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Abstract
Recent theoretical results are presented from our ongoing study investigating the distinct convective
instability properties of the boundary-layer flow over rough rotating disks. In this study, radial anisotropic
surface roughness (concentric grooves) is modelled using the partial-slip approach of Miklavčič & Wang
(2004) and the surface-geometry approach of Yoon et. al (2007). An energy analysis reveals that for
both instability modes, the main contributors to the energy balance are the energy production by the
Reynolds stresses and conventional viscous dissipation. For the Type I mode, energy dissipation increases
and the Reynolds-stress energy production decreases with roughness under both models. This suggests
a clear stabilising effect of the anisotropic roughness on the Type I mode. For the Type II mode, the
Reynolds-stress energy production increases with roughness under both models. However, the energy
dissipation of the Type II mode decreases with the roughness under the surface-geometry model and
increases under the partial-slip model. This sensitivity to the precise form of the anisotropic roughness
suggests that maximising dissipation by an appropriately designed roughness can theoretically lead to an
overall beneficial stabilisation of both the Type I and Type II modes. This is a potential route to overall
boundary-layer-transition delay and drag reduction in cross-flow dominated flows.
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1. INTRODUCTION
The von Kármán boundary layer represents a typical, generic
example of a general class of fully three-dimensional bound-
ary layers that share the common, characteristic feature of a
cross-flow velocity component [1–3]. Similar boundary layers
are encountered in many applied contexts such as, for instance,
on the blades of wind turbines or over the highly swept wings
of aircraft.

Here we study effects of distributed surface roughness on
the laminar-turbulent transition process of the von Kármán
boundary-layer flow. All boundary layers with a cross-flow
component display similar laminar-turbulent transition char-
acteristics due to the existence of an inflection point on the
cross-flow velocity profile [2, 3]. Hence, the results presented
here are of general, direct practical relevance to all applied
flow configurations where a boundary layer with a cross-flow
component is established. Our motivating, long-term aim is
to develop theoretical methods to enable the energetically-
optimal design of surface-roughness that can be exploited, for
boundary layers with a cross-flow component, in the context
of the development of new, passive drag-reduction techniques.

It has now been firmly established that, contrary to the
classic belief, the interaction of boundary-layer flow with the
right sort of roughness on surfaces can result in energetically
beneficial, drag-reducing effects [4–6]. The challenge that
remains, however, is to identify what represents the right
sort of roughness that leads to such drag-reducing effects in
any particular application. One fundamental, general strategy
known to result in reduced drag is to control the laminar flow

and delay its transition to turbulence. This method of the
stabilisation of the boundary-layer flow exploits the fact that
laminar flows are subject to smaller dissipative energy losses
than turbulent flows. The theoretical results to be discussed
here will reveal clear evidence of stabilising effects of the in-
vestigated surface structures on von Kármán boundary-layers
on rotating disks.

Two distinct models for the steady boundary-layer flow
over rough rotating disks exist in the literature. They were
developed by Yoon et al. [7] and Miklavčič & Wang [8]
and are henceforth referred to as the YHP and MW models,
respectively. Both models show how successively increasing
roughness levels lead to deviations from the classic similarity
solution for the flow over a smooth disk due to von Kármán [1].
The main goal of this continuing study is to demonstrate that
theoretical predictions for the stability characteristics of the
von Kármán boundary layer, based on the two fundamentally
different modelling approaches, lead to overall consistent, and
energetically beneficial, results.

The YHP approach models roughness by imposing a par-
ticular surface distribution as a function of radial position and
assumes a rotational symmetry. The YHP approach there-
fore models roughness in the radial direction only, i.e. the
flow over disks with concentric grooves of a particular cross-
sectional shape profile. Alternatively, rather than imposing
a particular mathematical form of the surface roughness, the
MW approach models roughness empirically by replacing the
usual no-slip boundary conditions with partial-slip conditions
at the disk surface. The MW model is therefore capable of
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modelling independent levels of roughness in the radial and
azimuthal directions by separately modifying the boundary
conditions in these directions.

The case of uniform levels of roughness in every direction
over a surface is typically referred to as isotropic roughness,
and non-uniform levels of roughness as anisotropic rough-
ness. The MW model is clearly capable of modelling both
anisotropic and isotropic roughness; the YHP model, how-
ever, is only capable of modelling the roughness in the radial
direction, i.e. a particular case of anisotropic roughness.

It is important to note that the analytical results of the
YHP and MW models have not yet been corroborated by
experiment and so the two models should be considered as
competing models of an actual flow. For this reason, it is
instructive to consider a comparative study of the stability
characteristics of the steady flows arising from both models.
Comparisons will be made as appropriate between the stability
characteristics of the YHP flows and those of ‘equivalent’
levels of radial anisotropic roughness under the MW flow.

In our previous publication [9] we have considered all
classes of flows arising from the full MW model. In particular,
our previous study considered isotropic roughness and two
forms of anisotropic roughness: concentric grooves (radial
anisotropic, as will be considered here) and radial grooves
(azimuthal anisotropic). The results obtained reveal that both
anisotropic and isotropic roughness results in a stabilisation
of the Type I instability mode. In addition, in the case of
radial anisotropic roughness, a significant destabilisation of
the Type II mode is found. The emergence of the Type II
mode with increasing roughness should therefore be under-
stood as halting the beneficial roughness effects on the Type I
mode. The interested reader is also referred to that paper for
an extensive literature review of previous rotating-disk and
surface-roughness studies.

This current paper should be considered a summary of
our other paper [10] and full details can, of course, be found
there.

2. THE STEADY FLOWS
2.1 The surface-geometry model due to YHP [7]
Full details of this formulation can be found in papers [7, 10].
Here it is sufficient to understand that, under the YHP ap-
proach, the lower surface is described by a particular func-
tional form expressed within the dimensional cylindrical po-
lar coordinate system (r∗, θ, z∗). The disk is considered to
be rotating about its axis of symmetry at a constant rota-
tion rate Ω∗ and we formulate the analysis in the rotating
frame. All dimensional quantities are scaled on a charac-
teristic length-scale given by the boundary-layer thickness,
d∗ =

√
ν∗/Ω∗, where ν∗ is the kinematic viscosity, and a ve-

locity scale given by r∗Ω∗. This leads to the Reynolds number
Re = r∗Ω∗d∗/ν∗ = r .

The particular surface function used here scales to

s(r) = δ cos
(

2πr
γ

)
(1)

which gives two non-dimensional control parameters: δ, the
height of the roughness, and γ, the pitch of the roughness. It is
useful to define the aspect ratio a = δ/γ which we henceforth
refer to as the roughness parameter within the YHP model.

It is necessary to transform out the surface distribution
before attempting to solve the governing equations. To this
end we use a new coordinate system, (r, θ, ζ ), a modified
form of the non-dimensional cylindrical polar co-ordinates,
defined by the transformation ζ = z − s(r). These lead to
transformed, rotationally symmetric flow components U (r, ζ ),
V (r, ζ ) and W (r, ζ ) in the radial, azimuthal and normal direc-
tions, respectively. The governing boundary-layer equations
for the steady flow are then obtained after introducing vari-
ables closely related to the von Kármán similarity variables,

f (r, ζ ) =
1
r

U (r, ζ ),

g(r, ζ ) =
1
r

V (r, ζ ),

h(r, ζ ) = W (r, ζ )

(2)

and given by

2 f + r
∂ f
∂r

+
∂h
∂ζ

= 0, (3)

r f
∂ f
∂r

+ h
∂ f
∂ζ

+

(
1 + r

s′s′′

1 + s′2

)
f 2 = (4)

(1 + s′2)
∂2 f
∂ζ2 +

(1 + g)2

1 + s′2
, (5)

r f
∂g

∂r
+ h

∂g

∂ζ
= (1 + s′2)

∂2g

∂ζ2 − 2 f (1 + g), (6)

These PDEs are subject to the usual no-slip and quiescent
boundary conditions in the rotating frame and can be solved
using the commercially available NAG routine D03PEF.

The transformed flow field across (r, ζ ) is found to vary at
two distinct spatial scales in the radial direction. At the scale
characterised by γ, we have a response dependent on where
r is within the oscillatory cycle of the surface function (1).
In addition to this oscillatory behaviour, we see a similarity-
type solution scaling with r (as per von Kármán) at the larger
spatial scale. For γ < O(10−1), as is envisaged here, we argue
that the small-scale response of the viscous flow will not occur
in practice and it is a reasonable approximation to take an
ensemble average of the flow field over any complete cycle in
r . This approach leaves only the similarity-solution variation
within the averaged flow field, ( f̄ (ζ ), ḡ(ζ ), h̄(ζ )). Note that
overbars have been introduced to denote averaged quantities.
The ensemble average acts to ‘average away’ the oscillatory
surface distribution, that is s(r) = 0 and so ζ → z. Under our
approach the surface roughness is therefore seen to lead to a
modified von Kármán flow, denoted ( f̄ (z), ḡ(z), h̄(z)).

Note that throughout this study we compute all ensemble
averaged quantities at 100 regularly spaced locations over one
wavelength and the results have been confirmed to be indepen-
dent of the starting radial position. Our results also show that
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the aspect ratio a = δ/γ determines the flow response and so,
despite having two control parameters, we can work in terms
of the single roughness parameter, a.

2.2 The partial-slip model due to MW [8]
Rather than imposing a particular mathematical form for the
surface roughness, the MW approach assumes that roughness
can be modelled by a modification of the no-slip conditions
at the disk surface. In particular, the model assumes partial
slip at the disk surface but is otherwise identical to the von
Kármán formulation [1]; full details can be found elsewhere
[8, 9]. The full MW model has two parameters η and λ
(giving empirical measures of the roughness in the radial
and azimuthal directions, respectively). These appear in the
surface boundary conditions of the von Kármán ODEs such
that

f̄ (0) = λ f̄ ′(0),
ḡ(0) = ηḡ′(0),

where a prime denotes differentiation with respect to the nor-
mal spatial variable. Here we are concerned with the particular
case of radial anisotropic roughnesses, consistent with the ca-
pabilities of the YHP model, and so set λ = 0.

2.3 Comparison of steady flows
Despite both models predicting a reduced radial jet and a thick-
ened boundary layer, the areas enclosed by the radial profiles
are found to increase with roughness under the YHP model
and decrease in the MW model. This area is a measure of the
volume of fluid transported outwards in the radial direction
and accounts for the different behaviour of the axial entrain-
ment between the two models. Given the different physical
predictions arising from the two models and the empirical
definition of roughness in the MW model, a direct quantitative
comparison between ‘equivalent’ levels of roughness is not
possible. Instead we proceed with a qualitative comparison
of the effects of increasing roughness under both models. The
particular values of η used here are therefore reasonably ar-
bitrary and we have opted to use the maximum value of the
radial jet as a matching parameter. That is, for each value of a
in the YHP model, the value of η in the MW model is chosen
such that the maximum values of the radial wall jet, max( f̄ ),
agree. Note that the azimuthal and wall-normal components
can never be matched between the two models and we empha-
sise again that direct quantitative comparisons should not be
made.

The paired parameter values are found to be a = 0.1 ∼
η = 0.14, a = 0.2 ∼ η = 0.57 and a = 0.3 ∼ η = 1.18 and
comparisons between the resulting flow profiles can be seen
in Figures 1(a), 2(a) and 3(a). We observe good agreement
between the two models for small values of the roughness and
an increasing discrepancy as the roughness increases.

3. CONVECTIVE INSTABILITY ANALYSIS
The two approaches used to calculate the steady flows have
both resulted in similarity solutions in the scaled physical

space (r, θ, z). The resulting flows are therefore related to the
von Kármán flow, and, importantly, the stability analyses of
the rotating-disk flow presented elsewhere [12, 15] are directly
applicable in this current study. Full details of the governing
perturbation equations can be found in those references. Here
it is sufficient to understand that we conduct a normal-mode
analysis with perturbations of the form

(û, v̂, ŵ, p̂) = (u(z),v(z),w(z),p(z))ei(αr+βReθ−ωt ) .

The wavenumber in the radial direction, α = αr + iαi , is
complex, as required by the spatial convective analysis to be
conducted; the frequency,ω, and circumferential wavenumber,
β, are real. It is assumed that β is O(1) and the integer number
of complete cycles of the disturbance around the azimuth is
n = βRe. We identify n with the number of spiral vortices
around the disk surface. Furthermore, the orientation angle
of the vortices with respect to a circle centred on the axis
of rotation is ε = arctan(β/α). The quantities n and ε can
be compared directly to experimental observations. In what
follows we are concerned with stationary vortices that rotate
with the rough surface and so set ω = 0.

The governing perturbation equations are solved using
a Chebyshev polynomial discretisation method in the wall-
normal direction to obtain solutions of the dispersion rela-
tion D(α, β; Re, [a, η]) = 0 with the aim of studying the oc-
currence of convective instabilities for various values of the
roughness parameters. The results of our code in the smooth
case (a = 0 = η) have been compared against those in the
literature and the predictions for the critical parameters of the
Type I mode are found to be entirely consistent with other
published results [11, 16–19].

As with existing analyses of smooth rotating disks, modes
of Type I and II are found to determine the convective insta-
bility properties of the disturbance modes over rough rotating
disks. The Type I mode, appearing as the upper lobe in Re–αr

neutral curves, is known to arise from the inflectional nature
of the steady-flow profiles, and the Type II mode, appearing
as the lower lobe, is known to arise from streamline curva-
ture and Coriolis effects. The neutral curves arising from the
analysis of both models at comparable roughness parameters
are shown in Figures 1(b), 2(b) and 3(b). The neutral curves
display the same qualitative behaviour: the Type I lobe is
diminished (both in terms of critical Re and width) with in-
creased roughness, and the Type II mode exaggerated. This
is entirely consistent with the results of our previous study
of radial anisotropic roughness [9]. The results of the YHP
model appear much more sensitive to increased roughness, al-
though this conclusion depends somewhat on the equivalence
of the parameter values used for the comparisons. Critical
parameters at the onset of unstable Type I and Type II modes
are given in Table 1.

4. ENERGY ANALYSIS
Following previous work [9, 10, 16] an integral energy equa-
tion for three-dimensional disturbances (û, v̂, ŵ) to the undis-
turbed three-dimensional boundary-layer flow (U,V,W ) is
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Figure 1. Model comparison at a = 0.1 and η = 0.14.

derived in order to extract possible underlying physical mech-
anisms behind the effects of roughness on the stability of rotat-
ing disk boundary-layer flow. Essentially, the energy-balance
approach enables one to assess the relative influences of the
various energy transfer mechanisms affecting the destabilisa-
tion of fluid disturbances. The method was used in extensively
for the full MW model in our previous publication [9] and full
details are presented there. As demonstrated elsewhere [9, 16],
the energy equation that applies to a particular eigenmode is
given by

−2αi = (P1 + P2 + P3)︸             ︷︷             ︸
I

+ D︸︷︷︸
II

+ (PW1 + PW2)︸           ︷︷           ︸
III

+

(S1 + S2 + S3)︸           ︷︷           ︸
IV

+ (G1 + G2 + G3)︸              ︷︷              ︸
V

,
(7)

where, physically, the terms on the right-hand side are identi-
fied as follows:

(I) the Reynolds stress energy production term, obtained
from {Pi },

(II) the viscous dissipation energy removal term, obtained
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Figure 2. Model comparison at a = 0.2 and η = 0.57.

from D,

(III) pressure work terms, obtained from {PWi },

(IV) contributions from work done on the wall by viscous
stresses, obtained from {Si },

(V) terms arising from streamline curvature effects and the
three-dimensionality of the mean flow, obtained from
{Gi }.

Calculations have been carried out for both roughness
models, and for both the Type I and II modes at Re = 400.
The corresponding growth rates are shown in Figure 4. This
emphasises the stabilising effect of roughness on the Type I
mode, the destabilising effect on the Type II mode and the
stronger effect on both of these modes for the YHP model.
For the MW model the amplification of the Type II mode
is more modest, even though the Type II lobe of the neutral
curve shows similar augmentation to the YHP case, and the
stabilising effect on the Type I mode is not quite so strong.

By calculating all terms in the energy equation (7) it is pos-
sible to identify where the effects of roughness are the greatest.
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Figure 3. Model comparison at a = 0.3 and η = 1.18.

Given the boundary conditions for the YHP model some terms
in the energy equation are identically zero (PW2,S1,S2,S3).
The results of the energy balance for the three roughness val-
ues a = 0.1,0.2 and 0.3 are compared to those for a smooth
disk (a = 0) in Figure 5. For both modes the main contribu-
tors are energy production by the Reynolds stress (P2) and
conventional viscous dissipation (D). Terms P1,P3,PW1 and
G2 are found to be negligible and the geometric terms G1 and
G3 remove energy from the system. The strongly stabilising
effect of roughness on the Type I mode is manifested in a
striking reduction in P2 and a slight increase in viscous dissi-
pation. Conversely, the growth with roughness of the Type II
mode arises from a net increase in energy production through
increased Reynolds stress alongside a reduction in viscous
dissipation.

Results of the energy balance calculation for the MW
model are shown in Figure 6. Again both modes are domi-
nated by contributions from P2 and D. The main difference
from the YHP model in the case of the Type II mode is that,
although the Reynolds stress energy production term increases
as before, the MW model also shows an increase in viscous

YHP model
Re n ε

a = 0 286.1 (461.5) 22.2 (21.3) 11.4 (19.2)
a = 0.1 311.5 (394.4) 20.7 (16.7) 11.1 (19.5)
a = 0.2 426.8 (283.3) 20.6 (11.1) 10.8 (19.0)
a = 0.3 593.9 (220.6) 21.8 (8.5) 11.1 (18.5)

MW model
Re n ε

η = 0 286.1 (461.5) 22.2 (21.3) 11.4 (19.2)
η = 0.14 300.6 (390.3) 19.6 (17.5) 9.8 (16.9)
η = 0.57 343.7 (311.5) 15.4 (9.2) 7.3 (12.3)
η = 1.18 393.8 (284.9) 12.4 (6.3) 5.6 (9.2)

Table 1. Critical values of measurable parameters at the onset
of instability under both models. Type I and (Type II). Bold
text indicates the most dangerous mode in terms of critical
Reynolds number.

dissipation (opposite to YHP) which would account for the
more modest growth observed in Figure 4. The Type I mode
shows a less pronounced decrease in P2, but more viscous
dissipation compared to the YHP model.

As detailed in publication [10] where a presentation of
the disturbance eigenmodes is given, the Type II disturbances
generally extend further into the boundary layer than the Type
I disturbances. The further stretching of the disturbance pro-
file of the YHP model as roughness is increased, together with
the thickening of the boundary layer with roughness, would
appear to contribute to the augmentation of the Type II insta-
bility mode. The MW model results in a similar stretching
of the Type II eigenmodes to the YHP case. However, since
there is no significant increase in the boundary-layer thickness
for the MW steady flow, the fluid disturbances do not extend
quite as far into boundary layer as for the YHP case. These
affects appear to be related to the subtly different responses of
the energy balance of the Type II mode across each roughness
model. The Type I disturbance profiles are very similar to
those for the YHP model.

5. CONCLUSION
We have summarised our theoretical study investigating the
effects of radial anisotropic surface roughness resulting from
concentric grooves on the stability of the von Kármán boundary-
layer flow over a rotating disk. Our theoretical analysis was
based on the two alternative approaches suggested by Yoon
et al. [7] and by Miklavčič & Wang [8] for modelling the
steady boundary-layer flow over a rough rotating disk. Our
results have shown that both these fundamentally different
approaches yield qualitatively consistent results for the two
dominant steady-flow velocity components (radial and az-
imuthal) of the rotating-disk boundary layer for increasing
roughness levels. Similarly, the subsequent linear stability
analysis based on the steady-flow profiles obtained from the
two modelling approaches revealed that in both cases the type
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Figure 4. Type I and II growth rate curves at Re = 400.

of roughness investigated results in a stabilisation of the Type
I instability mode of the rotating-disk boundary layer and
in a destabilisation of the Type II mode. However, it was
found that, overall, the effects arising when following the
YHP model are somewhat more pronounced than when using
the MW approach.

The energy analysis has revealed that for both the YHP
and the MW approach, and for both the Type I and Type II
instability modes, the main contributors to the energy balance
are the energy production by the Reynolds stresses and con-
ventional viscous dissipation. For the Type I mode dissipation
increases with the roughness level and the increase is more
pronounced for the MW model than for the YHP model. For
the Type I mode Reynolds-stress energy production decreases
with the roughness level and the decrease is more pronounced
for the YHP model than for the MW model. Thus, in summary,
increased energy dissipation and decreased energy production
by Reynolds stresses implies a stabilisation of the Type I mode
by increasing roughness levels.

For the Type II mode Reynolds-stress energy production
increases with the roughness level and the increase is slightly
less pronounced for the YHP model than for the MW model.
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Figure 5. Results of energy analysis for YHP model at
Re = 400.

The main qualitative difference is observed for the energy
dissipation of the Type II mode. For the Type II mode energy
dissipation decreases with the roughness level for the YHP
model whereas there is a slight increase under the MW model.
Yet, the overall increased Reynolds-stress energy production
and decreased energy dissipation result in a destabilisation of
the Type II mode for both the YHP and the MW model.

Our study suggests that the beneficial stabilisation of
the Type I mode by concentric roughnesses becomes sup-
pressed when the Type II mode is destabilised as it moves
upstream and eventually becomes the critical mode at the
lowest Reynolds number. This is consistent with our pre-
vious result [9]. The results of the energy analysis imply
that the dissipation of the Type II mode is sensitive to the
precise form of the steady-flow base profile. Consequently,
maximising dissipation by an appropriately designed surface-
roughness pattern, that leads to the energetically optimal base
profile, can theoretically lead to an overall beneficial stabili-
sation of the Type II mode. Provided that the Type I mode is
not adversely affected, this could result in a boundary-layer-
transition delay and drag reduction. This points to a possible
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Figure 6. Results of energy analysis for MW model at
Re = 400.

way forward for exploiting the beneficial stabilising effects of
radial anisotropic roughness on the Type I mode in future drag
reduction techniques relying on transition delay for boundary
layers with a cross-flow component.

Full details of this study into radial anisotropic roughness
can be found in publication [10].
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