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Abstract 

 

Cholinergic neurotransmission exerts widespread modulation of brain function. The 

focus of my thesis is to detail the neurophysiological and behavioural function of 

acetylcholine in the striatum and the dopaminergic midbrain. Using ChAT::cre Long 

Evans rats I investigate the direct and the indirect connectivity between brainstem 

and striatum. Using anatomical, electrophysiological and behavioural experiments, I 

describe a direct projection to the striatum arising from the cholinergic brainstem and 

also an indirect pathway through the dopaminergic midbrain. I describe anatomical 

and physiological differences in the modulation of dopaminergic midbrain neurons 

by cholinergic neurons in the pedunculopontine and the laterodorsal tegmental 

nucleus. I also show a novel cholinergic pathway to the striatum arising from the 

brainstem. Based on anatomical, physiological and behavioural results, I show a 

strong functional modulation of striatum by cholinergic transmission.  

 

 

 

 

 

 

 

 



3 
 

Acknowledgement 

 

I would like to thank my supervisors, cited in alphabetic order (like that, no 

preference): Dr. Bolam Paul, Dr. Gerdjikov Todor and Dr. Mena-Segovia Juan. You 

let me conduct my work independently and provided supervision and advice 

whenever needed. I was not the easiest student, but I tried to do my best. Thank you 

Todor for all the chocolate and candies that you bring to the office. Thanks for Dr. 

McCutcheon and Dr. Ungless. I tried to write a thesis which is as short as possible 

but I do like to talk. 

I would like to thank Matt, Farid, Emilie, Paul D., Jenny, Federica and Co for all the 

drinks in the University Club, all the dinners and all the time spent together, all the 

back up. I missed you in Leicester and I will miss you in Newark. 

Thanks to the Guarantors of Brain, the Experimental Psychology Society, the 

University of Leicester and the MRC-Anatomical Neuropharmacology Unit. 

You deserve a sentence, maybe a book dedicated to you, but I would like to say thank 

you, for the work on my thesis, for the work on my life, for Dublin, for Lisbon, for 

Munich, for being you. Merci Anna pour le passe et le futur. 

I would like to thank my family, my mother, who always pushes me to be who I am, 

my sister who called me every night to know what I was doing and my dad who 

taunted me with the weather in Nice.  

 

 



4 
 

Contents 
 

Abstract ................................................................................................................................ 2 

Acknowledgement ................................................................................................................... 3 

Table of figures ........................................................................................................................ 6 

Glossary ............................................................................................................................... 9 

Chapter 1 : Introduction ......................................................................................................... 14 

General introduction .......................................................................................................... 14 

Acetylcholine in the central nervous system ...................................................................... 14 

Basal ganglia ...................................................................................................................... 17 

Composition ................................................................................................................... 17 

Function ......................................................................................................................... 18 

Model of Basal Ganglia ..................................................................................................... 20 

Cortex ............................................................................................................................. 20 

Thalamus ........................................................................................................................ 21 

Globus pallidus .............................................................................................................. 22 

Subthalamic nucleus ...................................................................................................... 25 

Striatum .......................................................................................................................... 27 

SNc/VTA ........................................................................................................................ 36 

Mesostriatal pathway ..................................................................................................... 44 

Cholinergic receptors ..................................................................................................... 46 

Cholinergic Brainstem ................................................................................................... 52 

The pedunculopontine nucleus (PPN) ............................................................................ 52 

The laterodorsal tegmental nucleus (LDT) .................................................................... 60 

Chapter 2: Cholinergic innervation of the meso-striatal pathway .......................................... 65 

Abstract .............................................................................................................................. 66 

Introduction ........................................................................................................................ 67 

Materials and methods ....................................................................................................... 69 

_Toc445195431 

Results ................................................................................................................................ 76 



5 
 

Conclusions ...................................................................................................................... 105 

Chapter 3: Dopaminergic and non-dopaminergic neurons of the ventral tegmental area are 

differentially modulated by brainstem cholinergic pathways. ............................................. 106 

Abstract ............................................................................................................................ 107 

Introduction ...................................................................................................................... 108 

Materials and methods ...................................................................................................... 111 

Results .............................................................................................................................. 128 

Conclusion ....................................................................................................................... 158 

Chapter 4: Cholinergic circuits and modulation of striatal functions .................................. 164 

Abstract ............................................................................................................................ 165 

Introduction ...................................................................................................................... 166 

Materials and methods ..................................................................................................... 169 

Results .............................................................................................................................. 169 

Discussion ........................................................................................................................ 191 

General discussion ............................................................................................................... 195 

References ............................................................................................................................ 207 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Table of figures 

Figure 1: Illustration of the structures and major connections of the basal ganglia.. 18 

Figure 2: Illustration of the main neurons and major connections in the mesostriatal 

pathway.. .................................................................................................................... 45 

Figure 3: Illustration of the PPN and LDT organisation. ........................................... 58 

Figure 4: Transduction of cholinergic neurons across the brain. ............................... 77 

Figure 5: Mapping of cholinergic axons in the whole brain. ..................................... 79 

Figure 6: Mapping of cholinergic axons in the cortex. .............................................. 81 

Figure 7: Mapping of cholinergic axons in the thalamus. .......................................... 82 

Figure 8: Distribution of neurons projecting to the dorsal striatum and nucleus 

accumbens. ................................................................................................................. 83 

Figure 9: Retrograde labelling in cholinergic Ch1-Ch8 groups. ................................ 84 

Figure 10: Distribution of brainstem cholinergic axons in the striatum. ................... 86 

Figure 11: Cholinergic axons arising in the PPNr. ..................................................... 87 

Figure 12: Cholinergic axons arising in the PPNc. .................................................... 88 

Figure 13: Cholinergic axons arising in the LDT. ...................................................... 89 

Figure 14: Morphology of synapses differentiates brainstem cholinergic from 

cholinergic interneurons contacts. .............................................................................. 91 

Figure 15: Retrograde labelling from the striatum. .................................................... 93 

Figure 16: Labelling of axon collaterals from striatal-projecting brainstem neurons.

 .................................................................................................................................... 96 

Figure 17: Double-tracer injections. .......................................................................... 97 

Figure 18: Cholinergic projections to the VTA.. ...................................................... 128 

Figure 19: Cholinergic neurons projecting to the VTA are concentrated in the caudal 

mesopontine region. ................................................................................................. 129 

Figure 20: Specificity of transduction for cholinergic neurons in different brain areas.

 .................................................................................................................................. 130 

Figure 21: Virus expression was visible only in ChAT neurons. ............................. 131 

Figure 22: Mediolateral distribution of cholinergic axons in the VTA. ................... 132 

Figure 23: PPN cholinergic projection to DA and non-DA neurons of the VTA. .... 133 

Figure 24: Optogenetic activation of PPN cholinergic axons modulates DA and non-

DA neurons of the VTA. .......................................................................................... 134 



7 
 

Figure 25: LDT cholinergic projection to DA and non-DA neurons of the VTA. ... 136 

Figure 26: Optogenetic activation of LDT cholinergic axons modulates DA and non-

DA neurons of the VTA. .......................................................................................... 137 

Figure 27: Analysis of the response of a representative neuron to the laser 

stimulation. ............................................................................................................... 138 

Figure 28: Activation of cholinergic axons produces a slow and robust excitation of 

DA neurons. ............................................................................................................. 139 

Figure 29: Electrical stimulation of the PPN produces short-latency responses in DA 

neurons. .................................................................................................................... 140 

Figure 30: Cholinergic antagonists block the response to laser stimulation in DA 

neurons. .................................................................................................................... 141 

Figure 31: Cholinergic antagonists block the response to laser stimulation in DA and 

non-DA neurons. ...................................................................................................... 142 

Figure 32: Expression VAChT in YFP-labelled axons............................................. 143 

Figure 33: Laser stimulation of cholinergic axons modifies the bursting activity of 

DA neurons. ............................................................................................................. 145 

Figure 34: Retrograde tracers revealed mesolimbic neurons.. ................................. 146 

Figure 35: Retrograde tracers revealed mesocorticolimbic neurons. ....................... 147 

Figure 36: LDT cholinergic axons modulate mesolimbic DA and non-DA VTA 

neurons activity. ....................................................................................................... 148 

Figure 37: LDT cholinergic axons preferentially target mesolimbic DA and non-DA 

VTA neurons. ........................................................................................................... 148 

Figure 38: DA and non-DA neurons are responding to paw-pinch. ......................... 149 

Figure 39: Cholinergic axon stimulation differentially modulates functionally distinct 

DA neurons. ............................................................................................................. 150 

Figure 40: Optogenetic activation of cholinergic axons in the VTA in behaving rats.

 .................................................................................................................................. 151 

Figure 41: Behaving shift between sugar-outcome and laser stimulation-outcome..

 .................................................................................................................................. 153 

Figure 42: Stimulations of LDT cholinergic axons in the VTA increase overall 

locomotion. .............................................................................................................. 154 

Figure 43: Optogenetic stimulation of PPN and LDT changes locomotion strategy. .

 .................................................................................................................................. 157 

Figure 44: Brainstem cholinergic projections suggest contact with cholinergic 

interneurons. ............................................................................................................. 170 

Figure 45: Cholinergic brainstem projection to the striatum. .................................. 171 



8 
 

Figure 46: Cholinergic brainstem projections in the striatum inhibit MSN activity.172 

Figure 47: Cholinergic brainstem projections in the striatum activate cholinergic 

interneurons. ............................................................................................................. 173 

Figure 48: Cholinergic brainstem projections in the striatum do not change PV 

activity. ..................................................................................................................... 174 

Figure 49: Cholinergic interneuron projections in the striatum. .............................. 175 

Figure 50: Cholinergic interneuron activation reduces MSNs firing.. ..................... 176 

Figure 51: Cholinergic interneurons inhibit other striatal cholinergic interneurons.177 

Figure 52: Cholinergic interneurons activation do not change PV interneurons 

activity. ..................................................................................................................... 178 

Figure 53: No difference on MSNs response was apparent between CINs or 

brainstem cholinergic stimulation.. .......................................................................... 179 

Figure 54: Pharmacogenetic inhibition of cholinergic activity in the striatum in 

behaving animals. ..................................................................................................... 181 

Figure 55: No differences were found in different groups of WT animals during 

acquisition and outcome devaluation. ...................................................................... 182 

Figure 56: Cholinergic activity in DMS from LDT is needed for goal-directed 

acquisition. ............................................................................................................... 184 

Figure 57: Cholinergic activity in DLS and PPN is needed for habit-driven learning.

 .................................................................................................................................. 186 

Figure 58: Acetylcholine release in the DMS by CINs or LDT slow-down place 

discrimination. .......................................................................................................... 188 

Figure 59: Blocking of cholinergic activity in DLS from PPN does not affect 

locomotion. .............................................................................................................. 189 

Figure 60: Blocking of acetylcholine release in the DLS from PPN does not affect 

sugar consumption. .................................................................................................. 190 

Figure 61: Parallel circuitry of the ventral and basal ganglia. ................................. 201 

Figure 62: Innervation of the basal ganglia by the cholinergic brainstem. .............. 204 

 

 

 



9 
 

Glossary 

µm: micrometres 

5-CSRTT: 5 choice serial response time tasks  

6-OHDA: 6-hydroxy dopamine 

ACh: acetylcholine 

AID: agranular insular dorsal cortex 

AIV: agranular insular ventral cortex  

AVP: arginine vasopressin 

BG: basal ganglia 

BLA: basolateral amygdala 

CA1: CA1 field of the hippocampus 

CCK: cholecystokinin 

CE: central amygdala L, lateral; M, medial; C, capsular 

Cg: cingulate cortex 

ChAT: choline acetyltransferase 

CINs: cholinergic interneurons 

Cli: central linear nucleus 

CNS: central nervous system 

CS: conditioned stimulus 

D1: dopamine receptor subtype 1 

D2: dopamine receptor subtype 2 

DA: dopamine 

DAergic: Dopaminergic 

Den: dorsal endopiriform nucleus  

DhβE: dihydro-β-erythroidine 

DLS: dorsolateral striatam 

DMS: dorsomedial striatum 
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DS: dorsal striatum 

EPSP: excitatory postsynaptic potential 

fmi: external capsule 

FSI: Fast spiking interneurons 

GAD: glutamate decarboxylase 

gcc: genu of the corpus callosum 

GI: granula insular cortex 

GPe: external globus pallidus 

GPi: internal globus pallidus 

Gpr6: orphan G-protein coupled receptor six 

HCN: hyperpolarisation-activated cyclic nucleotide-gated 

HDB: horizontal limb of the diagonal band of Broca 

Hz: Hertz 

IEn: intermediate endopiriform nucleus 

IF: interfascicular nucleus 

Ih: hyperpolarised-activated cation current 

InG: intermediate gray layer superior colliculus 

IPN: interpeduncular nucleus c, caudal; r, rostral 

IPSP: inhibitory post synaptic potential 

LDL: laterodorsal thalamic nucleus lateral part 

LDT: laterodorsal tegmental nucleus 

LENt: lateral enthorinal cortex 

lHb: lateral habenula 

Ls: lateral septum 

LSD: lateral septum dorsal part 

M: motor cortex 

M1: muscarinic receptor subtype 1 
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M4: muscarinic receptor subtype 4 

MD: mediodorsal thalamic nucleus M, medial; L, lateral 

MEPP: miniature end plate potential 

mHb: medial habenula 

MOA: monoamine oxidase 

MoDG: molecular layer dentate gyrus 

Min: minute 

MS: medial septum 

ms: Milliseconds 

MSNs: medium spiny neurons 

mV: millivolt 

NA: nucleus accumbens 

0.49NA: 0.49 Numerical aperture 

NAc: nucleus accumbens core 

nAChRs: nicotinic receptors 

NAsh: nucleus accumbens shell 

NBM: nucleus basalis of Meynert 

NOS: nitric oxide synthase 

NPY: neuropeptide Y 

NT: neurotensin 

Op: optic nerves layer superior colliculus 

PBN: parabigeminal nucleus 

PBP: parabrachial pigmented area 

PD: Parkinson's disease 

pf: Parafascicular thalamic nucleus 

PFC: prefrontal cortex 

PFR: parafasciculus retroflexus area 
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Pir: piriform cortex 

PLTS: low threshold spiking interneurons 

PN: paranigral nucleus 

PoDg: polymorph layer dentate gyrus  

PPN: pedunculopontine nucleus 

PPNc: caudal segment of the pedunculopontine nucleus 

PPNr: rostral segment of the pedunculopontine nucleus 

PV: parvalbumin 

Rli: rostral linear nucleus 

RMTg: rostromedial tegmental nucleus 

RRF: retrorubral field 

RSGa: retrospinal granular cortex 

Rt: reticular thalamic nucleus 

s/sec: second 

S: somatosensory cortex 

S1: somatosensory cortex 1 

scp: superior cerebellar peduncle 

SN: substantia nigra 

SNc: substantia nigra pars compacta 

SNpl: substantia nigra pars lateralis 

SNr: substantia nigra pars reticulata 

SOM: somatostatin 

STN: subthalamic nucleus 

Str: striatum 

SuG: superficial gray superior colliculus 

SWA: slow wave activity 

TAN: tonically activate neuron 
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TH: Tyrosine hydroxylase 

tu: olfactory tubercle 

V3: third ventricle 

V4: fourth ventricule 

VAChT: vesicular acetylcholine transporter 

VDB: vertical limb of the diagonal band of Broca 

VIP: vasoactive intestinal polypeptide 

VP: ventral pallidum 

VPL: ventro-posterior thalamic nucleus lateral part 

VTA: ventral tegmental area 

Zi: Zone incerta 
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Chapter 1 : Introduction 

 

General introduction 

 An alteration of acetylcholine (ACh) neurotransmission within the central 

nervous system (CNS) has been associated with several neurological disorders 

(Parkinson’s disease, Schizophrenia, Alzheimer or drug addiction) (Schliebs and 

Arendt, 2011; Cuello and Bruno, 2007). Some of these disorders, such as obsessive-

compulsive disorder or addiction, have been shown to be associated with an increase 

of the activity of cholinergic neurons within many brain nuclei (Ishibashi et al., 

2009); others, such as Parkinson's disease (PD), with a decrease in the number of 

cholinergic neurons or their function (Hall et al., 2014). It has been demonstrated that 

most of those conditions (addiction, PD, schizophrenia) are related to the interaction 

between the mesostriatal pathway (see below) and ACh, in particular the modulation 

of dopamine (DA) release in the striatum (Str) (Schultz, 1998; Koob, 2008; Chang, 

1988). While a lot is known about the dopaminergic (DAergic) pathway, much is 

still unknown about its modulation by ACh. In this thesis, I will first describe the 

cholinergic nuclei within the CNS. Next I will focus on the nuclei of the basal 

ganglia and their relation to the cholinergic systems. 

Acetylcholine in the central nervous system 

The synthesis of ACh is initiated by a reaction involving choline and 

coenzyme A. The reaction is catalysed by the enzyme choline acetyltransferase 

(ChAT). Availability of choline is the rate-limiting step in the synthesis of ACh, and 

thus the choline uptake system is critical (Searl et al., 1991). At least half of the 

choline used for ACh synthesis is provided by the recycling of released and 
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metabolised ACh; the other half is coming from general glucose metabolism. While 

ChAT is the enzyme responsible for the synthesis of ACh, the vesicular acetylcholine 

transporter (VAChT) concentrates ACh in synaptic vesicles.  

The complexity of cholinergic nuclei, receptors and projections make 

cholinergic systems some of the most complex within the whole brain (Wannacott, 

1997; Luchicchi, 2014). In the early description of the brain, the entire cholinergic 

system was divided into three main groups “forebrain, midbrain, and brainstem” 

cholinergic nuclei. Immunostaining for ChAT or choline acetyl esterase revealed 

many discrete nuclei with dense and widespread projections across the entire CNS. 

Mesulam and colleagues (Mesulam et al., 1976; Mesulam et al., 1983a; Mesulam et 

al., 1983b) described several discrete cholinergic structures and proposed a 

nomenclature which is still used today. Numerous novel nomenclatures have been 

proposed, based mostly on subdivision of cholinergic nuclei. Mesulam divided the 

cholinergic system into seven major nuclei named Ch1 to Ch7 (Mesulam, 1976), 

later adding additional nucleus (Ch8) (Mesulam, 1983a). 

 In these early studies, with immunolabelling of cholinergic neurons, the 

largest cholinergic structure was identified as the striatal complex. However, 

Mesulam and colleagues (Mesulam et al., 1983a,b) excluded from their reports the 

interneurons expressing the marker for ACh (located in the cortex and the Str) and 

the peripheral nervous system neurons (cranial nerve 5) in order to focus on the 

projecting cholinergic neurons. The second biggest structure is located in the basal 

forebrain, ventrally and medially to the Str and includes several dense and large 

cholinergic nuclei. The cholinergic basal forebrain is made up of four ChAT-

immunopositive nuclei, Ch1 to Ch4. The first structure, Ch1 is located in the medial 
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septal (MS) and projects massively to the cortex; these neurons are involved in 

context-place memory (association between context and environment) (Easton et al., 

2011). The second (Ch2) is located in the vertical limb of the diagonal band of Broca 

(VDB). The third one (Ch3) is situated in the horizontal limb of the diagonal band of 

Broca (HDB). Ch2 and Ch3 are anatomically similar structures often called together 

the nucleus of Broca (Palacios et al., 1991). Neurons of these nuclei have the densest 

axonal tree, innervating several cortical, hippocampal and thalamic structures. 

Projections to the hippocampus appear to be crucial for theta rhythm generation 

(Bland et al., 1999). The fourth cholinergic basal forebrain structure (Ch4) is located 

in the nucleus basalis of Meynert (NBM) (also including the ventral pallidum (VP) 

and the substantia innominata in some nomenclature) (Armonda et al., 1991). 

Mesulam described cholinergic neurons of the NBM as long and complex projecting 

neurons; they target mostly the cortex and the hippocampus and they have been 

described as important for attentional functions (Galani et al., 2002). 

 The rodent brainstem contains a long band of sparsely distributed cholinergic 

neurons easily visible in sagittal sections immunostained for ChAT. This cholinergic 

strip located in the ventral brainstem begins below the cerebellum and follows the 

superior cerebellar peduncle (scp). Mesulam described two nuclei, Ch5 and Ch6, 

positioned rostral to the reticular formation. The first group of neurons, Ch5, is a 

heterogeneous structure located in the pedunculopontine nucleus (PPN) and extends 

into the cuneiforms and parabrachial nuclei. The second nucleus, Ch6, is confined 

within the periventricular gray and is localised in the laterodorsal tegmental nucleus 

(LDT). 

 In the anatomical description of Mesulam, the basal forebrain and the 
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brainstem nuclei constituted the majority of cholinergic neurons, and also the 

majority of cholinergic axons within the entire brain. Two small nuclei were also 

described in the classification of Mesulam and colleagues. One, Ch7, is located in the 

dorsal midbrain and corresponds to a very small number of cholinergic neurons 

localised in the medial habenula (mHb). These cholinergic neurons are bordered by 

the lateral habenula (lHb) and the third ventricle (V3). The mHb contains about 300 

to 500 cholinergic neurons in rats. They are distributed along a band following the 

antero-posterior axis. 

 The last structure is a small nucleus, formed by a very dense group of 

cholinergic neurons located in the lateral midbrain. Named Ch8, this structure is 

localised in the parabigeminal nucleus of the pontomesencephalic region (PBN), 

bordered dorsally by the colliculus and caudally by the nucleus of the pons.  

Basal ganglia  

Composition 

The BG are a group of highly interconnected subcortical nuclei. A role for the 

entire BG, not just the mesostriatal pathway, has been proposed in many diseases 

(Brenner et al., 1947; Jus and Jus, 1948; Blandini et al., 2000). In humans, the BG 

includes the caudate nucleus, the putamen, the external globus pallidus (GPe), the 

internal globus pallidus (GPi), the subthalamic nucleus (STN), the substantia nigra 

(SN) and the VP. In addition, a further part of the BG (named ventral basal ganglia) 

includes the nucleus accumbens (NA), the olfactory tubercle (tu) and its DAergic 

input from the ventral tegmental area (VTA) (Humphries and Prescott, 2010). In 

rodents, the caudate/putamen is often referred to as the Str (Fig. 1). 
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Function 

The nuclei of the BG are involved in motor control functions (Marsden, 1982; 

DeLong and Wichmann, 2009), motivational processes (Stathis et al., 2007), and 

cognitive functions (Redgrave et al., 2011). A current theory proposes that the cortex, 

thalamus and BG are interconnected in parallel and functionally segregated loops 

(Alexander and Crutcher, 1990; Nauta and Domesick, 1978; Haber, 2003). The main 

function of these loops is to transmit and integrate cortical information (Deng et al., 

2015; Robertson et al., 2015). Inputs from motor or limbic cortical areas project 

directly to certain parts of the striatum (Wichmann and Dostrovsky, 2011). While the 

cortical inputs to striatum are topographically organised, some parts of the striatum 

receive overlapping, convergent inputs from several, often related, cortical areas 

(Brown et al., 1998; DeLong and Wichmann, 2007).  

 

Figure 1: Simplified illustration of the structures and major connections of the 

basal ganglia. See legends for cell types involved. Inputs to the brainstem are 

represented with dot lines. Abreviations, GPe: globus pallidum external segment; 

GPi: globus pallidus internal segment; SNc: substantia nigra pars compacta; STN: 
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subthalamic nucleus; SNr: substantia nigra pars reticulata. Adapted from Mena-

Segovia et al., 2004 and Tepper et al., 2007. 

 

This simplified model of the BG positions the Str as the main “entry 

structure” as it receives excitatory input from the cortex and thalamus as well as 

inputs from midbrain structures (Alexander et al., 1986). It has been demonstrated 

that corticostriatal projections specifically target and activate the main population of 

neurons within the Str, the medium spiny neurons (MSNs) (Somogyi et al., 1981; 

Lachandani et al., 2013; Huerta-Ocampo et al., 2013). Cortical inputs to the Str affect 

behaviour differentially depending on types of MSNs contacted, location in the 

matrix vs. striosomal compartments of the striatum, or location in anterior, posterior, 

medial or lateral striatum (Wilson et al., 1983; McGeorge and Faull, 1989; Flaherty 

and Graybiel, 1991; Chudler et al., 1995). The corticostriatal projections show a high 

degree of divergence and convergence, allowing striatal neurons to integrate inputs 

from cortical subdivisions (Nagy et al., 2005). Indeed, discrete tracer injections in 

striatal regions revealed overlapping clusters of corticostriatal projections suggesting 

that different cortical layers or different cortical neuron types target discrete striatal 

regions or striatal neuron types (Kincaid and Wilson, 1996; Kincaid and Wilson, 

1998).  

The mesostriatal pathway innervates either the dorsal striatum (DS) (mostly 

arising in the SNc but also the VTA neurons) or the NA (arising in the VTA and to 

some extent the SNc) (Ikemoto, 2007). Some DAergic neurons project to prefrontal 

cortex (PFC) and show collaterals in the NA (Thierry et al., 1973; Beier et al., 2015; 

Lerner et al., 2015). Those DAergic projections to the cortex have been called 

mesocorticolimbic pathway, and have been implicated in motor, motivational, 
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memory, attention and stress functions associated to the BG (Oades, 1987; Deutch et 

al., 1990; Abercrombie et al.; 1989; Schultz et al., 1993). Other projections arising 

from midbrain DAergic neurons have been found to innervate the thalamus 

(Melchitzky et al., 2006), the lateral habenula (Phillipson and Griffith, 1980), 

hippocampus (Gasbarri et al., 1997), and amygdala (Loughlin et al., 1983). 

Model of Basal Ganglia 

Cortex 

Cortico-striatal pathway 

Cortical projections arise from different areas and target topographically the 

Str and the thalamus (Kemp and Powell, 1970; Bolam et al., 2000; Middleton and 

strick, 2000). It has been shown that about 60% of the inputs to MSNs arise from 

corticostriatal neurons (Wall et al., 2013; Lacey et al., 2005; Raju et al., 2006). A 

proposed model of the corticostriatal pathway is that the function of the BG is mainly 

to direct the cortical input to appropriate downstream targets (Stocco, Lebiere and 

Anderson, 2011). In this model, different cortical regions communicate with each 

other by cortico-cortical connections and send information to their respective 

subdivision of the Str, which can be a different type of neuron or different striatum 

regions (Gerfen, 1989; Van Dongen et al., 2005; Huerta-Ocampo et al., 2013). 

Another marker for MSNs involved in direct and indirect pathways is based on the 

membrane expression of DAergic receptor subtypes 1 or 2 (respectively D1 and D2). 

These two pathways have opposite effects on thalamic activity; whereas the direct 

pathway reduces the inhibition on thalamus activity (by inhibiting the output nuclei), 

the indirect pathway enhances the thalamic inhibition (by activating the output nuclei) 

(Albin et al., 1989; DeLong, 1990; Stocco et al., 2010). As direct and indirect 
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pathways give rise to opposing responses on thalamic activity, the balance between 

the activation of D1 and D2 MSNs will determine the functional effect (Wei, Rubin 

and Wang, 2015; Logan et al., 1984). This balance between D1/D2 seems to be 

important for the flexibility of action selection. Retrograde tracer studies suggested 

that all regions of the cortex target direct and indirect pathway neurons (Wall et al., 

2013) as well as interneurons (Ding et al., 2010; Reynolds et al., 2004). The major 

cortical regions projecting to the Str are the sensory cortex, the motor cortex and the 

parietal cortex (McGeorge and Faull, 1989; Goldman and Nauta, 1977). 

Thalamus 

Thalamostriatal pathway 

The thalamostriatal projections represent 20 to 25 % of the entire input to 

MSNs (Wall et al., 2013). Those excitatory projections follow a mediodorsal 

organisation, with projections from the mediodorsal and parafascicular (pf) nuclei 

going to the dorsolateral Str (DLS) (Schwab et al., 1977; Smith et al., 2009) and 

projections from the intralaminar, midline thalamic and pf nucleus projecting to the 

dorsomedial and the ventral Str (Gimenez-Amaya et al., 1995). The ventral thalamic 

nuclei receive inputs from GP and the substantia nigra pars reticulata (SNr) and relay 

that information to the prefrontal and motor cortices (Druga et al., 1991; Alexander et 

al., 1990; Wichmann and DeLong, 1996; Schell and Strick, 1984; Matelli and 

Luppino, 1996). Three main thalamostriatal pathways have been described in 

monkies, based on their functions: motor, associative and limbic. The “motor 

thalamostriatal pathway” involves connections between the putamen, the GPi and the 

medial two-thirds of the centro-median thalamic nucleus; the “associative pathway” 

has been described between the caudate nucleus, the SNr and the caudal two-thirds 

of pf, finally the “limbic pathway” showed connections between the NA, GPi and the 
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rostral third of the pf (Sidibé et al., 1997; Sidibé et al., 2002; Smith et al., 2004; 

Smith et al., 2010; see review: Smith et al., 2009). Thalamic projections form 

synaptic contacts with MSNs (Dubé et al., 1998; Xu et al., 1991; Wall et al., 2013) 

and cholinergic interneurons (CINs) (Laper and Bolam, 1992; Doig et al., 2014). 

Lesions of thalamic nuclei showed a role of thalamostriatal pathway in reward-

guided actions (Yu and al., 2010), learning (Parker et al., 1997; Mitchell et al., 2007a, 

b), action-outcome associations (Ostlund and Balleine, 2008), fear conditioning 

(Herry et al., 1999) or recognition memory (Hunt and Aggleton, 1998a), which are 

believed to be behaviours associated with striatal functions. Following 

thalamostriatal pathway stimulation, a large population of MSNs increases their 

firing rate and can induce either an increase or decrease in ACh release in the 

striatum based on MSNs collaterals and glutamatergic receptors (Nanda et al., 2009; 

Consolo et al., 1996). 

Globus pallidus  

Anatomy 

In primates, the globus pallidus is comprised of two segments: the external (or 

lateral, GPe) and the internal (or medial, GPi). In rodents, the GPi is named 

entopeduncular and constitutes a group of GABAergic neurons that extend into the 

SNr. Both segments have different functions, anatomy and connectivity within the 

BG.  

Inputs/outputs 

The GPi is an output structure of the basal ganglia. It is the smallest nucleus of 

the basal ganglia circuit which is bordered by the internal capsule and receives inputs 

from Str, GPe and the subthalamic nucleus (STN). The GPi has been described as 

similar to the SNr, sharing similar histologic and functional properties (Nambu et al., 
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2002). The GPi projects to the ventral thalamic nucleus (motor thalamus), and gives 

off several collaterals to thalamic projecting neurons and GABAergic interneurons 

(Ilinsky et al., 1997; Kuo and Carpenter, 1973; Kim et al., 1976). These GPi 

GABAergic projections to the thalamus tend to inhibit the thalamocortical feedback. 

Other GPi projections reach the lateral habenula and the PPN (Carter and Fibiger, 

1978; Nauta, 1979). GPi receives a combination of inhibitory and excitatory inputs 

from striatum, GPe, STN, PFC, intralaminar thalamus, PPN or SNc (Lavoie and 

Parent, 1990; Lavoie and Parent, 1994; Naito and Kita, 1994a; Parent and Hazrati, 

1995b). In vitro studies show that GPi neurons are enriched in GABA and glutamate 

receptors compared to other neurons (Wisden et al., 1992; Albin et al., 1992). GPi 

neurons express a strong hyperpolarisation-activated cyclic nucleotide-gated (HCN) 

current supporting the high frequency spontaneous firing (Nakanishi et al., 1990). In 

vivo, GPi neurons also show a homogenous neuronal population exhibiting a short 

action potential (<1ms) and a high firing rate (>15Hz) (Benhamou and Cohen, 2014). 

The GPe is centrally located within the BG, sending inhibitory outputs to 

virtually every other BG nuclei (Kita and Kitai, 1994; Bevan et al., 1998). The GPe 

sends projections outside the basal ganglia, and does not always seem to give rise to 

local collaterals (Parent et al., 2001; Parent and Parent, 2004). GPe efferents have 

been reported in the STN, the SNc, the PPN, the thalamus, SNr and the cortex 

(Heimer et al., 1995; Parent and Hazrati, 1995; Deschenes et al., 1996; Yasukawa et 

al., 2004). Indeed, a subpopulation of GPe neurons projects to all regions of the basal 

ganglia including the Str and influences the activity of GABAergic and nitric oxide 

synthesizing (NOS) interneurons (Bevan et al., 1998). Those pallidal neurons 

projecting to the Str have the potential to regulate basal ganglia processing of cortical 

information. The main sources of afferent projections to the GPe are the striatum 
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MSNs (GABAergic) and the STN glutamatergic fibres (Parent and Hazrati, 1995b). 

Like the GPi, the GPe is enriched in GABA and glutamate receptors (Wisden et al., 

1992; Albin et al., 1992). Some D1 and D2 dopamine receptors are also present in 

the GPe (Yung et al., 1995). The GPe seems to contain three main types of neurons: 

Arkypallidal, parvalbumin (PV) and Lhx6. Arkypallidal neurons are a subset of GPe 

neurons that make exclusively strong projections back to the Str innervating MSNs 

and interneurons (Mallet et al., 2012). Lhx6 pallidal neurons selectively innervate 

fast spiking interneurons in the Str (Kita and Kita, 2001) and PV neurons show very 

weak projections to GABAergic interneurons of the Str (Mastro et al., 2014). 

Arkypallidal and Lhx6-GPe neurons give rise to a topographical organisation. Lhx6-

GPe neurons seem to project mostly to the SNr and Str, Arkypallidal neuron project 

only to the Str, while PV neurons send strong projections to the STN and pf thalamic 

nucleus (Mastro et al., 2014). Lhx6 neurons are more concentrated in the medial 

region of the GPe which have been described as associative; and PV neurons are 

more densely distributed in the lateral region of the GPe, which is described as 

sensorimotor (Mogenson et al., 1983; Haber et al., 1995; Kita et al., 2007). In vivo, a 

high proportion of GPe neurons show a high frequency tonic firing while 

Arkypallidal neurons show phasic activity and lower firing rates (Schmidt et al., 

2014). The GPe is the principal source of GABAergic inhibition of the STN (Smith 

et al., 1988) through a very dense synaptic innervation (Baufreton et al., 2009). In 

animal models of Parkinson’s, the GPe has been described as abnormally hypoactive 

while the STN shows hyperactivity (Galvan and Wichmann, 2008). Hyperactivity of 

the indirect pathway observed in PD models has been supposed to explain the 

hypofunction of the GPe-STN pathway (Gerfen and Surmeier, 2011; Fan et al., 2012). 
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Subthalamic nucleus 

Anatomy 

The STN is a small structure of the BG, showing dysfunction in PD (Wichmann 

and DeLong, 1996; Bergman et al., 1998; Hollermann and Grace, 1992; Magill et al., 

2001). The STN presents excitatory outputs projecting to most of the basal ganglia 

(Nauta and Cole, 1978). Indeed, projections to the SN, the GPe, motor cortex or the 

Str have been described (Kita and Kitai, 1987; Smith et al., 1990), but the main 

afference is clearly the GPi/SNr.  

Inputs/outputs 

The principal inhibitory input to the STN arises from the GPe, and acts with 

GABAa receptors. However, STN neurons also receive inputs from the VP, the 

ventral striatum and cortical projections (hyperdirect pathway). The STN also receive 

excitatory projections from the thalamus (Kita et al., 1983; Canteras et al., 1990; 

Fujimoto and Kita, 1993). In addition to glutamatergic (cortex) and GABAergic 

(GPe) inputs, the STN receives dopaminergic (SN), serotoninergic (dorsal raphe) and 

cholinergic inputs (PPN, LDT), but very little is known about the role of 5-HT or 

ACh in STN function (Wang and Morales, 2009; Nambu et al., 2002).  

Neuronal populations 

The principal types of neurons in the STN are glutamatergic and present as long 

spiny dendrites (Afsharpour, 1985; Rafols and Fox, 1976). There is also a small 

number of GABAergic interneurons (Levesque and Parent, 2005). Both GABA and 

glutamate receptors are highly expressed in the STN. Few D1, D2 and D3 receptors 

are also observed in the STN (Flores et al., 1999). 

Electrophysiology 

STN neurons show a rhythmic neuronal activity (Beurrier et al., 2000; Bevan and 
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Wilson, 1999). Slowly inactivating voltage-gated Na+ channels are involved in the 

silent phase of the oscillation; while calcium channels control the period and the 

precision of the oscillation (Bevan and Wilson, 1999). During cortical slow wave 

activity (SWA), self-generated movement or passive movement STN and GPe fire 

differently in a complex manner (Nini et al., 1995; Wichmann et al., 1994).  

Functions 

STN seems to be involved in the inhibition of motor responses (Frank et al., 

2007). The hyperdirect pathway enables STN to update performance during 

behaviour tasks (Frank et al., 2007; Nambu et al., 2002). STN neurons modulate 

response inhibition in conflict tasks (Schroeder et al., 2002; Aron et al., 2007) by 

shunting cortico-striatal-STN information to slow down or cancel an action (stop-

start behaviour). However, the STN is involved only in tasks with high cognitive 

value, not in simpler cognitive tasks (Rektor et al., 2009). Unilateral lesion of the 

STN was shown to induce postural asymmetry, gait and axial disorders (Andren et al., 

1995; Su et al., 2002; Lozano and Snyder, 2008) and increase premature responses in 

5 choice serial response time tasks (5-CSRTT) (Baunez and Robbins, 1999b) or go 

no-go performance (Ballanger et al., 2009). Various non-motor functions 

(motivational, learning) have been associated with STN activity (Mallet el al., 2007; 

Voon et al., 2009; Brittain et al., 2012; see review: Baunez and Lardeux, 2011). 

 In PD, abnormal synchronous activities between STN and GPe (and other parts 

of the basal ganglia) have been observed (Filion, 1979; Levy et al., 2001; Raz et al., 

2000). Due to the central role of the STN in basal ganglia function and because STN 

lesions were found to be very effective in parkinsonian primates (Bregman et al., 

1990), stimulation of the STN in PD patients was used as an experimental therapy. 

Indeed, deep brain stimulation (DBS) of the STN reduces symptoms on Parkinson’s 



27 
 

patients (Okun and Foote, 2005; Okun and Vitek, 2004).  

Striatum 

The DS and the NA share a very similar anatomical structure and similar input 

patterns. I will describe the NA and further focus on the dorsal part of the Str. While 

it has been accepted that the olfactory tubercle (tu) is a part of the ventral Str, only a 

few experiments describe the role and an anatomical description of this nucleus 

(Next, striatum will refer to ventral and dorsal striatum, dorsal striatum to lateral and 

medial part, ventral striatum to accumbens and olfactory tubercle). 

Anatomy 

 In primates, the Str is easily divisible into the caudate nucleus and putamen, 

both sectors are separated by a white matter tract called the internal capsule. 

However, in rodent research, such clear anatomical divisions have not been observed. 

Only a combination of antibodies (calretinin, calbindin and ChaT) can perfectly 

separate the dorsal and the ventral Str, the NA core and shell (Cragg et al., 2002). An 

interesting debate appeared when using the term NA when describing the ventral part 

of the Str:  

Is the nucleus accumbens equivalent to the ventral part of the Str? 

Anatomical descriptions of the NA appeared very early (Pennartz et al., 1994), 

but it has been accepted that the first detailed anatomical, physiological and 

behavioural description was made later (Zahm, 1999). The NA shell was described as 

a complex region with higher neuroanatomical diversity than the core, and also 

receiving greater inputs from the thalamus and the DAergic midbrain (Voorn et al., 

2004; Bossert et al., 2007). At a molecular level, core and shell show differences in 

the distribution of a number of neuroactive substances and receptors, including 



28 
 

serotonin (Deutch and Cameron, 1992), DA (Patel et al., 1995) and calretinin (Prensa 

et al., 2003), with these substances preferentially located in the shell. There is also 

evidence to suggest that the core is the main dopaminergic target of the NA as it 

receives densest inputs from the VTA and the SNc (Mogenson et al., 1980; Phillipson 

and Griffiths, 1985). 

Inputs/outputs 

The major neural input to the striatum is excitatory. Glutamatergic projections 

from all cortical areas, from the thalamus, hippocampus and from the amygdala have 

been observed (Kelley, 1982). Other inputs arise from the SN/VTA, dorsal raphe 

nucleus, locus coeruleus or brainstem (Flaherty and Graybiel, 1994; Pan et al., 2010; 

Beier et al., 2015), hypothalamus and many more. MSNs constitute the only output 

of the DS and target the GPe, the GPi and the SNr. 

Neuronal populations 

The Str and the Na are both structures with a heterogeneous neural 

composition, very complex interconnections and a wide variety of receptors. In adult 

mice, the Str contains approximately 700,000 neurons in each hemisphere, while in 

adult rats the number is about 1,500,000 neurons (Fentress et al., 1981). The primary 

population of striatal neurons is the GABAergic MSNs. These projection neurons, 

also known as spiny projection neurons, are the only output of the Str and represent 

up to 95% of the total population. In rats, approximately 6% of the three million 

MSNs in the Str express both D1 and D2 receptors, this giving them the potential to 

modulate the basal ganglia network bi-directionally (Perreault et al., 2012). In adult 

mice, no differences were observed in the ratio of D1, D2 and D1/D2 MSNs 

(Fentress et al., 1981). 

The second biggest population of striatal neurons is the GABAergic 
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interneurons, which consist of several subpopulations based on expression or co-

expression of molecular markers (see review: Tepper et al., 2010). The third striatal 

cell population is the large aspiny CINs often referred to in humans/monkies as 

tonically active neurons (TAN). Originally described as the only cholinergic source 

of ACh in the Str (Woolf and Butcher, 1981) (Woolf and Butcher used ACh esterase 

staining), the CINs constitute up to 2% of the striatal neurons (Bolam et al, 1984) and 

the Str has the highest level of ChAT in the brain (MacIntosh, 1941; Hebb and Silver, 

1961; Woolf et al., 1984). 

Functions 

The Str is a subcortical brain structure crucial for motivation and movement 

(Da Cunha et al., 2012). Str structure and composition appear to be highly conserved 

across the evolution of several species (Stephenson-Jones et al., 2011), indicating a 

fundamental functional role. Str dysfunctions have been described in a wide variety 

of human neurological and psychological disorders, such as addiction (Koob, 1992), 

obsessive-compulsive disorder (Chudasama and Robbins, 2006), eating disorders 

(Norgren et al., 2006), dyskinesia (Barroso-Chinea and Bezard, 2010) and PD (Ellens 

and Leventhal, 2013). The DS is implicated in action selection (Balleine, 2007), in 

motor behaviours and decision-making while ventral Str mediates motivational 

processes (Graybiel et al., 1994; Yin et al., 2006). Behavioural experiments using 

similar lesion techniques suggest a role of the dorsomedial Str (DMS) in opposite 

function, such as decreasing behaviour updating (Okada et al., 2011; Ragozzino et al., 

2002a; Aoki et al., 2015). These behavioural effects depend on testing different 

protocols or animal strains (Aoki et al., 2015). Nonetheless, the complexity of the Str 

and its inputs has also been used to explain such across studies. 
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Medium spiny neurons 

The Str contains a large number of small to medium sized neurons, less than 

20 µm in diameter (Mehler, 1981; Ramon y Cajal, 1911; Vogt and Vogt, 1920), 

which constitute the only output of the Str (Bolam et al., 1981); they are identified as 

MSNs. MSNs bear a large number of spines on their dendrites. They receive synaptic 

input from an important number of structures, such as cortex, thalamus, hippocampus 

and DAergic neurons of the midbrain (Wall et al., 2013; Chuhma et al., 2011). 

Cortical inputs to the Str activate both D1 and D2 MSNs, their activation results in 

different behaviours (DeLong and Wichmann, 2007; Huerta-Ocampo et al., 2013).  

It has been shown that D1 MSNs also express the muscarinic receptor 

subtypes 4 (M4) and 1 (M1), and the neuropeptides dynorphin and substance P. In 

contrast, D2 MSNs were expressing the adenosine receptor 2a, M1 and the orphan G-

protein coupled receptor six (Gpr6) (Gerfen, 1992; Heiman et al., 2008; Bernard et 

al., 1992; Lobbo et al., 2007).  

The optogenetic/pharmacologic activation of the direct pathway results in an 

inhibition of the GPi and SNr, and therefore results in a release of the inhibition of 

the thalamocortical pathway, facilitating motor functions. In contrast, activation of 

the indirect pathway inhibits the GPe, which releases the inhibition on GPi and SNr; 

and therefore increases the inhibition of the thalamocortical pathway (Ferguson et al., 

2014; Kravitz et al., 2012; Lobo et al., 2010). Finally, direct pathway activation will 

facilitate movement while the indirect pathway activation leads to a decrease in the 

locomotion (Delong, 1990; Penny et al., 1986).  

Interestingly, basal ganglia models propose that in addition to controlling 

movement, striatal projection neurons also influence motivational and social 
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behaviour. However, the position of the MSNs (dorsomedial, dorsolateral or ventral 

Str) and whether they are part of the direct or indirect pathway appears to be 

important for different behaviours. Activation of the direct pathway in the DLS 

increases locomotion, in the DMS MSNs regulate the response latency and goal-

directed behaviour (Fukabori et al., 2012) and in the accumbens MSNs modulate 

reward-related learning (Lobo et al., 2010; Kravitz et al., 2012). Activation of the 

indirect pathway in the DLS modulates the response accuracy in audio discrimination 

tasks (Nishizawa et al., 2012). In the DLS, MSNs decrease motor behaviour (Kravitz 

et al., 2010; Freeze et al., 2013) and in the accumbens MSNs increase aversive 

association (Danjo et al., 2014; Hikida et al., 2010). Finally, activation of 

dorsomedial MSNs affects action selection with no differences observed between D1 

and D2 MSNs (Tai et al., 2012).  

Fast spiking interneurons (FSI) 

 In the early 1990s, reports described three distinct subtypes of GABAergic 

interneurons in the Str: 1) fast spiking interneurons (FSI) expressing the calcium-

binding protein parvalbumin (PV), 2) low threshold spiking interneurons expressing 

the neuropeptide Y (NPY), the neuropeptide somatostatin (SOM) and NOS and 3) 

low threshold calcium spike interneurons expressing the calcium channel marker 

calretinin (Kawaguchi, 1993; Kubota et al., 1993; Vincent and Johansson, 1983; 

Bennett and Bolam, 1993). New subpopulations of GABAergic interneurons have 

been described recently: Tyrosine hydroxylase (TH) FSIs (Xenias et al., 2015; 

Ibáñez-sandoval et al., 2010), PV+/secretagogin+, PV+/secretagogin-, PV-

/secretagogin+ or 5HT-3a expressing interneurons (Faust et al., 2015; Cains et al., 

2012). However, these groups comprise a small number of neurons (around 300 TH+ 

FSI interneurons in rat) and have a poorly understood or unknown function (Tepper 
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et al. 2010). Unbiased stereological counting studies in mice have shown that 0.7 % 

of Str neurons are PV+, 0.5 % are CR+ and 0.6 % are NPY/NOS/SOM+ (Rymar et al., 

2004). Immunolabelling for PV revealed a sparse population of interneurons (Gerfen 

et al., 1990) that give rise to five to eight aspiny dendrites (Cowan et al., 1990; Kita, 

1993) with a compact and roughly spherical field that extends 200 to 300 µm around 

the soma (Kawaguchi, 1993). During in vitro whole cell recording or intracellular 

recording, PV interneurons show a distinctive electrophysiological profile (Taverna 

et al., 2007; Bracci et al., 2002), are strongly hyperpolarised and do not display 

spontaneous activity. In vivo, PV interneurons show a very fast phasic firing rate with 

short spike duration (Sharott et al., 2012; Bean, 2007). An additional characteristic of 

PV+ interneurons is their relative synchronicity due to the presence of GAP junctions 

(Koós and Tepper, 1999). PV interneurons receive thalamic and cortical inputs (Kita, 

1993; Bennet and Bolam, 1994; Ramanathan et al., 2002). Strong excitatory 

cholinergic inputs have been observed (Chang and Kita, 1992) mostly through 

nicotinic receptors (Koós and Tepper, 2002). However, no direct effect of CINs 

activation on PV+ interneurons has yet been observed. FSI can exert strong control 

over striatal output neurons; indeed a single FSI makes synapses onto hundreds of 

surrounding MSNs (Kita et al., 1990). 

The second population of neurons described are the low threshold spiking (PLTS) 

interneurons expressing NPY/NOS/SOM markers (English et al., 2011; Hope et al., 

1991). PLTS-interneurons have a medium sized soma with three to five aspiny 

dendrites, which extend over 600 µm diameter (Aoki and Pickel, 1988). In vitro, 

whole cell recordings reveal a low threshold Ca2+ spike and long-lasting plateau 

potentials in responses to excitatory synaptic inputs (Kawaguchi, 1993). While no in 

vivo recording of NPY+ PLTS-interneurons have been published, these interneurons 
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contribute to the modulation of MSNs in vitro (Gittis et al., 2010).  

The last main groups of GABAergic interneurons are the CR-interneurons, 

representing about 0.5 % of the neurons in the Str (Rymar et al., 2004). Information 

on this group of interneurons is limited; they were described as medium sized aspiny 

neurons, with a diameter between 12-20 µm, the dendrites of which branched into 

thin processes (Bennet and Bolam, 1993). However, studies have shown the 

subdivision of these CR-interneurons into three to four morphogically distinct types 

(Schlosser et al., 1999; Rymar et al., 2004). Other striatal interneurons have been 

observed and recorded recently, such as TH+ interneurons (Dubach et al., 1987; 

Busceti et al., 2008), cholecystokinin (CCK) or vasoactive intestinal polypeptide 

(VIP) expressing (Takagi et al., 1984b; Adams and Fisher, 1990). However, these 

interneurons represent a very small amount of neurons and little information is 

available about them. 

Cholinergic interneurons (CINs) 

It has been proposed that CINs provide the major cholinergic innervation of the 

Str (Bolam, 1984). CINs constitute a small number of neurons within the Str; total 

numbers of CINs in the brain was estimated to lie between 30.000 and 50.000 

neurons (1 to 3% of striatal neurons) and they innervate the entire Str (Contant et al., 

1996; Woolf and Butcher, 1981, Oorschot, 1996; Oorschot, 1997). CINs have large 

soma (up to 40 µm) and are readily distinguishable from other striatal neurons. CINs 

receive an important number of inputs (Straub et al., 2014; Ravel et al., 1999). 

Glutamatergic inputs from thalamic and sensorimotor cortex have been observed 

(Lapper and Bolam, 1992; Calabresi et al., 1999; Cepeda et al., 2001; Bell et al., 

2002) or from cholinergic interneurons that co-release glutamate (Straub et al., 2014; 
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Martella et al., 2009). CINs receive monoaminergic inputs from DAergic midbrain 

neurons (Aosaki et al., 1998; Ding et al., 2011b), TH-interneurons (Tandé et al., 2006) 

and the locus coeruleus (Deng et al., 2007a; Chuhma et al., 2014). However, the 

main inhibitory inputs to the CINs were provided by the MSNs, the GABAergic 

interneurons and the GABAergic projecting neurons of the midbrain (Gonzales et al., 

2013; Brown et al., 2012; DeBoer and Westerink, 1994). CINs present synaptic 

contacts with MSNs and other cholinergic interneurons (English et al., 2012). 

Presynaptic contacts have been observed on DAergic (Nelson et al., 2014) and 

glutamatergic (Oldenburg and Ding, 2012) synapse in the Str. 

CINs express different receptors types that mediate their activity by wide variety 

of inputs. D1 and D5 receptors have been observed to increase CINs activity, while 

D2 receptors slow down their firing (Chuhma et al., 2014; Kreitzer, 2009). The ratio 

of these receptors determines their main response and its duration. Up to 85% of the 

DAergic receptors expressed on the surface of CINs are type D5, while 90% of the 

glutamate receptors are kainate (KA) receptors and lead to excitation of CINs 

(Vorobjev et al., 2000; Gras et al., 2002; Higley et al., 2011). It has been suggested 

that CINs received a major GABAergic input, mediated only by GABAA receptors 

(Persohn et al., 1992) and arising mostly from MSNs (Martone et al., 1992; Chuhma 

et al., 2011; Gonzales et al., 2013). CINs are the only striatal cells expressing the 

GABAA α3 subunit (Rodriguez-Pallares et al., 2000). The GABAergic local 

inhibition can be reduced by using the GABA receptor antagonist, biccuculline (De 

Rover et al., 2002; Sullivan et al., 2008; Sato et al., 2014), and no evidence for 

GABAergic effect modulated by GABAB receptors has been demonstrated on CINs 

(DeBoer and Westerink, 1994; Oswald et al., 2015). A weak inhibitory effect 

mediated by PV interneurons has been observed (Szydlowski et al., 2013). Finally, 
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GABAergic neurons from the VTA also project to CINs (Brown et al., 2012). In vitro, 

activation of GABA or DA projections from the midbrain leads to a pause-rebound 

response in CINs (Brown et al., 2012; Straub et al., 2014). This effect might be 

mediated by DAergic neurons co-releasing GABA (Tritsh et al., 2012) but had also 

been proposed to be an artefact of certain animal models (Lammel et al., 2015). In 

addition, CINs express the muscarinic autoreceptors M2 and M4 which affect ACh 

release (Calabresi et al., 1999; Ding et al., 2006). A very important part of the CINs 

population is immunopositive for glutamatergic receptors; half of the CINs express 

the ionotropic receptors GluR1, GluR2 or GluR4 (Bernard et al., 1997; Tallaksen-

Greene et al., 1998; Richardson et al., 2000; Pisani et al., 2001; Berg et al., 2007; 

Deng et al., 2007), while almost all of them express the kainate receptors GluR5, 

GluR6 or GluR7 (Chen et al., 1997). While metabotropic glutamate receptors 

decrease cell excitability by either a cation current or an HCN channel (Berg et al., 

2007; Diraddo et al., 2014; Bell et al., 2002; Martella et al., 2009), ionotropic 

receptors increase the excitability of CINs (Calabresi et al., 1999; Cepeda et al., 

2001). Most of the glutamatergic inputs to CINs arises in the cortex and the pf 

thalamic nucleus (or centro-median thalamic nucleus for the CINs located in the NA) 

(Gonzales et al., 2013; Lapper and Bolam, 1992; Thomas et al., 2000; Ding et al., 

2010; Doig et al., 2014); a weak source of glutamate arises in the SNc (Tritsch et al., 

2012) or the VTA (Stuber et al., 2010). Stimulation of thalamic projections (Doig et 

al., 2014) provided strong activation of CINs followed by a pause (Ding et al., 2010); 

this effect seems to be mediated by a modulation of DA release. Stimulation of the 

cortex (Doig et al., 2014) provides a moderate activation of the CINs firing (Ding et 

al., 2010), but stimulation of the thalamus enhances the corticostriatal release of 

glutamate (Ding et al., 2010). All pauses observed during CINs inputs stimulation 
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were shown to facilitate the cortical drive on MSNs to suppress an action (Ding et al., 

2010). Early observations reported that ACh levels rise as DA release decreases and 

CINs firing decreases depending on bursting activity of DAergic neurons (Zhao-Shea 

et al., 2010; Joshua et al., 2009; Morris et al., 2004), suggesting a strong relation 

between DA and ACh in the Str. DA release in the Str seems to be mostly non-

synaptic (Rice and Cragg, 2008; Fuxe et al., 2012; Taber and Hurley, 2014) and some 

evidence suggests that DAergic projections provide synaptic contacts to CINs (Pisani 

et al., 2000; Freund et al., 1984). 

In vitro, during patch clamp recording CINs display a tonic firing at a rate of 3 to 

10 Hz (Wilson et al., 1990; Witten et al., 2011), a medium-high input resistance (200 

MΩ) (Calabresi et al., 1997), a hyperpolarised-activated cation current (Ih) (Deng et 

al., 2007) and a long action potential duration (Threlfell et al., 2012). In contrast to 

most striatal neurons, in vitro CINs show a spontaneous spiking activity (Bennet and 

Wilson, 1999) also referred to as “pacemaker firing”. The basal activity of CINs 

appears to be driven by interplay of voltage-dependent sodium channels, cyclic 

adenosine monophosphate dependent cation channels (HCN) and low conductance 

calcium/potassium channels (Maurice et al., 2004; Wilson, 2005). In vivo, CINs have 

often been described as tonically active, which is why CINs are often thought to be 

analogous to TAN recorded in monkeys (Inokawa et al., 2010). Pathological changes 

in striatal CINs physiology has been linked to motor dysfunction such as dyskinesia 

(Hauser and Olanow, 1993; Linazasoro, 1994).  

SNc/VTA 

The development of monoaminergic staining using histochemical techniques 

(Falck et al., 1962) offered a precise description of monoaminergic structures within 
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the brain of humans, rodents and other species (Dalhstrom and Fuxe 1964). The first 

nomenclature for the distribution of monoamine neurons identified more than sixteen 

groups referred to as A1 to A16. Of these, three were located in the ventral midbrain 

and described as DAergic. The first one, A9, is located in the SN. The second, A8, is 

more medial and located in the VTA and the third group, lies more caudal and is 

located in the retrorubral field (RRF). While this nomenclature is still used as a 

reference, even more detailed subdivisions of these nuclei have been identified 

(Paxinos and Franklin, 2007; Ikemoto, 2007).  

The catecholamines include DA, adrenaline and noradrenaline. The Α-amino acid 

phenylalanine is converted to tyrosine by a reaction catalysed by the phenylalanine 

hydroxylase enzyme. Then a hydroxide anion is added and a decarboxylation 

converts tyrosine to DA (tyrosine to DOPA then to dopamine), the reaction is mostly 

catalysed by the enzymes tyrosine hydroxylase (TH) and aromatic L-amino acid 

decarboxylase. At this stage, DA can be transported along the axons or hydroxylated 

by dopamine-β-hydroxylase to noradrenaline. Noradrenaline may then be directed 

along the axon for direct use or converted into adrenaline by the enzyme 

phenylethanolamine N-methyltransferase (Daubner et al., 2011).  

In this section I will briefly address the anatomy of the substantia nigra and 

mostly of the ventral tegmental area. I will also describe the function of the 

mesostriatal system and the modulatory role of ACh. 

Anatomy of the substantia nigra 

In the rat, immunostaining for TH revealed up to 40,000 DAergic neurons in 

the ventral midbrain. With 20-25,000 only in the SN (including the substantia nigra 

pars compacta (SNc), the substantia nigra pars lateralis (SNpl) and the substantia 
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nigra pars reticulata (SNr)). The SNc contains more than half of the SN DA neurons. 

The rest of these DA neurons located in the SN lie within the SNpl and few are 

located in the SNr. The other neurons of the SN were defined as being mostly 

GABAergic and are located in the SNr, some were observed in the SNpl and very 

few in the SNc (Nair-Roberts et al., 2008). 

Anatomy of the ventral tegmental area 

The VTA is a structure with no clearly defined borders, formed by 

heterogeneous nuclei and including several neuron types, functions and outputs. The 

VTA was first described in the opossum by Tsai (Tsai, 1925) which gave it 

temporarily the name of ventral tegmental area of Tsai (Nauta et al., 1958). The VTA 

was then described in detail using TH immunostaining (Phillipson, 1979). The 

number of sub-nuclei within the VTA remains a matter of debate, and has variously 

been proposed to consist of 2 to 5 sub-nuclei with various borders and nomenclatures 

including the parabrachial pigmented area (PBP), paranigral nucleus (PN) (Swanson, 

1982), the parafasciculus retroflexus area (PFR), the rostromedial tegmental nucleus 

(RMTg) (Ikemoto, 2007), the interfascicular nucleus (IF), rostral linear nucleus (Rli) 

and central linear nucleus (Cli) (Phillipson, 1979b). Depending on the species, the 

VTA contains between 10.000 to 20.000 DAergic neurons per hemisphere (Swanson, 

1982; Margolis et al., 2006). The VTA was described as being the main DAergic 

nucleus in the CNS (Nair-Roberts et al., 2008). Three main types of neurons, 

DAergic, GABAergic and glutamatergic, have been described on the basis of 

immunohistochemistry and in situ hybridization. Recent in vitro studies have shown 

the release of GABA in the NA/Str by TH+ neurons (Tritsch et al., 2012) and by 

GABAergic projecting neurons (Brown et al., 2012; Fields et al., 2007). However, 

the absence of immunostaining for glutamate decarboxylase (GAD), an enzyme 
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needed for GABA synthesis, in TH+ neurons suggests that GABA release can be due 

to reuptake of local GABA (Tritsch et al., 2012). In addition, a subset of 

catecholamine and non-catecholamine neurons within the VTA express the vesicular 

transporter type 2 (VGLUT2) (Méndez et al., 2008; Yamagushi et al., 2011) and 

constitute a group of VTA neurons projecting to both the PFC and the NA (Gorelova 

et al., 2012). 

Inputs/Outputs 

Early studies have described the VTA as a nucleus receiving dense 

GABAergic input. Using retrograde tracers injected into the VTA, Phillipson 

(Phillipson, 1979) described in detail VTA inputs arising from prefrontal cortex, NA, 

bed nucleus of the stria terminalis, amygdala, diagonal band of Broca, substantia 

innominata, preoptic area, hypothalamus, lateral habenula, pf thalamic nucleus, 

superior colliculus, dorsal raphe nucleus, locus coeruleus and cerebellum but without 

a description of the molecular identity of those inputs. One year earlier, Nauta (Nauta 

et al., 1978) described the same inputs to the VTA (the paper included the medial 

basal forebrain as an additional input) and using in situ hybridization characterised 

their GABAergic nature. With improving anatomical methods, the caudal part of the 

VTA called RMTg has been described as an individual nucleus (Ikemoto, 2007). It 

sends GABAergic projections to the VTA (Jhou et al., 2009; Kaufling et al., 2010a). 

There is also strong evidence for GABAergic interneurons within the VTA which can 

modulate the activity of local DA neurons (Tolu et al., 2012). However, most of the 

tracer studies used injection of retrorograde tracers (fluorogold, CTb, retrobeads, etc) 

which can be taken up “en passage” fibres (Omelchenko and Sesack, 2009; Cruz et 

al., 2008; Vrang et al., 1995; Chen and Aston-Jones, 1995). Several studies showed 

that excitatory inputs to the VTA arises from glutamatergic neurons in the PFC 
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(Harden et al., 1998), the brainstem (PPN: Floresco et al., 2003; LDT: Omelchenko 

and Sesack, 2005; Lammel et al., 2012), the dorsal raphe (Weissbourd et al., 2014), 

the BNST (Georges and Aston 2002; Herzog et al., 2004), the lateral habenula 

(Goncalves et al., 2012) and the lateral hypothalamus (Poller et al., 2013). The third 

major type of input to the VTA is cholinergic. Tracers injected into the VTA showed 

retrogradely labelled neurons within the PPN and the LDT which were also positive 

for ChAT (Oakman et al. 1995). Pharmacological studies showed an excitatory effect 

of ACh on DAergic neurons of the VTA (Mameli-Engvall et al., 2006; Tolu et al., 

2012). Electron microscopy combined with staining for the vesicular acetylcholine 

transferase (VAChT) confirmed the presence of cholinergic synapses within the VTA 

(Bolam et al., 1991). 

Very few differences between inputs to midbrain DAergic or GABAergic 

neurons have been observed (Watabe-Uchida et al., 2012; Beier et al., 2015). 

However, oxytocin and arginine vasopressin (AVP) neurons in the paraventricular 

hypothalamic nucleus mostly target GABAergic neurons of the VTA, while lateral 

hypothalamus orexin and neurotensin neurons target DA neurons (Beier et al., 2015).  

Electrophysiology and anatomy of the VTA/SNc neurons 

In vitro recording of DAergic neurons shows low frequency pacemaker firing 

(Sanghera et al., 1984; Grace and Onn, 1989). The action potential shows a large 

after-hyperpolarisation phase and an HCN current (Shi, 2009). In vivo, the 

characteristic of the action potential of DAergic neurons were first described by 

Grace and Bunney and consisted of a broad action potential waveform and two 

modes of discharge (Grace and Bunney, 1980; Grace and Bunney, 1984). Grace and 

Bunney showed the presence of high frequency bursting activity (>15Hz) (Grace and 
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Bunney, 1984), a long action potential waveform (>2.2 ms), a very regular firing rate 

(pacemaker) (1-5Hz) and inhibition by D2-autoreceptors. These characteristics have 

been identified in other species including primates (Scultz and Romo, 1988). 

Dorsolateral VTA DAergic neurons and SNc DAergic neurons display similar firing 

patterns; on the other hand ventromedial DA VTA neurons display a higher firing 

rate (<20Hz), a slightly smaller after-hyperpolarisation phase and also silent phases 

for several seconds (Margolis et al., 2008). In vitro, the characteristic spontaneous 

burst firing state seen in vivo is absent (Lacey et al., 1987; Grace and Onn, 1989). 

The major description of DA output of the midbrain is derived from tracer 

studies (Bjorklund and Dunnet, 2007) or single cell reconstructions (Matsuda et al., 

2009). Recent advances in molecular labelling tools allowed targeting inputs and 

outputs in a cell-specific manner (Wickersham et al., 2007b; Callaway, 2008; Ugolini, 

2011). Projections from DAergic neurons of the VTA were found in NA (Ikemoto, 

2007), DMS (Ikemoto, 2007), lateral septum (Louilot et al., 1989), motivational and 

motor cortex (Hosp et al., 2011), amygdala (Loughlin et al., 1983), dorsal 

hippocampus (Gasbarri et al., 1997), entorhinal area (Caruana and Chapman, 2008), 

lateral habenula (Stamatakis et al., 2013), locus coeruleus (Deutch et al., 1986) and 

parabrachial nucleus (Swanson, 1982; Margolis et al., 2006a). DAergic neurons 

projecting to the amygdala and the prefrontal cortex (PFC) have the shortest AP 

duration, the highest firing rates and an absence of response to D2 agonist (Lammel 

et al., 2008; Margolis et al., 2008). 

The second population of neurons identified in the VTA is GABAergic and 

was first described by in situ hybridization for GAD. Estimations suggest that 

GABAergic neurons represent up to 30-35% of the total number of neurons in the 
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VTA (Nair-Roberts et al., 2008; Olson and Nestler, 2006; Gonzales-Hernandez et al., 

2001). These neurons also contribute to the mesocorticolimbic network (Carr and 

Sesack, 2000). In vitro, GABAergic neurons in the VTA were classically divided into 

two subgroups, based on their firing rate (Korotkova et al., 2003). One group 

displays a slow firing rate (0.7 Hz), while the other group fires at a relatively high 

frequency (>9 Hz). No apparent difference was found in the spike duration or the 

firing regularity (no bursts or pauses were observed) (Klink et al., 2001). In vivo, the 

firing rate of non-DA VTA neurons depends on the phase of sleep-wake cycle 

(Steffensen et al., 1998). Putative GABAergic neurons of the VTA and the SNc 

recorded in vivo in anaesthetized rodents showed several firing patterns (Ungless et 

al., 2004; Diaz et al., 2000) but no differences were observed between non-DAergic 

neurons projecting to amygdala, PFC or NA (Margolis et al., 2008). 

The majority of VTA cells show an irregular firing including a bursting phase, 

while a smaller number of neurons fires in a pacemaker-like fashion. Following 

partial lesion of DA neurons using 6-hydroxy dopamine (6-OHDA) an increase of 

the firing of DA-bursting neurons has been observed while the number of regular 

firing neurons was not affected (Koob et al., 1981). This result suggested a regulation 

of the bursting activity of DA neurons through local DA release (Llorens-Cortes et al., 

1979; Adell and Artigas, 2004). Recent anatomical papers described a subpopulation 

of GABAergic neurons co-expressing TH (Nair-Robert et al., 2008; Olson and 

Nestler, 2007; Gonzales-Hernandez et al., 2001). These neurons GAD+/TH+ 

represent 20 to 25% of all the GAD+ neurons. However, the cell labelling methods 

used in these studies are not suitable for an accurate analysis and no co-expression 

has been found using other techniques (Merril et al., 2015). 
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The third group of neurons in the VTA express the molecular marker 

VGLUT2 (Kawano et al., 2006; Nair-Roberts et al., 2008). About 15% of the VTA 

neurons described as VGLUT2+ were also TH+, while about 40% of the VGLUT2+ 

neurons were also able to synthetize GABA (Yamaguchi et al., 2013). The VTA-

glutamate neurons showed a small Ih, low sensitivity to DA and a fast firing rate 

(Hnasko et al., 2010). Glutamatergic neurons project to the VP, the amygdala, the 

lateral habenula, the NA and the PFC (Hnasko et al., 2010; Gorelova et al., 2012; 

Yamaguchi et al., 2011). 

Functions 

DAergic neurons of the VTA play a role in reward-related learning for natural 

outcomes (food, water) or addictive substances (coffee, alcohol or drugs of abuse) 

(Schultz et al., 1997; Liu et al., 2012). DA has been implicated in learning for both 

rewards and punishments (Brischoux et al., 2009; Joshua et al., 2008). In a classical 

set of studies, Schultz and colleagues (Schultz et al., 1997) showed that putative 

DAergic neurons in untrained monkeys increased their firing rate during reward 

delivery in a cue-reward association task (CS). Following training of the animals, 

DA neurons increased their basal activity following the CS rather than the reward. 

DA neurons suppress firing on reward omission and increase firing onsuprising 

reward presentation. This is termed a reward prediction error signal (Schultz et al., 

1997; Lerner et al., 2015; Schoenbaum et al., 2013). However, the response of 

putative DAergic neurons to a reward or a punishment is not always consistent 

(Brischoux et al., 2009; Eddine et al., 2015). During recording of TH+ neurons of the 

VTA, hind paw pinches (putative aversive stimulus) produced an increase in firing 

rate in 80% of recorded neurons, while 20% of the neurons showed a significant 

decrease of their activity (Brischoux et al., 2009). In vitro, pharmacological or 
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anatomical analysis of these neurons does not show any specific pattern related to the 

response to aversive or rewarding stimuli (Lammel et al., 2012). Interestingly, some 

putative DAergic neurons respond in the same direction to reward and punishment 

(Matsumoto and Hikosaka, 2009). Recent recordings in untrained animals suggests 

that the same neuron can respond differently to a wide range of punishment intensity 

(air puff, pinch, electric chock) or reward (sugar pellet, sucrose liquid, nutriment) 

(Joshua et al.,2008; Stauffer et al., 2015; Lak et al., 2014). As a consequence, DA 

release in the NA will be modulated based on previous experiences of reward and 

punishment (Wanat et al., 2010; Adamantidis et al., 2010). In this context, the 

DAergic neurons projecting to the NA, a primary component of the mesolimbic 

system have been conceptualized as teaching signal, encoding the memory of 

aversive and rewarding environmental stimuli (Pecina and Berridge, 2013). 

Mesostriatal pathway 

Functions of the BG-thalamo-cortico-BG loops can be divided into three 

systems, the sensorimotor, the associative and the limbic (Redgrave et al., 2011; 

Gerfen and Surmeier, 2011). One important pathway, present in the sensorimotor, 

associative and the limbic system, is the connection between midbrain and Str 

through the DAergic afferents, the mesostriatal pathway (Alexander et al., 1990). 

Most of the motor symptoms of PD have been associated with a dysfunction of the 

pathway connecting the SN to the DS (Carlsson, 1959), while symptoms of drug 

addiction are induced by at least the dysfunction of the connection between VTA and 

NA (see review: Koob and Le Moal, 2008). As far as we know, PD, like other 

neurodegenerative diseases, is specific to humans.  

The nigrostriatal pathway has generally been associated with movement 
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regulation, whose dysfunction leads to neurodisorders such as PD or dystonia, and 

the mesolimbic pathway has been associated with motivation and reward (Ikemoto 

and Panksepp, 1999; Wise, 2009). However, recent studies suggest that motor 

behaviour might also be controlled by the mesolimbic pathway while the nigrostriatal 

pathway could also be involved in motivation and reward (Ilango et al., 2014; Rossi 

et al., 2013) (Fig. 2). 

 

 

Figure 2: Illustration of the main neurons and major connections in the 

mesostriatal pathway. The main confirmed connection between identified cell type: 

glutamatergic (glu) inputs are represented in green, the main DAergic in blue, the 

main GABAergic (GABA) in red and the main cholinergic (ACh) in orange. In VTA, 

GABA release can be due to GABAergic interneurons or collaterals from 

GABAergic projecting neurons. Abreviations, GPe: globus pallidum external 

segment; GPi: globus pallidus internal segment; SNc: substantia nigra pars compacta; 

STN: subthalamic nucleus; SNr: substantia nigra pars reticulata; VTA: ventral 

tegmental area; BLA: basolateral amygdala; hippoc: hippocampus; VP: ventral 

pallidum; BNST: bed nucleus of the stria terminalis; lHb: lateral habenula; mPFC: 

medial prefrontal cortex; PPN: pedunculopontine nucleus; LDT: laterodorsal 

tegmental nucleus; NA: nucleus accumbens; Str: striatum; RMTg: retro medial 

tegmental nucleus. Adapted from Silberberg and Bolam, 2015 and Vella and 

Giovanni, 2013. 



46 
 

The function of DA neurons seems to be modulated at the level of the 

dendrites and soma (firing rate) and by DA release in Str terminals. Indeed, decrease 

of DA spiking activity or DA neuron number is associated with a decrease of DA 

release in the Str (Venton et al., 2006; Floresco et al., 2003; Parsons and Justice, 

1992). 

The nigrostriatal and the mesolimbic pathways are both highly regulated by 

ACh (Threlfell et al., 2012; Exley et al., 2013; Lester et al., 2010). DAergic neurons 

at the level of the VTA/SNc receive cholinergic inputs only from, the PPN and the 

LDT (Mena-Segovia et al., 2008; Beninato and Spencer, 1988; Bolam et al., 1991). 

At striatal terminals of DA neurons, cholinergic input arises from cholinergic 

interneurons and as recently described from the PPN/LDT (see Chapter 2; Pereira et 

al., 2015). 

Cholinergic receptors 

 ACh is present in both the central and peripheral nervous system. Cholinergic 

receptors (AChR) have been characterised in soma, neuromuscular junctions and 

postsynaptic membrane (see review: Popot and Changeux, 1984). Nicotinic AChRs 

(nAChR) are composed of 5 units that can be similar (homopentamer) or different 

(heteropentamer). They respond to binding of ACh by an extensive change of 

conformation (Kistler et al., 1982). NAChR showed higher affinity for nicotine in 

tobacco than muscarinic receptors (Schuller and Orloff, 1998; Gustav and Auerbach, 

1999). 12 nAChR subunit genes have been sequenced in the nervous system: α2-10 

and β2-4. In situ hybridization studies showed that α4 and β2 are the most 

widespread and abundant subunits in the CNS; α6 is mostly located in DAergic 

nuclei (Novere et al., 1996); β3 located in Str, cerebellum and substantia nigra 
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(Sargent, 1993). So far, α9 and α10 have been observed only in the cochlear nuclei. 

Homomeric receptors showed a faster desensitisation and higher calcium 

permeability than heteromeric α/β receptors. 

Muscarinic receptors (mAChR) are widely distributed in the human body, where 

5 subtypes have been described (M1 to M5). In the brain, M1 and M4 receptors are 

mostly found in the hippocampus, Str and cortical structures; M2 and M5 are found 

throughout the entire brain, while M3 staining is seen at low levels in the 

hippocampus, the Str and the thalamus (Volpicelli and Levey, 2004). While all 

nAChRs give rise to an excitatory post synaptic potential (EPSP), only M1, M3 and 

M5 lead to a decrease of the K+ conductance (Iahp, Im, Ileak) and an EPSP. 

Activation of M2 and M4 receptors leads to a decrease in the Ca2+ and increase in K+ 

conductance, which produce inhibitory effects (IPSP) (Allen and Burnstock, 1990; 

Rouse et al., 2000).  

Iontophoretic injections of ACh in the SNc/VTA leads to an activation of DA 

neurons which can be suppressed by dihydro-β-erythroidine (nAChR β receptor 

competitive antagonist), but not by the muscarinic antagonist atropine. These results 

suggest that ACh modulation is mediated by nAChRs rather than mAChRs 

(Lichtensteiger et al., 1982). Nevertheless, a muscarinic effect has been described in 

the VTA (Yeomans and Baptista, 1997). M1, M2, M3, M4 and M5 mAChRs have 

been found in the VTA, SNc and SNr (Vilaro et al., 1990; Weiner et al., 1990). M1 

and M4 are present at low levels in the VTA/SNc but knock out of these receptors 

suggests a role in the control of the activity of DA neurons in the midbrain, and a role 

in movement and motivation (Tzavara et al., 2004). M2 muscarinic receptors in the 

VTA show dendritic distribution mainly on non-DAergic neurons and presynaptically 
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on most of the cholinergic-like terminals found in the VTA (Garzon and Pickel, 

2006). The presynaptic distribution of M2 suggests a muscarinic modulation of 

cholinergic release (Garzon and Pickel, 2006). M3 receptors have been found on 

non-DAergic neurons in the SNc, possibly GABAergic interneurons, and seem to 

play a weak role in the activity of DA neurons (Miller and Blaha, 2005). A knock out 

of the major muscarinic receptor found in the SNc/VTA (M5) produced a decrease in 

drug-induced locomotion (Vilaro et al., 1990; Steidl and Yeomans, 2008; Steidl et al., 

2011). NAChRs have been described on DAergic neurons (α4, α6, α5, α7, β2, β3), on 

glutamatergic terminals (α7) and on non-DAergic neurons (α4, α7, β2) (Dani and 

Bertrand, 2007; Grady et al., 2007; McGehee and Role, 1995; Keath et al., 2007; 

Mansvelder and McGehee, 2002; see review: Faure et al., 2014). The β2 subunit 

mediates the main nicotinic modulation on DAergic activity (Mameli-Engvall et al., 

2006; Mansvelder et al., 2002) and was described as being mostly involved in the 

regulation of bursting (Maskos et al., 2005). On non-DAergic neurons, the β2 subunit 

shows a faster desensitisation than on DA neurons (Yin and French, 2000) suggesting 

that α subunits play a more prominent role in non-DAergic neurons (Dani et al., 

2000). In α7 knockout animals, a small difference in the spontaneous activity on both 

DA and non-DAergic neurons has been observed (Mameli-Engvall et al., 2006) and a 

strong glutamate-mediated response has been described (Placzek et al., 2009; McKay 

et al., 2007; see review: Quick and Wonnacott, 2011; Naudé et al., 2014). 

 In the Str, the expression of mAChRs and nAChRs has traditionally been 

studied by autoradiography and both have been found on several types of striatal 

neurons. CIN inputs from others CINs are mediated by M2 and M4 receptors, 

showing a strong inhibition (Ding et al., 2006; Smiley et al., 1999). Almost all CINs 

express the β2 subunit, while only half of the CINs present α7 and less than 10% 
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present α3 and α4 subunits, suggesting that nicotinic-mediated effects on CINs are β2 

dependant.  

A strong effect of ACh on DA release has been observed, an effect that can be 

abolished by administration of the β2 antagonist, DHβE (Threlfell et al., 2012). 

Direct activation of nAchRs on MSNs seems to have almost no significant effects 

(Luo et al., 2013; Liu et al., 2007). The direct modulation of MSNs by ACh is 

abolished by atropine administration, suggesting a muscarinic mechanism (Hsu et al., 

1996; Galarraga et al., 1999). Two mAChRs have been described in MSNs: M1 is 

present in all MSNs, while M4 is present in all direct pathway MSNs and less than 

half of indirect pathway MSNs (Bernard et al., 1992; Yan et al., 2001). M1 mAChRs 

mediate a decrease in the potassium channel Kv7 current and lead to inhibition of 

calcium entry through N/P/Q type channels (Perez-Rosello et al., 2005; Shen et al., 

2005). M4 mAChRs activation decreases MSNs excitability by decreasing calcium 

influx. It is believed that the balance between M1 and M4 density in direct pathway 

MSNs influences the overall striatum output.  

ACh reduces striatal GABA release (Marchi et al., 1990). M2 receptors have 

been observed at the surface of NPY-interneurons (Sugita et al., 1991) mAchRs on 

FSI mediate synaptic transmission between FSI and MSNs (Koós and Tepper, 2002). 

These NPY-interneurons in the Str have a high expression of the α7 nAChR and the 

M2 mAChR (Beggiato et al., 2013; Bernard and Bolam, 1998). In awake animals, 

activation of both α7 and M2 receptors leads to a decrease in GABA levels in the Str 

(Campos et al., 2010; Marchi et al., 1990). Str GABA is believed to come from the 

release of GABA by interneurons and by local MSNs axon collaterals (Sugita et al., 

1991). This decrease in GABA release in the striatum suggests that activation of α7 
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and M2 receptors leads to inhibition of GABAergic interneurons and MSNs. 

Activation of nAChRs on glutamatergic terminals modulates the release of 

glutamate and the excitatory drive onto MSNs. The presynaptic modulation of 

glutamate release has been shown to be mainly controlled by the α7 subunit (Gray et 

al., 1996; Campos et al., 2010; Carpenedo et al., 2001). Despite the presence of α4β2 

receptors on glutamatergic terminals in the Str, their activation has a weaker effect on 

the release of glutamate than α7 receptors activation (Xia et al., 2009). Glutamate 

release is also negatively modulated by M2 receptors and positively modulated by 

M3 receptors (Levey et al., 1991; Hersch et al., 1994).  

Dense cholinergic projections have been observed in STN, mostly arising from 

PPN and LDT (Bevan and Bolam, 1995), and ACh action is modulated by nicotinic 

receptors (Nashmi et al., 2007; Drenan et al., 2008; Xiao et al., 2009a). The group of 

STN neurons projecting to the SNr GABAergic inhibitory neurons showed a strong 

expression of α4β2 receptors (Wooltorton et al., 2003; Xiao et al., 2015). Neurons 

projecting to SNc DA neurons express α7 subunit (Xiao et al., 2009a; Xiao et al., 

2015; Nambu et al., 2002). 

The GPe is a basal ganglia structure, where a single GPe neuron can project to 

several targets (Kita and Kitai, 1994; Bevan et al., 1998; Kita et al., 2007; Aceves et 

al., 2011; Takakusaki, 2013). While PPN and LDT cholinergic neurons constitute 

major inputs to the GPe (Charara and Parent, 1994; Chan and Surmeier, 2005), it has 

been suggested that the basal forebrain provides a weaker cholinergic innervation of 

the GPe (Bengtsone and Osborne, 2000) and it has been hypothesized that some 

projecting neurons of the GPe are cholinergic (Rodrigo et al., 1998; Eid et al., 2015; 

Abdi et al., 2015). M1 muscarinic receptors activation modulates the IPSC from 
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MSNs and facilitates GABA release in the GPe (Hernandez-Martinez et al., 2015). 

The pf and CL thalamus are two main components of the intralaminar thalamus 

(Deschenes et al., 1996a) and constitute the main part of the thalamostriatal 

connection (Smith and Parents, 1986; François et al., 1991; Raju et al., 2006). Both 

nuclei receive a strong cholinergic innervation from the brainstem (PPN, LDT) and 

from the basal forebrain (medial septum, diagonal band of Broca, nucleus basalis of 

Meynert) (Capozzo et al., 2003; Kha et al., 2000; Kobayashi and Nakamura, 2003). 

Injection of atropine in the thalamus produces a significant impairment in the control 

of voluntary movement (Yan et al., 2008) suggesting a muscarinic mechanism. In 

fact, M1, M2, M3 and M5 muscarinic receptors have been described in the thalamus 

(Clarke et al., 1985). M1 and M3 muscarinic receptor activation leads to control of 

the medium-fast modulation of the thalamostriatal pathway. M5 muscarinic receptors 

modulate the slow response of the thalamostriatal and thalamocortical pathway while 

M2 inhibit the thalamocortical pathway (Zhu and Uhlrich, 1998; Valera and Sherman, 

2007). The M1 receptor is mostly found on GABAergic neurons while the M2 is 

found on glutamatergic neurons (Ye et al., 2010). The α3β2 is the only described 

nAChR in the intralaminar thalamic nucleus (Rubboli et al., 1994) and will 

participate in the fast activation of the thalamostriatal and thalamocortical neurons 

(Dossi et al., 1991; Capozzo et al., 2003). The modulation of the pathway will be 

managed first by nicotinic receptors, followed by M1/M3, and then activation is 

maintained by M5 or stopped by M2. 

In vivo, exposure to nicotine, along with other drugs of abuse such as cocaine and 

alcohol, results in long-term potentiation (LTP) of excitatory glutamatergic inputs to 

VTA DA neurons (Ungless et al., 2001; Saal et al., 2003). Nicotine (thought via a7 
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nAchRs (Mansvelder et al., 2007), a6 nAchRs (Berry et al., 2015) or B2 nAchRs 

(Picciotto et al. 1998)) helps to initiate synaptic plasticity in the VTA. 

Cholinergic Brainstem 

Many studies have described the relationship between basal ganglia and 

cholinergic neurons in both anatomical and physiological contexts. As previously 

explained, DA release is strongly linked to the firing activity of DA neurons and is 

modulated inter alia by cholinergic neurons. It has been known for a long time that 

basal ganglia and the cholinergic brainstem share anatomical connections (Bolam, 

1991; Mena-Segovia 2008; Lammel et al., 2012), functions and dysfunctions 

(Alderson et al., 2004; Wilson et al., 2009; Steidl et al., 2015). However, recent 

studies suggest a more complex interconnection between brainstem cholinergic 

neurons and DAergic neurons. The only described common cholinergic input to the 

entire basal ganglia nuclei arises from the pons. Cholinergic inputs from the PPN or 

the LDT to the STN, the DAergic midbrain, the Str and to the GP have been reported 

(Semba and Fibiger, 1992; Lavoie and Parent, 1994; Parent et al., 2014). 

The following section will describe the anatomical and physiological structures 

of the two cholinergic brainstem formations, the PPN and the LDT. Description of 

their involvement in behaviour and descriptions of its main inputs and outputs will be 

provided. 

The pedunculopontine nucleus (PPN) 

Anatomy  

The PPN is a long heterogeneous nucleus located in the upper brainstem. It is 

often described as closely interacting with the basal ganglia through direct or indirect 

connections (Pahapill and Lozano, 2000; Garcia-Rill, 1991; Mena-Segovia et al., 
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2004). In its first description, the PPN was described as a homogeneous structure (in 

human: Olszewski and Baxter, 1954; Olszewski and Baxter, 1982; in rodent: 

Jacobsohn, 1909; Mesulam, 1983a). Commonly, PPN borders are delimited by the 

distribution of its cholinergic neurons. The PPN is not a homogeneous nucleus; 

several types of neurochemical neurons with different phenotypes (sizes, input, 

output patterns or firing rates) have been described. The rodent PPN can best be seen 

in parasagittal sections the PPN can be delimited rostrally by the posterolateral SN, 

the pontine cuneiform and sub-cuneiform nuclei dorsally by the retrorubral field 

(RRF) borders and ventrally by the pontine reticular formation (Mesulam et al., 1983; 

Vincent et al., 1986).  

However, it is commonly accepted that the PPN has two subdivisions in the 

human brain, the pars compacta (PPNc) and the pars dissipata (PPNd) (Olszewski 

and Baxter, 1954; Manaye et al., 1999; Spann and Grofova, 1992) based on 

cholinergic neuron distribution. Rodent and monkey studies using molecular markers 

of different neurotransmitter types have given rise to a different nomenclature based 

mostly on the brain axis. Here, the PPN is divided into rostral and caudal parts 

(Noback, 1959; Spann and Grofova, 1992; Geula et al., 1993). The caudal 

subdivision (PPNc) is bordered by the dorsolateral border of the superior cerebellar 

peduncle, whereas the rostral part (PPNr) is surrounded by the trochlear nucleus 

(Lavoie and Parent, 1994a; Rye et al., 1996). An anatomical segregation based on a 

radial segmentation of the PPN from the centre of the SNr has been described, and is 

still used to describe PPNc and PPNr (Mena-Segovia et al., 2009). 

Inputs/outputs 

PPN neurons provide strong glutamatergic and cholinergic excitatory inputs to 

DAergic neurons in the midbrain (Mena-Segovia et al., 2008; Oakman et al., 1995; 
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Pan and Hyland, 2005) and to thalamic nuclei (Holmstrand and Sesack, 2011). 

Moreover, projections to the basal forebrain (Hallanger and Wainer, 1988), the 

hypothalamic or the prefrontal cortex formation have been observed (Crawley et al., 

1985; Satoh and Fibiger, 1986).  

The central position of the PPN within the basal ganglia and the limbic 

system suggests a key role in the fronto-striatal information processing. PPN neurons 

receive inputs from periaqueductal gray, dorsal raphe nucleus, superior colliculus, 

zona incerta, lateral habenula, prefrontal cortex, central nucleus of the amygdala, 

nucleus of the solitary tract, the midbrain, the basal forebrain, subthalamic nucleus or 

GPi (Beninato and Spencer 1988; Cornwall et al. 1990; Heimer et al. 1991; 

Steininger et al., 1992; Semba and Fibiger, 1992; Matsumura et al. 2000; Chiba et al. 

2001; Chivileva and Gorbachevskaya, 2008; Zahm et al. 2011; Beier et al., 2015). 

Projections from cerebellar nuclei were found in the PPN (Hazrati and Parent, 1992). 

Most of these inputs to PPN are GABAergic (Noda and Oka, 1986; Granata and 

Kitai, 1991). However, pallidal and midbrain GABAergic projections to PPN do not 

seem to target cholinergic neurons (Shink et al., 1996; Rye et al., 1995b; Granata and 

Kitai, 1991). Furthermore, glutamatergic inputs to the PPN were found to arise in the 

STN (Hammond et al., 1983; Jackson and Crossman, 1983; Kita and Kitai, 1994; 

Bevan et al., 1995) and the cortex (Monakow et al., 1979; Moonedley and Graybiel, 

1980; Edley and Graybiel, 1983; Matsumura et al., 2000). The presence of D1 

receptors on PPN neurons, and particularly cholinergic neurons, suggests a DAergic 

feedback from VTA and SNc (Winn et al., 1997; Reese et al., 1995). Activation of the 

SNr induces IPSPs in PPN neurons with a very short-latency (Noda and Oka, 1984). 

These multiple feedback connections place the PPN (also the LDT) at a central 

modulatory position of the basal ganglia (Winn, 1998).  
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The outputs of the PPN are divided into ascending (toward thalamus, 

forebrain and colliculus) and descending (toward gigantocellular nucleus and 

reticular nuclei) components. The ascending projections of the PPN are much denser 

than the descending projections. The descending pathway has been described as a 

reticular pathway, projecting to the medullary reticular nuclei (Rye et al., 1988; 

Grofova and Keane, 1991). Functionally, electrical stimulation of the PPN elicits 

controlled locomotion (Eiderlberg et al., 1981; Garcia-Rill, 1990) suggesting a strong 

connectivity of the PPN with reticular locomotor-associated formations. The direct 

output of the PPN to the spinal cord seems to be responsible for the initiation of 

locomotion (Grillner, 1985) and for the maintenance of movement (Di Prisco et al., 

1997). All of these connections between lower brainstem reticulospinal neurons and 

mesopontine centres appear to be important to adapt the motor pattern to external 

events, indeed a single brainstem neuron can project to several motor associated 

structures. The ascending pathways follow two routes. The first, the dorsal-ascending, 

targets the LDT, and then axons arborise in the parabigeminal nucleus (PBN), 

projections follow the colliculus and arborise in many thalamic nuclei. The second 

route, ventral-ascending, follows the scp, arborises in the VTA and SN, follows the 

lateral hypothalamus, arborises in the STN, ventral pallidum, DS and then cortex 

(Spann and Grofova, 1991; Lavoie and Parent, 1994b). The ascending output of the 

PPN, mostly the cholinergic projections to the thalamus, may also take part in the 

modulation of sensory information (Grunwerg et al., 1992; Reese et al., 1995, 

Hylden et al., 1985). Projections to the VTA show no preference for DAergic and 

non-DAergic neurons (Beier et al., 2015) (Fig 3). 

Neuronal populations 

Using in situ hybridization combined with classic immunohistochemistry, the 
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anatomy of the pontine nucleus revealed several types of neurons (Wang and Morales, 

2009). GABAergic neurons are one of the most important populations in the PPN, 

mostly concentrated in the PPNr. GABAergic neurons delimit the caudal part of the 

substantia nigra (Mena-Segovia et al., 2009). A negligible proportion of GABAergic 

neurons co-express the cholinergic neuron marker, ChAT (Wang and Morales 2009; 

Ford et al., 1995). The PPNr contains almost twice as many GABAergic neurons as 

cholinergic neurons (Wang and Morales, 2009; Takakusaki et al., 1996). Putative 

GABAergic neurons recorded in vivo with subsequent juxtacellular labelling were 

described as having a tonic and irregular firing (Ros et al., 2010). However, few 

studies have described the function and the electrophysiology of the GABAergic 

neurons in the PPN. Some tracer studies have shown that GABAergic neurons are 

not only interneurons, but also project to brain structure such as the midbrain (Mena-

Segovia et al., 2009; Martinez-Gonzalez et al., 2014). 

 The second most important population of neurons in the PPN is positive for 

VGLUTs mRNA and are thus glutamatergic. They are mostly located in the PPNc, 

with complementary distribution to that of the GABAergic neurons in the 

rostrocaudal axis (Wang and Morales, 2009; Mena-Segovia et al., 2009). Almost two 

percent of the VGLUT2-positive neurons also co-express ChAT (Wang and Morales, 

2009). The calcium-binding proteins, calbindin and calretinin, are co-expressed with 

VGLUT2 and GAD, suggesting distinct subpopulations (Côté and Parent, 1992; Dun 

et al., 1995; Fortin and Parents, 1999; Martinez-Gonzales et al., 2012). In addition, 

two glutamatergic subtypes have been described based on their in vivo physiological 

characteristics. The first group presents a fast firing activity associated with cortical 

slow oscillations while the second shows very slow firing activity that is not related 

to the cortical activity (Mena-Segovia et al., 2008; Ros et al., 2010). 
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 The last type of neuron was described as bipolar-shaped (Koch et al., 1993). 

These neurons were immunopositive for ChAT. A higher concentration of cholinergic 

neurons is observed in the PPNc (Wang and Morales, 2009). About two-thirds of the 

cholinergic neurons of the PPN co-express nitric oxide synthase (NOS), the synthetic 

enzyme for a gaseous neurotransmitter involved in several behaviours normally 

associated with ACh (Vincent and Kimura, 1992). Two types of cholinergic 

projections have been observed, ascending (toward the thalamus, pretectal area and 

tectum) and descending (toward pontomedullary reticular formation) (Takakusaki 

and Kitai, 1997; Mena-Segovia et al., 2008). In vitro, cholinergic neurons of the PPN 

fire spontaneously due to voltage-dependent oscillations and three types of 

cholinergic neurons have been described based on their membrane properties: 1) 

those expressing an A-type potassium current (Ia), with rapidly inactivated voltage-

dependant potassium currents able to regulate the action potential generation; 2) 

those expressing low threshold Ca2+ spikes; and 3) those expressing both low 

threshold Ca2+ and an Ia current (Saitoh et al., 2003; Takakusaki and Kitai, 1997; 

Kang and Kitai, 1990). However, the cholinergic nature of these three groups of 

physiologically different neurons has been questioned several times (Kang and Kitai, 

1990; Kamondi et al., 1992; Takakusaki et al., 1996). Interestingly, cholinergic 

neurons recorded in vivo show two types of firing patterns. A third of the cholinergic 

neurons recorded have a phasic synchronous activity with the cortex, while the 

second group showed a bursting activity during the up-phase of the cortical SWA 

(Mena-Segovia et al., 2008). 
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Figure 3: Simplified illustration of the PPN and LDT organisation. (A) 

Topographical division and organisation of the differents segments of the PPN/LDT 

from the centre of the SNc as described by Mena-Segovia et al., 2009. (B) 

Representation of the approximate density of GABAergic (red), glutamatergic (green) 

and cholinergic (orange) neurons throughout the brainstem on a rostrocaudal extend. 

Based on Mena-Segovia et al., 2009 and Wang and Morales, 2009. 

 

Electrophysiology 

In vivo recording of PPN activity during locomotion reveals a group of 

neurons that display a tonic firing pattern in synchronicity with the locomotion which 

decreases or even stops entirely with the cessation of movement (Garcia-Rill and 

Skinner, 1988; Garcia-Rill and Skinner, 1991; Petzold et al., 2015). Conversely, 

recording in behaving cats (Dormont et al., 1998) and monkeys (Matsumura et al., 

1997) reveals two types of PPN neurons directly related to movement. One group has 

a low frequency firing and a significant increase of activity during the movement; the 

second group has a higher basal firing rate and firing increases during the movement 

initiation (Matsumura et al., 1997; Okada et al., 2015). 

Functions 

The functions of PPN cholinergic projections have been inferred from lesion 

experiments and injection of various pharmacological agents. Small injections of 



59 
 

cholinergic agonists into the SNc increase the activity of DAergic neurons, mostly 

due to a potentiation of their response (Winn et al., 1983; Teo et al., 2004). Self-

administration of cholinergic agonists directly into the VTA provides evidence for a 

role of ACh input in addiction and learning (Ikemoto and Wise, 2002; David et al., 

2006). Several studies using non-specific excitotoxic lesions of the PPN observed 

PD-related symptoms, such as bradykinesia, reduction of the motor activity or 

hypokinesia (Kojima et al., 1997; Aziz et al., 1998). The choice of cell-specific 

lesions or pharmacological modulation of PPN neuron activity has enabled more 

precise behavioural observations. Within the tegmentum, only cholinergic neurons 

express the receptor for urotensin II (Clark et al., 2001; Wilson et al., 2009) and so 

the use of diphtheria toxin conjugated to urotensin II (DTx-UII) allows a lesion with 

high cellular specificity (Steidl et al., 2014; MacLaren et al., 2015). Lesions of 

cholinergic neurons in the PPN showed no significant effect on locomotion or 

exploratory behaviour when the animals were placed in a novel or familiar 

environment (Inglis et al., 1994; Wilson et al., 2009a; Steiniger and Kretschmer, 

2004). However, new studies using a more specific method for activation/inhibition 

are need for testing the role of cholinergic neurons in more discrete locomotor 

behaviour. Similarly, no effect was observed on anxiety-like behaviour (Homs-Ormo 

et al., 2003), food consumption (Inglis et al., 1994) or natural sleep (Deurveilher and 

Hennevin, 2001). However, lesions of cholinergic neurons in the PPNc produced 

deficits in the reward-related behaviour (Alderson and Winn, 2005). In rodents, the 

startle acoustic response is tested by producing a loud and unexpected sound and 

recording freezing. Studies show that the initial sound response can be reduced by an 

early presentation of short and quieter acoustic stimuli (Fendt et al., 2001). This 

reflex, naturally present in most species, is considered as an indicator of normal 
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sensorimotor gating (Wu et al., 1984). Non-specific PPN lesions lead to a significant 

reduction of the acoustic startle reflex (Swerdlow and Geyer, 1993a; Diederich and 

Koch, 2005) and a decrease of prepulse inhibition (Koch et al., 1993). Other 

behavioural studies show impairment in classical operant tasks correlated with non-

specific lesions of the PPN. Rats were first trained to associate an action (lever 

pressing) with a reinforcer (sugar, cocaine or nicotine). In animals with non-specific 

lesions of the PPN, a reduction in lever pressing has been observed in this type of 

analysis (Corrigal et al., 2001; Floresco et al., 2003; Diederich and Koch, 2005). The 

study demonstrates that even if motivation was not affected by PPN lesions (Taylor 

et al., 2004) the adaptation to new paradigms based on previously learned behaviours 

is impaired (Samson and Chappel, 2001). This abnormal behaviour can be 

interpreted as a learning impairment, and therefore an inability to update the 

association between action and outcome (Alderson et al., 2004). Most of these 

studies did not produce any effects during inappropriate responses, while operant 

choice with risk (same mean reward but higher variance) showed that PPN non-

specific lesions reduce risk aversion (Leblond et al., 2014). 

PPN is implicated in locomotion (Bechara and Van de Kooy, 1992; Dormont 

et al., 1998), action-outcome learning (Satorra-marín et al., 2001; Alderson and Winn, 

2005; Pan and Hyland, 2005), place preference (Lammel et al., 2012) or reward 

prediction error (Kobayashi and Okada, 2007; Okada et al., 2009). The results of 

these studies strengthen the hypothesis that the PPN is part of the basal ganglia 

(Mena-Segovia, 2004). 

The laterodorsal tegmental nucleus (LDT)  

Anatomy  

The LDT is a small nucleus situated in the medial brainstem, bordered 
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dorsally by the fourth ventricle (V4) and ventrally by the cerebro-pontine formation; 

the LDT is positioned caudally of the PPN (Cornwall et al., 1990; Mesulam et al., 

1986; Maley et al., 1988; Woolf, 1991). The LDT is the second cholinergic input to 

the DAergic midbrain. Very little is known about the anatomy and the function of the 

LDT. Indeed, most studies describe the LDT as a continuum of the PPN.  

Inputs/outputs 

The LDT has been described as mainly projecting to medial DA midbrain 

formation (PBN and Rli; Lammel et al., 2012). Retrograde tracer injections into the 

VTA show a significant number of VGLUT2-positive and ChAT-positive projecting 

neurons (Lammel et al., 2012; Clement and Grant, 1990; Oakman et al., 1995). 

Tracer injections show that the LDT projections are very similar to those of the PPN 

(Cornwall et al., 1990; Satoh and Fibiger, 1986). LDT neurons mostly target the 

medial midbrain DAergic structure, the cholinergic basal forebrain including the 

ventral pallidum, the medial septum and the nucleus of Broca (Cornwall and 

Phillipson, 1989). LDT projections are also found in the cingulate cortex, the 

thalamus (Holmstrand et al., 2010; Gonzalo-Ruiz et al., 1995; Holmstrand and 

Sesack, 2011), the lateral habenula (Semba and Fibiger, 1992), the GP (Eid et al., 

2014) and the subthalamic nucleus (Bevan and Bolam, 1995). However, in most of 

the studies injections were located in the dorsal tegmental nucleus (Lammel et al., 

2012), which contains a very low number of cholinergic neurons (Morest, 1961; 

Clements and Grant, 1990; Satoh and Fibiger, 1986).  

Afferent neurons for the LDT are located in the reticular formation, the 

medial preoptic nucleus, the hypothalamus, basal forebrain and medial prefrontal 

cortex (Satoh and Fibiger, 1986; Semba and Fibiger, 1992). There is no evidence at 

present that allows the integration of the LDT into the basal ganglia network as 
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discussed for the PPN (Mena-Segovia et al., 2008). However, its interactions with 

most of the nuclei of the BG and the role in BG-related cognitive processes suggests 

at least a strong relationship.  

Neuronal populations  

Immunohistochemal analyses reveal that the LDT has a similar molecular 

composition as the PPN. Three distinct populations of neurons are found within its 

borders (Wang and Morales, 2009). The first population of neurons express 

glutamatergic markers, the second major subpopulation of neurons, similar in 

numbers to the glutamatergic neurons, express GABAergic markers (Ford et al., 

1995; Wang and Morales, 2009). In rodents, glutamatergic and GABAergic neurons 

represent more than 80% of the total neurons located within the LDT. The third 

subpopulation of neurons express cholinergic markers (Wang and Morales, 2009). 

Electrophsyiology  

In vitro whole cell recordings of cholinergic neurons in the LDT revealed that 

two firing patterns can be observed, a regular activity or a bursting activity following 

current injection (Kamii et al., 2015). These two populations appear to be 

differentially represented in the LDT: two-thirds of the neurons recorded were 

regular (Kamii et al., 2015). The majority of LDT putative cholinergic neurons 

express an A-type potassium channel and persistent sodium channel (Nav1.9) 

(Leonard and Llinas, 1990; Kamondi et al., 1992), like PPN type I and II neurons 

(Saitoh et al., 2003). In vivo, putative cholinergic neurons have a very short spike 

duration (<1ms) and a large range of firing rates (0.08 to 5 Hz), while non-

cholinergic neurons have a long spike duration (±2ms) and a regular firing frequency 

(2 Hz) (Koyama et al., 1999; Mansari et al., 1989; Kayama et al., 1992; Mansari et 

al., 1990).  
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Functions 

Classically, the LDT is considered to have a strong role in limbic (Kamii et al., 

2015; Lester et al., 2008; Nelson et al., 2007; Lammel et al., 2012) and sleep/awake 

functions (Monti and Jantos, 2015; Kohlmeier et al., 2013; Datta et al., 2009). 

Inactivation of the cholinergic LDT neurons leads to a significant decrease of 

locomotion under baseline conditions (Dobbs and Mark, 2012) and also a decrease of 

locomotion produced by drugs (nicotine: Alderson et al., 2005; amphetamine: 

Laviolette et al., 2000; methamphetamine: Dobbs and Cunningham, 2014). An 

increase of stereotypical behaviours related to drug injections have been found in 

animals with LDT non-specific lesions (nicotine: Forster and Blaha, 2000; Ishibashi 

et al., 2009). Pharmacological blocking of cholinergic neurons (with microinjections 

of the M2 cholinergic agonist) of the LDT results in motor (Dobbs and Cunningham, 

2014), learning (Shinohara et al., 2014) and behavioural state deficit (Kohlmeier and 

Kristiansen, 2010). Drug-related behaviour is mostly associated with the strong 

connectivity between DAergic neurons of the VTA and the cholinergic LDT (Lester 

et al., 2010). Significant variation in the self-administration of nicotine, 

methamphetamine or cocaine was observed in LDT non-specific lesioned animals 

(Dobbs and Cunningham, 2014; Alderson et al., 2004; Lanca et al., 2000b; Laviolette 

et al., 2002). Recent studies using specific lesions of cholinergic neurons have failed 

to detect a role of the LDT in learning (Steidl et al., 2014).  

 The development of transgenic animals expressing specific genes allows the 

activation, inhibition or lesion of a specific subpopulation of neurons. Recent reports 

using an optogenetic approach of the brainstem confirmed the role of cholinergic 

neurons in REM sleep (Van Dort et al., 2015) and in operant behaviour (Steidl and 

Veverka, 2015). 
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Summary and aims 

PPN and LDT are two brainstem cholinergic nuclei interconnected with most 

of the BG nuclei. Despite their functional differences, PPN and LDT share common 

anatomical, electrophysiological and behavioural functions. 

 PPN and LDT have been proposed to influence activity within the striatum by 

two routes: by innervation of midbrain dopaminergic neurons or by innervation of 

the intralaminar and midline thalamus. However, earlier tract-tracing studies suggest 

that brainstem neurons may project directly to the striatum, but no studies of the 

nature of these neurons have been made. 

 The aims of this thesis are to define the anatomical, electrophysiological and 

behavioural functions of cholinergic input to VTA and striatum. This thesis addresses 

several current issues on the cholinergic modulation of the mesostriatal pathways: 

1) Define the cholinergic inputs to the striatum (Chapter 2) 

2) Define the anatomical, electrophysiological and behavioural contribution 

of PPN and LDT cholinergic axons in the VTA (Chapter 3) 

3) Define the anatomical, electrophysiological and behavioural contribution 

of PPN and LDT cholinergic axons in the striatum (Chapter 4) 

4) Define in vivo the electrophysiological contribution of cholinergic 

interneurons in the striatum (Chapter 4) 

5) Compare the behavioural function of cholinergic interneurons and 

cholinergic brainstem projections in the DMS and DLS (Chapter 4) 
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Chapter 2: Cholinergic innervation of the mesostriatal 

pathway 

 

The following chapter is a summary of the two following papers 

A major external source of cholinergic innervation of the striatum originates in 

the Brainstem 

Daniel Dautan, Icnelia Huerta-Ocampo, Ilana B. Witten, Karl Deisseroth, J. Paul 

Bolam, Todor Gerdjikov and Juan Mena-Segovia 

The Journal of Neuroscience, March 26, 2014. 34(13):4509-4518.4509 

 

Evaluation of potential extrinsic sources of cholinergic innervation to the 

striatal complex: a whole brain mapping analysis 

Daniel Dautan, Husniye Hacioğlu Bay, J. Paul Bolam, Todor Gerdjikov and Juan 

Mena-Segovia 

Frontiers in Neuroanatomy, 2016, doi: 10.3389/fnana.2016.00001 

 

 

 

 

DD, TG, PB and JMS designed the experiments, analysed the data and wrote the 

manuscript. DD performed the surgeries and experiments (excluding EM). IHO 

performed the electron microscopy experiments. HBH helped with the 

immunohistochemistry. IW and KD provided the ChAT::cre line. 
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Abstract 

 Cholinergic innervation of the mesostriatal pathway is critical for the 

modulation of the DA release. In the VTA/SNc release of ACh has been considered 

to originate exclusively from the cholinergic brainstem (PPN and LDT). In the 

striatal complex, the cholinergic inputs are believed to arise exclusively from a 

subtype of striatal interneurons that provide widespread innervation of the Str. Here 

we show that cholinergic neurons in the brainstem also provide a direct innervation 

of the striatal complex. We also confirmed that VTA/SNc but also Str received 

cholinergic innervation only from the brainstem. By the expression of fluorescent 

proteins in ChAT::cre + transgenic rats, we selectively labelled cholinergic neurons in 

all cholinergic nuclei. We show that with the exception of the PPN/LDT no others 

cholinergic structures innervate of the DA midbrain formation or the striatal complex. 

We also show that cholinergic neurons of the brainstem topographically innervate 

large areas of the striatal complex: PPNr preferentially innervates the DLS, while 

LDT preferentially innervates the DMS and the NA. Retrograde labelling combined 

with immunohistochemistry in wild-type rats confirmed the exclusive origin of the 

cholinergic innervation of the mesostriatal. Furthermore, transynaptic gene activation 

and conventional double retrograde labelling suggest that LDT neurons that innervate 

the NA also send collaterals to the thalamus and the DAergic midbrain, thus 

providing both direct and indirect projections to the striatal complex. The exclusive 

origin of the cholinergic innervation of the mesostriatal pathway, the differential 

activity of cholinergic interneurons and cholinergic neurons of the brainstem during 

reward-related paradigms suggest that the two systems play different but 

complementary role in the processing of information in the basal ganglia. 

Key words: cholinergic; laterodorsal tegmental nucleus; pedunculopontine nucleus; 

striatum; VTA; SNc; Ch1 to Ch8 
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Introduction 

 Nicotinic and muscarinic receptors are widely distributed throughout the CNS. 

ACh constitutes one of the major modulators of neuronal excitability and synaptic 

communication, explaining the central role played by cholinergic nuclei in several 

behaviours (Everitt and Robbins, 1997; Micheau and Marighetto, 2011; Davies and 

Maloney, 1976). Early descriptions of the cholinergic system in the CNS proposed a 

nomenclature based on eight projecting cholinergic nuclei, so named Ch1 to Ch8 

(McGeer et al., 1984; Schwaber et al., 1987; Geula et al., 1993). 

 Cholinergic innervation of the brain is widely distributed and predominantly 

originates from eight anatomically segregated nuclei: medial septum (Ch1), the 

vertical limb of the diagonal band of Broca (Ch2), the horizontal limb of the diagonal 

band of Broca (Ch3), the nucleus basalis of Meynert (Ch4), the PPN (Ch5), the LDT 

(Ch6), the medial habenula (Ch7) and the parabigeminal nucleus (Ch8) (Mesulam et 

al., 1983a, b; Mesulam and Geula, 1988; Mufson et al., 1986; Mesulam, 1990). For 

long, tracer studies described projections to the cortex, the thalamus or the 

hippocampus that arise from the cholinergic nuclei (Cobb et al., 1999; Dutar et al., 

1995; Cornwall et al., 1990; Mena-Segovia et al., 2008). PPN and LDT have been 

shown to influence the basal ganglia structures, and mostly the midbrain (Bolam et 

al., 1991; Lacey et al., 1990) or the thalamus (Parent and Descarries, 2008). Basal 

forebrain cholinergic neurons have also shown important projections to the thalamus 

(Deiana et al., 2011) and the GP (Záborszky et al., 2012). All these routes modulate 

indirectly the striatal complex (Erro et al., 1999). 

 Data from earlier tracer studies suggest that some cholinergic neurons could 

influence the Str by direct innervation (Saper and Loewy, 1982; Hallanger and 
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Wainer, 1988; Nakano et al., 1990). Suggesting that cholinergic interneurons were 

not the only source of ACh in the Str as considered before (Wang et al., 2006; Ding 

et al., 2010; Goldberg et al., 2012). In view of the importance of ACh mechanism in 

the regulation of DA release (Cachope et al., 2012; Threlfell et al., 2012) and 

network activity in the Str (Carrillo-Reid et al., 2009; Goldberg et al., 2012), we 

aimed to determine whether cholinergic neurons in the entire CNS directly innervate 

the Str. 

 Some retrograde tracing experiments showed that some neurons located in 

the main cholinergic nuclei project directly to the striatum. No characterisation of the 

nature of these projections have been made. In order to determine whether any of 

these systems provide a source of ACh in the Str, we used a combined anterograde 

and retrograde analysis of populations of cholinergic neurons to obtain a detailed 

mapping of their axonal distributions. Using Cre-driver line to genetically target 

cholinergic neurons and induce the expression of a fluorescent marker in their axons 

(Witten et al., 2011) we were able to characterize specific responses on sub-

population of DA neurons. Following whole brain mapping of individual cholinergic 

nucleus projections and retrograde tracer injections, we observed that the DS and the 

NA receive a dense and highly organised cholinergic innervation arising exclusively 

from the brainstem. Our results suggest further the existence of a direct and indirect 

cholinergic modulation of the Str. 
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Materials and methods 

Animals  

 Adults (250-450g) Long Evans (LE) wild-type and ChAT::cre+ (Witten et al., 2011) 

male (n=31) and female (n=15) rats were used for all experiments. Rats were 

maintained on a 12h light cycle (light on 07:00) and ad libitum access to water and 

food. All procedures were performed in accordance with the Society for 

Neuroscience policy on the use of animals in neuroscience and the animals 

(Scientific Procedures) Act, 1986 (United Kingdom), under the authority of a Project 

Licence approved by the Home Office and the local ethical committee of the 

University of Oxford. 

Stereotaxic injections 

 All surgical procedures were performed during deep isoflurane anesthesia (2% in 

O2; Isoflo, Schering-Plough). For the anterograde tracing studies, LE ChAT::cre+ rats 

(n=21) were injected with adeno-associated virus stereotype 2 (AAV2) carrying the 

fusion genes for channelrhodospin 2 (ChR2) and the enhanced yellow fluorescent 

protein (eYFP) (AAV2-EF1a-DIO-hChR2-eYFP; Gene Therapy Centre Virus Vector 

Core, University of North Carolina). The viral vectors were injected in a volume of 

300 nl for the forebrain cholinergic structures (Ch1 to Ch4) to avoid spreading over 

contiguous cholinergic structures, whereas a volume of 500 nl was used for the other 

cholinergic nuclei (Ch5 to Ch8). The injection sites were randomized for hemisphere 

and fluorescent reporter. Viral injections were delivered in 8 different locations 

corresponding to the 8 cholinergic groups described by Mesulam et al. (1983a, b) 

using the following stereotaxic coordinates (from bregma, in mm; DV ventral to the 

dura): Ch1 (medial septum) AP +0.7, ML +0.2, DV-4.5; Ch2 (vertical limb of the 
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diagonal band) AP +0.5, ML +0.4, DV -7.5; Ch3 (horizontal limb of the diagonal 

band) AP +0.1, ML +1.6, DV -8.5; Ch4 (nucleus basalis of Meynert) AP +0.9, ML 

+2.5, DV -7.0; Ch5 (PPN) AP -7.3, ML +1.8, DV -7.2; Ch6 (LDT) AP -8.5, ML +1.0, 

DV -6.0; Ch7 (medial habenula) AP -3.5, ML +0.3, DV -4.0; and Ch8 (parabigeminal 

nucleus) AP -4.5, ML +4.3, DV -5.5 (Paxinos and Watson, 2007). For striatum 

mapping viral vectors were injected in the dorsomedial striatum (900nl over 20min; 

from the bregma in mm: AP -0,5; ML +1,8, DV -4,5 ventral of the dura); in the 

dorsolateral striatum (900nl over 10min; from the bregma in mm: AP -0,5; ML 

+3,0, DV -4,5 ventral of the dura), or in the accumbens (800nl over 10min; from the 

bregma in mm: AP +1,5; ML +1,8, DV -6,7 ventral of the dura). 

 For the retrograde tracing injections, wild-type LE rats (n=10) were injected 

with cholera toxin b (CTb 2,5% in distilled water, 400nl over 10min; Sigma-Aldrich) 

and fluorogold (FG; 2,0% in distilled water, 300nl over 10min; Fluorochrome), each 

in one of the following areas: dorsolateral striatum (as above), dorsomedial striatum 

(as above), the accumbens (as above), the lateral shell of the nucleus accumbens 

(from the bregma in mm: AP +1,2; ML +2,7, DV -6,8 ventral of the dura), the medial 

shell of the NA (from the bregma in mm: AP +1,5; ML +0,9, DV -7,2 ventral of the 

dura), or the medial core of the NA (AP +1,5; ML +0,9, DV -6,5 ventral of the dura). 

Each animal received two injections, and the combinations of tracers/targets were 

varied. Finally, for the combined retrograde/anterograde tracing studies, wild-type 

LE rats (n=6) were injected with AAV-EF1a-IRES-WGA-Cre-mCherry in the DLS or 

the NA and with AAV2-EF1a-DIO-eYFP in the PPNr or LDT, respectively. The 

wheat germ agglutinin (WGA) fusion was transcellularly transported to the afferent 

neurons, and retrogradely transported to the soma, in which it produced the 

recombination of AAV2-EF1a-IRES-eYFP and the expression of eYFP. Thus, we 
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specifically labelled the brainstem neurons projecting to the Str and their axon 

collaterals (Gradinaru et al., 2010). For all experiments, injections were made using 

1µl syringes (Neuros 7001, Hamilton) at a rate of 50 nl/min and left to diffuse for 

5min before retraction of the syringe. Approximately 4 weeks following AAV2-

EF1a-DIO-eYFP injections, 10-15 days following tracers injections, and 2-4 weeks 

after the AAV-EF1a-IRES-WGA-Cre-mCherry, the rats were humanely euthanized 

using a lethal dose of pentobarbital (>200 mg/kg, i.p.) and perfused transcardially 

with 0,05 M phosphate buffer solution (PBS) pH 7.4 (approximately 50 ml over 5 

min), followed by 300 ml of 4% w/v paraformaldehyde in phosphate buffer (0.1 M, 

pH 7.4) containing 0.1% glutaraldehyde (TAAB Laboratories) over about 20 min. 

Brains were stored in PBS at 4°C until sectioning. 

To corroborate findings from the WGA-Cre study, an additional group of 

wild-type (n=4) rats were used in double retrograde tracers labelling experiments. FG 

was injected into the NA (see above) and CTb was injected in either the ventral 

tegmental area (VTA; 300nl over 10 min; AP -5,2 ML +0,9, DV -7,5 ventral of the 

dura) or the mediodorsal thalamus ( 500nl over 10 min; AP -3,0; ML +1,4, DV -5,0 

ventral of the dura). Retrogradely labelled neurons were revealed after perfusion 

fixation as described above. 

Immunohistochemistry 

Brain blocks were formed using 2% agarose gel in PBS (Agarose, BIO-41025, 

Bioline). For whole brain mapping, coronal or parasagittal sections of the entire brain 

were used. For Str projections mapping sagittal sections of the right hemispheres 

were collected. Brains were cut at 50µm thickness in PBS using a vibrating 

microtome (VT1000S, Leica). For each experiment, the sites of injection were 
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verified by fluorescent microscopy and only those with on-target injections were 

processed further. For the anterograde tracing study, sections from the entire brain 

were incubated overnight in a solution containing antibodies against green 

fluorescent protein (GFP; which also detects eYFP; 1:1000 dilution, raised in rabbit, 

A21311; Invitrogen) and either ChAT (raised in goat; 1:500 dilution; AB144P, 

Millipore) or tyrosine hydroxylase (TH; to define the accumbens, Str and VTA/SNc 

borders; raised in chicken, 1:500 dilution; Abcam) in 1% normal donkey serum 

(NDS) and 0,03% Triton X-100 in PBS. After several washes in PBS, the sections 

were incubated for a minimum of 4h in Alexa Fluor 488-conjugated donkey anti-

rabbit antibody (1:1000, Life Technologies) and either Cy3-conjugated donkey anti-

chicken antibodies(1:1000; Jackson Immunoresearch) or Cy3-conjugated donkey 

anti-goat antibodies (1:1000; Jackson Immunoresearch). Additional sections were 

incubated with an antibody against the vesicular ACh transporter (VAChT; raised in 

guinea pig, 1:500 dilution in 1% NDS and 0,03% Triton X-100 in PBS; AB1588; 

Millipore Bioscience Research Reagents) to detect the presence of VAChT in the 

eYFP-labelled axons. Some sections were incubated with antibodies against µ-opioid 

receptor (MOR; raised in guinea pig, AB1774; Millipore) to define the striosomes 

(Graybiel and Ragsdale, 1978). These incubations were followed by their 

corresponding fluorophore-conjugated secondary antibodies, as described above. 

 Sections of the brains that had received tracer injections were first incubated 

in antibodies against ChAT (1:500) and CTb (raised in mouse, 1:500 dilution in 1% 

NDS and 0,03% Triton X-100 in PBS; Abcam), washed in PBS, and incubated in 

Cy3-conjygated donkey anti-mouse antibody (1:1000; Jackson ImmunoResearch). 

For FG detection, no additional processing was required. 
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 For whole brain mapping a section every 300µm was selected. For Str 

mapping all sections were used. Brain sections were mounted on slides using 

VectaShield and then examined in a fluorescent (ImagerM2; Zeiss) or confocal 

(LSM-510; Zeiss) microscope using the following filters: 504nm for FG and Alexa 

Fluor-488, 560nm for Cy3 and 650nm for Cy5 (20x, 0.8 numerical aperture dry 

objective or 40X, 1.4 numerical aperture oil immersion). Confocal images were 

processed using Huygens Professional deconvolution software (version 4.1; 

Scientific Volume Imaging) with a maximum of 40 iterations. The brightness and 

contrast of captured images were adjusted in Photoshop (Adobe Systems). All brain 

sections were scanned and distribution of labelled axons in the entire brain or 

retrogradely labelled neurons in the cholinergic nuclei was digitized offline using 

StereoInvestigator (MicroBrightField). 

Whole brain mapping 

 The processed sections were mounted on slides using VectaShield and then 

examined in a confocal microscope (LSM-510, Zeiss) at two distinct magnifications 

(10X, 0.32 NA and 20X, 0.8 NA), using the corresponding filters (504 nm for FG 

and YFP, 560 nm for Cy3 and mCherry, and 650 nm for Cy5). Brightness and 

contrast of captured images were adjusted in Photoshop. AAV-injected sections were 

contoured and fully scanned on a single Z-stack using StereoInvestigator 

(MicroBrightField; 10X, 0.25 NA). For every scanned site, the top and bottom of the 

section were manually delimited based on the section surface and single pictures 

were captured (2048 X 1056 pixel resolution) at 10 µm below the surface of the 

section to ensure that the antibody completely penetrated the section (frame size 860 

X 660µm). Scanning sites were selected using the StereoInvestigator system 

incorporating a XYZ stage controller and a 25% overlap was selected to facilitate 
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reconstruction. To avoid photobleaching, an inter-acquisition interval of 50 ms was 

applied during scanning. Exposure time was automatically adapted for every site in 

order to keep same intensity threshold. 

Analysis of the distribution of cholinergic axons and density 

quantification 

Scans from AAV-injected brains were reconstructed offline based on the 2D serial 

section reconstruction module of StereoInvestigator. Injections with GFP cell body 

expression lower than 30% of the total number of ChAT+ neurons within the 

diffusion area, or with positive soma located outside the borders of the nucleus for 

contiguous cholinergic structures, were excluded from the analysis. Scans were then 

overlapped with outlines of the Rat Brain Atlas (Paxinos and Franklin, 2007) using 

TH and ChAT staining.  

The amount of AAV positive fibres in each nucleus was semi-quantitatively assessed 

offline. Representative levels for each main brain nuclei/region were scored using a 

predetermined density rating. The relative density was scored 4+ for many labelled 

fibres covering approximatively more than 50% of the selected image surface (very 

dense). Nuclei were labelled as 3+ or 2+ when projections covered approximatively 

more than 25% (dense) or less than 25% (moderate) of the surface, respectively. 

Structures were noted 1+ (few) when only few terminals were visible. All brains 

were scanned and only nuclei presenting similar scores in at least 2 animals were 

considered. Fibres without terminals or arborisation, defined as fibres “en passage”, 

were excluded from the mapping. 

Analysis of the distribution of retrogradely labelled neurons 

 For whole brain mapping: brains injected with retrograde tracers were sectioned and 
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scanned as described above. Parasagittal and coronal sections comprising the Str and 

all cholinergic nuclei were used further. All single optical sections containing ChAT+ 

neurons were fully scanned in high resolution (20X, 0.8 NA, step size 1µm, 2056 X 

1056 pixels) for channels corresponding to ChAT, FG and CTb labelling. Analysis of 

distribution of retrogradely labelled neurons was done using StereoInvestigator 

functions: the cholinergic nuclei borders were outlined based on ChAT signal using 

contour tools, an overlay projection of the Z-stack was obtained based on average 

intensity tools, colocalisation of ChAT, Ctb and FG was quantified using the markers 

plugin. A minimum of two single optical sections were examined. Neurons within the 

borders of each cholinergic nucleus were classified as follows: (1) ChAT+/CTb+; (2) 

ChAT+/FG+; (3) ChAT-/CTb+, (4) ChAT-/FG+. Data were confirmed in a minimum of 

4 animals where Ctb and FG injections were alternated between DS and NA. 

 The number of neurons in the PPNr, PPNc, and LDT projecting to the DLS, 

DMS and lateral, medial shell, and core of the NA were quantified according to their 

rostrocaudal distribution. Neurons within the PPN and LDT, as delimited by the 

ChAT-immunopositive cell bodies, were classified as follows: (1) ChAT+/CTb+; (2) 

ChAT+/FG+; (3) ChAT-/CTb+; (4) ChAT-/FG+. Three representative ML levels of the 

brainstem were selected for the analysis corresponding to 1.55, 1.13 and 0.9 mm 

from the midline (Paxinos and Franklin, 2007). To define the boundaries between 

PPNr and PPNc, we adapted a method based on the subdivision of the PPN into 

equally spaced segments in the sagittal plane using concentric circles, as described 

previously (Mena-Segovia et al., 2009). Thus, using the centre of the substantia nigra 

pars reticulata (SNr) as a reference point, two equally sized segments of 1400µm 

were defined. The first segment represents the PPNr (0.6 to 2.0 mm from the 

midpoint of the SNr), and the second segment represents the PPNc (2.0-3.3 mm from 
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the midpoint of the SNr). The LDT were quantified in a single segment (>3.3 mm 

from the SNr). Results are expressed as total numbers of neurons that are positive for 

each tracers and the normalised number of retrogradely traced neurons that are 

immunopositive for ChAT. 

Results 

Conditional labelling and mapping of cholinergic axons 

 

 Transduction of cholinergic neurons in Ch1 to Ch8 areas in ChAT::cre+ rats 

(n=12) following the insertion of the reporter transgene produced strong and discrete 

eYFP or mCherry signals in neurons immunopositive for ChAT (Fig. 4). Coordinates 

were based on previous experimentations in rats and coordinates from the Rat Brain 

Atlas (Paxinos and Franklin, 2007). Following three to four weeks, immunopositive-

terminals were charted in the entire brain. Reporter labelling was observed in cell 

bodies, dendrites and local axons within the sites of injection. No differences were 

observed in the labelling produced by eYFP or mCherry (see Chapter 3), nor in the 

labelling specificity among cholinergic structures. The labelling of cholinergic 

neurons with fluorescent reporters was confirmed with immunohistochemistry for 

ChAT in the following structures: DLS (Fig. 4A), NA (Fig. 4B), medial septum (Ch1; 

Fig. 4C), the vertical limb of the diagonal band of the nucleus of Broca (Ch2, Fig. 

4D), the horizontal limb of the diagonal band of the nucleus of Broca (Ch3, Fig. 4E), 

the nucleus basalis of Meynert (Ch4, Fig. 4F), the PPN (Ch5, Fig. 4G), the LDT 

(Ch6, Fig. 4H), the medial habenula (Ch7, Fig. 4I) and the parabigeminal nucleus 

(Ch8, Fig. 4J). Injections in the Str and NA produced labelling of interneurons 

whose axons were contained within the striatal borders but extended ventrally or 

dorsally beyond the site of injection. 
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Figure 4: Transduction of cholinergic neurons across the brain. Coronal sections 

showing the sites of cholinergic neuron transduction following injection of AAV2-

eYFP or AAV2-mCherry into the Str and the cholinergic nuclei (Ch1 to Ch8). eYFP 

or mCherry expression was observed in the dorsal Str (A), NA (B), medial septum 

(Ch1; C), the vertical limb of the diagonal band of Broca (Ch2; D), the horizontal 

limb of the diagonal band of Broca (Ch3; E), the nucleus basalis of Meynert (Ch4; F), 

the PPN (Ch5; G), the LDT (Ch6; H), the medial habenula (Ch7; I) and the 

parabigeminal nucleus (Ch8; J). All the injections were confined to their 

corresponding anatomical borders, as defined by Paxinos & Watson (1986). 

Abbreviations: aca, anterior commissure; NA, nucleus accumbens; aq, aqueduct; cc, 

corpus callosum; GP, globus pallidus; hip, hippocampus: HDB, horizontal limb of 

the diagonal band of the nucleus of Broca; LDT, laterodorsal tegmental nucleus; lHb, 

lateral habenula; Mey, nucleus basalis of Meynert; mHb, medial habenula; MITg, 

microcellular tegmental nucleus; ms, medial septum; ot, olfactory tubercle; PBN, 

parabigeminal nucleus; PPN, pedunculopontine nucleus; Str, striatum; V3, third 

ventricle; VDB, ventral limb of the diagonal band of the nucleus of Broca; VP, 

ventral pallidum. Scale bars: brain outlines, 1000 µm; low magnification panels (left), 

500 µm; high magnification panels (centre and right), 50 µm. 

 

However, no overlap between the axons from each region was detected, suggesting 

that the area of innervation of cholinergic axons is restricted within the functional 

domains. Medial septum injections were targeted to its mediodorsal region to avoid 

overlap with the diagonal band of the nucleus of Broca, which resulted in strong 
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bilateral expression (Fig. 4C). The vertical limb (Fig. 4D) and the horizontal limb 

(Fig. 4E) are very ventral structures surrounded by the ventral pallidum dorsally and 

the olfactory tubercle laterally; both show a high density of small cholinergic neurons. 

The nucleus of basalis of Meynert, situated ventral to the globus pallidus, contained 

loosely distributed, small cholinergic neurons (Fig. 4F), consistent with Mesulam 

(1983 a, b). 

Cholinergic projections to the Central nervous system 

Medial septum (Ch1; Fig. 5) cholinergic projections were mainly observed in the 

cingulate cortex (3+; Fig. 6), the diagonal band of the nucleus of Broca (3+), the 

lateral septum (3+), the ventral pallidum (3+), hippocampus (4+) and the reticular 

thalamic nucleus (2+; Fig. 7) (Senut et al., 1989; Kalèn and Wiklund, 1989; Nyakas 

et al., 1987). No labelled axons were visible in the Str or NA.  

The axons and terminals of cholinergic neurons located in the vertical limb of the 

diagonal band of Broca (Ch5; Fig. 5) were found predominantly in the medial 

prefrontal cortex (3+; Fig. 6), the cingulate cortex (4+), the orbital cortex (4+), the 

motor cortex (4+),the piriform cortex (4+), the lateral and medial septum (4+), the 

ventral pallidum (3+), the amygdala (4+), the rostral and caudal hippocampus (4+), 

zona incerta (3+; Fig. 7), mediodorsal and reticular thalamic nucleus (3+) (Kalèn and 

Wiklund, 1989; Henny and Jones, 2008; Nyakas et al., 1987; Nelson et al., 2000). 

Injections in Ch2 did not produce axon labelling in the Str or the NA. However, a 

few projections were visible in the olfactory tubercle.  
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Figure 5: Mapping of cholinergic axons in the whole brain. Six representative 

coronal sections (anteroposterior bregma levels, columns) throughout the brain were 

selected to map the innervation of the cholinergic nuclei (Ch1 to Ch8; rows). For 

each cholinergic group, each row depicts a schematic summary where green shaded 

areas indicate high density of fluorescently-labelled axons. Red squares indicate the 

site where the fluorescent images on the right were obtained. Abbreviations (if not 

defined previously): NAsh, nucleus accumbens shell; accC, nucleus accumbens core; 

AID, agranula insular dorsal cortex, AIV, agranular insular ventral cortex; BLA, 

basolateral amygdala; CA1, CA1 field of the hippocampus; CE, central amygdala (L, 

lateral; M, medial; C, capsular); Cg, cingulate cortex; Den, dorsal endopiriform 

nucleus; fmi, external capsule; GI, granula insular cortex; gcc, genu of the corpus 

callosum; IEn, intermediate endopiriform nucleus; InG, intermediate gray layer 

superior colliculus; IPN, interpeduncular nucleus (c, caudal; r, rostral); LDL, 

laterodorsal thalamic nucleus lateral part; LENt, lateral enthorinal cortex; Ls, lateral 

septum; LSD, lateral septum dorsal part; M, motor cortex; MD, mediodorsal 

thalamic nucleus (M, medial; L, lateral); MoDG, molecular layer dentate gyrus; Op, 

optic nerves layer superior colliculus; Pir, piriform cortex; PoDg, polymorph layer 

dentate gyrus; RSGa, retrospinal granular cortex; Rt, reticular thalamic nucleus; S, 

somatosensory cortex; SuG, superficial gray superior colliculus; VP, ventral pallidum; 

VPL, ventro-posterior thalamic nucleus lateral part; VTA, ventral tegmental area. 

Red arrows represent discrete cholinergic axons. Scale bars: brain outlines, 1000 µm; 

fluorescent images, 200 µm. 
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The cholinergic neurons of the horizontal limb of the diagonal band of the nucleus of 

Broca (Ch3; Fig. 5) gave rise to similar projection pattern as Ch2 cholinergic 

neurons. YFP-positive terminals were found mainly in the cingulate cortex (4+; Fig. 

6), medial prefrontal cortex (3+), motor cortex (3+), somatosensory cortex (3+), 

piriform cortex (4+), insular cortex (3+) and prelimbic cortex (3+). This population 

gave rise to projections to the ventral pallidum (4+), the amygdala (4+), 

hippocampus (4+), reticular and mediodorsal thalamic nucleus (3+; Fig. 7) (Kalèn 

and Wiklund, 1989; Henny and Jones, 2008; Záborszky et al., 1986; Gaykema et al., 

1990; Gritti et al., 1997). Analysis of the Ch3-injected rats never showed positive 

axons within the Str or NA. However, en-passage fibres within the olfactory tubercle 

were observed.  

The nucleus basalis of Meynert (Ch4; Fig. 5) revealed cholinergic projections 

primarily to the orbital cortex (3+; Fig. 6), the peduncular cortex (3+), the insular 

cortex (2+), the piriform cortex (3+), the ventral pallidum (4+) and the amygdala 

(4+) (Baskerville et al., 1993; Nagai et al., 1982; Pearson et al., 1983; Saper, 1984; 

Woolf and Butcher, 1982; Schauz and Kock, 1999; Záborszky et al., 2015). No 

visible terminals were observed in the Str, the NA or the olfactory tubercle.  

Injections in the PPN (Ch5; Fig. 5) revealed weak axonal labelling in the cingulate 

(1+), motor cortex (1+; Fig. 6) and the insular cortex (2+). A much stronger signal 

was observed in the ventral pallidum (3+), the medial and lateral septum (2+), the 

globus pallidus (2+), the amygdala (2+), the ventral and dorsal lateral thalamus (3+; 

Fig. 7), the reticular thalamic nucleus (3+), the superior colliculus (3+), the DAergic 

ventral midbrain nuclei (3+), the LDT (3+) and the gigantocellular tegmental field 

(3+) (Oakman et al., 1999; Mitani et al., 1988; Semba and Fibiger, 1992; Lavoie and 
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Parent, 1994; Futami et al., 1995; Mena-Segovia et al., 2004; Mena-Segovia et al.; 

2008). Abundant labelled axons were observed in the DLS (3+), NA (3+) and 

olfactory tubercle (2+) (Dautan et al., 2014).  

 

Figure 6: Mapping of cholinergic axons in the cortex. Five representative coronal 

sections of the cortex (anteroposterior bregma levels, rows) throughout the brain 

were selected to map the innervation of the cholinergic nuclei (Ch1 to Ch8; column). 

For each cholinergic group, each row depicts a schematic summary where green 

shaded areas indicate where the fluorescent images on the right were obtained. Red 

arrows represent discrete cholinergic axons. Scale bars: brain outlines, 1000 µm; 

fluorescent images, 200 µm. 

 

LDT (Ch6; Fig. 5) injected animals revealed labelled axons and terninals in the 

ventral pallidum (3+), medial and lateral septum (3+), globus pallidus (3+), 

amygdala (3+), reticular and medial thalamic nucleus (3+; Fig. 7), inferior colliculus 

(2+), dorsal raphe (2+), gigantocellular tegmental field (3+) and the midbrain 

DAergic nuclei (3+) (Dautan et al., 2014; Motts et al., 2008; Holmstrand and Sesack, 

2011; Hallanger and Wainer, 1988). YFP-positive axons were observed in the DMS 

(2+), NA (3+) and olfactory tubercle (4+). 
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Figure 7: Mapping of cholinergic axons in the thalamus. Six representative 

coronal sections of the thalamus (anteroposterior bregma levels, rows) throughout the 

brain were selected to map the innervation of the cholinergic nuclei (Ch1 to Ch8; 

column). For each cholinergic group, each row depicts a schematic summary where 

green shaded areas indicate where the fluorescent images on the right were obtained. 

Scale bars: brain outlines, 1000 µm; fluorescent images, 200 µm. 

 

Medial habenula-injected animals (Ch7; Fig. 5) showed a strong and discrete 

descending pathway that followed the fasciculus retroflexus and terminate in the 

interpeduncular nucleus (3+) (Cuello et al., 1978; Kobayashi et al., 2013; Ren et al., 

2011). Animals injected in the parabigeminal nucleus (Ch8; Fig. 5 shows an 

ascending pathway that spread densely in the inferior (3+) and superior colliculi (4+) 

(Mufson et al., 1986; Fitzpatrick et al., 1988). No rostral pathway was observed in 

animals injected either in the medial habenula or the parabigeminal; detailed 

observation of the Str, accumbens and olfactory tubercle revealed no signal within 

their borders.  
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The descriptions above comprise the main areas of innervation for each of the 

cholinergic groups.  

Retrograde tracing 

Injections into the Str and NA revealed widespread cell body labelling (Fig. 8), 

predominantly in the deep layers of the motor, somatosensory and the limbic cortex. 

DS injections also produced a strong signal in the thalamus, predominantly in the 

anterior thalamic nucleus, the central-median, the parafascicular and the ventro-

posterior nuclei. In contrast, NA injections produce labelling mainly in the 

parafascicular and medial thalamic nuclei. Further labelling following DS injections 

was observed in the lateral substantia nigra compacta, whereas injections delivered in 

the NA produced labelling in the ventral tegmental area and medial substantia nigra 

compacta. Other nuclei with presence of tracers include the globus pallidus, the 

ventral pallidum, dorsal raphe, ventral hypothalamus and locus coeruleus.  

 

Figure 8: Distribution of neurons projecting to the dorsal striatum and nucleus 

accumbens. (A, C) Deposits of Ctb and FG were delivered into the DLS and NA, 

respectively (this was alternated across animals). (B) Representative examples of cell 

body labelling in the motor cortex (M1 ctx) and substantia nigra pars compacta (SNc) 

following an injection in the DLS. (D) Representative examples of cell body 

labelling in the sensory cortex (S1 ctx) and reticular thalamic nucleus (Rt) following 

an injection in the NA. (E) Mapping of retrogradely labelled neurons across the brain 

in two sagittal representative levels (lateral to bregma: 0.4 and 1.55 mm; each dot 

represents a positive cell body; FG, green; Ctb, red). Scale bars: A and C, 1000 µm; B 

and D, 200µm; E, 5000 µm. 
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 Labelling of neurons within the borders of cholinergic structures (Ch1-Ch8) was 

only observed in the nucleus basalis of Meynert, PPN and LDT, with no neurons 

detected within the borders of Ch1, Ch2, Ch3, Ch7 or Ch8 groups (Fig. 9). However, 

ChAT immuno labelling revealed that the majority of the retrogradely labelled 

neurons in the PPN and LDT are cholinergic, whereas none of the retrogradely 

labelled neurons in the nucleus basalis of Meynert were immunopositive for ChAT. 

These results further confirm the presence of a cholinergic projection from the 

PPN/LDT to the Str and NA and show that no other cholinergic nuclei contribute to 

the innervation to the striatal complex. 

 

Figure 9: Retrograde labelling in cholinergic Ch1-Ch8 groups. Retrogradely- 

labelled neurons were absent in Ch1, Ch2, Ch3, Ch7 and Ch8, and present in Ch4, 

Ch5 and Ch6, but co-expression with ChAT immuno labelling was only observed in 

Ch5 and Ch6. In these examples, neurons projecting to the Str are the ones positive 

for FG (green) and neurons projecting to the NA are the ones positive for Ctb (red). 

The arrow indicates a neuron containing FG that is ChAT negative. Scale bars: Ch1 

to Ch8, 100µm. 
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Innervation of the striatum and NA by cholinergic axons originating in 

the PPN and the LDT nuclei 

Three to four weeks after injections with the AAV vector in the ChAT::cre+ rats, 

clusters of cholinergic neurons, identified by immunofluorescent labelling for the 

eYFP, were found around the site of injection. Cell bodies, dendrites, and local 

axonal arbors were labelled, and the clusters of labelled neurons ranged from 0,5 to 

1mm in diameter in the sagittal plane.  

The axons of the brainstem cholinergic neurons gave rise to widespread projections 

in the form of beaded axons in the midbrain and forebrain, including the superior 

colliculus, substantia nigra, thalamus, subthalamus and GP. In addition to this, each 

of the injections in the PPN or LDT gave rise to eYFP positive axons that occupied 

most regions of the Str, NA, and substriatal structures, and their distribution 

correlated with the region of the brainstem injected (Fig. 10).  

The labelled axons gave rise to frequent varicosities, could follow long straight path 

or give rise to tortuous arborisation (Fig. 11-13) that mostly avoided 

patches/striosomes (see below). Furthermore, immunofluorescence labelling for 

VAChT of some of the YFP-positive axons and boutons confirmed the cholinergic 

nature of the projection (Figs. 11C, 12C, 13C). 
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Figure 10: 

Distribution of brainstem cholinergic axons in the striatum. Plots in the sagittal 

plane of the distribution of cholinergic neurons from the brainstem. Plots in the 

sagittal plane of the distribution of cholinergic axonal profiles from three 

representative animals that received viral vector injections in the PPNr, PPNc, and 

the LDT. Injections in the PPNr gave rise to a dense innervation of the lateral Str. 

Injections in the PPNc gave rise to a sparser innervation, with a tendency to innervate 

more medial regions of the Str and parts of the NA. In contrast, injections into the 

LDT led to dense labelling in the most medial Str and the NAcore. Each injection led 

to labelling in the olfactory tubercle. Each red dot represents at least one 

immunopositive axonal profile in a bin of 40µm2. The corresponding template (right) 

illustrates the ML levels (millimeters from the midline) and subdivisions of the Str 

(DS, dorsal striatum), NAcore (NA core) and shell (NA shell), and olfactory tubercle 

(OT) according to the stereotaxic Rat Brain Atlas of Paxinos and Watson (1986). D, 

Dorsal; C, caudal. Scale bar, 2 mm. 
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Figure 11: Cholinergic axons arising from the PPNr. Cholinergic axons arising 

from the PPNr preferentially innervate the lateral Str. A, YFP-immunopositive axons 

arising from cholinergic neurons after the deposit of AAV2–EF1a–DIO– hChR2–

YFP in the rostral PPN of a ChAT::Cre rat. The labelled cholinergic axons formed 

dense regions of innervation in the DLS. The green box in the outline represents the 

area in which the image was acquired. B, MOR immuno labelling to identify the 

striosomes. The distribution of the cholinergic axons was primarily confined to the 

MOR-negative matrix compartment. C, The cholinergic axons gave rise to a large 

number of varicosities, some of which were identified as VAChT immunopositive 

(arrowhead; see inset).D, Electron micrograph of a YFP-immunopositive cholinergic 

bouton (b) forming an asymmetric (Gray’s type 1) synapse (arrow) with a dendritic 

shaft (d). E, Probability plot, calculated from all animals (n=3) at three 

differentMLlevels (3.18, 2.10, and 1.13mmfrom the midline, from top to bottom), of 

cholinergic axons arising in the PPNr. Cholinergic axons from this region of the PPN 

were more densely distributed in the lateral aspects of the DS. Scale bars: A, 250µm; 

B, 250µm; C, 10µm; D, 0.4µm; E, 1000µm. 

 

The cholinergic projection from the PPN and LDT to the striatal complex was 

topographically organised such that the rostral part of the cholinergic brainstem 

innervated more abundantly the lateral levels of the Str, and the caudal part 
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innervated more abundantly the medial and ventral levels of the Str. The AAV 

injections in the PPNr produced areas of dense innervation (patches) mainly in the 

DLS (Figs. 10, 11A, 11E).  

 

Figure 12: Cholinergic axons arising in the PPNc. Cholinergic axons arising in the 

PPNc project diffusely across the striatum and NA. A, YFP-immunopositive axons 

arising from cholinergic neurons in the PPNc form small patches mainly in the dorsal 

part of the Str. The green box in the outline represents the area in which the image 

was acquired. B, Cholinergic axons from PPNc also avoided the striosomes. C, 

These cholinergic axons (top) gave rise to a smaller number of varicosities than those 

of the PPNr but were always immunopositive for VAChT (bottom). D, Electron 

micrograph of an immunopositive cholinergic (YFP-positive) bouton (b) establishing 

symmetric (Gray’s type 2) synaptic contact (arrow) with the neck or base of a 

dendritic (d) spine (sp). E, Probability plot showing that cholinergic axons arising in 

the PPNc have a lower density distribution than those arising in the PPNr, with 

higher values in the lateral Str, mainly in the more dorsal regions, and in the NA core 

and shell (at three different ML levels as in Fig. 2). Scale bars: A, 250µm; B, 250µm; 

C, 10µm; D, 0.2µm; E, 1000µm. 

 

In contrast, deposits in the PPNc gave rise to smaller areas of innervation that were 

sparser and distributed over different levels of the DS and NA (Figs. 10, 12A, 12E). 
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Cholinergic axons from the LDT showed a level of innervation comparable with that 

of the PPNr, but it was concentrated in the DMS and the NA (Figs. 10, 13A, 13E). In 

each case, the regions of axonal arborisations in the striatal complex avoided the 

patches/striosome as defined by the high level of expression of MOR 

immunoreactivity (Figs. 11B, 12B and 13B). These data reveal topographically 

organised cholinergic projection originating in the brainstem that innervates wide 

areas of the DS and NA, forming synaptic contacts with different postsynaptic 

structures.  

 

Figure 13: Cholinergic axons arising in the LDT. Cholinergic axons arising in the 

LDT preferentially innervate the medial Str and the Na core. A, YFP-

immunopositive axons from cholinergic neurons in the LDT form dense regions of 

innervation in the most medial levels of the Str andNAcore (depicted here). The 

green box in the outline represents the area in which the image was acquired. B, 

MOR immuno labelling in the NA shell revealed that cholinergic axons from the 

LDT tend to avoid striosomes. C, Cholinergic axons from the LDT formed large en 

passant varicosities that were immunopositive for VAChT (arrowheads). D, Electron 

micrograph of a cholinergic axon bouton (YFP-immunopositive; b) forming 

asymmetric (Gray’s type 1) synapses (arrows) with a spine (sp). E, Probability plot 
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showing that cholinergic axons arising in the LDT were more densely distributed in 

the medial Str and the core and medial shell of the NA (n µ 3; at three different ML 

levels as in Figs. 2, 3). Scale bars: A, 250µm; B, 100µm; C, 10µm; D, 0.2µm; E, 

1000µm. 

 

EM observations 

EM experimentations have been performed by Icnelia Huerta-campo. 

EM analysis of the Str revealed that the axons of brainstem cholinergic neurons gave 

rise to vesicle-filled boutons that often contained one or more mitochondria and 

formed synaptic contacts with spines (Figs. 12D, 13D) and dendritic shafts (11D). 

Synapses were mostly asymmetric (Gray's type 1; Figs. 11D, 134D, 14A, B, E, F); in 

some cases, the postsynaptic density was very prominent (similar to cortical and 

thalamic synapses) but on other occasions was less dense and more diffuse (Fig. 

14B). Symmetrical synapses were less frequently observed (Gray's type 2; Figs. 12D, 

14C). Serial section analysis revealed that synaptic incidence varied depending on 

the origin (highest for LDT axons and lowest for PPNc axons). The deposits of the 

viral vector in the Str led to the labelling of striatal cholinergic neurons and their 

local axon collaterals (Fig. 14D). EM analysis of 39 cholinergic synapses derived 

from interneurons revealed that approximately one-third form asymmetric synapses 

(Fig. 14E,F; including those with prominent and those with less prominent 

postsynaptic densities), and two-thirds formed symmetrical synapses (Fig. 14G). 

This contrasts to cholinergic synapses derived from the PPNr, of which 82% formed 

asymmetric synapses and 18% formed symmetrical synapses (n = 22; Fig. 14H). 

Similar differences in the postsynaptic targets of PPNr-derived and striatal 

interneuron-derived cholinergic synapses were observed.  

 

http://www.jneurosci.org/content/34/13/4509.long#F3
http://www.jneurosci.org/content/34/13/4509.long#F4
http://www.jneurosci.org/content/34/13/4509.long#F2
http://www.jneurosci.org/content/34/13/4509.long#F2
http://www.jneurosci.org/content/34/13/4509.long#F4
http://www.jneurosci.org/content/34/13/4509.long#F5
http://www.jneurosci.org/content/34/13/4509.long#F5
http://www.jneurosci.org/content/34/13/4509.long#F5
http://www.jneurosci.org/content/34/13/4509.long#F3
http://www.jneurosci.org/content/34/13/4509.long#F5
http://www.jneurosci.org/content/34/13/4509.long#F5
http://www.jneurosci.org/content/34/13/4509.long#F5
http://www.jneurosci.org/content/34/13/4509.long#F5
http://www.jneurosci.org/content/34/13/4509.long#F5
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Figure 14: Morphology of synapses differentiates brainstem cholinergic from 

cholinergic interneurons contacts. (Data collected by Icnelia Huerta-Ocampo and 

presented for understanding purposes) Morphology of synapses differentiates 

brainstem cholinergic from cholinergic interneurons contacts. A–C, Electron 

micrographs of cholinergic boutons (b) arising from the PPNr (YFP-immunopositive) 

forming asymmetric (Gray’s type 1) synapses with prominent (A) and moderate (B) 

postsynaptic densities onto a spine (sp) and dendritic shaft (d), respectively. C, A 

PPN cholinergic terminal forming a symmetrical (Gray’s type 2) synapse with a 

dendritic shaft. D, YFP-immunopositive cell bodies from striatal cholinergic 

interneurons and their axons after the deposit of AAV2–EF1a–DIO– hChR2–YFP in 

the DLS of a ChAT::Cre+ rat. ChAT immuno labelling confirms their cholinergic 

nature. E, F, Electron micrographs of cholinergic boutons arising from striatal 

cholinergic interneurons (YFP-immunopositive) establishing asymmetrical synapses 

that possess prominent (E) and less prominent (F ) postsynaptic densities onto a 

spine and dendritic shaft, respectively. G, A striatal cholinergic bouton forming a 

symmetrical (Gray’s type 2) synapse with a spine. Note the unlabelled terminals (ut) 

forming synapses (black arrows) with unlabelled spines in A and G. H, Synapses 

from the PPNr are predominantly asymmetric, whereas the synapses from the 

cholinergic interneurons are predominantly symmetric. Scale bars: A, C, E–G, 

0.2µm; B, 0.5 µm; D, 50µm.  
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Thus, ∼74% of those derived from the PPNr contacted dendritic shafts and ∼26% 

contacted spines, whereas the figures were ∼46% in contact with shafts, ∼49% with 

spines, and ∼5% with perikarya for synapses derived from cholinergic interneurons. 

Overall, these findings suggest that cholinergic axons derived from neurons in the 

brainstem, like striatal cholinergic interneurons, make synaptic contact with the 

spines of medium spiny neurons, and the asymmetric synapses on dendritic shafts 

suggest that they also contact striatal interneurons. 

 

Neurons retrogradely labelled from the dorsal striatum and NA are 

topographically organised in the brainstem 

To extend the data from anterograde tracing experiments using viral vectors in 

transgenic rats, we injected two retrograde tracers in wild-type animals. We injected 

a combination of targets that included the dorsolateral and dorsomedial areas of the 

Str and the core, medial shell, and lateral shell of the NA. The presence and 

distribution of retrogradely labelled neurons were analysed in the PPN and LDT. 

Immunofluorescence for ChAT was used to define the borders of the brainstem 

structures and to quantify the proportion of neurons projecting to the striatal complex 

that were cholinergic. The results confirm the presence of a topographical projection 

from the cholinergic neurons of the brainstem to the forebrain (Fig. 15).  

Injections in the core and medial shell of the NA (n=4 and n=3, respectively) led to 

dense labelling particularly concentrated in the LDT (Fig. 15B, C), with some 

labelling, albeit much sparser, in the PPNc. 
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Figure 15: Retrograde labelling from the striatum. Retrograde labelling from the 

Str and NA shows a topographical distribution of cholinergic neurons in the 

brainstem. A, B, Confocal fluorescent images showing triple immuno labelling for 

ChAT, CTb, and FG in the PPNr (A; PPNr) and LDT (B). In A, CTb was injected in 

the medial Str and FG was injected in the lateral Str, whereas in B, CTb was injected 

in the NA core and FG was injected in the NA medial shell. In both cases, most of 

the retrogradely labelled neurons were immunopositive for ChAT. C, Plots of the 

location of retrogradely labelled neurons in the PPN and LDT (at 3ML levels; 

millimeters from midline) after the injections of tracers in different regions of the 

striatal complex. Injections in DLS led to retrograde labelling in the PPNr and PPNc. 

Injections in the DMS led to retrograde labelling in the PPNc and the LDT. Injections 

in the lateral part of the NA core (NA core) led to a similar pattern of labelling. 

Injections in the medial shell of the NA (NA shell) produced retrograde labelling 

mainly in the LDT, whereas injections in the lateral shell produced labelling mainly 

in the PPNr and PPNc. Scale bars: A, B, 50µm; C, 500µm. 

 

In contrast, injections in the lateral shell (n=4) produced widespread labelling across 

the PPN and, to minor degree, the LDT (Fig. 15C). The proportion of neurons 
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retrogradely labelled from the NA that were ChAT-immunopositive was more 

variable (41-78%) than those labelled from the DS. The fact that a proportion of the 

projection neurons were not ChAT-positive suggests that non-cholinergic neurons 

(i.e., glutamatergic and GABAergic) are also involved in the striatal projection 

pathways (Table 1). 

Table 1: Distribution of retrogradely traced neurons in the brainstem. 

Quantification of retrogradely labelled neurons in the PPNr, PPNc and LDT after the 

injection of tracers in different regions of the striatal complex: dorsal striatum (DS) 

lateral (n=3) and medial (n=3), NA core (n=4), and NA shell lateral (n=4) and medial 

(n=3). Data are expressed as the normalised cell count for the three regions sampled 

and the percentage of retrogradely traced neurons that were immunopositive for 

ChAT±SEM. 

 

Axons collaterals of striatal-projecting neurons in the brainstem also 

innervate the dopaminergic midbrain and the thalamus 

 Cholinergic neurons of the brainstem are known to innervate DAergic 

nigrostriatal/mesolimbic regions and the intralaminar thalamic nuclei (see review: 

Martinez-Gonzales et al., 2011), and as such have the potential to modulate two of 

the most significant inputs to the striatal complex. To determine whether it is the 

same brainstem neurons that innervate the striatal complex that, via collaterals, also 

innervate midbrain and thalamic targets, we injected a viral vector associated with 

the WGA-Cre fusion protein in the NA core of wild-type rats (n=3). This produced 

transcellular trafficking of the WGA-Cre fusion protein that was retrogradely 
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transported to the cell body (Gradinaru et al., 2010; Xu and Südhof, 2013). In 

combination with the injection of a Cre-dependent vector in the LDT, it induced the 

expression of the YFP only in those brainstem neurons projecting to the NA that 

were retrogradely labelled with the WGA-Cre. YFP expressed by these neurons was 

distributed throughout their somato-dendritic and axonal arbors including their axon 

collaterals (Fig. 16A). These targets (NA core and LDT) were selected on the basis 

of our previous retrograde and anterograde results (FIGs. 13, 15B). We detected the 

presence of YFP-positive neurons in the LDT (Fig. 16B), of which the majority were 

immunopositive for ChAT, consistent with the other experimental approaches. In 

addition, we detected the presence of YFP-positive axons in the NA core, spread over 

the region in which the vector carrying the WGA-Cre sequence was injected. 

Neurons of the LDT gave rise to abundant collaterals that were detected in the VTA 

(Fig. 16C, D) and the midline thalamus (Fig. 16 E), suggesting that LDT neurons 

that innervate the NA core also innervate the VTA and thalamus. This combined 

approach was not possible in the PPNr because of the proximity of DA neurons in the 

substantia nigra pars compacta (SNc), which project densely to the DS. Animals in 

which one of the two targets was missed did not produce any detectable labelling of 

the cell bodies or axons. The time between injections and perfusion was shortened 

compared with previous studies (see Materials and Methods, Gradinaru et al., 2010; 

Xu and Südhof, 2013) to minimize the possibility of transynaptic retrograde labelling 

of second-order neurons at the level of the thalamus and the VTA.  
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Figure 16: labelling of axon collaterals from striatal-projecting brainstem 

neurons. A, Using a combination of two viral vectors, one of which possesses 

transneuronal retrograde capabilities, brainstem neurons that innervate striatal targets 

were selectively labelled, including their axon collaterals. B, Neurons in the LDT 

that retrogradely transported WGA–Cre from the NA core expressed the YFP after 

the local injection of a Cre-dependent virus. C–E, Axon collaterals expressing YFP 

were detected in the VTA (C), here defined by the border of the TH staining (D), and 

in the mediodorsal (MD) but not in the anteromedial (AM) thalamus (E), also in 

agreement with the study by Holmstrand and Sesack (2011). Scale bars: B, 250µm; 

(in E) C–E, 500µm. 

 

However, because we cannot rule out this possibility entirely, we performed 

additional experiments using double retrograde tracer injections into NA core and 

either VTA (n=2) or the mediodorsal thalamus (n=2). We observed a large number of 

neurons retrogradely labelled from all three structures, and the majority of them were 

immunopositive for ChAT (68% for NA, 60% for VTA, and 77% for thalamus). In 

neurons projecting to the NA, we also detected the presence of the tracers transported 

from the VTA (in 16,47% of neurons, corresponding to 58 double-labelled neurons of 

325 retrogradely labelled neurons from the NA, Fig. 16F) and the thalamus (7,16% 

of neurons, corresponding to 21 double-labelled neurons of 293 retrogradely labelled 
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neurons from the NA, (Fig. 16G), thus indicating the existence of axon collaterals to 

those targets and validating the results obtained with the WGA-Cre fusion protein. 

Together, our results suggest that neurons in LDT are able to provide both direct and 

indirect innervation (via VTA or thalamus) of the NA. 

   

Figure 17: Double-tracer injections. A, B, Fluorescent images showing triple 

immuno labelling for ChAT, CTb, and FG in the LDT after injections in the NA (FG) 

and the VTA (A; CTb) or the thalamus (B; CTb). Examples of neurons with triple 

labelling in the left panels of A and B (arrows) are shown at higher magnification in 

the right panels. Scale bars: A, B, 50µm. 
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Discussion 

The cholinergic complex is a widespread ensemble of nuclei that send inputs to 

almost the entire CNS. The main findings of the present study are as follows. First, 

cortex and thalamus, two of the main structures of the BG, received cholinergic 

inputs from the medial basal forebrain (MS, VDB and HDB) and the brainstem (PPN 

and LDT). As previously reported, the brainstem is the only source of ACh in the 

midbrain and the subthalamic nucleus (STN) (Mena-Segovia et al., 2008). Second, 

brainstem cholinergic neurons located in the PPN and the LDT provide a major 

innervation of the DS and NA that mainly avoid striosomes. Projections to the Str 

were not observed in the animals injected in the other cholinergic nuclei, suggesting 

that the PPN and the LDT were the exclusive external source of ACh in the Str and 

the Na. Third, the projection is topographically organised such as the rostral PPNr 

preferentially innervates the DLS, the PPNc equally innervates the DS and the NA, 

and the LDT preferentially innervates the DMS and NA. Finally, accumbens-

projecting cholinergic neurons in the LDT give rise to collaterals that innervate the 

DA midbrain and the thalamus, suggesting both a direct and indirect influence of the 

cholinergic brainstem on striatal regions. Our findings thus demonstrate that, in 

addition to cholinergic interneurons, cholinergic innervation of the Str is derived 

from neurons in the PPN and the LDT. The differential activity of striatal cholinergic 

interneurons and cholinergic neurons of the brainstem during reward-related 

paradigms suggest that the two cholinergic systems play different but complementary 

roles in the processing of information in the basal ganglia. 

Technical considerations 

The use of a Cre recombinase rat line together with AAV injections allowed us to 
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target anatomically-restricted cholinergic groups and map their projections. However, 

virus injections must reach a representative proportion of cholinergic neurons in each 

structure can potentially diffuse several hundred µm (Dautan et al., 2014), which 

becomes problematic for those cholinergic groups that form a continuum (e.g. Ch1, 

Ch2, Ch3). To overcome this difficulty, preventing the spread of the transduction 

over contiguous cholinergic groups and restricting the labelling to the defined 

borders of each structure, the volume of the injections was adjusted for each structure 

based on our preliminary assessments. Because our data are not used to evaluate the 

quantitative expression of axons but they are rather based on the qualitative 

expression, the variations on the virus injection volumes are unlikely to affect the 

conclusions of this study.  

The expression of eYFP can give rise to a low signal to noise ratio in thin axon shafts 

and small terminals, some of which can be photobleached rapidly and thus become 

difficult to detect during online analysis. In order to circumvent the possibility of 

false-negatives due to these factors, we enhanced the YFP signal by immunostaining 

and performed the analysis offline, thus minimizing the exposure of the tissue to the 

fluorescent light. Additional validation was obtained by the use of conventional 

retrograde tracers in wild-type rats. Our results showed that no retrogradely labelled 

cholinergic cell bodies were observed in any of the cholinergic cell groups whose 

axons were absent from the striatal complex (i.e. Ch1-Ch4, Ch7 and Ch8), and in 

contrast, retrogradely labelled cholinergic cell bodies were detected in the Ch5 and 

Ch6 regions, whose axons spread over the Str and NA. 
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Cholinergic transmission in the striatum 

The effects of ACh in the Str are varied and complex (Sugita et al., 1991; 

Koós and Tepper, 2002; Goldberg et al., 2012). Muscarinic and nicotinic receptors 

are present at both the pre- and postsynaptic levels, and thus are able to regulate the 

activity of cortical, thalamic and DAergic terminals, as well as the activity of striatal 

projection neurons and different interneurons (Calabresi et al., 1999; Volpicelli-Daley 

et al., 2003; Bonsi et al., 2011; see review by Lim et al., 2014). Classically, 

cholinergic interneurons have been considered the only source of ACh in the Str. 

They produce a vast innervation over the entire striatal complex (Bolam et al., 1984; 

Phelps et al., 1985; Phelps and Vaughn, 1986) and provide a steady tone of ACh 

release regulated by an intrinsic tonic level of firing (Bennet and Wilson, 1999; 

Bennett et al., 2000; Goldberg and Reynolds, 2011). During conditioned reward 

behaviour, a synchronous pause in the tonic firing of putative cholinergic 

interneurons has been proposed to signal the probability of obtaining a behavioural 

outcome (Blazquez et al., 2002) and the outcome delivery (Joshua et al., 2008; for 

review see Schultz and Reynolds, 2013), a mechanism that has been shown to be 

dependent on direct thalamic innervation (Ding et al., 2010). 

The existence of an additional source of ACh, provided by the brainstem or 

the basal forebrain, may underlie the functional segregation of ACh receptors. 

Dissecting the entire cholinergic systems thus becomes critical to fully understand 

the implications of cholinergic signaling in the Str. Furthermore, because the 

cholinergic brainstem provides collaterals to the thalamus and the DAergic midbrain, 

two of the most important afferent systems to the Str, it is likely that their influence 

on striatal circuits will be highly correlated with the thalamic and midbrain inputs. 

Such connectivity thus situates the PPN/LDT as an important station for striatal 



101 
 

computations.  

The lack of evidence of additional sources of ACh to the Str arising from the 

basal forebrain, the parabigeminal nucleus or the medial habenula, while not 

surprising, does emphasize the key role of the cholinergic brainstem for modulating 

striatal activity and basal ganglia function. Furthermore, because of the involvement 

of the PPN/LDT in neuropsychiatric disorders that predominantly affect the basal 

ganglia, and whose pathophysiology is associated with abnormal cholinergic 

transmission, such as PD (Hirsch et al., 1987; Hall et al., 2014), Huntington’s disease 

(Picconi et al., 2006; Smith et al., 2006), progressive supranuclear palsy (Warren et 

al., 2005), and dystonia (Sciamanna et al., 2012), the evidence of a direct projection 

to the Str opens new avenues for the interpretation of these abnormal processes and 

the challenges they pose.  

Brainstem cholinergic projections to the striatum 

In contrast to the firing of cholinergic interneurons of the Str, cholinergic 

neurons in the brainstem follow different dynamics: they typically show phasic 

increases in their relatively slow firing rate associated with brain state transition 

(Mena-Segovia et al., 2008), the latter being caused by increased cholinergic 

transmission in the thalamus (Steriade, 1996; Kezunovic et al., 2012). Furthermore, 

neurons in the PPN are phasically activated in response to salient stimuli (Pan and 

Hyland, 2005) and to cues that predict changes in the magnitude of reward outcome 

(Okada et al., 2009). Thus it is possible that cholinergic terminals in the Str that are 

derived from the brainstem lead to phasic increases in ACh release associated with 

different behavioural contexts. Therefore, our data, together with previous data, 

suggest a dual mode of cholinergic transmission in the Str: the release of ACh by 
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cholinergic interneurons is tonic and interrupted by behaviourally relevant events, 

whereas the release of ACh by cholinergic terminals from the brainstem would be 

phasic and increased during salient events. Additional support for the dual 

innervation comes from the ultrastructural analysis. Our data revealed that the 

majority of cholinergic synapses from the brainstem are asymmetric. Previous 

analyses of ChAT-immunopositive synapses in the striatal complex (Wainer et al., 

1984; Phelps et al., 1985; Phelps and Vaughn, 1986; Pickel and Chan, 1990) revealed 

both asymmetrical and symmetrical synapses, the earlier accounting for ~35% in the 

Str. This coincides with our data showing that two-thirds of synapses originating 

from cholinergic interneurons are symmetrical. Together with the fact that 

cholinergic synapses in other target of the brainstem are asymmetric (Bolam et al., 

1991; Bevan and Bolam, 1995; Omelchecko and Sesack, 2006), this suggests that a 

significant proportion of cholinergic synapses in the Str may arise in the brainstem. 

Future experiments are necessary to address the impact of the direct brainstem 

cholinergic transmission and information processing on striatal circuits and the effect 

on their convergent influence through DA and thalamic afferents. 

Non-cholinergic projections from the basal forebrain to the striatal 

complex 

As described before, our data suggest evidence for the direct projections of non-

cholinergic neurons to the accumbens arising from the PPN, LDT and nucleus basalis 

of Meynert. Those Ch4 neurons were small sized and sparse, suggesting a 

GABAergic nature as previously reported (Zaborsky and Cullinan, 1992). This may 

reflect a role of GABAergic neurons of the nucleus basalis of Meynert in accumbens 

functions. Similar observation have been made for non-cholinergic neurons of the 

PPN/LDT that project to the Str and the Na and represent a small proportion of the 
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brainstem-Str pathway. Based on the proportions observed in neurochemical studies, 

those neurons are more likely to be glutamatergic (Wang and Morales, 2009). 

Future tracing experiments could use in situ hybridization to clarify the nature of 

these non-ACh neurons projecting to the Str/NA and their role. 

Functional organisation of the cholinergic brainstem 

Cholinergic neurons in the PPN and the LDT display functional specializations that 

are related to their connectivity and their positions within different neuronal systems. 

The PPN is associated with arousal/attentional functions mainly through its 

projections to the intralaminar thalamic nuclei (Steriade et al., 1988; Parent and 

Descarries, 2008) and with motor function through projections to structures 

embedded in different motor circuits (e.g. SNc, subthalamic nucleus, gigantocellular 

nucleus; Bolam et al., 1991; Kita and Kita, 2011; Martinez-Gonzales et al., 2013). In 

contrast, the LDT is associated with limbic functions underscored by its connections 

with limbic structures, including the VTA (Omelchenko and Sesack, 2005), midline 

thalamic nuclei, and infralimbic and cingulate cortex (Cornwall et al., 1990), and its 

involvement in motivational behaviour (Lammel et al., 2012). Furthermore, previous 

studies, as well as this one, observed that PPN and LDT cholinergic neurons 

selectively target distinct subtypes of DA neurons in the VTA and induce different 

modes of discharge in their postsynaptic targets (Floresco et al., 2003; Lodge and 

Grace, 2006; Grace and Onn, 1989). The findings in the present study are in line with 

such a functional dichotomy of brainstem cholinergic neurons: PPN cholinergic 

neurons project preferentially to the DS, which is involved in sensorimotor circuits 

and integrates inputs from the intralaminar thalamus and the SNc, whereas LDT 

cholinergic neurons preferentially project to the medial Str and NA, both of which 
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are involved in limbic functions and integrate inputs from the midline thalamus and 

the VTA. Our results suggest that the motor/limbic specialization observed in 

dorsal/ventral striatal system is reflected at the level of brainstem cholinergic neurons. 

Non-cholinergic projections from the PPN and LDT to the striatal 

complex 

The PPN and LDT are heterogeneous structures composed of glutamatergic and 

GABAergic neurons (Mena-Segovia et al., 2009; Wang and Morales, 2009), in 

addition to the cholinergic neurons. These non-cholinergic populations have been 

shown to project to many of the targets of the cholinergic neurons, including 

subthalamic nucleus (Bevan and Bolam, 1995; Kita and Kita, 2011; Martinez-

Gonzales et al., 2013), the substantia nigra (Futami et al., 1995; Charara et al., 1996), 

the thalamus (Barroso-Chinea et al., 2011), and gigantocellular nucleus (Martinez-

Gonzales et al., 2013), among others. We observed that a proposition of striatal-

projecting PPN and LDT neurons were immunonegative for ChAT, suggesting that 

they may be glutamatergic or GABAergic. This opens the possibility that other 

brainstem neurotransmitters with distinct dynamics may influence the activity of 

striatal microcircuits. Furthermore, although the presence of glutamate in cholinergic 

terminals is only found in <5% of cholinergic neurons (Wang and Morales, 2009), 

additional studies should address the possibility of cotransmission from brainstem 

afferents and potential heterogeneous effects on postsynaptic targets. 
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Conclusions 

Following the recent report of a possible extrinsic source of ACh to the Str 

(Mesulam, 2004; Smith and Parent, 1986) showing positive neurons in cholinergic 

structures following retrogrades tracer injections in the striatum we evaluated here 

the possibility that other cholinergic structures across the brain may contribute to the 

cholinergic transmission in the Str. We targeted all 8 cholinergic groups to induce 

anterograde conditional labelling in cholinergic axons and observed that, besides the 

PPN and LDT (Ch5 and Ch6, respectively); no other cholinergic group gave rise to 

ChAT axons in the Str and NA. A comprehensive mapping of the axon distribution of 

these structures shows the presence of labelled axons in all of their known targets, 

thus corroborating the accuracy and specificity of our cholinergic transductions. 

Furthermore, analysis of retrogradely labelled neurons from the Str and NA shows 

labelling of cholinergic neurons exclusively in the PPN and LDT. Our results thus 

confirm that no other sources of ACh for the Str exist besides the local interneurons 

and the cholinergic brainstem. Our results further suggest that the influence of the 

cholinergic brainstem on the striatal complex involves direct and indirect projections 

arising from the same set of neurons, the latter mediated by DA and thalamic 

neurons. The convergent activity on striatal microcircuits is likely to have varied and 

complex effects on striatal information processing. These findings have important 

implications for understanding the role of the brainstem in striatal modulation. 
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Abstract 

DAergic and non-DAergic neurons of the VTA are causally related to reward 

oriented behaviour and reinforcement, and this role critically depends on the 

modulation by their afferent connections. Cholinergic neurons innervate the VTA and 

arise from two functionally distinct brainstem structures: the PPN and the LDT, 

involved in arousal and limbic functions, respectively. Cholinergic transmission is 

critical for determining the responsiveness and firing mode of DAergic and non-

DAergic neurons, but the impact of such functional specialization on the activity of 

those neurons in the midbrain is likely to be different. To test this directly, we 

mapped the distribution of PPN and LDT cholinergic axons in the VTA and 

optogenetically manipulated them to dissect their specific contributions to the 

activity of individual and confirmed DAergic and non-DAergic neurons in vivo. 

Optogenetic activation of cholinergic axons from both PPN and LDT led to increased 

firing frequency of DAergic neurons. PPN stimulation appeared to switch the firing 

mode of DAergic neurons to bursting, whereas LDT stimulation increased the 

number of spikes within a burst without altering their firing mode. Furthermore, LDT 

cholinergic axons selectively modulate DAergic neurons that are excited by aversive 

stimulation while PPN targeted DAergic neurons inhibited by aversive stimulation. 

To determine the behavioural significance of PPN and LDT cholinergic input to VTA 

we carried out behavioural experiments in which we substituted optogenetic 

stimulation of these projections for sugar rewards in an extinction of lever pressing 

for food paradigm. We also assessed the effect of activating these projections on 

locomotor activity. We found that optogenetic stimulation of PPN and LDT fibres in 

VTA increased lever pressing during extinction and also affected locomotion in the 

open field. LDT stimulation increased overall activity, whereas PPN stimulation 

increased locomotion transiently during stimulation periods. These results show 

fundamental differences in the modulation of DAergic neurons by two distinct 

cholinergic structures. They also demonstrate the behavioural significance of these 

projections for reward-related behaviour. 

Key words: Dopamine, ventral tegmental area, pedunculopontine, laterodorsal 

tegmental are, locomotion, electrophysiology 

 



108 
 

Introduction 

DAergic neurons of the ventral tegmental area (VTA) are implicated in goal-

directed behaviours and reinforcement learning (Wise, 2004). They change their 

discharge mode from tonic to phasic in response to sensory events that predict a 

reward outcome (Montague et al., 2004). This phasic activation produces 

synchronous burst (Joshua et al., 2009) and encodes a prediction error signal which is 

crucial for reinforcement learning (Schultz et al., 1997; Schultz, 2013). Thus, the 

variation in the firing mode of DA neurons, triggered by excitatory drive, is critical 

for the expression of reward oriented behaviour (Tsai et al., 2009). 

Half of the GABAergic neurons in the VTA project to the NA (Brown et al., 

2010; Van Bockstaele and Pickel, 1995), prefrontal cortex (Carr and Sesack, 2000) or 

amygdala (Fallon et al., 1984), while the other half is considered as interneurons and 

making synaptic contact with DA neurons (Olmelchenko and Sesack, 2009; Dobi et 

al., 2010; Tan et al., 2012). GABAergic VTA neurons are implicated in place 

preference (Tan et al., 2012) and reinforcement learning (Van Zessen et al., 2012). In 

vivo recording of GABAergic neurons of the VTA showed an increase of their firing 

activity during reward expectation; which may help to compute the reward prediction 

error (Cohen et al., 2012). 

The VTA receives excitatory inputs from several regions including the 

prefrontal cortex, amygdala, lateral hypothalamus, subthalamic nucleus and 

mesopontine tegmentum in the brainstem (Sesack and Grace, 2009; Beier et al., 

2015). While all of these afferent systems provide a glutamatergic input, the 

mesopontine tegmentum, composed of the PPN and LDT, also provides the only 

cholinergic innervation of DA neurons (Mena-Segovia et al., 2008). Previous reports 
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have shown the involvement of glutamatergic mechanisms following PPN 

stimulation that lead to increase in the number of VTA neurons bursting (Floresco et 

al., 2003; Lokwan et al., 1999). Similarly, activating a predominantly glutamatergic 

projection from the LDT produces burst firing in DA neurons (Lodge and Grace, 

2006) and elicits conditioned real-time place preference in behaving rodents 

(Lammel et al., 2012). However, less clear is the influence of cholinergic afferents 

over the activity of DA and non-DA neurons in vivo. Nicotinic and muscarinic ACh 

receptors are widely expressed in the VTA (Clarke and Pert, 1985; Dani and Bertrand, 

2007) and their activation in brain slices causes depolarization (Calabressi et al., 

1989; Lacey et al., 1990) and burst firing (Zhang et al., 2005) in DA neurons. While 

in vivo, the response of DAergic neurons of the VTA to nicotine administration 

seems to be more complex (Marinelli, 2007; Funk et al., 2007; Marinelli and White, 

2000; Eddine et al., 2015). Previous studies suggest that activation of GABAergic 

neurons by nicotine may also modulate DAergic neurons activity (Tolu et al., 2012). 

Furthermore, behavioural experiments have consistently shown a prominent role for 

VTA ACh receptors in goal-directed behaviour and addiction (Yeomans and Baptista, 

1997), presumably through the activation of DA neurons (Miller and Blaha, 2005). It 

is thus likely that cholinergic afferents, derived from the mesopontine tegmentum, 

play a role in tuning the activity of DA neurons in the VTA. 

 The PPN and the LDT share similar connections and neurochemistry, but 

differ in the functional networks to which they contribute. Whereas PPN is connected 

to sensorimotor and associative structures (Semba and Fibiger, 1992), as well as 

those involved in the regulation of arousal (Steriade, 1996), the LDT is connected to 

limbic systems (Cornwall et al., 1990). Because DAergic neurons are heterogeneous 

in terms of their firing properties, connectivity and functionality (Lammel et al., 2008; 
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Matsumoto and Hikosaka, 2009; Brischoux et al., 2009; Roeper, 2013; Ikemoto, 

2007; Bromberg-Martin et al., 2010), it is likely that brainstem cholinergic pathways 

produce different effects within the VTA and differentially affect subpopulation of 

DA neurons. 

 The activity of DAergic neurons in the VTA has been reliably associated with 

reward prediction stimuli (Ljunberg et al., 1992; Mirenowicz and Schultz, 1996) and 

locomotion (Perez et al., 2008). Also, it has been demonstrated that cholinergic 

agonist injected in the VTA, or cholinergic specific lesions of the PPN and/or the 

LDT caused locomotor (Laviolette et al., 2000; Dobbs and Cunningham, 2014; 

Chintoh et al., 2003) and reward- prediction impairment (Wilson et al., 2009; 

Alderson et al., 2001; Ikemoto et al., 2003). 

 VTA is one of the structures showing the highest density of cholinergic 

receptors and also the largest variability of receptors. PPN and LDT are the only 

cholinergic inputs to the VTA. It is believed that cholinergic release at the level of the 

VTA will facilitate glutamatergic and GABAergic release on DA neurons. However, 

some evidence suggests that PPN and LDT cholinergic projections could have 

separate functions on the electrophysiology and behaviour functions of DA neurons 

(refs for this paragraph). In order to address these issues, we characterised the 

innervation of the VTA by PPN and LDT cholinergic neurons by retrograde and 

anterograde labelling. Using optogenetic approach in ChAT::cre+ rats combined with 

in vivo juxtacellular single cell recording and labelling, microiontophoretic drug 

delivery, and retrograde labelling, we characterised the effect of the activation of 

PPN or LDT cholinergic afferents on the spontaneous activity of identified DA and 

non-DA neurons in the VTA. Further, we identified the targets of a subset of DA 
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neurons and correlated their responses to cholinergic modulation with the functional 

circuit in which they participate. Finally, we tested the extent to which PPN and LDT 

cholinergic projections in the VTA support reward-related behaviour using 

optogenetic self-stimulation during extinction of lever pressing for food. We also 

assessed the role of these projections in locomotor activity. 

 

Materials and methods 

Animals 

Male adult (250-450g) Long Evans (LE) wild-type and ChAT::cre+ (Witten et al., 

2011) rats were used for all experiments. Rats were maintained on a 12:12 light cycle 

(lights on 07:00) and had ad libitum access to water and food. All procedures were 

performed in accordance with the Society for Neuroscience policy on the use of 

animals in neuroscience and the animals (Scientific Procedures) Act, 1986 (UK), 

under the authority of Project Licence approved by the Home Office and the local 

ethical committee of the University of Oxford and the University of Leicester for the 

behaviour. 

Stereotaxic Injections  

All stereotaxic injections were performed during deep isofluorane anesthesia (2-4% 

in O2; Isoflo, Schering-Plough, Welwyn Garden City, UK). For the anatomical 

studies, the rats (n = 4, LE wild-type) were injected with cholera toxin b (CTb 2.5% 

in water, 100 nl over 10 min; cat. number C9903, Sigma-Aldrich) in the rostral VTA 

(from bregma in mm, AP: - 5.2; ML: + 0.8; DV: - 7.5 ventral of the dura) and red 

retrobeads (RB-R, 150 nl over 10 min; Lumafluor, USA) in the caudal VTA (from 
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bregma in mm, AP: - 5.8; ML: + 1.1; DV: - 7.7 ventral of the dura) to retrogradely 

label PPN and LDT neurons that innervate the VTA. Another group of rats (n = 6; LE 

ChAT::cre+) were injected with adeno-associated virus serotypes 2 (AAV2) and 5 

(AAV5) carrying fusion genes for channelrhodopsin 2 (ChR2) and yellow fluorescent 

protein (YFP) or mCherry (University of North Carolina Gene Therapy Centre Virus 

Vector Core). Thus, we injected either AAV5-EF1a-DIO-YFP in the PPN (500 nl 

over 10 min; from bregma in mm, AP: - 7.8; ML: + 1.8; DV: - 6.5 ventral of the 

dura) and AAV2-EF1a-DIO-mCherry in the LDT (300 nl over 10 min; from bregma 

in mm, AP: - 8.5; ML: + 0.9; DV: - 6.0 ventral of the dura), or AAV5-EF1a-DIO-YFP 

in the LDT (n = 3), to quantify the transduction rate of cholinergic neurons (YFP in 

PPN and mCherry in LDT) and anterogradely label the cholinergic axons innervating 

the VTA (YFP in LDT). The PPN injections led to a roughly circular transduction 

area of about 1 mm diameter, and LDT injections about 0.5 mm. In each experiment 

the transduced area was verified to be largely restricted to the PPN or LDT. 

For the rats used for the electrophysiological studies, we first injected AAV2-EF1a-

DIO-hChR2-YFP into the PPN or LDT of ChAT::cre+ rats to transduce cholinergic 

neurons, as above. Two weeks later, we injected fluorogold (FG; 2.0%, 300 nl over 

10 min; Fluorochrome, LLC) or CTb (2.5%, 500 nl over 10 min; Sigma-Aldrich) in 

the lateral shell of the NA (from bregma in mm, AP: + 1.2; ML: + 2.7; DV: - 6.8 

ventral of the dura); the tracers were alternated between animals. For control 

experiments, ChAT::cre+ rats were injected in PPN and LDT in the same coordinates 

described above using AAV2-EF1a-DIO-mCherry or AAV5-EF1a-DIO-eYFP (i.e., 

without channelrhodopsin-2). All injections were made using designated 1-μl 

syringes (SGE Analytical Science) for each vector at a rate of 50 nl/min and a post-

injection diffusion time of 5 min. 10-15 days later, juxtacellular recordings/ labelling 
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of neurons were performed in the VTA. 

Juxtacellular recordings 

Anesthesia was induced with 4% v/v isofluorane (Schering-Plough) in O2, and 

maintained by an injection of urethane (1.3 g/kg, i.p.; ethyl carbamate; Sigma, Poole, 

UK). Supplemental doses of ketamine (35 mg/kg, i.p.; Ketaset, Willows Francis, 

Crawley, UK) and xylazine (6 mg/kg, i.p.; Rompun, Bayer, Germany) were 

administered as required throughout the experiment. Body temperature was 

maintained at 38°C using a thermistor-controlled heating pad. After local skin 

anesthesia by a subcutaneous injection of Marcaine (0.25%), the animals were placed 

in a stereotaxic frame (Kopf). A cutaneous incision was made to expose the skull. 

Then, craniotomies were made for the electrocorticogram (ECoG; bilaterally, from 

bregma, AP: + 3.0 mm; ML: ± 2.5 mm; corresponding to the somatic sensorimotor 

cortex) and its reference (above the right cerebellum), and the optic fibre cannula 

(from bregma in mm, AP: + 8.8; ML: + 0.8: DV: - 6.2 ventral of the dura, implanted 

at a 20° angle; aimed at the site where cholinergic axon bundles that originate in the 

brainstem penetrate the caudal VTA, as evidenced by our anatomical findings). A 

small craniotomy was made above the VTA (from bregma in mm, AP: -4.0 to -5.3; 

ML: + 0.4 to + 1.4, to be used at a 5° angle) and the dura mater was gently removed 

to allow the passage of a glass pipette for single cell recordings; the exposed brain 

surface was kept moist with sterile saline (0.9% NaCl) throughout the experiment. A 

supplementary ground for the single cell electrode was placed subcutaneously at the 

back of the neck.  

The ECoG was recorded using 1 mm diameter stainless-steel screws and referenced 

to a steel screw above the cerebellum. ECoG signals were band-pass filtered at 0.3-
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1000 Hz (-3 dB limits), amplified 2000-fold (DPA-2FS filter/amplifier; Scientifica, 

Harpenden, UK) and digitized online at 2.5 kHz. The ECoG was used to monitor the 

depth of anesthesia. The anaesthetics used typically produce slow wave activity 

alternating with episodes of spontaneous cortical activation (Mena-Segovia et al., 

2008). Extracellular recordings of action potentials of individual VTA neurons were 

made using glass micropipettes (15-25 MΩ, measured in the cortex; tip diameter 

~1.5 μm) filled with 1.5% w/v neurobiotin (Vector Laboratories Ltd., Peterborough, 

UK) in 0.5 M NaCl. Signals from the glass micropipettes were band-pass filtered at 

0.3-5000 Hz (NL125: Digitimer), amplified 10-fold through the active bridge 

circuitry of an Axoprobe-1A amplifier (Molecular Devices Corp., Sunnyvale, CA), 

AC-coupled and amplified a further 100-fold (NL-106 AC-DC Amp: Digitimer Ltd., 

Welwyn Garden City, UK), and digitized online at 17.5 kHz. Data were acquired and 

stored using an analog-to-digital converter (Power 1401; Cambridge Electronic 

Design, Cambridge, UK) connected to a PC running Spike2 (ver. 7; Cambridge 

Electronic Design).  

The whole of the VTA was scanned with the glass micropipettes for spontaneously 

firing neurons. When action potentials were detected, a minimum of 5 min of basal 

firings were recorded to establish a mean baseline firing rate and spontaneous 

discharge pattern. Subsequently, sensory stimulation and induced global activation 

were elicited by a pinch of the hind paw delivering a standard pressure of 183 g/mm2 

(“aversive stimuli”). Once the firing rate returned to the baseline (approximately 5 

min), the activity of putative VTA neurons was recorded during optical stimulation of 

brainstem cholinergic afferents using different protocols of light stimulation as 

follows. A multimode fibre optic patch cable (300 μm diameter, 2 m long; M56L01, 

ThorLabs, Newton, NJ, USA) was connected to one end of the implanted ceramic 
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cannula (300 μm diameter, 10 mm long; CFMC13L10, ThorLabs) using a mating 

sleeve, and the other end was connected to a class IIIb blue laser (473 nm; LRS-

0473-PFM-00100-05, LaserGlow Technologies, Canada). At the beginning of each 

experiment, the output power of the laser at the cannula end was measured and 

adjusted to deliver ~20 mW. The laser in turn was driven by transistor-transistor logic 

(TTL) pulses originating in the digital output of the Power 1401 (Cambridge 

Electronic Design) and fed back to its digital input to record the stimulation events. 

The stimulation protocol was set as follows: pulse durations 50 ms and frequency of 

10 Hz. Train pulses were repeated twice at least, with a minimum interval of 30 s 

between each. At the end of the recording, a microiontophoretic current was applied 

to the neuron (1–10 nA positive current, 200 ms duration, 50% duty cycle) to label it 

with the neurobiotin (Pinault, 1996). To achieve reliable labelling, the firing of the 

neurons had to be robustly modulated by the current injection for a minimum of 1 

min. The neurobiotin was allowed to transport along the neuronal processes for 2-4 

h. To ensure discrimination between neurons during the histological analysis (see 

below), a maximum of 4 were recorded per animal with a minimum distance from 

each other of 400 µm in all axes. Following the diffusion time, the animals were 

given a lethal dose of ketamine (150 mg/kg) and intracardially perfused with 0.05 M 

phosphate buffered saline (PBS), pH 7.4, followed by 300 ml of 4% w/v 

paraformaldehyde in phosphate buffer (0.1 M pH 7.4). Brains were stored in PBS at 

4°C until sectioning. 

Microiontophoresis 

Custom-made double-barrel pipettes (Dondzillo et al., 2013) were prepared by 

combining a single glass capillary for juxtacellular recording/ labelling (2-µm tip 

diameter, resistance 15-20 MΩ) and an additional glass capillary at a ± 20˚ angle for 
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drugs infusion (10-µm tip diameter). Both pipettes tips were glued with 

cyanoacrylate first at an average distance of 100 µm, and reinforced using epoxy and 

dental cement. During the experiments, a baseline recording was obtained, during 

which VTA neurons were stimulated using the parameters described above (80 

pulses, 10Hz, 50ms duration). Following a recovery period, a cholinergic antagonist 

cocktail was applied by iontophoresis (80 nA, 50 ms injection, 1 Hz), consisting of 

the following: methyllycaconitine (MLA) 20 mM, dihydro-β-erythroidine (DhβE) 40 

mM, atropine 40 mM and mecamylamine 100 µM. All drugs were dissolved in 0.9% 

saline solution. The injection was controlled by adjusting the current and the 

resistance of the drugs injection pipettes. Current injection was counterbalanced 

using the recording electrode. Neurons were stimulated with the laser during the drug 

administration. A minimum of 3 laser trials were delivered with a minimum of 60 

seconds between each. After 300 seconds of drugs iontophoresis, the injection 

current was stopped and a washing period of 1 minute was allowed. Then the laser 

stimulation was repeated. At the end of the recording and stimulation trials, neurons 

were labelled with neurobiotin as previously described. Only 

immunohistochemically-identified neurons were used. 

Electrical stimulation 

 In a subset of animals, a bipolar concentric electrode was implanted into the PPN 

(tip diameters 100 µm and an impedance of ~10 kΩ). Following the baseline 

recording of VTA neurons, electrical stimulation (0.5 ms duration, 0.5 to 0.8 mA 

amplitude) was delivered at 0.5 Hz using a constant-current isolator (A360D, World 

Precision Instruments). Neurons were subsequently labelled as previously described. 

Only immunohistochemically-identified neurons were used. 
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Behaviour 

Surgery. Two weeks following virus (AAV2-EF1a-DIO-ChR2-eYFP) 

injection in ChAT::cre+ (LDT n=10, PPN n=12) and WT (n=12) animals, a second 

surgery was performed to implant an optic fibre above the VTA. Animals were 

anesthetized and their skull exposed. Six stainless-steel anchoring screws (Morris 

Co., Southbridge, Massachusetts, USA, part number OX1/8 flat) were fixed onto the 

skull. A flat-cut fibre stub (200µm diameter multimode, 0.49NA, 8mm long, 

Thorlabs) connected to a SMA-905 connector was gently lowered 200µm above the 

right VTA (AP: -6.5mm, ML: +0.9mm, DV: 6.8 mm from the brain surface, relative 

to the bregma) and kept in position with light curing dental cement (Flowable 

Composite, Henry Schein, Gillingham, UK). The connector was protected by a dust 

cap (CPAMM SMA905, Thorlabs, Munich, Germany) which was replaced if 

missing. Animals received 5 days of a non-steroidal anti-inflammatory analgesic 

(Carprieve, 5mg/kg; s.c.; Norbrook Laboratories Ltd., Corby, UK) and antibiotic 

(Baytril, 2.5%, 0.2ml/kg, s.c., Bayer, Leverkusen, Germany) treatment before 

behavioural testing. Animals were handled daily and were group-housed. 

Apparatus. Initial lever training was conducted in 4 operant chambers (Med 

Associates Inc.), placed in sound-attenuated and ventilated wooden boxes. There was 

a recessed food magazine and a single operant lever located to one side of the 

magazine (right or left, randomly distributed). Box illumination was provided by a 

2W incandescent light situated on the opposite wall. A magazine LED was located 3 

cm above the magazine and illuminated for 8 s on each reward delivery. The house 

light and fan were turned on at the beginning of each session and turned off 5 min 

following the end of the training. For optogenetic stimulation, animals were tested in 

an identical operant box with the top removed to allow attachment of the optic fibre. 
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Dustless precision sugar pellets (45mg) from Bio-Serv (Frenchtown, NJ, product 

number: F0021) were used as rewards. Experimental events were controlled and 

recorded by Med-PC software.  

Procedure. Before implantation, the power of the laser output at the tip of the 

optic fibre was tested. Any optic fibre unable to provide a minimum of 10mW was 

excluded. During all lever pressing experiments food was restricted to 2 hours daily, 

which was provided one hour after testing in order to maintain at least 85% of the 

starting body weight. After two days behavioural training, each animal was exposed, 

in the home, to sugar pellets. One day before initiation of training, animals were 

individually placed in operant boxes where 20 pellets were randomly delivered in the 

food magazine during a 20 min period in order to habituate animals to magazine and 

food delivery. This step was repeated until the animal ate the 20 pellets within the 20 

min period.  

For open field testing, animals were placed into a square (50cm×50cm×50cm) black 

Plexiglass open field box. Illumination was provided by a 60 W red light bulb and 

the box was thoroughly cleaned between animals. Motor activity was monitored 

during 30 min with the AnyMaze software (Stoelting, Ilinois, USA) using a high 

resolution camera (C615, Logitech, Taiwan, Japan) positioned above the box 

Operant training. Animals were manually shaped to lever press in a 

continuous reinforcement (CRF) schedule where every single lever press was 

reinforced with a single sugar pellet (Gerdjikov et al., 2011). This was continued 

until rats completed 80 presses in a 30 min session for two consecutive days. Next, 

animals underwent 2 days of a variable interval 15 schedule (VI15, reinforcements 

follow the first press after an average of 15 s since the last reward, session duration: 
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30 min), followed by 2 days of VI30 (reinforcements follow the first press after an 

average of 30 s since the last reward). Following the second session of VI30, animals 

were transferred to the optogenetic stimulation chamber and connected to a dummy 

patch cable (Calu et al., 2013) for another VI30 sessions. These VI30-3 sessions were 

repeated until rats recovered at least 70% of the lever presses prior to attachment. 

This was followed by 4 extinction days during which reward delivery was replaced 

by optogenetic stimulation (8 s pulses, 10Hz, 50ms on/off) maintaining the VI30 

schedule. For optogenetic stimulation, a blue laser was connected to a 1 meter 

reinforced optic fibre patch cord (200µm fibre, multimode, 0.48 NA, Thorlabs Inc.) 

with an intermediary single rotary joint (FRJ, Doric lenses, Quebec, Quebec) 

positioned 1 meter above the floor. Laser power was adjusted for each animal in 

order to deliver a power of 5 mW at the tip of the fibre (40 mW/mm2, Light 

transmission calculator, Optogenetics Resource Centre, 

http://www.stanford.edu/group/dlab/cgi-bin/graph/chart.php). 5 min before each 

session, the fibre was plugged into the implant and remained in place for 5 min after 

completion of the session. To avoid overlapping two consecutive stimulations, the 

minimum reinforcement interval was set at 9s. For all sessions, timestamps of lever 

presses, magazine entries, reward deliveries or laser stimulations were recorded 

using the Med-PC software (Med Associates Inc.). Following extinction, animals 

were given free access to regular chow food pellet and were given 2 test-free days.  

Open field. Next, open field activity was recorded for 3 consecutive days. 

Average velocity (m/sec), maximum velocity, total distance travelled and time 

immobile were recorded in 5 s bins. On each of the 3 days rats underwent either: 1) 

baseline recording (nostim), where the implant was connected to the optogenetic 

patch cord but no stimulation was delivered, or 2) vehicle injection + stimulation 

http://www.stanford.edu/group/dlab/cgi-bin/graph/chart.php
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(stim), where they received saline injection (i.p., 0.3ml) 30 min prior to testing, and 

were given every two minutes intra VTA laser stimulation (13 stimulations total, 8 s 

pulses, 10Hz, 50ms on/off, controlled by 28V DC to TTL Adapter), or 3) drug 

injection + stimulation (drug), where they received 30 min before testing a 

cholinergic cocktail (i.p., 0.3ml final volume; MLA: 6mg/kg; DHBE: 3mg/kg; 

atropine: 0.5mg/kg; mecamylamine: 1.0mg/kg in saline ) and were given every two 

minutes intra VTA laser stimulation (parameters as above). Distance travelled was 

aligned with stimulation using recorded time of the first stimulation and normalised 

by the average of the distance travelled during the immediate 20 s prior to 

stimulations.  

Behaviour data analysis. The α level was set at 0.05 for all analyses 

performed on behavioural data. Locomotion data were normally distributed. Data 

were analysed using one way ANOVAs and mixed-ANOVAs with Tukey post hoc 

tests. Data analyses were performed using SPSS (SPSS statistics software, IBM). 

Immunohistochemistry and Image Processing 

 Sagittal sections of the right hemispheres were cut at 50 µm thickness using a 

vibratome (VT1000S, Leica). Sections at the approximate levels of the NA, PPN, 

LDT and VTA were collected in a 24-well plate. They were incubated in a blocking 

solution consisting of 10% normal donkey serum (NDS) in PBS containing 1% 

Triton X100 for a minimum of 1 h. The sections containing the retrograde tracers 

injected in the VTA were first processed to identify the injection sites. Only those 

cases where the injections were contained within the borders of the rostral or caudal 

VTA were included in the study (n = 4). Sections containing the PPN and LDT at 

three different mediolateral levels (two of which contained both nuclei) were 
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incubated in an antibody against ChAT (raised in goat; 1:500 dilution in 1% NDS, 

0.03% Triton X-100 in PBS, Millipore) and an antibody against CTb (raised in 

mouse; 1:1000 dilution in 1% NDS, 0.03% Triton X-100 in PBS, Abcam ab35988) 

followed by several washes in PBS and incubation in a CY5-conjugated donkey anti-

goat antibody (1:1000, Jackson Immunoresearch Inc.) and an Alexa488-conjugated 

donkey anti-mouse antibody (1:1000 dilution, Jackson Immunoresearch). Neurons 

containing RB-R did not require any further processing. The sections were mounted 

on slides in VectaShield and examined under a fluorescent microscope (ImagerM2, 

Zeiss, Carl Zeiss AG, Germany) using the following filters (nm): 504 for CTb-

Alexa488, 560 for RB-R and 650 for ChAT-CY5. Multi-channel stacks of images 

were taken in the Z plane using a digital camera (Hamamatsu ORCA-ER digital 

camera, Hamamatsu Photonics K.K) in combination with the acquisition software, 

Axiovision 4.8.1 (Carl Zeiss AG, Germany). The brightness and contrast of the 

images were subsequently adjusted in Photoshop (Adobe Systems). The distribution 

of labelled neurons was digitized offline using StereoInvestigator (Micro Bright 

Field, MBF Biosciences) and each neuron was assigned a category depending on the 

markers expressed. The number of neurons positive for each marker was then 

quantified as described below. 

For the evaluation of the transduction of cholinergic neurons in the PPN/LDT and 

axons in the VTA, sections were incubated with an antibody against green florescent 

protein (GFP, 1:1000, raised in rabbit, Invitrogen, A21311) and either an antibody 

against ChAT (to label PPN/LDT somata; details as above) or against tyrosine 

hydroxylase (TH; to define the VTA borders; raised in chicken; 1:500 dilution in 1% 

NDS, 0.03% Triton X-100 in PBS, Abcam). To determine the proportion of 

cholinergic neurons transduced, multi-channel stacks were acquired (as described 
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above) and analysed offline using StereoInvestigator.  

For detecting the presence of vesicular transporters in PPN/LDT axons within the 

VTA, fluorescent images were obtained with a confocal microscope (LSM-510, 

Zeiss) using the following filters: 504 nm for Alexa Fluor-488, 560 nm for CY3 and 

650 nm for CY5 (40X, 1.4 numerical aperture oil immersion). Confocal images were 

processed using Huygens Professional deconvolution software (version 4.1; 

Scientific Volume Imaging) with a maximum of 40 iterations. 

The sections containing juxtacellularly labelled VTA neurons were incubated in 

CY3-streptavidin solution (1:1000, Gelifsciences) in PBS, containing 0.03% Triton 

for a minimum of 4 h. They were then examined under a fluorescent microscope 

using a 560 nm filter and those sections containing labelled neurons were incubated 

overnight with the chicken anti-TH, followed by several washes in PBS and 

incubation with a CY5-conjugated donkey anti-chicken antibody (1:1000, Jackson 

Immunoresearch Inc.). Streptavidin-positive neurons (i.e. neurobiotin-labelled) that 

were TH-immunopositive were processed further. The presence of FG in labelled 

neurons was evaluated using a UV filter (450 nm), which revealed a strong signal in 

the somata of retrogradely labelled neurons. Images of triple-positive neurons 

(streptavidin-CY3, TH-CY-5 and FG) were captured using a fluorescent microscope 

and Axiovision software. FG-negative neurons were then incubated overnight with 

an antibody against CTb (as above) followed by several washes in PBS and 

incubation with an AMCA-conjugated donkey anti-mouse antibody (1:1000 dilution, 

Jackson Immunoresearch). Images of triple-positive neurons (streptavidin-CY3, TH-

CY-5 and CTb-AMCA) were captured as above. All streptavidin+/TH+ neurons were 

digitized using Neurolucida (Micro Bright Field) and their location within the VTA 
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recorded in a sagittal 3D map obtained from the rendered outline of the TH-stained 

boundaries of the VTA across all mediolateral levels. The outlines of individual 

sections containing labelled neurons were then rotated and aligned to build a map in 

which all labelled neurons were contained.  

In addition to the analysis of VTA sections containing labelled neurons, all brains 

were also processed to confirm the sites of injection of the retrograde tracer in NA 

and the transduction sites (in PPN or LDT). Thus, sections were examined under 

fluorescent microscopy to identify the FG deposit, the CTb deposit (following 

immunohistochemical processing as described above) and the hChR2-YFP signal. If 

tracers were off target, the recorded and juxtacellularly labelled neurons were still 

included in the analysis but the retrograde labelling was not taken into consideration. 

If the transduction was weak or overlapped between the two cholinergic nuclei, the 

neurons were discarded. 

Analysis of connectivity  

Neurons projecting to the rostral and caudal VTA were quantified and their 

distribution evalued throughout mediolateral and rostrocaudal levels to identify 

topographical differences. Neurons within the PPN and LDT, as delimited by the 

ChAT-immunopositive cell bodies, were classified as: 1) ChAT+/CTb+, 2) 

ChAT+/RB-R+, 3) ChAT-/CTb+ or 4) ChAT-/RB-R+. Three representative 

mediolateral levels were selected for the analysis, corresponding to the following 

levels from the midline: 1.13, 1.55 and 1.9 mm (Paxinos and Franklin, 2007). To 

determine the rostrocaudal distribution, VTA-projecting neurons were analysed using 

an adaptation of a method based upon the subdivision of the PPN into equally spaced 

segments, as described previously (Mena-Segovia et al., 2009). Using the centre of 
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the substantia nigra pars reticulata (SNr) as a reference point, concentric circles at 

300 µm intervals were drawn outwards to cover the entire extent of the PPN; the first 

two segments covered the SNr and marked the PPNr. From this border, and using the 

concentric circles, the PPN was divided into three equally sized segments of 900 µm 

each along its rostrocaudal axis, representing the rostral (S-I; 0.6 to 1.5 mm from the 

SNr), middle (S-II; 1.5 to 2.4 mm) and caudal (S-III; 2.4 to 3.3 mm) PPN, from 

lateral to medial sections. LDT neurons were quantified in one single segment. 

Results are expressed as the total number of neurons in each category, and as the 

percentage of cholinergic neurons expressing one of the tracers, using the 

rostrocaudal segments to average across all animals. We used an ANOVA on ranks 

analysis to compare differences (the data were not normally distributed).  

For the analysis of the cholinergic innervation of the VTA, we measured the length of 

axons of cholinergic neurons transduced in the PPN (n = 3) and LDT (n = 3) as an 

estimate of density of innervation. In order to obtain a reliable comparison between 

the innervation of each structure, we analysed the density of axons following 

transduction using only the AAV5-EF1a-DIO-eYFP, thus avoiding confounding 

factors such as possible differences in the efficiency of the vector to transduce 

cholinergic neurons or differences in the strength of the fluorescent signal. In each 

case, the location of the transduction area was confirmed to be contained within the 

limits of the PPN or the LDT. Images were acquired using a 5X magnification 

objective for delimiting the border of the VTA defined by TH-immuno labelling, and 

20X for detecting fluorescent axons. For each brain, three sections corresponding to 

approximately 0.4, 0.9 and 1.4 mm from the midline (Paxinos and Franklin, 2007) 

were analysed. A grid of 250 µm2-squares was superimposed and in each square the 

total length of labelled axons was measured by tracing all fluorescent axons using in-
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built Neurolucida functions. The results are expressed as total axonal length in each 

square (expressed as µm) or as a normalised value for each square relative to the 

total length in each VTA level (expressed as percentage). Data were then calculated 

in three dimensions (rostrocaudal, mediolateral and dorsoventral) in order to identify 

topographical differences within the VTA. To identify differences in the axonal 

length across rostrocaudal segments, we used an ANOVA on ranks analysis (the data 

were not normally distributed), and to compare between the axonal length at specific 

segments between PPN and LDT axons, we used an unpaired t-test. The level of 

significance for all tests was taken to be P < 0.05. Data are expressed as mean ± 

standard error of the mean (SEM) unless otherwise indicated. 

Electrophysiological data analysis 

Following histological confirmation of their location and neurochemical nature, the 

recordings of VTA neurons were analysed to determine their basic 

electrophysiological properties. Spike trains were digitized and converted into a time 

series of events using in-built Spike2 functions. The baseline activity, firing patterns 

and action potential duration were determined from 5 min-long initial recordings. To 

determine variations in the firing rate following experimental manipulations, 20 sec 

segments of baseline activity preceding the manipulation were compared to the firing 

rate during the pinch or laser stimulation and expressed as percentage change.  

Neurons’ responsiveness was determined by computing a time-resolved average 

response to light stimulation. For this, 2 to 4 trials for each neuron were obtained and 

a modified estimation of the mean instantaneous firing rate locked to the onset of the 

laser was computed (Blejec, 2005). By considering each spike train



j 1,...,k  as a 

sequence of discrete events with occurring times 



{ti, j},i 1,2,...,n j  , a cumulative 
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distribution function (CDF) at each time 



ti, j can be defined. The number of events 

prior and up to 



ti, j  is a strictly increasing step function changing at 



ti, j  in unit steps. 

The slope of CDF divided by the number of trials represents the mean density of 

events across the 



k trials and is equal to the mean density of events per unit time or 

the trial-averaged firing rate. Then a local linear regression based on 



Ni, j  6  k
 

neighbouring events may be used to estimate the CDF slope for each spike time and 

the regression slope estimates the instantaneous firing rate at each reference time 



ti, j  

while considering the response of the 



k  trials. Finally, an evenly sampled time series 



FR(t) was obtained by smoothing the resulting (unevenly-sampled) time series with 

a 1 sec Gaussian kernel. The distribution 



FR(t) of spontaneous activity prior to the 

stimulus was then used to compare the activity during laser application with the basal 

activity. Percentiles 5 (



C5 ) and 95 (



C95 ) were selected as thresholds to assess 

inhibition and excitation in the post-stimulus interval respectively. Significance of 

response periods was assessed by means of a cluster-based permutation tests (n = 200 

permutations, P < 0.05) on the duration of the intervals. If a neuron showed a post-

laser period with 



FR(t) above percentile 95 or below percentile 5 for a longer period 

than any other within the baseline (and not less than 3 s), then the neuron was 

considered to respond to cholinergic axonal activation either by activation or 

inhibition. If these criteria were not met then a neuron was considered as non-

responding. 

Neurons that were classified as regular (only for descriptive purposes) showed more 

than three spaced peaks in their autocorrelogram. To determine bursting activity, 

typical parameters for DAergic neurons were used where the burst onset was defined 

by a minimum of two events with an interval of 80 ms or less, and the burst 
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termination was determined if the interval between events was larger than 160 ms 

(see Grace and Bunney, 1984). The number and characteristics of the bursts were 

analysed using Spike2 scripts (Cambridge Electronic Design), including the number 

and percentage of spikes inside bursts, the number and percentage of inter-burst 

spikes and the burst probability (normalised burst count difference between basal and 

laser stimulation). Student’s t-test or the Mann-Whitney Rank Sum Test were used to 

compare data between groups. Linear regressions were used to compare the firing 

rate changes between different modalities of experimental manipulations (i.e. laser v 

pinch), calculating the Studentized Deleted Residuals to detect outliers (SigmaPlot 

12.0, Systat Software, Germany). The significance level for all tests was taken to be 

P < 0.05. Data are expressed as mean ± SEM. 
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Results 

Electronic microscopy data were collected by IHC and were reported here to aid 

interpretation. 

Cholinergic neurons modulate the activity of DA and non-DA neurons of 

the VTA 

In order to define topographical relationships between cholinergic neurons of the 

brainstem and the VTA we first made deposits of two retrograde tracers in the VTA 

(rostral and caudal) to define the topographical organisation of the brainstem 

cholinergic innervation of the VTA.  

 

Figure 18: Cholinergic projections to the VTA. (A) Schematic showing the sites of 

retrograde tracer injections in the VTA: cholera toxin b (CTb) was injected in the 

rostral VTA and red retrobeads (RB-R) in the caudal VTA to identify the topography 

of the projections from the PPN and LDT. (B) ChAT-immunopositive neurons 

contained CTb and/or RB-R in both PPN and LDT (arrows; the PPN neuron is triple-

labelled and the LDT neuron in double-labelled). 

 

We observed that cholinergic neurons of the PPNc and LDT innervate both rostral 

and caudal regions of the VTA, arising from similar numbers of cholinergic neurons 

in the PPN and LDT (Figs. 18 and 19). Next we used a transgenic rat line that 

expresses Cre recombinase under the ChAT promoter (ChAT::cre+; Witten et al., 
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2011). We stereotaxically injected into the PPN or LDT an AAV vector that 

incorporated a transgene coding for a fluorescent reporter (enhanced yellow 

fluorescent protein, eYFP) and a light-activated ion channel (channelrhodopsin-2, 

ChR2) (AAV2-EF1a-DIO-hChR2-YFP; Fig. 21a). 

Figure 19: Cholinergic neurons projecting to the VTA are concentrated in the 

caudal mesopontine region. (A) Pattern of retrograde labelling in relation to the 

expression of ChAT at three mediolateral levels of the PPN/LDT in a representative 

animal. (B) Similar numbers of VTA-projecting cholinergic neurons were detected at 

different mediolateral levels. A larger proportion of non-cholinergic VTA-projecting 

neurons (albeit not significant) was observed in the most lateral sections of the PPN. 

(C) The number of cholinergic neurons containing one of the tracers was normalised 

against the total number of cholinergic neurons and expressed as a percentage of the 

total. This was quantified at three rostrocaudal 900 μm-segments of the PPN and in 

the LDT. The number of cholinergic neurons projecting to the VTA is higher in the 

PPNc segments and the LDT. This contrasts with the low number of ChAT+/RB-R+ 

neurons projecting to the caudal VTA located in the PPNr. Bars represent SEM (n = 

4). 
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 Appropriate controls were used to verify the specificity of the vector for cholinergic 

neurons both in the brainstem and other brain regions using a vector that encodes 

only the fluorescent reporter (Fig. 20 and 21).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Specificity of transduction for cholinergic neurons in different brain 

areas. We tested the specificity of the transduction by injecting AAV5-EF1a-DIO-

YFP in other brain regions in a different set of animals, including the cerebellum, 

ventromedial thalamus, superior colliculus and Str as well as the PPN and LDT. 

Positive (i.e. YFP-expressing) somata were only observed in the Str, the PPN and 

LDT, and no retrograde transduction of cholinergic neurons was detected. 

 

In both PPN- and LDT-injected rats, we detected fluorescently-labelled axons in the 

VTA, the borders of which were defined by the distribution of tyrosine hydroxylase-

immunopositive (TH+) neurons (Fig. 22, 23b and 25b).  
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 Figure 21: Virus expression was visible only in ChAT neurons. The presence of 

two fluorescent markers in the cholinergic neurons of the PPN (AAV5-EF1a-DIO-

YFP) and LDT (AAV2-EF1a-DIO-mCherry) of ChAT::Cre+ rats was used to evaluate 

the specificity for the transduction, in combination with immunofluorescent detection 

of ChAT. 

 

Labelled axons were mapped across the full extent of the VTA and showed a 

relatively homogeneous distribution whether derived from the PPN or LDT, although 

LDT axons had a greater overall length than PPN axons (albeit not significant; Fig. 

22) and with an area of higher density in the dorsal part of the parabrachial 

pigmented area (n = 6; Fig. 23c and 25c).  

 

 



132 
 

 

Figure 22: Mediolateral distribution of cholinergic axons in the VTA. (A) The 

axons used in the analyses in Fig. 24c and 26c were traced and digitized, as shown in 

this representative sections. (B) The axonal density was normalised to detect areas of 

preferential innervation from either the PPN or the LDT. Whereas in the lateral and 

middle VTA we observed a similar pattern, in the medial VTA some differences were 

observed: PPN tends to innervate the most rostral regions of the VTA, where LDT 

innervation is low, but then drops in the most caudal regions, where LDT innervation 

is higher. This coincides with the low numbers of retrogradely labelled cholinergic 

neurons in the PPN when the injection was located in the caudal VTA. Asterisks 

represent P < 0.05. (c) Quantification of the total length cholinergic axons in the PPN 

and the LDT (t = -1.29, P = 0.266). Bars represent SEM.  

 

 

Consecutive sections were processed to reveal the YFP by a permanent peroxidase 

reaction product and processed for electron microscopy to characterise the synapses 

formed by YFP-expressing, cholinergic axons. Gray’s Type 1 synapses 

(asymmetrical) were formed by PPN cholinergic axons with DA dendrites, whereas 

LDT cholinergic axons formed asymmetrical synapses with both DA and non-DA 

dendrites (40/60%, respectively). 



133 
 

 

Figure 23: PPN cholinergic projection to DA and non-DA neurons of the VTA. 
(A) An AAV vector (AAV2-DIO-E1Fa-YFP-ChR2) was injected into the PPNc of 

ChAT::Cre+ rats. (B) YFP-positive axons were detected in the VTA and (C) mapped 

using 250-µm2 grids. (D, E) PPN cholinergic axons (b, bouton) make synaptic 

contacts (arrows) with both TH+ and TH- dendrites (d). Scale bars (in µm): b, 70; d 

and e, 0.5. 

 

 In contrast, Gray’s Type 2 synapses (symmetrical) from both structures were formed 

predominantly in non-DA structures (80% for PPN and 100% for LDT). 

Furthermore, the synapses derived from the PPN made contacts with a larger 

proportion of DA processes (Fig. 23d and 25d), whereas those derived from the 

LDT showed a greater preference for non-DA processes (Fig. 23e and 25e). The 

combined results from the anatomical characterisation thus reveal that cholinergic 

axons originating in the PPN and LDT are intermingled within the VTA and contact 

both DA and non-DA neurons. In addition, while the number of VTA-projecting 

cholinergic neurons is similar between PPN and LDT, there is an indication from the 

axonal mapping that the latter has a higher level of collateralization that gives rise to 

a larger number of synaptic contacts with non-DA neurons. 
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Figure 24: Optogenetic activation of PPN cholinergic axons modulates DA and 

non-DA neurons of the VTA. (A) Individual TH+ neurons were recorded in vivo 

during optogenetic stimulation of PPN axons (n = 34) and were subsequently 

labelled with neurobiotin. (B) The same protocol was followed for TH- neurons (n = 

19). (C) Normalised firing rate (z-score along the whole trial period) for each TH+ 

neuron around the laser stimulation in the VTA showing three categories of neurons: 

excited (E, 38%), non-responsive (NR, 56%), and inhibited (I, 6%). (D) Normalised 

firing rates of TH- neurons show similar proportions in each group in relation to their 

response (E, 37%; NR, 47%; I, 16%). Scale bars (in µm): f and g, 50. 

 

Next we tested the effect of optogenetic stimulation of the brainstem cholinergic 

axons on neurochemically identified VTA neurons recorded in vivo and 

juxtacellularly labelled. Following the post hoc histological identification of the 

recorded neurons, we classified them as DA (TH+; n = 60) or non-DA (TH-; n = 36) 

(Fig. 24Af, 24B, 26A and 26G). The firing rate and pattern of each neuron during 

the light stimulation (8 s, 10 Hz, 50 ms pulses) was compared to their firing 

characteristics during the preceding baseline period (10 s). Neurons whose firing rate 

during the light stimulation was within 10% of their basal firing rate were considered 
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as non-responsive (n = 16 for PPN, n = 13 for LDT; overall firing rate increase 

including non-responsive neurons: 11.8 % for PPN and 10.6 % for LDT). Thus, in 

responsive neurons, we observed a 31.3 ± 5.04 % increase during PPN axon 

activation (basal firing rate: 3.3 ± 0.57 Hz to laser stimulated: 4.18 ± 0.66 Hz; P = 

0.002) and a 25.8 ± 3.43 % increase during LDT axon activation (basal firing rate: 

3.35 ± 0.52 Hz to laser stimulated: 4.23 ± 0.7 Hz; P = 0.008). There was no 

significant difference between the response to PPN and the response to LDT axon 

stimulation. In order to compare the latency of the activation, we carried out z-score 

analysis. Two to four trials were carried out for each neuron and combined to 

calculate the average response (Fig. 27; see Methods). If a neuron increased (above 

95th percentile of firing rate before laser stimulation) or decreased (below 5th 

percentile) its firing rate for a period of time that is significantly longer (cluster-

based permutation test, P < 0.05; 200 permutations) than any increase or decrease in 

firing observed during the baseline period (and not less than 3 s), then the neuron 

was considered to respond to cholinergic axon stimulation either by activation or 

inhibition, respectively. If these criteria were not met then a neuron was considered 

as non-responding. Following light stimulation of cholinergic axons from either the 

PPN or LDT we observed both excitatory and inhibitory responses in both DA and 

non-DA neurons, although the proportions varied slightly.  
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Figure 25: LDT cholinergic projection to DA and non-DA neurons of the VTA. 
(A) An AAV vector (AAV2-DIO-E1Fa-YFP-ChR2) was injected into the LDT of 

ChAT::Cre+ rats. (B) YFP-positive axons were detected in the VTA and (C) mapped 

using 250-µm2 grids. (D, E) LDT cholinergic axons (b, bouton) make synaptic 

contacts (arrows) with both TH+ and TH- dendrites (d). Scale bars (in µm): b, 70; d 

and e, 0.5. 

 

Stimulation of axons from the PPN produced predominantly excitation in responding 

DA neurons (Fig. 24C), while only a small fraction showed inhibition. This 

activation was maintained throughout the period of the laser stimulation. The 

excitation of responding non-DA neurons followed similar patterns of activation 

during the stimulation period, however, a larger proportion of non-DA neurons were 

inhibited (Fig. 24D).  
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Figure 26: Optogenetic activation of LDT cholinergic axons modulates DA and 

non-DA neurons of the VTA. (A, B) Protocol for recording, stimulation and 

labelling of TH+ (n = 26) and TH- (n = 17) neurons. (C) Neurons were separated into 

three categories according to their responses to the laser stimulation: excited (E, 

50%), non-responsive (NR, 42%), and inhibited (I, 8%). (i) There was more 

variability in the responses of TH- neurons to the LDT stimulation (E, 35%; NR, 41%; 

I, 24%). Scale bars (in µm): f and g, 50.  

 

The stimulation of LDT cholinergic axons also produced predominantly excitation in 

responding DA neurons, but the proportion of responding neurons was larger than 

following PPN axon stimulation (50% vs 38%; Fig. 26C). In contrast to PPN axon 

stimulation, we observed a proportion of ‘late-responding’ neurons, whose firing rate 

increased once the light stimulation stopped. The effects of stimulation of LDT 

cholinergic axons on non-DA neurons were more variable: the excitation was not as 

prominent as for PPN axon stimulation and a slightly larger proportion of non-DA 

neurons were inhibited (Fig. 26D).  
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Figure 27: Analysis of the response of a representative neuron to the laser 

stimulation. (a) Three responses to the laser were obtained for this neuron. Spike 

events were extracted and merged into a single spike train (black trace). (b) 

Cumulative distribution function (CDF) of the three individual spike trains together 

with that of the merged spike train (black dots) were computed by increasing the 

CDF one unit each time a spike occurred (note that in order to maintain the same 

scale, the CDF of the merged spike train must be divided by the number of spike 

trains merged). Regression slope of the CDF was computed at each spike time by 

using a local (18 neighbouring spikes) linear regression analysis (see gray dots on the 

black trace and dashed red lines for an example at three different time points, red 

dots). (c) Estimated instantaneous firing rate (regression slope) for the three 

individual trains and for the merged spike train where red dots correspond to the 

regression points marked in panel b. (d) Smoothed version and z-scored version of 

the instantaneous firing rate shown in panel c (for merged trace only). Horizontal 

lines correspond to the mean (full) and 5th and 95th percentile (dashed) values of the 

firing rate during pre-stimulus period (-10 to 0 s). Red trace demarks the response 

period of the neuron (i.e., a significant P < 0.05 increase in the firing rate). 

 

The activation of DA neurons showed a slow response that increased as a function of 

the number of pulses and reached its maximum toward the end of the light 

stimulation period (Fig. 28). These slow dynamics were observed following both 

PPN- (Fig. 28a) and LDT cholinergic axon stimulation (Fig. 28b), but the magnitude 

of the response was slightly greater for the PPN axon stimulation, albeit not 

significant (cluster-based permutation test, P = 0.715; 200 permutations).  
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Figure 28: Activation of cholinergic axons produces a slow and robust excitation 

of DA neurons. The normalised firing rate of all TH+ neurons that were excited by 

the laser stimulation show a similar slow modulation when cholinergic axons of 

either PPN (a; n = 15) or LDT (b; n = 15) were stimulated. The responses following 

PPN cholinergic axon stimulation were greater in magnitude, no significant 

differences were observed.  

 

This contrasts with the short-latency responses observed in nigral neurons following 

electrical stimulation of the PPN output (Lokwan et al., 1999; Scarnati et al., 1986; 

Futami et al., 1995). In a separate set of experiments we tested the effects of in vivo 

electrical stimulation of the PPN/LDT region on identified VTA DA and non-DA 

neurons. In line with the above reports, we observed short-latency excitatory and 

inhibitory responses in DA and non-DA neurons in the VTA (n = 16; Fig. 29). This 

suggests that electrically stimulating the output of the PPN/LDT leads to a combined 

response mediated by glutamatergic, GABAergic and cholinergic transmission, 

whereas the optogenetic manipulation dissects out the cholinergic effects.  
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Figure 29: Electrical stimulation of the PPN produces short-latency responses in 

DA neurons. (a) A neuron that was recorded and labelled by the juxtacellular 

method and identified as DAergic by the expression of immunoreactivity for TH. (b) 

Raster plot and peri-stimulus time histogram (PSTH) of the neuron shown in a, 

following electrical stimulation of the PPN (bin size 1 ms). (b’) A representative 

spike following the stimulus (s; 0.5 ms duration, 0.5-0.8 mA, 0.5 Hz). Consistent 

with previous reports, short-latency action potentials were elicited in the DA neurons 

within a few milliseconds of the stimulus being delivered in the PPN; this contrasts 

with the slow modulatory effect of the optogenetic activation of PPN cholinergic 

afferents. (c) Short-latency responses were consistent across the DA neuronal 

population (n = 12). (d, e, e’) Non-DA neurons (i.e. TH-immunonegative, d) were 

also sampled (n = 4). PSTH (bin size 2 ms) showing a long-lasting inhibition 

(average time of inhibition: 30ms ± 8.6ms, e). Responses in non-DA neurons were 

more heterogeneous.  
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In order to ensure that the responses to light stimulation were mediated by released 

ACh, in a separate set of experiments we attached a glass pipette for the 

microiontophoresis of drugs to the juxtacellular recording electrode (Fig. 30a). This 

allowed us to test in vivo the local effects of ACh receptor antagonists on the 

responses of individual VTA neurons to the stimulation of cholinergic axons from 

either the PPN or LDT. Neurons were subsequently identified as DA (n = 14; Fig. 

30b) or non-DA (n = 12).  

 

Figure 30: Cholinergic antagonists block the response to laser stimulation in DA 

neurons. (a) Individual TH+ and TH- neurons were recorded in vivo during 

optogenetic stimulation of PPN axons and local microiontophoretic administration of 

nicotinic and muscarinic antagonists (methyllycaconitine 20 mM, dihydro-β-

erythroidine 40 mM, atropine 40 mM and mecamylamine 100 µM). (b) Neurons 

were subsequently labelled with neurobiotin and their neurochemical profile 

identified. (c, i) Example of a neuron that was recorded during a baseline response to 

the optogenetic activation of LDT cholinergic axons. (ii) Following the iontophoretic 

application of the ACh antagonist cocktail, the same laser stimulation failed to 

produce a response, but (iii) the responsiveness to the laser stimulation recovered 

following drug wash-out (2 min after). Scale bar in b: 50 µm. 
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The excitatory responses to the laser in both DA and non-DA neurons following the 

stimulation of either PPN and LDT cholinergic axons were abolished during the 

iontophoretic administration of nicotinic and muscarinic antagonists in the vicinity of 

the recorded neurons (TH+: P = 0.0006; TH-: P = 0.001; Fig. 30c, 31A and 31B), 

and were quickly reversed within a few minutes of stopping the microiontophoretic 

current for the drug delivery. No significant difference in the firing activity was 

observed following drug delivery. 

 

 

 

 

 

 

 

Figure 31: Cholinergic antagonists block the response to laser stimulation in DA 

and non-DA neurons. (a, b) Excitatory responses to laser stimulation of both PPN 

and LDT cholinergic axons were blocked in DA (n = 14; F1, 12 = 21.3, P = 0.0006, 2-

way mixed ANOVA) and non-DA (n = 12; F1, 9 = 20.26, P = 0.001, 2-way mixed 

ANOVA) neurons following the administration of ACh antagonist cocktail and 

recovered following wash-out. No significant effects in the axon source (PPN/LDT) 

factor or in the interaction (stimulation x source) were observed. Bars represent mean 

± SEM.  

 

These results thus demonstrate that the observed effects on VTA neurons following 

stimulation of the cholinergic axons are a consequence of the release of ACh and not 

the release of glutamate or GABA. The specificity of the viral expression for 
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cholinergic neurons is further supported by the absence of glutamate vesicular 

transporter-2 in PPN/LDT axons expressing the fluorescent reporter within the VTA 

(Fig. 32). Thus, in contrast to the short-latency excitatory (presumably 

glutamatergic) effects of the electrical stimulation, our findings demonstrate a slow 

cholinergic modulation of VTA DA neurons arising from both PPN and LDT.  

 

Figure 32: Expression 

VAChT in YFP-labelled 

axons. Axons expressing YFP 

in the VTA from both PPN- 

and LDT-transduced animals 

were tested for the presence of 

vesicular transporters by 

immunofluorescence. VAChT 

immunofluorescence was 

detected in the majority of 

axonal varicosities expressing 

YFP (arrowheads), as has also 

been reported in the striatum 

(Dautan et al., 2014). In 

contrast, the vesicular 

glutamate transporter 2 

(VGluT2) was never observed 

to co-localise with YFP in 

axonal varicosities, even 

though we detected large 

numbers of VGluT2-positive 

varicosities within the VTA. 

Thus, in agreement with in 

situ hybridization data (Wang 

and Morales, 2009), the axons 

of cholinergic neurons from 

the brainstem lack VGluT2.  

 

 

Bursting activity is enhanced by LTD stimulation 

In anesthetized rats, DA neurons fire in regular, irregular or bursting mode. Here we 
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analysed the spike trains of DA neurons that showed bursting activity during the 

baseline and/or during optogenetic stimulation of PPN and LDT cholinergic axons. 

We detected a switch from non-bursting to bursting mode and vice versa only 

following PPN stimulation. Thus, 27% of neurons that showed bursting activity 

during the stimulation did not have any bursts during the baseline (Fig. 33a, left). On 

the other hand, 18% of neurons that were spontaneously bursting during the baseline 

stopped bursting during the stimulation. This contrasts with LDT axon stimulation 

that did not elicit any switch to or from bursting activity. Nevertheless, following 

LDT axon stimulation, neurons that were already firing in bursts during baseline 

increased their bursting activity (Fig. 33a, right), detected as an increase in the 

number of bursts episodes (P = 0.02 for comparisons to both baseline and PPN 

stimulation; Fig. 33b) and a higher burst probability (P = 0.039 between PPN and 

LDT; Fig. 33c). Accordingly, we observed a tendency for an increase in the 

proportion of spikes within bursts only after LDT axon stimulation (n.s., P = 0.06 

compared to its baseline; P = 0.09 compared to PPN axon stimulation; Fig. 33d). In 

addition, stimulation of LDT axons led to a decrease in the number of inter-burst 

spikes (T = 132, Mann-Whitney; P = 0.027; PPN n = 13; LDT n = 13). Further 

differences between PPN and LDT effects were observed: whereas LDT axon 

stimulation decreased the ratio of spikes outside bursts to spikes inside bursts 

(decreasing the burst entropy) in the majority of cases, PPN stimulation tended to 

produce the opposite effect, disrupting the burst organisation (P = 0.006 between 

PPN and LDT; Fig. 33e). These data suggest that the effect of PPN cholinergic axon 

activation is heterogeneous, such that it is able to switch the activity of some DA 

neurons to bursting mode while disrupting the burst organisation in DA neurons that 

were already bursting. On the other hand, LDT cholinergic axon stimulation 
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reorganises the spiking into bursts. These data show that cholinergic neurons in the 

PPN and LDT modulate the activity of DA neurons in the VTA by different 

mechanisms.

 

Figure 33: Laser stimulation of cholinergic axons modifies the bursting activity 

of DA neurons. (a) DA neurons modified their bursting activity following 

optogenetic activation of PPN or LDT cholinergic axons. Red numbers represent the 

percentage of spikes within a burst before, during and after laser stimulation. While 

PPN stimulation tended to switch the pattern of activity of DA neurons, LDT axon 

stimulation did not change the bursting regime but increased the number of spikes 

within bursts (red) of already bursting neurons. (b) LDT axon stimulation 

significantly increased the number of bursts in those neurons already bursting when 

compared to the baseline (F1, 12 = 7.18, P = 0.02, 1-way RM ANOVA, n = 13) and to 

PPN axon stimulation (T = 238.5, P = 0.02, Mann-Whitney, n = 15). (c) Increased 

burst probability during LDT axon stimulation (t = 2.18, P = 0.039). (d) LDT axon 

stimulation produced more spikes within bursts during the stimulation whereas PPN 

stimulation resulted in fewer spikes within bursts (t = 1.76; P = 0.09). (e) Ratio of 

spikes outside:inside bursts during baseline and laser stimulation. During PPN axon 

stimulation, in all but 2 cases (light gray), there was a disruption in the bursting 

activity characterised by a larger number of spikes outside bursts. In contrast, during 

LDT axon stimulation, in all but 2 cases (gray) there was an increase in the 

concentration of spikes within bursts. This change in the ratio was significantly 

different between PPN (n = 16) and LDT (n = 14; t = 2.98; P = 0.006). Group means 

are depicted in black.  
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Mesolimbic DA neurons are selectively activated by LDT cholinergic 

axons 

Since cholinergic neurons of the PPN and LDT are components of functionally 

distinct forebrain circuits, we tested the hypothesis that they may innervate 

functionally distinct subsets of VTA neurons. We injected a tracer into the NA shell 

to retrogradely label the so-called mesolimbic neurons in the VTA (Fig. 34a) and in 

the prefrontal cortex for the mesocortical neurons in the VTA (Fig. 35A). These 

injections led to labelling mesolimbic neurons predominantly in the dorsal half of the 

VTA (Fig. 34b) and included both DA and non-DA neurons, while mesocortical 

neurons were located in the ventral part (Fig. 35B). We obtained a sample of 17 DA 

and 6 non-DA mesolimbic neurons that were recorded and labelled using the 

juxtacellular method and in which the retrograde tracer was also detected (Fig. 36A 

and 36B). We were not able to find any DAergic mesocortical neurons responding to 

optogenetic activation of either PPN or LDT cholinergic axons. 

 

Figure 34: Retrograde tracers revealed mesolimbic neurons. (a) Schematic of the 

experimental design. Fluorogold (FG) was injected into the NA of ChAT::Cre+ rats 

that also received a virus injection into the PPN or LDT. (b) FG-labelled neurons 

were observed throughout the VTA, most prominently in the dorsal regions. Scale 

bars (in µm): b, 500.  
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The basal firing rate and action potential duration of mesolimbic neurons was not 

significantly different to that of neurons that did not contain the tracer (TH+, n = 43; 

TH-, n = 30; basal firing rate: TH+, U = 322, P = 0.854; TH-, U = 138, P = 0.495; 

action potential duration: TH+, U = 397.5, P = 0.649; TH-, U = 165.5, P = 0.171, 

Mann-Whitney). We observed that mesolimbic DA neurons had a greater excitatory 

response following LDT axon stimulation than following PPN axon stimulation (P = 

0.04; Fig. 37A and 37B).  

 

Figure 35: Retrograde tracers revealed mesocortical neurons. (a) Schematic of 

the experimental design. Fluorogold (FG) was injected into the prefrontal cortex 

(mPFC) of ChAT::Cre+ rats that also received a virus injection into the PPN or LDT. 

(b) FG-labelled neurons were observed throughout the VTA, most prominently in the 

ventral regions. Scale bars (in µm): b, 500.  

 

Those DA neurons that increased their firing rate following PPN ChAT axon 

stimulation lacked the retrograde tracer (Fig. 37C), suggesting that they innervate a 

subset of neurons that project to other targets of VTA. In contrast, mesolimbic non-

DA neurons were inhibited by LDT, but not PPN, ChAT axon stimulation (P = 0.003; 

Fig. 37C).  
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Figure 36: LDT cholinergic modulate mesolimbic DA and non-DA VTA neurons 

activity. (A) Example of a FG+/TH+ neuron that was excited by LDT axon 

stimulation. (b) Example of a FG+/TH- neuron that was inhibited by LDT axon 

stimulation. Scale bars (in µm): a and b, 30. 

 

 

Figure 37: LDT cholinergic axons preferentially target mesolimbic DA and non-

DA VTA neurons. (A) DA neurons that project to the NA were preferentially excited 

by the optogenetic stimulation of LDT cholinergic axons (n = 11). In contrast, PPN 

axon stimulation did not activate NA-projecting neurons (n = 6; t = -1.84, one-tailed 

t-test, P = 0.04 between PPN and LDT for NA-projecting neurons). Control 

experiments, in which animals were transduced with YFP only (no ChR2), did not 

show a response to the laser. (B) Normalised firing rate of all TH+/NA-projecting 

neurons following PPN or LDT cholinergic axon stimulation. Black line in the 

bottom panel represents the time points during which response to LDT stimulation 

was significantly greater than PPN (cluster-based permutation test; P = 0.02, 200 

permutations). (C) Non-DA neurons that project to the NA were inhibited by LDT 

axon stimulation but not by PPN axon stimulation (t = 6.5, P = 0.003, although this is 

a small n). Black boxes represent means ± SEM of NA-projecting neurons in A, or 

only means in C. 



149 
 

Cholinergic axons differentiate between DA neurons involved in distinct 

functional circuits 

Midbrain DA and non-DA neurons have been classically associated with reward 

mechanisms (Wise, 2004; Schultz, 2013). While the majority of DA neurons increase 

their firing in response to motivating stimuli and are consequently inhibited by 

aversive stimuli, a proportion of them are excited by noxious (aversive) stimuli 

(Mantz et al., 1989; Coizet et al., 2006). This can be emulated in the anesthetized rat 

by a hind paw pinch (Ungless et al., 2004) or foot-shock (Brischoux et al., 2009). 

Such differences in responses have been proposed to be associated with the 

functional pathways in which DAergic neurons are integrated (Lammel et al., 2012; 

Matsumoto and Hikosaka, 2009). We therefore correlated the responses of DA and 

non-DA neurons to the hind paw pinch with their responses to the optogenetic 

activation of the cholinergic axons arising in either the PPN or the LDT (Fig 38).  

 

Figure 38: DA and non-DA neurons are responding to paw pinch. (A) Example 

of a TH+ neuron that was excited by paw pinch. (b) Example of a TH- neuron that 

was inhibited by paw pinch.  
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We observed an opposite trend in the effect of PPN and LDT drive: whereas PPN 

axon stimulation tended to modulate more consistently those neurons that showed a 

greater inhibition to the pinch (Fig. 39a), LDT axon stimulation more robustly 

modulated the neurons that were excited by the pinch (Fig. 39b). Indeed, 75% (6/8) 

of aversive stimuli-excited DA neurons increased the number of spikes within the 

bursts during LDT axon stimulation; in contrast 85% of aversive stimuli-excited DA 

neurons (6/7) decreased their number of spikes within bursts or switched to non-

bursting mode during PPN axon stimulation. These results further support the notion 

that subsets of DA neurons that receive cholinergic afferents from the PPN and LDT 

are organised into functionally distinct pathways arising in the VTA. 

 

Figure 39: Cholinergic axon stimulation differentially modulates functionally 

distinct DA neurons. (a, b) Significant correlations were observed between the 

change in the firing rate of DA neurons during the hindpaw pinch (aversive stimulus) 

and their responses to the laser activation of PPN (a; n = 25) and LDT (b; n = 19) 

axons. Thus, DA neurons that are more inhibited by the pinch tend to respond more 

to PPN stimulation, whereas DA neurons that were excited by the pinch are more 

strongly modulated by the LDT. Means and SEM for positive or negative values in 

the change to the aversive stimulus are indicated by black (PPN) and white (LDT) 

circles with error bars. 
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Cholinergic axons stimulation is sufficient to slow down lever press 

extinction 

Here, I examined whether optogenetic stimulations of cholinergic terminals in the 

VTA were necessary to maintain lever pressing previously associated with reward 

delivery. Two weeks following virus injection (AAV2-ChR2-eYFP, Fig. 40A) in the 

PPN or the LDT, we implanted an optic fibre above the VTA (Fig. 40B and C, 42A). 

Animals were first trained to press operant levers for sugar pellets on a variable 

interval schedule. On extinction, we replaced sugar pellet delivery with laser 

stimulation in a VI30 schedule (8 s, 10Hz, 50ms On/Off, 20mW, Fig. 41A).  

 

Figure 40: Optogenetic activation of cholinergic axons in the VTA in behaving 

rats. (A) Confocal images of transfected cholinergic axons in the LDT following 

injection of AAV2-ChR2-eYFP. (B) Confocal images of the position of the optic 

fibre during behaviour experiments. The white line represents the location of the 

optic fibre, DAergic neurons were stained in red and cholinergic axons from the 

brainstem in green. (C) Confocal images of DAergic neurons (TH; red) below the 

fibre track, and expression of AAV-ChR2-eYFP (cholinergic axons, green).  

 

During the first 5 days of training, we saw a robust acquisition of lever pressing for 

sugar pellet (day effect) but no difference in lever pressing (Fig. 41B) between the 

PPN (n=12), LDT (n=10) and WT (n=10) groups (group effect). This was supported 

by a mixed day × group ANOVA (number of lever presses: day effect: 

F(4,26)=4,254, p=0.009; group effect: F(2,29)=0.184, p=0.833, interaction: 
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F(8,116)=1.362, p=0.221).  

After acquisition we transferred the animals to a different but identical chamber used 

for optogenetic stimulation (see methods). We attached the head implant to a dummy 

patch cord and gave rats one last VI30 sugar pellet reinforced training session before 

extinction. We saw a small decrease in the number of lever presses between days but 

no group effect. This was supported by a significant day × group mixed ANOVA 

which produced significant effect of day (last day in old box vs new box, 

F(1,29)=14.779, p<0.001) but no effect of group (F(2,29)=0.740, p=0.486) or 

interaction (F(2,29)=0.549, p=0.583).  

As expected, during extinction sessions in which the sugar pellets were replaced by 

optogenetic stimulation, we saw a reduction in lever presses across days in WT 

animals in which laser stimulation is expected to have no behavioural effect. 

However, this extinction effect was reduced in both LDT and PPN groups (Fig. 

41D). During the 4 extinction sessions, we observed a significant decrease in lever 

pressing in all groups as confirmed by a day × group mixed ANOVA which produced 

a significant effect of day (F(3,27)=15.747, p<0.001), a significant effect of group 

(F(2,29)=13.781, p<0.001) and no interaction (F(6,87)=0.997, p=0.433).  

We followed up the group effect with a Tukey posthoc test which showed that 

both PPN and LDT had a higher number of lever presses than the WT group (WT vs 

PPN: p<0.001, WT vs LDT: p<0.001). However the PPN and LDT groups did not 

differ significantly from each other (PPN vs LDT: 

p=0.839).
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Figure 41: Behaving shift between sugar-outcome and laser stimulation-

outcome. (A) Schematic of the within-subject behavioural design. Each rat was 

trained in a random interval schedule. On extinction, sugar pellets were replaced by 

optogenetic activation of PPN and LDT cholinergic axons in the VTA. (B) Number 

of lever presses per minutes during acquisition for WT (black), PPN (green) and 

LDT (red) animals. No differences were observed in the average number of lever 

presses (bar graph). (C) Number of lever presses per minutes during extinction for 

the three groups. PPN and LDT were pressing more the lever than WT during 

extinction sessions (histogram). *: significant difference from WT (p<0.05), #: 

significant difference between PPN and LDT groups (p<0.05). Values are shown as 

mean ± SEM. 

 

Locomotion is differentially modulated by activation of PPN or LDT 

cholinergic terminals in VTA 

Locomotion was assessed on three consecutive days for 30 min in ChAT::cre animals 

injected in the PPN (n=12), in the LDT (n=10) and WT animals (n=10). Rats were 

placed in a small holding cage for 5 min after being connected to the patch cord to 

reduce the effect of handling, after which they were transferred to the open field. 

Rats underwent 3 locomotion sessions (counterbalanced across rats): a) baseline: 

during this session, the animals were connected to the laser but did not receive 

stimulation; b) stimulation + vehicle: animals received a saline injection 30 min 

before testing, then received stimulation and c) stimulation + cholinergic antagonist: 

animals received a cholinergic antagonist cocktail 30 min before stimulation (see 
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methods).  

 

Figure 42: Optogenetic stimulation of LDT cholinergic axons in the VTA 

increases overall locomotion. (A) Schematic of the position of the optic fibre. (B) 

Cumulative distance travelled during laser stimulation of cholinergic axons in WT 

(black), PPN (green) or LDT (red). Blue arrows represent the laser stimuli. (C) 

Cumulative distance travelled during the 30 min interval after injection of 

cholinergic antagonist followed by optogenetic stimulation of cholinergic axons in 

WT (black), PPN (green) and LDT (red). Blue arrows represent laser stimuli. (D) 

Average distance travelled and (E) average speed during the three sessions. * is used 

for significant difference to baseline and drugs conditions (p<0.05), # is used for 

significant difference with WT group (p<0.05). Values are shown as mean ± SEM. 

 

 First, I analysed the effect of group and day on the distance travelled using a 

treatment (stimulation vs non-stimulation) × group (PPN, LDT, WT) mixed ANOVA. 

This ANOVA produced a significant effect of treatment (F(1,29)=9.005, p=0.005), a 

significant effect of group (F(2,29)=6.027, p=0.006) and interaction (F(2,29)=6.594, 

p=0.004). The group effect was followed up with a Tukey posthoc test which showed 

that the LDT group present significantly higher locomotion during stimulation + 

vehicle than both baseline and stimulation + cholinergic antagonist (WT vs PPN: 

p=0.843, WT vs LDT: p=0.009, PPN vs LDT: p=0.024). 

Then I analysed the effect of group and treatment on the mean speed using a 

treatment × group ANOVA. This ANOVA produced a significant effect of treatment 
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(F(1,29)=5.702, p=0.038) and a significant effect of group (F(2,29)=5.702, p=0.008). 

This was followed up with Tukey post hoc test which showed that the LDT group 

present significantly higher mean speed during stimulation + vehicle than both 

baseline and stimulation + cholinergic antagonist (WT vs PPN: p=0.839, WT vs 

LDT: p=0.007, PPN vs LDT: p=0.018) (Fig. 42).  

To confirm the cholinergic mechanism of the observed increase in locomotion, we 

tested whether selective blockade of cholinergic receptors in the VTA will disrupt the 

observed locomotor effect in the LDT group. Cholinergic blockade indeed reduced 

the effect of optogenetic stimulation (Fig. 42C). These results were confirmed by the 

non-significant treatment × group effect mixed ANOVA which produced a non-

significant effect of treatment (baseline vs stimulation + cholinergic antagonist) 

(distance per minutes: F(1,19)=0.769, p=0.391; mean speed: F(1,19)= 1.043, 

p=0.320), no significant group effect (distance per minutes : F(2,19)=0.703, p=0.508; 

mean speed: F(2,19)=0.746, p=0.487) and no interaction (distance per minutes : 

F(2,19)= 1.405, p=0.270; mean speed: F(2,19)=1.746, p=0.201). 

Thus, the LDT group showed increased locomotion in both distance travelled and 

mean speed. Next, we analysed the phasic effects of optogenetic stimulation by 

measuring activity in 5 sec bins over 20 sec before and 20 sec after stimulation.  

First, for each of the 3 groups (PPN, LDT and WT) I compared the phasic locomotor 

response during stimulation normalised to the baseline (20 sec period immediately 

before each stimulation train). The effect of the stimulation was significant in both 

the PPN and LDT groups, but not in the WT group (distance normalised to the 

baseline; F(2,29)=364.306, p=0.006). This was due to a significant increase in 

locomotion in the PPN group, a significant decrease in the LDT group and no 



156 
 

significant change in the WT group (Tukey: WT vs LDT: p=0.044; WT vs PPN: 

p=0.029; PPN vs LDT p<0.001) (Fig 43 A, C, E).  

Next I compared the phasic locomotor responses during stimulation on both vehicle 

and cholinergic antagonist sessions. The stimulation effects observed in LDT and 

PPN were absent during stimulation + cholinergic antagonist period. These results 

were confirmed by non-ignificant session × group (prior stimulation vs during 

stimulation) mixed ANOVA (distance normalised to baseline: F(2,19)=1.412 

p=0.268,). The non-significant effect between groups was also confirmed by the post 

hoc Tukey test (WT vs PPN: p=0.465, WT vs LDT p=0.271, PPN vs LDT p=0.881) 

(Fig. 43 B, D and E), confirming the impression that both the PPN produced 

increase in locomotion and the LDT-produced decrease in locomotion were reversed 

by cholinergic blockade, confirming the cholinergic mechanism of the observed 

effects. 
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Figure 43: Phasic effects of optogenetic stimulation of PPN and LDT on 

locomotion. (A,C and E) Distance travelled (5 sec bins) (normalised over 20s before 

stimulations) in WT (A; black), PPN (C; green) and LDT (E; red) time-locked to 

laser stimulations (blue square). Distance travelled following injections of 

cholinergic antagonist in WT (A; orange); PPN (C, orange) and LDT (E; orange) and 

time-locked to laser stimulations (blue square). (B, D and E) Average distance 

travelled during laser stimulations fold over baseline in WT (B, black), PPN (D, 

green) and LDT (F, red) or following cholinergic antagonist injections in WT (B, 

orange), PPN (D, orange) and LDT (F, orange). * is used for significant difference to 

cholinergic antagonist condition (p<0.05), # is used for significant difference with 

distance travelled during baseline (p<0.05). Values are shown as mean ± SEM. 
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Conclusion 

In this study, we demonstrate that two brainstem cholinergic nuclei, one typically 

associated with motor/arousal functions and the other with reward, have differential 

effects on subsets of neurons in the VTA. First, we observed that cholinergic neurons 

of the PPN and LDT project extensively throughout most of VTA. Second, 

stimulation of either of the two cholinergic pathways produces a slow modulation of 

the firing rate of DA and non-DA neurons; effects that are mediated by ACh. Third, 

cholinergic modulation of DA neurons takes on two different forms depending on the 

source of innervation: PPN axon stimulation switches the firing pattern to bursting 

mode in a proportion of DA neurons and increases the level of entropy in the spike 

train of most neurons (increases burst probability), whereas LDT axon stimulation 

enhances the organisation in bursting spike trains. Fourth, LDT axons predominantly 

target mesolimbic DA neurons that are excited by aversive stimulation, whereas PPN 

axons target a distinct subset of DA neurons which are predominantly inhibited by 

aversive stimulation. Finally, we observed that PPN and LDT axon stimulation are 

able to reduce the action-outcome-extinction by a rewarding effect and to 

differentially modulate locomotion. Our findings thus suggest that functional 

segregation of brainstem cholinergic neurons is maintained at the level of the VTA 

and is underpinned by differential modulation of subpopulations of DA and non-DA 

neurons.  

Functional microcircuits in the VTA 

DAergic neurons receive excitatory afferents from several regions of the brain, 

including the prefrontal cortex, the lateral hypothalamus and lateral preoptic area, 

and the brainstem (Sesack and Grace, 2009; Ikemoto, 2007). The projections 
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originating in the PPN and LDT are heterogeneous and consist of cholinergic, 

glutamatergic and GABAergic components (Bevan and Bolam, 1995; Charara et al., 

1996; Omelchenko and Sesack, 2005). Although the PPN and the LDT are 

structurally and neurochemically similar (Wang and Morales, 2009), and indeed 

share some of their afferent and efferent connections (Woold and Butcher, 1986), 

they differ in the functional circuits to which they contribute. For example, the PPN 

is connected to structures involved in motor (including most regions of the basal 

ganglia; Mena-Segovia et al., 2004) and arousal functions (Steriade, 1996). On the 

other hand, LDT is connected to cortical and thalamic regions associated with the 

limbic system (Semba and Fibiger, 1992; Cornwall et al., 1990; Bolton et al., 1993). 

The VTA, in turn, is heterogeneous, with distinct distributions of DAergic neurons 

that project to different targets involved in different functional pathways (Lammel et 

al., 2012; Ikemoto, 2007). We thus hypothesized that the two cholinergic pathways 

would have different effects in the VTA and possibly differentially target 

subpopulations of DA neurons. The anatomical data shows that the projections from 

both the PPN and LDT innervate most of the VTA and indeed, DA and non-DA 

neurons that were modulated by PPN axons were intermingled in the same VTA 

regions as those modulated by LDT axons. Nevertheless, LDT cholinergic axons 

selectively targeted mesolimbic DA neurons, whereas PPN axons had little influence 

on them. In contrast, PPN axons primarily modulated DA neurons that are 

components of different circuits and whose targets are yet to be determined (e.g. 

amygdala, hippocampus). This suggests that neighbouring DA neurons can be 

differentially modulated by cholinergic afferents that encode either motor or limbic 

signals. The motor - limbic segregation is maintained in other brainstem cholinergic 

targets, most notably the Str: cholinergic LDT neurons that innervate the NA send 
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collaterals that innervate the midline thalamus and the VTA, both of which in turn 

also project to the NA (Dautan et al., 2014). This suggests that the cholinergic LDT 

neurons that modulate mesolimbic DA neurons also target postsynaptic structures in 

the NA and potentially converge with the axons of the same mesolimbic DA neurons 

that they modulate within the VTA.  

We also observed that cholinergic LDT axons show a higher degree of 

collateralization in the VTA and contact a higher proportion of non-DA neurons than 

PPN cholinergic axons. Thus, LDT cholinergic neurons may have a greater influence 

on non-DA neurons than PPN cholinergic neurons. This suggestion may be 

consistent with some of our observations in the LDT optogenetic experiments: first, 

the ‘late-responding’ DA neurons (Fig. 2h) may represent a rebound excitation 

following the excitation of GABAergic interneurons, and second, mesolimbic non-

DA neurons (putative GABAergic) that are inhibited by cholinergic activation (Fig. 

6d) may act in coordination with DA neurons to reinforce DA transmission in the NA 

(e.g. by inhibiting cholinergic neurons in NA; Brown et al., 2012). Overall, our data 

demonstrate multiple functional mechanisms by which the cholinergic brainstem 

neurons may influence the activity of limbic circuits. 

The involvement of cholinergic brainstem neurons in salience and reward 

The two types of behaviour tested here (locomotion and extinction of lever pressing) 

are known to be modulated by DA transmission (Wise et al., 2004; Wise et al., 1987; 

Spyraki et al., 1982). The present results provide evidence that activation of 

brainstem cholinergic terminals in the VTA retarded extinction of lever pressing for 

food. These results confirm that activation of this system has rewarding properties. 

We also showed that activation of cholinergic axons in the VTA results in modulation 
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of locomotion, with optogenetic stimulation of LDT cholinergic axons increasing 

overall locomotion but reducing phasic locomotion during single stimuli. On the 

other hand, PPN axon stimulation did not produce cumulative effect, but phasically 

increased activity. We showed that these effects were disrupted by cholinergic 

blockade. 

The cumulative effect of LDT stimulation observed here is consistent with 

previous work showing that LDT lesions show disruption in locomotion produced by 

psychostimulant drugs (cocaine, nicotine) (Dobbs and Cunningham, 2014; Dobbs 

and Mark., 2012; Shabanni et al., 2010; Laviolette et al., 2000; Alderson et al., 2005; 

see review: Kohlmeier et al., 2013) suggesting that the mechanisms of LDT-

produced increase in locomotion may implicate reward-related limbic circuitry 

(Clarke, 1990; Clarke, 1991; Baker et al., 2013). The phasic decrease in locomotion 

by stimulation of LDT afferents observed here is consistent with work suggesting 

that tonic stimulation of mesoaccumbens neurons decreased the locomotion during 

the stimulation only (Song et al., 2014; Hwan Kin et al., 2015). It is notable that the 

majority of neurons responding to LDT stimulations were projecting to the NA. 

The phasic increase in locomotion by stimulation of PPN cholinergic 

terminals in the VTA observed here is consistent with previous studies showing that 

optogenetic burst-stimulation (>20Hz) of DAergic neurons in the VTA increase the 

locomotion during stimulation (Tye et al., 2013; Qi et al., 2014). 

Cholinergic neurons of the brainstem are an essential component of the 

reticular activating system. Sensory stimulation triggers the activation of PPN 

cholinergic neurons (Mena-Segovia et al., 2008) that, in turn, activate neurons in 

their targets and, through the induction of fast frequency oscillations (Steriade et al., 
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1991), increase the responsiveness of their target neurons enabling them to bind other 

modalities of stimuli (Munk et al., 1996). This suggests a role in salience, where 

cholinergic neurons signal the presence of potentially relevant cues that in turn 

increase the level of behavioural arousal (Pan and Hyland, 2005). Recent evidence, 

however, points to a more specific role of the PPN in coding reward and reward 

prediction error (Okada et al., 2009; Norton et al., 2011; Hong and Hikosaka, 2009), 

suggesting that PPN neurons also encode motivational value. Nevertheless, 

cholinergic neurons only constitute a fraction of the PPN, and indeed glutamatergic 

neurons may also modulate the activity of DA neurons, either directly or indirectly 

through cholinergic neurons (Good and Lupica, 2009). Glutamatergic neurons, 

however, have different connectivity and dynamic properties to cholinergic neurons 

(Mena-Segovia et al., 2008; Boucetta et al., 2014), suggesting that they are likely to 

have different, if not complementary, effects on VTA neurons. In view of the 

similarities between LDT with PPN (see above), it is quite possible that LDT neurons 

are also involved in the encoding of motivational value, but further evidence is 

necessary, including the unequivocal identification of the different cell types 

contributing to system physiology and behaviour.  

Our findings also demonstrate that activation of brainstem cholinergic axons 

changes the bursting behaviour of DA neurons. Activation of PPN axons produced 

bursting in some neurons while increasing the ratio of spikes outside bursts in the 

majority of responding DA neurons. In contrast, LDT afferents reorganised the spike 

train into bursts. These differences may give clues to the specific functions of these 

cholinergic neurons. By switching the discharge mode of DA neurons, PPN afferents 

may be triggering a state change where neurons disengage from their preceding 

activity and increase their responsiveness to other inputs, in line with the notion of an 
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arousal system that generates orienting or attentional responses. In contrast, by 

increasing the number of spikes within bursts, the LDT increases the amount of 

information contained within each burst, equivalent to increasing the value 

associated with a reward prediction. Thus, the differences observed here may 

underlie the neuronal basis of saliency and reward at the level of the cholinergic 

brainstem and VTA neurons (see also Hong and Hikosaka, 2014).  

In summary, cholinergic neurons of the brainstem provide a functionally 

segregated modulation of DA and non-DA neurons of the VTA, consistent with their 

connectivity with other structures within motor and limbic circuits in the basal 

ganglia and thalamus. Our findings thus demonstrate the importance of the 

cholinergic inputs for the modulation of DA neuron function. It remains to be 

established how brainstem cholinergic neurons work in concert with brainstem 

glutamatergic neurons at the level of both the midbrain and the Str to shape 

behaviour and to determine an organism’s response to reward-related stimuli. 

 

 

 

 

 

 



164 
 

Chapter 4: Cholinergic circuits and modulation of striatal 

functions 

 

Modulation of striatal neurons by cholinergic interneurons and cholinergic 

brainstem projections: an electrophysiological and behavioural study. 

Dautan D, Condon M., Huerta-Ocampo I., Valencia M., Bolam JP., Gerdjikov TV. 

and Mena-Segovia J. 

 

 

 

 

 

 

 

 

 

DD, MV, TG, PB and JMS designed the experiments, analysed the data and wrote the 

manuscript. DD performed the surgeries and experiments. IHO performed the 

electron microscopy experiments. MC recorded 8 neurons reported below. 
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Abstract 

ACh powerfully modulates neuronal computations in the striatum, contributing to its 

key role in action selection and associative learning. Despite their low number within 

the striatum, cholinergic interneurons (CINs) form large dendritic networks that 

extend across the whole striatum. Originally thought to arise exclusively from the 

CINs, ACh is also provided via the brainstem (Chapter 2). These cholinergic 

projections from the pedunculopontine (PPN) and the laterodorsal tegmental (LDT) 

nucleus topographically target subdivisions of striatum involved in behaviours. 

Using simultaneous local optogenetic activation of cholinergic terminals from PPN, 

LDT and CINs combined with juxtacellular recording, we showed that PPN and LDT 

inputs modulate different activities in the striatum by inhibiting MSNs activity and 

activating CINs firing. Pharmacogenetic inhibition of the ACh release in the DMS 

and DLS disrupts specifically goal-directed and habitual learning. All these results 

suggest a similar role of ACh arising from CINs and brainstem 

Key words: Striatum, cholinergic interneurons, acetylcholine, DREADd, 

devaluation 
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Introduction 

Abnormal functioning of the Str is implicated in a wide variety of psychiatric 

and neurological disorders, involving memory, locomotion or motivation (Kobb, 

1992; Chudasama and Robbins, 2006; Berardelli et al., 1998; Delmaire et al., 2005). 

While up to 95% of striatal neurons have been described as medium spiny neurons 

(MSNs), the remaining 5% have been described as GABAergic and cholinergic 

interneurons (CINs). Str receives important thalamic, cortical and DA midbrain 

inputs that regulate the activity of MSN; however, interneurons also significantly 

modulate MSNs activity (Ebihara et al., 2013). In addition, different behavioural 

roles have been attributed to the Str and demonstrated a dissociation between 

dorsomedial (DMS) and dorsolateral (DLS) regions (Balleine, 2007; Ragozzino et al., 

2002; Murray et al., 2012). The DLS is predominantly described as a sensorimotor 

structure and receives DAergic inputs from the substantia nigra pars compacta 

(SNc). The DMS plays a role in associative learning, and receives DAergic inputs 

from the SNc and the VTA (Ikemoto, 2007). 

There is evidence that CINs significantly modulate striatal functions, and 

impaired cholinergic activity in the striatum has been proposed to play a role in the 

pathophysiology of PD, Huntington’s disease, Alzheimer’s disease or schizophrenia 

(Ding et al., 2010; Pisani et al., 2003; Holley et al., 2015; Albin et al., 1995). CINs 

receive inputs from local GABAergic interneurons, MSNs and GABAergic neurons 

from the midbrain, glutamatergic inputs from thalamostriatal, corticostriatal pathway, 

DAergic inputs from the nigrostriatal pathway, cholinergic inputs from other CINs, 

serotoninergic inputs from the dorsal raphe and noradrenergic inputs from the locus 

coeruleus (see Chapter 1 and review: Lim et al., 2014). CINs possess a very 

extensive axonal field and present a widespread dendritic tree that allows CINs to 
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integrate inputs from different regions and to project to a wide area in the Str (Gerfen 

et al., 1987; Berndse and Groenewegen, 1990; Lapper and Bolam, 1992; Rodriguez 

and Gonzalez-Hernandez, 1999; Ding et al., 2010; Brown et al., 2012; see review: 

Lim et al., 2014). 

ACh released in the Str was traditionally thought to arise from a single source, 

the cholinergic interneurons (Wang et al., 2006; Ding et al., 2010). However, our 

recent studies demonstrated that the PPN and the LDT provide an extrinsic source of 

acetylcholine to the Str (Dautan et al., 2014; Dautan et al., 2015). These cholinergic 

axons make synaptic contact with spines and shafts, suggesting that MSNs and 

interneurons are receiving direct cholinergic inputs from the brainstem. Thus, as 

explained in Chapter 2, PPN cholinergic neurons target mostly the DLS and LDT the 

DMS and NA. These direct projections may constitute supplementary level of 

cholinergic modulation of the striatum activity in addition to the brainstem-midbrain-

Str and the brainstem-thalamus-Str pathways (Dautan et al., 2015). 

In vitro, optogenetic/pharmacology activation of CINs in the Str has been 

found to modulate DA release (Threlfell et al., 2012; Cachope et al., 2012) and 

MSNs firing activity (Koss and Tepper, 2002; Witten et al., 2010). CINs 

synchronisation is thought to arise from sensory thalamic afferents in response to 

salient stimuli with short-latency (200 msec) (Ding et al., 2010; Threlfell et al., 2012; 

Adler et al., 2013; Bertran-Gonzalez et al., 2012; Matsumoto et al., 2001). PPN and 

LDT neurons show short-latency responses to salient stimuli (<70 msec) (Kobayashi 

and Okada, 2007; Pan and Hyland, 2005) and also project densely to the thalamus 

(Mena-Segovia et al., 2008; Saper and Loewy, 1982; Hallanger et al., 1988; Parent 

and Descarries, 2008). The fast response of PPN and LDT cholinergic neurons to 
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salient stimuli and their projections to the thalamus suggest that PPN/LDT 

synchronise CINs activity indirectly in response to salient stimuli and this response 

can be mediated by the direct cholinergic projections in the striatum.  

It has been suggested that PPN and LDT cholinergic projections to the 

striatum have varied and complex effects on striatal information processing. The role 

of PPN and LDT cholinergic projections, respectively, to the DLS and the DMS can 

be complementary to the role of local ACh in the activity of striatal neurons and also 

in the behavioural function of CINs located in the DMS and DLS.  

We recently described direct cholinergic inputs to the striatum arising from 

the brainstem. The function of this pathway is unknown and can be associated with 

the function of CINs. Here, using a novel combination of optogenetic activation of 

cholinergic axons in the Str with in vivo single cell juxtacellular recording and 

labelling, we characterised the effect of ACh inputs activation on MSNs and striatal 

interneurons. Finally, we used a pharmacogenetic (designer receptors exclusively 

activated by designer drugs, DREADd) inhibitory approach to identify the role of 

striatal ACh arising in the brainstem or local interneurons on motivational and 

associative behaviour. 
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Materials and methods 

Results 

PPN and LDT cholinergic axons modulate the firing rate of MSNs and 

interneurons in vivo 

We used an optogenetic approach to determine the effects of PPN and LDT 

cholinergic axon stimulation in the Str. In ChAT::cre+ rats (see Chapter 2-3) (Fig. 

44), we stereotaxically injected in PPNr and LDT a Cre-inducible AAV vector 

carrying the excitatory opsin ChR2 and a sequence coding for the fluorescent protein 

eYFP. As previously reported (Dautan et al., 2014), eYFP expression was specific to 

cholinergic neurons and diffusion was limited to the PPN/LDT boundaries (Fig 45).  

In vivo, PPN and LDT cholinergic neurons, respectively, fire phasically (Pan and 

Hyland, 2005; Petzold et al., 2015) or tonically (Lodge and Grace, 2006; Koyama et 

al., 1999) and are thought to target MSNs and interneurons in the Str (Dautan et al., 

2014). First, we recorded single neuron activity with a micropipette in the DS, and 

the neuronal type was confirmed by juxtacellular labelling and 

immunohistochemistry. We recorded MSNs (as confirmed by the presence of spiny 

dendrites and cell body immunostaining for Ctip2) (PPNr: n=30, LDT: n=19, Fig. 46 

A and B), CINs (as confirmed by the presence of large cell bodies and aspiny 

dendrites, and immunostaining for ChAT) (PPNr: n=13, LDT: n=8, Fig 47 A and B) 

and PV (as confirmed by small cell body size and aspiny dendrites and 

immunostaining for PV) (PPNr: n=8, LDT: n=9, Fig 48 A and B). 
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Figure 44: Brainstem cholinergic projections suggest contact with cholinergic 

interneurons. (A) Illustration of the double virus injections. AAV-mCherry was 

injected in dorsal Str in order to transfect cholinergic interneurons. AAV-eYFP was 

injected in the brainstem to transfect cholinergic terminals in the Str (B and C). 

Confocal images of putative contacts between cholinergic brainstem terminals in the 

Str (green) and cholinergic interneurons (red). Contacts appears to be proximal (B) 

and distal (C) to the cell body.  

 

We found that all neurons responding to the stimulation were surrounded by YFP-

positive terminals (Figs. 46C, 47C, 48C) (68 MSNs recorded, 49 were surrounded 

by terminals; 27 PV recorded, 21 were surrounded by terminals; 33 CINs neurons 

recorded, 17 were surrounded by terminals). As PPNr and LDT project to the 

dorsolateral and the DMS, respectively, neurons responding to the optical stimulation 

were topographically distributed, in PPNr experiments responding neurons were 

found in the DLS while in LDT experiments responding neurons were found in the 

DMS (Figs. 46E, 47E, 48E).  
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Figure 45: Cholinergic brainstem projection to the striatum. (A) Illustration of 

the virus injection in brainstem. (B) Virus injected in ChAT::cre rats brainstem 

showed dense eYFP positive projections in the Str that formed terminal patches 

(insert) and showed specific expression in ChAT+ neurons (C). 

 

Cholinergic brainstem modulation of MSNs 

We first analysed the response of MSNs to optical activation of PPN and LDT 

cholinergic axons in the Str. We were not able to find any difference in the baseline 

activity (20s immediately before laser stimulation) of MSNs recorded in PPNr (DLS) 

and LDT (DMS) experiments (t-test: t(37)=0.230, p=0.820). During optogenetic 

stimulation (8 s, 80 pulses, 10 Hz, 50 ms ON/OFF) of PPN and LDT cholinergic 

axons, we observed a significant decrease of the firing activity of MSNs compared to 

the baseline. This was confirmed by a significant stimulation effect on one way 

ANOVA (PPN: F(1,38)=2.097 p=0.043; LDT: F(1,37)=2.21 p=0.033). We did not 

observe any differences in the responses of MSNs during PPN and LDT stimulation 

(t-test: t(37)=0.696 p=0.491). Following optogenetic stimulation, the MSNs activity 

increased slowly and returned to baseline (after up to 300s); no significant 

differences were apparent during the post-stimulation (30s following stimulation) 

period between LDT and PPN, as showed by the interaction effect (stimulation/post-
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stimulation vs group: ANOVA: F(1,37)=0.023; p=0.982) (Fig 46 D). 

 

Figure 46: Cholinergic brainstem projections in the striatum inhibit MSN 

activity. (A) Brainstem cholinergic neuron (BCN) axons in the Str were activated 

with blue light (470 nm) in vivo. MSNs activity and ECoG were recorded during 

laser stimulation (blue square). Horizontal scale bars: 5 s; Vertical scale bars: 1mV. 

(B) Following recording, putative MSNs were labelled with neurobiotin (NB, red) 

and confirmed as MSN with Ctip2 staining (green). (C) Confocal images showing 

the proximity between identified MSN dendrites (red; see spines) and cholinergic 

axons from PPN (green). (D) Average firing frequency of identified MSNs before, 

during and after optogenetic activation of surrounding cholinergic axons arising from 

the PPNr (green) and the LDT (red). (E) Localisation of identified MSNs responding 

to PPN (green) and LDT (red) stimulation in the Str. Identified MSNs recorded in 

WT animals were represented in black. #: significant difference from baseline 

(p<0.05). Values are shown as mean ± SEM. 

 

Cholinergic brainstem modulation of CINs 

Next, I analysed the response of cholinergic interneurons to optogenetic activation of 

PPN and LDT cholinergic axons in the Str. No differences were observed in baseline 

activity (20s immediate before laser stimulation) of CINs recorded between 

experiments (t-test: t(19)=0.397, p=0.696). During optogenetic stimulation, most of 

the CINs showed a fast increase in firing rate during optogenetic stimulation of both 
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PPN and LDT cholinergic terminals in Str (PPN: ANOVA: F(1,12)=23.97 p<0.001, 

LDT: ANOVA : F(1,7)=9.779 p=0.017). No differences were found in the response to 

optogenetic stimulation between PPN and LDT (t-test: t(19)=0.07 p=0.945). 

Following stimulation, firing rates returned quickly to baseline. No differences were 

found in the post-stim firing activity (20s following stimulation) between PPN and 

LDT experiments (ANOVA: PPN: F(1,12)=0.426 p=0.526; LDT: F(1,7)=0.006 

p=0.940) (Fig .47D) 

 

Figure 47: Cholinergic brainstem projections in the striatum activate 

cholinergic interneurons. (A) Brainstem cholinergic neuron (BCN) axons in Str 

were activated with blue light (470 nm) in vivo. CINs activity and ECoG were 

recorded during optogenetic stimulation (blue square). Horizontal scale bars: 5 s; 

Vertical scale bars: 1mV. (B) Following recording, putative CINs were labelled with 

neurobiotin (NB, red) and confirmed as CINs with ChAT staining (white); (C) 

Confocal images showing the proximity between identified CINs dendrites (red) and 

cholinergic axons from PPN (green). (D) Average firing frequency of identified CINs 

before, during and after optogenetic activation of surrounding cholinergic axons 

arising from the PPNr (green) and the LDT (red). (E) Localisation of identified CINs 

responding to PPN (green) and LDT (red) stimulation in the Str. #: significant 

difference from baseline (p<0.05). Values are shown as mean ± SEM. 

Cholinergic brainstem does not modulate PV interneurons 

Next, we analysed the response of FSI expressing the PV marker. No differences 
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were observed in the baseline firing activity (20s immediate before laser stimulation) 

of PV interneurons recorded during PPN or LDT experiments (t-test: t(15)=0.743, 

p=0.469). During optogenetic stimulation most PV+ neurons showed no response to 

the optogenetic stimulation of PPN or LDT axons (PPN: ANOVA: F(1,7)=0.363 

p=0.566; LDT: ANOVA: F(1,8)=5.32 p= 0.05) . We did not observe any difference in 

the response between PPN and LDT (t(15)=1.083, t-test: p= 0.296). No late response 

to the laser was observed by comparing post-stim (20s following stimulation) to 

baseline in PPN (mixed ANOVA: F(1,7)=0.315, p=0.592) or LDT experiments 

(mixed ANOVA: F(1,8)=3.72, p=0.09) (Fig. 48D). 

 

Figure 48: Cholinergic brainstem projections in the striatum do not change PV 

activity. (A) Brainstem cholinergic neurons (BCN) axons in the Str were activated 

with blue light (470 nm) in vivo. PV interneurons activity and ECoG were recorded 

during laser stimulation (blue square). Horizontal scale bars: 5 s; Vertical scale bars: 

1mV. (B) Following recording, putative PV interneurons were labelled with 

neurobiotin (NB, red) confirmed as PV with parvalbumin staining (PV, white) (C) 

Confocal images showing the proximity between identified PV interneurons (red) 

and cholinergic axons from PPN (green). (D) Average firing frequency of identified 

PV interneurons before, during and after optogenetic activation of surrounding 

cholinergic axons arising from the PPNr (green) and the LDT (red). (E) Localisation 

of identified PV surrounded by PPN (green) and LDT (red) cholinergic axons in the 

striatum. Values are shown as mean ± SEM. 
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Optogenetic activation of CINs decreases MSNs and CINs activity 

As previously reported, cholinergic brainstem terminals and CINs show different 

synaptic contacts in the Str; PPN synapses were mostly type 1 (asymmetric) while 

CINs synapses were mostly type 2 (symmetric) (Dautan et al., 2014). These synaptic 

contacts suggested an opposite modulation of Str neurons by CINs and PPN 

terminals. Indeed, type 1 synapses are mostly on dendritic shafts while type 2 

synapses are mostly on cell bodies. It has been shown in vitro that CINs activation 

results in the inhibition of surrounding CINs (English et al., 2012; Sullivan et al., 

2008; Witten et al., 2011). To determine whether CINs stimulation has a different 

effect on MSNs activity than PPN/LDT cholinergic axon stimulation, we 

stereotaxically injected in the Str the same virus used for brainstem experiments, and 

performed juxtacellular recording and labelling (Fig. 51).  

            

Figure 49: Cholinergic interneuron projections in the striatum. (A) Illustration of 

the virus injection in Str. (B) Virus injected in the striatum of ChAT::cre rats showed 

dense eYFP positive projections in the Str that formed dense distribution (insert) and 

showed specific expression in ChAT+ neurons (C).  

 

CINs modulation of MSNs 

We first analysed the response of MSNs to optogenetic activation of CINs axons in 
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the Str. MSNs showed a significant decrease in their firing rate during stimulation 

compare to baseline (20s before stimulation). First, I analysed the effect of 

stimulation and group on the average firing rates using a mixed ANOVA. This 

ANOVA produced a significant stimulation effect (F(1,37)=11.372, p<0.001) and a 

non-significant group effect (F(1,37)=6.032, p=0.713) and no interaction. (Fig. 52). 

 

Figure 50: Cholinergic interneuron activation reduces MSNs firing. (A) 

Cholinergic interneurons (CINs) axons were activated with blue light (470 nm) in 

vivo. MSNs activity and ECoG were recorded during laser stimulation (blue square). 

Horizontal scale bars: 5 s; Vertical scale bars: 1mV. (B) Following recording, 

putative MSNs were labelled with neurobiotin (NB, red) and confirmed as MSNs 

with Ctip2 staining (green). (C) Confocal images showing the proximity between 

identified MSNs dendrites (red; see spines) and CINs axons (green). (D) Average 

firing frequency of identified MSN neurons before, during and after optogenetic 

activation of surrounding CINs axons. (E) Localisation of identified MSNs 

responding to CINs stimulation. #: significant difference from baseline (p<0.05). 

Values are shown as mean ± SEM. 

 

CINs modulation of neighbouring CINs 

In order to test the effect of CINs on other CINs, we analysed the response of CINs 

that are expressing the viral construct (GFP+) and the response of those who are not 

expressing it (GFP-), during optogenetic activation of CINs. We observed no 
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difference in the baseline activity between CINs/GFP+ (n=10) and CINs/GFP- (n=8). 

During optogenetic stimulation, CINs/GFP+ neurons showed a significant increase 

by 54.7 ± 10.8 % of their firing activity compare to baseline, due to activation of the 

ChR2. In contrast, CINs/GFP- showed a significant decrease of their firing activity 

by 30 ±3.2% compare to baseline, due to autoinhibition of CINs. This was shown by 

the two-way ANOVA (response × cell type) which produced a non-significant 

response (F(2,18)=1.17, p=0.132), a significant cell type effect (F(1,18)=9.65, 

p=0.001) and an interaction effect (F(2,18)= 5.503, p=0.003). The cell type effect 

was followed up with a Tukey post hoc test which showed that CINs-eYFP+ and 

CINs-eYFP- responses were significantly different (p=0.002). (Fig. 53). 

 

Figure 51: Cholinergic interneurons inhibit other striatal cholinergic 

interneurons. (A) Cholinergic interneurons (CINs) axons were activated with blue 

light (470 nm) in vivo. CINs/YFP+ activity and ECoG were recorded during laser 

stimulation (blue square). (B) CINs/YFP- activity and ECoG were recorded during 

laser stimulation (blue square). Horizontal scale bars: 5 s; Vertical scale bars: 1mV. 

(A and B panel 3) Following recording, putative CINs, neurons were labelled with 

neurobiotin (NB, red) and confirmed as CINs with ChAT staining (white) and YFP+ 

or YFP- with GFP staining. (C) Average firing frequency of identified CINs/YFP+ 

(gray) and CINs/YFP- (vertical line) before, during and after optogenetic activation 

of surrounding CINs axons. (D) Localisation of identified CINs/YFP+ (gray) and 

CINs/YFP- (black) responding to CINs stimulation. #: significant difference from 

baseline (p<0.05). Values are shown as mean ± SEM. 
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CINs do not modulate PV interneurons 

We then analysed the response of PV expressing neurons during the optogenetic 

stimulation of CINs and saw no significant modulation of their firing. We observed 

variation of the firing activity during optical stimulation compared to baseline. This 

was shown by the mixed ANOVA (stimulation × group) which produced a non-

significant stimulation, group or interaction effect (p>0.05) (Fig. 54). 

 

Figure 52: Cholinergic interneurons activation do not change PV interneurons 

activity. (A) Cholinergic interneurons (CINs) axons were activated with blue light 

(470 nm) in vivo. PV interneurons activity and ECoG were recorded during laser 

stimulation (blue square). Horizontal scale bars: 5 s; Vertical scale bars: 1mV. (B) 

Following recording, putative PV neurons were labelled with neurobiotin (NB, red) 

and confirmed as PV with parvalbumin staining (PV, white). (C) Confocal images of 

proximity between identified PV (red) and cholinergic axons from CINs (green). (D) 

Average firing frequency of identified PV neurons before, during and after 

optogenetic activation of surrounding CINs axons. (E) Localisation of identified 

PV+ neurons surrounded by cholinergic terminals (B). Values are shown as mean ± 

SEM. 

 

We also compared the latency of the response of MSNs to optogenetic stimulation of 
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PPN and CINs cholinergic axons using z-score (see Methods Chapter 3). As PPN and 

LDT showed no significant difference in their responses, no analyses were performed 

for MSNs responding to LDT stimulation. We did not observe a significant 

difference in the baseline activity of MSNs recorded in PPN or CINs experiments, as 

shown by the non-significant one way ANOVA (group) effect (F(2,76)=1.627, 

p=0.547). We compared the firing activity of MSNs before, during and after 

optogenetic stimulation PPN, LDT and CINs (Fig. 53A and B). We observed a 

decrease in the MSNs activity during and after stimulation as shown by a significant 

mixed ANOVA stimulation effect (F(1,76)=35.746, p<0.001) but no group effect 

(F(2,76)=0.344, p=0.710) or interaction effect (F(2,76)= 1.051, p=0.355). No 

significant difference was found in the laser response latency, the firing rate change 

or the duration of the inhibition between PPN and CINs experiments (Fig 55 C, D 

and E). 

                  

Figure 53: No difference on MSNs response was apparent between CINs or 

brainstem cholinergic stimulation. Normalised firing rate (z-score along the whole 
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trial period, see Methods Chapter 3) for each identified MSNs. Following PPN 

cholinergic axon (A) or CINs (B) stimulation MSNs showed similar decrease in 

firing. No significant differences were observed in the response latency (C), variation 

change (D) and inhibition length (E) between PPN (blue) and CINs (green) 

stimulation. Values are shown as mean ± SEM. 

 

PPN, LDT and CINs are involved in action-outcome association 

Electrophysiology data suggested that optogenetic stimulation of PPN, LDT and 

CINs cholinergic axon reduces MSN firing. Several studies showed an important role 

of striatal MSNs activity in operant behaviour (Dickinson, 1994; Gremel and Costa, 

2013; Shan et al., 2014; Bradfield et al., 2013). The literature supports dissociation 

between DLS and DMS such that DLS mediates operant responding which is habit-

driven and DMS mediates goal-directed behaviour. This can be demonstrated with 

outcome devaluation tasks where devaluting a reward (e.g. through satiety) reduces 

goal-directed but not habit-driven responding (Shiflett et al., 2010; Yin et al., 2005a; 

Yin et al., 2005b; Balleine and O’Doherty, 2009). Indeed, a shift in DMS MSNs 

activity has been observed during goal-directed training and the behaviour appears to 

be independent of the strength of this change. In addition, MSNs located in the DLS 

increase their synchronisation during habit-driven behaviour but not during goal-

directed tasks. The switch between goal-directed and habit learning is believed to be 

associated with a switch in the MSNs synchronisation from DMS to DLS (Gremel 

and Costa, 2013).  

Here we tested if the PPN, LDT or CINs activity in Str mediates goal-directed vs 

habit-driven responding. Optogenetic manipulation is not suitable for stimulating a 

structure such as the Str. In addition, prolonged inhibition by optogenetics is 

managed by continuous stimulation which increases the temperature at the tip of the 

optic fibre (Liske et al., 2013). For these reasons we decided to use pharmacogenetic 
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inhibition that allowed us to inhibit neurons spread over a large area for several hours 

(Stachniak et al., 2014) (Fig. 56). 

 

Figure 54: Pharmacogenetic inhibition of cholinergic activity in the striatum in 

behaving animals. (A) Injection of AAV2-hSyn-DIO-hM4Di-mCherry in PPN 

showed specific expression of mCherry (red) and the virus markers influenza 

hemagglutinin (HA; green) in cholinergic neurons (gray). (B) Following behavioural 

experiments, ChAT::cre animals injected in PPN and LDT received injection of the 

retrograde tracer fluorogold (FG) through the Str implanted cannula. Projections of 

virus positive (red) neurons to the Str were revealed by merging with ChAT (gray) 

and FG (green). (C) Injection of AAV2-hSyn-DIO-hM4Di-mCherry in Str showed 

specific expression (arrows) of mCherry (red) in cholinergic neurons (gray). (D) 

Location of intracranial cannula and injection site (arrow). ChAT::cre and WT 

animals were injected in DMS, DLS, PPN or LDT and implanted in dorsomedial 

(DMS and LDT group) or the dorsolateral (DLS and PPN group) for intracranial 

injection of CNO. (E) Schematic of the within-subject behaviour design. Animals 

underwent training to press a lever for sugar pellet during random ratio (RR) 

followed by a random intervals (RI) schedule. Between both schedules and at the end 

of the RI schedule, animals were tested on two consecutive days for devalued (dev) 

or valued (val) outcome as presented before (Gremel and Costa, 2013).  

 

Goal-directed 

Following CRF training, WT animals were tested for 4 days in a RR-5 schedule; 

animals received daily injection of CNO 1h before each session (Fig. 54E). During 
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RR-5 training, no significant differences in the number of presses were observed 

between WT animals that received viral injections in different nuclei (PPN, LDT, 

DLS or DMS) or implanted in different position (DMS or DLS). This was supported 

by a significant day effect (F(3,16)=23.370, p<0.001), a non-significant mixed 

ANOVA group effect (F(3,16)=0.340, p=0.797), and a significant mixed ANOVA 

group × day (4×4) interaction (F(9,16)=2.090, p=0.049) (Fig 55A and B).  

 

Figure 55: No differences were found in different groups of WT animals during 

acquisition and outcome devaluation. During random ratio training, no difference 

was observed in WT animals (group) in the number of lever presses (A) and the 

number of rewards (B). Following outcome-extinction, the normalised number of 

presses showed a difference between valued and devalued condition (C) suggesting a 

goal-directed behaviour. During random interval training, no difference was observed 

in WT animals in the number of lever presses (D) and the number of rewards (E). 

Following outcome-extinction, the normalised number of presses showed no 

difference between valued and devalued condition (F) suggesting a habit-driven 

behaviour. DMS n=5, DLS n=5, PPN n=5, LDT n=5. Values are shown as mean ± 

SEM. 
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We carried out outcome devaluation tests to assess the effect of training schedule on 

goal-direct vs habit-driven behaviours (Fig 55 C). We measured the number of non-

reinforced lever presses in “valued” and “devalued” day; if a significant difference is 

observed, the training is considered as goal-directed (action directed by the outcome 

value); otherwise the training is considered as habit learning (action is not dependant 

of the outcome value). Following RR-5 training, WT animals showed a significant 

difference in the normalised number of lever presses. This was tested by a condition 

(valued vs devalued) × group (PPN-WT, LDT-WT, DMS-WT, DLS-WT) mixed 

ANOVA. This ANOVA produced a significant condition effect (F(1,41)=21.124, 

p<0.001) but no significant group or interaction effect (stats). The difference in lever 

presses suggests that following RR training WT animals showed sensitivity to 

devaluation, and therefore executed the action in a goal-directed manner (Fig 55C).  

We did not observe any significant difference in the number of lever presses per 

minutes during training in ChAT::cre animals injected in the PPN (CRE-PPN, Fig 

56G), LDT (CRE-LDT, Fig. 56E), DMS (CRE-LDT, Fig 56C) or DLS (CRE-DLS, 

Fig. 56A) as confirmed by the day × group mixed ANOVA effect (day effect: 

F(3,41)=60.637, p<0.001; group effect: F(4,41)= 278.017, p=0.568; day × group 

interaction F(12,41)=36.51, p=0.218). Analysis of the normalised lever presses 

during “valued” and “devalued” day in ChAT::cre animals showed a significant 

mixed ANOVA condition (valued vs devalued) effect in DLS, in DMS and in PPN. 

However, a non-significant one way ANOVA condition effect was found for LDT 

(DLS: F(1,41)=19.946, p<0.001, Fig 56B , DMS: F(1,41)=12.9, p<0.001 , Fig 56D, 

PPN: F(1,41)=4.512, p<0.001, , Fig 56F , LDT: F(1,41)=0.843, p=0.416, Fig 56H). 

Analysis of the total number of presses showed no significant effect between groups 

as showed by the one way ANOVA group effect (F(4,45)=2.110, p=0.097). These 
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results suggest that LDT cholinergic axons in the DMS are needed for goal-directed 

learning, but not PPN, DLS or DMS.  

   

Figure 56: Cholinergic activity in DMS from LDT is needed for goal-directed 

acquisition. A significant difference was found in the RR acquisition between DLS, 

LDT and their relative WT control (A and E). Blocking of CRE-DLS activity 

showed significantly more lever presses than WT-DLS. CRE-LDT showed slowest 

acquisition than WT-LDT. No significant difference was found for DMS (C) and 

PPN (G) with their respective controls. Following outcome devaluation, a significant 

difference in the normalised lever presses value was found between valued and 

devalued conditions in CRE-DLS (B), CRE-DMS (D), CRE-PPN (H) and all control 

(B, D, F and H). No significant difference was found in the normalised lever presses 

value for CRE-LDT (F) suggesting an impairment of the goal-directed acquisition. *: 

significant difference between ChAT::cre and WT (p<0.05). #: significant difference 

between valued and devalued session (p<0.05). Values are shown as mean ± SEM. 
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Habit learning 

We then retrained the animals in a progressive VI schedule (see methods, Fig 54E). 

As previously reported, no difference was found in VI acquisition in WT rats 

undergoing virus injections in PPN, LDT, DMS or DLS or cannulation in the DMS 

or DLS (Fig 55D and E), as shown by a significant day effect (F(7,15)=18.279, 

p<0.001), a non-significant mixed ANOVA group effect on the number of presses per 

minute (F(3,15)=1.855, p=0.178) and no interaction (F(21,15)=0.919, p=0.567). 

Following the last VI60 session, animals were tested on outcome-extinction “valued” 

or “devalued” schedule as before. No significant condition, group effect or 

interaction was observed (stats). This demonstrates that WT animals were insensitive 

to devaluation and were thus habit-driven (Fig 55F). 

We did not observe any significant difference in the number of lever presses per 

minute in the CRE-PPN (Fig 57G), CRE-LDT (Fig 57E), CRE-DMS (Fig 57C) or 

CRE-DLS (Fig 57A) animals as confirmed by the mixed ANOVA effect (day: 

F(7,41)=12.398, p=0.01; group: F(4,41)=441.487, p=0.267; day × group: F(28, 

41)=0.969, p=0.435). Analysis of the normalised lever presses during “valued” and 

“devalued” days in ChAT::cre animals showed a significant one way ANOVA 

condition effect in PPN and DLS, but not DMS and LDT (DLS: (F(1,41)=3.543, 

p=0.03, Fig. 57B, PPN: F(1,41)=4.59, p<0.001, Fig. 57H, DMS:F(1,41)= 2.64, 

p=0,796, Fig. 57D, LDT: F(1,41)=9.57, p=0.357, Fig 57F).  
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Figure 57: Cholinergic activity in DLS and PPN is needed for habit-driven 

learning. A significant difference was found in the RI acquisition between DMS, 

PPN and their relative WT control (B and G). Blocking of CRE-DMS activity 

showed significantly more lever presses than WT-DMS. CRE-PPN showed fastest 

acquisition than WT-PPN. No significant difference was found for DLS (A) and PPN 

(E) with their respective controls. Following outcome devaluation, a significant 

difference in the normalised lever presses value was found between valued and 

devalued conditions in CRE-DLS (B) and CRE-PPN suggesting an impairment of the 

habit learning. No significant difference was found in the normalised lever presses 

value for CRE-DMS (D), CRE-LDT (F) and all control (B, D, F and H). * 

Significant difference between ChAT::cre and WT (p<0.05). # Significant difference 

between valued and devalued session (p<0.05). Values are shown as mean ± SEM. 
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Analysis of the total number of presses showed no significant group effect 

(F(3,45)=0.911, p=0.467). These results suggest that cholinergic axons from the 

CINs in the DLS and from PPN are important for the switch between goal-directed 

and habit learning.  

Reversal training 

The outcome devaluation showed that the ACh activity in CINs located in the DMS 

was not needed for action-outcome association. However, the ACh from the LDT 

axons in the DMS appears to be necessary for goal-directed learning. To assess the 

role of DMS ACh in behavioural flexibility, we tested the same animals in a reversal 

task (Castane et al., 2010; Okada et al., 2011). For this, we retrained the animals on a 

FR1 schedule, where two levers were extended, but only one is rewarded (Fig 60A, 

top). On day 1, the lever used in previous training was rewarded whereas pressing on 

the other lever had no consequences. This was reversed on days 2 and 3 (Fig 60A, 

bottom). During reacquisition (day 1), no difference was observed in the total 

number of presses between all groups (WT, ChAT-PPN, ChAT-LDT, ChAT-DMS and 

ChAT-DLS) as shown by the one way ANOVA (F(4,44)=1.504, p=0.219). When 

levers were reversed (days 2 and 3), we observed a significant decrease of the 

number of rewards. As shown by the day1 × group mixed ANOVA (days effect: 

F(2,80)=8.035, p=0.001), group effect F(4,80)=8.822, p<0.001, day × group 

interaction (F(8,80)=5.266, p<0.001). Tukey post hoc tests showed significant 

differences between WT and DMS (p<0.001) and between WT and LDT (p=0.041). 

No significant difference was observed between WT and DLS (p=0.486) or between 

WT and PPN (p= 0.998). On the second reversal session the number of presses 

increased in all groups and showed a day effect (reversal1 vs reversal2: 



188 
 

F(1,40)=6.178, p=0.017), a group effect (F(4,40)=10.123, p<0.001) and a day × 

group interaction (F(4,40)=4.120, p=0.007). We followed up the group effect by post 

hoc Tukey tests, and saw a significant difference between WT and DMS (p<0.001) 

and between WT vs LDT (p=0.024). These results suggest that cholinergic activity in 

DMS arising from CINs or LDT slow down the place discrimination learning (Fig 

60B). 

 

Figure 58: Blocking of acetylcholine release in the DMS by CINs or LDT 

enhance place discrimination. (A) Schematic representation of the reversal learning 

strategy. First animals injected in the DLS, DMS, PPN, LDT or controls were trained 

in a two-lever operant chamber to press one lever (correct; “+”) for reward delivery 

(top panel). Following acquisition, both levers were inverted and animals received 

CNO injections. The positions of the initial correct levers were changed in a 

pseudorandom order. (B) Reversal flexibility was enhanced on the two consecutive 

reversal sessions in the rats injected in DMS and LDT and receiving CNO injection 

in the DMS. * is used for significant difference between mutants and WT (p<0.05). 

Values are shown as mean ± SEM. 

 

Locomotion and sugar consumption 

Both DMS and DLS are involved in locomotion and motivation (Wiltschko et al., 
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2010; Schmidt et al., 1982; Clement et al., 2012). To rule out the contribution of 

overall motivation and locomotion on the effects observed above, we measured the 

total distance travelled in 15 min of open field sessions after CNO or saline 

injections in a new group of animals. No significant difference of the total distance 

travelled was observed between saline and CNO condition and between ChAT::cre-

PPN and WT. These results were confirmed by the two-way ANOVA drugs × group 

showing a non-significant drug effect and a significant group effect (F(2,12)=1.198, 

p=0.71) (Fig 59). However, a significant difference between in locomotion PPN and 

WT groups was observed in saline conditions. No clear explanation could be found 

and data need to be replicated to confirm the effects. However, the experiment 

confirmed that CNO injected locally in the striatum does not have effect on the 

locomotion. 

 

Figure 59: Blocking of cholinergic activity in DLS from PPN does not affect 

locomotion. Open field locomotion over 15 min session was recorded in ChAT::cre 

(blue) and WT (red) receiving CNO (deep red, deep blue) or saline (light red, light 

blue). No difference was found between WT and CRE and between saline and CNO 

condition in the total distance travelled (A). Values are shown as mean ± SEM. 

 

Previously, non-specific lesions of PPN cholinergic neurons have been shown to 

reduce sugar consumption (Stefurak and Van der Kooy, 1994). Here, we recorded the 
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amount of sugar pellets (in g) consumed by ChAT::cre and WT animals injected in 

the PPN after CNO injection. We did not see any significant effects for group 

(F(1,11)=2.512, p=0.539), drugs (F(1,11)= 9.650, p=0.389) or interaction 

(F(1,11)=14.486, p=0.816) between PPN and WT (Fig 63). 

 

Figure 60: Blocking of acetylcholine release in the DLS from PPN does not 

affect sugar consumption. We recorded the amount of sugar consumed over 60 min 

by mutant (blue) and WT (red) receiving CNO (deep red, deep blue) or saline (light 

red, light blue). No difference was found between WT and CRE and between saline 

and CNO condition in the sugar consumption (g). Values are shown as mean ± SEM. 
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Discussion 

By investigating the response of striatal neurons to optogenetic stimulation or 

pharmacogenetic inhibition of PPN, LDT or CINs axons in vivo, we made several 

observations. First, PPN and LDT cholinergic axons in the Str are functional, and 

optogenetic stimulation of their terminals inhibits MSNs activity and increases CINs 

activity. These findings support the observations made by electron microscopy and 

suggest that brainstem cholinergic axons in the Str make synaptic contact with MSNs 

and CINs (Dautan et al., 2014, see Chapter 2). In addition, we confirmed in an in 

vivo preparation the observation made from in vitro experiments (Witten et al., 2011) 

that activation of CINs produce an inhibition of MSNs and other CINs. The 

inhibition of CINs was fast and only apparent during optogenetic stimulation, while 

the response of MSNs was slow and extended after the stimulation. We also 

confirmed that CINs activation does not change significantly the activity of other 

GABAergic interneurons.  

Using pharmacogenetic inhibition of cholinergic activity in the DLS and DMS, we 

observed parallel effects between PPN and CINs in the DLS, or between LDT and 

CINs in the DMS. Indeed, as previously confirmed, activation of CINs in DLS 

showed an important functional role in the habit learning (Tricomi et al., 2009), 

while the CINs in DMS showed no functional role in goal-directed learning 

(Bradfield et al., 2013; Shan et al., 2014). Furthermore, we showed that a decrease of 

the ACh activity arising from LDT in DMS impaired goal-directed acquisition, while 

the decrease of the ACh activity arising from PPN in the DLS impaired habit 

learning. This suggests that PPN cholinergic input in DLS is important for the switch 

from goal-directed to habit learning (Gremel and Costa, 2013). Next, we showed that 

inhibiting cholinergic activity in the DMS enhances behavioural flexibility in an 
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operant procedure, for both LDT and CIN inputs. Finally, by testing sugar 

consumption and locomotor activity, we confirmed that the impairment in goal-

directed and habit learning is not due to a lack of motivation or to motor impairment. 

MSNs activity is modulated by acetylcholine 

MSNs are the only output of the Str, and have been shown to be differentially 

modulated by the inputs to the Str. Indeed, activation of DAergic axons in Str results 

in an increase of D1-MSNs activity, while D2-MSNs are inhibited (Surmeier et al.; 

2007; Dreyer et al., 2010; see review: Keeler et al., 2014). Cortical and thalamic 

activation results in an increase of the activity of both D1- and D2-MSNs (Wilson, 

1993; O’Donnell and Grace, 1995; Sharott et al., 2012, Ellender et al., 2013; Doig et 

al., 2010). Activation of cholinergic interneurons results in a strong inhibition of 

MSN activity (Witten et al., 2011; Tozzi et al., 2011). However, the synchronisation 

of the MSN activity appeared to be dependent on the activity of PV and CINs 

striatum interneurons (Damodaran et al., 2014; Mallet et al., 2006; Cui et al., 2013; 

Hjorth et al., 2009; Witten et al., 2011; Adler et al., 2013). Here, we showed that PPN 

and activation of LDT cholinergic projections will decrease the activity of D1- and 

D2-MSNs, suggesting the first inputs to the striatum that inhibit the direct and the 

indirect pathway in a similar way. In addition, we showed that the ACh arising from 

the brainstem plays a similar role on MSN activity than the ACh from CINs.  

It has been shown in vitro that activation of CINs results in inhibition of the 

surrounding CINs probably by muscarinic M2 receptors and at a lower degree by M4 

receptors (Ding et al., 2006). No functional role of excitatory cholinergic receptors in 

CINs has been observed (Bennett et al., 2000; Wilson et al., 2005; Sullivan et al., 

2008). Here, the stimulation of brainstem cholinergic axons increases CINs activity 
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most likely by a nicotinic mechanism (M1 agonists do not produce significant effects 

on CINs activity). Brainstem cholinergic axons in the Str showed synaptic contact 

with spines, suggesting a direct contact with MSN. These synaptic contacts explain 

partially the response of MSNs to brainstem cholinergic axons stimulation. 

Cholinergic receptors have been found on GABAergic, glutamatergic and DAergic 

terminals (McGehee et al., 1995; MacDermott et al., 1999; Marchi et al., 2002; 

Threlfell et al., 2012). Indeed, brainstem cholinergic axons in the striatum can 

decrease MSNs activity through modulation of presynaptic AChRs. Indeed, 

activation of mAChRs reduce striatal glutamate release (Malenka and Kocsis, 1988) 

and decrease MSNs activity (Calabresi et al., 1998a). A more detailed analysis of the 

mechanism by which PPN/LDT cholinergic axons in Str modulate the striatal outputs 

seems to be necessary. 

PPN and LDT are involved in behavioural functions implicating 

segregated striatal regions 

 Cholinergic axons from the brainstem to the Str appear to be highly organised 

(Dautan et al., 2014): PPNr cholinergic axons project to the DLS and LDT 

cholinergic axons project to DMS and NA. DLS has been described as having a 

sensorimotor function, while DMS shows an associative and limbic role (Sabol et al., 

1985; Devan et al., 1999; Yin et al., 2004; Yin et al., 2005a). However, LDT 

cholinergic neurons projecting to DMS have collaterals to VTA and/or the 

parafascicular thalamic nucleus (Dautan et al., 2014). Similarly, single PPN 

cholinergic neurons can project to the SNc and/or the reticular thalamic nucleus. In 

parallel, PPN lesions impair sensorimotor-related behaviour (MacLaren et al., 2014), 

while LDT lesions impair limbic and associative functions (Winn, 2006; Nelson et 

al., 2007; Schmidt et al., 2009). Here, we showed that PPN and LDT cholinergic 
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projections to the Str are involved in the association between an action (lever press) 

and the outcome associated (reward). Similar observations have been found with 

lesioning or activating thalamic projection to DLS or DMS (Bradfield et al., 2013; 

Brown et al., 2010; Yin et al., 2005b) as well as as cortical-striatal projections 

(Gremel and Costa, 2013; Hollerman et al., 2000; Asplund et al., 2010). The role 

played by PPN/LDT cholinergic projections to the striatum might be complementary 

to the role played by PPN/LDT cholinergic projections to the VTA/SNc and the 

thalamus. 

 Finally, previous studies using electrophysiology and reversal training have 

showed goal-directed behaviour to be highly dependent on a balance between the 

synchronisation of MSNs in DMS and in DLS. In a goal-directed behaviour MSNs 

located in the DMS show higher synchronisation of their activity than the ones 

located in the DLS (Gremel and Costa, 2013). Here we confirmed that inhibition of 

LDT cholinergic projections in the DMS will retard the acquisition of a goal-directed 

behaviour, while inhibition of PPN cholinergic projections in the DLS, and inhibition 

of CINs in the DLS will decrease the acquisition of a habit-driven behaviour. These 

results suggest that LDT/PPN cholinergic projections to the striatum might modulate 

synchronicity of MSNs, respectively in the DMS and the DLS. 
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General discussion 

Overall aims 

The aim of this work was to examine the cholinergic modulation of the mesostriatal 

pathway, with emphasis on:  

1) Electrophysiological properties and behavioural significance of the brainstem 

cholinergic projections to the dopaminergic midbrain. 

2) Electrophysiological properties and behavioural significance of the brainstem 

cholinergic projections to the striatum. 

3) Interactions of cholinergic inputs to the striatum with discrete cell 

populations. 

Anatomical, electrophysiological and behavioural properties of the 

cholinergic brainstem projections onto VTA neurons 

Firstly, I set out to describe the anatomy of the cholinergic projections from 

the brainstem to the midbrain and the striatum. The only source of ACh in the 

DAergic midbrain nuclei (VTA/SNc) has been described as arising from the 

brainstem, the PPN and the LDT (Holmstrand et al., 2011). I observed no significant 

difference in the amount of VTA-cholinergic projections arising from the PPNc 

compared to the LDT. Optogenetic activation of PPNc cholinergic axons showed an 

excitatory response in DA neurons, a response that was maintained over the entire 

duration of the laser stimulation. The optogenetic activation showed both excitatory 

and inhibitory responses on non-DAergic neurons. We also observed that PPN 

cholinergic axon stimulation was sufficient to switch the firing pattern of DA neurons 
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in the VTA from non-bursting to bursting mode. Activation of LDT cholinergic axons 

in the VTA showed a similar excitatory response of DA neurons, but a larger 

proportion of neurons were responding to the laser stimulation compared to PPNc 

experiments. Some DA neurons showed a delayed response occurring after the 

stimulation of LDT axons, which was not observed in PPNc experiments. 

Significantly fewer non-DAergic neurons were activated during LDT cholinergic 

axon stimulation compared to PPNc experiments. In LDT experiments, a larger 

proportion of non-DAergic neurons showed a decrease of their spiking activity 

during laser stimulation compared to PPNc experiments.  

During LDT axon stimulation, I observed that DA neurons which were 

bursting during baseline showed an increase in their bursting activity. However, 

during PPNc axons stimulation, I observed a switch from non-bursting to bursting 

mode of DAergic neurons. Increases in the number of bursts and the burst probability 

during LDT cholinergic axons stimulation seems to be due to an increase in the 

number of spikes within bursts and a decrease in the number of inter-burst spikes, 

while the changes in the burstiness of DAergic neurons during PPN cholinergic 

axons stimulation appears to be due to a disruption of the burst organisation. Further, 

I showed that the excitatory and inhibitory responses of DA and non-DA neurons 

during optogenetic activation of cholinergic axons were almost completely blocked 

by local iontophoretic injection of cholinergic receptor antagonists. Our electron 

microscopy, electrophysiological and pharmacological results suggest that the effects 

on VTA neurons are due to a release of ACh directly onto DAergic and non-DAergic 

neurons and not only due to a facilitation of glutamate or GABA release in the VTA, 

as previously suggested (Good and Lupica, 2009; Mansvelder and McGehee, 2000; 

Marchi et al., 2002). Using retrograde tracers, I showed that LDT cholinergic axons 
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innervate NA-projecting VTA neurons while the targets of PPN cholinergic axons in 

the VTA remain unknown. Some recent evidence suggests that PPN cholinergic 

axons target amygdala-projecting VTA neurons (Beier et al., 2015). Further, LDT 

input modulates DAergic neurons which are excited by aversive stimuli more 

strongly, while PPN axons show a stronger modulation of DA neurons that were 

inhibited by aversive stimuli (Brischoux et al., 2009; Ungless et al., 2004).  

Lastly, I tested the effect of the activation of cholinergic axons in the VTA on 

behaviour. PPN cholinergic neurons have been shown to be involved in locomotor 

function, while LDT cholinergic neurons seem to be involved in reward-related 

behaviour. Interestingly, both motor and limbic functions are mediated by 

dopaminergic neurons in the VTA (Ungless et al., 2010). Some of these functions 

may depend on brainstem cholinergic input to the VTA. In combination with findings 

implicating LDT in psychostimulant related locomotion, the overall increase in 

locomotion found here appears to be related to an increase in dopaminergic activity. 

During stimulation, the increase of locomotion observed in PPN experiments and the 

decrease of locomotion observed in LDT experiments seems to be related to a short 

orienting response. Further, in a lever press task, stimulation of both LDT and PPN 

cholinergic inputs to the VTA retarded extinction.  

Anatomical, electrophysiological and behavioural properties of the 

cholinergic brainstem projections onto striatum neurons 

Following the description of cholinergic projections of the PPN and the LDT 

(Chapter 2), I found that the cholinergic neurons of the PPN form not only the 

cholinergic input to the VTA/SNc but also provide a major cholinergic innervation of 

the DS and the NA. I observed that those projections were not only avoiding the Str 
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striosomes, but were also topographically organised with the PPNr preferentially 

innervating the DLS and the LDT preferentially innervating DMS and NA. The 

PPNc constitutes a transition region between PPNr and LDT and innervates the DS 

and NA equally. Interestingly, I observed that cholinergic neurons from the LDT 

projecting to the NA also give rise to cholinergic collaterals projecting to VTA/SNc 

or to the thalamus.  

Electron microscopy analysis revealed that cholinergic axons in the Str make 

synaptic contact with spines and dendritic shafts. Synaptic contacts with spines and 

dendritic shafts are more likely on MSNs and aspiny interneurons. In order to 

confirm that PPN and LDT were the only cholinergic inputs to the Str and NA, I 

targeted the 6 other cholinergic groups. Using scans of entire brains, I observed that, 

with the exception of PPN and LDT, no other cholinergic group gave rise to 

cholinergic axons in the Str and the Na. I showed that stimulation of PPN and LDT 

cholinergic inputs to the Str activates cholinergic interneurons, and that brainstem 

cholinergic neurons as well as cholinergic interneurons inhibit MSNs (Chapter 4).  

The rat striatum underlies reward-driven operant behaviour (Grace et al., 2007; 

Dickinson and Balleine, 1993; Cui et al., 2013). Specifically, lesion experiments 

have demonstrated that the DLS mediates habitual responding in lever pressing tasks, 

which is insensitive to the reinforcer. On the other hand, the DMS mediates goal-

directed responding which is driven by a psychological representation of the value of 

the reinforcer and is sensitive to a decrease in reinforcer value (Gremel and Costal, 

2013; Shan et al., 2014; Bradfield et al., 2013; McDonald et al., 2001; White and 

Rebec, 1993; Yin et al., 2004). I tested the extent to which CINs or brainstem 

cholinergic projections mediate these discrete functions of DLS vs. DMS. I found 
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that both PPN inputs to DLS and CINs located in DLS are involved in the acquisition 

of habit. This effect demonstrates behavioural functions of the PPN-DLS cholinergic 

system. It remains to be answered whether specific interactions between PPN 

afferents and CINs mediate these effects. This can be answered in the future using 

disconnection studies. On the other hand, cholinergic inputs from LDT to DMS, but 

not CINs located in DMS, were implicated in goal-directed behaviour suggesting a 

role of direct LDT inputs on DMS principal neurons. This result suggests a 

competition between CINs in the striatum. The role of cholinergic transmission in the 

striatum is complex. The results of my behavioural experiments are coherent with 

observations made in DMS/DLS CINs lesion experiments (Okada et al., 2014). 

However, other studies report no effect or decrease of the behavioural flexibility 

following CINs lesions (Ragozzino et al., 2002). The different effects can be 

explained by differences in the task design. Indeed, most of the reversal set-shifting 

studies use radial mazes whereas for this work, an operant chamber was used. In 

contrast to reversal set-shifting in a radial maze, in the operant chamber the animal 

remains in a similar spatial orientation from trial to trial, providing it with fewer 

numbers of strategies (Floresco et al., 2008), reducing the bias related to locomotion 

or anxiety.  

Patterns and significance of PPN and LDT innervation of BG 

 Originally, studies describing the basal ganglia focused almost exclusively on 

the dorsal basal ganglia (DS, globus pallidus, substantia nigra pars compacta, 

substantia nigra pars reticulata and subthalamic nucleus), mostly because of the role 

of SNc and DLS in neurodegenerative diseases (see review: Humphries and Prescott, 

2010; Parent and Hazrati, 1995; Bolam et al., 2000; Gurney et al., 2001a). While, the 

ventral components of the basal ganglia (NA core, NA shell, VTA, medial SNc and 
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ventral pallidum) were implicated in reward-driven behaviour and locomotion (Goto 

and Grace, 2005; Niv et al., 2006; Mulder et al., 1998; Kelley and Mittleman, 1999; 

Bauter et al., 2003; see review: Pennartz et al., 1994) (Fig 64). 

Recent findings, including the results presented here, suggest that because of its 

anatomical and functional interconnections with the basal ganglia, PPN should be 

considered as a component of the basal ganglia system (Mena-Segovia et al., 2004). 

Indeed, PPN cholinergic projections were found in DS, SNc, STN and GP, additional 

projections were also found in the somatosensory cortex and lateral thalamus (Mena-

Segovia et al., 2008; Dautan et al., 2014; Dautan et al., 2015). I also observed a 

gradient of projections between the PPNr and PPNc. Indeed, cholinergic neurons 

from PPNr appear to project mostly to the DLS, lateral SNc and controlateral 

thalamic nucleus. Cholinergic neurons from the PPNc also send inputs to the VTA, 

DMS, NA and mediodorsal thalamic nucleus. Thus PPNr cholinergic neurons 

innervate only the dorsal parts of the BG, whereas PPNc projects to the entire BG. 
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Figure 61: Parallel circuitry of the ventral and basal ganglia. Simplified model of 

the dorsal (A) and ventral (B) basal ganglia circuitry. Major DAergic (blue), 

GABAergic (red), glutamatergic (green) and cholinergic (orange) innervations were 

represented. Cholinergic and non-cholinergic projections from the brainstem are 

illustrated on the next figure. Abreviation: VTA ventral tegmental area, VP: ventral 

pallidum, GPe: globus pallidum external segment, GPi: globus pallidus internal 

segment, SNr: substantia nigra pars reticulata, SNc: substantia nigra pars compacta 

and STN: subthalamic nucleus. 

 

The mapping of cholinergic efferents from LDT shows projections to the NA, 

the VP, the VTA, the mediodorsal thalamus, gigantocellular tegmental field, GP, 

visual and cingulate cortex (Holmstrand and Sesack, 2011; Mitani et al., 1988; Higo 

et al., 1996; Motts and Schofield, 2009; Shiromani et al., 1992). This pattern of 

projection suggests an interconnection of the LDT with the ventral aspect of the BG. 

The projection of PPN and LDT within the BG suggests a dorsal-to-ventral 

organisation of brainstem cholinergic inputs (Fig 65). Typically, PPNr cholinergic 

neurons send sensorimotor-related information to the dorsal BG; PPNc cholinergic 

neurons carry sensorimotor and limbic information to the dorsal and ventral BG 

while the LDT cholinergic neurons carry limbic and motivational inputs to the 

ventral BG. These observations were confirmed by the functional role of cholinergic 

projections to the DLS (PPNr), DMS (PPNc and LDT) and VTA (PPNc and LDT) 

showed in this thesis. 

In vivo, the responses of CINs to salient stimuli are dependent upon dopamine 

release (Aosaki et al., 1994) which can also be mediated by glutamatergic inputs 

(Wang et al., 1991; Marti et al., 2002). MSNs exhibit short response latencies to 

salient stimuli in the range 100-150 ms (Hikosaka et al., 1989). An important 

question to resolve is whether the thalamo-striatal or mesostriatal projections could 

mediate these short-latency responses of striatal neurons directly. Since the latencies 



202 
 

of thalamic neuron responses to salient stimuli are in the range 150-200 ms and the 

latencies of DAergic neuron responses are normally in the range 70-100 ms (Schultz 

et al., 1998; Doing et al., 2014), striatal neuron responses must be initiated by a 

short-latency signal input that drives striatal neurons and pathways to the striatum. 

Brainstem cholinergic neurons response latencies are always shorter than the ones 

observed in DAergic, thalamic and striatal neurons, generally 70 ms (Kobayashi and 

Okada, 2007). In a series of observations, I proposed the cholinergic brainstem as a 

source of short-latency salient stimuli input that drives striatal neuron responses. 

First, as described in Chapter 1, a direct brainstem-striatum projection has been 

described. Second, local activation of brainstem cholinergic axons in the VTA 

increases DAergic neurons burstiness. Third, local activation of brainstem 

cholinergic axons in the striatum produces short-latency responses in CINs and slow 

responses of MSNs. Consequently, I proposed the brainstem cholinergic neurons as a 

source of short-latency responses to salient stimuli to DAergic midbrain. In addition, 

cholinergic neurons seem to prepare the striatum for dopaminergic and glutamatergic 

release following salient stimuli. However, further experiments are needed to 

evaluate the axonal conduction time, the receptors involved in each structure and 

their dynamic. In addition, a salient stimulus predicting reward does not evoke 

dopamine release in all regions of the striatum (increased DA release in NA core and 

DMS) (Brown et al., 2011), consistent with the suggestion that dopamine function 

relates to the multifaceted nature of salience. On the other hand, non-rewarding 

salient stimuli activate dopamine neurons (Horvitz, 2000; Ungless, 2004). First, more 

detailed studies are needed regarding the cholinergic modulation of the dopamine 

neuron responses to salient stimuli. For example, it will be important to determine 

whether dopamine neurons latency to salient stimuli is affected by PPN/LDT 
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cholinergic-specific lesions. Second, a more detailed understanding is needed 

regarding a putative modulation of dopamine release by brainstem-striatum pathway. 

Finally, a clearer understanding is needed of the role of Ach on thalamus activity. 

Functional significance of brainstem input to VTA 

Brainstem cholinergic neuron activity is related to locomotion and to salient stimuli. 

For example, PPN cholinergic neurons degenerate in PD (Hirsch et al., 1987; Zweig 

et al., 1987; Jellinger, 1988), and PPN cholinergic and non-cholinergic neurons 

project to motor regions of the spinal cords, such as the gigantocellular nucleus 

(Skinner et al., 1990; Martinez-Gonzalez et al., 2014). PPN electrical stimulation 

affects posture, muscle tone and locomotion (Reese et al., 1995; Steriade and 

McCarley, 1990; Lai and Siegel, 1990).  

PPN descending projections to the reticular nucleus are implicated in locomotion 

whereas ascending projections (to the VTA/SNc or STN) are inplicated in the control 

of gait and muscle tone (Kringelbach et al., 2007; Thevathasan et al., 2012; Moro et 

al., 2010; Garcia-Rill et al., 1990). Bilateral lesions of PPN cholinergic neurons are 

sufficient to induce gait and balance disorders (Karachi et al., 2010). In PD patients, 

symptoms associated with loss of PPN cholinergic lesions were resistant to DA 

treatment (Karachi et al., 2010; Ryczko et al., 2013), suggesting that gait and balance 

disorders observed in faller PD patients were dependant of PPN cholinergic activity, 

while symptoms in non-faller PD were DA related (Karachi et al., 2010; Grabli et al., 

2013). 
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Figure 62: Innervation of the basal ganglia by the cholinergic brainstem. 

Cholinergic inputs to the midbrain (top left), the thalamus (top right), the Str (centre) 

and the pallidum (bottom right) are distributed along a medio-lateral extends. DLS, 

substantia nigra, dorsal pallidum and lateral thalamus nuclei receive cholinergic 

inputs mostly from the PPNr (green). DMS, lateral accumbens, medial substantia 

nigra, ventral tegmental area, medial thalamic nucleus and medial ventral pallidum 

receive cholinergic inputs mostly from the PPNc (yellow). Finally, DMS, NA, 

olfactory tubercle, VTA, centro-medial thalamic nucleus and lateral ventral pallidum 

receive cholinergic inputs mostly from the LDT (red). Dashed lines indicate main 

projections within BG. Based on Voorn et al., 2004; Dautan et al., 2014; Dautan et al., 

2015; Holmstrand and Sesack, 2011. 

 

LDT cholinergic neurons have also been implicated in locomotion. Amphetamine, 

morphine or nicotine–induced locomotion is mediated by DAergic neurons in VTA 

(Clarke and Kumar, 1983a; Clarke and Kumar 1983b; Nakahara et al., 2001; Panagis 

et al., 1996). However nicotine administration also induces activation of LDT 

neurons (Lanca et al., 2000). LDT lesions reduce psychostimulatant-produced 

locomotion (Forster et al., 2002). These effects have been shown to be almost 
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exclusively associated with cholinergic neurons (Alderson et al., 2005). Thus 

psychostimulatant effects on locomotion may involve the mesoaccumbal pathway 

through the activation of LDT cholinergic neurons. Indeed, dorsal striatal CINs 

lesions do not show effects on locomotion whereas NA CINs lesions reduce 

psychostimulant-produced locomotion by reducing DA release (Okada et al., 2011; 

Laplante et al., 2013). 

All together, these results suggest independent mechanisms of PPN and LDT 

produce locomotion: PPN appears to be involved in gait and posture and these effects 

may be independent of the mesolimbic pathway. On the other hand, LDT appears to 

be involved in psychostimulant-produced locomotion and this effect is most likely to 

be dependent on the mesolimbic pathway. 

Functional significance of striatal cholinergic activity 

 

Experimental evidence suggests dissociation between cognitive function mediated by 

DMS and DLS, and also by MSNs and CINs (Groenewegen et al., 1990; Devan et 

al., 2011; White and Rebec, 1993; Kim et al., 2009; Mizumori et al., 2009). 

Anatomically, a clear-cut separation between DLS and DMS is not straight forward. 

No clear distinction, based on inputs to the Str, has been found between DMS and 

DLS (Haber et al., 2000; Lynd-Balta and Haber, 1994; Zahm et al., 1996) and no 

difference has been observed in the number of FSI and MSNs (D1 or D2) between 

DLS and DMS (Gertler et al., 2008; Gerfen et al., 1990; Wu and Parent, 2000). 

Interestingly, however CINs are more densely distributed in the DLS than DMS 

(Bernacer et al., 2007; Altar et al., 1991; Phelps et al., 1989). 

Modulation of excitatory inputs to DLS or DMS showed the role of ACh in 

habit and goal-directed behaviour (Gremel and Costa, 2013; Yin et al., 2004; 
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Bradfield et al., 2013). Goal-directed behaviour, while dependent on DMS, does not 

seems to be affected by DMS CINs lesions but appears to be dependent on DMS 

MSNs (Fanelli et al., 2013; Macpherson et al., 2014; Kim et al., 2013). In addition, 

habit learning behaviour appears to be affected by loss of CINs in the DLS (or 

thalamic input to CINs), and also by a loss of MSNs (or MSNs activity) in the lateral 

Str (Bradfield et al., 2013; Kimchi et al., 2009; Thorn et al., 2010). The findings 

presented in Chapter 4 confirm that PPN and LDT cholinergic projections to the 

striatum are involved in opposite, but complementary, behaviour. 

Future directions and conclusion  

The conclusions reached here present some testable hypotheses that need more 

experiments. The first is that brainstem projections to the VTA and the Str act 

together, with a strict temporality, to modulate the release of dopamine in the 

striatum. Suggesting that direct brainstem-striatum pathway will prepare the release 

of dopamine by pre-activating CINs. This could be further investigated and tested by: 

1) Fast scan cyclic voltammetry, to measure the dopamine release following 

stimulation of cholinergic axons in the midbrain and in the striatum. A high level of 

dopamine release in the striatum following stimulation of both outputs would 

establish the temporal interaction of brainstem-striatum and brainstem-midbrain-

striatum pathway, 2) Using behavioural disconnection studies to test if 

interhemispheric blocking of midbrain and Str Ach release arising from the brainstem 

will show a stronger behavioural effect than intrahemispheric blocking.  
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Appendix 1: Summary of all injections coordinates (distance from midline and 

surface of the brain). 

  AP ML DV Angle 

 Ch1 (medial septum) 0.4 1.6 -5.7 15 

Ch2 (vertical band) 0.8 2 7.3 15 

Ch3 (Horizontal band) 1 1.9 8.5 0 

Ch4 (nucleus basalis) 1.2 3 7.3 0 

Ch5 (PPN) -7.3 1.8 7.2 0 

PPNc -7.8 1.8 -6.5 0 

PPNr -6.8 1.8 -7.5 0 

Ch6 (LDT) -8.5 0.9 6 0 

Ch7 (medial habenula) -3.5 0.3 -4 0 

Ch8 (PBN) -4.5 4.3 -5.5 0 

DLS 0.5 3 4.5 0 

DMS 0.5 1.8 4.5 0 

NA 1.5 1.8 6.7 0 

lateral shell of NA 1.2 2.7 6.8 0 

medial shell of NA 1.5 0.9 7.2 0 

medial core of NA 1.5 0.9 6.5 0 
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Appendix 2: Statistics summary behaviour Chapter 3 

overall locomotion distance (pre vs stim) 

mixed ANO-

VA treatment F(1,29)=9,005 p=0,005 

      group F(2,29)=6,027 p=0,006 

      interaction F(2,29)=6,594 p=0,004 

    Tukey 

WT vs 

PPN   p=0,843 

      

WR vs 

LDT   p=0,009 

      

PPN vs 

LDT   p=0,024 

  mean speed (pre vs stim) 

mixed ANO-

VA treatment F(1,29)=5,702 p=0,038 

      group F(2,29)=6,108 p=0,038 

    Tukey 

WT vs 

PPN   p=0,839 

      

WR vs 

LDT   p=0,007 

      

PPN vs 

LDT   p=0,018 

drug effect distance (stim vs stim+drugs) 

mixed ANO-

VA treatment F(1,19)=0,769 p=0,391 

      group F(2,19)=0,703 p=0,508 

      interaction F(2,19)=1,405 p=0,270 

  mean speed 

mixed ANO-

VA treatment F(1,19)=1,043 p=0,320 

      group F(2,19)=0,746 p=0,486 

      interaction F(2,19)=1,746 p=0,201 

            

inst, locomotion distance (pre vs stim) 

mixed ANO-

VA treatment F(1,29)=1,362 p=0,108 

      group F(2,29)=364,306 p=0,006 

    Tukey 

WT vs 

PPN   p=0,044 

      

WR vs 

LDT   p=0,029 

      

PPN vs 

LDT   p<0,001 

drug effect distance (stim vs stim+drugs) 

mixed ANO-

VA treatment F(1,19)=3,617 p=0,09 

      group F(2,19)=1,412 p=0,268 

    Tukey 

WT vs 

PPN   p=0,465 

      

WR vs 

LDT   p=0,271 

      

PPN vs 

LDT   p=0,881 
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Appendix 3: Statistics summary electrophysiology Chapter 4 

MSN firing (pre vs stim)  one way ANOVA PPN F(1,38)=2,097 p=0,043 

      LDT F(1,37)=2,21 p=0,033 

  stim x group mixed ANOVA stim F(2,37)=11,372 p<0,001 

      group F(1,37)=6,032 p=0,713 

      interaction F(1,37)=4,98 p>0,05 

  basal firing rate t-test PPN vs LDT t(37)=0,230 p=0,820 

  stim firing rate t-test PPN vs LDT t(37)=0,696 p=0,491 

  response mixed  ANOVA stim F(1,37)=3,697 p>0,05 

      group (F1,37)=0,023 p=0,982 

CINs firing (pre vs stim)  one way ANOVA PPN F(1,12)=23,97 p<0,001 

      LDT F(1,7)=9,779 p=0,017 

CINs-eYFP 

response x cell 

type mixed ANOVA response F(2,18)=1,17 p=0,132 

      cell type F(2,18)=9,65 p=0,018 

      interaction F(2,18)=5,503 p=0,003 

    Tukey YFP+ vs YFP-   p=0,002 

  basal firing rate t-test PPN vs LDT t(19)=0,397 p=0,696 

  stim firing rate t-test PPN vs LDT t(19)=0,07 p=0,945 

  response vs post one way ANOVA PPN F(1,12)=0,426 p=0,526 

      LDT (F1,7)=0,006 p=0,940 

            

PV baseline t-test  PPN vs LDT t(15)=0,743 p=0,469 

  firing (pre vs stim) one way ANOVA PPN F(1,7)=0,363 p=0,566 

      LDT F(1,8)=5,32 p=0,05 

  stim firing rate t-test PPN vs LDT t(15)=1,083 p=0,296 

  response vs post one way ANOVA PPN F(1,7)=0,315 p=0,592 

      LDT F(1,8)=3,72 p=0,09 

CINs to PV stim x group  mixed ANOVA stim   p>0,05 

      group   p>0,05 

      interaction   p>0,05 

Latency (z-score) MSN response mixed ANOVA group F(2,76)=0,344 p=0,710 

      stim F(1,76)=35,746 p<0,001 

      interaction F(2,76)=1,051 p=0,355 
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Appendix 4: Statistics summary behaviour Chapter 4 

Control RR training mixed ANOVA day x group day  F(3,16)=23,370 p<0,001 

        group F(3,16)=3,340 p=0,797 

        interaction F(9,16)=2,090 p=0,049 

  devaluation mixed ANOVA condition x group condition F(1,41)=21,124 p<0,001 

        group F(4,41)=352,03 p>0,05 

        interaction F(4,41)=42,69 p>0,05 

  RI training mixed ANOVA day x group day  F(7,15)=18,279 p<0,001 

        group F(3,15)=1,855 p=0,178 

        interaction F(21,15)=0,919 p=0,567 

  devaluation mixed ANOVA condition x group condition F(1,41)=0,235 p=0,815 

        group F(4,15)=9,36 p>0,05 

        interaction F(4,15)=1,09 p>0,05 

Mutant RR training mixed ANOVA day x group day  F(3,41)=60,637 p<0,001 

        group F(4,41)=278,017 p=0,568 

        interaction F(12,41)=36,51 p=0,218 

  devaluation mixed ANOVA condition x group group F(4,45)=2,110 p=0,097 

    tukey mutant vs ctrl DLS   p<0,001 

        DMS   p<0,001 

        PPN   p<0,001 

        LDT   p=0,416 

  RI training mixed ANOVA day x group day  F(7,41)=12,398 p=0,01 

        group F(4,41)=441,487 p=0,267 

        interaction F(28,41)=0,969 p=0,435 

  devaluation mixed ANOVA condition x group group  F(3,45)=0,911 p=0,467 

    tukey mutant vs ctrl DLS   p=0,03 

        DMS   p<0,001 

        PPN   p=0,796 

        LDT   p=0,357 

Reversal reacquisition one way WT vs mutant   F(1,44)=1,504 p=0,219 

  reac vs day 1 mixed NOVA day x group day  F(2,80)=8,035 p<0,001 

        group F(4,80)=8,822 p<0,001 

        interaction F(8,80)=5,266 p<0,001 

    tukey   

WT vs 

DMS   p<0,001 

        WT vs LDT   p=0,041 

        WT vs DLS   p=0,486 

        WT vs PPN   p=998 

  day 1 vs day 2 mixed ANOVA day x group day  F(1,40)=6,178 p=0,017 

        group F(4,40)=10,123 p<0,001 

        interaction F(4,40)=4,120 p=0,007 

    Tukey   

WT vs 

DMS   p<0,001 

        WT vs DLS   p>0,05 

        WT vs LDT   p=0,024 

        WT vs PPN   p>0,05 

 

 

 


