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Abstract

Background: Mast cell localization within the airway smooth muscle (ASM)-bun-

dle plays an important role in the development of airway hyper-responsiveness

(AHR). Genomewide association studies implicate the ‘alarmin’ IL-33 in asthma,

but its role in mast cell–ASM interactions is unknown.

Objectives: We examined the expression and functional role of IL-33 in bronchial

biopsies of patients with and without asthma, ex vivo ASM, mast cells, cocultured

cells and in a mouse model system.

Methods: IL-33 protein expression was assessed in human bronchial tissue from 9

healthy controls, and 18 mild-to-moderate and 12 severe asthmatic patients by

immunohistochemistry. IL-33 and ST2 mRNA and protein expression in human-

derived ASM, epithelial and mast cells were assessed by qPCR, immunofluores-

cence and/or flow cytometry and ELISA. Functional assays were used to assess

calcium signalling, wound repair, proliferation, apoptosis and contraction. AHR

and inflammation were assessed in a mouse model.

Results: Bronchial epithelium and ASM expressed IL-33 with the latter in asthma

correlating with AHR. ASM and mast cells expressed intracellular IL-33 and

ST2. IL-33 stimulated mast cell IL-13 and histamine secretion independent of

FceR1 cross-linking and directly promoted ASM wound repair. Coculture of

mast cells with ASM activated by IL-33 increased agonist-induced ASM contrac-

tion, and in vivo IL-33 induced AHR in a mouse cytokine installation model;

both effects were IL-13 dependent.

Conclusion: IL-33 directly promotes mast cell activation and ASM wound repair

but indirectly promotes ASM contraction via upregulation of mast cell-derived

IL-13. This suggests that IL-33 may present an important target to modulate

mast cell–ASM crosstalk in asthma.

Asthma is a chronic inflammatory disorder of the airways

characterized by inflammation, variable airflow obstruction

and AHR. It is estimated that asthma affects 5–10% of

adults (1). Genomewide association studies have consistently

implicated IL-33 as an asthma susceptibility gene (2–4). IL-
33 and its receptor ST2 function as an alarmin to alert the

immune system after endothelial or epithelial cell damage

during trauma, physicochemical stress or infection (5). IL-33

increased AHR in vivo (6) and in lung slices (7) and plays a

key role in rhinovirus-induced asthma exacerbations (8).

Additionally, disruption of IL-33/ST2 signalling in vivo

during the course of experimental asthma or anaphylaxis

reduced the severity of disease (9–16).
In asthma, mast cell–ASM interactions are important in

the development of disordered airway physiology (17). ASM

cells from asthmatics express elevated levels of IL-33 com-

pared to healthy subjects (18), and mast cells respond to IL-

33 activation (19, 20). We hypothesize that the IL-33/ST2

axis plays a role in mast cell–ASM interactions in asthma.

We show that IL-33 expression was increased in the

bronchial epithelium and ASM in asthma. IL-33 promoted

ASM wound repair directly and, in an autocrine manner,
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augmented mast cell mediator release and, indirectly,

increased ASM contraction following coculture with mast

cells via upregulation of mast cell-derived IL-13. Similarly, in

an in vivo mouse model of intratracheal cytokine installation,

IL-33 induced AHR which was IL-13 dependent. Therefore,

IL-33 may present an important target to modulate mast

cell–ASM crosstalk in asthma.

Methods

Amore detailed methods section is provided in the supplement.

Subjects

Asthmatic subjects had a consistent history and evidence of

asthma. The study was approved by Leicestershire Ethics

Committee. All patients gave their written informed consent.

Cell culture

Primary human ASM cells, human lung mast cells (HLMC),

human epithelial cells and the human mastocytoma cell-1

(HMC-1) cell line were isolated and cultured as previously

described (21–23).

Animals

Lungs were taken from BALBc (8- to 12-week-old) and

C57BL6 (16- to 24-week-old) mice for precision cut lung slic-

ing (PCLS).

Immunohistochemistry

Bronchial biopsy sections were stained for IL-33 and assessed

using a semi-quantitative intensity score (SQS) and quantita-

tive thresholding.

Flow cytometry and immunofluorescence

IL-33 and ST2 expression was assessed by flow cytometry

and immunofluorescence. Cells were counterstained with

40,60-diamidino-2-phenylindole (DAPI).

qPCR

Quantitative RT-PCR of ST2L, ST2 and IL-13 was performed

and compared against the internal reference gene 18S.

ELISA

IL-33 and IL-13 concentrations were quantified by ELISA.

Calcium flux

The ratio of fluo-3/fura red within cells vs time was measured

by flow cytometry. Following baseline measurements (1 min),

cell flow was halted, IL-33 or calcium ionophore added, and

data acquired for a further 3 min.

Cell metabolic activity assay and apoptosis measurement

ASM cells were treated as indicated in Fig. S1. The CellTiter

96 Aqueous One Solution was added as per the manufac-

turer’s instructions. Apoptosis was assessed by DAPI staining

of nuclear morphology and annexin-V � propidium iodide

staining according to manufacturer’s protocol.

Cell contraction

ASM cells � HLMC (4:1 ratio) were impregnated into colla-

gen gels. Gel surface area was measured using ImageJ

(http://rsb.info.nih.gov/ij).

Mesoscale analysis

Cytokines and chemokines were measured in cells � IL-33

by electrochemiluminescence detection (Mesoscale Discovery,

Gaithersburg, Maryland).

Wound repair

ASM cells � IL-33, isotype control or anti-IL-33-neutralizing

antibody were wounded as described previously (21).

Wounds were photographed at baseline and after 18 h.

Wound repair was analysed using cellF software.

Histamine assay

Histamine was measured in supernatants from activated

HLMC (anti-FceR1 antibody or IL-33 for 24 h) or HLMC

incubated with ASM (1:4 ratio) for 5–11 days � IL-33, iso-

type control or anti-IL-33-neutralizing antibody, as previ-

ously described (24).

PCLS

PCLS were prepared as described previously (25). Images

were captured at baseline, then every 5 min for cumulative

carbachol dose responses and 2–10 min post mouse IL-33.

Airway lumen size was measured using ImageJ software.

AHR and inflammation by IL-33

BALBc mice were dosed intranasally with three repeated

doses of murine IL-33 (5 lg). Post 3 days, cell number in the

lung tissue was assessed by lung digest. AHR was measured

using a flexiVent system � neutralization of IL-13 activity

using fusion protein (IL-13Ra2) administered 2 h prior to

each IL-33 administration. IL-13, Gob-5 and Muc5AC

mRNA expression was determined by RT-PCR, and mouse

serum mMCP-1 in serum by ELISA.

Statistical analysis

Statistical analysis was performed using GraphPad PRISM

using parametric and nonparametric tests as appropriate. A

P < 0.05 was considered significant.
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Results

IL-33 expression in the ASM-bundle in asthma

IL-33 expression was identified within the ASM-bundles in

most subjects with variable intensity of expression, and

within the epithelium (Fig. 1A). Mast cells within the ASM-

bundle infrequently coexpressed IL-33 (data not shown). The

semi-quantitative intensity score (SQS) for IL-33 expression

was significantly increased in mild–moderate asthma com-

pared to healthy controls (Kruskal–Wallis P = 0.033; post

hoc Dunn’s pairwise comparison P = 0.046, Fig. 1B). The

correlation between SQS IL-33 ASM expression and AHR

was good (r = �0.63, P < 0.001, Fig. 1C). There was no sig-

nificant correlation between IL-33 expression and FEV1%

predicted, bronchodilator reversibility, atopic status or spu-

tum cell counts (data not shown). Epithelial IL-33 expression

was also significantly increased in mild-to-moderate asthma

compared to healthy controls (Kruskal–Wallis P = 0.047;

post hoc Dunn’s pairwise comparison P = 0.041, Fig. 1D).

The SQS and quantitative expression using thresholding were

correlated for both ASM (r = 0.63, P = 0.004) and epithe-

lium (r = 0.43, P = 0.013). Quantitative IL-33 expression was

increased in the ASM and epithelium in asthmatics compared

to healthy subjects, but did not reach statistical significance.

Quantitative IL-33 expression in ASM correlated with AHR

in those with asthma (r = �0.52, P = 0.007). The clinical

characteristics of the subjects are shown in Table 1.

IL-33 expression by ASM, mast cells and bronchial

epithelium

IL-33 expression was identified in human ASM, HLMC,

HMC-1 and epithelial cells by immunofluorescence (Fig. 2A)

and flow cytometry (Fig. 2B,C). IL-33 expression was not

different between ASM cells derived from asthmatic subjects

compared to healthy controls (data not shown). IL-33 was

spontaneously released from ASM, HLMC, HMC-1 and epi-

thelial cells as measured by ELISA after 24 h (Fig. 2D).
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Figure 1 ASM and bronchial epithelial IL-33 expression (A) Repre-

sentative photomicrographs of bronchial biopsies from an asthmatic

subject illustrating isotype control, IL-33+ cell staining in ASM, submu-

cosa (original magnification 9100), and within the ASM-bundle and

epithelium (original magnification9400). (B) Semi-quantitative scoring

(SQS) of ASM IL-33. (C) Correlation between SQS ASM IL-33 and

AHR in subjects with asthma. (D) Semi-quantitative scoring (SQS) of

bronchial epithelium IL-33. ● = healthy control, M = mild–moderate

asthma, ■ = severe asthma. Horizontal bars represent the median,

P < 0.05, Kruskal–Wallis test, for all across-group comparisons.
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Figure 2 IL-33 and ST2 expressed by ex vivo human cells. (A)

IL-33 expression was confirmed in ASM, HLMC, HMC-1 and epi-

thelial cells by immunofluorescence (nuclei stained blue, IL-33

stained green, isotype control shown as inset, magnification

9400, n = 3). (B) Example flow cytometry histograms in ASM

cells, HLMC and epithelial cells represent populations of IL-33

(black line) plotted with the corresponding isotype control (grey

line). (C) Quantification of total cell IL-33 in ASM (n = 6), HLMC

(n = 7), HMC-1 (n = 5) and epithelial cells (n = 11, *<0.05 vs iso-

type control). (D) IL-33 was measured in ASM (n = 10), HLMC

(n = 7), HMC-1 (n = 4) and epithelial cell (n = 7) supernatants by

ELISA. (E) IL-33 receptor (ST2L and ST2) mRNA expression analy-

sed by qPCR in ASM, HLMC and HMC-1 cells. Data were nor-

malized to 18sRNA and expressed following the equation (2�DCT )

x106). (F) IL-33 receptor mRNA expression in unstimulated and

stimulated (IL-33, 50 ng/ml, 24 h) HLMC analysed by qPCR. Data

are presented as fold difference on a log2 scale (�DDCt, n = 3,

*<0.05, **<0.01 vs unstimulated cells). (G) Cell surface and total

cell ST2 receptor expression was measured by flow cytometry in

unstimulated and stimulated (50 ng/ml, IL-33 for 48 h) ASM,

HLMC and HMC-1 cells (n = 3). All data presented as

mean � SEM. Statistical differences were assessed using t-tests.
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Figure 3 Functional responses to IL-33. (A) Calcium flux in ASM

(n = 4) and HMC-1 cells (n = 4–9) in the presence of IL-33 or calcium

ionophore. ΔGMFI equates to total stimulated GMFI minus matched

baseline GMFI (*<0.05, **<0.01 compared to baseline GMFI). (B) IL-

13 mRNA expression in HLMC � IL-33 (50 ng/ml, 24 h) analysed by

qPCR using the DDCt method. Data are presented as fold difference

on a log2 scale (�DDCt, n = 3, **<0.01 vs unstimulated cells). (C) IL-

13 protein release in HLMC stimulated with anti-FceR1 (1:1000) and

IL-33 (50 ng/ml) for 24 h (n = 10–15). (D) Histamine release in HLMC

stimulated with anti-FceR1 (1:1000) and IL-33 (50 ng/ml) for 24 h

(n = 12–18) (**<0.01, ***<0.001 vs unstimulated HLMC). (E) Per-

centage wound repair by ASM � IL-33 (50 ng/ml), isotype control or

IL-33-neutralizing antibody for 18 h with representative ASM wound

repair pictures at 18 h. (F) Percentage contraction in PCLS to cumula-

tive concentrations of carbachol (Cch) pretreated without (unprimed),

or with IL-33 (100 ng/ml) for 20 h. Area under the curve gel contrac-

tion between group comparisons was made by paired t-test. Each

point represents mean � SEM using 1–3 lung slices, 4–8 mice. (G)

Collagen gel contraction in ASM cells primed with IL-33 (50 ng/ml

over 48 h) impregnated in collagen gels for 3 days (n = 4). All data

presented as mean � SEM. Statistical differences were assessed

using the t-tests.
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mRNA expression of IL-33 receptors ST2L (long transduc-

ing isoform) and ST2 (short decoy soluble form) was evident

in mast cells, but not in ASM cells (Fig. 2E). A two- and

threefold increase in ST2L and ST2 mRNA expression were

observed respectively in HLMC following IL-33 stimulation

(50 ng/ml, 24 h, Fig. 2F), but not in ASM cells (n = 3, data

not shown). Although ST2 cell surface expression was not

identified in unstimulated ASM, HLMC and HMC-1 cells by

flow cytometry, IL-33 stimulation (50 ng/ml, 48 h) signifi-

cantly upregulated ST2 surface expression (Fig. 2G). Total

cell ST2 expression was apparent in all unstimulated cell

types and increased poststimulation with IL-33 (Fig. 2G).

Functional responses of ASM and mast cells to IL-33

IL-33 (50–200 ng/ml) triggered Ca2+ flux with increased

intracellular calcium in ASM and HMC-1 cells as indicated

by an increase in the fluo 3/fura red ratio, with a maximum

response at 100 ng/ml (Fig. 3A). IL-13 mRNA expression

(Fig. 3B) and protein release (Fig. 3C) were significantly up-

regulated in HLMC stimulated with IL-33 (50 ng/ml, 24 h)

with increased histamine release independent of FceR1 cross-

linking also observed (Fig. 3D); HMC-1 (n = 4), but not

ASM (n = 6), cells released CCL2, 4, 5, CXCL8 and 10 sig-

nificantly following IL-33 incubation (10 ng/ml, 24 h) com-

pared to control (data not shown).

ASM wound repair was promoted by both exogenous and

ASM-derived IL-33 (Fig. 3E) as demonstrated by an IL-33-

neutralizing antibody reducing wound repair in both control

and IL-33-treated cells (Fig. 3E). Neither ASM proliferation

nor survival was modulated by exogenous IL-33 or neutral-

ization of ASM-derived IL-33 (see Fig. S1).

Direct addition of IL-33 (100 ng/ml) to PCLS from BALBc

and C57BL6 mice (n = 5) did not affect bronchoconstriction

over 2–10 min (data not shown). Pretreatment of PCLS from

BALBc (Fig. 3F) and C57BL6 (n = 4, data not shown) mice

with IL-33 (100 ng/ml, 20 h) had no effect on Cch-induced

luminal diameter. Contraction of human ASM cells primed

with IL-33 (50 ng/ml, 48 h) and embedded within collagen gels

was not different to unprimed ASM cells over 3 days

(Fig. 3G).

Previously, we have shown that HLMC/ASM cell cocul-

ture promotes HLMC survival/proliferation and results in

increased a-SMA expression (23) and histamine release (24).

The contribution of endogenous IL-33 to these changes was

assessed.

HLMC cocultured with ASM for 7 days demonstrated

increased proliferation compared to HLMC monocultures as

determined by CFSE fluorescence (Fig. 4B) and cell counts

(Fig. 4C and D). This was unaffected by IL-33-neutralizing

antibody. ASM cells counts were significantly increased fol-

lowing coculture with HLMC lysate for 7 days compared to

monoculture; however, this was unaffected by IL-33-neutral-

izing antibody (Fig. 4E).

ASM cells cocultured with HLMC lysate showed

increased a-SMA GMFI compared to ASM monocultures,

but this was unaffected by IL-33-neutralizing antibody

(Fig. 4F,G). Histamine release was increased from HLMC

following coculture with ASM compared to HLMC mono-

cultures reaching significance after 11 days; however, this

was unaffected by IL-33 or IL-33-neutralizing antibody

(Fig. 4H).

Critically, when both ASM and HLMCs are impregnated

into collagen gels following coculture and then stimulated

directly with exogenous IL-33, increased gel contraction is seen

compared to untreated cells. This can be inhibited by an

IL-13-neutralizing antibody but is unaffected by the corre-

sponding isotype control antibody (Fig. 4I). HLMCs alone

did not elicit gel contraction, ASM/HLMC cocultures did not

increase gel contraction compared to ASM alone in the

absence of exogenous IL-33, with no effect of IL-13 neutraliza-

tion over 3 days on this contraction (data not shown,

P = 0.38, n = 3). HLMC IL-13 release was unaffected by co-

culture with ASM or incubation with ASM-conditioned media

(data not shown). These data suggest IL-33 can augment ASM

contractility indirectly via upregulation of HLMC IL-13

release. However, endogenous release of IL-33 by ASM is

insufficient to activate HLMC IL-13 release in this system.

IL-33 induces AHR in vivo and is IL-13 dependent

IL-33 induced a profound AHR in na€ıve BALBc mice after

intranasal challenge with increase in total lung cells

(Fig. 5B), mast cell activation with increased serum concen-

trations of mouse mast cell protease-1 (mMCP-1, Fig. 5C)

and increased expression in the airway of MUC5ac, Gob-5

(Fig. 5D) and IL-13 (Fig. 5E). Interestingly, similar to

results in the human coculture system, neutralization of IL-

13 activity (using IL-13Ra2 fusion protein administered 2 h

prior to each IL-33 administration) abrogated AHR signifi-

cantly (Fig. 5F).

Discussion

We demonstrated IL-33 expression in vivo and in vitro in the

bronchial epithelium and ASM and in primary mast cells.

The ST2 receptor was expressed by mast cells and ASM by

total cell staining and at the surface following IL-33 treat-

ment. IL-33 promoted mast cell activation and ASM wound

repair and indirectly promoted contraction via upregulation

of mast cell-derived IL-13. This suggests that IL-33 may pres-

ent an important target to modulate mast cell–ASM crosstalk

in asthma.

We report here that IL-33 expression was evident in the

bronchial epithelium and ASM-bundle, with expression

increased in mild–moderate asthmatics compared to healthy

controls. This is consistent with earlier reports in adult

asthma (18, 26), but contrasts with paediatric severe asthma

in which neither epithelial nor ASM IL-33 expression was

increased compared to controls (6). We found expression in

the ASM, but not epithelium was correlated to the degree of

AHR. Primary mast cells and ASM expressed IL-33 and ST2

constitutively as assessed by total cell staining and at the sur-

face following IL-33 treatment. Localization of IL-33 was

detected primarily within the nuclei as seen in human nasal

fibroblasts (27).
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We demonstrated for the first time that IL-33 had no effect

on ASM proliferation, apoptosis and synthetic capacity, but

both exogenous and ASM-derived IL-33 played an important

role in ASM wound repair. Thus, endogenously expressed

IL-33 in ASM observed in vivo in humans may contribute to

ASM repair via migration following damage secondary to

physical, mechanical or inflammatory insults. Further work

is required to determine the mechanism via which IL-33 stim-

ulates ASM migration; however, in support of our observa-

tions, recombinant IL-33 has been shown to have direct

effects on chemotaxis of myofibroblasts, fibrocytes, neutroph-

ils, nuocytes and microglia cells (28–31).
IL-33 triggered calcium flux in both ASM and HMC-1

cells, in keeping with other studies showing that IL-33 can

enhance calcium elevation autonomously or in synergy with

other mediators (32) and that IL-33 can activate calcium-

dependent downstream signalling (33–35). Although the

mechanism by which IL-33 causes calcium elevation has not

been studied, other members of the IL-1 family have been

shown to induce calcium signalling in a manner which is

GPCR dependent involving both extracellular calcium and

intracellular calcium stores (36). Due to the rapid response,

the effect of IL-33 on [Ca2+]i elevation is likely to be a direct

effect on ASM, but in the mast cells it could be a synergistic

response in conjunction with preformed mediators released

by mast cells.

Importantly, IL-33 is a critical cytokine in the initiation

and exacerbation of inflammatory responses and enhanced

IgE production in na€ıve wild-type mice, histamine release

(37) and tryptase expression (38) in mouse mast cells. Simi-

larly, human mast cells respond to IL-33 activation (19, 20).

Here, we found that IL-33 upregulated ST2, IL-13 and hista-

mine release acutely by mast cells independent of FceR1

cross-linking. Mast cell localization to the ASM-bundle is a

Figure 4 Mast cell and lysate coculture with ASM cells. (A–G)

ASM cells were cultured alone or in coculture with HLMC or

HLMC lysates and incubated with IL-33 and/or IL-33-neutralizing

or isotype control antibodies for 7 days. (A) Representative flow

cytometric dot plot showing ASM and HLMC (prelabelled with

CFSE) cocultured for 7 days. CFSE-positive cells were gated; his-

togram shows CFSE GMFI in cocultured HLMC vs HLMC alone

at baseline. Quantification of HLMC proliferation in (B) indicated

by a reduction in CFSE gMFI in ASM/HLMC cocultures (n = 4)

and (C) by cell counts in ASM/HLMC cocultures. ASM cell

counts in (D) following ASM/HLMC coculture (n = 4) and (E) with

HLMC lysate (n = 4). (F) Example histogram of a-SMA expres-

sion in ASM cells alone and in coculture with HLMC lysate. (G)

ΔGMFI of a-SMA expression in ASM � HLMC lysate (n = 4). (H)

Histamine release by HLMC in coculture with ASM (n = 4). (I)

Collagen gel contraction in cocultured cells � IL-33 (50 ng/ml), is-

otype control or IL-13-neutralizing antibody over 1–3 days

(*P < 0.05, coculture+IL-33+isotype control vs coculture+IL-

33+anti-IL-13-neutralizing antibody). Representative gel photo-

graphs at day 3. All data presented as mean � SEM. Statistical

differences were assessed using paired t-tests (*<0.05).

Table 1 Clinical characteristics of asthmatic subjects and healthy controls

Normal

Mild–moderate

asthma

GINA 1–3

Severe asthma

GINA 4–5

Number 9 18 12

Age† 45 (30–55) 56 (28–63) 51 (45–62)

Male/Female 6/3 5/13 6/6

Atopy n (%) 4 (44) 11 (61) 10 (83)

Inhaled corticosteroids BDP lg/day† 0 0 (0–500) 1800 (1600–2000)

Oral corticosteroid mg/day† 0 0 0 (0–7.5)

Methacholine PC20FEV1 (mg/ml)‡ >16 0.5 (0.3–1.0)* 2.4 (1.2–5.0)*

FEV1% predicted§ 95 (3) 86 (5) 77 (7)*

Pre-BD FEV1/FVC %§ 82 (2) 72 (2)* 67 (4)*

BD response (%)§ 1 (1) 11 (4)* 9 (2)*

Sputum cell counts

Total cell count (9106/g sputum)† 1.0 (0.8–3.7) 2.5 (0.7–3.2) 3.7 (2.3–7.9)*

Eosinophil %† 0.6 (0.1–0.9) 0.4 (0.1–4.2) 4.0 (2.3–7.9)*

Neutrophil %† 60 (47–71) 51 (25–74) 71 (57–89)

Bronchial biopsy IL-33 expression

Airway smooth muscle (SQS)† 1 (0.5) 1.75 (0.75)* 1.13 (1.4)

Bronchial epithelium (SQS)† 2 (1) 4 (1.5)* 4 (1.75)

SQS, semi-quantitative score, BDP, beclomethasone dipropionate equivalent.

*P < 0.05 compared to control.

†Median (IQR), BD-bronchodilator.

‡Geometric mean (95% CI).

§Mean (SEM).
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notable feature of asthma, and therefore, ASM-derived IL-33

might play an important role in IgE-independent mast cell

activation in the asthmatic airway. In addition, mast cell pro-

teases have recently been shown to increase the activity of

IL-33 (39).

Indeed, mast cell number within the ASM-bundle is related

to the degree of AHR (17). Coculture of primary ASM and

mast cells promotes mast cell activation (24), differentiation

(40), survival, proliferation and phenotypic changes in ASM

(23, 24, 40). Neutralization of IL-33 in ASM/mast cell cocul-

tures had no effect on mast cell proliferation or histamine

release, or a-SMA expression by ASM cells. Interestingly, co-

culture of ASM and mast cells together with the addition of

IL-33 increased collagen gel contraction. This was IL-13

dependent, and the enhanced contraction in response to IL-

33 was normalized following IL-13 neutralization. IL-33 had
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Figure 5 Role of IL-33 in an in vivo mouse model. (A) BALBc mice

were dosed intranasally with 3 repeated doses of 5 lg (one per

day) of murine IL-33. (B) Total cell numbers in lung tissue were

assessed after IL-33 administration by lung digest. (C) Mast cell

activation was determined by measurement of mMCP-1 release in

serum by ELISA. (D) MUC5ac, Gob5 and (E) IL-13 expression

assessed in the lung by TaqMan qPCR. All data presented as

mean � SEM, *P < 0.05, ***P < 0.001 compared with PBS con-

trol, n = 5–18 mice/group from 1-3 separate experiments. (F) IL-13

signalling was blocked using an IL-13Ra2 fusion protein adminis-

tered 2 h prior to each IL-33 administration. Data are expressed as

mean � SEM, n = 5–18 mice/group from 1 to 3 separate experi-

ments, *P < 0.05 by two-way ANOVA compared with PBS control-

treated mice.
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no direct effect on human ASM contraction or ex vivo PCLS

from BALBc or C57BL6 mice. We found that in a mouse

model system, IL-33 induced AHR, mMCP-1, MUC5ac,

Gob-5 and IL-13 expression that was abrogated with IL-

13Ra2 fusion protein supporting the human findings of IL-

13-dependent IL-33 induction of ASM contraction possibly

via mast cell activation. These findings are supported by two

independent recent studies. Barlow and colleagues (7) exam-

ined the response to methacholine in the PCLS ex vivo model

and demonstrated that IL-33 mediated increased AHR that

was IL-13 dependent. Saglani and colleagues (6) found that

IL-33 induction of AHR was IL-13 dependent prior to pro-

longed exposure to house dust mite, but following this expo-

sure was partly IL-13 independent. However, the exact

mechanism via which IL-33 mediates IL-13-dependent ASM

contraction remains to be elucidated.

Critically, in contrast to human asthma, mast cell localiza-

tion to the ASM is not a feature of murine models of asthma.

Therefore, although the animal models support the concept

that IL-33-induced AHR is IL-13 dependent, whether mast

cells are critical in these models is uncertain. Indeed, IL-13

has been shown to be produced by Th2 cells (41), NKT cells

(42), basophils (43) and ILC2s (44, 45), the latter two of which

can be dependent on IL-33. Nevertheless, IL-13 release by

mast cells in human disease secondary to IL-33 activation

remains likely to be important in human disease as these mast

cells express IL-13 in vivo (46, 47) and are the most abundant

inflammatory cell in the ASM-bundle (17). Interestingly, we

were unable to demonstrate that constitutive ASM-derived

IL-33 was sufficient to induce IL-13 release from mast cells in

coculture, and therefore, it is likely that either upregulation of

IL-33 release by ASM in vivo or contributions from other cel-

lular sources such as the epithelium might be important in

activating IL-13 release from mast cells in asthma. The exact

role of IL-33 in human disease will require future clinical stud-

ies targeting the IL-33 axis.

In conclusion, our findings showed that IL-33 promoted

mast cell activation and ASM wound repair and indirectly

promoted both ASM contraction in vitro via upregulation of

mast cell-derived IL-13 and also IL-13-dependent AHR

in vivo. Therefore, IL-33 might be an important novel thera-

peutic target to modulate mast cell–ASM crosstalk in

asthma.
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