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�We live on an island surrounded by a sea of ignorance. As our island of knowledge

grows, so does the shore of our ignorance"

John Archibald Wheeler



Abstract

Biological invasions are rapidly gaining importance due to the ever-increasing num-

ber of introduced species. Alongside the plenitude of empirical data on invasive

species there exists an equally broad range of mathematical models that might be

of use in understanding biological invasions.

This thesis aims to address several issues related to modelling invasive species

and provide insight into their dynamics. Part I (Chapter 2) documents a case

study of the gypsy moth, Lymantria dispar, invasion in the US. We propose an

alternative hypothesis to explain the patchiness of gypsy moth spread entailing

the interplay between dispersal, predation or a viral infection and the Allee e�ect.

Using a reaction-di�usion framework we test the two models (prey-predator and

susceptible-infected) and predict qualitatively similar patterns as are observed in

natural populations. As high density gypsy moth populations cause the most

damage, estimating the spread rate would be of help in any suppression strategy.

Correspondingly, using a di�usive SI model we are able to obtain estimates of the

rate of spread comparable to historical data.

Part II (Chapters 3, 4 and 5) is more methodological in nature, and in a single

species context we examine the e�ect of an ubiquitous phenomenon in�uencing

population dynamics � time delay. In Chapter 3 we show that contrary to the

general opinion, time delays are not always destabilising, using a delay di�erential

equation with discrete time delay. The concept of distributed delay is introduced

in Chapter 4 and studied through an integrodi�erential model. Both Chapters 3

and 4 focus on temporal dynamics of populations, so we further this consideration

to include spatial e�ects in Chapter 5. Using two di�erent representations of move-

ment, we show that the onset of spatiotemporal chaos in the wake of population

fronts is possible in a single species model.
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Chapter 1

Biological Invasions

Biological invasion occurs when non-native organisms are introduced to a new

area beyond their original (native) range. The topic of biological invasions has re-

ceived much interest due to the rapidly accelerating number of introduced exotic

species (Hengeveld 1989, Lewis and Kareiva 1993, Williamson 1996, Shigesada

and Kawasaki 1997, Parker et al. 1999, Sakai et al. 2001 ). The rising awareness

and interest in invasive species are mirrored in the growing number of contem-

porary publications, not only within the academic community, but with a wider

audience as well (see Fig. 1.1). Prompted by increasing levels of trade and travel,

biological invasions now pose a major threat to biodiversity of ecosystems and

lead to vast economic losses worldwide (Mooney et al. 2005 ). Due to widespread

and profound changes in�icted upon ecosystems, biological invasions have also

been recognised as a signi�cant part of global environmental change (Vitousek et

al. 1996 ).

Many non-native species were intentionally introduced in the �rst instance, but

since then have become harmful and major pests (Elton 1958 ). Invasion itself is

regarded more a process rather than an event and therefore has a number of stages

(Kolar and Lodge 2001 ). This stage-based approach has been adopted by many

authors with a varying number of steps (Williamson 1996, Blackburn et al. 2011,

Davis 2009 ), though the common standpoint is that invaders pass through at least

three stages before they are able to in�ict ecological and economic harm (Lockwood

et al. 2013 ). As a rule, invasion begins with the introduction of a small number of

individuals that are transported from their original range to a new habitat. These

individuals must then establish, that is form self-sustained populations within their

1
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new non-native range, and may then grow in abundance and expand their geo-

graphical range. Commonly, it is only when invasive species' populations become

widespread and abundant that they will be noticed. Distinguishing the stages of

the invasion process is important as it allows for the choice of appropriate mea-

sures to be undertaken, be it facilitating or inhibiting the spread of newly-founded

populations (Kolar and Lodge 2001 ). Prior to introduction, and as an integral

Figure 1.1: Front page of Time magazine (left) and the nearly exponential
increase in number of scienti�c papers published on the topic of invasion ecology
(right). Figures taken from Time magazine and Richardson and Py²ek 2008.

part of each stage of invasion, potential invasive species must overcome a series

of inherent barriers (Blackburn et al. 2011 ). At �rst, the simple obstacle of over-

coming the geography imposing physical barriers on the arrival and movement of

invaders beyond their native range can clearly in�uence invasion success. Human

entrainment, both intentional and accidental breaches bio-geographical bound-

aries and is the �rst step towards the introduction of exotic species. While not

every invasion is a consequence of human activity, the vast majority have resulted

from human-assisted transport (Keller and Lodge 2007 ). Subsequently, during es-

tablishment non-native species are faced with additional challenges: survival and

reproduction. Coping with environmental stress, gaining access to resources, in-

teracting with local species, mate �nding and avoidance of pre-mating mortality

are just a few of the ecological and environmental hurdles encountered by grow-

ing populations. Subject to successful establishment, non-native species tend to

expand their geographical range through dispersal, and thereafter are faced with

additional barriers to establish and further spread which may not necessarily be

similar to the ones encountered previously. Initial invading populations tend to

be small and are particularly vulnerable to Allee e�ects, which may even drive

the population extinct (Stephens et al. 1999 ). Allee e�ects are found in a wide
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range of taxa and ecosystems (Courchamp et al. 2008 ), but are particularly in�u-

ential in the invasion process as they may signi�cantly decrease the probability of

establishment (Taylor and Hastings 2005 ).

Out of the ever-increasing number of introduced exotic species, how many manage

to successfully establish? Interestingly, most introductions fail with only a limited

number of taxa succeeding. Indeed, Williamson (1996) found that between 5 and

20% of species progress through the stages of invasion. On average, 10% of intro-

duced invasive species establish, i.e. become self-sustained populations capable of

reproducing, and a mere 10% of these species evolve into pests, yielding harmful

consequences (tens rule). More recent estimates suggest this �gure to be higher

reaching even 20−30% of the total number of introduced species (Pimentel 2002 ).

Even though a small number of invaders succeed to establish, their cumulative ef-

fect has been and will continue to remain large. According to a summary report

the cumulative losses incurred from harmful pest species were estimated at almost

$100 billion by 1991 (US Congress OTA 1993 ), and are expected to rise in future

years. Newer reports suggest that an outstanding $314 billion per year is spent

on damage and control worldwide (Pimentel 2002 ). Costs not only include those

associated with damage and losses caused by harmful non-indigenous species in-

�icted upon property and natural ecosystems, but also include expenditure related

to various control mechanisms and programs. Enormous costs to agriculture, �sh-

eries, forestry and other human enterprises are most noticeable. A more subtle and

debatable issue arises from ecological consequences such as impacts on ecosystem

biodiversity. Many authors agree that invasions do pose a major threat to biodi-

versity (Williamson 1999, Richardson 2011, Lodge 1993, Lockwood et al. 2013 ), as

a result of competition from the invasives, as well as by predation. It is thought

that the impact of invasive species is responsible for around 42% of the decline of

native �ora and fauna which are now listed as endangered or threatened (Nature

Conservancy). More general ecological impacts include the e�ects pest species

have on other species' dynamics and extinction (particularly interesting are the

possible genetic modi�cations of invader and native species (Sakai et al. 2001 )),

e�ects on the food web, changes imposed on ecosystem processes and most evident

of all are the changes in physical structure of the environment. Newly introduced

species can also act as vectors of disease (Vitousek et al. 1996 ).

To date one of the largest programs tackling bio-invasion problems is the SCOPE

program, a committee founded by the International Council for Science in 1969

with the aim to document problems caused by invasive species (Mooney 2005 ).
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During 10 years of proli�c research the resulting publications signalled the syn-

thesis of the study of non-native species into a coherent �eld, calling for a more

integrated, interdisciplinary approach (Davis 2009 ).

1.1 Classical examples of biological invasions

�Let it be remembered how powerful the

in�uence of a single introduced tree

or mammal has been shown to be�1

In what follows, we will revisit some classical examples of biological invasion.

The four examples include a mammalian species, the muskrat Ondatra zibethica,

a sea-bird, the fulmar Fulmarus glacialis, the Japanese beetle Popillia japonica,

and a plant, cheatgrass, Bromus tectorum. Whilst most invasions are driven by

human action, the spread of the oceanic fulmar, Fulmarus glacialis, is one of sev-

eral exceptions. Currently numbering at around 5 − 7 million pairs it is one of

the most abundant seabirds in the Northern hemisphere (Mitchell et al. 2004 ).

Dating back to the 18th century there were reportedly only 2 known colonies in

the temperate Atlantic: one o� northern Iceland around the island of Grimsey

and another at St Kilda, a small archipelago west of the Outer Hebrides of Scot-

land. From these humble beginnings, boreal populations have greatly expanded

in the last 400 years (Thompson 2006 ). The fulmar has subsequently spread from

Grimsey, across the Faroe Islands and Shetland, only to spread south through-

out the UK and Ireland during the 20th century, even reaching Norway, parts of

France and Germany. The expansion throughout Europe was well-documented

and the �nite rate of fulmar population increase was estimated to reach a maxi-

mum of 5% per year (Fisher 1952, 1966 ). Fulmars are slow-breeding populations,

laying at most one egg per year, with an intrinsic rate of growth less than 0.05

per year (Williamson 1996 ). Despite the �fulmar wreck of 1962� (Pashby and

Cudworth 1962 ), in which adverse weather conditions lead to the sudden and sub-

stantial decline in fulmar populations around the British Isles, fulmar populations

have successfully recovered and resumed spread, with the rate of increase reaching

even 20% in some parts (Fisher 1966 ). From thereafter the growth has consider-

ably diminished, reaching a low of 4% during 1969-1986 (Lloyd et al. 1991 ). The

fulmar is an ocean-living bird feeding on �sh and plankton, coming to land only

1Darwin C (1859) �On the origin of species�
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to breed (Williamson 1996 ). Thus, the spread of fulmar is commonly linked to

�sh trawling and whaling (Fisher 1966, Phillips et al. 1999 ). Although prey dis-

tribution is an important determinant in the distribution of seabirds at sea, and

despite fulmars being regular and frequent ship-followers clearly pro�ting from the

increased availability of �sh o�al and discarded �shes from commercial �sheries,

fulmars are known to have an extremely varied diet. The distribution of fulmars

has shown greater correlation with certain hydrographic features than with �sh-

eries (Camphuysen and Garthe 1997 ). Preferred nesting sites include exposed tall

sea cli�s, and hence it has been hypothesised that the direction and speed of the ful-

mar spread is in�uenced by the distribution of available cli�s (Williamson 1996 ).

Other underlying causes of fulmar spread and distribution include climate warm-

ing (Salomonsen 1965, Brown 1970, Thompson and Ollason 2001 ) and genetically

based changes in dispersal behaviour (Wynne-Edwards 1962 ). Albeit a more gen-

eral explanation underlying fulmar spread is lacking, most likely possible driving

mechanisms of the spread are a combination of these in�uential factors. Northern

fulmars are known to have a slow invasion rate, and despite their huge numbers

they have had a relatively small impact on other, native species. Competition

for nesting sites has occasionally occurred, however the interaction with other sea

birds is kept to a minimum (Williamson 1996 ).

Another example of invasion is the muskrat spread in Europe (Fig. 1.2, top right)

which has been reproduced in almost all books written on the topic of biolog-

ical invasions and was one of the examples used by Elton (1958) to emphasise

the importance on why society should care about invasive species. Muskrats

are a semi-aquatic rodent species native to North America, brought to Europe

for fur-breeding. The spread over Europe started from only �ve individuals in

Czechoslovakia in 1905 (Elton 1958 ), and today the populations number mil-

lions. As muskrats have a high reproductive rate with up to four litters per year,

with four to six young per litter and disperse e�ectively, it is not surprising that

they inhabited the entire European continent in the short period of 50 years with

the muskrat range being additionally augmented by numerous subsidiary intro-

ductions. To date eradication attempts were only successful in Britain (in the

1930s) and Ireland, with control attempts in continental Europe being of rather

limited success. Apart from illustrating an example of quasi-circular spread (Skel-

lam 1951 ), muskrats are an example of a species which has been controlled and

even eradicated in some areas, though elsewhere seem to be uncontrollable as

feral populations now span from France through Central Europe, Russia, to China
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(Williamson 1996 ). Muskrats have been shown to be destructive, particularly to

embankments of rivers, lakes and even roads through their den building behaviour,

which led to actively conducted suppression campaigns in many European coun-

tries. One of the �rst attempts to quantify the spread of muskrat was done by

Skellam (1951), in which it was concluded that up to 1927 range expansion oc-

curred in approximately concentric circles centred at the original point of release

(escape). Furthermore, the square root of the area occupied was shown to be

a linear function when plotted against time, indicating that muskrats advanced

at a constant speed of 11.3 km/year. From the distribution maps it is readily

seen that not only did muskrat populations not expand in concentric circles, due

to a natural preference towards swamp and wetland habitats, but also the speed

along some radii seemed to be greater than estimated. Nonetheless, as an ini-

tial approximation, Skellam's estimate still remains a good average for spread in

all directions. Taking into account the local topography, environmental condi-

tions and complex shape of the range boundary, a subsequent study by Andow et

al. (1990) estimated the spread of muskrats at 10.3 km/year towards the west and

25.4 km/year in the east-southeast direction. As a consequence of various trapping

e�orts muskrat expansion has subsided in the period after 1930 (van den Bosch et

al. 1992 ), though complete eradication of muskrat populations in Europe seems

to be far from achievable.

Most accidentally introduced insect species rarely reach high population densities,

and are even seldom detected. However, a highly conspicuous minority of non-

indigenous arthropod species cause immense economic, environmental and pub-

lic health problems (Hajek et al. 2009 ), amongst which are populations of the

Japanese beetle, Popillia japonica, in the US. As is the case with most biologi-

cal invasions, the exact date and site of introduction are not known, though it is

thought to have been brought into the US with irises or azaleas around 1911 from

Japan. First detected in 1916, the population rapidly grew and despite concerted

federal and state e�orts to eradicate it and limit its spread the Japanese beetle

has progressively spread outwards, extending its range. In less than 30 years, the

Japanese beetle has successfully invaded over 50, 000 km2 and now encompasses

the majority of the eastern US. The Japanese beetle is endemic to the main islands

of the Japanese Archipelago, where it is regarded as a minor agricultural pest,

possibly due to the unsuitable environmental conditions for development and the

incidence of natural enemies keeping its populations low. In the US however, the

Japanese beetle populations have found a favourable habitat and cause not only
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damage to farm crops, but also defoliate over 250 tree species (Williamson 1996 ).

Despite several biological control mechanisms including parasitic nematodes, the

introduction of natural predators such as robins, grackles and predacious insects

including praying mantids and wheel bugs, populations are still spreading. Fol-

lowing its introduction, the Japanese beetle spread was slow but then gradually

increased, with population densities reaching very large values. The dynamics

of invasion and geographical spread are given in Fig. 1.2 (top left). In the �rst

decade of invasion, range expansion appeared to grow with accelerating speed,

and indeed the rate of movement of the Japanese beetle increased dramatically

each year during 1916-1926 (Allsopp 1996, Petrovskii and Li 2006, Shigesada and

Kawasaki 1997 ). The combination of natural spread resulting from adult �ight

and inadvertent human activity has surely in�uenced the increase in invasion rate,

and as an immigrant the Japanese beetle has proved to be spectacularly successful.

Now representing one of the most widespread and destructive insect pests of turf

and landscape in the eastern US, despite regulatory e�orts the Japanese beetle

remains a threat as an invasive species (Potter and Held 2002 ).

To quote Heywood (1989) �there are few ecosystems that have not been a�ected

to a greater or lesser degree by invasions by terrestrial plants�. In particular,

introduced grass species now dominate the western US landscape, currently ac-

counting for 50− 80% of vascular plant cover in over two thirds of the rangelands.

Cheatgrass, Bromus tectorum, alone prevails on over a 100 million acres (Belnap

and Phillips 2001 ) and is the dominant plant across at least 200, 000 km2 in the

Intermountain West region (Novak and Mack 2001 ). Its native range includes

much of Europe, northern Africa and southwest Asia. Human activity has most

likely facilitated the observed rapid range expansion of cheatgrass in the US, as

the combination of long and short distance dispersal have drastically increased

invasion rates. Evidence suggests that the accidental introduction of Bromus tec-

torum dates back to the early 1860s, from several widely separated sites. From

these isolated foci the annual winter grass species has spread and occupied its

current range, though at �rst was sparsely distributed, in about 40 years (Novak

and Mack 2001, Zouhar 2003 ). Ecological consequences of cheatgrass invasion

include serious impacts on biodiversity, an increased likelihood for �re ignition

and spread and an increased susceptibility of landscapes to erosion. Indeed, the

increase in �res in some invaded areas has even lead to the increased incidence

of �ooding (Klemmendson and Smith 1964 ). Furthermore, cheatgrass recovers

rapidly following �res which in turn tends to favour its dominance by removing
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Figure 1.2: Geographical spread of the Japanese beetle in the US (top
left), muskrat in Europe (top right) and cheatgrass in the US (bottom
row). Taken from Petrovskii and Li (2006), Shigesada and Kawasaki (1997),
http://www.cdfa.ca.gov/plant/PDEP/target_pest_disease_profiles/

images/JB_2106096_bugwood_DavidCappaert.jpg and http://environment.

nationalgeographic.com/environment/photos/freshwater-mammals/.

reproduction of competing native plants. Regardless of various suppression and

eradication techniques ranging from chemical to biological control agents employed

with the goal of limiting the spread, Bromus tectorum has been spreading to higher

elevation sites and remains a quintessential invader.

http://www.cdfa.ca.gov/plant/PDEP/target_pest_disease_profiles/images/JB_2106096_bugwood_DavidCappaert.jpg
http://www.cdfa.ca.gov/plant/PDEP/target_pest_disease_profiles/images/JB_2106096_bugwood_DavidCappaert.jpg
http://environment.nationalgeographic.com/environment/photos/freshwater-mammals/
http://environment.nationalgeographic.com/environment/photos/freshwater-mammals/
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1.2 Mathematical models: an overview

There is a great deal of empirical data available on invasive species, and there is

also an equally broad range of models that might be of use in understanding bio-

logical invasions. One of the main di�culties lies in connecting the two, relating

speci�c ecological mechanisms to testable predictions. Indeed, mathematical mod-

elling is a powerful research tool in theoretical ecology. The approach to model

building can be very di�erent though. Depending on the purpose of the study,

there have been two di�erent streams (Maynard Smith 1974). In case the intent

of modelling is to predict the ecosystem's state, the model is expected to explic-

itly include many details of the ecosystem's structure. This approach is called

predictive modelling. Though prediction of the success or otherwise of potential

invaders and their corresponding population dynamics would be highly desirable,

the more realism is included into modelling e�orts the more unwieldy the model

becomes and models arising in this way can become very complicated. Alterna-

tively, the purpose of the study can be to understand some basic features of the

ecosystem, e.g. to identify the factors potentially responsible for a population out-

break or population �uctuations, but not necessarily to predict their development

quantitatively. In this case, the corresponding models can be pretty simple. This

approach is conventionally called conceptual (educational) modelling (Okubo and

Levin 2001 ). It is the latter that is used throughout this thesis as the aim here

is to reveal some general tendencies rather than to provide any kind of detailed

and/or predictive description. It has been pointed out (Levins 1969) that, when

studying systems as complex as ecosystems, one should not look for inferences that

are likely to be true for all cases. Instead, one should rather look for the causes of

di�erences between di�erent species or di�erent systems. To address this sort of

question, we need a model which is as simple as possible (Maynard Smith 1974).2

In its simplest form population models assume spatial homogeneity, resulting in

non-spatial models in which population density is now a function of time, but not

space. Depending on whether the populations have overlapping generations or not,

continuous- or discrete-time models are utilised. In the remainder of this thesis

continuous-time models are used, and so correspondingly, ordinary di�erential

equations give a relevant framework (Murray 2002, Kot 2001 ):

dUi
dt

= Gi(U1, U2, ...Un), i = 1, ..., n , (1.1)

2Parts of this paragraph were taken from Jankovic and Petrovskii (2014)
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where Ui is the population density of the ith species at time t, n is the number

of species and functions Gi describe population change due to reproduction and

mortality. In an ecological context, the functions Gi are usually nonlinear with

respect to at least some of their arguments.

Even in the simplest of ecosystems there are many interacting species (numbering

hundreds or even thousands), and thus the question facing modellers is the subtle

decision on how many equations (species) should the system contain along with the

suitable functional forms of Gi. Obviously, it is unrealistic to expect all species to

be included, therefore a frequently used approach is to consider blocks of particular

�functional groups� which correspond to di�erent trophic levels (e.g. predator and

prey) (Malchow et al. 2008 ). Granted a rough simpli�cation, such an approach has

yielded successful results in both empirical and theoretical studies. Another option

is to merely minimise the number of included species and focus on the dynamics

of a particular one. This results in single- or few-species models, whereby the

impact of other species can be accounted for indirectly (e.g. additional mortality

accounting for predation). As expected, the predictive power of such conceptual

models is rather limited, but even so they o�er an opportunity to comprehensively

study the implications of basic inter- and intra-speci�c interactions in a wider

theoretical context.

The properties of model (1.1) will depend on the particular parametrisation of

function(s) Gi, or rather the factors a�ecting population growth. In general, dy-

namics of a single species population can be described by (Petrovskii and Li 2006 ):

dU

dt
= G(U) = Uf(U) , (1.2)

where f(U) is the per capita growth rate. One of the earliest population mod-

els (Malthus 1798 ) assumed a density independent form of f(U) = r leading to

unbounded, exponential growth for a positive value of the constant, r > 0. In

the short run near exponential growth can be observed for some natural popula-

tions, however in the long run there must be some adjustment made to account

for density-dependent mechanisms. Indeed, as the population density increases,

intraspeci�c competition gains greater signi�cance, which results in a decrease

of the per capita growth rate. Without choosing any particular parametrisation,

mathematically the function G(U) should therefore satisfy the following conditions

(Fig. 1.3):
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Figure 1.3: Sketch of logistic growth function.

G(0) = G(K) = 0 , (1.3)

G(U) > 0 for 0 < U < K , G(U) < 0 for U > K , (1.4)

G′(0) = α > 0, G′(U) < α for U > 0 (1.5)

where α can be considered as the per capita growth rate at low population densities

and K is the carrying capacity. Possibly the most famous model accounting for

intraspeci�c competition is the Verhulst-Pearl logistic model (Verhulst 1845 ; see

Chapter 5). According to the model of logistic growth, the per capita growth rate

decreases monotonously, which is not always the case as many populations su�er

from a reduction in the per capita growth rate at low population densities (Allee

e�ect). At particularly low densities the per capita growth can become negative,

and a rather generic description of the growth function G(U) in the case of the

strong Allee e�ect can be given as (Fig. 1.4):

G(U) < 0 for 0 < U < β and U > K , (1.6)

G(U) > 0 for β < U < K , (1.7)

where β is a certain threshold density and an unstable equilibrum (Lewis and

Kareiva 1993, Dennis 1989 ; for more details see Chapter 3).

The next level of model complexity would imply the inclusion of interactions with

other species, resulting in a multi-species model. In general, the dynamics of a
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Figure 1.4: Sketch of the growth function G(U) in case of the strong Allee
e�ect.

two-species community can be described by two coupled ODEs:

dU1

dt
= G(U1) + κ12R1(U1, U2) (1.8)

dU2

dt
= G(U2) + κ21R2(U1, U2) , (1.9)

where functions G(U1) and G(U2) describe population growth of species 1 and 2,

functions R1 and R2 are positive and describe interspeci�c competition and κ12

and κ21 are constants. Depending on the signs of the coe�cients, the above model

(Eqs. (1.8) and (1.9)) can describe either a competitive framework (κ12 = κ21 =

−1) or a mutualistic community (κ12 = κ21 = 1). The case in which the coe�cients

are of opposite sign correponds to the well-known predator prey system:

dU1

dt
= U1f(U1)−R(U1)U1U2 (1.10)

dU2

dt
= κ21R(U1)U1U2 −M(U2)U2 , (1.11)

where U1 and U2 are the prey and predator densities, M is a positive function

describing predator mortality and 0 < κ21 < 1 is the food utilisation constant

accounting for the conversion of prey into predator biomass. The function R(U1)

is the functional response of predator to prey and can take many forms, however

the most common are Holling II or Holling III (Holling 1959a, b, 1965, 1966 ).
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One of the simplest epidemic models takes a similar form, with distinctly class-

ing a population into two compartments, susceptible and infected (Kermack-

McKendrick 1927 ):

dS

dt
= −βSI (1.12)

dI

dt
= βSI − γI , (1.13)

where β is the transmission rate and γ is the mortality rate of infected individuals.

The disease is assumed to be transmitted directly (i.e. not through any vector3)

and despite its simplicity the model clearly captures the essence of initial disease

establishment. The underlying assumptions of the classic Kermack-McKendrik

model (Eqs. (1.12) and (1.13)) include:

• Disease transmission occurs in direct contact between susceptible and in-

fected individuals

• All susceptible individuals are susceptible to the disease in the same way,

therefore there is no transmission preference

• All infected individuals are equally infectious

• There is no incubation period of the disease, therefore the infection occurs

instantaneously

• The population size is �xed, i.e. no births or migration occur and all the

deaths are taken into account

Spatial counterparts of variants of both models (Eqs. (1.10-1.11) and (1.12-1.13))

will be analysed in more detail in Chapter 2.

To a greater or lesser extent, movement is one of the de�ning features of many or-

ganisms. The reality that the world is unavoidably spatial has long been ignored by

most ecologists and therefore one might not be particularly surprised that histor-

ically, movement has played a rather peripheral role in most of the mathematical

ecology literature, with spatial considerations in general being largely discarded.

In a collection of 40 seminal ecological papers (Real and Brown 1991 ) only one

addresses the issue of movement explicitly (Skellam 1951 ). Possibly this was a

3The use of the word vector here refers to a biological vector i.e. a carrier of disease.
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combined consequence of the lack of appropriate data needed to stimulate the-

oretical development and the di�culty of mathematical expression. Since then,

stemming from the pioneering works of Fisher (1937), Kolmogorov et al. (1937)

Skellam (1951) and Turing (1952), spatially explicit reaction-di�usion equations

have been receiving growing attention and have set the foundation for mathemat-

ical modelling of biological invasions (Okubo and Levin 2001 ).

The generic form of reaction-di�usion equations is formulated as follows:

∂U

∂t
= D4U + Uf(U) , (1.14)

where D is the di�usion coe�cient, f(U) is the per capita growth rate and 4 is

the Laplace operator. Travelling wave solutions predicted by such models are of

considerable ecological relevance and are in good agreement with empirical stud-

ies on invasion (Petrovskii and Li 2006, Shigesada and Kawasaki 1997, Volpert

and Petrovskii 2009 ). One of the fundamental questions regarding biological in-

vasions is how fast will the invasive species progress. Can mathematical models

be of help in predicting the advance of invasive species? In the absence of the

Allee e�ect (Skellam 1951, Fisher 1937, Kolmogorov et al. 1937 ) travelling fronts

propagate with an asymptotic rate of spread equal to c = 2
√
f ′(0)D, whereas the

inclusion of the Allee e�ect has shown to reduce the speed of invasion (Lewis and

Kareiva 1993 ). To what extent does this �passive� di�usion approach adopted by

reaction-di�usion systems approximate the local movement of animals sparked nu-

merous experimental investigations of animal dispersal. Typically, estimates of the

di�usion coe�cient, D, are obtained from mark recapture data. Both early quan-

titative laboratory attempts and more recent mark recapture experiments indicate

the ability of simple di�usion models to reasonably approximate animal dispersal

(Dobzhansky and Wright 1943,Watanabe et al. 1952, Kareiva 1983 ). With param-

eters obtained from historical and �eld data, reaction-di�usion models have been

successfully applied to a wide variety of taxa (Skellam 1951, Andow et al. 1990,

Shigesada and Kawasaki 1997 ). Despite capturing the basic idea behind range

expansion, the coupling of dispersal and population growth, di�usion models are

often criticised for being an oversimpli�cation of animal movement (Skellam 1973,

Turchin 1988 ). As the simplest conceptual description of dispersal, di�usion as-

sumes a random, uncorrelated motion and clearly, animals do not move in a purely

random manner. However, with the choice of an appropriate spatial scale, in which

the mean length of individual moves is not large, the dispute on random move-

ment can be somewhat overcome (Malchow et al. 2008, Shigesada et al. 1995,
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Murray 2002 ). Furthermore, Holmes (1993) has shown that if the direction of

motion is to some extent correlated (telegraph model) the results have no signif-

icant qualitative di�erence, as the solutions are still travelling waves propagating

with speeds that di�er from the original Fisher equation by a small percentage,

< 8%. Reaction-di�usion equations assume that movement is isotropic, i.e. that

individuals move at equal speeds in all directions, with no preference, and this

is far from reality for many species. In particular, marine and freshwater species

disperse via water currents, and plants through seed dispersal largely governed by

wind currents. Such directed motion can easily be incorporated into the standard

di�usion framework as advection or taxis (Kareiva and Odell 1987, Shigesada and

Kawasaki 1997, Cantrell and Cosner 2003 ).

Of course, the spread rate of invasive species is not the only prediction of interest

when modelling biological invasions. A prominent feature of biological invasions

is the distinct spatiotemporal patterns observed in natural populations (Caugh-

ley 1970 ). Though the underlying driving factors of such a pattern formation

are yet to be fully understood, there are a number of proposed mechanisms. In-

deed, complex spatial patterns in reaction-di�usion systems can arise as a result

of Turing and di�usive-like instabilities (Turing 1952, Segel and Jackson 1972 ).

The controversy surrounding Turing type patterns is their tendency to be spa-

tially periodic, and though some ecological examples are readily observed (Klaus-

meier 1999 ), in general spatial periodicity in natural populations seems to be

more of an exception than a rule. Therefore, the generality of Turing-like pat-

terns acting as a generic mechanism for pattern formation still remains highly

debatable. If periodic patterns are known to be only part of the rich spectrum

of observed spatiotemporal dynamics, a question arises as to the other type(s) of

pattern formation resulting from the propagation of travelling fronts, if any. In

fact, continuous propagating fronts with homogeneous distributions of population

density in the wake are not the only possible outcome. For a di�usive Lotka-

Volterra system it has been shown that spatiotemporal patterns may appear in

the wake of travelling fronts, �rst observed by Dunbar (1983) as damped regu-

lar oscillations. Moreover, subsequent studies have shown that the propagating

travelling fronts can lead to emerging chaotic patterns (Sherratt 1994, Sherratt

et al. 1995, Sherratt 2001, Petrovskii et al. 2001 ). Though, in all cases, a clear

continuous boundary separates invaded from non-invaded areas and this is often in

disagreement with �eld observations (see Fig. 1.5). Qualitatively similar dynam-

ics of patchy distribution have also been observed in reaction-di�usion systems
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Figure 1.5: Patchy distribution of plankton in the Barents Sea. Di�er-
ent shades of blue and green correspond to di�erent densities of phytoplank-
ton species. Image is taken from http://eoimages.gsfc.nasa.gov/images/

imagerecords/51000/51765/BarentsSea_amo_2011226_lrg.jpg

subject to population growth being damped by the strong Allee e�ect (Petrovskii

et al. 2001, Petrovskii et al. 2002, Morozov et al. 2006 ), and will be the focus of

Chapter 2.

The distribution of dispersal distances may not necessarily conform to a normal

distribution as assumed by reaction-di�usion systems (Lonsdale 1993 ) and the

main drawback of di�usion models is their inability to account for di�erent forms

of dispersal. In some cases, dispersal is often skewed to further distances than de-

scribed by a normal distribution, thus an alternative approach would entail the use

of various probability functions accounting for this fact (Neubert and Caswell 2000,

Kot and Scha�er 1986 ). Also, for processes where the spatial scale is large com-

pared to the temporal scale, both integrodi�erential and integrodi�erence models

o�er better approximation and insights into population dynamics (Lee et al. 2001 ).

Species with nonoverlapping generations can therefore be modelled by time-discrete

models allowing for a broad range of dispersal kernels known as integrodi�erence

equations. The topic of such models goes beyond the scope of this study, but

I would like to just brie�y mention their form and applicability. In general, the

form of integrodi�erence models used to describe biological invasions includes both

population growth and dispersal:

Ut+1(x) =

∫
Ω

k(x, y)G(Ut(y))dy , (1.15)

http://eoimages.gsfc.nasa.gov/images/imagerecords/51000/51765/BarentsSea_amo_2011226_lrg.jpg
http://eoimages.gsfc.nasa.gov/images/imagerecords/51000/51765/BarentsSea_amo_2011226_lrg.jpg
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where k(x, y) is the probability density function describing individual dispersal,

Ω is the domain and G(U) accounts for population growth. Life characteristics,

landscape structures and many other factors in�uence the exact choice of dis-

persal kernel (Greene and Calogeropoulos 2001 ), yet based on any speci�c choice

made, integrodi�erence models allow for the estimation of spread rate (Kot 1992 ).

Leptokurtic (broad-tailed) dispersal kernels are commonly observed in ecological

populations (Okubo and Levin 2001, Wallace 1966 ), and as a result of their use in

integrodi�erence models accelerating rates of spread are observed (Kot et al. 1996 ).

1.3 Time delay and population dynamics

Whether invasive species will exhibit sporadic outbreaks, or undergo regular, peri-

odic cycles is of interest in planning control and management strategies. Therefore,

temporal dynamics of invaders are of equal importance to the study of biologi-

cal invasions as are the corresponding spatial structures. Population densities of

many species tend to �uctuate nearly periodically over time (Turchin 1990, 2003 ).

Such cyclic dynamics has long fascinated ecologists, though despite the plenitude

of research and considerable progress made in unravelling such complex dynam-

ics, underlying mechanisms still remain debatable (Elton 1924, Hutchinson 1948,

Krebs 1996 ). Although a fairly intuitive concept itself, at the core of understanding

population variability lays the issue of population regulation. A common approach

for revealing dominant ecological mechanisms is time series analysis, and it seems

there is consent amongst the ecological community that delayed density depen-

dence plays an important role (Turchin et al. 1999, Berryman and Turchin 2001 ).

Populations are in�uenced both by factors that are functions of current and past

population densities. In fact, the latter case of delayed density dependence is

thought to make populations more prone to cycle. Though the origin of delay is

not clearly known, some most commonly considered factors include predator-prey

interactions, the e�ect of parasitoids and pathogens, competition for resources,

maternal e�ects, etc. Indeed, possible causes of delayed density dependence are

numerous and it is highly unlikely that a single causal factor can be isolated, as

di�erent exogenous and endogenous factors are tightly intertwined (Krebs 1996,

Royama 1981 ).

Nevertheless, time delays remain a ubiquitous phenomenon and integral part of

ecology (and of nature, in general), and thus should be included in any modelling
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e�orts. Although the motivation to include time delays is easily perceivable, the

way to do it is not so clear. One possibility is to incorporate a discrete time delay

which would result in a simple delay di�erential equation, which can be modelled

as:
dU

dt
= G(U(t), U(t− τ)) , (1.16)

where τ > 0 is the delay parameter. A more accurate description would strive to

average the delay over all past populations, which in turn results in an integrod-

i�erential equation and in case of logistic growth takes the form:

dU

dt
= rU

(
1− 1

K

∫ t

−∞
ω(t− s)U(s)ds

)
, (1.17)

where ω is a weighting factor, known as a kernel, that describes the relative

strength of importance given to populations at earlier times. A generally accepted

idea is that time delays are a potent source of instabilities in population models

(Nunney 1985 ). Time delays in feedback mechanisms destabilise positive, oth-

erwise stable, equilibria and lead to oscillatory behaviour (Maynard Smith 1974,

Kuang 1993, Ruan 1995 ), though this is not always the case (Hastings 1984,

Jankovic and Petrovskii 2014 ). Hence, time delay models are capable of gener-

ating more complex and rich dynamics, closely resembling observed population

patterns. However, there are a few questions that remain unaddressed, such as

when are time delays destabilising, what form should the time delay take, how

fast should the kernel decay and what are the driving factors and consequences of

such dynamics?

1.4 Thesis outline

This dissertation is roughly divided into two parts. Part I (Chapter 2) documents

a case study of biological invasion of gypsy moth, Lymantria dispar, in North

America. By using the introduced framework of reaction-di�usion systems, we

test whether prey-predator interactions or the in�uence of a naturally occurring

viral infection (nuclear polyhedrosis virus � NPV) are able to reproduce qualita-

tively similar patterns of spread of gypsy moth populations as observed in nature.

The patchy distribution of gypsy moth is widely explained by accidental human-

assisted dispersal, e.g. when egg masses are transported by cars and vehicles.

To some extent this theory disagrees with the existence of the strong Allee e�ect
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which tends to wipe out small new colonies. Therefore, we propose an alterna-

tive hypothesis, that the patchiness may be a result of the interplay between two

natural factors: dispersal and NPV/prey-predator interactions. We also estimate

the spread of gypsy moth populations using a di�usive Susceptible-Infected (SI)

model and obtain spread rates comparable to historical data.

Part II (Chapters 3, 4 and 5) focuses on another aspect a�ecting population dy-

namics � time delay. Both ecological and mathematical implications of time delays

in population dynamics are discussed. In Chapter 3 we consider single species pop-

ulation dynamics a�ected by the Allee e�ect and coupled with discrete time delay.

Contrary to the general opinion that time delays are always destabilising, we show

that that is not always the case. The results included are both analytical and

numerical, followed by a discussion of possible ecological applications.

Chapter 4 continues the study of time delays through an integrodi�erential model.

We revisit some known results on exponential memory kernels and introduce a

power law memory dependence to model single species population dynamics.

In Chapter 5 we examine the properties of the di�usive logistic equation with

a discrete time delay, and extend the study to incorporate a biologically more

relevant concept of spatial averaging. This results in an integrodi�erential delay

model which surprisingly exhibits a wider than expected variety of spatiotemporal

patterns.

I conclude in Chapter 6 giving a summary of the work done and possible future

directions.



Chapter 2

Gypsy moth invasion in North

America:

A simulation study of the spatial

pattern and the rate of spread

2.1 Introduction

Another prime example of biological invasion is the gypsy moth invasion, Lyman-

tria dispar, in the US. 1 Since its introduction in the late 1860s the gypsy moth

has spread throughout North America, causing signi�cant damage to forests in

all or parts of nineteen northeastern states (Maloney et al. 2010 ). Currently oc-

cupying only a third of its potential habitat, various management strategies are

utilised to control gypsy moth spread. To date, the eradication of gypsy moth

populations in northeastern US has not been successful, as it is still spreading.

The gypsy moth is known to be an invasive pest in its native range as well, in-

cluding countries such as Romania, former Yugoslavia, France and Japan (Gerardi

and Grimm 1979 ). However, the most devastating consequences are observed in

North America where since its introduction it has invaded over 106 km2 (Liebhold

et al. 1992 ). Apart from widespread defoliation, the gypsy moth indirectly a�ects

native population dynamics (Jones et al. 1998 ), carbon sequestration and nutri-

ent cycling, alters biogeochemical conditions and changes the acid�base status of

1The majority of this chapter has been published in Jankovic and Petrovskii (2013)

20
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a�ected catchments (Webb et al. 1995 ) and also has a negative e�ect on radial

growth of tree hosts (Naidoo and Lechowicz 2001 ). Rightfully, the gypsy moth

has earned the title as one of a hundred world's worst invasive species by the ISSG

(Invasive Species Specialist Group).

The goal of this study is to re-examine the biological factors and the correspond-

ing mechanisms that can a�ect the pattern and rate of spread of gypsy moth

populations in North America. For this purpose, we �rst carefully examine avail-

able evidence and perform an extensive literature review of gypsy moth biological

traits and the possible impact of environmental forcing; see Section 2.2. From this

examination, we infer that the two main factors controlling high density gypsy

moth abundance are likely to be the Allee e�ect and the nuclear polyhedrosis

virus (NPV); see Section 2.5. On the other hand, low density gypsy moth popu-

lations are regulated by the interplay between the Allee e�ect and prey-predator

interactions. Correspondingly, we then consider spatially explicit prey-predator

and SI models (see Section 2.6) and show that the qualitative features of gypsy

moth spread can be well explained by the interplay between short-distance dis-

persal, local disease dynamics or predatory e�ects and the Allee e�ect. Based on

parameter estimates available from the literature, we show (see Section 2.7) that

the SI model prediction of the rate of spread is in good agreement with �eld data.

2.2 Gypsy moth: biology, population dynamics,

dispersal

Gypsy moth is univoltine, meaning it produces one generation per year. Di�erent

stages of metamorphosis include the egg phase, larval (caterpillar), pupal (cocoon)

and adult phase. Each egg mass oviposited by females contains roughly around

500 to 1,000 eggs, which overwinter usually in sheltered areas: attached to trees,

stones or logs. Oviposition occurs roughly 1�2 m from the site of adult emergence

(Odell and Mastro 1980 ) and hatching of egg masses usually coincides with bud-

break (April and May), even though the process of larvae formation is completed

within a month. Gypsy moth larvae shut down their metabolic activities and enter

diapause. This mechanism allows them to become insensitive to cold, as low tem-

peratures have been shown to in�uence mortality. By chewing through their egg

shells, larvae emerge and mature through �ve to six instars, over a period of about

four to six weeks. After locating a preferable place, pupation occurs, mainly on
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trunks of trees. The pupal stage is brief, lasting around two weeks, in which feed-

ing does not occur, and in the majority of this period pupae are immobile. Mature

adults emerge in midsummer (late June, early July) and usually live a week or less

(Tobin and Liebhold 2011 ). Males tend to develop slightly before females and this

time lag is known as protandry. Females are typically larger than males, baring a

whitish cream colour with some black markings on their wings, and are �ightless

(in North America, though some Asian strains are capable of sustained, directed

�ight). Males are usually brown or dusky coloured with darker markings on their

wings, and capable of �ight. Following emergence, mating occurs, and success is

hugely dependent on the distance between males and females.

Due to the female's incapability of �ight, range distribution and expansion is

largely reliant on spread mechanisms such as larval crawling, windborne disper-

sal of �rst instars, and increasingly dependent on arti�cial dispersal originating

from inadvertent human transport. This combination of di�erent dispersal scales

induced by long-distance �jumps� originating from arti�cial dispersal and local

colony growth due to short-distance ballooning of early instars is known as strati-

�ed di�usion (Liebhold and Tobin 2010 ). Upon hatching, �rst instar gypsy moth

larvae crawl to branch twigs and suspend on silken threads awaiting passive disper-

sal by wind. This ballooning of early instars yields short range dispersal. Whilst

natural dispersal is limited to early instars, arti�cial dispersal a�ects all life stages

but most frequently involves egg masses. Long distance dispersal leads to the

formation of isolated colonies ahead of the initially infested area, which may grow

and coalesce thereby increasing the rate of spread.

Counts of male moths in pheromone baited traps are a widely used tool for moni-

toring low density populations and detecting new isolated colonies. Other methods

of monitoring gypsy moth populations are the examination of forest defoliation

aerial maps and counts of overwintering egg masses. Though a tedious process,

egg mass counts are frequently utilised for monitoring medium to high density

populations and are used to make decisions of various suppression techniques.

However, egg mass sampling programs tend to have low spatial resolution and of-

ten produce inconclusive data, hence male moth counts are the preferred measure

of population abundance.

Compared to other invasive species, the rate of spread of gypsy moth is relatively

slow largely due to the female's incapacity of �ight. Spread rates have shown
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considerable variation throughout the years of gypsy moth invasion. To date, ex-

planations of this variation in spread speed have been numerous, such as, on the

one hand, the continuous growing of forests which increase proportions of suitable

hosts for this pest insect and, on the other hand, the enactment of quarantine

measures limiting and suppressing further population spread. In particular, it has

been proven that the large-scale �Slow the Spread� program since its employment

in 1995 has successfully reduced the spread by at least 50% (Sharov et al. 2002 );

see Section 2.4. Analysing available historical county level quarantine data on

gypsy moth invasion Liebhold et al. (1992) concluded that the spread rates dif-

fered, throughout the past century, from a mere 2.82 km/year to a worrying 20.78

km/year. More recently, Tobin et al. (2007a), using various spread rate estima-

tion techniques, came up with even a broader range of spread rates as 2.6�28.6

km/year. Increased rates of range expansion are usually linked to increased inad-

vertent transport of gypsy moth by humans. Also the geographic variation a�ects

the spread rate as spread to the north was signi�cantly slower than to the south

and west regions, probably due to severe weather conditions (cold temperatures

in particular) which tend to cause heavy mortality in overwintering egg masses.

Another factor shown to a�ect the gypsy moth spread is the Allee e�ect (Liebhold

and Bascompte 2003, Tobin et al. 2009, Vercken et al. 2011 ). In essence, the

Allee e�ect describes a positive relationship between individual �tness and pop-

ulation density (Dennis 1989, Courchamp et al. 1999 ); therefore, the lower the

density the more prominent the impact of the Allee e�ect can be. As a particular

consequence, low density populations can be, and often are, driven to extinction.

In the formation of new isolated colonies of gypsy moth, successful establishment

and the subsequent growth largely depend on factors a�ecting sparse populations.

Gypsy moth isolated colonies are of low abundance and highly prone to Allee ef-

fects and extinction (Liebhold and Bascompte 2003, Sharov et al. 1995, Whitmire

and Tobin 2006 ). Mating success is the most important density dependent fac-

tor a�ecting sexually reproducing sparse populations. Sharov et al. (1995) found

that successful mating is more likely to occur in high density than in low density

populations, highlighting the possibility of extinction through the Allee e�ect in

sparse populations.

Allee e�ects exhibit region speci�c behaviour, thus indirectly in�uencing the rate

of range expansion (Tobin et al. 2007b). Although mate-�nding failure is thought

to be a universal cause of Allee dynamics, reasons underlying spatial and temporal

variation of Allee e�ect strength remain obscure. Numerous studies have shown an
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inverse relationship between Allee e�ect strength and invasion speed (Lewis and

Kareiva 1993, Tobin et al. 2009, 2007b, Whitmire and Tobin 2006 ). However,

quantifying Allee e�ects and establishing thresholds is by no means a simple task.

The estimates of Allee thresholds obtained in several studies are largely based on

monitoring techniques, such as pheromone baited trap catch data, and expressed in

units of male moth counts per trap. These counts provide only relative information

and should not be treated as absolute population density measures but rather as

measures of relative gypsy moth abundance (Sharov et al. 1995 ).

Figure 2.1: Gypsy moth defoliation maps of US states for 1981 (left) and 2007
(right). Red colour shows defoliated areas. From http://www.fs.fed.us/ne/

morgantown/4557/gmoth/atlas/#defoliation, by curtesy of Sandy Liebhold.

Dispersal of individual insects results in the gypsy moth population spread over

space. In North America, this spatial spread results in the formation of a highly

heterogeneous spatial distribution or `pattern' (see Fig. 2.1) where areas with high

level of infestation alternate with areas where gypsy moth is either absent or

present at a low density. Having mentioned spatial variability of the strength of

the Allee e�ect, an immediate intuitive attempt would be to relate the observed

pattern to environmental heterogeneity. Gypsy moth is a polyphagous herbivore

and currently feeds on a total of around 300 tree species, including both deciduous

and coniferous species; however, some tree species are more preferable than oth-

ers. In areas with more preferred tree species, higher numbers of gypsy moths are

more likely (Liebhold et al. 1994, Witter et al. 1992 ). Interestingly, the evidence

suggests spatial heterogeneity is not as signi�cant a factor in distribution as one

might expect. Sharov et al. (1997) looked at pheromone trap data from 1988 to

1994 in northern Virginia and southern West Virginia to �nd correlations between

landscape characteristics (land use, slope, elevation, aspect and two forest classi�-

cations) and gypsy moth density that could be used to improve understanding of

the spread. However, only elevation was found to be statistically signi�cant, and

http://www.fs.fed.us/ne/morgantown/4557/gmoth/atlas/#defoliation
http://www.fs.fed.us/ne/morgantown/4557/gmoth/atlas/#defoliation
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only strongly signi�cant in the transition zone. Whitmire and Tobin (2006) looked

at new outbreaks across the US and concluded that �the abundance of preferred

host tree species and land use category did not appear to in�uence persistence�.

Overall, environmental forcing through spatial heterogeneity does not appear to

be enough to explain the pattern of gypsy moth distribution.

Having the e�ect of environmental heterogeneity excluded, one therefore may hy-

pothesise that the pattern formation in the gypsy moth spatial distribution is

an inherent property of biological interactions. Indeed, a well-developed theory

predicts self-organised formation of irregular spatial structure in the wake of the

propagating invasion front (Sherratt et al. 1995, 1997 ) in case the alien species

is a�ected either by predators or pathogens. Interestingly, a closer look at the

defoliation maps reveals that in case of gypsy moth spread there is no apparent

continuous front separating infested from non-infested regions (Fig. 2.1). This

scenario of alien species spread has been referred to as patchy invasion (Petrovskii

et al. 2002, Morozov et al. 2006, Mistro et al. 2012 ). In what follows, we will

explore this hypothesis further and show that the patchy spread of gypsy moth

can appear as a result of the interplay between short-distance dispersal, the Allee

e�ect and prey-predator interactions or a certain viral infection (NPV) which is

common in gypsy moth.

2.3 History of gypsy moth introduction

Precise details regarding the accidental release of gypsy moth in North America

are not known, and there are many speculations surrounding the issue of this non-

native species. A widely accepted hypothesis involves import of gypsy moth to

Medford, Massachusetts, by French amateur entomologist, Etienne Leopold Trou-

velot. The gypsy moth introduction is a �remarkable example of an experiment

gone wrong� (Dunlap 1980 ). In the late 1860s, Trouvelot's prime hobby research

comprised of silkworm breeding, and of particular interest was breeding a disease

resistant hybrid for use in commercial production (Spear 2005 ). In 1868 (or 1869

according to some authors) during the course of his experiments disaster struck:

some eggs got lost, and larvae escaped captivity. Knowing the potential damage

these forest pests could cause, Trouvelot began destroying the egg masses, and

alerted government o�cials. Not much attention was paid to the accident at the

time, as only agricultural entomologists, lacking su�cient in�uence, understood
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the severity of this event. The gypsy moth remained unnoticed and was con-

sidered to be little more than a curiosity for quite some time, with populations

remaining at innocuous levels. Populations expanded slowly and covered forest

lands including 30 towns and cities in the greater Boston area (McFadden and

McManus 1991 ). Only following severe defoliation incurred during the �rst out-

break observed in 1889, were eradication programs initiated. Various insecticides

played a key role in this program, such as paris green designed to destroy all

life stages of the gypsy moth. However due to high doses of insecticides damag-

ing foliage, and primitive mechanical methods of dispersal (horse-drawn ground

sprayers), eradication failed. This triggered a series of management e�orts at-

tempting eradication and suppression, marking the beginning of �the great gypsy

moth war� (Spear 2005 ). Paris green was substituted with lead arsenite, and im-

provements to spray technology were made. Eradication of the gypsy moth seemed

to be successful, and was for that reason halted, which has to date been shown

as an irreversible mistake. Following this crucial mistake, populations began to

grow once again and in 1905 the federal government was involved to comprise a

reasonable strategy.

In general, there are two extremes of biological control that were attempted in

eradication, and later in suppression of this insect. The former, classical approach

implies introduction of natural enemies, parasitoids (egg parasitoids Ooencyr-

tus kuvanae and Anastatus japonicas), predators (dermestid beetles, Trogoderma

tarsale Melsheimer and Anthrenus verbasci) and pathogens (Bacillus thuringien-

sis and Streptococcus faecalis) (Leonard 1974 ). To date, more than 60 species

have been introduced since 1906 (Hoy 1976 ), but despite all possible e�orts,

many of them have not been able to establish, for various reasons. This still

appears to be a work in progress, with most promising results expected of two

tachinid parasitoids, Blepharipa schineri and Ceranthia samarensis (Kenis and

Vaamonde 1998 ). The latter case of biological control involves using a biological

agent, as if it were a chemical; examples include the use of microbial insecticides Bt

(Bacillus thuringiensis) and Gypchek (LdNPV ). In the long run biological control

has proved as an e�cient eradication/suppression tool, however at that particular

moment the development of bioinsecticides, and research on potential natural en-

emies of gypsy moth was progressing, but at a slow pace, while immediate action

was needed.

In 1912 a federal domestic quarantine was put in place and in 1922 a barrier zone
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was placed along the Hudson River, in the hope of containing the moth popula-

tion in New England. These attempts have proven to reduce the rate of invasion

by gypsy moth (McFadden and McManus 1991, Liebhold et al. 1992 ). Through-

out the 1920s the dominant control mechanism lay with insecticides, however im-

proved application techniques have proved to be ine�ective in forests. During

the upcoming years, aerial spray application was perfected and vast quantities

of the synthetic pesticide DDT (dichlorodiphenyltrichloroethane) were employed.

DDT was regarded as a rising star in gypsy moth population regulation, applied

everywhere, even in residential areas (�DDT is good for me�). The side e�ects

of such uncontrolled use of DDT were beginning to be noticeable, natural gypsy

moth predators were severely a�ected and gypsy moth populations started to

grow, once again. During the late 1950s gross concerns were arising regarding

the negative e�ects of the chemical on crops, wildlife and human health. Grad-

ually DDT was dropped from use, and substituted by Carbaryl (Sevin R©). The

evolution of gypsy moth pesticides had begun, and was substantially progressing.

In the 1960s, Carbaryl, due to its adverse e�ects on honeybees, was replaced by

trichlorfon (Dylox R©). A recurrent issue in pesticide production was the need to

establish a target speci�c chemical agent, which was posing a signi�cant problem.

Eventually trichlorfon was replaced by pesticides such as acephate (Orthene R©)

and di�urobenzuron (Dimilin R©), also exhibiting adverse e�ects on a large number

of non target species. With the 1980s came the idea of utilising Bt, unfortunately

also causing damage to other species, however a fair amount of e�ort has been and

is being put in to produce more e�ective strains.

Following numerous failed attempts to eradicate gypsy moth populations, objec-

tives started to shift to suppression and limiting the damage incurred by such

pests. These e�orts were at �rst implemented locally and restricted to residential

areas, however following the most severe defoliation observed in 1981, e�orts of in-

tegrated pest management (IPM) were employed. Two pilot projects were overseen

by the USDA Forest Service: Maryland IPM Pilot Project (1985-1988) and Ap-

palachian IPM Demonstration Project (1988-1992). Both management programs

relied on detection of low density gypsy moth populations by deploying grids of

pheromone-baited traps ahead of the expanding population front. This enabled

delineation of isolated colonies, followed by eradication treatments to eliminate

them or retard their population growth. Following the success of these programs

one of the largest programs devoted to gypsy moth population control in North

America named �Slow the Spread� was adopted by the USDA Forest Service and
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Animal and Plant Health Inspection Service (APHIS). In essence, seasonal con-

trolled release of (+)disparlure (gypsy moth sex hormone) interferes with normal

mate-searching behaviour and communication of male moths, thus decreasing the

probability of mating. The favoured noninsecticidal treatment used is Disrupt II,

containing a synthetic version of disparlure.

Corresponding to each phase of invasion appropriate measures are undertaken.

Quarantines, in particular international, and rigorous inspections are used to pre-

vent the arrival of exotic species, such as the gypsy moth. If these fail detection

and eradication processes are undertaken to prevent and reverse, if possible, popu-

lation establishment. However, if the species persists and accomplishes successful

establishment various types of barrier zones and domestic quarantines are used to

limit range expansion.

Techniques aiding gypsy moth outbreak prevention also include cultural and silvi-

cultural controls which tend to manage stand characteristics (species, composition,

age and density) and help site maintenance in avoiding disturbance of sites, making

them less prone to invasion (Coulson and Witter 1984 ).

Management and control strategies should also heavily exploit the so-called Achilles

heel of invasions, and attempt to strengthen Allee e�ects in gypsy moth pop-

ulations, and reduce the population size below the Allee threshold consequently

leading to extinction. Examples of such exploitations are mating disruption, mass-

trapping and the release of sterile insects (Liebhold and Tobin 2010 ).

Prospects of new research and potential success lies in the improvement of existing

strategies, and perhaps uncovering new methods. Hopes of re-introduction of

natural enemies that have failed to establish in the past, introduction of new

species (tachinid �y Blepharipa schineri, dermestid beetles,etc) and introduction

of new bio-types of already established natural enemies, seem to yield plausible

evidence of success (Kenis and Vaamonde 1998 ).

2.4 �Slow The Spread�

Instigated by successes of previous management programs, the USDA Forest Ser-

vice initiated a pilot project known as �Slow the Spread� (initially called the gypsy

moth Containment Program) in 1993. The program was designed to examine the
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feasibility of reducing the spread of gypsy moth over large regions, through ex-

tending the use of area-wide integrated management tactics. The strategy imple-

mented implies the detection and eradication (if possible) of isolated, individual

gypsy moth colonies occurring in the transition zone. In the case eradication is

unachievable, suppression methods are employed to reduce growth and coalescence

of newly founded colonies, thereby decreasing the rate of spread. The reduction of

gypsy moth spread rate is a common objective of many integrated pest manage-

ment programs, the novel feature in Slow the Spread is the lesser use of pesticides.

Barrier zones were established along the advancing front of gypsy moth popula-

tions, and encompassed the Appalachian region in Virginia and West Virginia,

northeastern North Carolina and the Upper Peninsula of Michigan. Following the

success of the pilot project, Slow the Spread has been integrated into USDA's na-

tional program for managing gypsy moth since 1999. This national program boasts

three strategies: suppression, eradication and slow the spread. Whilst eradication

e�orts tend to be used to eliminate isolated infestations in areas where the gypsy

moth has not yet fully established, suppression programs are implemented in ar-

eas where the gypsy moth has established with the goal of reducing the damage

incurred by outbreaks. As a combined federal and state government e�ort to

slow gypsy moth spread, Slow the Spread (STS) is one of the largest and most

comprehensive programs to date in the management of forest pest species.

In contrast with other management programs STS is preventive, and its imple-

mentation is not only expected to decrease the rate of spread of gypsy moth, but

is also expected to spare ca. 20,202 km2 of new territory from invasion each year

(Sharov et al. 2002 ). While large funds are allocated to such a program, scep-

tics would be right to question the e�ciency of STS. However, it has been shown

that the bene�ts outweigh the cost at least 3:1 (Leuschner et al. 1996, Mayo et

al. 2003 ). Largely reliant on pheromone trap catch data, STS focuses on pop-

ulations situated in the transition zone, which are not targeted by traditional

eradication/suppression e�orts. Once isolated gypsy moth populations are de-

tected, colonies are delimited and treated to eliminate, or merely suppress further

growth. The use of pheromone baited traps has been proven to be an e�cient

and inexpensive method for identifying and recording gypsy moth populations,

as other life stages are more di�cult to locate and other methods (e.g. egg mass

counts) tend to exceed budget constraints.

One of the elements attributed to the success of STS has been mating disruption.

The transition zone within STS containing relatively few individual colonies is
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often aerially treated to disrupt mating by plastic laminated �akes, impregnated

with synthetic gypsy moth sex pheromone, attached to a sticker. This target spe-

ci�c method of managing invasive species is by far the most crucial in preserving

unique, endangered and rare habitats and species, and should serve as an exem-

plar in controlling other pests. The barriers implemented are in no way static,

i.e. their location moves over time and is estimated relative to population bound-

aries interpolated from gypsy moth counts (Tobin et al. 2004 ). For this purpose

a 10 moth/trap threshold is utilised as it exhibited satisfying spatiotemporal sta-

bility (Sharov et al. 1997 ). The STS project area is situated on both sides of this

10 moth/trap boundary, and spreads ca. 170 km in width. Isolated gypsy moth

colonies are present in areas beyond STS, however their frequency drastically de-

clines with increasing distance. The project area alone consists of two zones: the

action and monitoring zones, with the action zone implying active management,

i.e. detection and eradication of isolated colonies, and the monitoring zone serving

to delineate colonies and estimate population boundaries. The e�ect of the project

on spread rate and the yearly adjustment of population boundaries is all handled

within the monitoring zone. Traps are placed at particular distances: intertrap

distances vary from 2 km, in the action zone, to 8 km, in the monitoring zone.

Surveyors are responsible for trap catch placements, removal and obtaining spatial

information on traps. This data is then uploaded to a database and thoroughly

processed by the Decision Algorithm, which evaluates the e�ectiveness of the STS

program as well as calculates the spread rate of gypsy moth populations.

Numerous analyses have been undertaken, and seem to yield on average a 50%

decrease in spread rate since the implementation of STS. Sharov and Liebhold

(1998 ) estimated the spread rate, with the use of barrier zones, and compared to

corresponding historical �pre barrier� data resulting in a 54% reduction, close to

the actual reduction of 59% since 1990.

2.5 Regulatory mechanisms

The dynamics of gypsy moth populations are governed by both density dependent

and density independent factors. Density independent factors include environmen-

tal factors which exert a direct or indirect e�ect on the pest population regardless

of the population size or structure. Examples of such are temperature, rain, mois-

ture, evaporation and light, to name a few. Overwintering gypsy moth egg masses
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are vulnerable to low winter temperatures: it has been shown that some egg masses

are killed when exposed to −30 ◦C, and overall mortality occurs with exposure to

−35 ◦C (Summers 1922 ). It is assumed that these cold winter temperatures serve

as a limiting factor in gypsy moth spread to the north. Gypsy moth egg masses also

exhibit snow insulating properties, shielding the egg masses from the destructive

consequences of low winter temperatures. Thin layers of ice and setae covering also

act as insulators to overwintering egg masses. In contrast, high temperatures do

not in�uence larval survival, but do accelerate short term growth and marginally

increase �nal pupal weights (Lindroth et al. 1997 ). Periods of high humidity are

associated with increased mortality rates of gypsy moth larvae, mostly due to the

increased incidence of pathogens such as NPV and E.maimaiga.

On the other hand, density dependent factors are those tightly linked to the popu-

lation itself, primarily depending on its size (density), e.g. disease and starvation.

Two reasonably host speci�c entomopathogens are responsible for the collapse of

outbreak populations: Entomophaga maimaiga (fungal pathogen) and the natu-

rally occurring viral disease Nucleopolyhedrosis virus (multicapsid LdNPV). Most

studies are based on the NPV pathogen, which often produces spectacular epi-

zootics ceasing gypsy moth outbreaks.

2.5.1 Nuclear Polyhedrosis Virus

NPV is commonly known as �wilt disease� due to the soft and limp appearance

of infected larvae. This naturally occurring viral infection induces a bimodal pat-

tern of mortality. Early instars become infected with lethal doses of NPV on the

surface of egg masses and a shiny oily appearance is typical for infected larvae.

Mortality occurs usually a week or two after hatch; virus killed larvae hang in

an inverted V position and cadavers are usually a brownish black colour. The

DNA of NPVs is enclosed in a polyhedral protein matrix, known as a polyhedral

occlusion body (Dwyer 1992 ). Cadavers of the killed larvae serve as inoculums

of infection to older instars, feeding on contaminated foliage, causing a second

wave of mortality (Elkinton et al. 1990, Elkinton and Liebhold 1990, Dwyer and

Elkinton 1993 ); see Fig. 2.5. Cadavers rupture and subsequently release large

numbers of polyhedral occlusion/inclusion bodies (also known as PIBs) that can

survive outside hosts and remain in the soil and surrounding areas for up to one

year (Elkinton and Liebhold 1990, Reardon et al. 2009 ), hence the ubiquity of

the virus. The corresponding gypsy moth mortality rate is estimated to be about
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90% (Reardon et al. 2009 ). There are several NPV transmission mechanisms in

gypsy moth populations. Horizontal transmission of the virus is thought to be

the principal means of transmission between generations, as egg masses contract

the disease from contaminated surfaces. The viral infection can also be passed on

from female parent to o�spring known as vertical (or maternal) transmission and is

thought to occur less often than horizontal transmission, however this still remains

a debatable issue. Some studies have shown that the majority of larval mortality

occurs by means of surface contamination (transovum), rather than within the

egg (transovarial) (Elkinton et al. 1990 ). Other studies have shown that trans-

mission may originate from male gypsy moths during mating, and even from egg

parasitoids such as Ooencyrtus kuvanae. Other mechanisms of NPV transmission

within gypsy moth populations are vectoring of the disease by various predators

(Lautenschlager et al. 1980 ). NPV epizootics are associated with high density

populations; however, the virus can be found in low density populations as well.

2.5.2 Entomophaga maimaiga

Entomophaga maimaiga is a natural occurring virulent fungal pathogen, native to

Asia, possessing the same ability as NPVs � to suppress gypsy moth outbreaks.

Increasing interest that Entomophaga maimaiga has received is largely due to its

promising use as a biological control mechanism. As it is reasonably host speci�c,

i.e. does not a�ect other non-target organisms, in particular other Lepidoptera,

easily introduced and has shown to induce high mortality levels in gypsy moth

larvae, it essentially satis�es the criteria. By reducing gypsy moth populations to

levels lower than NPVs alone, it is regarded as a highly valuable control mechanism

(Smitley et al. 1995 ).

E.maimaiga has three life stages, two of which are spore forms: conidia, which

are produced on cadavers (externally), azygospores (resting spores) which are pro-

duced within the cadavers and hyphal bodies (a vegetative growth stage occurring

within infected organism) (Hayek 1999, Pilarska et al. 2006 ). Gypsy moths are

infected from conidia produced either from azygospores or discharged by cadavers.

After being discharged, conidia are ready to spud under appropriate environmen-

tal conditions, but are short-lived. E.maimaiga overwinters in the form of resting



Chapter 2 Gypsy moth 33

spores, usually present in the soil or on tree bark. In early spring azygospores ger-

minate producing germ conidia just above the soil surface. The general mean of in-

fection is entry through host cuticle, as gypsy moth larvae encounter spores in their

search for suitable foliage. Following this penetration, E.maimaiga grows inside

the host body producing hyphal bodies. Unlike NPV infected larvae that exhibit

a wide variety of behavioural and physical changes, larvae infected by E.maimaiga

have not shown such prominent symptoms, only that larvae reduce feeding a cou-

ple of days before death (Hayek 1999 ). Following infection larvae tend to die

within a couple of days. The appearance of cadavers di�ers from NPV-killed lar-

vae: E.maimaiga-killed larvae remain attached to tree stems and branches, with

a sti� and straight appearance (Buss et al. 2001 ).

The period of activity of E.maimaiga coincides with the larval stage of gypsy moth

populations, and is known to target only this stage of gypsy moth. E.maimaiga

is prone to windborne dispersal of conidia re�ecting short range spread, but also

exposed to dispersal of infected larvae (ballooning of �rst instars, larval crawling).

Humans also tend to facilitate the spread of E.maimaiga, whilst the role of other

vertebrates in pathogen spread is questionable.

Ultimately, both NPV and E.Maimaiga have shown the ability to suppress gypsy

moth populations and can e�ectively serve as biological means of control, however

are not preferable controlling factors in low density populations, as they only cause

minor mortality.

2.5.3 Predation

In contrast to pathogens, predation appears to provide a regulatory mechanism for

low density gypsy moth populations (Elkinton et al. 1996, Liebhold et al. 2000 ).

As the majority of gypsy moth predators are generalists, it is noticed that this

regulation of sparse gypsy moth populations is not density dependent (Liebhold

et al. 2000 ). Whilst pathogens are limited to larvae, predation a�ects nearly all

gypsy moth life stages. Predation by small mammals is the most prominent gypsy

moth regulator and acts as the major cause of mortality in sparse gypsy moth

populations (Campbell and Sloan 1977 ). In some cases, predation accounts for

up to 20% of pupal mortality per sparse population (Campbell 1969 ). There are

many known vertebrates and insect predators that feed on gypsy moth populations

and around a dozen parasites that attack various gypsy moth life stages. The list
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of gypsy moth predators includes several species of the carabid genus Calosoma

(genus of large ground beetle), small mammals such as the short-tailed shrew

(Blarina brevicauda), the grey squirrel (Sciurus cardinensis), and a number of

avian species (over 40, with only 14 of them actually controlling gypsy moth pop-

ulations), such as the red-winged blackbirds (Agelanius phoeniceus phoeniceus),

grackles (Quiscalis spp.), cuckoos (Coccyzus spp., red-billed and black-billed), and

the sparrow Passer montanus, which has been found to be an important regulatory

factor in sparse populations on the Japanese island of Hokkaido (Leonard 1974 ).

The most prominent and important small mammal predator is the white-footed

deer mouse (Peromyscus leucopus), accounting for the largest mortality caused to

gypsy moth late instar larvae and pupae. An interesting link between mast pro-

duction, white-footed mice and gypsy moth populations was proposed by Elkinton

et al. (1996) providing an alternative approach to modelling gypsy moth popula-

tion dynamics. Predation levels on gypsy moth depend on the abundance of the

white-footed mouse, which is in turn linked to the mast production by host oak

trees, therefore temporal and spatial patterns of mast production may in�uence

and provide underlying reasons for gypsy moth outbreaks in North America.

Although many bird species act as gypsy moth predators, feeding on gypsy moth

larvae and adults, it seems that gypsy moth larvae are not the preferred food item.

Studies have shown that birds prefer hairless caterpillars to gypsy moth (Elkinton

and Liebhold 1990 ). Vertebrate predators on gypsy moth eggs are in 6 families of

birds and 3 families of mammals (Brown and Cameron 1982 ).

Less is known about the in�uence of insect or insect-related gypsy moth predators.

Ground beetle larvae and adults actively seek their prey, by climbing up trees,

and feed mainly on late gypsy moth larvae and pupae. Beetles are also abundant

in high density gypsy moth populations. In particular Calosoma sycophanta, a

large carabid, is thought to be an important predator in high density gypsy moth

populations (Gould et al. 1990 ). Among invertebrate predators, ants (Formicidae)

also play an important role, mostly preying on young larvae. Ant predation on

female adult gypsy moths ranged from 30-94% per day (Sharov et al. 1995 ). In

general, invertebrate predators unambiguously have a lesser impact on gypsy moth

populations compared to vertebrate predators.

Elkinton and Liebhold (1990) gave strong evidence that parasitoids also have a sig-

ni�cant impact on gypsy moth populations, and coupled with predation may cause

more than 99% mortality within a generation. The introduction of parasitoids to
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North America was just one of the strategies of biological control (eradication/sup-

pression) of the gypsy moth population in North America. The most prominent

e�ect was achieved by the introduction of Ooencyrtus kuwanai, an egg parasitoid,

especially in the time succeeding outbreak culmination when egg masses are small

and more eggs become available to ovipositing females. It has shown a good de-

gree of e�ciency in low host densities. Another egg parasitoid introduced for the

same purpose is the Anastatus japonicus, providing a limited control mechanism,

as it only parasitises super�cial layers of eggs in egg masses. Other important

parasitoids include larval parasitoids such as Cotesia Melanoscela and Paraseti-

gena sylvestris and the pupal parasitoid Brachymera intermedia (Tobin and Lieb-

hold 2011 ).

2.6 Model formulation and results

Based on the evidence revealed in previous sections, there are three speci�c fea-

tures of the pattern of gypsy moth spread: (i) at any time, the large-scale spatial

distribution of the population density is distinctly heterogeneous, the heterogene-

ity being self-organised and not directly related to environmental forcing, (ii) there

is no continuous front separating infested and non-infested areas, and (iii) the rate

of spread may show considerable variation (up to one order of magnitude).

The existing literature provides various explanations for each of these features. In

particular, the patchy structure is usually related to the e�ect of human-assisted

dispersal when the egg masses inadvertently transported to a new location ahead of

the main range eventually develop into a new gypsy moth colony. However, here

we argue that the importance of human-assisted dispersal may be signi�cantly

over-estimated. The impact of the strong Allee e�ect, which is typical for gypsy

moth population dynamics, turns the successful establishment of new colonies

into a rare event as theory predicts (e.g. Lewis and Kareiva 1993 ) that a new

colony can only survive if its initial size is su�ciently large. Indeed, Liebhold and

Bascompte (2003) studied the development of 194 new isolated colonies and found

that none of them survived. Of these, eradication treatments were applied to only

32 colonies, whilst the rest died without intervention and 123 of them within a year

of detection. We also mention here that the main infested range by itself rarely

shows homogeneous population distribution but, on the contrary, often consists

of separate patches (cf. Fig. 2.1). The goal of this study is to demonstrate that
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features (i) and (ii) of the gypsy moth spread can, in fact, be explained by purely

natural factors, namely, by the interplay between (short-distance) wind-assisted

dispersal, the Allee e�ect and the e�ect of predators or pathogens such as NPV.

Moreover, we are going to show that even the rate of spread predicted by the SI

model appears to be in good agreement with observations.

2.6.1 Prey-Predator Model

We treat the wind-assisted dispersal as di�usion and model the multi-annual spa-

tiotemporal dynamics of low density gypsy moth populations, regulated through

predation. The spatially explicit predator-prey model then becomes a di�usion-

reaction system consisting of two coupled di�usion-reaction PDEs:

∂U(r, T )

∂T
= D1∇2U(r, T ) + F (U)− f(U, V ) , (2.1)

∂V (r, T )

∂T
= D2∇2V (r, T ) + κf(U, V )−MV , (2.2)

where U(r, T ) and V (r, T ) are the prey and predator population densities at time

T and position r = (X, Y ). D1 and D2 are the corresponding di�usion coe�cients

and κ is the food utilisation coe�cient. The function F (U) describes growth of

the prey population, whilst f(U, V ) is the term describing predation and M is the

predator mortality rate. The particular choice of functions F (U) and f(U, V ) may

vary depending on the species properties. In our case we choose a Holling type II

trophical response with the following parametrisation (Petrovskii et al. 2005a, b)

for the function f(U, V ):

f(U, V ) =
AUV

U +B
, (2.3)

whereA stands for the predation intensity and B is the half-saturation prey density.

As evidence suggests (Liebhold and Bascompte 2003, Sharov et al. 1995, Whitmire

and Tobin 2006 ), gypsy moth population dynamics are a�ected by a strong Allee

e�ect, hence F (U) is chosen accordingly:

F (U) =

(
4η

(K − U0)2

)
U(U − U0)(K − U) , (2.4)

(cf. Lewis and Kareiva 1993 ) where K is the carrying capacity of the susceptible

population, η is the maximum per capita growth rate and U0 is the Allee threshold.

For 0 < U0 < K the Allee e�ect is strong, for −K < U0 < 0 the Allee e�ect is

weak, and in the case of U0 ≤ −K the Allee e�ect is absent.
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An inherent property of di�usion-reaction systems is the existence of travelling

waves that have a clear biological meaning and a broad variety of biological appli-

cations (e.g. see a recent review by Volpert and Petrovskii 2009 ). Particularly in bi-

ological invasions, the rate of spread of invasive species appears to be in good agree-

ment with the predicted speed of travelling fronts (Shigesada and Kawasaki 1997 ).

However, a common prejudice against di�usion-reaction equations as a model of

biological invasion is that they are thought to predict a continuous propagating

front with a homogeneous population distribution in the wake, which is often at

odds with observations (e.g. see Fig. 2.1). This prejudice was partially dispelled by

Sherratt et al. (1995) who showed that, when a�ected by predators or pathogens,

the spread of invasive species can be followed by chaotic spatiotemporal pattern

formation in the wake of the travelling front. Yet a clear continuous population

front boundary separating invaded from non-invaded areas had still been regarded

as an immanent factor of di�usion-reaction equations. This is obviously not the

case of gypsy moth spread; this apparent disagreement brings forward the question

whether di�usion-reaction equations make an adequate model after all. However,

a new property of di�usion-reaction systems known as �patchy invasion� has been

discovered in Petrovskii et al. (2002), provided the population growth rate is af-

fected by a strong Allee e�ect. The corresponding scenario describes the spread of

invasive species through the dynamical formation and irregular movement of sepa-

rate population patches (Petrovskii et al. 2005, Morozov et al. 2006 ) not linked to

the propagation of a continuous population front. In what follows, we examine the

model's dynamics and show that the simulated patchy distribution is qualitatively

similar to what is observed in gypsy moth populations.

In order to simplify numerical calculations, we scale the model to dimensionless

variables (Petrovskii et al. 2005a, b):

∂u(x, y, t)

∂t
=

(
∂2u

∂x2
+
∂2u

∂y2

)
+ γu(u− b)(1− u)− uv

1 + λu
, (2.5)

∂v(x, y, t)

∂t
= ε

(
∂2v

∂x2
+
∂2v

∂y2

)
+

uv

1 + λu
− µv , (2.6)

where u = U/K, v = V/K, a = AκK/B, x = X(a/D1)1/2, y = Y (a/D1)1/2, t =

aT , λ = K/B, b = U0/K, γ = 4νBK/(Aκ(K − U0)2), µ = M/a and ε = D2/D1.

The domain of the system (2.5 2.6) is square-shaped, such that 0 < x, y < L, with

no-�ux boundary conditions used at the domain boundaries.
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For the initial conditions, we consider functions of compact support:

u(x, y, 0) = u0 if x11 < x < x12 and y11 < y < y12 otherwise u(x, y, 0) = 0 , (2.7)

v(x, y, 0) = v0 if x21 < x < x22 and y21 < y < y22 otherwise v(x, y, 0) = 0 ,(2.8)

where u0 and v0 are the initial prey and predator densities, and parameters xij and

yij (i, j = 1, 2) determine the initially occupied area. These initial conditions are an

obvious simpli�cation of species distribution, as in nature the initial distribution of

species can be, and often is, more complex. However, Petrovskii et al. (2005) have

shown that this does not pose a drawback since system dynamics depend more

on the radius of the initially occupied domain, than on the particular population

density pro�le.

We investigate the system (2.5 �2.6) of two nonlinear PDEs through extensive

computer simulations. The equations were solved by forward �nite-di�erences

(see Appendix A), with mesh steps ∆x = ∆y = 1 and ∆t = 0.1. The domain

size was chosen to be su�ciently large throughout simulations (indicated in �gure

captions), therefore minimising the impact of boundaries, and mesh step sizes

were tested to provide a good approximation. We assume that ε = 1. In order

to discover and de�ne the succession of regimes of the system's dynamics, over

two hundred simulations were run. The nondimensional predator mortality, µ, is

considered as a controlling parameter, along with the prey growth rate γ. All other

parameters were kept constant throughout simulations: λ = 0.1, b = 0.2, u0 = 1,

v0 = 0.5, x11 = y11 = 390, x12 = y12 = 410, x21 = y21 = 395, x22 = y22 = 405,

u0 = 1 and v0 = 0.5. The system's response to the change in µ or γ resulted

in a distinct succession of di�erent dynamical scenarios, which are shown in the

parameter plane map (γ, µ), see Figure 2.2.

Examples of particular scenarios are shown in Figs. 2.3 and 2.4 with more details

provided in the text below. Dynamics of predator and prey populations are qual-

itatively similar, thus for the sake of brevity simulation results are shown for the

prey population only.

For su�ciently large values of the dimensionless predator mortality, µ, spread of

gypsy moth populations occurs through the propagation of continuous circular

travelling fronts. For a reduction in µ the propagation of continuous fronts ceases

with spread occurring through the formation and interaction of separate patches;

see Figs. 2.3 and 2.4. At any moment in time, the individual patches can split,

interact and merge into new patches. The apparent symmetry observed in the
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Figure 2.2: Plot of dimensionless mortality of predator population against
local growth rate of prey population. Di�erent scenarios are indicated by the

�gure legend.

spatial pattern is the consequence of the chosen (symmetric) initial conditions.

This regime shift from continuous to patchy dynamics does not occur abruptly as

in many cases there is a transitional region, in which invasion at an early stage is

patchy, but at later stages becomes continuous. A similar scenario is observed in

the SI model also, see subsection 2.6.2. With an increase in the prey population

growth rate, γ, the patchy region becomes more prominent and is observed for a

wider range of µ. However, for small values of γ, the range for patchy invasion

becomes very narrow and is di�cult to locate (e.g. for γ = 2, 2.5 and 3.5 we could

not �nd it at all).

For a �xed γ, a further decrease in µ leads to patchy invasion alternating with

extinction, shown as `transitional patchy to extinction' in Fig. 2.2. For an even

smaller µ the population goes extinct. This succession of dynamical scenarios,

following a decrease in µ is biologically well-founded. Recalling the scaling of the

model, the dimensionless predator mortality is directly proportional to the actual

predator mortality. Therefore, lower values of µ correspond to a stronger predator

able to bring down its prey and exerting more pressure on the prey population,

leading to a patchy distribution of gypsy moth populations.

The patchy spread of gypsy moth populations is usually attributed to the e�ect of
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Figure 2.3: Patchy invasion in prey predator model. Snapshots show prey
density at t = 100, t = 200, t = 350, t = 450, t = 600 and t = 750, with the

parameter set: γ = 5, µ = 0.347 and L = 600.

arti�cial, human assisted dispersal. However, we have shown that purely natural

factors such as prey-predator interactions coupled with the Allee e�ect can produce

qualitatively similar patterns to the observed gypsy moth distribution. Be that
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Figure 2.4: Patchy invasion in prey predator model. Snapshots show prey
density at t = 200, t = 300, t = 400 and t = 500, with the parameter set: γ = 8,

µ = 0.292 and L = 800.

as it may, predation is a signi�cant regulatory mechanisms only in low density

populations, thus in the following sections we explore an alternative hypothesis to

model high density gypsy moth populations. As these populations incur the most

damage, and largely in�uence the spread of gypsy moth we also calculate the rate

of spread of such populations.

2.6.2 Susceptible-Infected (SI) Model

The naturally occurring viral infection � nuclear polyhedrosis virus (NPV) is one

of the main controlling factors of high density gypsy moth populations, and with
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Figure 2.5: A sketch of the infection occurrence between the gypsy moth
and nuclear polyhedrosis virus. Arrows indicate the transition between di�erent

stages of the infection occurrence cycle. For more details see section 2.5.1.

recovery from NPV being extremely rare, the SI model seems to be an appropri-

ate framework. Note that the classical SI model assumes that disease transmission

occurs in direct contact between susceptible and infected individuals (see Chap-

ter 1). However, gypsy moths become infected with NPV through contact with

occlusion bodies resulting from the rupture of cadavers, rather than from direct

contact with infected individuals. Therefore, for our purposes, we indirectly treat

infected individuals as infective particles, i.e. NPV occlusion bodies. Since the

aim of this work is to improve the understanding rather than develop a predic-

tive model, we neglect the second wave of mortality and focus on larvae infection

through consumption of contaminated foliage. Correspondingly, the infection cycle

begins with infected individuals and evolves to infection of susceptible population

through consumption of occlusion bodies, hence enabling us to retain the form of

the SI model over the whole infection cycle (see Fig. 2.5).
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As above, wind dispersal is treated as di�usion, therefore our model becomes a

reaction-di�usion system:

∂S(R, T )

∂T
= D1∇2S(R, T ) + P (S)− E(S, I) , (2.9)

∂I(R, T )

∂T
= D2∇2I(R, T ) + E(S, I)−MI , (2.10)

where S(R, T ) and I(R, T ) are the densities of susceptible and infected popula-

tions, R = (X, Y ) is the position in space, T is time, and D1 and D2 are di�u-

sion coe�cients of susceptible and infected populations, respectively. We neglect

long-distance (human-assisted) dispersal and assume that short-distance (wind-

assisted) dispersal can be mathematically regarded as di�usion and described with

the usual di�usion terms. Since both susceptible and infected larvae (including

viral occlusion bodies) disperse with the wind, we consider D1 = D2 = D. The

function E(S, I) describes disease transmission and parameter M accounts for the

mortality rate of infected individuals. P (S) describes the local population growth;

note that, since NPV is a terminal disease for gypsy moth, infected individuals do

not contribute to the growth rate. Gypsy moth population's growth rate is damped

by the strong Allee e�ect, hence P (S) is chosen, as previously, accordingly:

P (S) =

(
4η

(K − S0)2

)
S(S − S0)(K − S) . (2.11)

As for the transmission function E, based on available evidence (Elkinton et

al. 1995,Dwyer and Elkinton 1993, Barlow et al. 2000 ), we consider it in the

form of the mass-action law:

E(S, I) = ASI, (2.12)

where A is the rate of infection transmission.

Note that the biological literature tends to consider di�erently the dynamics of

high-density populations where the impact of NPV is thought to be important but

the Allee e�ect does not apply and the dynamics of low-density, e.g. newly-invaded

populations where the Allee e�ect plays a crucial role but the e�ect of NPV is less

important. Interestingly, the di�usion-reaction modelling framework predicts that

those two apparently di�erent cases in fact cannot be separated. Contrary to

the case of the population growth without Allee e�ect where the speed of the

propagating front is fully determined by the system's properties in the low density
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range, in the presence of the strong Allee e�ect the speed of the travelling front is

determined by the dynamics of the high density population behind the front (cf.

�pulled� and �pushed� travelling fronts, e.g. Lewis and Kareiva 1993 ).

We also want to mention that at low population densities stochasticity becomes

important. In particular, extinction of new colonies can be attributed to the e�ects

of environmental and, possibly, demographic stochasticity. A question therefore

may arise as to whether the deterministic di�usion-reaction framework is relevant.

However, here we recall that di�usion-reaction equations only claim to describe the

population dynamics `on average', i.e. implicitly assuming averaging over many

stochastic realisations (Turchin 1988, Renshaw 1991, Okubo and Levin 2001 ). The

link between the two mathematical frameworks can be easily established; in par-

ticular, it means that the stronger the Allee e�ect in Eqs. (2.9) and (2.10), the

less is the probability for the survival of a new colony in the corresponding proba-

bilistic system. In that capacity, di�usion-reaction equations are applicable to low

population densities as well as to high ones. In what follows we give an overview of

the model properties and show that the parameter values corresponding to gypsy

moth population dynamics and dispersal correspond well to the parameter range

of the di�usive SI system where patchy invasion occurs.

For convenience (e.g. in order to decrease the number of parameters, thereby sim-

plifying numerical simulations), we scale the SI model (2.9�2.12) to dimensionless

variables:

∂s(x, y, t)

∂t
=

(
∂2s

∂x2
+
∂2s

∂y2

)
+ γs (s− β) (1− s)− si , (2.13)

∂i(x, y, t)

∂t
=

(
∂2i

∂x2
+
∂2i

∂y2

)
+ si−mi (2.14)

where s = S/K, i = I/K, a = AK, x = X(a/D)1/2, y = Y (a/D)1/2, t = aT , β =

S0/K, γ = 4ηK/ (A(K − S0)2), m = M/a. The system (2.13�2.14) is considered

in a square domain of size L so that 0 < x, y < L. At the domain boundaries,

no-�ux boundary conditions are used.

For the initial conditions, the population is considered to be homogeneously dis-

tributed at its carrying capacity within a square area of size ψ placed at the center

of the domain, so that

s+ i = 1 for
∣∣∣∣x− L

2

∣∣∣∣ < ψ and
∣∣∣∣y − L

2

∣∣∣∣ < ψ, and s+ i = 0 otherwise, (2.15)
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where 0 < ψ < L/2. This initial population is assumed to largely consist of

susceptibles, so that the infected individuals are concentrated in a smaller square-

shaped domain inside:

i(x, y, 0) = κ for
∣∣∣∣x− L

2

∣∣∣∣ < ω and
∣∣∣∣y − L

2

∣∣∣∣ < ω and i(x, y, 0) = 0 otherwise,

where 0 < ω < ψ and κ ≤ 1.

Since a 2D system of two nonlinear PDEs can rarely be studied analytically, our

primary analysis of the system (2.13�2.14) is through extensive computer simu-

lations. For numerical approximation we used the explicit forward Euler scheme

with mesh steps ∆t = 0.1 and ∆x = ∆y = 1. It was checked that these values are

su�ciently small to provide good approximation and to avoid numerical artifacts.

Also, the domain size L was set to be large enough in order to minimise the impact

of boundaries during simulation time (L = 600).

We consider the dimensionless mortality m of infected individuals and the growth

rate γ of susceptible individuals as the controlling parameters and keep all other

parameters constant. The simulation results shown below were obtained for β =

0.2, ψ = 10, ω = 5 and κ = 0.5. The system exhibits, as a response to changes

in m or γ, a distinct succession of invasion scenarios including patchy invasion,
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Figure 2.6: Map of di�erent invasion scenarios as explained by the �gure
legend.
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Figure 2.7: Snapshots of the susceptible population density taken at times t =
200 (left) and t = 400 (right). Propagation occurs through circular expanding

fronts. Parameters are γ = 3 and m = 0.57.

propagation through continuous population fronts and extinction. The results are

summarised as a map in the parameter plane (γ,m), see Fig. 2.6, where di�erent

symbols correspond to di�erent scenarios.

Examples of di�erent scenarios are shown in Figs. 2.7�2.11 and commented in

the text below. As the dynamics are qualitatively similar for the infected and

susceptible populations, for the sake of brevity simulation results are shown for

the susceptible population only.

For all checked values of γ in the range from γ = 2.5 to γ = 10, for su�ciently large

values of mortality m population spread occurs through propagation of continuous

travelling fronts. While for small values of γ the front always has the intuitively

expected circular shape (Fig. 2.7), an increase in γ may result in fronts of a more

exotic shape, e.g. butter�y-like (Fig. 2.8). For a given γ, the shape eventually

turns back to circular with an increase in m. If, on the contrary, m decreases,
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Figure 2.8: Snapshots of susceptible population taken at times t = 200 (left)
and t = 350 (right). Parameters are γ = 9.5 and m = 0.31. Invasion occurs

through the propagation of fronts of non-circular `butter�y-like' shape.
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the irregularity of the front shape increases sharply, promptly resulting in the

front discontinuity and patchy invasion; see Fig. 2.9. In this case, a continuous

propagating front does not exist and invasion takes place through the formation

and dynamics of separate patches. We mention here that the apparent symmetry

of the spatial pattern shown in Fig. 2.9 is a consequence of the symmetric initial

conditions (2.15�2.16). For asymmetric initial conditions (e.g. for non-concentric

initial domains) the emerging patchy structure would hardly bear any trace of

symmetry (Petrovskii et al. 2002, 2005, Morozov et al. 2006 ); see also Section 2.8.

The change from invasion through propagating continuous front to patchy invasion

does not happen abruptly, though. With a decrease in m, the system's dynamics

go through a transitional scenario when the spread is predominantly patchy at

an early stage of invasion, say for t ≤ t∗, but can turn into the continuous-front

spread at later time (for t > t∗); see Fig. 2.10. The duration t∗ of the patchy

spread is not known in advance; simulations show that it depends on parameter
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Figure 2.9: Patchy invasion: snapshots of susceptible population density taken
at times t = 100, t = 400, t = 700, and t = 1000 (left to right, top to bottom).
Parameters are γ = 4.5 and m = 0.375. Note that the symmetry of the sim-
ulations can be easily broken (bottom right) due to the chaotic nature of the

solution.
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Figure 2.10: Transitional dynamics. Snapshots of susceptible population den-
sity at times t = 100, t = 150, t = 400 and t = 600 (left to right, top to bottom).
Snapshots reveal the transitional dynamics when the patchy spread at an early
stage of invasion (cf. the top row) turns into the continuous-front spread at later

times (the bottom row). Parameters are γ = 5 and m = 0.378.

values and, for the parameter sets used in this study, varies between 100-300 (in

dimensionless units).

With an increase in γ, patchy spread becomes even more distinct as the individual

patches tend, on average, to become smaller and separated with wider empty

areas, cf. Figs. 2.9 and 2.11. Also the range of values of m where patchy invasion

is observed grows signi�cantly for large γ; see the right-hand side of the diagram

in Fig. 2.6. For small values of γ, the parameter range for patchy invasion shrinks

and is di�cult to locate. For γ = 2.5 we could not �nd it at all, although being

based on simulation results only it is not possible to tell whether the parameter

range disappears completely or just becomes very narrow.

Interestingly, for a given value of γ patchy invasion can alternate with extinction,

e.g. see the diagram of Fig. 2.6 for γ = 3.5 and γ = 4.5.

By further decreasing mortality and surpassing the patchy region, extinction oc-

curs inevitably. Note that this succession of invasion scenarios following a decrease
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Figure 2.11: Patchy dynamics. Snapshots of susceptible population density
at times t = 50, t = 150, t = 450, and t = 700 (left to right, top to bottom).

The parameter set used: γ = 8.5 and m = 0.298.

in mortality m is consistent with biological arguments. Namely, the dimensionless

mortality m yields the ratio of dimensional mortality of infected individuals M

and the infection transmission rate A. An increase in the dimensionless mortal-

ity parameter m may therefore correspond to a disease with a lower transmission

rate which puts less pressure on the species and allows the susceptible population

to spread uninterrupted through expansion of population fronts. Lower values of

mortality m would then correspond to a more severe disease with a higher trans-

mission rate, which exerts more pressure on the species and hence may bring it to

the brink of extinction.

2.7 Parameter estimation and the rate of spread

In the previous section, we showed that the invasion pattern predicted by the spa-

tial SI model is qualitatively similar to what is seen in �eld observations (e.g. com-

pare Fig. 2.1 with Figs. 2.9 and 2.11), that is, exhibiting patchy spread without
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any continuous population front. Now our goal is to reveal whether the rate of

spread observed in simulations is in agreement with �eld data.

For this purpose, we �rst recall the relation between the dimensionless and dimen-

sional variables. As x = X(a/D)0.5 and t = aT where a = AK (see the text after

Eqs. (2.13�2.14)), we obtain the following expression for the rate of spread:

∆X

∆T
=
δx

δt
·
√
ADK , (2.16)

where δx/δt presents the dimensionless rate of spread obtained from simulations

and
√
ADK is the scaling factor with the dimension of speed.

The next step is to understand what is the biologically relevant range for parameter

values. This appears to be a di�cult task. Close inspection of available literature

sources reveals that di�erent studies often give very di�erent estimates, sometimes

varying over two orders of magnitude; see Table 2.1.

We begin with the disease transmission rate A. As mentioned earlier, in our model

the transmission parameter is scaled to the number N of PIBs (polyhedral inclu-

sion bodies; see subsection 2.5.1) produced per larval cadaver, so that A = A1N

where A1 is the transmission rate per PIB. With maturation of gypsy moth larvae,

NPV yield increases. It is generally accepted that �rst instars produce the least

amount of NPV, whilst pathogen production increases with larval age and size

at the time of death. Shapiro (1981) estimated the number of PIBs per gypsy

moth cadaver as N = 4.0 · 108 per small larva, and N = 3.0 · 109 per large larva.

According to data from Dwyer and Elkinton (1993), fourth instar larvae are esti-

mated to produce N = 2 · 109 virus particles per cadaver. However, studies on a

similar species, Douglas �r tussock moth Orgyia pseudotsugata, indicate a smaller

order of magnitude of PIB production, i.e. N = 107 PIB/larva (Dwyer 1991 ),

N = 107 PIB/early instar larva and N = 4 · 108 PIB/late instar larva (Vezina

and Peterman 1985 ). As our model does not distinguish larval instars, we de-

scribe the release of polyhedral virus particles by their average number. Indeed,

despite the apparent �uctuation in PIB production rates, Barlow et al. (2000)

obtained promising modelling results under the assumption of a constant rate of

virus particle production as N = 2 · 109 PIB/larva.

The estimates for A1 range from 1.7 ·10−12 to 1.45 ·10−10 m2/day per PIB (Barlow

et al. 2000, Elkinton et al. 1995, 1996, Dwyer and Elkinton 1993 ). Studies largely

relied on the extrapolation of collected small scale or laboratory data to �eld scale.
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In order to ensure the plausibility of the estimate, comparison to NPV transmis-

sion rates in similar insect species was also undertaken involving species such as

the cabbage moth Mamestra brassicae, the Douglas-�r tussock moth Orgyia pseu-

dotsugata and the African armyworm Spodoptera exempta, all of which belong to

the same Lepidoptera order, and a general consistency between the estimates was

observed (Vezina and Peterman 1985, Reeson et al. 2000, Goulson et al. 1995,

Dwyer 1991 ). In some studies, particularly in Dwyer and Elkinton (1993) and

Elkinton et al. (1995), the estimate of the transmission rate was made using dif-

ferent units such as foliage area instead of the ground area. However, the required

conversion is minor (a median of 1.4m2 of foliage per 1m2 ground, see Liebhold

et al. 1989, Dwyer et al. 1997 ) and hence is not expected to further increase the

uncertainty.

The di�usion coe�cient D acts as a measure of dispersal and is expressed in units

of distance2/time (Kareiva 1983, Shigesada and Kawasaki 1997 ). Since females

are �ightless, the primary mechanism of dispersal originates from windborne move-

ment of �rst instar larvae hanging on silken threads. Attempts have been made

to estimate distances covered through this passive mechanism by means of ex-

perimental release-recapture e�orts (Kareiva 1983, Mason and McManus 1981 ).

Unfortunately, the results found in literature are not fully consistent with each

other. For instance, the value of D = 0.003 km2/year = 3 · 103 m2/year was re-

ferred to by several authors (e.g. Liebhold and Tobin 2006, Robinet et al. 2008 ).

Estimates of D for other related insect species, such as the Pinevine Swallowtail

(Battus philenor), produced a somewhat larger value D = 239 m2/day ≈ 104

m2/year (Kareiva 1983 ). Wilder et al. (1995) used the value D = 1 ha/year

= 104 m2/year for modelling gypsy moth spread and obtained reasonable results.

However, Liebhold et al. (1992) estimated the di�usion coe�cient of gypsy moth

to be D = 332 m/generation, thus sparking an inconsistency in terms of the units.

With regard to the carrying capacity K and the Allee threshold S0, they both have

the meaning of density and hence should normally be measured in density units

such as number of insects per unit area. In practice, the most extensive information

on gypsy moth abundance is obtained and monitored by using pheromone baited

traps. However, interpretation of trap counts in terms of the population density

is a challenging and largely open issue [see Petrovskii et al. (2012) for a discussion

of the problem]. For this reason, in the literature estimates of the gypsy moth

carrying capacity and the Allee threshold density are often given in trap counts,

i.e. in moths per trap.
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Estimates of K and S0 can be found in Johnson et al. (2006) and Tobin et

al. (2007b). Data were collected from spatially-referenced pheromone trap catches

and used to generate a continuous interpolated surface of gypsy male moth abun-

dance. Grids of 5 × 5 km cells encompassed states of Ohio, Illinois, Indiana,

Virginia, West Virginia, North Carolina and Wisconsin. The estimated number

of male moth counts per trap was extracted from the centre of the grid, for each

year during the full period of the study (1996-2004).

The Allee threshold was de�ned as the lowest abundance at which a local popu-

lation is likely to replace itself in the following year, below which the population

is more likely to decrease and above which it is more likely to increase (Tobin et

al. 2007b, Johnson et al. 2006 ). To deduce the Allee e�ect, pairs of counts per

trap were compared in subsequent years. The carrying capacity was de�ned as

the highest abundance at which the replacement probability decreases below 0.5

(Tobin et al. 2007b). Data for Ohio, Indiana and Illinois were inconclusive, due to

low replacement rates, ergo no estimates were obtained. Allee threshold and carry-

ing capacity in Wisconsin were estimated at 2.2 moths/trap and 283 moths/trap,

respectively (Tobin et al. 2007b). A much higher value of the Allee threshold of

20.7 moths/trap was established in West Virginia, Virginia and North Carolina,

with a carrying capacity of 673 moths/trap (Tobin et al. 2007b). Johnson et

al. (2006) provided overall estimates as 17 moths/trap for the Allee threshold and

687 moths/trap for the carrying capacity.

In a similar study, having analysed pheromone trapping data from a large-scale

�eld study in Washington, Liebhold and Bascompte (2003) estimated the Allee

threshold as 106.7 moths/colony, which is much higher than the estimate by John-

son et al. (2006).

In an earlier study (done on a much smaller spatial scale), Dwyer and Elkin-

ton (1993) estimated the carrying capacity as 500 larvae/m2. We mention here

that this value is di�cult to compare with the estimates mentioned above as it

refers to a di�erent life-stage. It seems to indicate a di�erent order of magnitude

for the carrying capacity. Indeed, the pheromone trap catchment area for the �y-

ing insects is known to be tens of square meters (Yamanaka et al. 2003, Hicks and

Blackshaw 2008 ); therefore, the value of the carrying capacity at 687 moths/trap

obtained by Johnson et al. (2006) gives a rough estimate of the population density

as, at most, 20-30 moths/m2. However, the latter is obviously inconsistent with
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the estimate of the Allee threshold made by Liebhold and Bascompte (2003) or

otherwise assumes a very low survival rate for larvae before they become moths.

Having the information about A, D and K at hand, we can now calculate the

scaling factor in Eq. (2.16). Since all three parameters vary over a wide range,

apparently, numerous combinations of parameter sets may be used. Therefore, here

we only endeavour to give an illustrative example of possible range bounds. We

choose D = 3 · 103 m2/year according to Liebhold and Tobin (2006). Since disease

transmission usually occurs during the larval stage, we use K = 500 larvae/m2

according to Dwyer and Elkinton (1993). For the average number of PIBs released

by a larval cadaver, we accept the value N = 2 · 109 as in Barlow et al. (2000).

Also, in our estimation we use a maximum length of the larval period as 10 weeks

= 70 days (Dwyer et al. 2000 ). Correspondingly, for the lower and upper estimates

of the transmission rate A1, we obtain the following values of the scaling factor:

(
√
ADK)min =

[
70 · 1.7 · 10−12 m2/(PIB · year) · 2 · 109 PIB/larva (2.17)

· 500 larva/m2 · 3 · 103 m2/year
]1/2 ≈ 600 m/year

= 0.6 km/year,

(
√
ADK)max =

[
70 · 1.45 · 10−10 m2/(PIB · year) · 2 · 109 PIB/larva (2.18)

· 500 larva/m2 · 3 · 103 m2/year
]1/2 ≈ 5500 m/year

= 5.5 km/year.

The next step is to estimate the parameters that determine the simulation results,

i.e. β, γ and m. Based on the available range of estimates for the carrying capacity

K and Allee threshold S0, we accept the value β = S0/K = 0.2.

Gypsy moth populations, as many insect species, may undergo �uctuations of

several orders of magnitude. The estimation of per capita growth rate therefore

involves considerable uncertainty. It is also often based on speci�c assumptions.

Most gypsy moth studies assume exponential growth, the exponent being found to

vary between 1.65− 4.6 per year, which results in the range of actual replacement

rates η (see Eq. (2.11)) as 5− 100-fold increase in population density between two

subsequent generations (Liebhold and Tobin 2006, Liebhold et al. 1992, Sharov et

al. 1995a, Sharov and Liebhold 1998 ). Recall that γ = 4ηK [A(K − S0)2]
−1 ≈

6.25η(AK)−1 where the scaling factor AK varies over two orders of magnitude,

i.e. from 120 to 104; see Eqs. (2.17�2.18). Correspondingly, parameter γ can

have any value from approximately 5 and down to 0.003. We however note that,
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according to our model, for any given value of mortality a decrease in γ almost

certainly results in population extinction; see Fig. 2.6. It may indicate that small

values of γ are in fact not feasible2. We therefore restrict our attention to the

values of γ on the order of one or larger.

Due to our interpretation of the SI model, it appears more appropriate to interpret

the `mortality rate'M as the rate of decay of PIBs (occlusion bodies), i.e. the virus

particles. This issue was addressed in a few studies and a consistent estimate of

0.003 day−1 was obtained (Dwyer and Elkinton 1993, Barlow et al. 2000, Elkinton

et al. 1995 ). This value is in agreement with studies on a similar species, the

Douglas �r tussock moth (Dwyer 1992 ). It is readily seen that this estimate

corresponds to the dimensionless decay rate of, at most, m = M(AK)−1 ≈ 0.01.

However, here we argue that this estimate should more likely be regarded as a

lower bound of the decay rate rather than its actual value. The matter is that the

above estimate only takes into account the e�ect on the virus particles produced

by weather conditions (such as high/low temperature, sunlight etc.) but not the

`geometry' of the disease transmission. While the virus particles may still remain

active inoculums for infection, they may be carried away by the wind or washed-out

by the rain to places where they could not be accessed by larvae, thus making any

contact between occlusion bodies and susceptible larvae impossible. The decay rate

of the virus particles as used in our SI model should take the wash-out rates into

account. Unfortunately, we are not aware of any study concerned with estimating

the wash-out rates. Therefore, here we use it essentially as a tuning parameter

which determines the type of spread; see Fig. 2.6. In particular, we choose the

value(s) of m that corresponds to patchy spread.

In order to estimate the rate of spread, we now choose two di�erent parameter

sets, i.e. (a) γ = 4.5 and m = 0.3755 and (b) γ = 8.5 and m = 0.98. In case

(a), the dimensionless spread rate δx/δt ≈ 0.3 and in case (b) δx/δt ≈ 0.6. For

di�erent values of the scaling factor, see Eqs. (2.17�2.18), we therefore obtain:

(
∆X

∆T

)(a)

min

= 0.18 km/year,
(

∆X

∆T

)(a)

max

= 1.65 km/year, (2.19)

(
∆X

∆T

)(b)

min

= 0.36 km/year,
(

∆X

∆T

)(b)

max

= 3.3 km/year. (2.20)

2or that for small γ our model is inappropriate.
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The range of gypsy moth spread rates observed in nature is known to vary from

about 2.5 to almost 29 km/year (Liebhold et al. 1992, Tobin et al. 2007a). It is

readily seen that our theoretical estimate has an overlap with this empirical range.

The impact of pathogens and wind dispersal, that are essential components of our

model, are thus capable of explaining the lower values of the observed rates of

gypsy moth spread, which we regard as a success of our approach.

2.8 Discussion and Concluding remarks

In this study, we tried to identify the factors that control the spatial pattern

and the rate of spread of the gypsy moth population in North America. By

now, a common tendency has been to relate the peculiarities of gypsy moth inva-

sion to human-assisted dispersal (Elkinton and Liebhold 1990, Tobin and Black-

burn 2008 ). However, we argue that this point of view disagrees to some extent

with the proved existence of the strong Allee e�ect in gypsy moth populations (Ver-

cken et al. 2011 ), which is known to usually wipe out small new colonies (Liebhold

and Bascompte 2003 ). Correspondingly, here our goal is to check whether natu-

ral factors such as wind dispersal and impact of predators or pathogens might be

su�cient to explain, at least partially, the features of the gypsy moth spread.

Our approach is based on mathematical modelling and computer simulations. De-

pending on the density of gypsy moth populations the dynamics of gypsy moth

is known to be strongly a�ected by either predation or the nuclear polyhedrosis

virus (NPV). Correspondingly, we have used spatially explicit predator-prey and

SI models of reaction-di�usion type where dispersal is thus described by the stan-

dard di�usion term. We then performed extensive computer simulations and found

that, within a certain parameter range, both models exhibit a pattern of spread

surprisingly similar to what is seen in �eld observations, i.e. a distinct patchy spa-

tial structure. Note that the patchy pattern obtained in simulations is completely

self-organised, it is not related to any pre-de�ned heterogeneity and it does not

require any asymmetry in the initial conditions. We have checked in simulations

(see Fig. 2.12) that use of asymmetric initial conditions does not a�ect the patchy

spread as such but breaks the symmetry of the emerging patchy structure, hence

making it look `more realistic.'

In order to choose biologically relevant parameter values to evaluate the spread rate

of high density gypsy moth populations we made an extensive literature search.
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Figure 2.12: Patchy invasion simulated with slightly asymmetric initial con-
ditions. Snapshots of susceptible population density at times t = 100, t = 400,
t = 700 and t = 1000 (left to right, top to bottom). The parameter set used:

γ = 6 and m = 0.348.

The search revealed a considerable amount of uncertainty (and sometimes even

inconsistency) in parameter estimation made in di�erent studies; see Table 2.1. We

then showed that the parameter values that we used in numerical simulations of the

epidemiological model were generally in agreement with the estimated parameter

range. Based on the parameter values taken from the literature, we showed that the

rates of gypsy moth spread predicted by our SI model are in very good agreement

with the lower range of the rates of spread observed in �eld data.

An interesting theoretical question is what are the temporal dynamics of the pop-

ulation density corresponding to di�erent invasion scenarios. Note that pattern

formation as such is not su�cient to draw any conclusions about this as irreg-

ular patterns sometimes correspond to periodical temporal dynamics but some

simple regular patterns may exhibit multi-periodicity and chaos (cf. Morozov et

al. 2004 ). Figure 2.13 shows the population density of susceptibles averaged over

the spatial domain as obtained in the course of the system's dynamics. Appar-

ently, the population variation over time exhibits distinct irregularity. Although

a detailed consideration of this issue should include calculation of the dominant
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Figure 2.13: Spatial average of the population density vs. time obtained
in numerical simulations for di�erent invasion scenarios: (a-b) for the patchy
spread for parameters the same as in Fig. 2.9 and for two di�erent intervals, (a)
for 0 < t < 1000, (b) for 2000 < t < 3000; (c) for the transitional regime shown

in Fig. 2.10, (d) for the patchy spread as in Fig. 2.11.

Lyapunov exponent, the apparent irregularity in the time dependence indicates

that the corresponding temporal dynamics are chaotic.

We want to emphasise that, in this study, it was not our goal to develop a com-

prehensive model of the gypsy moth invasion. Rather, we aimed to demonstrate

that the human-assisted dispersal is not necessarily a primary mechanism of the

gypsy moth spread. In particular, there is clearly an alternative explanation of

the typical patchy structure in the gypsy moth spatial distribution (cf. Fig. 2.1);

indeed, it can appear as a result of the interplay between wind dispersal, the Allee

e�ect and the impact of NPV or predators see Figs. 2.9 and 2.11, 2.3 and 2.4.

A more general model of gypsy moth spread should include both modes of dispersal

along with other speci�cs, such as weather conditions and the e�ect of elevation,

which would make the model parameters space-dependent. Interaction between

the short-range (wind-assisted) dispersal and the long-range (human-assisted) dis-

persal then may be capable of explaining the observed variability in the rate of

spread (Tobin et al. 2007a,b, Tobin and Blackburn 2008 ). Parametrisation of such

a model is however going to be a di�cult problem as there is currently not enough
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information available about relevant human movement. Distinguishing between

di�erent dispersal modes and/or between di�erent types of movement is a chal-

lenging issue and may have hidden pitfalls, especially if statistical analysis of the

movement data is involved (e.g. see Jansen et al. 2012 ).



Chapter 3

Are time delays always

destabilising?

3.1 Introduction

With this chapter, we begin Part II of this thesis, which focuses on the e�ects of

time delays on population dynamics.1 One of the main challenges in ecology is

to determine the cause of population �uctuations. Both theoretical and empiri-

cal studies suggest that delayed density dependence instigates cyclic behaviour in

many populations; however, underlying mechanisms through which this occurs are

often di�cult to determine and may vary within species. In this chapter, we con-

sider temporal dynamics of a single species population a�ected by the Allee e�ect

coupled with discrete time delay. We use two di�erent mathematical formulations

of the Allee e�ect and analyse (both analytically and numerically) the role of time

delay in di�erent feedback mechanisms such as competition and cooperation. The

bifurcation value of the delay (that results in the Hopf bifurcation) as a function

of the strength of the Allee e�ect is obtained analytically. Interestingly, depend-

ing on the chosen delay mechanism, even a large time delay may not necessarily

lead to instability. We also show that, in case the time delay a�ects positive feed-

back (such as cooperation), the population dynamics can lead to self-organised

formation of intermediate quasi-stationary states. Finally, we discuss ecological

implications of our �ndings.

1This chapter has been published as Jankovic and Petrovskii (2014)

60
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The classical theory of population dynamics predicts that the smaller the popu-

lation (or the lower its density), the less individuals will su�er from constraints

of intraspeci�c competition. The fewer individuals there are, the more resources

would be available, and steadily the population would increase in size. Though this

enhanced resource availability would ostensibly bene�t the population, such a pop-

ulation would lack conspeci�cs (advantages of which include predator saturation

or dilution, cooperative predation or resource defense and social thermoregulation,

e.g. see Stephens et al. 1999 ) which may lead to a decrease in the population's �t-

ness. This phenomenon, termed the Allee e�ect, was �rst described in the 1930s,

and has become a topic of much interest over the last 25 years, largely in light

of the concerns over conservation and the problems of already endangered or rare

species (Dennis 1989, Courchamp et al. 2008 ). The Allee e�ect refers to a positive

relationship between (any component of) individual �tness and population density

(Stephens et al. 1999 ). The per capita growth rate is nonmonotonic and can even

become negative at particularly low values of population density (termed as the

strong Allee e�ect), resulting in a critical density known as the Allee threshold

below which population extinction is likely.

Mechanisms through which the Allee e�ect appears are abundant, and to name

just a few, include inbreeding depression, absence of cooperative feeding, failure

to satiate natural enemies, failure in mate �nding and temporal asynchrony in

reproductive maturing between sexes (known as protandry); see Courchamp et

al. (1999), Stephens et al. (1999). One way in which individuals gain protection

from predators is through cooperative strategies such as aggregation. By group-

ing, the population reduces predation risk through dilution e�ects; the larger the

group size the less chance that an individual may be harmed. At the same time,

aggregation can be costly and overshadowed by deleterious consequences such as

a paradoxical increase in exposure to predators, as larger groups are easily de-

tected. Furthermore, it can lead to overcrowding and an increase in intraspeci�c

competition (Gri�ths et al. 2003 ). These negative e�ects can be counteracted

through behaviour such as parental care, which restores the positive aspects and

need for animal grouping (Nakaoka et al. 2009 ). A less appreciated and frequently

overlooked mechanism through which Allee e�ects emerge are predator-prey inter-

actions. It has been shown, that size-selective predation on prey regulated through

density-dependence leads to a positive relationship between predator density and

population growth, through intraspeci�c competition in the prey population (De

Roos and Persson 2002, De Roos et al. 2003, van Kooten et al. 2005 ). Such
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an Allee e�ect is known as �emergent�, as it results from the predator induced

changes in prey size distribution and is essentially a consequence of the feedback

of predator feeding on its own performance.

Despite Allee e�ects usually being di�cult to detect and quantify in natural

populations (but see Vercken et al. 2011 ), the variety of mechanisms and af-

fected ecological processes suggest their prevalence. Moreover, the current state

of research indicates ample empirical evidence (albeit often indirect) of the ubiq-

uity of Allee e�ects in a diverse range of taxa and ecosystems (Courchamp et

al. 2008, Courchamp et al. 1999 ). Along with stochasticity, the Allee e�ect

is particularly in�uential in biological invasions (Fagan et al. 2002, Petrovskii

et al. 2002, 2005a), as it may cause longer lag times (Petrovskii et al. 2005b),

slower spread (Lewis and Kareiva 1993 ) and decrease the probability of estab-

lishment which may lead to underestimation of invasion risk posed (Taylor and

Hastings 2005 ). Further consequences include impacts on distribution of invasive

species (Morozov et al. 2006), metapopulation �uctuations, predator-prey interac-

tions, parasite transmission (Kramer et al. 2009 ), exploitation management and

biodiversity preservation (Taylor and Hastings 2005, Courchamp et al. 1999 ). It is

thought that the collapse of cod, Gadus morhua, in the Northwest Atlantic might

be an unfortunate consequence of emergent Allee e�ects, as these populations are

not known to exhibit mechanisms commonly associated with positive density de-

pendence (De Roos and Persson 2002 ). Allee e�ects also form a crucial aspect

of biological control (e.g. through release of sterile insects, cf. Lewis and van den

Driessche 1993 ) and are increasingly exploited as the �Achilles heel� of biological

invasions (Liebhold and Tobin 2010, Dennis 1989 ).

The ways to include the Allee e�ect into mathematical models of population dy-

namics are well understood. The resulting models are often described by di�eren-

tial equations (Murray 2002, Kot 2001) hence assuming that the processes shaping

the dynamics are taking place at the same time. However, processes in ecology (as

well as in nature in general) are rarely instantaneous (Hutchinson 1948, Maynard

Smith 1974). As it was pointed out by Kuang (1993), �time delays occur so often

(in almost every situation) that to ignore them is to ignore reality�. Aiming to

create a somewhat more realistic description, one should include a time delay into

the model, which results in a delay di�erential equation. Delay di�erential equa-

tions have been of su�cient importance in modelling real life phenomena, and

arise in various practical applications such as population dynamics (most often
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accounting for maturation/gestation periods), immunology (incubation/latent pe-

riods) and physiological and pharmaceutical kinetics (Cheyne-Stokes respiration,

glucose-insulin regulation, blood pressure oscillations), etc. Time delays in feed-

back mechanisms tend to destabilise positive, otherwise stable, equilibria and lead

to oscillatory behaviour. Thus, delay di�erential equations are capable of generat-

ing more complex and rich dynamics compared to ordinary di�erential equations

(Ruan 1995, Cooke and Grossman 1982 ). Indeed, population densities of many

species are known to �uctuate nearly periodically over time (cf. Turchin 2003), a

phenomenon to which delayed density dependence may provide an explanation.

Consequently, the conditions under which time delay can lead to an instability

are studied in much detail. Interestingly, there is some evidence that the Allee

e�ect can have an e�ect on the system's dynamics opposite to that of the time-

delays, i.e. increasing stability of the positive equilibrium rather than decreasing

it. In particular, Gopalsamy and Ladas (1990) proposed a single species model in

which population growth is damped by the Allee e�ect and per capita growth is

subject to time delays. Under certain conditions that included the case of a weak

Allee e�ect (but not the strong Allee e�ect), they showed the positive equilibrium

was globally attractive. Subsequent studies by Cao and Gard (1995) and Liz et

al. (2003) provided conditions of global asymptotic stability; however, if a delay

exceeds a critical value, the solutions oscillate around the positive equilibrium.

Freedman and Gopalsamy (1986) obtain conditions for local stability for a class

of models including the delayed weak Allee e�ect. Recently, it was shown that a

mere inclusion of a (non-delayed) Allee e�ect can have a stabilising e�ect on the

positive equilibrium compared to Hutchinson's model (Merdan et al. 2009 ), in the

sense that the steady state is stable under less restrictive conditions. Moreover, the

conditions become less and less restrictive � hence the stabilising e�ect becomes

more prominent � with increasing strength of the Allee e�ect (Merdan et al. 2009 ).

Regarding the e�ect of various factors on the system's stability, we also mention

here the work by Beddington and May (1975) who showed that the e�ect of time

delay can be delicate. We however point out here, that their context of stability

di�ers principally from other studies, including ours. Namely, they showed that,

although an increase in the value of time delay causes the solution to start oscil-

lating around the upper equilibrium, simultaneously it spends more time in the

vicinity of the lower, trivial, otherwise unstable equilibrium. Thus, time delays

can slow the growth of instabilities and can therefore be interpreted as having a

�stabilising� e�ect on unstable stationary points (Beddington and May 1975 ).
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In spite of several papers having been published about the interplay between the

time delay and the Allee e�ect, there are a few questions that have never been

addressed. Note that most of the previous research focuses on the weak Allee

e�ect. On the contrary, here we consider both cases of weak and strong Allee

e�ects. Merdan et al. (2009) obtain results for a general class of Allee functions,

however our chosen parametrisations are di�erent and do not satisfy their imposed

restrictions. That raises an issue of the structural sensitivity (Fussmann and

Blasius 2005) of models with regard to parametrisation of the time-delayed Allee

e�ect. In this study, we show that the interplay between the Allee e�ect and time

delay can be non-trivial and counterintuitive depending on the choice of delayed

process(es). The remainder of the chapter is organised as follows. In Section 3.2

we introduce our modelling frameworks and consider the e�ects of di�erent time

delay terms. Results presented include both numerical simulations and analytical

results. Then, in Section 3.3 we address possible ecological applications of our

models and outline what ecological implications our �ndings may leave.

3.2 Models and results

Under the assumption of spatial homogeneity, the dynamics of a single species

population is described by the following equation:

dU(t)

dt
= G (U(t)) = U(t)F (U(t)) , (3.1)

where U(t) is the population density at time t, G(U) the rate of change of popula-

tion density due to reproduction and mortality and F (U) is the per capita growth

rate. If population growth is damped by the Allee e�ect, the per capita growth

rate is dome-shaped and can be described by a square polynomial (Lewis and

Kareiva 1993, Amarasekare 1998a, Amarasekare 1998b, Courchamp et al. 2008 ):

F (U) = γ(K − U)(U − β), (3.2)

where K is the carrying capacity and γ the coe�cient proportional to the max-

imum per capita growth rate (cf. Lewis and Kareiva 1993) which we call, for

convenience, the characteristic growth rate. Parameter β is the so-called Allee

threshold or threshold density and can be regarded as a measure of the strength

of the Allee e�ect, so that the Allee e�ect is called strong if β > 0 and weak if

−1 < β < 0.
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Accordingly, our baseline non-delayed model is as follows:

dU

dt
= γU(K − U)(U − β). (3.3)

Equation (3.3), albeit very simple, accounts for the two dominant feedback mecha-

nisms: positive, arising from cooperation at low population densities, and negative

occurring at high densities due to competition; see Fig. 3.1. Therefore, in the cho-

sen parametrisation (3.2) we can loosely associate cooperation and competition

with factors (U − β) and (K − U), respectively.

Once the delay τ is taken into account, the generic Eq. (3.1) turns into

dU(t)

dt
= G(U(t), U(t− τ)) = U(t)F (U(t), U(t− τ)), (3.4)

where, similarly to the above, G is a cubic polynomial but the delay can enter

di�erent terms depending on the type of the feedback.

In population ecology, typical biological regulating mechanisms are competition

for food and territories, amongst others (Berryman et al. 1987 ), thus we begin by

including time delay into the competition term, obtaining a model comparable to

0 1

0

Population density, U

P
e
r 

c
a
p

it
a
 g

ro
w

th
 r

a
te

, 
F

Cooperation Competition 

Figure 3.1: A sketch of the per capita growth rate F (U) in the case of the
strong Allee e�ect.
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Hutchinson's equation (Hutchinson 1948 ):

dU

dt
= γU(t)(U(t)− β)(K − U(t− τ)), (3.5)

where τ is the time delay.

Throughout this section we have scaled both the carrying capacity K and the

characteristic growth rate γ to unity, which implies the corresponding scaling for

the variables U and t. Equation (3.5), as well as other delay di�erential equations

(see eqs. (3.6) and (3.10�3.13) below) were solved by �nite di�erences, in particular

by the explicit Euler scheme. The time step was chosen to be su�ciently small,

ensuring the accuracy and reliability of results, ∆t = 0.01. Furthermore, we have

checked the reliability of our solutions with Matlab's in-built solver for discrete

delay di�erential equations (dde23). Unlike ordinary di�erential equations, in

which de�ning initial conditions was su�cient, delay di�erential equations require

us to de�ne the population's �history�, i.e. U(t) for −τ < t < 0. In all simulations,

the history was chosen to be a constant function U = U0 = 0.5 (except for β = 0.5

where we choose U0 = 0.6 to ensure population survival). The Allee threshold

density β is regarded as a controlling parameter and its value is varied between

−1 and 0.5, which obviously includes both cases of the Allee e�ect, i.e. weak for

−1 < β ≤ 0 and strong for 0 < β < 0.5. We choose the time delay τ as the

second controlling parameter and observe the system's response to its variation.

Following extensive computer simulations, we then summarise our �ndings as a

map in the parameter plane (τ, β), Fig. 3.2.

Figure 3.2 shows the succession of di�erent dynamical responses for a population

subject to delayed competition, as described by Eq. (3.5). Some typical system's

dynamics is shown in Fig. 3.3. For a given Allee threshold and a small time

delay, the system quickly approaches the equilibrium state U = 1 with U(t) being

a monotonously increasing function (not shown). An increase in τ causes the

solution to lose monotonicity (when τ exceeds the critical value shown by the

dashed curve in Fig. 3.2) through the appearance of damped oscillations (Fig. 3.3,

left). By further increasing τ , the system passes through the Hopf bifurcation

(shown by the solid curve in Fig. 3.2) leading to the occurrence of limit cycles

(Fig. 3.3, right). As the Allee threshold β increases, the population appears to be

more stable as larger values of the time delay are needed to destabilise it. Also,

as we have observed in our simulations, the population always persists and no

extinction occurs even for a large time delay. Note that both the solid and dotted
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the analytically calculated Hopf bifurcation curve (see Appendix B), the dotted
line corresponds to the analytically calculated loss of monotonicity curve (see
Appendix C), while the dash-dotted line acts as a visual aid to separate the

weak and strong Allee e�ect.

curves in Fig. 3.2 are calculated analytically (see Appendices B and C) and are in

excellent agreement with our numerical results.
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Figure 3.3: Temporal population dynamics for model (3.5). Parameters are
β = 0.7, τ = 0.9 (left) and β = 0.1, τ = 2 (right).

As a next step we consider the e�ect of time delay on cooperation. Delayed

cooperation in a population (when time delay is included into positive density



Chapter 3 Are time delays always destabilising? 68

dependence) can be modelled as

dU

dt
= γU(t)(U(t− τ)− β)(K − U(t)). (3.6)

Contrary to model (3.5), increasing the time delay had no destabilising e�ect on

solution behaviour, apart from minute changes in the slope (Figure 3.4). This was

intuitively expected, as positive density dependent mechanisms do not regulate

population density. For a su�ciently large time delay solutions monotonously

approach the equilibrium U = 1, but at a slower rate.
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Figure 3.4: Solutions of model (3.6). Simulations presented are for the weak
(left) and strong (right) Allee e�ect with β = −0.8 and β = 0.2, respectively.

The corresponding time delays are given in the �gure legend.

3.2.1 An alternative model

An apparent disadvantage of the baseline model (3.3) with the growth rate de-

scribed by a cubic polynomial is that it accounts for the e�ects of competition

and cooperation in a mixed, multiplicative way. Correspondingly, Petrovskii et

al. (2008) have proposed an alternative, additive form of the per capita growth

function F (U):

F (U) = f(U)−m− A(U), (3.7)

where f(U) accounts for population multiplication due to reproduction, m is nat-

ural (density independent) mortality and A(U) represents density dependent mor-

tality (e.g. due to cannibalism), which is of signi�cance in high density populations.
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Unlike the previously introduced multiplicative form of the Allee e�ect, this addi-

tive form avoids the interference of di�erent biological processes. The population

dynamics can then be modelled by:

dU

dt
= U(−m+ f(U)− A(U)), (3.8)

in which the particular parametrisation of functions depends on the system mod-

elled.

Obviously, for di�erent choices of functions f and A, model (3.8) can have various

properties. Here we consider the growth term as f(U) = aU and the density

dependent mortality as A(U) = γU2 where a and γ are parameters. We then

assume that the natural mortality ratem is proportional to the threshold density β,

m = γβ. Since β has the meaning of the survival threshold, this is not completely

unrealistic. Finally, in order to make model (3.8) directly comparable with (3.3)

and to avoid additional parameters, we assume that a = γ(1 + β). Equation (3.8)

then takes the following form:

dU

dt
= γU(−β + (1 + β)U − U2) (3.9)

(in appropriately chosen dimensionless units). As before, γ is the characteristic

growth rate, and β is the Allee threshold. Without time delay, model (3.9) is

therefore identical to (3.3). However, di�erent terms now possess di�erent meaning

and hence the time delay can be included di�erently. As the term (1 + β)U

apparently provides a positive feedback on the population growth, we associate it

with cooperation. The term U2 provides a negative feedback and hence should be

associated with competition.

Since time delays in population models often account for maturation or gestation

periods, we �rstly include the time delay into the growth term:

dU

dt
= γU(t)(−β + (1 + β)U(t− τ)− U2(t)). (3.10)

Following stability analysis (see Appendices B and C), one readily concludes that

this inclusion of time delay should not a�ect population dynamics, as the equilib-

rium retains its stability. However, numerical simulations reveal interesting pop-

ulation dynamics resulting in the self-organized formation of intermediate quasi-

stationary states; see Fig. 3.5. Namely, after a period of fast growth, the popula-

tion density approaches an intermediate quasi-equilibrium at the close vicinity of
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Figure 3.5: Solution behaviour as predicted by model (3.10); top for τ = 10.5
and bottom for τ = 50, the Allee threshold is β = 0.2. The �gures on the left
show the population density vs. time whilst the �gures on the right show phase
plane structure (growth function G vs population density). By increasing the
time delay τ the step-like structures become more prominent (note the di�erent

range used for the t-axis in the top and bottom rows).

which it can remain for a considerable time. Subsequently, the population density

leaves the vicinity and once again shows a fast growth before reaching another

quasi-equilibrium. This pattern repeats itself until the system reaches its stable

equilibrium U = 1 in the large-time limit, thus resulting in a step-like structure

(Fig. 3.5, left column). As the time delay τ increases, the system remains at these

�resting states� for longer and the transition between them becomes faster, making

the step structure more prominent. Also, by increasing the time delay, more time

is needed for the population to reach its equilibrium. Note that the values of τ
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used in Fig. 3.5 are considerably larger than in the models considered above. We

mention here that somewhat similar dynamics were observed in So et al. (2001)

but for a more complex model involving a structured population on two patches.

However, unlike our results their solutions lose monotonicity for a critical dispersal

rate.

Using the additive model (3.9), populations subject to delayed competition can be

modelled as
dU

dt
= γU(t)(−β + (1 + β)U(t)− U(t− τ)U(t)). (3.11)

Figure 3.6 shows the parameter plane (τ, β) of the model (3.11) where di�erent

symbols correspond to di�erent regimes of the system dynamics, as was obtained

in computer simulations. The Hopf bifurcation curve (solid line) is a decreasing

function and matches well with analytical results. For a given Allee threshold,

an increase in time delay gradually leads to the loss of monotonicity and to the

appearance of damped oscillations. A further increase in τ causes the system to

lose stability and exhibit limit cycle behaviour. An obvious exception occurs at

β = −1 as the system remains stable for any τ (see Appendix B). A key feature

of this model is that a su�ciently large time delay may drive the population to

extinction, only if subject to the strong Allee e�ect, whilst populations a�ected

by the weak Allee e�ect persist.

Since Eq. (3.11) is a heuristic model, it is not immediately clear what the e�ect

of delay on competition exactly is. Therefore, we consider an alternative model

where additional mortality may be controlled by a purely delayed mechanism, so

that population dynamics is modelled as:

dU

dt
= γU(t)(−β + (1 + β)U(t)− U2(t− τ)). (3.12)

The parameter plane of model (3.12) is structurally similar to that of model

(3.11) whilst the bifurcation curve is monotonically decreasing, with a substan-

tially steeper slope (Fig. 3.7). Again, populations can be driven to extinction only

when a strong Allee e�ect is present.

Lastly, we consider the inclusion of both delayed competition and maturation

(which is equivalent to delays in both cooperation and competition in the baseline

model (3.3)):

dU

dt
= γU(t)(−β + (1 + β)U(t− τ)− U2(t− τ)) (3.13)
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Figure 3.6: Map of di�erent scenarios as explained by the �gure legend for
model (3.11). The solid line corresponds to the analytically calculated Hopf bi-
furcation curve, the dotted line shows the analytically calculated loss of mono-
tonicity curve, while the dash-dotted line acts as a visual aid to separate the

weak and strong Allee e�ect.
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Figure 3.7: Parameter map of di�erent scenarios as explained by the �gure
legend for model (3.12). The solid line corresponds to the analytically calculated
Hopf bifurcation curve, the dotted line shows the analytically calculated loss of
monotonicity curve, while the dash-dotted line acts as a visual aid to separate

the weak and strong Allee e�ect.
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For this model, the map in the parameter space (τ, β) (see Fig. 3.8) appears to have

a structure similar to that obtained in the corresponding multiplicative model (3.5)

(see Fig. 3.2) where the delay was included only into the cooperation term. This

seems to suggest that delay in competition may have a more prominent e�ect than

delayed cooperation. One important di�erence though is that now, in case of the

strong Allee e�ect (β > 0) and for su�ciently large time delays (see the top-right

corner of the parameter plane), the population can be driven to extinction.
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Figure 3.8: Map of di�erent scenarios as explained by the �gure legend for
model (3.13).The solid line corresponds to the analytically calculated Hopf bi-
furcation curve, the dotted line shows the analytically calculated loss of mono-
tonicity curve, while the dash-dotted line acts as a visual aid to separate the

weak and strong Allee e�ect.

3.3 Discussion and Concluding remarks

The aim of this study is to address the interplay between time delays and the Allee

e�ect. Using the single-species context, we study (both analytically and numeri-

cally) two di�erent models of population dynamics where the e�ects of competition

and cooperation are taken into account in either a multiplicative or additive way.

The conditions for local stability are obtained analytically as a function of the

Allee e�ect strength and are in full agreement with numerical results. We have

found that the inclusion of time delay alone does not necessarily confer instability,
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and the choice of the delayed underlying ecological process is an important de-

terminant of overall population dynamics. However, a delay in negative feedback

mechanisms such as intraspeci�c competition always results in instability and thus

leads to population cycles or even to population extinction; see Figs. 3.2, 3.6, 3.7

and 3.8. We show that a delay in competition has a more dominant e�ect on

population dynamics, compared to delays in positive feedback mechanisms ar-

guably accounting for cooperative strategies which exert no consequences on the

population's global stability. Even so, nontrivial transitional dynamics through

self-organized formation of intermediate quasi-stationary states can be observed

in models of this kind (Fig. 3.5). Our results are summarised in Table 3.1.

Table 3.1: Summary of the results. The succession of dynamical regimes from
left to right corresponds to an increase in the value of time delay τ . Note that,
since all models exhibit monotonous behaviour for su�ciently small τ this is not

included into the table for the sake of brevity.

Model,
type

Process
delayed

Damped
oscillations

Limit
cycle

Quasistationary
states (`steps')

Extinction

Eq. (3.5),
multiplicative

competition Yes Yes No No

Eq. (3.6),
multiplicative

cooperation No No No No

Eq. (3.10),
additive

cooperation No No Yes No

Eq. (3.11),
additive

competition Yes Yes No Yes

Eq. (3.12),
additive

competition Yes Yes No Yes

Eq. (3.13),
additive

competition,
cooperation

Yes Yes No Yes

Note that, in the corresponding real-world population dynamics, the intermediate

states predicted by model (3.10) may not always be seen as they would likely be

blurred by the e�ects of stochasticity and the transient nature of the environment.

These intermediate states may therefore become �hidden� in the sense that they

may be di�cult to observe yet they a�ect the population dynamics (e.g. by consid-

erably increasing the time required to converge to the `true' steady state). That

evokes the concept of �hidden states� that has been an issue of growing impor-

tance in ecology (Clark and Bjørnstad 2004, Buckland et al. 2007 ). It is thought

that the existence of self-organised, hidden or intermediate states can, in some

cases, provide an explanation to the complexity of ecosystems' dynamics (Clark

and Bjørnstad 2004 ). The existence of such states can sometimes be linked to the

population's heterogeneity, both in terms of its age and/or physiology and in its

spatial structure (e.g. So et al. 2001 ). In our study, however, we have shown that
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intermediate states can emerge in an unstructured single-species population as a

result of the interplay between the time delayed cooperation and the Allee e�ect,

a novel mechanism that has not been observed before. We also mention that the

original concept of hidden states is used in a purely statistical context (Buckland

et al. 2007 ); here we show that it can arise in a deterministic model as well.

Continuous population models are sometimes considered as limiting cases of their

discrete counterparts. In time discrete population models, the Allee e�ect is

thought to have a stabilising e�ect on system dynamics (in both delay and non-

delay systems). In the works by Scheuring (1999) and Fowler and Ruxton (2002)

logistic and Allee type di�erence models were presented and compared. Conse-

quently, the per capita growth rates in Allee models were normalised to enable

comparison of equivalent equilibrium stability. The inclusion of positive density

dependence was shown to stabilise population dynamics, in particular with increas-

ing Allee strength. Çelik et al. (2008) andMerdan and Gümü³ (2012) con�rm such

�ndings in equivalent time delay models. In these studies, comparison was made

between delayed competition models and delayed Allee e�ects. Analytical and

numerical results suggest that even though delayed, positive density dependence

remains a stabilising mechanism. In other words, a delay in cooperation does not

alter the system's stability, proving it not to be a controlling feedback as is also

readily observed in the continuous case; see Fig. 3.4.

Biological interpretation of the `delayed cooperation' concept is di�cult to grasp,

though we suggest that cooperative behaviour itself may lead to a delay in repro-

duction, thereby increasing the population's time to converge to it's steady state

(Figs. 3.4 and 3.5). Although cooperation in nature takes many forms, one speci�c

form are cooperative breeding populations in which `helpers' (individuals other

than parents) provide care for o�spring. In addition to such alloparental care, co-

operative breeding populations exhibit two further characteristics: delayed disper-

sal and reproductive suppression (delayed reproduction). Reproductive suppres-

sion suggests that some social or physiological factor limits the individual's ability

to reproduce. Possible sources and in�uences can greatly vary between species,

ranked individuals and sexes. Cooperative breeding is a social phenomenon that

has been observed in avian species (Koenig and Dickinson 2004 ) as well as across

a rather diverse mammalian taxa (Kramer 2010 ): predominantly in wild canids,

rodents, meerkats and some primates. Meerkats, Suricata suricatta, are highly

gregarious species, obligate cooperative breeders, and live in groups of up to 50
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individuals (Clutton-Brock et al. 2008 ). One dominant pair monolopolises repro-

duction, accounting for almost 80% of reproductive attempts (Gri�n et al. 2003 ),

whilst helpers of both sexes assist in rearing young. The most striking form of help-

ing is such cooperative pup care which involves guarding pups in the natal burrow

and pup feeding. Like many other cooperative breeders subordinate females com-

monly attempt to breed but with substantially lower reproductive success than

dominant females. Behavioural tactics such as regular aggression, eviction and

infanticide are employed to achieve reproductive suppression (Clutton-Brock et

al. 1998, Young et al. 2006 ). Behavioural reproductive suppression is also seen in

grey wolf packs (Asa and Valdespino 1998 ). Young subordinates remain in their

natal pack, thus mating and reproduction are typically delayed. A common feature

of cooperative breeders is that the young the individuals helped to raise become the

individual's `helpers', following their succession to breeding status in group (Wiley

and Rabenold 1984 ). Alloparental care is particularly prominent in South Amer-

ican marmosets and tamarins (Solomon and French 1997 ); see Fig. 3.9. Apart

from aggression as an e�ective mechanism limiting breeding by eviction (Snowdon

and Pickhard 1999 ), in the common marmoset, Callithrix jacchus jacchus, phys-

iological suppression is present, i.e. puberty is delayed in o�spring that do not

disperse (Abbott et al. 1981 ).

Figure 3.9: Examples of species exhibiting delayed cooperation and competi-
tion: cottontop tamarins (left) and �our beetle (right). Taken from http://

www.monkeyday.org/2013_09_01_archive.html and http://en.wikipedia.

org/wiki/Flour_beetle.

Cyclic dynamics in populations have stimulated a great deal of research and de-

bate in ecology (Elton 1924, Hutchinson 1948, Krebs 1996, Krebs and Myers 1974 ).

Contrary to the ever enlarging data sets on population cycles, population ecolo-

gists continue to debate population regulation, in particular the role of density

dependence. Possibly the key issue in such disagreement is relating statistically

http://www.monkeyday.org/2013_09_01_archive.html
http://www.monkeyday.org/2013_09_01_archive.html
http://en.wikipedia.org/wiki/Flour_beetle
http://en.wikipedia.org/wiki/Flour_beetle
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determined patterns to ecological mechanisms responsible for population �uctu-

ations (Williams and Liebhold 1995, Berryman and Turchin 1997 ). Therefore,

population regulation remains a fairly contentious �eld, open to further investi-

gation of the �true� governing mechanisms. A common approach used to reveal

dominant underlying ecological processes is time series analysis, and there seems

to be consent amongst many authors as to density dependence being one of the

main causal factors of population �uctuations (Bjørnstad et al. 1998, Turchin et

al. 1999, Berryman and Turchin 2001 ). It is well known that populations are

in�uenced by factors that are a function of the current population density (direct

density dependence) and by factors that are functions of past population densities

(delayed density dependence)1. The latter tends to destabilise population dynam-

ics, making them more prone to cycle. There are numerous underlying causes of

such second order dynamics, however the most commonly considered factors are:

resource competition and cannibalism, predator-prey interactions (in particular

the e�ect of specialist predators), parasitoids, pathogens, maternal e�ects, etc.

Indeed, possible causes of delayed density dependence are linked to combinations

of such factors, making the task of isolating one single mechanism quite di�cult

(Krebs 1996 ).

A classic example of �uctuating populations are the grey-sided vole populations, Cle-

thrionomys rufocanus, in Kilpisjarvi, Finland (Hansen et al. 1998 ). Attempting

to reveal causes of such dynamics, Hansen et al. (1998) obtained results that

show delayed density dependence is crucial for generating 3− 5 year cycles within

these populations. By testing two hypotheses of community dynamics, one caused

by interaction with specialist predators, and the other relating to species speci�c

trophic interaction (overgrazing of Vaccinium) and having excluded interspeci�c

competition, Hansen et al. (1998) show that population cycles are rather caused by

intrinsic factors such as overgrazing of Vaccinium or preferential predation by least

weasels on grey-sided voles. A contrasting study on �eld-voles (Microtus agrestis)

shows that predation by weasels, is neither a su�cient nor necessary condition

to initiate and drive population cycles in Kielder forest populations (Graham and

Lambin 2002 ), suggesting more inherent mechanisms such as intraspeci�c competi-

tion a more possible source of �uctuations. Under the assumption cyclic behaviour

of both grey-sided and �eld vole populations is due to resource competition, we

can suggest such population dynamics be described by delayed competition mod-

els such as Eq. (3.5). Depending on the speci�cs of intraspeci�c competition,

1Direct density dependence is often referred to as �rst order dynamics, whilst delayed density
dependence is known as second (or higher) order dynamics, see Turchin (1999)
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both Eqs. (3.11) and (3.12) would be appropriate to model observed population

oscillations.

Predation was also shown to be an in�uential force controlling population cycles in

the Asian tiger mosquito, Aedes albopictus, (Walsh et al. 2012 ) and the southern

pine beetle, Dendroctonus frontalis, (Turchin et al. 1999 ). A common modeling

approach would consist of formulating an appropriate predator-prey model (Cush-

ing 1976, Beretta and Kuang 1998 ). Nonetheless, an alternative may be found in

a single species system whereby predation e�ects would be implicitly incorporated

as additional prey mortality. Such delayed density dependent mortality was shown

to oscillate for su�ciently large time delay, so Eqs. (3.11) and (3.12) would be rele-

vant. Also, we recall here that age-dependent predator-prey interactions may cause

the emergence of Allee e�ects, cf. De Roos and Persson 2002, De Roos et al. 2003.

However, one must be very careful in making a priori generalisations based on

the intuition from simple models such as ours. Furthermore, the projection of

single species dynamics to two or more species systems can also be misleading. In

particular, Hastings (1983, 1984) showed that in an age-dependent predator prey

system, delays in prey recruitment are critical for the system's stability; thus, de-

lays in higher trophic levels seem less important than indicated from single species

models. Even so, delays in prey recruitment were not the sole determinant of sta-

bility, but rather the combination with the functional response. Apart from biotic

factors, abiotic factors such as season length, alone, have been shown to induce

delayed density dependence therefore causing population �uctuations (Smith et

al. 2006 ).

Since the focus of this study is on single species models, our e�orts are directed

at intrinsic factors in�uencing population dynamics. Ample evidence is avail-

able on �uctuating insect populations, and suggests that cannibalism is frequently

observed therein. Unlike population cycles with a period of several to many gener-

ations (small mammals, temperate forest insect pests), another type of dynamics

involves �uctuations with a period approximately equal to the animal's generation

or developmental time occurring usually within insect populations (seasonally syn-

chronised life cycles). These cycles are known as generation cycles, and have been

mainly studied using �our beetles (Tribolium) and phycitine moths (Pyralidae).

Intensive study of �our beetles has con�rmed that cannibalism is able to trigger

generation cycles. Namely, in Tribolium populations, egg and pupal cannibalism

by adults occurs, with pupal cannibalism occurring in lower rates (Chapman 1928,

Park 1932, Desharnais 1997 ). Generation cycles in Tribolium populations occur



Chapter 3 Are time delays always destabilising? 79

only in juvenile, not adult-life stages, that is to say that when larvae/adults are

abundant they manifest egg cannibalism, so inhibiting larval-adult recruitment.

Furthermore, an increase in adult abundance leads to lower fecundity due to over-

crowding e�ects. Both these consequences in turn result in a delayed decrease in

the frequency of cannibalism, causing population �uctuations. Similar dynamics

are observed in the Indian meal moth, Plodia interpunctella, in which competitive

and cannibalistic e�ects exerted by large larvae on small larvae and/or eggs, are

the main causes of delayed density dependence (Bjørnstad et al. 1998, Briggs et

al. 2000 ). Intraspeci�c cannibalism seems to drive cyclic dynamics of the Indone-

sian lady beetle, Coccinellidae, which display clear generational cycles (Nakamura

et al. 2004 ).

Clearly, to model cannibalistic behaviour in insect populations in a comprehensive

way, one should formulate a stage-structured model accounting for all developmen-

tal stages and include time delay in the appropriate mechanism (Cushing 1994 ).

Yet delayed density dependent mortality in a simpler model such as Eqs. (3.11)

and (3.12) allow for inclusion of cannibalistic e�ects in principle, albeit indirectly,

and can be used to qualitatively describe the dynamics of one (some) of those

stages, i.e. larval population dynamics. Although, we do not have equations for

other life stages, Eqs. (3.11), (3.12) and (3.5) alone are capable of producing pop-

ulation cycles. Moreover, an increase in time delay in the above models leads to

population oscillations, a key feature of most insect populations.

Delays may occur as a consequence of developmental time and/or interaction be-

tween individuals of di�erent stages (as mentioned above). As most forest insects,

many species of Lepidoptera exhibit cyclic population dynamics. One possible

mechanism is through maternal e�ects, namely, the nutritional environment of the

parental generation signi�cantly in�uences the growth and reproductive potential

of the next generation through environmentally-based maternal e�ects. Numer-

ous studies on the gypsy moth, Lymantria dispar, have con�rmed the existence of

such e�ects, that is the nutritional experience of the parental generation a�ects

the length of the pre-feeding period, development time and pupal weight in the

subsequent generation (Rossiter 1991 ). These traits are thought to be critically

important in insect population dynamics because of their in�uence on natality

and mortality. Moreover, these e�ects take place with a time lag, and are able to

destabilise the population, leading to the occurrence of cyclic behaviour (Ginzburg

and Taneyhill 1994 ). Ginzburg and Taneyhill (1994) developed a time discrete

maternal e�ect system coupled with delayed logistic growth and �tted the results
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to data of six species of forest moths (including gypsy moths). The maternal

model predicts cycle periods very close to observed values; however, an important

factor that has been shown to in�uence gypsy moth populations has been over-

looked � namely, the Allee e�ect (Liebhold and Bascompte 2003, Tobin et al. 2009,

Vercken et al. 2011 ). Thus, an interesting future extension to this work would

be to test multi-annual gypsy moth dynamics with a time continuous maternal

model including a delayed Allee e�ect such as given by Eqs. (3.5), (3.11), (3.12)

and (3.13).

We emphasise that the interplay between time delay and the Allee e�ect can be

subtle and rather counterintuitive. In our study, we revisit the notable destabil-

ising e�ect of time delays, as for a �xed Allee threshold an increase in time delay

leads to oscillatory behaviour, in most models. However, depending on the par-

ticular description of the delayed process, the shape of the bifurcation curves can

change signi�cantly; see Figs. 3.2, 3.6 and 3.7. In all three corresponding models

the same underlying ecological process (i.e. competition) is subject to delay, yet

the results are considerably di�erent. In addition, the possibility of the popula-

tion driven to extinction occurs only in the additive formulation of the Allee e�ect

(Figs. 3.6, 3.7 and 3.8) but not in the multiplicative one (Fig. 3.2). Also, the pat-

tern of population growth can be remarkably di�erent depending on whether the

time delayed cooperation is described by multiplicative or additive formulations of

the model, cf. Figs. 3.4 and 3.5. These results indicate strong dependence on the

choice of functional form (parametrisation), thereby evoking the controversial issue

of model sensitivity (Adamson and Morozov 2012, Fussmann and Blasius 2005 ).

The majority of population �uctuations are described by the generally accepted

specialist predator (or parasitoid) hypothesis, with just a few exceptional cases in-

volving other kinds of trophic interactions (Turchin 2003 ). This of course does not

guarantee nor imply that intrinsic controlling mechanisms are completely absent

in populations. However, to date such inherent hypotheses have not fully provided

theoretically sound and empirically supported population models (due to tenuous

connections to data). We emphasise that our intention was not to develop a com-

prehensive framework or provide a unique solution to population cycles, but rather

to demonstrate and gain informative insight into the consequences of delayed feed-

back mechanisms and their interaction with density dependence through the Allee

e�ect. Time delays are integral parts of ecological systems, and as such may

aid in explaining underlying mechanisms of complex population dynamics such as

population �uctuations. A common standpoint is that in stable (non-oscillating)
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populations these time lags are insu�ciently large to cause �uctuations, therefore

are disregarded. We hereby tentatively propose that even non-�uctuating popu-

lations may be subject to delayed processes that do not alter population stability,

such as positive density dependent mechanisms, i.e. cooperation.



Chapter 4

Power laws, time delays and

population dynamics

4.1 Introduction

Contributing to the controversy surrounding population variability is its inability

to be straightforwardly quanti�ed (Pimm and Redfearn 1988 ). The understanding

of amplitude and frequency patterns of population �uctuations, why some pop-

ulations �uctuate cyclically, and others exhibit a lesser degree of periodicity is

closely related to the contentious issue of population regulation, touched upon in

the previous chapter. The long-standing debate over whether populations are reg-

ulated through internal, biotic mechanisms such as competition, or whether they

are mostly dominated by environmental forcing is very much ongoing, taking on

many other guises (Sugihara 1995 ). Though it is certain that both intrinsic and

extrinsic factors strongly in�uence population dynamics with the prevalence of one

or the other being case speci�c (Steele 1985 ), particular di�culty lies in outlining

the contribution of each (Kaitala and Ranta 1996 ). Ecological time series o�er

some insight into the underlying ecological processes driving population dynamics

(Turchin et al. 1999 ), though are all too often of insu�cient length to suggest a

more general explanation.

A common feature of long-term ecological time series (> 30 years) is the in-

creasing temporal variability of population abundance (Akçakaya et al. 2003 ).

The fact that population abundance does not converge but rather �uctuates has

82
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Figure 4.1: Classi�cation of di�erent types of �coloured� noise in terms of
spectral exponent. The �gure shows basic properties of coloured noise such
as the variance, and gives an overview of models that take into account and
generate such processes. Common characteristics of time series such as spectral
exponent, ν, and Hurst exponent, H, indicate the �colour� of noise. Taken from

Halley and Inchausti 2004.

prompted the proposal of various mechanisms and models to account for this phe-

nomenon including environmental variability (Lawton 1988 ), age-structure (McAr-

dle 1989 ), stochastic delayed dependence (Kaitala and Ranta 1996 ), spatial sub-

division (White et al. 1996 ) and 1/f noise (Halley 1996 ). In general, statistical

properties (e.g. colour) of ecological time series are determined by Fourier analysis,

which results in the relationship between a range of frequencies and their relative

importance to the given data set (power spectrum). The prevalence of long-term,

low frequency trends in time series data results in the �reddening� of the power

spectrum1, estimated by the spectral exponent (see Fig. 4.1). Typically, ecolog-

ical time series display behaviour intermediate between the two mathematically

favoured, contrasting processes: white noise and random walk (see Vasseur and

McCann 2007 ), despite the fact that modelling e�orts show a strong tendency

to overlook the subject of correlation structure altogether (Halley 1996 ). If, on

the other hand, attempts to include correlation structure are made, they are usu-

ally limited to autoregressive processes characterised by exponentially decaying

memory which lead to mathematically tractable models and imply a relatively

short-lived dependence on past events. Emerging and growing evidence suggests

1The terminology �reddening of power spectrum� is an analogy made with the optical spec-
trum, as a surplus of low frequency, long wavelength light makes it appear redder.
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that observed properties of ecological time series can be adequately represented

by coloured noise, in particular the family of 1/f ν noise (0 < ν < 2). All 1/f ν ,

or power law noises as they are sometimes referred to, are de�ned by their power

spectrum which is inversely proportional to the frequency:

S(ω) ∝
1

ων
∼ 1

f ν
, (4.1)

where ω = 2πf is the angular frequency. Power-law noise shares important fea-

tures with ecological time series such as fractality, variance growth and long-term

memory. In addition, the autocorrelation function ψ has a power law dependence

on the time delay:

ψ(τ) ∝
1

τ 1−ν for ν < 1 . (4.2)

De�ning autocorrelation functions for non-stationary members of the 1/f ν family

proves more di�cult due to the logarithmic dependence not only on the time lag,

τ , but also on the (current) time of observation, ∆t (Kasdin 1995 ). Speci�cally,

the memory of pink noise (ν = 1) has been studied in detail, and shows the longest

memory with approximately equal correlation of recent and very distant events to

present ones (Keshner 1982 ).

Recent theoretical studies stress the importance of these �reddened� spectra for

population dynamics and estimation of expected extinction likelihood (Halley and

Kunin 1999, Cuddington and Yodzis 1999, Lawton 1988 ). Growing population

variability along with reddened spectra was found in data of 123 species out of 544

natural populations over a 30 year time span (Inchausti and Halley 2002 ). Simi-

lar independent studies carried out by Ariño and Pimm (1995) and Vasseur and

Yodzis (2004) also corroborate such �ndings. In particular, it has been hypothe-

sised that marine environments and populations tend to be redder than terrestrial

ones (Steele 1985 ). Spatial variability of bird species' abundance has been shown

to exhibit reddened spectra (Storch et al. 2002 ), alongside reddened spectra of

both temporal and spatial dynamics of grasshopper populations in the western US

(Lockwood and Lockwood 1997 ).

Although a comprehensive understanding of the underlying ecological mecha-

nisms responsible for the distinctive population dynamics exhibiting 1/f ν noise

traits is yet to be found, the most common explanation is attributed to extrinsic,

�uctuating environmental conditions (Lawton 1988, Vasseur and McCann 2007,

Ruokalainen et al. 2009 ). In some cases, environmental stochasticity merely su-

perimposes noise on the time series thereby corrupting it, though in others this
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forcing may signi�cantly alter qualitative features of population dynamics, even

completely masking deterministic elements which consequently may lead to an

increased risk of extinction estimation (Lundberg et al. 2000 ). Therefore, the

dominance of low frequency events in �uctuations of the abiotic environment is

merely mirrored in ecological time series. Alternatively, experimental studies of

the spatiotemporal dynamics of isolated, laboratory insect populations indicate the

pervasiveness of low frequencies in time series (Miramontes and Rohani 1998 ), sug-

gesting more intrinsic mechanisms in�uencing population dynamics. Furthermore,

reddened time series of population dynamics have been shown to be independent

of the colour of environmental noise (Petchey 2000 ). These studies seem to sug-

gest that reddened population dynamics may not necessarily need to be explained

through extrinsic in�uences, but rather e�orts should be directed towards some

possible within population mechanisms.

Motivated by the prevalence of time delays in ecology and the clear in�uence of

1/f ν noise-like dynamics, we aim to combine these two concepts into a rather

simple population model. We consider a deterministic single species model with

logistic growth and incorporate a distributed time delay, resulting in an integro-

di�erential equation. We then analyse and compare the system's response to

di�erent delay kernels i.e. rates of decay: the null model of exponentially decaying

kernel versus the power law memory kernel prompted by 1/f noise dynamics.

Despite the abundant literature on time delay population models, to the best of

our knowledge the interplay between logistic growth and a power law memory

kernel still remains unaddressed. In the following section, we introduce some basic

properties of 1/f noise, relevant to ecology, and then in Section 4.3 we revisit proof

that a 1/f noise spectrum implies a power law governed autocorrelation function.

Subsequently, in Section 4.4 we introduce our modelling framework and present

simulation results. A brief summary of results is given in Section 4.5.

4.2 The importance of 1/f noise

Processes shaping population dynamics have been shown to act on di�erent time

scales in a correlated manner (Balkind et al. 2013 ) and as a consequence of this

multi-scaled randomness �reddening� of time series' power spectra appears. Con-

trary to the expectation that both rare and frequent events are of equal importance,

reddened power spectra indicate the longer-lasting in�uence of low frequency ones,
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bringing assumptions of the hitherto default white noise hypothesis into question.

Indeed, the majority of populations show long-term trends in abundance, albeit

for di�erent reasons and in di�erent ways (Pimm and Redfearn 1988 ). Unfortu-

nately, the available population data is often sparse as it is rarely long enough to

sustain sensible spectral analyses, however some conjectures can still be made and

there is good reason to believe 1/f noise can o�er a reasonable description.

Spectral analysis is a commonly used tool in studying population dynamics (Schaf-

fer 1984, Storch et al. 2002, Tamburello et al. 2013 ) and allows for the decom-

position of ecological time series into frequency components. The resulting power

spectra indicate the contribution of frequencies to the variance of the time series

and suggest the form of correlation2. Before progressing further, I introduce the

terminology that will be used hereafter: 1/f noise will refer to 1/f ν noise with the

spectral exponent 0 < ν < 2, near pink noise has spectral exponent 0.5 ≤ ν ≤ 1.5,

pink noise refers to the case in which ν = 1, and white noise corresponds to ν = 0.

The inverse proportionality of spectral density on frequency and autocorrelation

on time delay is a signature trait of 1/f noise, alongside a long memory. On the

contrary, the accepted null model of ecological variability has no memory and is

constituted of an equal partition of frequencies � white noise (ν = 0):

S(f) ∼ 1

f ν
= 1 for ν = 0 , (4.3)

resulting in a �at spectral density (see Fig. 4.2). This even distribution of di�erent

`disturbances' over di�erent timescales would be a reasonable modelling assump-

tion, as it seemingly contains no bias. However, spectral density is only one of

many ways of describing a power spectrum and bias-free depictions of variability

are a matter of perspective (Halley and Inchausti 2004 ). Looking into the relative

signi�cance given to timescales is also of interest, and it reveals the biased na-

ture of white noise. Whilst white noise contains all frequencies it favours shorter

timescales, and on the other side of the spectrum Brown noise assigns more impor-

tance to longer timescales. What sets apart the family of 1/f noise is exactly that

it contains memory of all past events equally on all timescales (Keshner 1982 ).

Translated to population dynamics, population densities are not only a function of

their recent past, but also are in�uenced by long-term history events in an invari-

ant manner, which is typical of many ecological time series (Storch et al. 2002 ).

2An additional measure of a stochastic process is its power spectrum or spectral density,
describing how the `signal' of a time series is distributed over di�erent frequencies. This helps
to identify any periodicities and de�ne correlation structures (Blackman and Tukey 1958 ).
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Figure 4.2: An illustration of power spectra of white, brown and pink
noise. Figure taken from http://www.scholarpedia.org/article/File:

Scholarpedia_fig1.jpg.

Indeed, Ariño and Pimm (1995) explicitly calculated Hurst exponents 3 for time

series of 58 di�erent species and concluded that the mean exponent lies �halfway

between Brownian and white noise�, indicating the ubiquity of 1/f noise in natural

populations.

The longer the time series, the more variation is observed, and this �more time

means more variation� (Lawton 1988 ) concept is another feature that makes 1/f

noise attractive for modelling purposes. Growing variance is another key feature

of 1/f noise, and for an observation time ∆t the dependence is as follows (Halley

and Inchausti 2004 ):

σ2(∆t) ∝ 1−∆tν−1 , ∀ν < 1 (4.4)

σ2(∆t) ∝ ln(∆t) , ν = 1 (4.5)

σ2(∆t) ∝ ∆tν−1 , ∀ν > 1 , (4.6)

with the apparent singularity for ν < 1 not being relevant as we are dealing with

long time series (∆t is large). New empirical evidence of 1/f noise in natural

populations is constantly emerging as the topic gradually receives more attention.

Power law relationships in ecology seem to be more common than �rst anticipated.

3Hurst exponents act as a measure of long-term time series, and relate to the autocorrelation
of time series. The Hurst exponent for Brown noise is H = 0.5, and 0 < H < 0.5 indicates
positive correlation between observations and 0.5 < H < 1 indicates a negative correlation
(Fig. 4.1).

http://www.scholarpedia.org/article/File:Scholarpedia_fig1.jpg
http://www.scholarpedia.org/article/File:Scholarpedia_fig1.jpg
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In the following section we revisit the proof that a power law governed spectral

density implies a power law autocorrelation function.

4.3 Power law spectral density and autocorrela-

tion

The results presented in this section have been known for long and are by no

means novel (Keshner 1982, Watanabe 2005, Szendro et al. 2001 ), however the

motivation to include them was based on the potential to better understand our

proposed mathematical framework (Section 4.4) and justify our model formulation.

In the following we demonstrate that the spectral density corresponding to 1/f

noise results in a power law autocorrelation function with respect to time delay.

Following the discovery of 1/f noise in 1925 (Johnson 1925 ), the widespread

occurrence of processes exhibiting such behaviour called for a generally recognised

physical explanation of the phenomenon. Though mathematical descriptions such

as Fractional Brownian Motion o�er some insight, a well-established theory is still

lacking. One of the proposed methods is described in Watanabe (2005) which we

follow. Under the assumption that the average decay of a �uctuating quantity, X,

follows an exponential relaxation, the autocorrelation function is given as:

ψτ (t) = X
2
e−t/τ , (4.7)

where τ is the relaxation (decay) time. The spectral density, Sτ (f), can then be

found as a Fourier transform of ψτ (t) (Wiener-Khinchine theory):

Sτ (f) = X
2 4τ

1 + (2πfτ)2
= X

2 4τ

1 + (ωτ)2
. (4.8)

The ansatz is that the 1/f spectrum can be generated by the summing of simple

`Lorentzian' like spectra described by Eqs. (4.7) and (4.8), over a wide range of

relaxation times in the interval between τ1 and τ2, given the weighting function

g(τ):

g(τ) = aτ−α . (4.9)

In order to obtain a 1/f spectrum by summation of Lorentzian spectra the distri-

bution of relaxation times (τ 's) should be as in Eq. (4.9) (Hooge and Bobbert 1997 ).



Chapter 4 Power laws, time delays and population dynamics 89

We then normalise the distribution weight:∫ τ2

τ1

aτ−αdτ =
a

1− α
(
τ 1−α

2 − τ 1−α
1

)
= 1 , (4.10)

and to determine the value of constant a, we distinguish between two cases:

α = 1 : a =
1

ln(τ2/τ1)
(4.11)

α 6= 1 : a =
1− α

τ 1−α
2 − τ 1−α

1

. (4.12)

The linear superposition of Lorentzian spectra results in a 1/f spectrum with the

autocorrelation function and spectral density taking the following form:

ψ(t) = X
2
∫ τ2

τ1

g(τ)e−t/τdτ (4.13)

S(f) = X
2
∫ τ2

τ1

g(τ)
4τ

1 + (2πfτ)2
dτ . (4.14)

Then, the power spectral density can be rewritten as:

S(ω) = X
2
∫ τ2

τ1

a

τα
4τ

1 + (ωτ)2
dτ =

4aX
2

ω2−α

∫ ωτ2

ωτ1

(ωτ)1−α

1 + (ωτ)2
dωτ . (4.15)

By letting τ1 → 0 and τ2 →∞, the integral becomes:∫ ∞
0

(ωτ)1−α

1 + (ωτ)2
dωτ . (4.16)

By solving the above integral, the spectral density takes the form:

S(ω) =
4aX

2

ω2−α
π

2
csc

απ

2
= 2π

aX
2

ω2−α csc
απ

2
, (4.17)

or a more simpli�ed version:

S(ω) = Aω−2+α , for 0 < α < 2 and α 6= 1 , (4.18)

which indicates the spectral density being inversely proportional to the angular

frequency ω. The constant A is speci�ed as:

A =
(1− α)X

2

τ 1−α
2 − τ 1−α

1

2π csc
απ

2
. (4.19)



Chapter 4 Power laws, time delays and population dynamics 90

To obtain the autocorrelation function, we di�erentiate Eq. (4.13):

dψ(t)

dt
=

d

dt

{
aX

2
∫ τ2

τ1

τ−αe−t/τdτ

}
= −aX2

∫ τ2

τ1

τ−α−1e−t/τdτ . (4.20)

Following a straightforward change of variables, T = 1/τ , Eq. (4.20) can be written

as:
dψ(t)

dt
= aX

2
∫ 1/τ2

1/τ1

Tα−1e−tTdT. (4.21)

By integrating, we obtain the �nal expression for the autocorrelation function ψ(t),

now containing two relaxation times (delays), τ1 and τ2:

ψ(t) = C −X2
Γ(α)

t1−α

τ 1−α
2 − τ 1−α

1

for 0 < α < 1 , (4.22)

where Γ is the gamma function and C is the integration constant which can be

found by de�ning appropriate initial conditions. A power law dependence on

time delay is also found for the case 1 < α < 2 (see Watanabe (2005) for a full

discussion). It is readily seen that instead of an exponential dependence, the

autocorrelation function now is inversely related to the decay time, τ , following

a power law. This analysis holds for all members of the 1/f noise family, with

the exception of pink noise. For the case of pink noise, corresponding to α = 1,

the autocorrelation function follows a logarithmic law (Keshner 1982, 1979, Hooge

and Bobbert 1997 ):

ψ(t) = X
2 ln

(
τ2
t

)
ln
(
τ2
τ1

) for τ1 < t < τ2 . (4.23)

4.4 Model and results

From the spatiotemporal variability of orchids (Gillman and Dodd 1998 ) to shell-

changing behaviour of hermit crabs (Kitabayashi et al. 2002 ) power laws seem

to be more common than �rst thought. Correspondingly, we formulate a single

species population model with distributed time delay, such that the delay follows

a power law decay. The motivation behind such an assumption lies in the ubiquity

of 1/f noise-like behaviour in natural populations and their power law autocor-

relation functions. We �rst test our null model of exponentially decaying mem-

ory both analytically and numerically, and subsequently formulate an alternative

model consisting of a power law memory kernel. Under the spatial homogeneity



Chapter 4 Power laws, time delays and population dynamics 91

assumption, we consider a population governed by logistic growth subject to a

distributed time delay:

dU

dt
= rU(t)

[
1− 1

K

∫ t

−∞
G(t− s)U(s)ds

]
, (4.24)

whereK is the carrying capacity andG is the memory kernel indicating the amount

of emphasis that should be given to the size of the population at earlier times in

order to determine the present e�ect on population dynamics (Murray 2002 ). In

general, the memory kernel is normalised:∫ ∞
0

G(s)ds = 1 , (4.25)

so that discrete delay is a limiting case when G(s) is the Dirac function, δ(t− τ):∫ ∞
−∞

δ(t− τ − s)U(s)ds = U(t− τ) . (4.26)

Di�erent forms of memory kernels are employed depending on the topic of research,

with exponential kernels prevailing in the literature, due to their mathematical

tractability. As a starting point we choose a fairly simple step kernel to test the

model predictions and then gradually increase complexity:

G(t− s) = a for 0 < t− s < 1

a
otherwise G(t− s) = 0 , (4.27)

where a > 0 acts as the time delay parameter. The units of a should be inversely

proportional to time, therefore a higher value of a should correspond to a smaller

time delay, whilst lower values of a should instigate oscillatory behaviour, with the

upper equilibrium losing stability. The model was solved by �nite-di�erences using

the explicit Euler scheme as a numerical approximation (see Appendix A), and the

integral itself was solved by implementing the trapezium rule. Furthermore, as

an immediate consequence of the normalisation condition, Eq. (4.25), we take the

integration limits to be t−1/a and t. We have chosen a su�ciently small time step

to avoid numerical errors which ensures the accuracy of our results (see Fig. 4.3).

For the population's history a constant function (U0 = 0.5) has been chosen, as

other, more complicated forms did not show qualitative or quantitative e�ects on

solution behaviour or stability. Examples of typical solution behaviour are given

in Fig. 4.4. For a relatively large value of a, the solution shows a monotonous

approach to the system's carrying capacity, and by gradually decreasing a the

solution loses monotonicity, resulting in damped oscillations. For a su�ciently
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Figure 4.3: Impact of changing the time step on solution accuracy for the
constant memory kernel. Value of bifurcation parameter in simulations is a =
0.3. The intrinsic rate of growth and the carrying capacity are as follows: r = 1

and K = 1.

small a the solution loses stability through the Hopf bifurcation, and limit cycles

appear (a = 0.2). A further decrease in a results in an increase in amplitude of the

limit cycle with the solution staying in the vicinity of the extinction equilibrium

for longer.

As a next step we choose the delay kernel to be of exponential form, exhibiting

a rapid decay and short memory. Such a thin-tailed distribution kernel allows

for analytical analysis of the corresponding model. Accordingly, the system is

modelled by:
dU

dt
= rU(t)

[
1− 1

K

∫ t

−∞
ae−a(t−s)U(s)ds

]
. (4.28)

The analytical method for studying such systems is known as the linear chain trick,

and consists of the transformation of a delay di�erential equation into a system of

ODEs, by simply rede�ning the integral:

dU

dt
= rU

(
1− Q

K

)
(4.29)

dQ

dt
= a(U −Q), (4.30)

where Q =
∫ t
−∞ U(s)G(t− s)ds. Following standard linear stability analysis

we conclude that the positive equilibrium (K,K) is always stable for positive a

(Fig. 4.6). This prediction �ts well with our simulation results, as for smaller a we
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Figure 4.4: By decreasing the bifurcation parameter, a, we can clearly distin-
guish between di�erent scenarios (from left to right, top to bottom): damped
oscillations, limit cycle at bifurcation point and limit cycles beyond bifurcation
point (bottom row). Respectively, the values of bifurcation parameter a are 0.22,
0.2, 0.18 and 0.05. The intrinsic rate of growth and the carrying capacity are as

follows: r = 1 and K = 1.

observe damped oscillations, and for an increase in the bifurcation parameter they

disappear (i.e. solution is monotonous). With increasing complexity of the delay

kernel the sensitivity to numerical approximation also increases (see Fig. 4.5), as

does the computational e�ort due to the larger integration domains required.

Based on the signi�cant ecological literature and evidence indicating the ubiquity

of 1/f noise dynamics (see Sections 4.1 and 4.2), we now investigate a population

model in which the signi�cance of past populations decays according to a power

law:

G(t− s) =
1

ap + (t− s)p
for p ≥ 0 . (4.31)

We then normalise the memory kernel, which results in:

dU

dt
= rU

(
1− C

K

∫ t

−∞

U(s)

ap + (t− s)p
ds

)
, (4.32)

where C = pa(p−1)/π csc(π/p). We choose a as the controlling parameter, and

observe the system's response to its variation, where higher values of a correspond
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Figure 4.5: Impact of di�erent integration limits on solution accuracy for the
exponential kernel. The bifurcation parameter is a = 0.6. The intrinsic rate of

growth and the carrying capacity are as follows: r = 1 and K = 1.
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Figure 4.6: Snapshots of temporal behaviour of solution for di�erent values
of bifurcation parameter a for model (4.28). From left to right the bifurcation
parameter a decreases tenfold, i.e. from 0.5 to 0.05. The intrinsic rate of growth
and the carrying capacity are as follows: r = 1 and K = 1. The lower limit of

integration is t− 20/a

to a larger �delay� and therefore should destabilise the system. Results presented

include only numerical simulations, which were done for a range of values of the

degree of kernel. The integration limits were chosen accordingly to ensure neces-

sary accuracy of results and in particular for smaller values of p larger integration

domains were needed (e.g. for p = 2 the integration domain is ∼ 150a). For all

tested values of p ≥ 2, an increase in the bifurcation parameter a leads to the

occurrence of limit cycle behaviour. Interestingly, lower powers (p = 2) are more

robust to the e�ect of time delay, as signi�cantly higher values of a are needed to

destabilise the system, however for p < 2 we could not �nd any bifurcation values.
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Table 4.1: Summary of bifurcation values for di�erent degrees of the memory
kernel. Note that bifurcation values have been checked up to a = 300. Bifurca-

tion values checked for r = 1 and K = 1.

Degree of memory kernel, p Bifurcation value, a
1.5 no bifurcation value
2 81
3 15
4 9
5 7
6 7
7 6
8 6
9 6
10 6
15 6
20 5
30 5
50 5
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Figure 4.7: Temporal behaviour of solution for power law memory kernel.
The simulation parameters are p = 3, a = 13 (left) and a = 17(right). Other

parameters are taken to be r = 1 and K = 1.

Table 4.1 shows the dependence of the bifurcation value on the kernel degree.

Our main interest was on temporal dynamics, but we have also looked into the

spatial dynamics by incorporating di�usive e�ects into the simplest model with a

constant memory kernel, resulting in an integrodi�erential equation:

∂U

∂t
= D

∂2U

∂x2
+ rU

[
1− 1

K

∫ t

t−1/a

aU(s)ds

]
, (4.33)

where D is the di�usion coe�cient. As before, we used �nite-di�erences to solve



Chapter 4 Power laws, time delays and population dynamics 96

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0 50 100 150 200 250 300 350 400 450 500
0

1

2

0 50 100 150 200 250 300 350 400 450 500
0

1

2

0 50 100 150 200 250 300 350 400 450 500
0

1

2

Space, x

P
o

p
u

la
ti

o
n

 d
en

si
ty

, U

Figure 4.8: Spatial propagation of travelling front given at equidistant mo-
ments in time for model (4.33): t = 1, t = 334, t = 667 and t = 999. The

parameters are as follows: a = 0.7, r = 1, K = 1 and L = 100.

the equation, and the trapezium rule to approximate the integral. We choose a

as the controlling parameter, and choose su�ciently small mesh steps (∆t = 0.01,

∆x = 0.5) to ensure the accuracy of the solution. The spatial domain was chosen

to be su�ciently large to avoid the impact of boundaries, and at the boundaries

Neumann �no �ux� conditions were implemented. The initial condition is chosen

as:

U(x, 0) = U0 if |x| ≤ L

2
, otherwise U(x, 0) = 0, (4.34)

where U0 > 0 is the initial population density and L determines the size of the

initially occupied patch (L = 1000). As before, we choose the population's history

to be a constant function equal to the population's initial density, U0 = 0.5.

For a su�ciently large value of a, Fig. 4.8 shows the spatial propagation of the

population front at equidistant moments in time. As the solution is symmetric

with respect to the origin, Figs. 4.8-4.10 show only the right-hand side of the

domain. The population fronts are travelling waves which exhibit nonmonotonous

decaying oscillations at the leading edge. Fig. 4.8 shows a small hump at the edge

of the front which with decreasing a becomes more prominent and for a su�ciently

small value of a regular oscillations appear, forming a wavetrain (Fig. 4.9). The

value of the controlling parameter, a, when the system passes through the Hopf

bifurcation and begins to cycle corresponds to the nonspatial system (a = 0.2).

Regular oscillations are also observed in the temporal dynamics, recorded at half

the numerical spatial domain, of this system for the corresponding parameter set

(Fig. 4.10).
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Figure 4.9: Spatial propagation of travelling front given at equidistant mo-
ments in time for model (4.33): t = 10, t = 673, t = 1336 and t = 1999. The

parameters are as follows: a = 0.1, r = 1, K = 1 and L = 100.
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Figure 4.10: Temporal propagation of travelling front for model (4.33) with
a = 0.1, r = 1, K = 1 and L = 100.
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4.5 Discussion and Concluding remarks

Our intention in this chapter was to combine two concepts that have been gaining

growing attention from the theoretical ecology community: time delay and 1/f

noise-like dynamics. Building upon the questions addressed in the previous chap-

ter, our interest here lies not only in determining the conditions of destabilising

time delay e�ects, but also on ecologically relevant forms of such. Both mathemat-

ically and ecologically a distributed time delay gives a more realistic description

of population dynamics. However, models dominating the literature are mostly

chosen due to their tractability, rather than on the observed natural populations.

Using a single-species context we study, mostly numerically, three di�erent types

of memory kernels and their e�ect on the system's stability. The main focus is

on population �uctuations (temporal dynamics), but we have extended our study

to incorporate some spatial e�ects as well. We investigate the interplay between

logistic growth and distributed time delay, and particularly motivated by the plen-

itude of evidence supporting 1/f noise-like dynamics we combine a key feature, the

power law autocorrelation, with the concept of distributed delay. By comparing

the resulting population dynamics with di�ering rates of decay, we conclude that

depending on the rate of decay of memory kernels time delays are not necessarily

destabilising, as thin tailed kernels such as an exponential one do not generate

population cycles.



Chapter 5

Delay driven chaos in single species

population models

5.1 Introduction

Factors and mechanisms determining the spatial population distribution of eco-

logical species are a major focus of interest in ecology (Fortin and Dale 2005,

Ritchie 2010 ). Often the distribution shows remarkable spatial variability, which

is usually referred to as patchiness (Levin 1994, Rietkerk et al. 2004 ), where areas

or �patches� of high population density are separated from areas where the given

species is either present at a very low density or is absent altogether. A classi-

cal example of such a patchy spatial distribution is given by plankton (Levin and

Segel 1976, Martin 2003 ), although terrestrial species, in particular insects, often

exhibit considerable spatial variability as well (Liebhold et al. 2013 ).

One obvious explanation of this phenomenon is swarming behaviour (Okubo 1986 ).

On a larger spatial scale, an intuitive explanation of the spatial heterogeneity in

species distribution relates it to the variability of the environment, e.g. being

driven by the heterogeneous distribution of resources (Liebhold et al. 1994, Grün-

baum 2012 ). However, in many cases this does not seem to be the case as the

observed population distributions appear to be largely uncorrelated with the en-

vironment (Powell et al. 1975, Sharov et al. 1997 ). The heterogeneous spatial

population distribution can also arise as a result of biotic interactions. In particu-

lar, there is a large body of literature showing, both theoretically and empirically,

that a spatial pattern can be a result of prey-predator or host-parasite interactions

99
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(Hassell et al. 1991, Hastings et al. 1997, Davis et al. 1998, Petrovskii and Mal-

chow 1999, Jankovic and Petrovskii 2013 ), or multi-speci�c competition (Petro-

vskii et al. 2001, Adamson and Morozov 2012, Mimura and Tohma 2014 ). Note

that, in the case of biotic-driven pattern formation, the patterns can be regarded

as self-organised, i.e. they are not related to any external forcing; in particular,

they can arise in a uniform environment.

Formation of a self-organised pattern is often related to instability of the spatially

uniform distribution; a classical example of such instability is given by the Turing

instability (Segel and Jackson 1972, Klausmeier 1999 ). However, a necessary

condition of the Turing instability is the di�ering di�usivity of interacting species;

in order to make the instability practically observable (i.e. to occur in a reasonably

broad range of population dynamics' parameters), the di�usion coe�cients have

to be di�erent by at least an order of magnitude. This large di�erence in the

mobility of a prey and its predator does not often happen, and hence the ecological

importance of the Turing scenario of pattern formation is rather limited (but see

Sherratt 2013 ).

An alternative mechanism is sometimes referred to as biological turbulence1 or

a �wave of chaos� (Petrovskii and Malchow 2001 ) and it appears to be possi-

ble when the dynamics of the interacting species are oscillatory. In the theo-

retical context, this is usually related to the existence of a stable limit cycle,

e.g. see Turchin (2003). The properties of the population's spatial distribution

emerging due to this mechanism were shown to be in agreement with �eld ob-

servations (Medvinsky et al. 2002, Petrovskii et al. 2003, Malchow et al. 2008 ).

However, the capacity of biological turbulence to explain patchiness of ecological

populations is somewhat limited too, as the existence of the limit-cycle popula-

tion oscillations requires interaction of the given species (prey) with its specialist

predator (cf. Rosenzweig 1971, May 1972 ). Specialist predators are relatively rare

in nature and that may explain why the genuine predator-prey cycles are not often

seen2. As far as the predator is a generalist, in a realistic multi-species community

predator-prey cycles are unlikely to occur, as the changes in the density of prey

becomes uncoupled from that of the predator because of the complicated switch-

ing behaviour of the latter (Comins and Hassell 1976, Holt 1983, Van Leeuwen et

1The term �biological turbulence� was suggested to Sergei Petrovskii by Lutz Schimansky-
Geier in a private discussion in 1999.

2The famous hare-lynx cycle (Elton and Nicholson 1942, May 1975 ) is sometimes regarded
as the only available example, although there are di�erent opinions on that (cf. Sherratt and
Smith 2008 ) and the discussion is by no means over.
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al. 2013, Morozov and Petrovskii 2013 ). Heterogeneous population distribution

is therefore a far more general phenomenon than the theoretical mechanisms that

have by far been brought forward as its explanation.

As was demonstrated in previous chapters, another feature of population dynamics

as ubiquitous as species heterogeneity, is time delay. Delayed density dependence

is thought to be one of the main factors causing population �uctuations (Berry-

man and Turchin 1997 ). The most commonly considered causal mechanisms are

resource competition (Hansen et al. 1998 ), cannibalism (Briggs et al. 2000 ), and

maternal e�ects (Ginzburg and Taneyhill 1994 ) where the nutritional environment

of the parental generation can in�uence the growth and reproductive potential of

the next generation. Delays may also occur as a consequence of developmental

time and/or interaction between individuals of di�erent stages (Royama 1981 ).

In mathematical terms, the destabilisation of a positive steady state, both in non-

spatial and spatial systems, usually occurs through the Hopf bifurcation (Green

and Stech 1981, Fowler 1982, Busenberg and Huang 1996, Li et al. 2008, Su et

al. 2009 ) that leads to the limit-cycle oscillatory behaviour (but see Chapter 3 for a

counter-example of the e�ects of time delay and a further discussion of this issue).

In this chapter, we examine the inherent relation between these two phenomena,

i.e. time delays and pattern formation. We are especially interested in the possibil-

ity of the onset of spatiotemporal chaos and, respectively, the formation of irregular

spatial patterns. We mention here that, whilst the dynamics of time-delayed non-

spatial systems are understood relatively well, time-delayed spatial systems pose a

much bigger challenge. Although there is a large body of literature concerned with

time-delayed spatially explicit population dynamics (e.g. see the references above),

the vast majority of it is concerned with either a travelling front or a periodic pat-

tern (Ashwin et al. 2002, Yoshida 1982, Su et al. 2009 ). Meanwhile, in population

systems where limit cycles appear for other reasons (i.e. not related to time de-

lay), travelling waves and periodic patterns are known to be only a part of the

rich spectrum of spatiotemporal dynamics (Petrovskii and Malchow 2000 ) that,

in particular, may exhibit chaotic oscillations (Sherratt et al. 1995, Sherratt 2001,

Petrovskii et al. 2001 ). Correspondingly, the possibility of spatiotemporal pat-

tern formation and chaos in a single species population with time delay is our

main interest here. We �rst consider pattern formation triggered by travelling

population fronts in a heuristic delayed di�usion-reaction equation where the de-

lay is included into the per capita growth, and reveal the onset of spatiotemporal

chaos in the wake of the front. We then consider a somewhat more realistic model
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where the delay is appropriately spatially averaged (Ashwin et al. 2002, Gourley

and Bartuccelli 1995, Gourley and Chaplain 2002, Britton 1990 ), which results in

an integro-di�erential model, and show that it exhibits some qualitatively similar

properties such as, in particular, the onset of chaos.

5.2 Modelling framework and some analytical re-

sults

The generic model describing temporal dynamics of a single species population

was introduced earlier (Chapter 3) and consists of an ordinary di�erential equa-

tion. For many populations the observed biological reality imposes a saturation

level, known as the carrying capacity, which forms a numerical upper bound on

growth. Correspondingly, the simplest form of such, the classic Verhulst-Pearl

logistic equation is frequently used to model self-limiting populations:

dU

dt
= rU

(
1− U

K

)
, (5.1)

where r is the intrinsic rate of growth and K is the carrying capacity. Logistic

growth implies rapid initial growth at low population densities and a nearly expo-

nential decay to the population's carrying capacity due to the negative feedback

through intraspeci�c competition. Admittedly a simple model, such behaviour is

in qualitative agreement with observed dynamics of many populations, especially

under laboratory, resource-limited, conditions. In nature, though, events do not

often occur instantaneously as predicted by the above model. For this reason,

Hutchinson (1948) suggested a more appropriate and biologically sound model

including a time delay accounting for hereditary terms contained in the regulatory

mechanisms controlling growth, such as resource regeneration, maturation and ges-

tation times. From Hutchinson's (1948) seminal paper and thereafter, time delay

models have gained signi�cance and become a much studied topic in mathematical

ecology. The model proposed is a delay di�erential equation:

dU

dt
= rU

(
1− Uτ

K

)
, (5.2)

where τ > 0 is the time delay, and Uτ = U(t−τ). Even though the choice of delayed

mechanism still remains questionable, the above model was used extensively to

model natural populations with reasonable success, see May (1975).
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Therefore, aiming to describe both spatial and temporal population dynamics, the

model results in a delay reaction-di�usion equation:

∂U

∂t
= D

∂2U

∂x2
+ rU

(
1− Uτ

K

)
, (5.3)

whereD is the di�usion coe�cient. In what follows, we present both analytical and

numerical results to investigate the e�ect of time delay in Eq. (5.3). We consider

Eq. (5.3) in the context of biological invasion (Shigesada and Kawasaki 1997 ), so

that the `initial' population distribution U(x, t) for −τ < t < 0 is assumed to be

a function of compact support.

A general standpoint is that the addition of di�usive term will not change the sys-

tem's dynamical structure, cf. Huang 1998. However, below we will show that this

is not necessarily true and that a spatial model can exhibit dynamical regimes that

are not possible in its nonspatial counterpart. Whilst the nonspatial Hutchinson's

model is only capable of exhibiting periodic oscillations, its spatial counterpart

can display chaos. Some of our results will then be extended, using numerical

simulations, to include the corresponding 2D case:

∂U

∂t
= D

(
∂2U

∂x2
+
∂2U

∂y2

)
+ rU

(
1− Uτ

K

)
, (5.4)

where we also demonstrate the onset of chaotic oscillations.

5.2.1 Linear Stability Analysis

It is worth noting that single ordinary di�erential equations, unlike delay dif-

ferential equations (DDEs), cannot exhibit oscillatory, limit cycle behaviour (see

Fig. 5.1). While qualitative features of DDEs for population growth dynamics near

bifurcation points, including analytical solutions, may be found (Fowler 1982 ), the

investigation of quantitative properties is done mostly numerically (Banks 1977 ).

In this section, we �rst revisit some results of the linear stability analysis to obtain

the stability condition on τ . We then further our study by obtaining the loss of

monotonicity condition for the travelling front solution of Eq. (5.3), cf. Ashwin et

al. (2002).

We begin by recalling the spatially homogeneous Hutchinson's equation which will

serve as the baseline model. Stability is examined only for the positive steady state
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Figure 5.1: Snapshots of solution behaviour for the instantaneous logistic
equation (left) and Hutchinson's equation (right), with delay parameter τ=1.7.

Other parameters are r = 1 and K = 1.

U∗ = K, as the extinction steady state, U∗ = 0, is always unstable. We nondi-

mensionalise the equation, thereby decreasing the number of parameters (Murray

2002 ):
dŨ(t̃)

dt̃
= Ũ(t̃)

(
1− Ũ(t̃− τ̃)

)
, (5.5)

where Ũ = U
K
, t̃ = rt and τ̃ = rτ . Suppose ũ is a small perturbation from the

steady state Ũ∗ = 1, such that:

ũ = Ũ − Ũ∗. (5.6)

By linearising, and omitting higher order terms, we obtain the following equation:

dũ(t̃)

dt̃
≈ −ũ(t̃− τ̃), (5.7)

for which solutions must be of exponential form ũ(t̃) = ceλt̃, where c is a constant

and λ are the eigenvalues that, when substituted into Eq. (5.7), leads to the

transcendental characteristic equation:

λ = −e−λτ̃ , (5.8)

so that λ is a function of the (dimensionless) delay τ̃ .

The equilibrium point Ũ∗ = 1 is asymptotically stable if all eigenvalues have

negative real parts. For this reason we set λ = µ + ıω, substitute into Eq. (5.7),
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and separate the real and imaginary parts:

µ = −e−µτ̃ cosωτ̃ , (5.9)

ω = e−µτ̃ sinωτ̃ . (5.10)

Considering two cases, when the eigenvalues are real and complex, we determine

the stability condition on τ̃ . The case of real eigenvalues is trivial and pertur-

bations are damped, thus the steady state is always stable. In the latter case,

if eigenvalues are complex, the stability condition reads µ < 0 therefore implying

ωτ̃ < π/2. The Hopf bifurcation point is found for µ(τ̃) = 0, thus ωτ̃ = π/2. From

Eq. (5.9) the only viable solution is ω = 1, hence τ̃ = π/2. Scaling back to dimen-

sional quantities, the equilibrium U∗ = K is stable if 0 < rτ < π/2, and unstable

otherwise (rτ > π/2). Stability conditions obtained for Hutchinson's equation are

easily extended to the di�usive logistic equation and veri�ed by simulations, which

will be done in the following sections.

5.2.2 Loss of monotonicity

Before the positive steady state loses its stability, another change in the solu-

tion's properties takes place, namely, the loss of monotonicity. Let us rewrite the

Eq. (5.8) for the eigenvalues in the following form:

F (λ; τ̃) = λ+ e−λτ̃ = 0. (5.11)

Obviously, function F has a unique minimum and it is readily seen that, when τ̃

is su�ciently small, this minimum lies in the third quarter of the (λ, F ) plane, so

that Eq. (5.11) has two real negative roots. The positive steady state is stable and

the solution approaches it monotonously, e.g. as can be seen from the left panel of

Fig. 5.1. When τ̃ increases, the minimum is pushed upwards; correspondingly, the

two roots move towards each other so that �nally, for some τ̃ = τ̃∗, they merge and

`disappear', which actually means that they become complex. For τ̃ = τ̃h > τ̃∗,

the Hopf bifurcation takes place, but for the values of τ̃ just slightly larger than τ̃∗
the real part of the eigenvalues is still negative. It means that the positive steady

state is still stable but the solution approaches it in an oscillatory manner.



Chapter 5 Delay driven chaos 106

More quantitatively, in order to obtain the value of τ̃∗, one needs to consider

Eq. (5.11) together with the tangency condition:

∂F

∂λ
= 1− τe−λτ̃ = 0. (5.12)

Having solved the system (5.11�5.12), one readily obtains that τ̃∗ = 1/e (Kakutani

and Marcus 1958, Yoshida 1982 ). In original dimensional parameters, it means

that solutions of Hutchinson's equation start oscillating for rτ > 1/e.

We now consider how the loss of monotonicity condition can be applied to Eq. (5.3).

A compact initial population distribution is known to converge to two travelling

fronts propagating in the opposite directions with the same speed c, i.e. U(x, t)→
Ũ(x− ct) ∪ Ũ(x + ct). Consider, for instance, the front propagating to the right,

U(x, t) = Ũ(ξ) where ξ = x − ct, which is the solution of the following equation

(in dimensionless variables):

d2Ũ(ξ)

dξ2
+ c

dŨ(ξ)

dξ
+ Ũ(ξ)(1− Ũ(ξ + cτ)) = 0, (5.13)

corresponding to the conditions at in�nity as Ũ(ξ)→ 0 for ξ →∞ and Ũ(ξ)→ 1

for ξ → −∞.

If we linearise around the steady state Ũ∗ = 1, by setting Ũ = 1 + ṽ, where ṽ is a

small perturbation, it gives a second order di�erential equation:

ṽξξ + cṽξ − ṽ(ξ + cτ) = 0. (5.14)

As before, we try a solution of exponential form ṽ = eλξ and obtain the character-

istic equation:

F (λ; τ) = λ2 + cλ− eλcτ . (5.15)

When the delay is zero, the eigenvalue equation has two real roots of opposite

sign. By increasing the time delay the positive root branches into two roots,

which get closer to each other and eventually coalesce, then turn complex. Loss

of monotonicity is associated with the loss of real positive eigenvalues and this

coalescence which occurs at a critical value, τcr; see Fig. 5.2. We denote the

double root itself, λ∗, and it must satisfy both:

F (λ∗; τcr) = 0;
∂F

∂λ
(λ∗; τcr) = 0. (5.16)
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Figure 5.2: Plot of F (λ; τ) for di�erent values of τ . The critical value, when
loss of monotonicity occurs, is calculated as τcr ≈ 0.5608 for the minimum wave

speed c = 2.

Following some standard calculations, one can �nd the loss of monotonicity con-

dition as the following implicit expression (Ashwin et al. 2002 ):

2

cτ
+

√
4

c2τ 2
+ c2 = cτ exp

(
1 +

√
1 +

c4τ 2

4
− c2τ

2

)
. (5.17)

For any given value of the front speed c, Eq. (5.17) determines the critical value of

τ . We now notice that the travelling wave equation (5.13) linearised in the vicinity

of the extinction state Ũ∗ = 0, i.e. at the leading edge of the front, coincides with

the linearised Fisher equation, and hence the same argument can be used resulting

in the condition c ≥ 2. Indeed, compact initial conditions are known to converge

to a travelling front propagating with the minimum speed c = 2 (e.g. Ashwin et

al. 2002 ). In this case, eq. (5.17) takes a somewhat simpler form:

1

τ
+

√
1

τ 2
+ 4 = 2τe1+

√
1+4τ2−2τ . (5.18)

Equation (5.18) is solved numerically resulting in τcr ≈ 0.5608.
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5.3 Simulations

Apart from the results discussed above, it is di�cult to establish other solution

properties analytically, so we have to resort to simulations. We begin with the 1D

di�usive logistic equation, Eq. 5.3. We write it in dimensionless variables:

∂U

∂t
=
∂2U

∂x2
+ U (1− Uτ ) , (5.19)

and solve it numerically by �nite-di�erences for di�erent values of the time delay

τ , hence considering τ as the controlling parameter. The mesh steps, ∆t and ∆x,

were taken to be su�ciently small (∆t = 0.1 and ∆ = 0.5), ensuring accuracy

and reliability of our results. The spatial domain is chosen to be su�ciently large

in order to minimize the impact of boundaries. At the domain boundaries, the

Neumann type �no �ux� conditions are used.

The initial condition is used in the following form:

U(x, 0) = U0 if |x| ≤ L

2
, otherwise U(x, 0) = 0, (5.20)

where U0 > 0 is the initial population density and L determines the size of the

initially occupied patch. Since Eq. (5.19) involves a time delay, we supplement

the initial condition with the population's �history�, i.e. the data on U(x, t) for

−τ < t < 0. For this purpose we choose a constant function equal to the initial

population density:

U(x, t0) = U0 ∀ t ∈ (−τ, 0) . (5.21)

For a su�ciently small time delay (τcr < τ < π/2), Fig. 5.3 shows snapshots of the

spatial propagation of population fronts at equidistant moments in time. (Note

that, since the mathematical problem is symmetric with respect to the origin, in

Figs. 5.3�5.4 and 5.6�5.8 only the right-hand half of the domain is shown.) The

fronts are travelling wave solutions exhibiting nonmonotonous, decaying oscilla-

tions at the leading edge. These damped oscillations grow in amplitude with in-

creasing τ and can become prominent but decay promptly behind the front. An in-

crease in τ alters the solution's behaviour signi�cantly, as the system surpasses the

Hopf bifurcation and apparent spatially irregular oscillations emerge in the wake

(Fig. 5.4). Connecting the two dynamically di�ering scenarios, chaos in the wake

and damped oscillations at its leading edge, a quasi-homogeneous plateau appears.

This plateau is nontrivial as it corresponds to the system's unstable equilibrium
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point, U∗ = K, acting as a dynamical stabilisator. Qualitatively similar dynamics

were observed in systems of coupled instantaneous reaction-di�usion equations,

such as prey-predator models (Sherratt et al. 1995, Petrovskii and Malchow 2000,

Malchow and Petrovskii 2002 ). Similarly, the length of the plateau increases with

simulation time, see Fig. 5.4. The dynamical stabilisation is a spatiotemporal fea-

ture that cannot be linked to dynamics in the corresponding nonspatial system.

As far as we are aware, this type of dynamics is usually attributed to multi-species

models, and is a novel concept in the context of single species population mod-

els. We would also like to emphasise here that the patterns emerging are purely

self-organised and do not depend on any �environmental� heterogeneity, as the

parameters are space-independent. Furthermore, the spatiotemporal patterns are

self-sustained as following the onset of apparent chaos, no qualitative changes in

the system's dynamics occur. Namely, for longer simulation time, as the fronts

propagate, the aperiodic behaviour slowly occupies the whole numerical domain;

see the bottom of Fig. 5.6. We have also investigated the temporal dynamics of

the system, see Fig. 5.5. The population density pro�le was recorded at half of the

spatial numerical domain and clearly suggests irregular oscillations. This result

contradicts the temporally periodic oscillations observed by Ashwin et al. (2002)

for the equivalent system.
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Figure 5.3: Snapshots of spatial propagation of population front at equidistant
moments in time: t = 1, t = 667, t = 1333 and t = 1999. With the time delay
parameter set to τ = 1.5, we observe damped oscillations at the leading edge, and
the monotonous approach to the stable equilibrium in the wake of the population

front. Other parameters are r = 1, K = 1, U0 = 0.5 and L = 100.
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Figure 5.4: Snapshots of spatial propagation of population front at equidistant
moments in time: t = 1, t = 1001, t = 2000 and t = 2999. The time delay
parameter is set to τ = 1.7, ensuring instability of stable steady state. Damped
oscillations are observed at the leading edge, with apparent chaotic behaviour
developing in the wake of the front. Connecting the two dynamical scenarios is

the �steady state� plateau.
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Figure 5.5: Snapshots of temporal propagation of population front. Prominent
irregular oscillatory behaviour is observed. Time delay parameter is set to 1.7.
Other parameters are r = 1, K = 1, U0 = 0.5 and L = 200. The recording
was taken at half the spatial numerical domain after chaotic oscillations have

occupied the whole domain.



Chapter 5 Delay driven chaos 111

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

Space, x

P
o
p
u
la

ti
o
n
 d

e
n
s
it
y
, 
U

(x
,t
)

Figure 5.6: Snapshots of spatial propagation of population front at equidistant
moments in time: t = 2, t = 1001, t = 2000 and t = 2999. Time delay parameter
is set to 1.94 and other parameters are r = 1, K = 1, U0 = 0.5 and L = 200.
Apparent chaotic behaviour develops in the wake of the front, preceded by the

�dynamical stabilisation� of the unstable equilibrium.

By even further increasing the controlling parameter, τ , one would expect more

prominent oscillatory behaviour, as was observed (Figs. 5.6 and 5.7). Interestingly,

for a su�ciently large τ , instead of the quasi-homogeneous distribution, a wave-

train of periodic oscillations is formed behind the propagating population front.

Our simulations indicate that these periodic oscillations appear abruptly without

any gradual transition: a slight di�erence in τ results in a completely di�erent

pattern, cf. Figs. 5.6 and 5.7. This seems to suggest that the sudden change in

dynamics should not be attributed to the Hopf bifurcation. We mention that a

further increase in τ (not shown here for the sake of brevity) does not lead to any

qualitative changes; in fact, even the amplitude of the periodic oscillations shows

almost no change.

To verify the irregular spatiotemporal patterns are in fact chaotic, we tested the

sensitivity of solutions to initial conditions. Fig. 5.8 shows spatial propagation of

two population fronts with slightly di�erent initial conditions. Indeed, as simula-

tion time is increased, small perturbations grow and induce large scale di�erences

between the fronts, which in turn leads to the conclusion that the behaviour is in

fact chaotic.

Chaotic behaviour is also apparent in the phase plane (Fig. 5.9) where the axes
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Figure 5.7: Snapshots of spatial propagation of population front at equidistant
moments in time: t = 2, t = 1001, t = 2000 and t = 2999. Time delay param-
eter is set to 1.95 and other parameters are kept as above. Prominent chaotic
behaviour develops in the wake of the front and is preceded by a wavetrain.
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Figure 5.8: Spatial propagation of population fronts with di�erent initial con-
ditions. The time delay parameter is chosen to be 1.7 in simulations, whilst
the unperturbed (original) initial condition is taken to be U0 = 0.5 and the

perturbed condition is set as U0 = 0.502.
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show population densities at the same position in space but at di�erent time mo-

ments, hence being separated by a certain time lag. The trajectories are intricate

and indicate quite complex behaviour of solutions. Numerical simulations suggest

a cascading sequence of bifurcating solutions which become chaotic. Note that, by

decreasing the time lag, the trajectory in the phase plane eventually shrinks to the

bisector line. Correspondingly, the oscillations in the population density become

highly correlated; however, behaviour still remains chaotic.
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Figure 5.9: Phase plane of Eq. (5.19) where axes show population densities
at the same location in space but at di�erent moments, i.e. separated by a time
lag. By decreasing the time lag between solutions a higher correlation is observed
(from top to bottom, left to right). The corresponding values of κ are 1/4, 1/10,

1/16 and 1/35 with τ = 1.8.

We have also investigated such spatiotemporal pattern formation in the 2D case,

(Fig. 5.10). Since the system is symmetric with regards to re�ection (x→ −x and

y → −y), simulation results are shown only in the �rst quadrant. As can be seen,

the system mirrors the dynamics of the corresponding 1D model. Namely, for a

signi�cantly large τ , the travelling population front exhibits decaying oscillations

at the front. Damped oscillations are followed by a plateau emerging due to the
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dynamical stabilisation of the unstable equilibrium. For larger simulation time

irregular spatiotemporal patterns emerge in the wake of the front. These chaotic

oscillations develop gradually and eventually spread throughout the numerical

domain. Patchiness in the wake is an inherent property of the delayed system and

is induced by a su�ciently large time delay. As before, the patterns are triggered

by the population fronts themselves, i.e. are self-organised and self-sustained.

Figure 5.10: Snapshots of spatial propagation of population front in two di-
mensions. Snapshots are given for simulation times: t = 280, t = 600, t = 940
and t = 1280. The time delay is τ = 1.9 and other parameters are ∆t = 0.1,

∆x = ∆y = 1, K = 1, r = 1, U0 = 0.5.

It has recently been recognised (Britton 1990, Gourley and Chaplain 2002 ) that

the inclusion of di�usion into delay equations such as Eq. (5.19) is not biologically

relevant. In particular, the underlying assumption of di�usion is that individuals

freely and randomly move around, without any preferred direction. Though, there

is a higher probability of individuals choosing nearby positions compared to further

away ones, and to account for this phenomenon we introduce a spatial convolution
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(Gourley and Chaplain 2002, Ashwin et al. 2002, Gourley and Bartuccelli 1995 ):

f(x, t) =
1√
4πt

e−
x2

4t δ(t− τ), (5.22)

which when substituted into eq. 5.19 results in:

∂U

∂t
= D

∂2U

∂x2
+ rU

(
1− 1

K

∫ ∞
−∞

1√
4πτ

e
−(x−y)2

4τ U(y, t− τ)dy

)
(5.23)

for the 1D case. The chosen kernel is normally distributed with a dependence

on time delay. Our model now allows for the spatial drift of individuals and is

considered ecologically more viable. The additional integral was approximated by

the trapezium rule, and numerical results are presented in Figs. 5.11�5.16. The

qualitative dynamics have not been altered by this addition, and still include the

emergence of spatiotemporal chaos for signi�cantly large τ , see Figs. 5.12 and

5.13. As before, at the leading edge of the front we observe damped oscillations,

which are followed for a �small� value of time delay, τ , by periodic oscillations in

the wake, see Fig. 5.11. An increase in τ replaces these periodic oscillations with

quite irregular behaviour, both spatially and temporally, and for longer simula-

tion time this apparent spatiotemporal chaos slowly occupies the whole numerical

domain (Fig. 5.13). We have tested the sensitivity to initial conditions for slight

perturbations and concluded that the irregular oscillations in the wake are in

fact chaos, as a small di�erence in initial conditions gradually grows and induces

a large di�erence between observed population fronts. Temporal dynamics of the

system have also been investigated and con�rm irregular oscillatory behaviour (see

Fig. 5.14). Furthermore, we have compared the spatial dynamics for a larger time

delay, τ = 2.0, with its corresponding phase plane (population densities recorded

at same spatial location, separated by a time lag equal to the delay), which con-

�rms our hypothesis of spatiotemporal chaotic dynamics (Fig. 5.16). For a higher

value of τ , the wavetrain preceding spatiotemporal chaos in the wake, emerges

(Fig. 5.17). Again, all spatiotemporal patterns are completely self-organised and

self-sustained, and arise as a consequence of the interplay between delay, spatial

averaging and local interactions.
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Figure 5.11: Snapshots of spatial propagation of population front with spatial
averaging taken at equidistant moments in time: t = 667, t = 1333 and t = 1999.
The time delay parameter is chosen to be 1.7, and other parameters are r = 1,

K = 1, L = 100.

Figure 5.12: Snapshots of spatial propagation of population front with spatial
averaging taken at equidistant moments in time: t = 2665, t = 3331 and t =
3997. The time delay parameter is chosen to be 1.95, and other parameters are

r = 1, K = 1, L = 100.
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Figure 5.13: Snapshots of spatial propagation of population front with spatial
averaging for longer simulation time. The time delay parameter is chosen to be

1.95.

Figure 5.14: Temporal dynamics of population front with spatial averaging.
The time delay parameter is chosen to be 1.95.
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Figure 5.15: Sensitivity to the initial conditions: spatial propagation of popu-
lation fronts with di�erent initial conditions. The unperturbed initial condition

is taken as U0 = 0.5 and the perturbed one is U0 = 0.505.
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Figure 5.16: Spatial propagation of population front for τ = 2.0 (left) and
corresponding phase plane (right) whereby the population densities are recorded

at the same spatial position but at di�erent time moments.
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Figure 5.17: Spatial propagation of population front for τ = 3. The wavetrain
preceding spatiotemporal chaos in the wake emerges.

5.4 Discussion and Concluding remarks

The aim of this study is to investigate the interplay between time delay and lo-

gistic growth. For this purpose, we use the delayed di�usive logistic model. We

show that travelling population fronts are capable of generating rich dynamics,

resulting in an array of di�erent spatiotemporal patterns. Using standard lin-

earisation techniques, we revisit known analytical results and obtain the local

stability condition of the upper steady state U∗ = K, and loss of monotonicity

condition for solutions. Our results are veri�ed through numerical simulations,

and extended to the 2D case as well. The destabilising e�ect of time delays is

not new, however the resulting spatiotemporal patterns can be nontrivial. As the

time delay, τ , increases from zero, the population front loses monotonicity through

the appearance of a single hump which evolves into damped oscillations. These

oscillations increase in amplitude with increasing τ , though decay promptly as

the upper equilibrium U∗ = K is still stable. For a su�ciently large τ , irregular

oscillations in the wake of the front appear. These spatiotemporal patterns are

sometimes referred to as �biological turbulence� (Malchow et al. 2008 ) and are self-

organised, thus are an inherent property of the time delayed system. The observed

dynamics are self-sustained, as following the onset of chaos, no further qualitative

changes appear. Connecting the nonmonotonous damped oscillations at the lead-

ing edge and spatiotemporal patterns in the wake for a particular parameter set, is
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the emerging quasi-homogeneous distribution of species. Peculiarly, this plateau

coincides with the otherwise unstable equilibrium, and is abruptly displaced by

periodic oscillations for a slight change in parameters. Qualitatively similar dy-

namics were observed in various instantaneous coupled reaction-di�usion systems,

as a consequence of trophic interactions (Malchow and Petrovskii 2002 ). Here,

these complex dynamics arise due to the delayed density dependent controlling

mechanism.

Whether in nature we can really observe such spatiotemporal dynamics is quite

a long standing, disputable and largely open question (Turchin and Taylor 1992,

Hassell et al. 1976 ). Despite the abundant theoretical literature, studies on self-

organised pattern formation in real ecological communities are limited. There

are numerous mechanisms underlying the spatial distribution of species, however

the most common ones include environmental heterogeneity (Kareiva et al. 1990,

Klausmeier 1999 ), trophic interactions (Bjørnstad et al. 2002 ), intrinsic mecha-

nisms (such as delayed density dependence), and various other biotic and abiotic

factors (Ranta et al. 1995 ). Indeed, such spatial patterns are most likely a con-

sequence of the synergetic e�ect of various mechanisms, rather than a single one

(Rietkerk and van de Koppel 2007 ). Turchin and Taylor (1992) examined 36 time

series of insect and vertebrate populations concluding that the complete spec-

trum of dynamical behaviour as observed in mathematical models can be found

in natural populations, ranging from monotonous and nonmonotonous stability to

chaos. In the quest of revealing irregular spatial distributions the most intuitive

starting point would be amongst cyclic populations, as they tend to be regulated

by highly nonlinear interactions (Bjørnstad et al. 2002 ). Populations of octopus,

Joubini Robson, despite being territorial animals (meaning they are more likely

to be evenly distributed) show clumped, patchy distributions. Amongst many

factors in�uencing this irregular spatial pattern formation, the presence of empty

molluscan shells is thought to be the most prominent factor a�ecting distribution

(Mather 1982 ). Habitat features are also suggested to heavily in�uence the dis-

tribution of bottlenose dolphins (Davis et al. 2002, Baumgartner 1997 ), however

newer studies relate observed patterns to foraging (Hastie et al. 2004 ). Self-

organised patterns are noted in beds of blue mussel populations, Mytilus edulis,

on intertidal �ats with signi�cant variability in mussel density observed on larger

scales of meters, but with no apparent within-cluster di�erence. It is suggested

that the interaction between individual mussels is the only underlying mechanism

of such pattern formation (van de Koppel et al. 2008, Gascoigne et al. 2005 ).
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Self-organised spatial and temporal chaotic patterns emerge in the wake of the

front for a su�ciently large time delay in both our models. In the di�usive logistic

model this apparent chaos is preceded by a quasi-homogeneous species distribution,

due to the �dynamical stabilisation� of the unstable equilibrium. A slight change

in parameters replaces this �homogeneous� distribution with periodic oscillations.

The inclusion of spatial averaging as a more realistic biological concept does not

alter the observed succession of spatiotemporal dynamics. Although the concept

of spatiotemporal patterns in the wake of fronts is not new in an ecological con-

text (Petrovskii and Malchow 2000, Malchow and Petrovskii 2002, Sherratt 1994,

Sherratt et al. 1995 ), it has usually been observed in multi-species models. How-

ever, we have demonstrated here that such patterns can arise in a single species

population model.



Chapter 6

Conclusions

Both public and academic recognition of biological invasions and problems associ-

ated with invasive species have grown substantially in recent years, mostly due to

the detrimental e�ects of non-native species. Now posing a serious threat to bio-

diversity and resulting in vast economic losses, the call for a more integrated and

interdisciplinary approach is needed to predict and control biological invasions.

Indeed, mathematical modelling has proven to be a powerful research tool in the-

oretical ecology, as the biological factors underpinning the dynamics of invasive

species are often di�cult to observe, quantify and manipulate in natural settings.

Though the approaches to model building can be very di�erent, the great variety of

models have considerably furthered our understanding of processes underlying bi-

ological invasions. However, despite the ever-enlarging empirical and experimental

data, the interface between theory and observation still remains weak.

Understanding the spatiotemporal dynamics of populations is one of the main

pursuits in modelling biological invasions, and in this thesis our main motivation

was to examine both spatial and temporal pattern formation in ecological systems.

The results of this dissertation have been twofold: from gaining insight into the

underlying regulatory mechanisms and modelling the spatial spread of gypsy moth

in the US, to identifying the e�ects of time delays on both spatial and temporal

dynamics in single species populations.

In Part I (Chapter 2) we documented a case study of gypsy moth, Lymantria

dispar, invasion in the US. A distinct feature of gypsy moth spread is its hetero-

geneous, patchy spatial distribution. With the possible impact of environmental

forcing excluded, this phenomenon is usually attributed to the inadvertent trans-

port of egg masses to new locations, in which they develop into new gypsy moth

122



The road behind us and the road ahead 123

colonies. However, this theory disagrees with the existence of the strong Allee

e�ect, known to a�ect gypsy moth populations, which turns the successful es-

tablishment of new colonies into a rare event, driving small populations extinct.

Therefore, we propose an alternative hypothesis to demonstrate that the pattern of

gypsy moth spread can be explained by the interplay between two natural factors:

wind dispersal and a viral infection (or predation). Depending on the density of

gypsy moth populations, the dynamics are strongly a�ected by either predation

or a naturally occurring viral infection (NPV); Section 2.5. Correspondingly, us-

ing a reaction-di�usion framework, we formulate a predator-prey and susceptible-

infected model and �nd that within a certain parameter range, both models exhibit

spatial patterns qualitatively similar to what is observed in natural gypsy moth

populations. Following an extensive literature search, we aim to identify a biolog-

ically relevant parameter range, and using the di�usive SI model we were able to

estimate the spread rate of gypsy moth populations which is comparable to histor-

ical data. Our intention was not to develop a comprehensive model of gypsy moth

population dynamics, but rather to illustrate that the spatial patchiness can be

alternatively explained. Forthcoming work should include a combination of disper-

sal modes, both wind and human-assisted dispersal, alongside other speci�cs such

as weather conditions a�ecting virus dynamics, though parametrisation of such

models may prove troublesome. Our interpretation of the SI model entails im-

plicit consideration of virus particles, however another interesting extension would

be to explicitly model all three stages: healthy susceptible larvae, infected larvae

and virus particles, and the interactions between them. One of the underlying as-

sumptions of the SI model is that transmission of disease occurs instantaneously,

which in many cases, including gypsy moth, is not true. Ultimately, we would also

like to investigate the e�ect of this time delay on gypsy moth population dynamics

as a part of future research.

Understanding the amplitude and frequency of population �uctuations and fac-

tors underlying such dynamics are of equal interest and importance to the study

of biological invasions as are the corresponding spatial patterns. Populations of

many species tend to �uctuate nearly periodically over time and both theoretical

and empirical studies agree that delayed density dependence instigates cyclic be-

haviour. The underlying ecological processes through which this occurs are often

di�cult to determine and are species-dependent, thus a more general explanation

is still lacking. Nonetheless, time delays are integral parts of ecology and as such

should be included into modelling e�orts. Part II of this dissertation provides a
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study of the e�ects of di�erent forms of time delays and time delayed models on

single species population dynamics.

In particular, Chapter 3 shows that contrary to the generally accepted idea of

time delays being potent sources of instability, this is not always the case. By

using two di�erent mathematical formulations of the Allee e�ect, we analyse the

role of time delays in the dominant ecological feedback mechanisms � coopera-

tion and competition. Interestingly, depending on the chosen delayed mechanism

even large time delays may not necessarily destabilise the population's dynam-

ics. A more dominant e�ect on population dynamics was observed in controlling,

negative feedback mechanisms in which su�ciently large time delays always led

to limit cycle behaviour. We also show that in the case of delayed cooperation,

time delays are not destabilising, but may lead to the self-organised formation

of quasi-stationary states. Even though time delays in positive feedback mecha-

nisms do not instigate population cycles, they increase the time needed for the

population to converge to its equilibrium (Figs. 3.4 and 3.5) which is observed

in natural cooperative breeding populations. Consequently, we suggest that even

`stable' populations are subject to delayed processes which should be accounted

for in modelling e�orts. However, in making a priori generalisations based on the

intuition from simple models such as ours, one must be very careful. The projec-

tion of single species dynamics to two or more species systems can be misleading.

In this case, a more detailed investigation of the interaction between time delay

and di�erent functional responses may be needed, and will also be part of future

work, especially in making the connection with gypsy moth population dynamics.

Furthering the concept of time delayed dynamics, in Chapter 4 we study a single

species population model with logistic growth and distributed delay resulting in an

integrodi�erential model. With ecological time series of many populations showing

�reddened� power spectra and indicating the prevalence of 1/f ν noise dynamics, we

examine the e�ect of di�erent memory kernels on population dynamics, in particu-

lar the e�ect of a power-law kernel. We compare the resulting temporal dynamics

of a constant, exponentially decaying and power-law memory kernel, concluding

that descriptions with longer memory (fat-tailed kernels with a slower decay rate)

can be destabilised by su�ciently large time delays. Additionally, spatiotemporal

dynamics of the model with constant memory kernel also suggest periodicity for a

su�ciently small time delay. A more comprehensive investigation of spatiotempo-

ral dynamics is required for all other models to determine whether the dynamics

remain periodic or if there is a possibility of the onset of spatiotemporal chaos. Due
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to the increased computational e�ort needed for this further research, we would

need to optimise our numerical approximation of models e.g. through the use of

Fourier transforms. An outstanding question then would be the applicability of

such models to real ecological populations and their corresponding dynamics.

It is well known that the propagation of travelling population fronts in multi-

species models is capable of generating rich dynamics and an array of di�erent

spatiotemporal patterns. However, can the interplay between time delay and dif-

fusion do the same in a single species model? In Chapter 5 we revisit the di�usive

logistic type delayed equation and investigate the possibility of spatiotemporal

pattern formation and chaos. For a relatively small time delay, the model ex-

hibits dampening oscillations at the leading edge and a monotonous convergence

to the stable equilibrium, however an increase in time delay alters the solution's

behaviour signi�cantly. As the system surpasses the Hopf bifurcation, the onset of

spatiotemporal chaos is evident in the wake of the front, which is connected to the

damped oscillations at the leading edge through either dynamical stabilisation of

the unstable equilibrium or an abruptly appearing wavetrain. Including a spatially

homogeneous time delay into a model with di�usion has been proven not to be

self-consistent, and for that reason we introduce the concept of spatial averaging.

As a consequence of including spatial averaging there was no qualitative e�ect on

population dynamics. For a su�ciently large time delay, the onset of spatiotempo-

ral chaos in the wake of the front is observed along with either a plateau or regular

oscillations preceding it. Other studies on spatially explicit time delayed models

have mainly been concerned with either travelling fronts or periodic patterns, and

thus the onset of spatiotemporal chaos in the wake, to the best of our knowledge is

a novel feature in both our models, but also in the context of single species popula-

tion models. Finally, establishing the link between the obtained theoretical results

and observed ecological populations is also a potential future research topic. The

debate on regular vs. irregular spatiotemporal pattern formation in nature is very

much ongoing and the theoretical results in this study are a stepping stone to a

better understanding of potential underlying mechanisms.
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A comment on numerical methods:

�nite di�erences

For a function u which has single-valued, �nite and continuous derivatives with

respect to the time coordinate t, we can use a Taylor expansion to approximate

the following:

u(t+ ∆t) = u(t) + ∆tu′(t) +
1

2
(∆t)2u′′(t) +

1

6
(∆t)3u′′′(t) + ... (A.1)

u(t−∆t) = u(t)−∆tu′(t) +
1

2
(∆t)2u′′(t)− 1

6
(∆t)3u′′′(t) + ... , (A.2)

where ∆t is an increment of the variable t. By simply re-arranging the above

expansions and neglecting higher order terms, we are able to obtain an approxi-

mation for the second derivative of u:

u′′(t) ' 1

(∆t)2
(u(t+ ∆t)− 2u(t) + u(t−∆t)) . (A.3)

Similarly, subtraction of eqs. A.1 and A.2 leads to the expression for the �rst

derivative:

u′(t) ' 1

2∆t
(u(t+ ∆t)− u(t−∆t)) , (A.4)

that has an error order of (∆t)2, and is known as the central di�erence approxi-

mation. Throughout this thesis, the preferred method was the forward di�erence

approximation given by:

u′(t) ' 1

∆t
(u(t+ ∆t)− u(t)) . (A.5)
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However, another approximation method involves the use of backward di�erences:

u′(t) ' 1

∆t
(u(t)− u(t−∆t)) . (A.6)

For both forward and backward di�erences the leading errors are both O(∆t).

Let u be a function of two independent variables x and t, satisfying the parabolic

di�usion equation:

ut = Duxx for t > 0, 0 < x < L (A.7)

u(0, t) = u(L, t) = 0 ∀t ∈ [0, Tf ] (A.8)

u(x, 0) = u0(x) ∀x ∈ [0, L] , (A.9)

where D is the di�usion coe�cient. We discretise both the spatial and temporal

domain by constructing a spatial grid with Nx + 1 equally spaced mesh points

with ∆x = L
Nx

and one in the time-direction with Nt + 1 equally distributed mesh

points ∆t =
Tf
Nt

with x = i∆x and t = j∆t, where i and j are integers. Then, by

applying forward di�erences, we obtain:

ut ≈
u(x, t+ ∆t)− u(x, t)

∆t
(A.10)

uxx ≈
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

(∆x)2
, (A.11)

and by substituting into the di�usion equation:

∂u(x, t)

∂t
−D∂

2u(x, t)

∂x2
≈ u(xi, tj+1)− u(xi, tj)

∆t
−Du(xi−1, tj)− 2u(xi, tj) + u(xi+1, yj)

(∆x)2
= 0 .

(A.12)

The positive integers i and j take values i = 1, 2, ...Nx and j = 0, 1, ...Nt. To sim-

plify the notation u(xi, tj) will be written as ui,j. Therefore, the above expression

may be rewritten in a more suitable form:

ui,j+1 = ui,j + σ(ui−1,j − 2ui,j + ui+1,j) , (A.13)

where σ = D ∆t
(∆x)2

is known as the Courant number and determines the stability

of the scheme (stable if 0 ≤ σ ≤ 1
2
). Furthermore, the proposed method can be

extended to two spatial dimensions:

∂u

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
, (A.14)
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by constructing grids such as:

x = i∆x, y = j∆y and t = n∆t , (A.15)

where i,j and n are positive integers, such that i = 1, 2..Nx, j = 1, 2, ..Ny and

n = 0, 1, ..., Nt, with:

u(xi, yj, tn) = ui,j,n . (A.16)

Similarly, we obtain the forward di�erence approximation:

ui,j,n+1−ui,j,n =
∆t

(∆x)2
(ui−1,j,n−2ui,j,n+ui+1,j,n)+

∆t

(∆y)2
(ui,j−1,n−2ui,j,n+ui,j+1,n)

(A.17)

whereby the stability condition now reads:

σ = D∆t

{
1

(∆x)2
+

1

(∆y)2

}
≤ 1

2
(A.18)

The above stability condition poses a serious drawback on explicit �nite di�erence

schemes, and a convenient alternative would be an implicit method such as the

Crank-Nicholson scheme. By replacing the approximation of the second derivative

∂2u/∂x2 with the mean of its �nite di�erences on subsequent time rows (j+ 1 and

j) eq. A.7 is now approximated by:

ui,j+1 − ui,j
∆t

=
D

2

{
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(∆x)2
+
ui+1,j − 2ui,j + ui−1,j

(∆x)2

}
.

(A.19)

Therefore, it is possible to write out:

− σui−1,j+1 + (1 + 2σ)ui,j+1 − σui+1,j+1 = σui−1,j + (1− 2σ)ui,j + σui+1,j (A.20)

where σ = D ∆t
2(∆x)2

. The above expression cannot be solved explicitly as the left

hand side contains three unknowns, but rather amounts to solving Nx−1 equations

simultaneously for each time row. The error order is O((∆x)2), and the scheme is

unconditionally stable.

These results are found in any standard textbook on numerical solutions of PDEs

(Smith 1978, 1965 ).



Appendix B

Linear Stability Analysis: delay

di�erential equations

The general approach adopted in this and the following appendix is based on the

standard linearisation technique coupled with basic knowledge of ODE theory used

to obtain a bifurcation value of the time delay parameter, τ . Since the method in

question can be easily extended and applied to all models introduced in Chapter 3,

stability analysis will be shown for one model as an illustrative example, and results

for other models listed. Stability of the upper positive equilibrium is considered

as it is known that the intermediate equilibrium U∗ = β is always unstable.

Suppose x is a small perturbation from the steady state U∗ = K = 1:

x = U − U∗ (B.1)

To determine equilibrium stability we investigate the behaviour of this small per-

turbation, whether it grows or decays, and for that purpose we linearise around

the steady state, ignore higher order terms of model (3.5), which gives:

dx

dt
= (βγ − γ)xτ . (B.2)

Note that we treat the delayed variables, U(t − τ) = Uτ and x(t − τ) = xτ as

separate variables throughout linearising. We look for solutions of form x = ceλt,

where c is a constant and λ are the eigenvalues of the system which determine its

stability. By substituting this solution form in (B.2) we obtain the transcendental
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Model Stability Condition
γU(Uτ − β)(K − U) λ = β − 1

γU(−β + (1 + β)Uτ − U2) τc =
arccos( 2

1+β )√
1+β
2

γU(−β + (1 + β)U − UτU) τc = arccosβ
sin(arccosβ)

γU(−β + (1 + β)U − U2
τ ) τc =

arccos(β+1
2 )√

4−(β+1)2

γU(−β + (1 + β)Uτ − U2
τ ) τc = − π

2(β−1)

Table B.1: Note that U(t) = U , U(t− τ) = Uτ and parameter γ = 1.

characteristic equation:

λ = (βγ − γ)e−λτ , (B.3)

for which analytical solutions are di�cult to �nd. Nevertheless, from a stability

viewpoint it is important to �nd whether there are any solutions with Reλ > 0

which implies instability (since the perturbation grows exponentially with time).

By setting λ = iω, we assume Reλ = 0, and obtain an expression for the criti-

cal value at which the system passes through the Hopf bifurcation, below which

stability prevails and above which instability occurs. Substituting into (B.3) and

separating real and imaginary parts of the transcendental equation, we obtain the

system:

−(βγ − γ) cos(ωτ) = 0 (B.4)

ω = −(βγ − γ) sin(ωτ) (B.5)

Following some elementary calculations we are able to �nd the critical value of τ :

τc = − π

2(βγ − γ)
(B.6)

In all subsequent analysis, the characteristic growth rate was taken as γ = 1. In

the below table we summarise stability conditions for all other models used.

For the delayed cooperation model (3.6) stability analysis con�rmed that the equi-

librium remains stable as:

λ = β − 1 (B.7)

thus the eigenvalue is always negative for all biologically viable values of β. Loss of

stability does not occur for the model incorporating time delay in the maturation
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term (3.10), as the stability condition in this case reads:

λ =
arccos

(
2

1+β

)
√

1+β
2

(B.8)

Since −1 ≤ β ≤ 0.5, arccos
(

2
1+β

)
is not de�ned, there are no bifurcation values,

τc. As for the model incorporating time delay in direct competition (3.11) we were

able to map all critical values, τc:

τc =
arccos β

sin(arccos β)
(B.9)

with the exception of β = −1 as it is a singularity. Addition of another delayed

term into direct competition results in model (3.12) for which the stability condi-

tion reads:

τc =
arccos

(
β+1

2

)√
4− (β + 1)2

(B.10)

Analytically de�ning bifurcation values, τc, for the model with two delayed terms (3.13)

is the same as in model with delayed competition (3.5).



Appendix C

Loss of Monotonicity: delay

di�erential equations

Following the linearisation method previously described, we obtain expressions

(and subsequently values) for the time delay parameter, τ , when the system loses

monotonicity, i.e. when the solution still approaches the stable equilibrium U∗ =

K, but in a nonmonotonous manner (referred to as damped oscillations). We

introduce the conditions of monotonicity, solving for one model, and list results

for all others, as in Appendix B.

We consider model (3.5) and its corresponding characteristic equation:

F (λ; τ) = λ+ e−λτ (γ − βγ) = 0 (C.1)

In general, whether the solution is monotone or not depends on the roots of this

eigenvalue equation and loss of monotonicity is associated with the total loss of all

relevant real eigenvalues. Obviously, when τ = 0, the eigenvalue is negative for all

biologically relevant values of β. The minimum of the characteristic polynomial,

F , lies in the third quarter of the (λ,F ) plane, and has two negative roots for

su�ciently small time delay, τ . By increasing τ , the minimum is pushed upwards

and for a particular τ = τ∗, the two roots merge and disappear � go complex

(Fig. C.1).

At this critical value the two roots coalesce and the following condition holds:

∂F

∂λ
(λ; τ) = 0 (C.2)
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Figure C.1: Plot of F (λ; τ) for di�erent values of τ . The simulation was done
for β = 0.3, and the critical value at which the loss of monotonicity occurs is

calculated as τ∗ = 0.53.

Model Stability Condition
γU(Uτ − β)(K − U) λ = β − 1

γU(−β + (1 + β)Uτ − U2) 1
τ∗(β+1)

+ e1+2τ∗ = 0

γU(−β + (1 + β)U − UτU) 1
τ∗
− e1−βτ∗ = 0

γU(−β + (1 + β)U − U2
τ ) 1

2τ∗
− e1−(1+β)τ∗

γU(−β + (1 + β)Uτ − U2
τ ) τ∗ = 1

e(1−β)

Table C.1: Note that U(t) = U , U(t− τ) = Uτ and parameter γ = 1.

On elimination of λ, using elementary calculus, one �nds an explicit condition for

τ :

τ∗ =
1

e(γ − βγ)
(C.3)

and so loss of monotonicity is predicted for τ ≥ τ∗. Note this is the only case

in which we may obtain an explicit expression, as with all other models implicit

expressions are presented. In the below table we summarise all critical values, τ∗
for which solutions lose monotonicity, for all subsequent models.

In Eq. (3.6) the solution remains monotonous as the eigenvalues are always nega-

tive for all applicable values of the Allee threshold (λ = β − 1).
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Model (3.10), yielding the most interesting step-like results, clearly preserves

monotonicity throughout all possible values of the time delay parameter, τ , as

the monotonicity condition does not have any roots, and reads:

1

τ(β + 1)
+ e1+2τ = 0 (C.4)

For model (3.11) the implicit expression for the critical time delay is:

1

τ
− e1−βτ = 0 (C.5)

A di�ering monotonicity condition is obtained for a fully delayed density dependent

mortality (model (3.12)):
1

2τ
− e1−(1+β)τ (C.6)

Our two delay model yielded the same condition as in model (3.5), as was expected

and con�rmed in numerical simulations.
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