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Abstract 
 

Is wind direction an adequate marker of air mass history? This review looks at the evolution 

of methods for assessing the effect of the origin and pathway of air masses on composition 

change and trends. The composition of air masses and how they evolve and the changing 

contribution of sources and receptors are key elements in atmospheric science. Source-

receptor relationships of atmospheric composition can be investigated with back trajectory 

techniques, tracing forward from a defined geographical origin to arrive at measurement sites 

where the composition may have altered during transport.  

The distinction between the use of wind sector analysis, trajectory models and dispersion 

models to interpret composition measurements are explained and the advantages and 

disadvantages of each is illustrated with examples. Historical uses of wind roses, back 

trajectories and dispersion models are explained as well as the methods for grouping and 

clustering air masses. The interface of these methods to the corresponding chemistry 

measured at the receptor sites is explored. The review does not detail the meteorological 

derivation of trajectories or the complexity of the models but focus on their application and 

the statistical analyses used to compare them with in situ composition measurements. A 

newly developed methodology for analysing atmospheric observatory composition data 

according to air mass pathways calculated with the NAME dispersion model is given as a 

detailed case study. The steps in this methodology are explained with relevance to the 

Weybourne Atmospheric Observatory in the UK. 
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1. Introduction 
 

At a rudimentary level, clean, polluted, background and industrially influenced are all terms 

used to describe the composition of an air mass.  These are clearly subjective in this context 

but in some way reflect an assessment of the air mass composition and its history. There has 

been an historical push in particular to classify air masses that are representative of direct 

anthropogenic influences nearby. In particular, this has been driven by a need to quantify the 

impact of the perturbation of continuing anthropogenic emissions on the overall state of the 

atmosphere. 

 

Primary pollutants can originate from anthropogenic source regions (cities, industry, roads 

etc.) or stochastic events (biomass burning, volcanoes). Source-receptor relationships 

investigate composition over a receptor region produced by emission changes within a source 

region (Fiore et al., 2009; HTAP, 2007). Source-receptor relationships of atmospheric 

composition have been extensively investigated to look at the relationships between emission, 

transport and in situ measurements and reveal the influences pollutant emissions have not 

only on the local area but also on regions far from the source. Trends in meteorological 

variability can explain composition trends at some sites as well as the influence of transport 

pathways. In this review, methods for following source-receptor relationships on regional and 

global scales by using in situ measured composition data are explored.  

 

The chemical and physical composition of an air mass is inherently related to its path through 

the atmosphere and in order to get the maximum information out of long term time series of 

composition measurements, data are often divided according to air mass history. Atmospheric 

composition measurements have been interpreted using wind speed and direction 

measurements as a marker of air mass history for many years but current science requires 

better attribution than that available from using wind direction. Trajectory models use a set of 

meteorological fields from within the domain of influence and dispersion models are one step 

on from trajectory models, in that the complexity of turbulence is included. A further 

complexity to transport-only or tracer models comes with the addition of emissions and 

chemistry of the atmospheric species making these Chemistry Transport Models (CTMs). 

Using back trajectories it becomes possible to examine source-receptor relationships and the 

timescales of long-range and local transport and its effect on the observed composition. In 
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short-range transport, the airflow pathway is more influenced by emission source areas than 

in long-range transport, where various exchange and mixing processes (e.g. deposition and 

advection), physical losses and chemistry have more influence on the composition at the 

receptor location. The frequency and type of short-term pollution events can be tracked back 

to their source and seasonal and long term trends can be studied and compared to seasonal 

and long term air mass transport patterns. For example, Moody et al., 1989 carried out an 

analysis of atmospheric transport recognition techniques and found that as much as 30 % of 

chemical variability in the troposphere can be related to transport. Therefore, segregating 

chemical time series into periods receiving different air masses is important. Early work by 

Draxler and Taylor, 1982 explained long-range transport of pollutants by running trajectory 

models from a series of vertical layers as fractions of the boundary layer and investigated the 

effect of wind shear on pollutants represented by instantaneous puffs of particles and showed 

how wind shear must be incorporated into models to explain the dispersion. 

 

Long term measurement stations at specific locations around the globe provide a vast amount 

of data on the chemical composition specific to their location. There are hundreds of 

permanent long term stations that form part of various national (e.g. AURN in UK, PAES in 

France, EPA’s network in the US) or international (e.g. WMO’s GAW (Global Atmospheric 

Watch), and the European AirBase and EMEP) networks as discussed in Laj et al., 2009. 

Measurement stations are generally denoted as urban, rural or marine as they are strategically 

positioned to sample representative segments of air masses, with the closest known pollution 

source (i.e. roads, industry, cities) or biogenic and natural emissions (e.g. oceans, forests and 

peat bogs). Background or “baseline” stations are located in geographical locations where 

they sample and detect any long term trends in the background atmosphere and determine the 

extent and effect of long range transport bringing pollution to the site. Much of the analysis 

of ground based composition data is accompanied by studies of what is known as 

“climatological pathways” with the aim of mapping the probability of hypothetical air masses 

reaching the station and identifying the emission sources and influences on the site.  

Seasonal variations in composition at each station reflect changing meteorological patterns, 

temperatures, emission patterns, chemistry and physical loss processes within a year. 

Investigating long term trends (inter-annual or seasonal between years) is now possible, with 

many stations having continuous measurements for over 30 years. Intra-seasonal and short 

term changes in composition are very specific to the location of the station and can often be 
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explained by tracing back the air mass history during these events. Short-term measurement 

campaigns from aircrafts provide a vital picture of the three dimensional composition of the 

atmosphere and have been described as mobile in situ measurement platforms. Tropospheric-

stratospheric exchange processes and advection, boundary layer height, convection, 

temperature and humidity and their relation to tropospheric composition have been 

investigated in these experiments. The campaigns are often planned with the idea of 

investigating specific pollution plumes and use prediction tools (often run using trajectory 

models) to enable flights to traverse particular air masses and follow composition changes 

within a plume’s evolution (Blake et al., 1993). Aircraft campaigns provide a spatial scale 

and a representativeness to an area as opposed to a fixed point for ground based platforms but 

by their very nature they are temporally limited. To some extent this can be expanded by long 

term networks of aircraft measurements e.g. MOZAIC (Cammas et al., 2009), CARIBIC 

(Brenninkmeijer et al., 2007) and the HIPPO (HIAPER Pole-to-Pole Observations) Carbon 

Cycle and Greenhouse Gases Study (http://hippo.ucar.edu/). 

 

Methods to attribute composition changes according to trajectory or dispersion models that 

do not include emissions are not subject to the errors and assumptions that would propagate 

from the emission inventories and can result in biased source attribution results. Chemistry 

Transport Models have many more assumptions in them, so even though both the inventories 

and the chemistry schemes within the models have been vastly improved, there is still an 

important role for using trajectories or dispersion models to interpret the measurements. 

 

This review overviews previous studies in which atmospheric composition measurements 

have been analysed with respect to air mass history. It explains the various techniques used 

and looks at the classification of the various methods. A step by step explanation of a new 

technique that classifies the regional influences of a site is described (for the Weybourne 

Atmospheric Observatory in Norfolk, UK) as a detailed exemplar of the review topic. 

 

http://hippo.ucar.edu/�
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2. Outline of methodologies used to assess air mass history and its 
influence on observed composition 

2.1 In situ wind direction as a proxy for air mass history 
 

Meteorological parameters have been used to derive statistically distinct meteorological 

regimes as a primary technique. In situ wind direction measurements at a given point have 

been extensively used to trace the direction of air arriving at a given site but this clearly does 

not take into account the synoptic scale of the flow field. Wind roses have been used to show 

the distribution of wind influences at a particular station and divide the composition data into 

the corresponding wind sectors. Trace gas data at Mace Head in Ireland from measurements 

in 1996 and 1997 were separated into five wind directions in order to isolate “clean” 

(Atlantic) and polluted (European) air masses as shown in Figure 1a (Salisbury et al., 2002). 

The wind rose method often tracks local wind influences (the last 2 or 3 hours before 

reaching the station), but in the longer term it can often be misleading. For example, local 

coastal sea-breeze effects can be different to the general circulation and the synoptic scale 

wind-field.  

 

Radar wind profilers for surface winds and  radiosonde data for vertical profiles were used in 

the MILAGRO campaign in Mexico city (de Foy et al., 2008) to give an extensive picture of 

the meteorological periods of the campaign and cluster analysis of the wind data was used to 

assign hourly air mass clusters for the whole campaign (Figure 1b) which were linked to 

composition measurement time series. During a study at La Réunion island Bhugwant et al., 

2001 used a sectorised wind analysis (shown in Figure 1c) to confirm regional contamination 

of combustion by-products (and higher Black Carbon levels) during particular seasons of the 

year in the marine boundary layer on the island and confirmed this by comparing with the 5 

day back trajectories for these periods. The influence of the meteorological component on the 

observed ozone and NO2 trends was studied at an urban site in the Athens basin (Varotsos et 

al., 2003). Seasonal wind-roses, derived from both trajectory and meteorological data showed 

the air-transport effect on the air pollution of the Athens basin and cross correlations between 

surface ozone and the frequency of the air transport during different seasons were calculated.  

 

Many wind rose studies measure wind direction in either 16 direction sectors (22.5º each) 

(Figure 2) or 36 sectors (10º each) (Figure 1c). Droppo and Napier, 2008 describe an 
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algorithm to interconvert and standardise analysis using various meteorological datasets with 

different directional sectors. Daily averaged wind roses of SO2 and Particulate Matter (PM) at 

an industrial harbour computed using a Power-Ridge Pollutant (PRP) rose computational 

scheme (using ordinary least squares regression, outlier handling and weighted averages) 

(Figure 1d) were compared to half-hourly wind roses of these pollutants and showed that 

using daily averaged PRP values was as effective as using half-hourly wind roses (Cosemans 

et al., 2008).  

 

Many statistical techniques have been used with wind speed and direction, humidity, 

temperature, pressure and cloud cover parameters to classify distinct meteorological regimes 

and periods. Crutcher et al., 1986 pioneered the use of cluster analysis to better elucidate the 

dependence of air quality on meteorology. Other studies include cluster analysis of ozone in 

St Louis, Missouri (Altshuller, 1986), Birmingham, Alabama (Eder et al., 1994), Houston, 

Texas (Davis et al., 1998) and ozone exceedances at Houston, Texas (Darby, 2005).  The 

Darby, 2005 example is shown in Figure 1e, where wind barbs are used to represent wind 

speed and direction to show the wind direction in one air mass type separated by cluster 

analysis.  

Neural networks have been used to remove the meteorological variability from datasets to 

discern temporal and spatial trends in response to changing precursor emissions. Turias et al, 

2006 introduced a neural network approach to classify surface winds that could be used to 

improve air pollution forecasts. Long term ozone measurements and a suite of meteorological 

measurements have been analysed with neural networks (Gardner and Dorling, 2001; 

Gardner and Dorling, 1999, 2000) as well as NOx and PM (Kukkonen et al., 2003). The use 

of artificial neural networks in interpreting air quality data is discussed in a comprehensive 

review by Gardner and Dorling, 1998. 

 

Beaver and Palazoglu, 2006 have used Principal Component Analysis (PCA) to cluster ozone 

measurements in San Francisco with wind measurements. PCA and Positive Matrix 

Factorization (PMF) (see section 4.1.5 for similar technique with back trajectories) were used 

to interpret the elemental composition and sources of aerosols arriving at Dunkirk, France 

(Alleman et al., 2010), associating each sample with distinctive emission sources. Hart et al. 

(Hart et al., 2006) have analysed ozone exceedance events over ten years in Sydney, 

Australia by using a suite of meteorological measurements combined with PCA and cluster 
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analysis to classify days into low and high ozone days. Oanh et al., 2005 have looked at SO2 

levels in the Mae Moh valley in the northern Thailand with PCA clustering of synoptic 

meteorological conditions. 

 

The Conditional Probability Function (CPF) that represents the probability of an air mass 

arriving at a receptor site has been used on wind data in many studies (see Section 4.1.3 for 

its applications in trajectory residence time analysis). Wind direction and speed were used for 

sites measuring Black Carbon (BC) in New York state (Venkatachari et al., 2006) in order to 

identify likely locations of local point sources of BC, with CPF plots showing from which 

directions around the sites the highest 25 % BC levels occur. Extensive wind rose analyses 

deriving CPF of the concentration of the species of interest from various directions around 

the measurement station have been carried out: e.g to attribute PM levels to wind sectors at 

three sites in Ontario, Canada (Chan and Mozurkewich, 2007), to study sources of PM, O3, 

NO, NO2, CO and SO2 arriving at Erfurt, Germany (Yue et al., 2008), to study VOC levels in 

Beijing (Song et al., 2008),  to study PM2.5, SO2, CO, and O3 in Rochester, NY, USA 

(Kasumba et al., 2009), to analyse PM10 levels arriving in Daejeon city, China (Lim et al., 

2010) and to analyse VOC levels in Houston during the TexAQS-II campaign (Leuchner and 

Rappengluck, 2010) (as shown in Figure 2 with wind roses for two of the source types 

derived from PMF analysis). 

 

The general weakness of using pollution roses is that one cannot assume that the wind 

direction measured at a point is consistent with the synoptic scale flow. The turbulent and 

synoptic nature of wind always leads to changes in the wind direction over a region and this 

is not shown from local or point wind direction measurements.  

 

2.1.1 Meteorological data as synoptic weather patterns to classify composition 
 

The classical large scale weather classification widely used in Europe is the Grosswetterlagen 

system, originally conceived by Baur et al., 1944, recently updated by Gerstengabe et al., 

1999 and since maintained by the German Weather Service (DWD). The 29 Hess and 

Brezowsky Grosswetterlagen (HB-GWL) regimes can be viewed as readily identifiable large-

scale circulation patterns involving the whole of Europe and the North-East Atlantic, with 

their primary focus on central Europe. Spichtinger et al., 1996 divided 3 years of ozone, NO 
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and meteorological measurements in Munich into 3 GWL. Linear multiple regression 

analysis was performed on each weather type to reveal how the ozone and NO concentrations 

are explained in terms of meteorological parameters, showing how there is a better 

correlation in the cyclonic compared to anticyclonic conditions, which shows how the 

increasing significance of photochemistry in cyclonic periods. 

 

The classification of daily weather types (DWT) on a daily basis for the British isles between 

1861 and 1997 has been carried out by Lamb, 1972, where the basic flow direction and level 

of anticyclonicity or cyclonicity over an area was determined. The grid over which the 

objective DWTs are calculated can be moved to different locations and a new catalogue, 

appropriate for the new location, can be constructed.  Ohare and Wilby, 1995 used the Lamb 

weather types to show that ozone levels from a variety of measurement stations in the UK 

were strongly correlated with the prevailing weather type. 

 

Meteorological measurements at Szeged, Hungary have been separated according to Factor 

Analysis (reduction of the dimensionality of the meteorological dataset) and objectively 

grouped into days with similar weather conditions and then compared to CO, NO, NO2, SO2, 

O3 and Total Suspended Particles (TSP) measurements over 4 years (Makra et al., 2006). 

Factor analysis of meteorological data, followed by cluster analysis was applied to air masses 

arriving in Athens over 4 years and corresponding air pollutant measurements (Sindosi et al., 

2003). Helimis et al., 2003 studied the connection of atmospheric circulation to trans-

boundary air pollution by using a circulation-to-environment approach where 14 synoptic 

scale patterns were distinguished over Athens and SO2, NOx and O3 data were compared 

between the synoptic periods and additional modelling linked this to inflow and outflow of 

the Athens basin. Demuzere and Lipzig, 2010 used linear regression methods to explain O3 

and PM variations and found that classifying according to the automated “Lamb” weather 

type prior to the regression analysis was superior to just using the linear regression. 

Comparison of objective air mass types and the “Peczely” weather types to classify daily 

pollution levels over the Carpathian Basin (using 12 meteorological and eight pollutant 

parameters) has been conducted for a four year period (Makra et al., 2009). 

2.2 Trajectory models 
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A modelled trajectory is an estimate of the transport pathway of an infinitesimally small air 

parcel and an estimate of the centreline of an advected air mass subject to vertical and 

horizontal dispersion. Back trajectories trace the path of a polluted air parcel over a period of 

time and have long been used to track the history and pathway of air parcels arriving at a 

specific location since they were first developed in the 1940s by Pettersen, 1940. The first 

trajectories were one dimensional lines calculated using recorded meteorological fields in a 

model dealing with the combination of wind field influences on the air. Computational 

advances in the 1960s allowed isentropic analysis and trajectory calculations to be performed 

graphically on computers (Danielsen, 1967). These back trajectories followed the path of 

release backwards on a Eulerian grid, where the flow of particles is depicted as a function of 

a fixed position and time. More information can be extracted from two-dimensional 

trajectories by colour-coding their pathways by height and by including markers 

corresponding to time of travel. Owing to errors and assumptions in the wind fields used to 

calculate the trajectories, the uncertainty of trajectories increases with time along the path and 

Seibert, 1993 investigated the accuracy of trajectories 

 

Ashbaugh et al (Ashbaugh et al., 1985) were one of the first to use back trajectory analysis to 

identify source regions of pollutants (in this case sulphur) and then used air quality 

monitoring records to identify those regions from which high sulphur concentrations were 

most likely to arrive and the corresponding statistical associations between air mass history 

and above average concentrations.  

 

A review of the types and uses for back trajectories and the associated errors and probabilities 

within them has been provided by Stohl, 1998, in which it is stated that there can be serious 

misinterpretations of a flow situation (represented as linear air mass movements) if the 

magnitude of the errors cannot be estimated. Kahl, 1993 investigated the errors within the 

calculation of trajectories by calculating trajectories at multiple levels and at regular grid 

intervals around a site to assess the extent of vertical and horizontal wind shears. The errors 

and issues associated with back trajectories (uncertainty arising from interpolation of sparse 

meteorological data, assumptions regarding vertical transport, observational errors, sub-grid-

scale phenomenon, turbulence, convection, evaporation, and condensation) are explained in 

Polissar et al., 1999. Taking into account uncertainties, back trajectories are often better 

suited to large scale circulation studies, such as shown in the detailed global trajectory study 
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on air parcel circulation between the troposphere and stratosphere carried out by Jackson et al 

al., 2001. 

 

Examples of some of the community’s commonly used trajectory models are listed in Table 

1. The FLEXTRA model has been used extensively and is described by Stohl et al., 1995. 

The UK Universities’ Global Atmospheric Modelling Programme (UGAMP) trajectory 

model has been used extensively in many studies (e.g. (Cape et al., 2000; Methven et al., 

2006))  as well as the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 

model. The HYSPLIT model, when run in particle mode advects a fixed number of particles 

about the model domain by the mean wind field and spread by a turbulent component 

(Draxler and Rolph, 2003). The Centre for Air Pollution Impact and Trends Analysis 

CAPITA Monte Carlo (CMC) model (Schichtel et al., 2006) uses meteorological wind fields 

to advect the particles in three dimensional space, while the intense vertical mixing that takes 

place within the atmospheric boundary layer is simulated using a Monte Carlo technique, 

which evenly distributes the particles between the surface and the mixing height.  Other 

trajectory models include APTRA (Delcloo and De Backer, 2008) obtained from the 

ECMWF (European Centre for Medium-Range Weather Forecasts), the LAGRANTO model 

(Tarasova et al., 2009), the TRADOS model (long-range Trajectory, Dispersion and Dose 

Model of the Finnish Meteorological Institute) (Virkkula et al., 1999) and trajectory models 

run directly from meteorological datasets such as the ECMWF three dimensional isentropic 

model (Dogan et al., 2008), NMC (US National Meteorological Centre) (Merrill, 1994; 

Merrill and Moody, 1996), BADC (British Atmospheric Data Centre) (Walker et al., 2009), 

CMDC (Climate Monitoring and Diagnostics Laboratory) (Polissar et al., 1999; Polissar et 

al., 2001b) and NIES (Russian National Institute for Environmental Studies) (Pochanart et al., 

2003) models. 

 

A thorough comparison of various trajectory models with a number of meteorological 

parameters derived through different systems has been carried out by Gebhart et al., 2005. 

The 1980s era Atmospheric Transport and Dispersion (ATAD) model was compared to two 

of the more recent models; HYSPLIT and the CAPITA CMC model. Various data sets 

(ATAD, BRAVO, MM5 and GDAS) were used as meteorological fields. Tests on data at a 

field station in Texas showed that there was evidence for systematic differences between the 

average results of different back trajectory models. Depending on the meteorological input 
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data used in the calculations, the trajectories could be as different by as much as 180º during 

certain episodes.  

 

Multiple trajectories are used to simulate the air mass history, since the air parcels arriving at 

a site could have followed different trajectories owing to turbulent atmospheric mixing and 

advective processes. Multiple trajectories also provide a measure of the uncertainty in the air 

mass transport pathway and the clustering of individual trajectories discussed later shows 

how grouping trajectories reduces uncertainty. 

 

Example back trajectory analyses are shown in Figure 3 for Mace Head, Ireland (Cape et al., 

2000), Weybourne,  UK (Cardenas et al., 1998), the Cape Verde Atmospheric Observatory on 

the island of Sao Vicente (Müller et al., 2010) where many studies of correlations between 

chemistry and air masses have been carried out (see details in Table 1) and the TOR station at 

Porspoder, France.  

 

2.3 Particle Dispersion Models  
 

More complex methods to calculate air mass pathways and air mass footprints have come 

from Lagrangian Particle Dispersion Models (LPDM), that follow the chaotic pathways of air 

parcels as probability distributions. Lagrangian methods involve plotting the position of an 

individual parcel through time, giving the pathline of the parcel within a specific period of 

time. The Lagrangian dispersion concept is more accurate because individual particles move 

independently from each other and can thus carry additional information and the advection 

scheme is more accurate than those of trajectory models as it attempts to capture turbulence, 

which causes a more probabilistic and realistic growth in the volume of influence.  

The 2-D maps created for backward runs illustrate which geographical regions have 

influenced the air arriving at a site. These can be seen as four-dimensional as opposed to 

quasi-one-dimensional back trajectories, making them an interesting extension to 

conventional trajectory models, allowing a more realistic representation of transport in the 

planetary boundary layer, where turbulence is important.  

Stohl et al., 2002 explains the added accuracy and regional spread of dispersion models and 

how they can be a replacement for simple back trajectory models for comparing atmospheric 
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composition measurements at a given site. Flesch et al., 1995 describes the parameters within 

Lagrangian Stochastic models and their use in estimating atmospheric emissions and source-

receptor relationships.  

The HYSPLIT 4 model can be run with puffs instead of particles with an added dispersion 

scheme added to the initial trajectory computation (Cohen et al., 2004; Han et al., 2005). This 

was combined with emissions to extract source–receptor relationships in the area. 

Typical models used in many studies include the FLEXPART and NAME models. The 

FLEXPART model (Stohl et al., 2005; Stohl et al., 1998) (an example is shown in Figure 7), 

has been used for a variety of research purposes and for emergency preparedness. The model 

is usually driven by ECMWF meteorological input data. FLEXPART evolved from the 

FLEXTRA back trajectory model but represents transport and dispersion by calculating the 3-

D trajectories of a multitude of particles.  

The UK Met. office’s NAME (Numerical Atmospheric Dispersion Modelling Environment) 

(Jones et al., 2007; Ryall and Maryon, 1998) dispersion model described in detail in the case 

study in Section 5 can be used to give a footprint of a site on scales of hours to years. The 

model was developed in the late 1980s following the Chernobyl accident (and originally 

named (Nuclear Accident ModEl)) to give emergency response dispersion predictions for 

nuclear incidents (Maryon, 1991). NAME is usually run with the Met Office’s operational 

global NWP model, the Unified Model (Cullen, 1993) meteorological data on a variety of 

regional or global scales.  

 

Manning et al., 2003 and 2011, and Ryall et al., 2001 have used NAME to calculate the 

distribution of air masses arriving at Mace Head, Ireland, from different Atlantic Ocean and 

European regions and by combining with composition measurements at the station, they have 

derived emission inventories for Europe. In combination with satellite imagery and 

observational data from Mace Head the NAME model was used to investigate the origin of 

high particulate matter over the British isles during March 2000 and it showed that the most 

likely origin of the episode was long range transport of dust from the Sahara region of North 

Africa and not volcanic ash from an Icelandic volcano (Ryall et al., 2002). Ryall and Maryon,  

1998 tested NAME using the ETEX database (European Tracer Experiment database of 168 

ground-level sampling stations in Western and Eastern Europe) to assess its suitability to 

predict the overall spread and timing of a pollutant plume across Europe. The NAME model 

http://www.ecmwf.int/�
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has also been used in conjunction with satellite measurements (Hewitt, 2010) to develop a 

methodology to investigate regional scale carbon budgets.  

 

2.4  Chemistry Transport Models 
 

Chemistry Transport Models (CTM) combine meteorological fields, emissions and physical 

atmospheric processes with chemistry schemes and reaction kinetics to describe the 

chemistry and physical transformations within air masses. The NAME dispersion model has 

an option to add a chemistry scheme to the tracer transport calculations but is not as complete 

as a CTM. In this work we define CTMs as ones that by default include emission inventories 

and chemistry and transport schemes. 

Emissions databases and chemistry reaction scheme databases are incorporated into models 

in order to quantitatively predict composition during transport. CTMs contain a large number 

of uncertainties as do the emissions databases that are used within them. They have been used 

in parallel with many of the studies detailed in this review to test how well they compare with 

the observed composition from various emission sources and influences and to add value to 

the trajectory analysis but CTMs are only mentioned in this review if they have been used to 

compare to simple trajectory or dispersion models. 

Wind data have been used as input for many CTMs such as in the distance-weighted wind 

roses that were combined with measured ozone as input for the Edinburgh Lancaster Model 

for Ozone (ELMO) model. The model was used to predict ground level ozone concentrations 

in the UK (Strong et al., 2006) and it predicts the higher ozone episodes (98th percentile) well. 

ELMO-2 used the HYSPLIT trajectory model as input and was seen to reproduce ozone 

episodes and diurnal cycles at several UK monitoring sites during summer 1995 (Strong et 

al., 2010). In the study by Gilliam et al (Gilliam et al., 2006), the Pennsylvania State 

University/National Center for Atmospheric Research Fifth Generation Mesoscale 

Meteorological Model (MM5) was used with seasonal subsets of pseudo-trajectories derived 

from radar wind profiler data and from simulated wind fields as input to provide an estimate 

of model errors in terms of wind transport. They found any inconsistencies in the 

meteorology were passed on to the air quality model. CO and SO2 transport was well 

simulated with both MM5 and WRF (Weather Research and Forecast) meteorological 

parameters over the Mexico city basin during the MILAGRO study (de Foy et al., 2009). De 
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Foy et al., 2009 used FLEXPART back trajectories, in combination with measured air 

pollutant concentrations to identify potential source regions and the WRF and MM5 models 

were used to evaluate the simulated trajectories by comparing the potential source regions 

with emission inventories.  

 

A Photochemical Trajectory Model (PTM) was used with emissions databases to simulate 

atmospheric composition, during the Pollution in the Urban Midlands Atmosphere (PUMA) 

campaign in Birmingham (Walker et al., 2009). The model described the photochemical 

ozone formation as well as inorganic and organic aerosol formation in north-western Europe 

and in this case followed advected air masses from source regions in Europe to the receptor 

location in the UK. The model was tested against 3 day back trajectories to test the model’s 

ability to pull out the origin of all the pollutant episodes and it was not able to trace back the 

pollutant transport during conditions of slow moving anticyclonic conditions. This example 

shows how trajectory studies should be carried out independently to trajectory chemical 

modelling studies as in some cases the model cannot interpret all periods. 

 

The Lagrangian chemistry transport model CiTTyCAT (Cambridge Tropospheric Trajectory 

model of Chemistry and Transport) (Evans et al., 2000) has been used in many studies 

investigating atmospheric composition. CiTTyCAT simulates chemical transformation 

following trajectories with a photochemistry scheme that includes the degradation of some 

hydrocarbons, a representation of the spread of surface emissions into the boundary layer 

(using emission inventories) and dry deposition. The chemical initial conditions at the 

trajectory origin are defined by interpolating concentrations from the TOMCAT CTM, which 

calculates the abundances of chemical species in the troposphere and stratosphere. 

CiTTyCAT was seen to accurately simulate 70 % of the variance in the relationship between 

chemical composition at Mace Head during field measurements in 1996 and the origin of the 

resolved flow when compared to time series of trajectory-origin-averaged measured ozone 

(Strong et al., 2006). Different processes influencing the evolution of pollutant levels in a 

trans-Atlantic plume have been analysed with the CiTTyCAT model and average trace gas 

concentrations and their correlations (O3/CO and NOy/CO) calculated to study the factors 

governing ozone production (Real et al., 2008). 

 
The GEOS-CHEM 3-D global CTM (using assimilated meteorological data compiled at the 

NASA Global Modeling and Assimilation Office (GMAO)) was used to calculate a long 
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range transport component to air masses arriving at Cheeka Peak Observatory (western US) 

from over Asia from trajectory analysis (Weiss-Penzias et al., 2004). The CO produced from 

Asian biomass burning, and Asian and European fossil fuel and biofuel sources was 

calculated and compared with measured CO. Reidmiller et al., 2009 used back trajectory 

analysis coupled with ground-based measurements from the Mount Bachelor Observatory 

(western US) to confirm GEOS-CHEM simulations, suggesting a significant change in long 

range transport between 2005 and 2006, owing to changing patterns of long range transport 

Asian air masses arriving at the site. Investigations of ozone and CO in biomass burning 

plumes were investigated using the GEOS-CHEM model during the AMMA campaign in 

West Africa campaign (Real et al., 2010) and the modelled mixing ratios at each successive 

day along the trajectory are shown in Figure 4, showing how modelled CO decreases 

downwind at all heights whereas O3 decreases downwind only in the lowest trajectory. 

 

Back trajectories calculated for analysis of cruise ship measurements in the Atlantic Ocean 

and were compared to the MATCH-MPIC (Model of Atmospheric Transport and Chemistry-

Max Planck Institute for Chemistry version) model (Gros et al., 2004). MATCH is a global 

atmospheric offline model, driven by 3-D meteorological parameters with a CH4-CO-HOx-

NOx ‘‘background’’ chemistry, a simplified representation of isoprene and other VOC 

chemistry and emissions of CO and VOCs from energy and industrial activities taken from 

the EDGAR inventory (Olivier and Visschedijk, 1996) emissions database.  

 

The MISTRA 1-D Lagrangian chemistry model has been used to simulate multiphase 

halogen cycling mechanisms and compared with the observed association between Cl2 and 

pollutants at the Cape Verde islands. The model data was compared to the halogen chemistry 

during particular air transport pathways and found Cl to be involved in CH4, DMS and O3 

cycling (Lawler et al., 2009). 

 

During the Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS), the 

Trajectory Mass Balance (TrMB) Model was used to probe source-receptor relationships. 

Hourly measured atmospheric NOx, SO2 and NH3 concentrations were compared with model 

simulations using HYSPLIT trajectory residence times in various regions and modelled 

meteorology to determine correlations between measured and modelled chemistry and the 

transport within and into Colorado (Gebhart et al., 2011). 
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Another model to quantify source–receptor relationships was the Gaussian trajectory transfer-

coefficient model (GTx), which has been used to model PM at Taichung City and Taipei 

City, Taiwan (Tsuang, 2003; Tsuang et al., 2003a; Tsuang et al., 2003b). It was able to 

simulate the daily variation of PM concentrations at these sites and was used to determine the 

source of particulates and dust from long range transport.  

3. Applications of trajectory data to interpret composition 
observations 

 
Many studies have been carried out to relate variability in chemical observations to variations 

in synoptic-scale circulation. A summary of previous research studies that combine trajectory 

or dispersion modelling with chemistry datasets from long term measurement stations and 

field campaigns are presented in Table 1. Examples of the techniques used, the composition 

measurements that were analysed, the locations, the type of cluster analysis or sector analysis 

techniques used (described in section 4) and if chemistry modelling was used to complement 

the study are listed for each study. 

3.1 Characterisation of long-term in situ ground based measurements 
 

Studies at the Northern hemispheric background measurement site of Mace Head, Ireland 

used trajectories to assign each 6 hourly air mass arriving at the site to one of eight 45º 

sectors (centred on north, northeast, and so on to northwest) (Simmonds et al., 1997). If all 

four trajectories within a day lay within the same sector, it was classified to that sector and if 

no such allocation was possible for a particular day, then that day was unclassified. 

Additional trajectory analysis sorted the data into the specific regions of USA and Canada, 

Greenland and Iceland, Europe, and southerly latitudes and with both of these sector 

analyses, so-called background or polluted conditions were separated for analysis of ozone 

and CO levels.  The methodology has been shown to be robust for the determination of 

background trends. The Zeppelin station in the Arctic has also been classified with the same 8 

sectors surrounding the site (see Figure 8d) and a transport sector allocated to each trajectory 

if at least 50% of the last 24 hours of the trajectory were closer than 850 km from the station 

(Solberg et al., 1996). Spring low ozone episodes were found to originate from a 

Westerly/Northerly Arctic oceanic direction.  
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The air arriving at Porspoder in Brittany, France was split into three kinds of oceanic air 

masses (North Atlantic northern and southern latitudes and North American continent) and 

seasonal variations of PAN, VOCs, O3 and NOx according to air mass types over a period of 

4 years were studied (Fenneteaux et al., 1999). Corresponding back trajectories for the 10th 

and 90th percentiles (see Figure 3d) and average levels of the species in winter and summer 

showed that there were strong seasonal and regional influences on these species. Air arriving 

at the remote mountain site of Mondy in Siberia were classified into 4 transport pathways 

(Europe, Siberia, High-latitude, and south-west air masses) and CO and O3 levels at the site 

were then averaged for each trajectory type to reveal how European air masses had the 

highest O3 and CO levels (Pochanart et al., 2003). 

 

Various studies on many US National Parks and wilderness areas (through the IMPROVE 

sites) used residence time analysis of back trajectories to find source-receptor relationships 

and the source type and origin of high air-borne pollutants (Hopke and Allan, 2009). The 

online Combined Aerosol Trajectory (CATT) tool, uses the IMPROVE sites and 5 day back 

trajectories to colour weight the trajectories to individual or aggregated sites, in order to 

analyse long term patterns in pollution transport to these areas (Poirot and Allan, 2009). 

 

In a review of recent aerosol studies in Europe it was found that 11 % of all studies used back 

trajectory methods to cluster aerosol levels according to their origin and transport pathways 

(Viana et al., 2008). Rozwadowska et al., 2010,  Salvador et al., 2008 and 2010 and Sharma 

et al., 2006 show some of the latest aerosol source-receptor studies using back trajectory 

classification at a range of sites in Europe and the Arctic. 

 

Tarasova et al., 2009 classified the vertical as well as geographical origin of air masses 

arriving at two mountain stations (Jungfraujoch and Kislovodsk) by using potential vorticity, 

altitude along the trajectory and boundary layer height to discriminate different vertical 

source areas, as well as the usual classification using the horizontal coordinates of back 

trajectories. This methodology allowed classification of the air masses according to their 

contact with the free troposphere and the stratosphere and showed how ozone levels varied 

significantly depending on their vertical pathway to the mountain tops. CO2 measurements at 

the Jungfraujoch mountain station were compared using the FLEXPART dispersion model 

and the model was also used to calculate the residence times of the air masses in the 

boundary layer and relate this to CO2 exchange processes (Tuzson et al., 2011). Delcloo and 
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De Backer, 2008 separated the trajectory analysis clustering of 32 years of trajectories 

arriving in Uccle, Belgium by elevation, into planetary boundary layer and free troposphere 

origins to understand how ozone levels have varied in both high and low elevation air masses. 

3.2 Investigating long term trends and seasonality in composition 
measurements 
 
Understanding the influence of transport patterns on long-term trends is essential to 

interpreting their changing chemical and physical signatures. Seasonal cluster analysis of 

trajectory types has been used to reveal the percentage of each trajectory type arriving in each 

season as well as the ozone trends in each season in Uccle, Belgium (Delcloo and De Backer, 

2008).  Monthly averaged CO and O3 for different trajectory types were calculated for a 

station in Siberia (Pochanart et al., 2003). Junker et al., 2009 studied 12 years of O3, CO, 

SO2, PM and NOx measurements at four measurement stations in Taiwan and China and 

separated the composition by their air mass history to show long term trends and also 

seasonal variations. Abdalmogith and Harrison, 2005 carried out a seasonal cluster analysis 

of PM levels at Harwell and Belfast in the UK and found small variations in the direction of 

the clusters and the levels and type of PM observed between the seasons. Solberg et al., 1997 

found the background ozone to have a small seasonal variation and a spring maximum as 

opposed to the summer maximum and large seasonal variation for European polluted air 

masses at Birkenes in Norway (Figure 5a). Simmonds et al., 1997 looked at the relative ozone 

contribution from each of the source regions to the observed spring maximum at Mace Head. 

This was obtained by subtracting the mean ozone concentration for the Northern Hemisphere 

Marine Mid-Latitude Background (NHMLB) (34.8 ppbV at the time) from 5 years of ozone 

monthly means. These monthly differences were shown as ozone excesses or deficits relative 

to the NHMLB ozone concentration and displayed marked seasonal differences between 

Atlantic, European and American air masses in Figure 5b.  

 

Long term records of composition variations separated by corresponding air mass history are 

rare due to the fact that running back trajectories on hourly or even daily timescales for over 

10 years is very computer-intensive and the meteorological data needed for the model may 

have changed over the years. Trends in air mass climatology for a 40 year trajectory dataset 

have been investigated by Shadbolt et al., 2006 and discussed in section 4.1.2.  
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Jorba et al., 2004 have clustered the trajectory types arriving in Barcelona over a year and  

displayed this as monthly averaged contribution of each trajectory type that shows the 

seasonal influence on climatology (Figure 6a). A similar monthly distribution of regional 

influences was calculated for 15 years at both Alert and Barrow in the Arctic (Sharma et al., 

2006) as shown in the monthly distribution of sector influences in Figure 6b. Furthermore 

Sharma et al.,2006 used a geometric time variation model to describe the temporal variation 

of 6-hourly Black Carbon (BC) concentrations, including a long-term trend, long-term cycles, 

seasonal variation, and an autoregressive component that described short-term temporal 

correlations. The long term trends in both winter and summer varied greatly between the 

different sectors, especially at Barrow.  

 

Pochanart et al., 2001 found that there were strong seasonal differences in the relationship 

between residence times of air masses over Europe and ozone levels in Arosa, Switzerland 

and that ozone concentration depends significantly on European residence times in spring and 

summer. Eneroth et al.,2003 carried out a cluster analysis of ten years of trajectories arriving 

at Ny-Ålesand on a monthly basis, to study inter and intra-annual variations of CO2 and 

found that there were seasonal differences in the prevalence of each trajectory type that lead 

to varying CO2 levels but they found no conclusive linkage between CO2 levels and transport 

pathways 

3.3 Analysing the air mass history for aircraft based measurements 
  

Combing trajectory and dispersion studies of air mass histories with aircraft measurements 

helps to build a 3-D picture of air mass movement and transport. This picture is often 

achieved by calculating back trajectories and dispersion pathways from multiple elevations 

along the aircraft flight track.  

 

Back trajectories at 1, 2 and 3 km were run during the RAMMPP aircraft campaign over the 

mid-Atlantic US (Taubman et al., 2006) in order to pick out any variations in atmospheric 

circulation patterns in the lower atmosphere and identify the impacts on regional transport. 

Vertical composition measurements were combined with these back trajectories to look at the 

history of the air during summer ozone pollution episodes and the role of transport to the 

boundary layer.  
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Hains et al., 2008 calculated average ozone levels in vertical bins of the atmosphere and 

transposed this on the various trajectory types that were observed during flights over the 

north-east US in the INTEX-NA campaigns in 1993-2003. An 80 km radius circle was drawn 

around each hourly point on the trajectory and the NOx emissions from that area were 

compared to the ozone level at the corresponding altitude bin.  

 

Clustering of air mass composition from the MOZAIC dataset (long-term composition 

measurements from an aircraft network) using the FLEXPART trajectory model was 

compared to a multivariate analysis technique that classifies ozone-rich layers observed in 

tropospheric profiles according to their origin by season (Colette et al., 2005). The ozone 

multivariate analysis technique was found to underestimate the long-range transport that the 

trajectory studies were able to identify. 

 

Reverse Domain Filling (RDF) is a technique that defines regions of similar air mass origin 

with the use of back trajectories and is used to plan flight paths through regions of interest. 

Methven et al., 2003 used RDF trajectories arriving on a high-resolution three-dimensional 

grid (RDF3D) to simulate air mass structure accurately by colouring arrival grid points 

according to the specific humidity (or potential vorticity) at the origin of each trajectory. 

Back trajectories were calculated from every point on the 3-D grid from a reference time near 

the anticipated flight time and for each RDF forecast trajectories were integrated backwards 

in time for three days, using a combination of ECMWF forecasts and interpolating specific 

humidity from the forecasts to the origin of each trajectory. The flights were targeted at 

regions where there were neighbouring air masses with distinct origins. Chemical 

measurements during the flights were overlaid onto the RDF maps and variations in 

composition were compared with the pre-selected air mass types to see if composition did 

vary within the different air mass types. Hydrocarbon measurements during the IGAC 

Lagrangian 2K4 experiment in July 2004 (Methven et al., 2006) were analysed according to 

calculated back trajectories and RDF was used to identify Lagrangian matches between flight 

segments from different aircraft. Figure 7 shows examples of horizontal and vertical RDF 

plots used to plan flights that intercept biomass burning plumes during this study. This was 

the first experiment aiming to take measurements that were linked by trajectories over 

intercontinental distances through the free troposphere, where vertical motion is important 

and was described as a “pseudo-Lagrangian experiment”. Results from the FLEXPART 

model, run with CO tracers were also used to confirm matches.  
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Following on from this form of analysis, Real et al., 2008 isolated the chemistry of an 

anthropogenic pollutant plume transported across the North Atlantic at low altitudes. Similar 

use of flight data and back trajectories was used to track Alaskan wild fire plume transport 

during the ICARTT aircraft campaign (Real et al., 2007) and study the evolution of the 

composition and ozone formation a few days from emission.  Schmale et al., 2011 used 

OFFLINE and LAGRANTO trajectory models as well as the FLEXPART dispersion model 

with EDGAR emissions to study the aerosol composition of a variety of air masses over 

Greenland during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface 

Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) summer 

campaign in Greenland. 

 

During the AMMA campaign in West Africa RDF back trajectories were used to split the 

area over which flights had passed into boxes representing the 4 main regions of recent (10 

day) origin (Law et al., 2010). Vertical differences in composition and the occurrence of 

convection were included in the separation and interpolation of the measured composition 

data.  

4. Methods for deriving classifications of air mass pathways 

 
 
In order to analyse the association between trajectories and concentrations of air arriving at a 

site, a multitude of methods to carry out trajectory classifications have been devised. These 

can generally be split into two different methodological groups. The first is to sort air masses 

by designated air mass sectors, representing a different influence on composition. 

Relationships between atmospheric composition and air mass origin are often analysed this 

way, by isolating the highest species concentrations or the exceedence levels and finding the 

main sectors of influence during those polluted periods. The second is to cluster the 

trajectories using a mathematical technique and then to analyse the concentrations at the 

receptor site for each trajectory classification to see whether each classification is chemically 

distinct. These fall broadly into sector classification and statistical classification (cluster 

analysis) and are described in detail in the following sections. 
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4.1 Geographical sector classification   
 

The method of assigning trajectories according to regional influence and comparing the 

composition in those regions was developed by Ashbaugh , 1983. Siebert,  1994 added a way 

to deal with uncertainties followed by a subsequent refining of the method by Stohl, 1996 to 

allow for a non uniform concentration within each grid. The technique superimposes a grid 

over the domain of the trajectory computations and then a geometric mean concentration of 

all the trajectories passing through each specific gridded region is calculated. The assigning 

of the grid boxes is done either from prior knowledge of source regions, for example for 

western US influences in Figure 8a (Weiss-Penzias et al., 2004) where the region with high 

CO from the MODIS satellite was chosen to locate an Asian box or by geographical limits for 

Siberian and European masses (Paris et al., 2010) and (Salvador et al., 2008) respectively in 

Figures 8b and 8c or as an objective division of the radius around the site such as that done 

for Svalbard (Solberg et al., 1996) in Figure 8d.  

 

Methven et al., 2001 studied the back trajectories for air arriving at Mace Head, Ireland using 

the technique of “Origin Averaging” by calculating a climatological density of origin (the 

region where the trajectories originate) and assigning a corresponding composition 

concentration for each area of origin. This technique identified chemical air masses 

associated with different ozone levels but the origin of CO and CH4 levels proved harder to 

track.  

4.1.2 Residence time analysis (trajectory regression analysis) 
 

Residence time analysis is a qualitative source attribution technique (Ashbaugh, 1983) which 

generates a probability density function identifying the likelihood that an air mass will 

traverse a given region en route to the site of interest over a given time period. Air parcels 

that travel quickly through a pollutant source region have less time to accumulate pollutants 

than air parcels which remain in the source region for a long time. 

 

The seasonal variation and climatological pathway of airflow to various stations around the 

Atlantic Ocean was studied by Merrill, 1994 in order to interpret the trace gas measurements. 

The number of hours spent by the trajectories in each area of a grid for a given season was 

shown as a cumulative probability field and the areas of high probability indicated that 
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trajectories which subsequently reached the site had spent more time in that geographical 

area. The same technique was used to help interpret composition measurements in the Pacific 

Exploratory Mission-West A (PEM-West A) flight experiment and ozone profiles above 

Bermuda (respectively Merril 2006a and b).  

 

An example of residence time analysis for investigating long term air mass climatology 

which would affect long term changes in composition is shown in a 40 year study of airflow 

trajectories and residence time calculations for the lower peninsula of Michigan (Shadbolt et 

al., 2006) where monthly air mass climatology anomalies were plotted as standard deviations 

from the grid cell mean value. Here positive anomalies depicted airflow corridors that had 

more trajectories than average, and negative values depicted airflow corridors that had fewer 

trajectories than average.  

 

Doddridge et al., 1994 carried out flow climatology studies to show the probability of the air 

over surrounding areas arriving at Mace Head and assigned a probability contour plot to 

represent the flow over a 3 month period that revealed predominantly Atlantic airflow in one 

year and a large amount of European anticyclonic Atlantic air in the other. 

In order to compare aircraft composition measurements with corresponding back trajectories 

Traub et al., 2003 chose 4 areas to represent source regions over the Mediterranean. Each air 

parcel trajectory that passed over each of the defined regions was added to that particular 

source type. If a back trajectory resided over two or more defined regions, the residence time 

of the air parcel above the regions had to be above a critical residence time (2.75 days in this 

study), by which time it was thought that the air mass had adopted the chemical 

characteristics of that region.  

 

Residence time analysis was carried out to attribute ammonium sulphate concentrations to 

source areas for the IMPROVE sites (US National Parks and wilderness areas) (Xu et al., 

2006). The area around each station was divided into four quadrants and everything outside 

the site’s US state was grouped into one of six larger regions, showing consistently 

considerable sulphate emissions from the Pacific Ocean arriving at these inland sites. 

 

Air masses reaching the high altitude station of Arosa in Switzerland (Pochanart et al., 2001) 

were classified according to the influence of European regional pollution. Residence times of 



26 
 

air masses over Europe were derived on a monthly and seasonal basis to separate background 

ozone conditions (low European residence times) and the occurrence of accumulated high 

European ozone events (long residence times). Solberg et al., 2008 calculated residence times 

of air masses over a central European domain arriving at many European measurement 

stations from 7 day back trajectories for a 7 year period and linked this with the potential to 

form high ozone levels, such as the European heat-wave of 2003.  

 

Studies at the Zeppelin station in Svalbard (Solberg et al., 1996) allocated a transport sector 

to a trajectory if at least 50% of the last 24 hours of the trajectory were closer than 850 km 

from the station as shown by the radius in Figure 8d and used this allocation to understand 

the origin of air masses causing ozone depletion events. Particulate Matter levels from 

Saharan and non Saharan air masses arriving at Castanya in Spain were analysed as well as a 

further gridding the Saharan region into 11 source areas (Escudero et al., 2011). Identification 

of a probability of detection for identifying dust events was done by linking the 11 source 

regions with 3 Spanish receptor regions. 

 

Back trajectories run from Mount Bachelor and Cheeka Peak Observatories on the west coast 

of the US have been run during a variety of measurement periods to track how long each 

trajectory particle spends in an “East Asian box” (see Figure 8a) in order to estimate the 

magnitude of pollution transport from Asia (Weiss-Penzias et al., 2004; Weiss-Penzias et al., 

2006; Wolfe et al., 2007). The number of trajectories passing through the box were weighted 

by the average amount of time each trajectory spends in the box and the trace gas 

measurements at their time of arrival showed the effect of long range transport of Asian 

emissions to the west coast of America.  

 

In a study of nitrogen in precipitation and corresponding ambient PM measurements in North 

Carolina’s large agricultural corridor Occhipinti et al., 2008 used back trajectories to find air 

masses in which a minimum of 50% of the rainfall would have transited surrounding marine 

and agricultural source regions.  

 

The spatial extent (footprint) for ozone from a given location can be examined by correlating 

the short-term component of the ozone time-series data at that location with that at all 

neighbouring stations. The short-term (weather-related) component was separated from the 

long-term (climate) and seasonal components embedded in ozone time-series data at 
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Whiteface Mountain in New York state with the Kolmogorov filter (Brankov et al., 1998). 

They carried out the correlations between each trajectory cluster type and the short-term 

component of ozone was found to be correlated with that measured at a number of other sites 

lying within a cluster envelope, lagged by up to 3 days. This form of analysis tested the 

hypothesis of whether when ozone was transported from a certain direction, the time-lagged 

correlation increases in that direction. The distance at which the time-lagged inter-site 

correlations reach a maximum is expected to be proportional to the distance the air mass can 

travel in that time and would suggest the transport of ozone pollution to the location of 

concern and reveal the spatial and temporal scales involved. 

 

4.1.3 Trajectory statistical methods  
 

Trajectory statistical methods can be divided roughly into those where residence time is not 

weighted by the concentration at the receptor point (e.g. potential source contribution 

function (PSCF)) and methods that do weight by the concentration (e.g. Conditional 

Probability Function (CPF)). Scheifinger and Kaiser, 2007 explains and compares CPF, 

PSCF and the Redistribution Concentration Field (RCF) methods. CPF and PSCF are less 

computationally intensive than residence time analysis as they only need to count the number 

of trajectory end points in each grid for all sampling days. 

 

CPF is a more advanced form of residence time analysis where grid cells are superimposed 

over specific regions of interest and the CPF at each grid cell represents the probability of an 

air mass arriving at the receptor site, after having been observed to reside in this specific 

geographical region.  Pioneering work by Ashbaugh et al., 1985 plotted the probability on a 

map, showing the influences on the air arriving at Grand Canyon National Park as shown in 

Figure 9a, indicating which regions would potentially contribute to high sulphur levels and 

Figure 9b shows the actual source contribution function, which are often different to each 

other.  

 

When pollutant concentrations higher than a specified value are used to derive this 

probability, areas with high CPF can be considered as source regions of the pollutant under 

study and are frequently in the air mass pathway to the site. The CPF, otherwise known as 

Relative Residence Time is the ratio of the trajectory segment endpoint counts for the sorted 
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residence time to the everyday residence time and identifies the likelihood that if an air mass 

passes over a given area, it will arrive at the receptor with a high or low concentration.  

 

Various tests to check the statistical significance of every grid cell CPF value have been used, 

such as one based on the binomial distribution for high CFC levels at Big Bend National park 

(Vasconcelos et al., 1996). The residence time of each trajectory arriving at 4 Alpine stations 

was weighted with the deviation of the actual concentration from the 3-monthly running 

mean and from that potential pollutant source regions were inferred (Kaiser et al., 2007). 

 

The incremental probability (IP) is the difference between the sorted and the everyday 

residence time and identifies regions that are more or less likely to be traversed during 

periods of high or low concentrations compared to an average day. Particulate sulphur 

measurements at Big Bend National park, Texas (Schichtel et al., 2006) used conditional 

probability analysis and Incremental Probability to segregate the 20th and 80th percentile 

sulphur levels according to regions with the results from 2 tracer release sites as shown in 

Figure 10.  

 

The Potential Source Contribution Function (PSCF) can be interpreted as a conditional 

probability describing the spatial distribution of probable geographical source locations 

inferred by using trajectories arriving at the sampling site. Cells related to the high values of 

potential source contribution are the potential source areas and show those source areas 

whose emissions can be transported to the measurement site. It identifies locations more 

likely to be upwind if receptor concentrations are high and these upwind regions of highest 

probability are associated with emissions that contribute to impacts at the site, including areas 

where secondary formation is enhanced. The potential contribution function is the ratio of the 

high concentration probability divided by the everyday probability as opposed to the 

incremental probability which is the subtraction of the every day from the high.  

 

Whilst interpreting the results of PSCF and Residence time ensemble trajectory techniques on 

PM levels detected at a site in Vermont, Poirot et al., 2001 stated that only qualitative 

indications of predominant transport patterns can be obtained and they can be highly sensitive 

to the subjective metrics used to define high pollution episodes or the scale of the gridded 

domain. However, the resulting maps indicating source regions can be a very powerful tool 

for understanding the air quality influences on a station. 
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Studies at Underhill, Vermont (Poirot et al., 2001; Polissar et al., 2001b)  used PSCF analysis 

to combine the aerosol data with the air parcel backward trajectories. PSCF was applied to 

identify possible source areas and pathways that give rise to the observed high particulate 

mass concentrations from each of the emission sources (e.g. coal, smelters, salt). The PSCF 

plot for the black carbon factor shows high probabilities in the area surrounding the sampling 

site, indicating a strong local influence from residential wood combustion in northern New 

England and south western Quebec. Han et al., 2005 used PSCF to attribute high Mercury 

levels at 3 rural sites in New York state to nearby coal-fired power stations. 

 

Polissar et al, 2001a and 1999  used PSCF analysis to study the origin of aerosol in the Arctic 

and found that long-range transport of anthropogenic aerosol to the Arctic is more effective in 

winter and spring than in the summer. Geographical Information System (GIS) software has 

shown to be useful for residence time analysis, such as the TrajStat software that has been 

developed by Wang et al., 2009 to compute Potential Source Contribution Function (PSCF) 

analysis with back trajectories.   

 

Potential source regions give an idea of which directions/ areas pollutants are coming from 

but when assigning source regions by probability analysis the concentrations measured at the 

receptor locations are attributed equally to all segments of the related trajectory, while in 

reality emissions just take place in some segments. To account for this, an iterative scheme 

was developed by Stohl, 1996, redistributing the measured concentrations along the 

trajectories according to the estimated concentration field from the previous iteration. The 

Redistribution Concentration Field method (RCF) (Stohl, 1996) aims at extracting more 

information from the data, a step on from the Conditional Probability method where the 

concentration measured at the receptor sites is attributed with equal weight to all segments of 

the trajectory. Pollution sources are usually concentrated in ‘‘hot spots’’ so probes into 

concentrations at a smaller scale is needed. The concentration values along each trajectory are 

iteratively re-weighted according to the ratio of the concentration of that grid cell to the mean 

concentration of all grid cells along the path of that particular trajectory. The results are 

reported on maps where each grid square is assigned a weighted concentration of the 

component under study. Salvador et al., 2010 used this method to study transport pathways of 

particulate matter and aerosols to various locations in Europe. Emission maps for NOy have 

been derived over Europe from Redistributed Concentration Field (RCF) derivations 
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(Wotawa and Kroger, 1999) and are shown in Figure 11b and (Wotawa et al., 2000) 

compared CPF and RCF for the 90th percentile value of O3 for various stations in the Alps. 

 

Mean concentration loadings from surface sources of Persistent Organic Pollutants for each 

grid cell within the pathway of Kosetice in the Czech Republic were calculated from the 

composition of the air masses that pass over each grid (Dvorska et al., 2009). Centres of 

gravity in defined sectors were determined to quantitatively compare mean loads in particular 

countries and the relative contribution of these countries to air pollution at the site. Potential 

source regions of dust and aerosols arriving at Tenerife in the Canary Islands were studied 

using Median Concentrations at Receptor (MCAR) plots to represent the median 

concentrations at the Izaňa station, recorded for various aerosol compounds when air masses 

passed above each grid box (Rodriguez et al., 2011). PSCF analysis of trajectories separated 

by the source apportionment technique of varimax-rotated factor analysis was used for 

aerosol measurements at Antalya, Turkey (Güllü et al., 2005), highlighting the areas that 

resulted in high aerosol levels at the site and the map for one factor is shown in Figure 10.  

 

4.1.4 Footprint Emission Sensitivity 
 

In situ greenhouse gas measurement data from three global networks (from nine measurement 

sites) were combined with back trajectories to extract emission information from global 

observed concentration increases over a baseline (that was objectively determined by the 

inversion algorithm) (Stohl et al., 2009). The plot of footprint emission sensitivity for this 

study is shown in Figure 11a for 20 day backward runs, showing the areas around the world 

that are most sampled from this station network. An NOy emission map over Europe has 

been derived from the concentration field calculated from trajectory statistics and the EMEP 

emission inventory (Wotawa and Kroger, 1999) and shown in Figure 11b. 

 

The FLEXPART model was used to analyse transport pathways from potential flux regions 

towards Siberia as shown in Figure 8b. Ten day back trajectories released along the aircraft 

flight track were calculated and the data were grouped according to common transport 

properties with cluster analysis and this was used to investigate to which extent footprints can 

explain the air mass chemical composition (Paris et al., 2010). The footprints (relative 

residence times below 300 m) were calculated using Potential Emission Sensitivity (PES), 
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complemented by 10-day averaged relative contributions from the stratosphere to explain the 

source of the atmospheric composition along the flight track. Halse et al., 2011 used 

FLEXPART backward runs to plot the footprint emission sensitivity (the residence time of 

air masses per grid cell normalized by the volume) for persistent organic pollutants (POPs) 

from passive air samplers at 86 European background sites. This was also multiplied by 

emission inventories to calculate emission contributions to the European background. 

Average footprint emission sensitivities were calculated around Arctic measurement stations 

using FLEXPART to study the origin of higher levels of aerosols, black carbon and ozone at 

Zeppelin, Alert, Barrow (Hirdman et al., 2010a) and the same stations and Summit (Hirdman 

et al., 2010b). The 10 % highest and lowest measured species concentrations were selected to 

calculate the average emission sensitivity for that data subset. The highest and lowest 10 % 

emission sensitivity (SP) and the total emission sensitivity (ST) peak near the observatory 

(emission sensitivities decrease with distance from the station) so this bias was removed by 

calculating a relative fraction, Rp = L/M * SP/ST where M is the number of measured 

concentrations  and L =M/10 highest or lowest concentrations. If the measured species were 

completely unrelated to air mass transport then the data subset and full dataset would look the 

same and the fraction would be 0.1 but if it was greater than 0.1, the cell would be a potential 

source (Hirdman et al., 2010b). The regions used in the footprint analysis, the average 

contribution of each region over a year and their annual average variation over 20 years are 

shown in Figure 12 (Hirdman et al., 2010a). 

FLEXPART backward runs at 5 different elevations were used to assess the surface influence 

on CO2 measurements from an aircraft over Spain (Font et al., 2011). The horizontal, vertical 

and temporal extent of the Regional Potential Surface Influence (RPSI) residence time on 

atmospheric CO2 mixing ratios was calculated and a principal component analysis was 

carried out on the resulting residence times. Kuhn et al., 2010 looked at the transport of 

pollutant plumes from Russian and Alaskan forest fires by plotting the footprint emission 

sensitivities related to aerosol measurements at Ellesmere Island in the Canadian high Arctic 

and also used combined the footprint analysis with the EDGAR emissions database to isolate 

the sources of high aerosols. 

 

4.1.5  Source identification with Positive Matrix Factorisation (PMF) 
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Positive Matrix Factorisation (PMF) is a multivariate mathematical model that has been used 

for source-receptor modelling that aims to determine the major sources of a sampled 

atmospheric species. PMF analyses are used in regulatory studies to assess pollution sources 

and divide the data into common sources such as various industrial activities or different 

types of fuel burning.  

 

In an extensive study of the transport of Particulate Matter to a station in Vermont (Poirot et 

al., 2001) used both PSCF and residence time (Incremental Probability) analysis to help 

interpret and complement the results from multivariate mathematical models (Positive Matrix 

Factorization and UNMIX) which had identified seven common sources with different 

corresponding PM levels. PMF and UNMIX are used when source profiles are not known 

and are a form of factor analysis that is different from the traditional Principal Component 

Analysis (PCA, see section 4.2.3) Various maps showing the influence of nearly the whole of 

North America for different sources of PM (e.g. coal, woodsmoke, oil, soil, smelting etc.) 

were constructed and compared. Other examples of PMF studies that incorporate PSCF 

studies of actual sampled data are shown in Pekney et al., 2006 and Kocak et al., 2009 for 

Particulate Matter in Pittsburgh and Turkey respectively, Du and Rodenburg , 2007 for PCBs 

in New Jersey, Dogan et al., 2008 for aerosols in Turkey, Choi et al.,  2010 for VOCs in 

Korea. 

 

The source-apportionment Chemical Mass Balance (CMB), UNMIX, and Positive Matrix 

Factorization (PMF) models described in Song et al., 2008 are advanced multivariate receptor 

models that determine the number of sources and their chemical composition and 

contributions without knowing the source profiles.  

 

4.2 Cluster analysis techniques and other statistical techniques to group air 
mass histories 
 
 
Clusters are groups with similar distributions, in the case of back trajectories, similar 

directions and lengths or a combination of trajectory pathways and composition. Cluster 

analysis provides an objective means of clustering trajectories whilst giving information 

about the history of the air mass and the air pollution climatology of a site, helping to 

determine source-receptor relationships. 
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Cluster analysis is a multivariate statistical technique that groups individual trajectories of an 

ensemble into a smaller number of clusters, meaning that the errors in the individual 

trajectories tend to average out. Some examples of derived mean trajectories with which to 

carry out composition comparisons are shown in Figure 13 and a description of the 

techniques of the various techniques used in this area of research are described in the sections 

below. 

 

A variety of cluster analysis techniques k-means, Dorling, and Partitioning around Medoids 

(PAM) and Two step algorithms have been tested on back trajectories arriving at Cape Verde 

to see how the average chemical composition varied in each cluster (Mace et al., 2011). The 

Dorling k-means method was shown to be the most efficient method for this study. 

 

Kassomenos et al., 2010 reviews three of the commonly used cluster analysis techniques and 

their dependence on arrival height, with examples of PM10 from trajectory clusters around 

Athens. These were a hierarchical, non-heirarchical (k-means) and an artificial neural 

network known as Self Organising Maps (SOM). They recommended that a range of 

clustering techniques should be preferably used over one type even though their results from 

the various tests were similar. 

 

There are two different types of clustering algorithms, namely hierarchical and non-

hierarchical clustering.  

 

4.2.1 Non-hierarchical clustering methods 
  

Non-hierarchical clustering requires that the number of clusters is already known and that the 

objects are distributed between those. This algorithm is widely used in cases where a priori 

information on the nature of the measurements is available. 

 

The k-means procedure is a non-hierarchical iterative algorithm that uses a specified number 

of clusters, k, to partition the data by comparing each object to the arithmetic mean of all the 

members of each of the k clusters (cluster centres). The selection of the optimal number of 

clusters that best describes the different air flow patterns is performed by computing the 
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percentage change in within-cluster variance, as a function of the number of clusters (Dorling 

et al., 1992). The assignment of members (trajectories) to a given group (cluster) was carried 

out by minimising the internal variability within the group of trajectories and maximising the 

external variability between different groups based on the trajectory co-ordinates. It uses the 

Root Mean Square Deviation (RMSD) of all individual clusters from their cluster mean 

trajectory against the number of clusters retained until a "break" was reached, indicating that 

two clusters have been merged which were unacceptably different. Alternatively, if a 

threshold percentage change in RMSD was exceeded at any particular point in the clustering 

process, this was also taken as an indication that an optimum number of clusters had been 

reached. The k-means clustering method is often quoted as the Dorling method in 

climatological clustering research and is well suited for large databases because of its 

relatively small computational requirements. 

 

Dorling and Davies, 1995 analysed six European (3 UK and 3 Norwegian) measurement 

station’s precipitation chemistry levels by cluster analysis of back trajectories using this 

method. Huang et al (Huang et al., 2010) have used the k-means cluster technique to separate 

15 years of particulate matter concentrations at Alert in the Arctic into clusters (See Figure 

12a). Average monthly ozone and mercury were calculated for cluster mean trajectories 

(calculated with k-means) around two Arctic stations to understand seasonal changes in 

transport to the Arctic and the effect on ozone levels (Eneroth et al., 2007) and the ensuing  

trajectory clusters for Zeppelin and their average length over 5 days is shown in Figure 14b. 

Sharma et al., 2006 used k-means clustering to derive 6 main clusters for Alert and Barrow 

stations for subsequent analysis of average composition in each sector. For the k-means 

clustering of Cape Verde air masses mentioned previously (Mace et al., 2011), the clustering 

was carried with and without chemistry (one of O3, CO, NOx, NOy, ethane, propane, 

acetylene and CO:VOC ratios) to yield similar trajectory clusters but clustering with ethane 

appeared to be the best way to distinguish between the different chemistry regimes in each 

trajectory cluster. Figure 12c shows one of the 8 trajectory clusters for Cape Verde (African) 

from the clustering with ethane (Mace et al., 2011). 

 

Makra et al., 2010 used the k-means algorithm for comparing trajectories with pollen levels at 

three European cities using a Mahalanobis metric, where the clustering of back trajectories 

was performed with a function which gathers the extreme trajectory positions belonging to a 
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cluster. This then encloses and creates the smallest convex hull (http://www.qhull.org) with 

minimum volume covering the backward trajectories of the clusters. 

 

Fuzzy mean c-clustering is a technique that is very similar to k-means but each trajectory has 

a degree of belonging to several clusters, as in fuzzy logic, rather than belonging completely 

to one cluster. Fuzzy c-means uses an iterative algorithm to determine the grade of 

membership of each trajectory in each cluster, with 0 being no membership and 1 indicating 

full membership and in between is partial membership. Each trajectory was assigned to a 

single cluster for which it has the largest value. Xia et al.,  2007 used this technique to derive 

seasonal clusters of trajectories for air arriving in Beijing, China, which managed to separate 

aerosol into physically distinct groups, explaining 47 % of the variance. However, this 

method could not separate fast from slowly moving trajectories. 

 

Borge et al., 2007 applied a novel technique of two-stage clustering to capture the influence 

of relatively short, slow-moving trajectories on local air quality. An initial clustering (k-

means) gave clusters that were influenced by trajectory length (wind speed) then the short 

trajectories with unclear directionality were re-analysed with the same methodology to create 

a further discrimination between them. Davis et al., 2010 also used this 2-stage technique on 

a series of stations in Virginia, USA using the distances between the horizontal and vertical 

trajectory endpoints and the station. Polluted air masses over Athens (Markou and 

Kassomenos, 2010) were studied by applying a second clustering method (using the 

Haversine formula, great-circle distance between two points) to separate the clusters already 

obtained by k-means clustering based on the length of their cluster-mean trajectories. This 

allowed them to distinguish between short slow moving and long fast moving trajectories. 

 

Self Organising Maps (SOM) is considered an advanced approach of clustering (a type of 

Artificial Neural Network) that can produce reliable segregation even in difficult cases. They 

operate similarly to k-means, but instead of using a number of clusters they utilise a grid of 

nodes with predetermined shape and size. This grid iteratively adjusts to the data until it maps 

as close as possible their structure in space. The obtained nodes (or clusters) are also 

organized in a 2-D grid so that similar clusters are placed near each other. In that way, 

clustering is performed following a structured approach, in contrast with the unstructured k-

means approach.   
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Kassomenos et al., 2010 used this technique on 4 years of back trajectories arriving in 

Athens, Greece and Karaca and Camci, 2010 for trajectories arriving at Istanbul, Turkey  

both with corresponding Particulate Matter measurements.  

4.2.2 Hierarchical Clustering methods 
 

The purpose of the hierarchical clustering is to join objects into successively larger clusters, 

using some measure of similarity or distance, by constructing clusters within clusters. All the 

classified objects are considered at each step of the hierarchical clustering and the process is 

determined by the construction of an agglomeration tree. This approach is usually used when 

the number of clusters is unknown. Kalkstein et al., 1987 has compared three hierarchical 

clustering procedures (Ward's, average-linkage and centroid) for climatological studies of 

back trajectories and showed that the average-linkage method was the most appropriate. 

 

Hierarchical clustering partitions data following a series of steps either by grouping or by 

separating the objects one by one in each step. The two closest clusters are merged in each 

step, starting the procedure with singleton clusters and ending with a single cluster that 

contains all the objects. There are a number of different techniques to measure the distance 

(or the similarity) between the clusters, which may lead to different subsets. 

 

Ozone measurements at Mace Head (Cape et al., 2000) for 3 years were divided into four 3-

month periods and the derived trajectory clusters were used to classify the ozone (these are 

shown in Figure 3b as examples of linear trajectories). The squared distances (kilometres 

north and east and elevation from ground level (as pressure)) for each arrival time were 

calculated between pairs of trajectories, one trajectory from each cluster. Starting with each 

trajectory as a cluster, all possible pairs are evaluated and the two clusters with the smallest 

average distance between their members were joined. The procedure is designed to minimise 

within cluster variance and maximise between cluster variance. Figure 14 from (Cape et al., 

2000) shows how the R2, Route Mean Squared (RMS) distance and number of clusters 

changes as the number of clusters by iterations increases (Cape et al., 2000), a method 

commonly used to calculate the optimum number of clusters. 

 

Aerosol Optical Depth measurements in Northern India were analysed using Cluster Spatial 

Variance (SPVAR) and their frequency of occurrence is shown in Figure 13d (Gogoi et al., 
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2009). A combination of trajectory pairs were used to calculate the SPVAR and the 4 derived 

clusters. SPVAR is the sum of the squared distances between the endpoints of the cluster’s 

component trajectories and the mean of the trajectories in that cluster. The Total Spatial 

Variance (TSV), the sum of all the SPVAR, is calculated and the pairs of clusters were 

combined (with the lowest increase in TSV (which is initially zero)). At each iteration, one 

more trajectory is joined to a cluster.  The iterations are continued until the last two clusters 

are combined. The iterative step just before the large increase in the change of TSV gives the 

final number of clusters. Trajectories arriving in Hong Kong have been clustered using this 

method for analysis with CO and O3 measurements (Wang et al., 2004) as well as trajectories 

arriving into Lamas d’Olo in Portugal (Carvalho et al., 2010). 

 

Ward’s method is a type of hierarchical cluster analysis that uses the sum of squares of the 

distance of each trajectory from the cluster's mean trajectory and has been used for 

classifying trajectory types at various Atlantic Ocean sites (Moody et al., 1989) and to study 

10 years of tracer levels at Svalbard (Eneroth et al., 2003).  The distances between each 5 day 

trajectory at every hourly time step along the trajectories were calculated and the spatial 

variance between two trajectories was quantified as the sum of all squared distances. The 

smaller the distances, the more similar were the trajectories and they were grouped together 

until the spatial variance increases rapidly. 

4.2.3 Principal Component Analysis 
 

For the purposes of data dimension reduction in large datasets, Principal Component Analysis 

(PCA) has been used to group trajectories. Riccio et al., 2007 examined the role exerted by 

meteorology on air quality through the classification of atmospheric circulation patterns as a 

function of air mass origin for 10 years of back trajectories arriving into Naples. They used 

116,896 trajectories, embedded in a 144 dimensional space. It was found that the first eight 

components, i.e. the reduction of the (116896×144) data matrix to a (116896×8) matrix, 

explained almost the total (>98%) portion of initial variance, without sacrificing accuracy and 

without significantly affecting the classification procedure, but with a large speed-up in 

computations. 

 

4.2.4 Significance tests between air mass types and composition  
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The Kruskal-Wallis test (Miller, 1981) is a nonparametric technique that has been used in 

many studies e.g. (Mace et al., 2011; Salvador et al., 2008; Sharma et al., 2006; Sharma et al., 

2004) for non normally distributed data to identify whether the median species concentrations 

were different  between all the air mass sectors. If the Kruskal-Wallis test leads to the 

rejection of the null hypothesis and, thus, to the conclusion that not all samples are identical, 

it is appropriate to use a multiple comparison procedure to find out which clusters were 

different from the others. For example, the Dunn test was used as a multiple comparison 

procedure after the Kruskal-Wallis test in a study of ozone levels in a few stations in 

Northeast USA (Brankov et al., 1998). The Spearman rank-order correlation coefficients 

were used in (Han et al., 2005) and the Kendall τ and Pearson’s correlation coefficient were 

used in (Paris et al., 2010) to test for significant differences in the chemistry between the 

clusters or between trajectory and dispersion model clusters as in (Han et al., 2005). Mace et 

al., 2011 also used the Behrens-Fisher test to test differences in composition between 

different clusters. 

 

Analysis of Variance (ANOVA) is a technique to test whether or not the means of several 

groups are all equal. Borge et al., 2007 used an analysis of variance analysis on 24 hour mean 

NOx and PM10 to test if the cluster averaged concentrations for each pollutant were 

statistically significant. Occhipintu et al., 2008 used ANOVA statistics to study the influence 

of agricultural areas on PM and nitrogen deposition and Makra et al., 2006 and Xia et al., 

2007 used ANOVA analysis to test for differences in composition between various air mass 

clusters in the Carpathian basin and Beijing China respectively. 

 

4.2.5 Cluster analysis on dispersion  models 
 

Cluster analysis has been carried out on dispersion models on a number of occasions. One 

such study used a k-means cluster technique based on FLEXPART dispersion model 

footprints where regions were chosen prior to clustering analysis (regions of specific sources 

or sinks relevant to the site) (Paris et al., 2010) as shown in Figure 8c. Stohl et al., 2002 used 

Mace Head FLEXPART runs to compare the accuracy of classical trajectory techniques 

against dispersion models by comparing representative single trajectories and trajectory 

clusters (retroplumes). Particles were released in each dispersion run and their position data 

was used for deriving a condensed model output. Cluster analysis was used as a semi-
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objective method applied to best characterise the position and shape of the entire retroplume, 

by calculating the retroplume centroid, followed by on-line cluster analyses of the particle 

positions at selectable time intervals that minimizes the root-mean-square distance between 

the particles of each of the clusters and their respective retroplume cluster centroids, and 

maximizes the distance between the cluster centroids. As the clustering is performed 

independently each time, subsequent retroplume cluster centroids do not lie on a trajectory 

and thus cannot be connected by a line in a trajectory plot. 

Potential Source Contribution Function (PSCF) multi-receptor (MURA) residence time 

probability analysis has been used to simulate sulphur concentrations in the South West US 

(Lee and Ashbaugh, 2007a) on HYSPLIT 4 backwards runs with puffs of particles rather than 

individual particles. Back trajectory Conditional Probability analysis uses a single receptor at 

a time (see section 4.1.3) whereas the MURA method uses several receptors at once in order 

to detect sources with greater accuracy. The MURA method designates potential source 

regions by counting trajectories for each grid cell and then examines them to see how often 

each region affects each receptor. Lee and Ashbaugh, 2007b developed the single receptor 

forward conditional probability (SIRA) method, which is a conditional probability method 

with the second step of the MURA method added to it. A high CP indicates a higher 

probability that that location contains a source or is on the pathway to the source. To 

calculate the SIRA back trajectories are divided into 1 hour segments and a grid is 

superimposed on the area of interest and the number of trajectory segment points located in 

each grid cell was counted for both sample days and high incident days. Lee and Ashbaugh, 

2007c looked at the impact of running trajectories at various elevations on the MURA 

method and found that it was best to run ensembles of trajectories in the MURA method so as 

to average out most of the biases found from different trajectory starting heights.  

 

5. Case study: Using the NAME model for classification of air mass 
types and corresponding composition variations at a site 
 

In order to illustrate the use of dispersion models to untangle the regional influences of an 

atmospheric observatory, a step by step description of a new methodology that has been 

developed using the NAME model output is detailed for an observatory on the UK North Sea 

coast as the case study. 
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The Weybourne Atmospheric Observatory (52°57'N 1°07'E) on the North Sea coast (Figure 

15) is at a strategic location for receiving a variety of Atlantic, Arctic, European, UK and 

North Sea air masses. In previous work, air masses have been divided according to wind 

direction or manually classified trajectories (Cardenas et al., 1998; Penkett et al., 2007) but 

because of the rapidly changing wind directions and the variety of influences close by, a more 

detailed technique is required. 

In this case study the NAME model was run in backwards mode, 10 days backwards in time 

at 3 hourly intervals (related to the timescale of the Unified Model meteorological fields) for 

4 years of Weybourne station data (2006-2009). The particles were released from the height 

of the station’s tower where the instruments sample (10 m). All instances when the particles 

were near to the ground (0-100 m) were recorded to indicate when surface emissions from 

different geographical regions (marine or land) will have been picked up by the air mass and 

transported to the observation station. The horizontal spatial resolution was 0.25º x 0.25º for 

the 10 day regional domain used.  

Figure 16 shows how single run outputs can be combined to produce integrated plots 

(monthly and annual) that illustrate the seasonality of the site footprints. Monthly averaged 

footprint plots for 2008 for Weybourne show seasonal changes in the air masses histories. 

The 12 monthly Weybourne footprints show how there is a subtle seasonal pattern of more 

Arctic air in the spring and summer months and a wider range of the footprint in winter.  

For the station of interest, the domain of influence of the NAME run is split subjectively into 

the main geographical areas that have differing source characteristics, especially 

differentiating between land and marine sectors. This geographical sector map for 

Weybourne is shown in Figure 17. 

  

The NAME output represents the 10,000 inert tracer particles released during each 3 hourly 

period and where they are likely to have travelled on their way to the site and the output is an 

integration of the number of particles per grid cell over the 10 day period and represents a 

probability that the air passed over that area near to the ground, similar to the emission 

sensitivities in FLEXPART (Hirdman et al., 2010b). The particle distribution output from 

NAME is used to extract the information about how many particles have passed over each 

sector during the 10 days of travel for each 3 hour period by counting the total number of 

particles that pass over each grid box in each geographical area. The distribution of air 
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particles passing over each sector can be shown as a percentage of the total number of 

particles in the domain from each 3 hour release period (Figure 18).  The first plot in Figure 

18 shows 4 years of distributions (2006-2009) and the second shows a smaller time period 

where the frequency and size of the variations of influence are clearer and can be used to 

visually isolate events and changes in air mass sector influences. Nearly all trajectories pass 

over multiple geographical areas. The monthly averaged regional distribution of air masses 

arriving at Weybourne illustrates the seasonality of the Arctic and North Sea air masses that 

are more frequent in spring as shown in Figure 19a. Figure 19b shows a similar plot for the 

Cape Verde observatory, showing how this method can pick up the seasonality of the regions 

that influence a site (the synoptic climatology), with much greater Saharan influence in 

winter (Carpenter et al., 2011). These are similar to the seasonal distribution of trajectory 

types in the studies shown in Figure 6 and Figure 12. 

 

To account for the fact that each trajectory in its ten day passage to the station will have 

passed over more than one geographical area, various permutations of combinations of these 

regions have been fitted into convenient classifications. Seven subjective air-mass 

classifications were defined for Weybourne and are shown in Figure 20. They are denoted as 

Arctic only, Arctic and Europe, Atlantic, European, Local (UK and North Sea), Scandinavian 

and Greenland, America (no European). 

 

The time integrated particle concentration or dosage (gs/m3) in each sector shows a wide 

variation, with sporadic peaks. Various tests were carried out to test for the most statistically 

robust method for assigning a threshold for the amount of particles in a sector that would 

make that sector contribute significant influence on the air mass arriving at the station. The 

final chosen method was to select a threshold of 10 % of the maximum dosage for each 

sector. Obviously, being closer to the station, there were more particles in the UK sector than 

the American so that made the concentration threshold for assigning the American sector as 

significant more sensitive.   

Thresholds for each sector were derived for assigning each trajectory the sectors it passed 

through. These thresholds were chosen by plotting dosage (in gs/m3) against % time in that 

region and finding the % thresholds for a given sector a dosage of 0.001 gs/m3 (for the UK 

and North Sea the threshold dosage was chosen to be higher at 0.002 and for the American 
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sector a lower threshold dosage of 0.0003 was chosen). These thresholds came to: Arctic 

(10%), Scandinavia (10%), Europe (10 %), Atlantic (13%), Greenland and Iceland (5%), 

America (3 %), UK (24 %) and North Sea (17%). This form of classification flags up the 

more distant sectors like America as being labelled as important when the same % in other 

sectors would not have been significant. The local UK sector was only flagged as particularly 

important when the trajectory spent over 24 % of the time over the UK.  

Permutations of the seven sectors were combined to derive a trajectory classification (as 

shown in Figure 20) for the entire time series, in this case as three hourly time series. The 

final result is a time series with flags assigned to trajectory types numbered 1 to 7. 

The station composition data time series were averaged into 3 hourly intervals so as to be 

comparable with the 3 hourly air mass trajectory type time series from the NAME-based 

classification. Figure 21 shows how the chemistry can vary when the regions that the air 

masses pass over before reaching the station change, showing how ozone and NO2 increase 

during the period of a high European and UK influence (e.g. 25-28th July and 30th July-1st 

August). The average values for each of the air mass trajectory type was calculated as well as 

the standard deviation and mean for winter (DJF), summer (JJA), spring (MAM) and autumn 

(SON) data for January 2006-September 2009. Figure 22 shows the three year seasonally 

averaged composition in each air mass type. SO2 was highest in the local sector and lowest in 

Arctic air masses and O3 was highest in European, local and Scandinavian air masses in 

summer but highest in American and Arctic air masses in winter.  

The methodology of using NAME to classify composition time series can be analysed on 

various timescales other than as shown in Figure 22 for the 4 year average of each air mass 

type. It would be of interest to calculate yearly averages so as to follow annual trends in 

composition for each air mass type. Alternatively, this technique is useful for focussing in on 

particular periods of interest to understand sudden changes in composition or to isolate the 

origin of pollution spikes. This described methodology illustrates the use of dispersion 

models for building up a database of station footprints which can be used in a number of 

ways to extract the regional influences on average levels of a variety of atmospheric species 

at any timescale from hours to years. Trends in meteorological and synoptic scale influences 

on a site of interest can also be tracked with this method, to track seasonal variations in air 

mass origin and assess long term variations. Comparing the use of the NAME dispersion 

model to other techniques described in this review, it is most similar to the regional 
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assignment of trajectories as passing through particular geographical sectors discussed in 

section 4.1 and Figure 8 (especially the FLEXPART dispersion model in Figure 8b). 

However, owing to the spread of influence in the NAME dispersion model from turbulence, 

the distribution over multiple regions is easier to track than with a single line trajectory. 

Using the NAME model in this way is very similar to the FLEXPART regional assignment 

and relative residence times calculated by (Halse et al., 2011) and particularly (Hirdman et 

al., 2010a) (Figure 12) and (Hirdman et al., 2010b). 

6. Conclusions 
 

Interpreting air mass history and the role of transport remains an important tool for 

interpreting observed atmospheric composition which, owing to meteorology, is influenced 

by a variety of local and long range transport processes. Local wind direction and speed have 

been mostly replaced by a number of computational techniques (trajectory and dispersion 

models) that follow the far field transport influence to be assessed and quantified. The 

increase in the accuracy of trajectory and dispersion models is related to improvements in the 

resolution of available meteorological fields, which leads to a better resolution of the 

atmospheric physics and the ability to interpret the movement mixing and transport of 

atmospheric constituents. 

This review paper has detailed the evolution of methodologies to interpret atmospheric 

composition measurements according to air mass history. In situ wind measurements or the 

use of agglomerated meteorological fields in trajectory or dispersion models can be used to 

assess the influence of changing air masses history on composition.  

The historical use of local wind direction or daily meteorological patterns is still of use for 

obtaining a short term picture of the variation of air masses but is not as accurate to detect 

long range transport as seen in trajectory models and dispersion models. The pros and cons of 

trajectory and dispersion models have been explained that is they are. less computationally 

intense and lower output volume for trajectories, added accuracy of simulating the 

atmosphere by the inclusion of turbulence and the various uses of these for the interpretation 

of ground based station or aircraft data have been illustrated.  

The technique of linking trajectories and dispersion models with sector analysis describes the 

pathway and links the residence time over zones of interest with composition levels with 
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time. Cluster analysis is an objective method for clustering trajectories according to similar 

characteristics and then composition measurements can be related to the various cluster types. 

A step by step example of the procedures used in this form of analysis is detailed by 

demonstrating a new methodology (using the NAME atmospheric dispersion model) for 

assessing the effect of air mass origin on the atmospheric composition at a long term 

measurement station. The case study for four years for the Weybourne Atmospheric 

Observatory illustrates how any dataset can be exploited and how this is an especially 

effective technique for stations with a variety of composition influences (e.g. a combination 

of marine and continental influences or clean and polluted sectors). The NAME model has 

been used to calculate a multi-year time series of trajectory types and sectors of influence. 

This methodology can provide a long term view of the type of air masses and conditions that 

affect each site and the inter-annual and intra-annual variability of the air mass types reaching 

the site as well as the composition of those air masses.  

Understanding and being unable to unpick the history of air-masses in the atmosphere 

remains an important tool for assessing influence of emissions and change in the atmosphere.  
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a)                                                              b) 

 

 
c)                                                             d) 

 
e) 
Figure 1- Visualisation of wind data and separation into wind sectors: 
 a) Mace Head wind sector divisions used for a range of trace gas measurements in 1996 and 
1997. Taken from (Salisbury et al., 2002). 
b) Meteorological episodes derived from surface wind measurements arranged as a timeseries 
meteorological flags during the MILAGRO campaign in Mexico city. Taken from (de Foy et 
al., 2008). 
c) Wind roses of Black Carbon levels from various directions for a month at La Reunion 
island. Taken from (Bhugwant et al., 2001).  
d) High-resolution pollutant roses (known as Power-Ridge Pollutant (PRP) roses) for SO2 
arriving at the Antwerp harbour area. Taken from (Cosemans et al., 2008).  
e) The use of wind barbs representing the wind direction and speed used to show one of the 
16 meteorological regime clusters for studying ozone exceedances in Houston, Texas. . 
Taken from (Darby, 2005). 



59 
 

 
Figure 2- Wind roses of the 75th percentile PM10 levels from biogenic and fuel evaporation 
sources (out of a total of 8 different sources separated by positive Matrix Factorisation (PMF) 
analysis) at Houston, Texas. Taken from (Leuchner and Rappengluck, 2010). 
 

     
a)                                                                                            b) 

                                      
 

c)                                                                                             d) 
 Figure 3- Trajectory examples: 
a) Westerly and Easterly Mace Head, Ireland  6 hourly 5 day back trajectory clusters. Taken 
from (Cape et al., 2000). 
b) Weybourne, UK 6 hourly trajectories arriving during 1993. Taken from (Cardenas et al., 
1998). 
c) 4 day backward Cape Verde Observatory daily trajectories from mid May to mid June 
2007. Taken from (Müller et al., 2010). 
d) Back trajectories for the TOR station at Porspoder, France for summers 1992-1995 
associated with 10th and 90th percentile ozone levels respectively. Taken from (Fenneteaux et 
al., 1999). 
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Figure 4- Chemistry modelling along a trajectory: GEOS-CHEM model simulations of ozone 
and CO evolution in a biomass burning plume arriving into Western Africa from South 
America during the AMMA aircraft campaign. Black represents the reference trajectory from 
the flight altitude, green a higher level trajectory and orange a lower level trajectory. Taken 
from (Real et al., 2010). 
 

  
 
Figure 5- Seasonal composition cycles in different trajectory types: 
a) Seasonal O3 cycles at Birkenes, Norway in 3 air mass sector types derived from 
trajectories. Taken from (Solberg et al., 1997). 
b) The difference between the Northern Hemisphere Mid Latitude background (NHMLB) 
average ozone at Mace Head for the various sectors around the site. Taken from (Simmonds 
et al., 1997). 
 

  
 
Figure 6- Seasonality of trajectory types: 
a) Monthly % distribution of sectors for all 3565 back trajectories arriving in Barcelona over 
4 years. Taken from (Jorba et al., 2004). 
b) Monthly distribution of trajectory types representing various sectors (Russia, Europe, 
America, Arctic in various combinations) influencing the Barrow Arctic station over 15 years 
and subsequently used for interpreting Black Carbon measurements. Taken from (Sharma et 
al., 2006). 
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Figure 7- Reverse Domain Filling (RDF) using FLEXPART plots used in planning the 
ICARTT flights over the Atlantic and the flight tracks marked in black (different colours 
represent different source humidities, indicating varying source types). Taken from (Methven 
et al., 2006). 
 

         

a)                                                                                        b) 

                                  

c)                                                                                     d) 

Figure 8- Regional emission zones and defining sector influences:  
a) Cheeka Peak Observatory (CPO), WA regions of influence used for classifying trajectory 
types. Taken from (Weiss-Penzias et al., 2004). 
b) Source regions assigned for allocating influences to trajectories arriving in Siberia for 
analysis of aircraft measurements. Taken from (Paris et al., 2010).                                          
c) European and north African potential emission zones used for classifying European and 
north African PM transport to Madrid, Spain. Taken from (Salvador et al., 2008).  
d) Zeppelin, Svalbard transport sectors with which to allocate trajectories. Allocation to each 
sector is done if at least 50% of the last 24 hours of the trajectory has travelled less than 850 
km. Taken from (Solberg et al., 1996). 
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Figure 9- Conditional probability maps: 
a) Conditional Probability Function (CPF) for highest potential for contributing to high 
sulphur levels arriving at Grand Canyon National Park (highest from New Mexico and south 
California). Taken from (Ashbaugh et al., 1985). 
b) The source Contribution Function (SCF) shows that the region that actually contributes 
most to high sulphur levels is southern California. Taken from (Ashbaugh et al., 1985). 
c) Conditional probability techniques (residence time, conditional probability and incremental 
probability) used for Big Bend National Park, Texas (small triangle). Tracer release from 2 
sites (Eagle Pass and Big Brown) were combined with 5 day back trajectories used to study 
the upper 20th percentile particulate sulphur sources to the National Park. Taken from 
(Schichtel et al., 2006).  
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Figure 10- Potential Source Contribution Factor (PSCF) analysis for aerosol levels at 
Antalya, Turkey. The highest 40% of each of 4 Factor scores from factor analysis for source 
apportionment of the aerosol were selected as polluted trajectories. Taken from (Güllü et al., 
2005). 
 

  
 
Figure 11- Footprint emission sensitivity maps: 
a) Footprint emission sensitivity map of hydrofluorocarbons (in picoseconds per kilogram) 
obtained from FLEXPART 20 day backward calculations (Januaryy 2005- March 2007) . 
Taken from (Stohl et al., 2009). 
 b) NOy emission (from 0-100 x 10-10 kgm-2 s-1) map over Europe derived from the 
concentration field calculated from trajectory statistics and the EMEP emission inventory. 
Taken from (Wotawa and Kroger, 1999).  
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Figure 12- Source region classifications for Zeppelin, Spitzbergen. Taken from (Hirdman et 
al., 2010):  
a) Regions for clustering of the footprint emission sensitivities, b) Monthly mean distribution 
of the trajectory types (AO: Arctic Ocean, NA: North America, WNE: Western Northern 
Eurasian cluster, ENE: Eastern Northern Eurasian), c) Annual mean trajectory type 
distribution between 1990 and 2009  
 

   

    

Figure 13- Cluster analysis of trajectories: 
a) Mean trajectory pathways for Alert in January (1990-2005), 10 days backwards with 
frequency of occurrence in % for each cluster shown. Taken from (Huang et al., 2010).  
b) Mean trajectory pathways for Zeppelin (5 day backwards) Trajectory lengths in the 
different clusters were 1, 3180 km; 2, 3920 km; 3, 3880 km; 4, 3200 km; 5, 4850 km; 6, 4330 
km; 7, 4330km and 8, 3880 km. Taken from (Eneroth et al., 2007).  
c) One of 8 trajectory clusters (African) of 5 day back trajectories arriving at Cape Verde in 
2007 (coloured by month) with ethane included in cluster analysis. Taken from (Jorba et al., 
2004). 
d) Cluster mean trajectories arriving at the mountain site of Dibrugarhin India in the pre-
monsoon season. Taken from (Gogoi et al., 2009). 
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Figure 14- Changes in the normalised RMS distance between clusters, and the total variance 
(R2) as a function of the number of clusters for the daily back trajectories at Mace Head 1995 
to 1997. Step changes in these statistics represent logical points for defining an optimum 
number of clusters to retain in the analysis, in this case, 5 major trajectory clusters. Taken 
from (Cape et al., 2000). 
 

  

Figure 15- The Weybourne Atmospheric Observatory  
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Figure 16- Weybourne 10 day 2008 integrated footprints a) Monthly b) Annual  

        

Figure 17- Regional grid divisions for Weybourne for 10 day domain 

  

 Figure 18- Division of Weybourne sector influences for each 3 hourly period (January 2006- 
September 2009) and zoomed in section to show the small scale changes in regional 
influences 

   

Figure 19- Monthly averaged regional distribution at a) Weybourne and b) Cape Verde 
Observatory (see (Carpenter, 2011) for detailed analysis for Cape Verde) 
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Figure 20- Examples of the 7 Weybourne air mass classifications (3 hourly trajectories)  

 

Figure 21- Weybourne composition variations with regional distribution of air mass history. 
As European and UK regional influence increases, ozone increases as well as NO2.  
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Figure 22- Composition (CO, O3, CN, SO2, NO) and temperature distribution in different 
trajectory types 4 year average 2006-2009 winter (DJF), spring (MAM), summer (JJA) and 
autumn (SON)

0
20
40
60
80

100
120
140
160
180
200

CO
/ 

pp
bv

Air mass type

winter

spring

summer

autumn

0

10

20

30

40

50

60

O
3/

 p
pb

v

Air mass type

winter

spring

summer

autumn

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

CN
/ 

co
un

ts

Air mass type

winter

spring

summer

autumn

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SO
2/

 p
pt

v

Air mass type

winter

spring

summer

autumn

0

0.5

1

1.5

2

2.5

3

N
O

/ 
pp

tv

Air mass type

winter

spring

summer

autumn

0
2
4
6
8

10
12
14
16
18
20

Te
m

pe
ra

tu
re

/ 
C

Air mass type

winter

spring

summer

autumn



69 
 

 
Table 1- Overview of studies dealing with using back trajectories or dispersion models to segregate composition measurements. If the trajectory 
is not specified, it is just left as “Trajectory”. Abbreviations in the cluster analysis or modelling section are explained in Sections 4.2 and 2.4 but 
a summary is included here; CF (concentration Field), CPF (Conditional Probability Function), ANOVA (analysis of variance), PSCF (Potential 
Source Contribution Function), RCF (Redistribution Concentration Field), SOM (Self Organising Maps), RDF (Reverse Domain Filling), 
MCAR (Median Concentrations at Receptor), PMF (Positive Matrix Factorisation), PCA (Principal Component Analysis), MVA (Multivariate 
analysis).  
 

Reference Location Species measured Trajectory/ 

dispersion model type 

Cluster 

analysis 

methods 

Residence time 

Analysis 

 

Chemistry 

Modelling? 

(Aalto, Hatakka et al. 2002) Pallas, Finland CO2, O3, aerosols TRADOS Trajectory  Residence time, CF  
(Abdalmogith and Harrison 2005) Belfast, Harwell, UK PM10 HYSPLIT Trajectory k-means   
(Apadula, Gotti et al. 2003) Plateau Rosa, Monte Cimone and 

Zugspitze 
CO2 TRAIET Trajectory  CF Source-receptor model 

(Ashbaugh, Malm et al. 1985) Grand Canyon NP, USA PM Trajectory  CPF, PSCF  
(Baker 2010) Birmingham, Harwell, UK O3, NOx, PM, CO, SO2, benzene HYSPLIT Trajectory k-means   
(Begum, Kim et al. 2005) Philadelphia, US PM HYSPLIT Trajectory  PSCF  
(Biegalski and Hopke 2004) Burnt Island, Canada As, In, Sb, Se, Sn, Zn AES trajectory  PSCF  
(Borge, Lumbreras et al. 2007) Athens, Madrid and Birmingham PM HYSPLIT Trajectory k-means (2-stage)    
(Brankov, Rao et al. 1998) 3 stations in NE USA O3, PM HYSPLIT Trajectory k-means    
(Burley and Ray 2007) Yosemite NP, USA O3 HYSPLIT Trajectory  PSCF  
(Cape, Methven et al. 2000) Mace Head, Ireland O3 UGAMP Trajectory Hierarchical   
(Cardenas, Austin et al. 1998) Weybourne, UK CO, O3, VOC Trajectory    
(Carvalho, Monteiro et al. 2010) Lamas d'Olo, Portugal O3 HYSPLIT Trajectory k-means Hierarchical  

(Cheng and Lin 2001) Lamont, Oklahoma, US Aerosols HYSPLIT Trajectory  PSCF  

(Choi, Heo et al. 2010)  Sukmo Island, Korea VOC HYSPLIT Trajectory  PSCF PMF 
(Cohen, Artz et al. 2004) Lake Michigan, USA Mercury HYSPLIT Trajectory   Emissions data 
(Cohen, Crawford et al. 2010) Hanoi, Vietnam PM HYSPLIT Trajectory  CPF PMF 
(Colette, Ancellet et al. 2005) European stations and MOZAIC O3 FLEXPART Dispersion   MVA 
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(aircraft) 
(Davis, Normile et al. 2010) Virginia, USA O3 HYSPLIT Trajectory k-means (2-stage)   
(de Foy, Zavala et al. 2009) Mexico city O3 FLEXPART Dispersion k-means (2-stage)  PCA 
(Delcloo and De Backer 2008) Uccle, Belgium O3 APTRA Trajectory k-means   
(Derwent, Witham et al. 2010) UK O3 NAME Dispersion   PTM 
(Doddridge, Dirmeyer et al. 1994) Mace Head, Ireland O3, CO NMC Trajectory  CPF  
(Dogan, Gullu et al. 2008) Antalya, Turkey Aerosols ECMWF Trajectory  PSCF PMF 
(Dorling and Davies 1995) 3 Norwegian and 3 UK stations sulphate and precipitation 

chemistry 
Trajectory k-means  

 
  

(Du and Rodenburg 2007) Camden, NJ, USA PCB HYSPLIT Trajectory  PSCF PMF 
(Dueñas, Orza et al. 2011) Málaga, Spain Aerosols, 7Be and 210Pb  HYSPLIT Trajectory k-means   
(Dvorska, Lammel et al. 2009) Kosetice, Czech Republic Persistant Organic Pollutants HYSPLIT Trajectory  Concentration 

loadings per country 
 

(Eneroth, Kjellstrom et al. 2003) Ny Alesand, Svaalbard CO2 HYSPLIT Trajectory Hierarchical    
(Eneroth, Holmen et al. 2007) Zeppelin, Ny Alesand, Svaalbard O3, VOC, Mercury HYSPLIT Trajectory Hierarchical    
(Escudero, Stein et al. 2011) La Castanya, Spain PM, TSP HYSPLIT Trajectory  Regional  
(Evans, Shallcross et al. 2000) Mace Head, Ireland O3, NOx, CO UGAMP Trajectory   CiTTyCAT 
(Fenneteaux, Colin et al. 1999) Porspoder, France O3, VOC, PAN, and NOx NMC Trajectory    
(Font, MorguÃ et al. 2011) Northern Spain (aircraft) CO2 FLEXPART Dispersion  Footprint Emission 

Sensitivity 
PCA 

(Forster, Wandinger et al. 2001) Mace Head and Europe O3, aerosols FLEXTRA Trajectory   FLEXPART with CO 
tracer 

(Gebhart, Schichtel et al. 2011) Rocky Mountain NP, USA SO2, NH3, NO, NO2 HYSPLIT Trajectory   TrMB 
(Gogoi, Moorthy et al. 2009) Dibrugarh, India Aerosol Optical Depth HYSPLIT Trajectory Hierarchical   
(Gregory, Bachmeier et al. 1996) and 
(Merrill 1996) 

Pacific (aircraft) O3, CO, NOxy, VOCs, minerals, 
CFCs 

NMC Trajectory    

(Gros, Williams et al. 2004) Atlantic ocean (ship) O3, CO, propane FLEXTRA Trajectory   MATCH-MPIC 
(Güllü, Dogan et al. 2005) Antalya, Turkey Aerosols ECMWF Trajectory  PSCF Factor analysis 
(Hains, Taubman et al. 2008) Mid-Atlantic USA (aircraft) O3, CO, SO2 HYSPLIT Trajectory    
(Halse, Schlabach et al. 2011) 86 European background stations Persistant Organic Pollutants FLEXPART Dispersion  Footprint Emission 

Sensitivity 
 

(Han, Holsen et al. 2005)  New York state Mercury HYSPLIT Trajectory + Dispersion  PSCF  
(Harrison, Grenfell et al. 2000) Weybourne, UK NOx and NOy, NH3, NH4

+ Trajectory    
(Harrison, Yin et al. 2006) Birmingham, UK NOxy, OH NAME Dispersion (forward with 

chemistry) 
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(Hirdman, Burkhart et al. 2010),(Hirdman, 
Sodemann et al. 2010) 

Zeppelin, Alert, Barrow  (+ Summit for 
b) 

O3, BC, aerosols FLEXPART Dispersion  Footprint emission 
sensitivity 

 

(Hirdman, Aspmo et al. 2009) Zeppelin Mercury FLEXPART Dispersion  Footprint emission 
sensitivity 

 

(Huang, Gong et al. 2010) Alert, Greenland BC HYSPLIT Trajectory k-means    
(Junker, Sheahan et al. 2004) Orogrande, New Mexico, US BC HYSPLIT Trajectory  Regional  
(Junker, Wang et al. 2009) 4 stations in Taiwan and China O3, CO, SO2, NOx, PM HYSPLIT Trajectory  Regional  
(Kaiser, Schelfinger et al. 2007) 5 Alpine stations O3, CO, NOx FLEXTRA Trajectory 

 
 PSCF, CPF and 

RCF 
 

(Kang, Kang et al. 2006) Seoul, Korea PM, HNO3, HONO, SO2 HYSPLIT Trajectory  PSCF  
(Karaca and Camci 2010) Istanbul, Turkey PM HYSPLIT Trajectory SOM   
(Karaca, Anil et al. 2009) Istanbul, Turkey PM HYSPLIT Trajectory  PSCF  
(Kassomenos, Vardoulakis et al. 2010) Athens, Greece PM10 HYSPLIT Trajectory k-means, 

Hierarchical, SOM 
  

(Kocak, Mihalopoulos et al. 2009) Erdemli, Turkey PM10 HYSPLIT Trajectory  PSCF PMF 
(Kuhn, Damoah et al. 2010) Ellesmere island, Canada Aerosols FLEXTRA Trajectory  footprint emission 

sensitivity 
EDGAR emissions 

(Law, Fierli et al. 2010) West Africa (aircraft) O3, CO, CO2, NOxy UGAMP Trajectory  RDF  
(Lawler, Finley et al. 2009) Cape Verde and Atlantic Ocean O3, NOx, Chlorine species Trajectory   MISTRA 
(Lee and Ashbaugh 2007; Lee and Ashbaugh 
2007; Lee and Ashbaugh 2007) 

Grand Canyon NP, USA SO2 HYSPLIT Trajectory  CPF, PSCF, MURA  

(Lee, Moller et al. 2009) Cape Verde NOx, NOy BADC Trajectory    
(Lewis, Evans et al. 2007) Atlantic Ocean (aircraft) CO, PAN, alkanes UGAMP Trajectory    
(Lupu and Maenhaut 2002) 3 sites in Scandinavia and 1 in Israel PM, BC HYSPLIT Trajectory  PSCF, CF  
(Mace, Wang et al. 2011) Cape Verde O3, CO, NOxy, VOCs HYSPLIT Trajectory 

 
k-means 
(and others) 

  

(Makra, Sánta et al. 2010) Thessaloniki, Szeged, and Hamburg Pollen counts HYSPLIT Trajectory k-means      
(Mahalanobis, 
Convhull) 

  

(Malcolm, Derwent et al. 2000; Malcolm 
and Manning 2001) 

UK and European sites PM NAME Dispersion    

(Manning, Ryall et al. 2003) Mace Head, Ireland CFCs, CH4 and NO NAME Dispersion    
(McConnell, Highwood et al. 2008) West Africa 

(aircraft) 
O3, Ca and Al (dust), aerosols NAME Dispersion    

(Merrill 1994; Merrill and Moody 1996) 
 

Barbados, Bermuda, Mace Head, 
Tenerife 

- NMC Trajectory  CPF  
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(Methven, Evans et al. 2001) Mace Head, Ireland O3 UGAMP Trajectory  CPF CiTTyCAT 
(Methven, Arnold et al. 2003) Atlantic and Arctic Oceans 

(aircraft) 
O3 UGAMP Trajectory  RDF CiTTyCAT 

(Methven, Arnold et al. 2006) Atlantic Ocean  
(aircraft) 

O3, CO, NOy UGAMP Trajectory 
 

 RDF CiTTyCAT 

(Methven, Arnold et al. 2006) Atlantic Ocean (aircraft) O3, CO, NOxy, VOCs, UGAMP Trajectory, FLEXPART 
Dispersion 

 RDF  

(Moody, Galusky et al. 1989) Virginia, Bermuda, Cape point, 
Amsterdam island 

Precipitation chemistry ATAD Trajectory Hierarchical  GAMBIT 

(Moy, Dickerson et al. 1994) Shenandoah NP, Virginia, US O3, CO, NOy HYSPLIT Trajectory Hierarchical 
(Average-linkage, 
centroid, Ward’s 
method) 

  

(Müller, Lehmann et al. 2010) Cape Verde PM, Ca, K, Fe HYSPLIT Trajectory    
(Occhipinti, Aneja et al. 2008) North Carolina, USA PM, nitrogen precipitation HYSPLIT Trajectory  Regional  
(Paris, Stohl et al. 2010) Siberia 

(aircraft) 
O3, CO2, CO FLEXPART Dispersion k-means 

 
footprint emission 

sensitivity 
 

(Pekney, Davidson et al. 2006) Pittsburgh, USA PM HYSPLIT Trajectory  PSCF PMF 
(Pochanart, Akimoto et al. 2001) Arosa, Switzerland O3 Trajectory  Regional  
(Pochanart, Akimoto et al. 2003) Mondy, Siberia O3, CO NIES Trajectory    
(Poirot, Wishinski et al. 2001) Underhill (Vermont), USA PM CAPITA Trajectory  PSCF, CPF PMF, UNMIX 
(Poissant 1999) St. Lawrence River valley, Canada Mercury AES Trajectory  PSCF  
(Polissar, Hopke et al. 1999; Polissar, Hopke 
et al. 2001) 

Barrow, Alaska CN, BC, aerosols CMDC Trajectory  PSCF  

(Polissar, Hopke et al. 2001) Underhill (Vermont), USA Na, Br, Ca, Mg, BC, Sulphate CAPITA Trajectory  PSCF  
(Real, Law et al. 2007) Canada, Arctic, Atlantic (aircraft) O3, NOx, CO, PAN UGAMP Trajectory   CiTTyCAT 
(Real, Law et al. 2008) Atlantic Ocean (aircraft) O3, CO, NOxy, VOCs, aerosols FLEXTRA Trajectory   CiTTyCAT 
(Real, Orlandi et al. 2010) Africa and Atlantic (AMMA) O3, CO, NOx FLEXTRA Trajectory   CiTTyCAT 
(Reidmiller, Jaffe et al. 2009) Mount Bachelor, WA, USA O3, CO, Mercury HYSPLIT Trajectory  Residence Time GEOS-CHEM 
(Riccio, Giunta et al. 2007) Naples, Italy O3, PM HYSPLIT Trajectory k-means  PCA 
(Rodriguez, Alastuey et al. 2011) Izaňa, Canary islands Aerosols HYSPLIT Trajectory  MCAR  
(Rozwadowska, Zielinski et al. 2010) Hornsund, Svaalbard Aerosol Optical Thickness HYSPLIT Trajectory k-means    
(Ryall, Derwent et al. 2001) Mace Head, Ireland CFC NAME Dispersion    
(Ryall, Derwent et al. 2002) UK PM NAME Dispersion    
(Salvador, Artinano et al. 2008) Campisabalos, Spain PM, aerosols FLEXTRA Trajectory k-means   
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(Salvador, Artinano et al. 2010) Schauinsland (Germany), Puy de Dôme 
(France) 
 Sonnblick (Austria) 

PM, aerosols FLEXTRA Trajectory k-means 
 

RCF  

(Scheifinger and Kaiser 2007) Austrian stations O3, CO, NOx FLEXTRA Trajectory  CPF, PSCF, RCF  
(Schichtel, Gebhart et al. 2006) Big Bend NP, Texas PM CAPITA Trajectory  IP, CPF  
(Schmale, Schneider et al. 2011) Greenland 

(aircraft) 
Aerosols OFFLINE and LAGRANTO 

Trajectory 
FLEXPART Dispersion 

  EDGAR emissions 

(Seibert and Frank 2004) Stockholm, Sweden 137Cs FLEXPART Dispersion  Residence Time  
(Sharma, Lavoue et al. 2004) Alert, Greenland PM, aerosols CMC Trajectory k-means CPF  
(Sharma, Andrews et al. 2006) Alert, Barrow, Arctic PM, aerosols CMC Trajectory k-means CPF  
(Simmonds, Derwent et al. 2004) Mace Head, Ireland O3 NAME Dispersion    
(Simmonds, Seuring et al. 1997) Mace Head, Ireland O3, CO Trajectory  Regional  
(Solberg, Schmidbauer et al. 1996) Zeppelin, Svaalbard O3 EMEP Trajectory  Regional  
(Solberg, Stordal et al. 1997) Zeppelin and Norwegian stations O3 EMEP Trajectory  Regional  
(Solberg, Hov et al. 2008) Europe - FLEXTRA Trajectory  Residence Time OSLO CTM 

EMEP model 
(Stohl 1996) European stations sulphate FLEXTRA Trajectory  RCF  
(Stohl, Spichtinger-Rakowsky et al. 2000) Jungfraujoch, Sonnblick, Zugspitze,  

Mt. Cimone (Alps) 
O3 FLEXPART Dispersion   FLEXPART tracers 

(Stohl, Eckhardt et al. 2002) Mace Head, Ireland - FLEXPART Dispersion Retroplume clusters   
(Stohl, Cooper et al. 2004) Zeppelin, Svaalbard Halocarbons CO2, O3, CO, 

Mercury 
FLEXPART Dispersion   FLEXPART tracers 

(Stohl, Andrews et al. 2006) (Aircraft) Aerosol Optical Depth FLEXPART Dispersion  Footprint emission 
sensitivity 

 

(Stohl, Berg et al. 2007) Zeppelin, Svaalbard O3, CO, aerosol FLEXPART Dispersion  Footprint emission 
sensitivity 

FLEXPART tracers 

(Stohl, Seibert et al. 2009) Various stations HFC FLEXPART Dispersion   Inversion model 
(Strong, Whyatt et al. 2010) 14 UK rural sites O3 HYSPLIT Trajectory   ELMO 
(Tarasova, Senik et al. 2009) Jungfraujoch (Switzerland), 

Kislovodsk (Russia) 
O3 LAGRANTO Trajectory    

(Taubman, Hains et al. 2006) US/ Atlantic Ocean (aircraft) O3, CO, SO2 HYSPLIT Trajectory Hierarchical Residence time, 
CPF 

 

(Toledano, Cachorro et al. 2009) El Arenosillo, Spain Aerosol Optical Depth Trajectory k-means  Regional  
(Traub, Fischer et al. 2003) Mediterranean (aircraft) O3, NOxy, CO, CO2, HCHO, CH4, 

VOCs 
FLEXTRA Trajectory  Regional  
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(Tscherwenka, Seibert et al. 1998) Snnblick, Austria SO2 FLEXTRA Trajectory  Residence time  
(Tuzson, Henne et al. 2011) Jungfraujoch, Switzerland CO2 FLEXPART Dispersion  Residence time  
(Vasconcelos, Kahl et al. 1996) Grand Canyon NP, USA CH3CCl3 ATAD Trajectory  CPF  
(Virkkula, Aurela et al. 1999) Sevettijärvi, Finland Aerosols TRADOS Trajectory  Regional  
(Walker, Derwent et al. 2009) Birmingham, UK CO, O3, NOx, VOC HYSPLIT and BADC Trajectory   PTM 
(Wang, Lam et al. 2004) Hong Kong, China O3, CO HYSPLIT Trajectory Hierarchical   
(Wang, Hao et al. 2010) Beijing, China O3, CO HYSPLIT Trajectory    
(Weiss-Penzias, Jaffe et al. 2004) Cheeka Peak, WA, USA O3, CO HYSPLIT Trajectory  Residence Time GEOS-CHEM 
(Weiss-Penzias, Jaffe et al. 2006) Mount Bachelor, WA, USA O3, CO, Mercury HYSPLIT Trajectory  Residence Time  
(Wolfe, Thornton et al. 2007) Mount Bachelor, WA USA O3, CO, PAN HYSPLIT Trajectory  Residence Time  
(Wotawa and Kroger 1999) central Europe NOxy FLEXTRA Trajectory  CPF, RCF IMPO model 
(Wotawa, Kroger et al. 2000) 11 stations in the Alps O3 FLEXTRA Trajectory  CPF,  RCF  
(Wu, Hu et al. 2009) Beijing, China PM, NH3, acidic gases HYSPLIT Trajectory  PSCF  
(Xia, Chen et al. 2007) Beijing, China Aerosol Optical Depth HYSPLIT Trajectory k-means (fuzzy  

c-means) 
  

(Xiao, Kang et al. 2010) Tibetan plateau PCBs, PAH HYSPLIT Trajectory  CPF  
(Xu, DuBois et al. 2006) US National Parks PM HYSPLIT Trajectory  Residence Time  
(Yan, Tang et al. 2008) Shangdianzi, China Aerosol Optical Depth Trajectory k-means   
(Zhu, Huang et al. 2011) Beijing, China PM HYSPLIT Trajectory k-means PSCF  
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