ for all $x,x' \in X$ and $k(y,y') \neq 0$ for all $y,y' \in Y$. Define the real-valued function f(x,x') on $X \times X$ by

$$f(x,x') = \frac{\delta_1^i(GFx,GFx')}{h(x,x')}.$$
(1.37)

Then, if $\{(x_n, x_n')\}$ is an arbitrary sequence in $X \times X$ converging to (x, x'), it follows from the lemma and the continuity of F and G that the sequence $\{f(x_n, x_n')\}$ converges to f(x, x'). The function f is therefore a continuous function defined on the compact uniform space $X \times X$ and so achieves its maximum value $c_1^i < 1$.

Thus,

$$\delta_1^i(GFx, GFx') \le c_1^i \max \{d_1^i(x, x'), \delta_1^i(x, GFx), \delta_1^i(x', GFx'), \delta_2^i(Fx, Fx')\}$$
 (1.38)

for all x, x' in $X, i \in I$.

Similarly, there exists $c_2^i < 1$ such that

$$\delta_2^i(FGy, FGy') \leq c_2^i \max \left\{ d_2^i(y, y'), \delta_2^i(y, FGy), \delta_2^i(y', FGy'), \delta_1^i(Gy, Gy') \right\} \quad (1.39)$$

for all $y, y' \in Y$, $i \in I$. It follows that the conditions of Theorem 1.3 are satisfied with $c_i = \max\{c_1^i, c_2^i\}$ and so, once again there exists z in X and w in Y such that $GFz = \{z\}$ and $FGw = \{w\}$.

Now, suppose that h(x,x')=0 for some x,x' in X. Then, $GFx=GFx'=\{x\}=\{x'\}$ is a singleton $\{w\}$. It follows that z is a fixed point of GF and $GFz=\{z\}$. Further,

$$FGw = FGFz = Fz = \{w\} \tag{1.40}$$

and so w is a fixed point of FG.

It follows similarly that if k(y, y') = 0 for some $y, y' \in Y$, then again GF has a fixed point z and FG has a fixed point w.

Now, we suppose that GF has a second fixed point z' in X so that z' is in GFz'. Then, on using inequalities (1.36), we have, on assuming that $\delta_2^i(Fz',Fz') \neq 0$ for each $i \in I$,

$$\begin{split} \delta_{1}^{i}(z',GFz') &\leq \delta_{1}^{i}(GFz',GFz') \\ &< \max \left\{ d_{1}^{i}(z',z'), \delta_{1}^{i}(z',GFz'), \delta_{2}^{i}(Fz',Fz') \right\} \\ &= \delta_{2}^{i}(Fz',Fz') \leq \delta_{2}^{i}(Fz',FGFz') \leq \delta_{2}^{i}(FGFz',FGFz') \\ &< \max \left\{ \delta_{2}^{i}(Fz',Fz'), \delta_{2}^{i}(Fz',FGFz'), \delta_{1}^{i}(GFz',GFz') \right\} \\ &= \delta_{2}^{i}(GFz',GFz'), \end{split} \tag{1.41}$$

a contradiction, and so Fz' is a singleton and $GFz' = \{z'\}$. Thus, if $z \neq z'$

$$d_{1}^{i}(z,z') = \delta_{1}^{i}(GFz,GFz')$$

$$< \max \{d_{1}^{i}(z,z'),\delta_{1}^{i}(z,GFz),\delta_{1}^{i}(z',GFz'),\delta_{2}^{i}(Fz,Fz')\}$$

$$= d_{2}^{i}(Fz,Fz').$$
(1.42)

But if $Fz \neq Fz'$, we have

$$d_{2}^{i}(Fz,Fz') \leq \delta_{2}^{i}(FGFz,FGFz')$$

$$< \max \{\delta_{2}^{i}(Fz,Fz'), \delta_{2}^{i}(Fz,FGFz), \delta_{2}^{i}(Fz',FGFz'), \delta_{1}^{i}(GFz,GFz')\}$$

$$= \max \{\delta_{2}^{i}(Fz,Fz'), d_{2}^{i}(Fz,Fz), d_{2}^{i}(Fz',Fz'), d_{1}^{i}(z,z')\}$$

$$= d_{i}(z,z'),$$
(1.43)

and so

$$d_i(z, z') < d_i(z, z'),$$
 (1.44)

a contradiction. The uniqueness of *z* follows.

Similarly, \boldsymbol{w} is the unique fixed point of FG. This completes the proof of the theorem.

If we let F be a single-valued mapping T of X into Y and G a single-valued mapping of Y into X, we obtain the following result.

COROLLARY 1.6. Let (X, \mathfrak{A}_1) and (Y, \mathfrak{A}_2) be compact Hausdorff uniform spaces. If T is a continuous mapping of X into Y and S is a continuous mapping of Y into X satisfying the inequalities

$$d_{1}^{i}(STx,STx') < \max\{d_{1}^{i}(x,x'),d_{1}^{i}(x,STx),d_{1}^{i}(x',STx'),d_{2}^{i}(Tx,Tx')\},\ d_{2}^{i}(TSy,TSy') < \max\{d_{2}^{i}(y,y'),d_{2}^{i}(y,TSy),d_{2}^{i}(y',TSy'),d_{1}^{i}(Sy,Sy')\}$$

$$(1.45)$$

for all $x, x' \in X$ and $y, y' \in Y$, $i \in I$ for which the right-hand sides of the inequalities are positive, then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

REMARK 1.7. If we replace the uniform spaces (X, \mathcal{U}_1) and (Y, \mathcal{U}_2) in Theorems 1.3 and 1.5 and Corollaries 1.4 and 1.6, by a metric space (i.e., a metrizable uniform space), then the results of the authors [3] will follow as special cases of our results.

ACKNOWLEDGMENT. This work has been supported by Gazı University project no. 05/2003-01, Turkey.

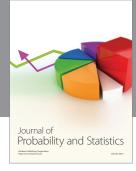
REFERENCES

- [1] S. P. Acharya, Some results on fixed points in uniform spaces, Yokohama Math. J. 22 (1974), 105–116.
- [2] B. Fisher, *Common fixed points of mappings and set-valued mappings*, Rostock. Math. Kolloq. (1981), no. 18, 69–77.
- [3] B. Fisher and D. Türkoğlu, *Related fixed points for set valued mappings on two metric spaces*, Int. J. Math. Math. Sci. **23** (2000), no. 3, 205–210.
- [4] A. Ganguly, Fixed point theorems for three maps in uniform spaces, Indian J. Pure Appl. Math. 17 (1986), no. 4, 476–480.
- [5] S. N. Mishra, Fixed points of contractive type multivalued mappings, Indian J. Pure Appl. Math. 18 (1987), no. 4, 283–289.
- [6] S. N. Mishra and S. L. Singh, *Fixed point of multivalued mapping in uniform spaces*, Bull. Calcutta Math. Soc. **77** (1985), no. 6, 323–329.
- [7] D. V. Pai and P. Veeramani, *Fixed point theorems for multimappings*, Yokohama Math. J. **28** (1980), no. 1-2, 7-14.
- [8] K. Qureshi and S. Upadhyay, Fixed point theorems in uniform spaces, Bull. Calcutta Math. Soc. 84 (1992), no. 1, 5-10.
- [9] E. Tarafdar, *An approach to fixed-point theorems on uniform spaces*, Trans. Amer. Math. Soc. **191** (1974), 209–225.
- [10] W. J. Thron, Topological Structures, Holt, Rinehart and Winston, New York, 1966.
- [11] D. Türkoğlu, O. Özer, and B. Fisher, *Some fixed point theorems for set-valued mappings in uniform spaces*, Demonstratio Math. **32** (1999), no. 2, 395-400.

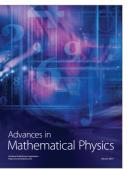
Duran Türkoğlu: Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500 Teknik Okullar, Ankara, Turkey

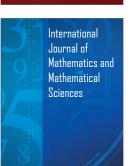
E-mail address: dturkoglu@gazi.edu.tr

Brian Fisher: Department of Mathematics, Leicester University, Leicester, LE1 7RH, England *E-mail address*: fbr@le.ac.uk



Submit your manuscripts at http://www.hindawi.com





Journal of Discrete Mathematics

