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Abstract

Wavelets orthogonally decompose data into different frequency components, and the

temporal and frequency information of the data could be studied simultaneously.

This analysis belongs within local nature analysis. Wavelets are therefore useful for

managing time-varying characteristics found in most real-world time series and are

an ideal tool for studying non-stationary or transient time series while avoiding the

assumption of stationarity. Given the promising properties of wavelets, this thesis

thoroughly discusses wavelet theory and adds three new applications of wavelets in

economic and financial fields, providing new insights into three interesting phenom-

ena. The second chapter introduces wavelet theory in detail and presents a thorough

survey of the economic and financial applications of wavelets. In the third chapter,

wavelets are applied in time series to extract business cycles or trend. They are use-

ful for capturing the changing volatility of business cycles. The extracted business

cycles and trend are linearly independent. We provide detailed comparisons with

four alternative filters, including two of each detrending filters and bandpass filters.

The result shows that wavelets are a good alternative filter for extracting business

cycles or trend based on multiresolution wavelet analysis.

The fourth chapter distinguishes contagion and interdependence. To achieve this

purpose, we define contagion as a significant increase in short-run market comove-

ment after a shock to one market. Following the application of wavelets to 27

global representative markets’ daily stock-return data series from 1996.1 to 1997.12,

a multivariate GARCH model and a Granger-causality methodology are used on

the results of wavelets to generate short-run pair-wise contemporaneous correlations

and lead-lag relationships, respectively, both of which are involved in short-run rela-

tionships. The empirical evidence reveals no significant increase in interdependence

during the financial crisis; contagion is just an illusion of interdependence. In ad-

dition, the evidence explains the phenomenon in which major negative events in

global markets began to occur one month after the outbreak of the crisis. The view

that contagion is regional is not supported.

The fifth chapter studies how macroeconomic news announcements affect the U.S.

stock market and how market participants’ responses to announcements vary over

the business cycle. The arrival of scheduled macroeconomic announcements in the

U.S. stock market leads to a two-stage adjustment process for prices and trading

transactions. In a short first stage, the release of a news announcement induces a



sharp and nearly instantaneous price change along with a rise in trading transactions.

In a prolonged second stage, it causes significant and persistent increases in price

volatility and trading transactions within about an hour. After allowing for different

stages of the business cycle, we demonstrate that the release of a news announce-

ment induces larger immediate price changes per interval in the expansion period,

but more immediate price changes per interval in the contraction period, from the

old equilibrium to the approximate new equilibrium. It costs smaller subsequent ad-

justments of stock prices along with a lower number of trading transactions across

a shorter time in the contraction period, when the information contained in the

news announcement is incorporated fully in stock prices. We use a static analysis to

investigate the immediate effects of news announcements, as measured by the sur-

prise in the news, on prices, and adopt a wavelet analysis to examine their eventual

effects on prices. The evidence shows that only 6 out of 17 announcements have a

significant immediate impact, but all announcements have an eventual impact over

different time periods. The combination of the results of both analyses gives us the

time-profile of each news announcement’s impact on stock prices, and shows that

the impact is significant within about an hour, but is exhausted after a day.
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Chapter 1

Introduction

Most econometric methodologies are dominated by models that are rooted in the

time domain. As a tool that is complementary to time domain analysis, frequency

domain analysis also receives much attention. This type of analysis provides new

insights into economic issues by decomposing economic data into sinusoidal compo-

nents, with intensities that vary across the frequency spectrum. Here, the Fourier

transform must be mentioned; this method decomposes time series into a combina-

tion of trigonometrical or complex exponential components. This approach has a

long history and is used widely in many disciplines. However, the Fourier transform

has many disadvantages. First, this method assumes that intensities are constant

over time and requires stationary data, which are typically not available in practice.

Second, the method has a global nature. The sine and cosine functions that are the

base functions of the Fourier transform are localised in frequency but not localised in

time and extend over the entire real line. These functions are trigonometric and are

not well suited to capturing abrupt spikes or cusps in a time series. This property

of the Fourier transform renders it ineffective for studying time series that contain

irregularities, such as discontinuities and spikes.

To conquer the limitations of the Fourier transform, Gabor (1946) presents the

short-time Fourier transform, which is also known as the windowed Fourier trans-

form. The idea is to study the frequency of a time series by segments, multiplying

the time series by a fixed window function. The window is typically a box of unit

height that is zero outside of a finite interval and whose size is fixed throughout the

sample. The window serves to isolate the time series, which can then be subject

to the Fourier transform. When one segment has been analysed, the window slides

along the time series to isolate another section for analysis until the entire time series

has been analysed. However, this technology also has one large problem: the size of

the window is fixed. A small window is appropriate when one is interested in high-
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frequency components, but a small window loses information with low-frequency

components. Conversely, a wide window is associated with a similar problem. The

windowed Fourier transform is a fixed resolution analysis and is thus unsuitable for

time series that include irregularities.

Thus, there is a need for a methodology that can study temporal and frequency

information simultaneously. This methodology is known as wavelet analysis, which

are applied in a wide variety of disciplines, such as astronomy, engineering, geology,

medicine, meteorology, physics and geography. In the 1990s, wavelet analysis were

introduced to economics and finance fields. By definition, wavelets are small waves,

as they have finite length (compactly supported) and are oscillatory. Wavelets with

finite support begin at a point in time and die out at a subsequent point in time.

They are particular types of functions that are localised in both the time and fre-

quency domains, whereas sines and cosines, which are the base functions of the

Fourier transform, are functions with a frequency-by-frequency basis. The wavelet

transform utilises local base functions that can be stretched and translated with a

flexible resolution in both frequency and time to capture features that are local in

both frequency and time. Therefore, wavelets are useful for managing the time-

varying characteristics found in most real-world time series and are an ideal tool for

studying non-stationary or transient time series while avoiding the assumption of

stationarity.

For example, the first-difference is a type of filter that performs mathematical

operations to rearrange a data structure. In empirical works in economics and

finance, the required frequency of observations is commonly not available because

it is very expensive or not possible to collect data in the required frequency for

particular variables. However, there is no reason to believe that data collected in

the required frequency would be able to fully capture the movement of the economy.

To solve this issue, a mathematical method referred to as temporal aggregation is

required. The implicit assumption of this method is that the underlying stochastic

process in continuous time is observed in discrete intervals. When the required

frequency of observations is not available, the temporal aggregation is applied to

obtain the ideal frequency of data.

Consider a case in which monthly observations of an economic variable are col-

lected from the market. However, quarterly data for this variable are actually re-

quired to study an empirical issue. A simple and frequently used way of converting

the observations would be to take the sums or the averages of successive sets of

three months. This process is equivalent to subjecting the data to a three-point

moving sum or average and then subsampling the resulting sequence by picking one
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in every three points. However, a problem called “aliasing” arises with this pro-

cedure. Aliasing refers to an effect that leads to different data sequences that are

indistinguishable when sampled.

To avoid the aliasing problem, it is appropriate to use a filter that can better

aggregate data without creating this problem and losing any data points in the pro-

cess. Although several filters fulfil this condition, they cannot make the filtered data

linearly independent on different time scales, which could simplify some economic

issues. Fortunately, wavelet theory provides this type of filter.

Given the promising properties of wavelets, the economics and finance literature

on wavelets has rapidly expanded over the past 20 years. A comprehensive discussion

of the economic and financial applications of wavelets can be found in the survey

articles by Ramsey (1999, 2002) and Crowley (2007). These applications provide

different insights into the economic and financial fields and report fruitful results.

This thesis thoroughly discusses wavelet theory and adds three new applications

of wavelets in these fields, providing new insights into three interesting phenomena.

In the second chapter, we show that wavelets present orthogonal decomposition,

maintain local features in decomposed data, and provide multiresolution analysis.

According to these properties, chapter 3 shows that wavelets are a good alterna-

tive filter for extracting business cycles from quarterly data. Compared with four

traditionally used filters that are estimated based on Fourier transform, wavelets

provide a better resolution in the time domain and are more useful for capturing

the changing volatility of business cycles. As far as we know, it is the first paper

to systematically discuss the application of wavelets (DWT) in extracting business

cycles or trend, and compare its performance with the other four filters’; chapter

4 distinguishes financial contagion from interdependence and draws evidence of no

contagion in the 1997 Asian crisis through a methodology that combines wavelets

with a multivariate GARCH model and a Granger-causality methodology. This

chapter is the first paper to propose a more precise definition of contagion to distin-

guish it with interdependence. Moreover, we develop a new method that combines

a multivariate GARCH model and a Granger-causality methodology with wavelets,

respectively, to examine the existence of financial contagion across 27 markets dur-

ing the 1997 Asian crisis and present economic policies to reduce the impact of the

crisis in global markets; chapter 5 examines news announcements’ impact on the

U.S. stock market, and illustrates immediate effect by static analysis and eventual

effect by wavelet analysis. In this chapter, we discover how market participants’

reactions to macroeconomic news announcements vary over the business cycle. Due

to the limitation of previous methods, we use wavelet analysis to investigate which
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announcements eventually affect the stock price.

1.1 Wavelet Theory and Literature Review

As a method of temporal aggregation, filters can be lowpass or highpass filters.

In terms of frequency domain theory, a lowpass filter is defined as preserving low-

frequency components and abandoning high-frequency components, whereas a high-

pass filter has a reverse effect on time series and only conserves high-frequency

components. Generally, the two filters are particular types of bandpass filters that

pass components with frequencies within a certain range and reject those with fre-

quencies outside of the range. Bandpass filters have been used widely in the business

cycle literature for years (Canova (1998), Baxter and King (1999), Christiano and

Fitzgerald (2003), Pollock (2000), Gomez (2001), Iacobucci and Noullez (2005), Es-

trella (2007)).

These two different types of filters are included in wavelet theory. The lowpass

filter is called a scaling filter, whereas the highpass filter is a wavelet filter. Unlike

other filters, whose amplitudes preserve only the frequency properties of data but

discard the temporal properties, the amplitudes of wavelets retain both types of

properties. Moreover, wavelets produce an orthogonal decomposition of economic

and/or financial variables by time scale, which is closely related to the frequency

and time horizon. As suggested by Ramsey and Lampart (1998a,b), the structure

of decisions, the strength of relationships and the relative variables differ by time

scale. Accordingly, some issues in economics and finance are difficult to solve using

conventional econometric models, which account for only the temporal properties of

data. The orthogonal property of wavelets allows them to provide new insights to

solve some issues that were ignored or impossible to address in the past. Finally,

wavelet analysis has a local nature and is thus more useful for detecting structural

breaks or jumps in data. On the contrary, Fourier analysis, which is traditionally

used to capture the frequency properties of data, has a global nature and is thus

inappropriate for studying issues that include local episodes. Consequently, wavelets

have attracted the attention of economists in recent years, and the related literature

has grown rapidly over the last two decades.
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1.2 Extracting Business Cycles and Detrending

via Wavelets

Economic time series typically contain a trend that provides long-term information

regarding the economy, business cycles that reveal short-term information regarding

the economy, and noise that is affected by transitory shocks or/and measurement

errors. According to spectral analysis theory, these three types of economic data

correspond to specific frequency components: the high-frequency components are

noise, the low-frequency components are trend, and the complementary components

are business cycles. A linear filter is a useful tool for extracting the components of

interest (typically trend or business cycles). An ideal filter that is able to extract

the exact components in the required frequency bands from economic time series

needs a double-infinite order of coefficients for an infinite time series, which is not

possible in practice. Thus, Hodrick and Prescott (1997), Baxter and King (1999),

Pollock (2000), and Christiano and Fitzgerald (2003) present their own approximate

filters to extract business cycles.

The wavelet filter is an alternative filter based on multiresolution wavelet analysis.1

This filter orthogonally decomposes economic time series into the trend, business

cycles and noise. The synthesis of these components is the original time series

through the perfect reconstruction of wavelets. Similar to other filters, including the

Hodrick-Prescott filter, the Baxter-King bandpass filter and the digital butterworth

filter, the wavelet filter is a symmetric filter. Therefore, the phase effect, which

generates time differences between the filtered data and the original data, does not

occur. This effect is usually not allowed to be present because in economics, it is

important to preserve the temporal properties of data. The Christiano-Fitzgerald

bandpass filter is an asymmetric filter that generates the phase effect in filtered data.

Moreover, the base functions of the wavelet filter are both time- and scale-localised

(frequency-localised), whereas the base functions of the Fourier transform on which

the other four filters are estimated are only frequency-localised. Consequently, the

wavelet filter, which provides better resolution in the time domain, is more useful

for capturing the changing volatility of business cycles.

The extracted trend and business cycles based on the wavelet filter are orthog-

onal, which implies that they are linearly independent. The relationship between

business cycles and trends is the subject of debate, but they are generally consid-

ered to be related. It is nearly impossible to accurately determine this relationship

1In this chapter, the wavelet filter is a general notion that represents wavelets, including scaling
filter and wavelet filter.
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in practice. To allow for ease and simplicity when studying economic issues, the

business cycles and the trend are sometimes assumed to be linearly independent in

empirical analyses. For example, it is interesting to examine the effect of a shock to

an economy on the long- and short-run equilibrium of that economy. To simplify this

investigation, the linear relationships between the shock and the trend and between

the shock and the business cycles are estimated, respectively. The business cycles

and the trend are thus required to be linearly independent; otherwise, the results

would be ambiguous. Compared with other filters, only the wavelet filter is able

to undertake this task. Given its attractive properties, we believe that the wavelet

filter is a useful filter for isolating different frequency components of data.

Given the lack of an ideal filter as a benchmark, we use a Monte Carlo simulation

to evaluate the wavelet filter and other filters when applying them to time series

to extract business cycles or trends. These other filters consist of the Hodrick-

Prescott filter, the Baxter-King bandpass filter, the digital butterworth filter and

the Christiano-Fitzgerald bandpass filter. The results from the simulation indicate

that the Baxter-King bandpass filter performs best with annual data, the wavelet

filter with quarterly data and the digital butterworth filter with monthly data when

extracting business cycles. For the purpose of extracting the trend, the Baxter-King

bandpass filter outperforms the other filters with annual and quarterly data, and

the digital butterworth filter is the optimal choice for monthly data. The Hodrick-

Prescott filter is a detrending filter because its filtered data contain both business

cycles and noise. Furthermore, the data at the end of an economic time series are

important to the current analysis. Consequently, good processed data are needed at

the end. However, the first K and the last K data are not processed in the Baxter-

King bandpass filter.2 Because of strong deviations at the end of the filtered data

in the digital butterworth filter, it is recommended that these data be discarded.

However, this issue does not arise for the wavelet filter. Overall, the wavelet filter is

a good alternative filter for extracting the components of interest, particularly for

business cycles from quarterly data.

1.3 No Contagion, Only Interdependence

In this chapter, we distinguish contagion from interdependence. A shock to one

market typically imposes a negative effect and may even cause a crisis in other

markets. The concept of contagion is used to describe the spreading of a shock

to other markets. There is consensus that a new transmission mechanism through

2The width of the Baxter-King bandpass filter is 2K + 1.
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which a shock propagates across markets should be built during a crisis period in

the presence of contagion. However, such a shock can also use a normal transmis-

sion mechanism to spread across markets because markets have become increasingly

interdependent as globalisation increasingly occurs. Consequently, there is a de-

bate as to whether a shock spreads across markets through a normal transmission

mechanism or through a new transmission mechanism. This debate is similar to

the debate regarding whether the spreading of a crisis across markets is contagion

or just interdependence. It is therefore worth distinguishing between contagion and

interdependence. Policy measures may be proposed to isolate a crisis in the case

of contagion, whereas it is nearly impossible to eliminate the negative effects from

a crisis in other markets as a result of interdependence because interdependence

always exists in both tranquil and crisis periods.

In past empirical papers, a significant increase in linkages between a shock-hit mar-

ket and other markets indicated the presence of contagion. However, this widely used

concept of contagion is difficult to distinguish from interdependence. As Fratzscher

(2003) notes, contagion is defined identical to financial interdependence in many

early works. Consequently, it is necessary to propose a more precise definition of

contagion.

Generally, a shock to one specific market propagates across other markets through

two channels. These channels are trade linkages (or real linkages), which are esti-

mated based on macroeconomic fundamentals such as trade or international business

cycles, and financial linkages, which are estimated based on financial fundamentals.

Some empirical works show that financial linkages outperform trade linkages and

are able to explain many phenomena, such as the near simultaneity of a crisis in

different markets.

Financial linkages are typically estimated using the following logic. Traders hold

multiple assets in a broad range of markets. When a crisis erupts in a market, assets

in the shock-hit market are devalued too substantially to satisfy marginal calls or

to meet traders’ liquidity requirements. These assets are difficult to sell because

few traders are willing to accept assets whose prices have collapsed given the lemon

problem.3 Even when such assets are sold, the funds may be too small to satisfy

requirements, and other assets in traders’ portfolios must therefore be sold. In sum,

traders sell the assets of other markets short to meet their personal needs (e.g., to

manage risks or minimise losses). Such a shock propagates across markets during

3This problem is proposed by Akerlof (1970). Due to information asymmetry which indicates
that seller knows more about a product than the buyer, the buyer is willing to pay for it only the
price of a product of known average quality. Accordingly, the good product is withdrawn and only
the bad product exists in the market.
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this process. As suggested by Kaminsky et al. (2003), traders act rapidly. These

behaviours are consistent with the argument of Moser (2003), when traders respond

to a shock in the financial markets, asset prices are immediately corrected.

Consequently, the short-run relationships among markets substantially increase in

the presence of contagion, which is consistent with the following proposal by Bekaert

et al. (2005): contagion is a correlation between markets that is higher than the

correlation accounted for by economic fundamentals. These relationships facilitate

a more precise definition of contagion, and we therefore make a slight adjustment to

the traditionally used definition in empirical works. “Contagion” occurs when the

short-run relationships among markets increase significantly from tranquil periods

to crisis periods.

In this chapter, we use the 1997 Asian crisis as an example to test our methodol-

ogy.4 Because a high-frequency relationship is classified as a short-run relationship,

we use wavelets to orthogonally decompose 27 representative global markets’ daily

stock-return data series from 1996.1 to 1997.12 using a small time scale that is as-

sociated with high frequencies.5 Given the number of monthly economic indicators

that reflect economic fundamentals that are closely watched in financial markets, es-

pecially after the outbreak of a crisis, economic fundamentals appear to be relatively

stable across a month. Accordingly, the short run is defined as “no greater than one

month” for our purposes in this chapter. The fifth level decomposed by wavelets

corresponds to a frequency interval of (π/32, π/16], which is associated with a time

interval of [32, 64) days, which is slightly more than one month. Because this time

series is associated with the longest time interval in the first five decomposed levels,

it is decomposed into only five levels using wavelets. By definition, the time periods

associated with the first five levels are linked to the “short run”.

The simple correlation coefficients that are traditionally used to investigate con-

tagion are biased because they are conditional on market volatility (Forbes and

Rigobon (2002)). In addition, these coefficients measure only static relationships

and thus are not appropriate for describing time-varying relationships during cri-

sis periods. Consequently, a bivariate GARCH model (BEKK model, named after

Baba, Engle, Kraft and Kroner, 1990) is used to generate conditional correlations.

4Kaminsky et al. (2003) indicate that the Asian crisis in 1997 was unanticipated. In the sam-
ple, the “fast and furious” actions of traders to the shock should induce the significant increases
in short-run relationships between the shock-hit market and other markets, in the presence of
contagion. Accordingly, the 1997 Asian crisis is a good example to illustrate the application of our
methodology.

5Stock market rationally reflects economic fundamental values. Thus, stock market index is
applied to investigate cross-market comovements. To investigate financial contagion, we should
generate short-run relationships among markets. Because wavelets are able to achieve this aim, we
use financial contagion to illustrate our methodology.
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Because a lag effect from the shock on other markets may arise and because condi-

tional correlations only reflect pair-wise contemporaneous correlations, a Granger-

causality methodology is used to estimate pair-wise lead-lag relationships. Following

the application of wavelets to 27 representative global markets’ daily stock-return

data series, the bivariate VAR-BEKK(1, 1, 1) model and the Granger-causality test

are used on the 27 subseries of stock returns at each level to generate short-run pair-

wise contemporaneous correlations and lead-lag relationships between the shock-hit

market and other markets, respectively, both of which are involved in short-run

relationships. The empirical evidence reveals no significant increase in interdepen-

dence during the financial crisis; contagion is merely an illusion of interdependence.

Moreover, the evidence explains the phenomenon in which major negative events

in global markets began to occur one month after the outbreak of the crisis. In

addition, the view of contagion as regional is not supported.

1.4 Stock Prices and Liquidity in the U.S. Stock

Market

In the fifth chapter, we use tick-by-tick S&P 500 index futures price data to discover

how scheduled macroeconomic news announcements affect the U.S. stock market

and how the behaviour of market participants varies over the business cycle. This

study reveals how information contained in news announcements spreads in financial

markets, which is an important topic in financial economics.

In comparison with a number of papers studying macroeconomic news announce-

ments and the responses of financial markets, this chapter primarily makes four

contributions. First, to the best of our knowledge, this paper is the first to examine

the effects of news announcements on the stock market using high-frequency (tick-

by-tick) data, whereas previous papers have used low-frequency and high-frequency

data to investigate this effect on the Treasury bond and foreign exchange markets

and have examined this effect on the stock market using low-frequency data.

Second, news announcements generate immediate and eventual effects on the

stock market. Some papers propose that the information contained in news an-

nouncements is incorporated into asset prices immediately, such that a sharp and

instantaneous price change occurs at the time of news release. However, the implicit

information from a news announcement is not fully learned during this process. Mar-

ket participants need to adjust their initial analyses of news announcements after

observing the market’s performance. The subsequent adjustment of prices induces

significant and persistent increases in price volatility and trading volume. These
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two effects are measured by price volatility and trading volume using one- and five-

minute intervals, respectively.

Naturally, two questions arise as to which announcements immediately affect the

stock price and which announcements eventually affect the stock price. To address

the first question, we regress one-minute price changes on announcement surprises,

as measured by the level of surprise in the news. Regarding the second question,

previous papers use an OLS regression model of static price changes on announce-

ment surprises to examine which announcements impose an eventual effect and the

duration of that effect in financial markets. The static price changes are constructed

by fixing the time before the announcement and shifting the examined time after

the announcement. The largest time interval over which a price change is signifi-

cantly affected by a news announcement indicates the market’s response until that

time. However, these results are not consistent with the results in many papers

using price volatility, which persists over a longer time period. This issue stems

from static changes in prices, which cannot fully reflect the eventual effect of a news

announcement on the market. By contrast, wavelet-scale price changes can reveal

this effect. Moreover, they maintain jumps in asset prices which are caused by news

announcements (Andersen et al. (2003)). These data are regressed on announce-

ment surprises to answer the second question. Because wavelet-scale price changes

on different time scales are mutually orthogonal, which implies that they are lin-

early independent, the combination of estimation results from the OLS regression

models of static and wavelet-scale price changes provides the time profile for a news

announcement’s effect on stock prices.

Third, it is of interest to examine the stability of the market’s response over

various stages of the business cycle. The same type of news is sometimes considered

to be a positive signal for the economy during certain states of the business cycle and

a negative signal for the economy during other states. Thus, the market responds

in various ways. We study the different responses of the stock market to news

announcements over various stages of the business cycle. In contrast to McQueen

and Roley (1993), who investigate this question using daily stock price data, this

chapter uses high-frequency data to investigate this issue.

Fourth, we examine the so-called “calm before the storm” effect on the stock mar-

ket. Price volatility and trading volume decline before news announcements because

market participants generally withdraw from the market prior to announcements to

avoid the high risks that these announcements bring. Jones et al. (1998) find that

this effect can be observed in the days prior to such announcements. We are deeply

sceptical of this finding because the effect of news announcements in financial mar-
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kets does not persist over the course of a day, as reported in a number of past papers.

Consequently, in this chapter, we use high-frequency data to clarify this effect.

The following results are presented in this chapter. The arrival of scheduled

macroeconomic announcements in the U.S. stock market leads to a two-stage ad-

justment process for prices and trading transactions. In a brief initial stage, the

release of a news announcement induces a sharp and nearly instantaneous price

change as well as a rise in the number of trading transactions. In a prolonged sec-

ond stage, the release causes significant and persistent increases in price volatility

and trading transactions within approximately one hour. After allowing for different

stages of the business cycle, we demonstrate that the release of a news announcement

induces larger immediate price changes per interval during an expansion period com-

pared with more immediate price changes per interval during a contraction period

as prices shift from the old equilibrium to the approximate new equilibrium. The

announcement causes smaller subsequent adjustments of stock prices along with a

lower number of trading transactions across a shorter time span during a contraction

period as the information contained in the news announcement is fully incorporated

into stock prices. These findings imply that markets are more efficient during con-

traction periods. We use a static analysis to investigate the immediate effects of

news announcements on prices and adopt a wavelet analysis to examine their even-

tual effects on prices. The evidence shows that only 6 of 17 announcements have

a significant immediate effect, but all announcements have an eventual effect over

different time periods. The combination of the results of both analyses provides

us with a time profile for the effect of each type of news announcement on stock

prices and reveals that the effect is significant within approximately one hour but

dissipates after one day. The “calm before the storm” effect is observed only a few

minutes prior to announcements.

This thesis is organised as follows. Chapter 2 illustrates wavelet theory and litera-

ture review. Chapter 3 uses wavelets to extract business cycles or detrend. Chapter 4

investigates financial contagion based on wavelet analysis. Chapter 5 examines U.S.

stock market’s response to economic news across the business cycle. The conclusion

of this thesis is shown in chapter 6.
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Chapter 2

Wavelet Theory and Literature

Review

2.1 Introduction

One of the first steps involved in empirical work is to collect data. However, the

required frequency of observations is often unavailable because it is expensive or

impossible to collect data in the required frequency. Furthermore, there is no reason

to believe that data collected in the required frequency would be able to fully capture

the movement of the economy. The solution to this problem is a mathematical

method referred to as temporal aggregation. The implicit assumption of this method

is that the underlying stochastic process in continuous time is observed in discrete

intervals. When the required frequency of observations is not available, temporal

aggregation is applied to obtain the ideal frequency of data.

For example, how can weekly data be generated from daily data? The simplest

method is to sum or average all daily data within the same week. Recently, the

model-free measurement of volatility from high-frequency financial data has received

much attention (Andersen et al. (2003), Brownlees and Gallo (2006)). One approved

measurement is realised volatility (RV), which is an estimator of integral (e.g., daily)

volatility as the sum of squared intraday returns (Zhang et al. (2005), Bandi and

Russell (2006, 2008, 2011)). These two applications of temporal aggregation are

useful when the frequency of the required data is lower than that of the collected

data.

To obtain the appropriate frequency of data, the required data are obtained by

averaging the more frequently collected data over time. The moving average, which

is a prevalent means of smoothing a time series, smooths out short-term fluctuations

and highlights the long-term trend or cycles. The trend of a time series may be
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meaningful for researchers and policymakers, and the residuals or deviations of this

time series as noise may be worthless. A moving average or sum is often applied to

the technical analysis of financial data (e.g., stock prices and trading volumes) and

is used in economics to examine the gross domestic product, money stock and other

macroeconomic data.6 In filter theory, a moving average is a type of lowpass filter

that averages time series.

Similar to generating weekly data from daily data, it is natural to consider how

to estimate daily data from weekly data. Although there is no method to estimate

these data precisely, the simplest approximation involves using the average changes

in adjacent weekly data, which implies that the averages of the differences in weekly

data are the daily data. Because there is no apparent difference between the daily

data within the same week, this approach is rather coarse. Another relative example

is the return, which is generated by subtracting the previous price from the current

price. The intuition regarding these two examples is that of a moving difference,

which is frequently adopted to stationarise a time series. In filter theory, a moving

difference is a type of highpass filter that selects residuals or deviations that are

important for regression analysis while discarding the other components.

In conclusion, we briefly introduce the moving average and moving difference,

which are types of lowpass filter and highpass filters, respectively, in filter the-

ory. From the frequency domain theory perspective, the lowpass filter is defined as

preserving low-frequency components and abandoning high-frequency components,

whereas the highpass filter has a reverse effect on time series and only conserves

high-frequency components. Generally, the two filters are particular types of band-

pass filters that pass components with frequencies within a certain range and reject

those with frequencies outside of that range. Bandpass filters have been widely used

in the business cycle literature for many years (Canova (1998), Baxter and King

(1999), Pollock (2000), Gomez (2001), Christiano and Fitzgerald (2003), Iacobucci

and Noullez (2005), Estrella (2007)).

During the last two decades, wavelets have been gradually adopted in the eco-

nomics and finance fields. Unlike other filters, for which amplitudes preserve only

the frequency properties of data while discarding the temporal properties, the ampli-

tudes of wavelets retain both properties. Moreover, wavelets produce an orthogonal

decomposition of economic and financial variables by time scale, which is closely

6For stock data and flow data, a moving average and a moving sum, respectively, convert
high-frequency data into lower-frequency data. For example, quarterly money stock as stock data
and quarterly GDP as flow data are the results of taking the averages and sums, respectively, of
successive sets of three monthly data points.
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related to the frequency and time horizon.7 As suggested by Ramsey and Lampart

(1998a,b), the structure of decisions, the strength of relationships and the relative

variables differ by time scale. Accordingly, some economics and finance issues are

difficult to solve using conventional econometric models, which consider only the

temporal properties of data. The orthogonal property of wavelets provides new in-

sights into phenomena and solves some issues that have been ignored or that could

not be addressed in the past. Finally, wavelet analysis has a local nature and is

thus more useful for detecting structural break or jumps in data. On the contrary,

Fourier analysis, which is traditionally used to capture the frequency properties of

data, has a global nature and is thus inappropriate for studying issues that include

local episodes. Consequently, wavelets have attracted the attention of economists in

recent years.
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Figure 2.1: Squared gain functions for Haar (2) wavelet and scaling filters. The dotted
line marks the frequency ω = π/2 radians per second, which is the lower (upper) end of
the nominal passband for the wavelet (scaling) filters.

In wavelet theory, there are two different types of filters: a lowpass filter (called

a scaling filter) and a highpass filter (called a wavelet filter). The scaling filter

eliminates components that lie within high-frequency bands and retains others,

whereas the wavelet filter has a reverse effect, eliminating components that lie in

low-frequency bands and preserving components in high-frequency bands. Figure

[2.1] depicts the squared gain functions of Haar (2) scaling and wavelet filters, with

the number in parentheses indicating the width of the filter.8 The dotted line at the

frequency value of π/2 radians per sample interval indicates the boundary between

pass bands and stop bands. As shown, the scaling filter maintains the components

7Orthogonality implies that different frequency components are linearly independent and thus
simplifies some economic issues.

8Haar wavelets, as the first and simplest wavelets, were proposed by Haar in 1909. The coef-
ficients of the Haar (2) scaling filter are g0 = 1/

√
2 and g1 = 1/

√
2, while the coefficients of the

Haar (2) wavelet filter are h0 = 1/
√

2 and h1 = −1/
√

2.
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that lie in low frequencies, whereas the wavelet filter retains the components that

lie in high frequencies.

Consider Haar (2) wavelets. Suppose that there is a data sequence of 8 points

(Y = [y0, y1, · · · , y7]′); the moving average and the moving difference applied to this

sequence can be achieved through matrix notation. In accordance with the 8-point

size of the sample, the scaling filter (g0 = 1/
√

2, g1 = 1/
√

2) constitutes a 8 × 8

matrix G, which is represented by the following:

G =



g0 0 0 0 0 0 0 g1

g1 g0 0 0 0 0 0 0

0 g1 g0 0 0 0 0 0

0 0 g1 g0 0 0 0 0

0 0 0 g1 g0 0 0 0

0 0 0 0 g1 g0 0 0

0 0 0 0 0 g1 g0 0

0 0 0 0 0 0 g1 g0


. (2.1)

Correspondingly, the wavelet filter (h0 = 1/
√

2, h1 = −1/
√

2) constructs a 8× 8

matrix H, which is expressed by the following:

H =



h0 0 0 0 0 0 0 h1

h1 h0 0 0 0 0 0 0

0 h1 h0 0 0 0 0 0

0 0 h1 h0 0 0 0 0

0 0 0 h1 h0 0 0 0

0 0 0 0 h1 h0 0 0

0 0 0 0 0 h1 h0 0

0 0 0 0 0 0 h1 h0


. (2.2)

To implement the moving average and the moving difference using the Haar (2)

wavelet, the downsampling matrix V = Λ′ = [e0, e2, · · · , eT−2]′ is required. This

matrix is estimated by deleting alternate rows of the identity matrix IT (IT =

[e0, e1, · · · , eT−2, eT−1]) of order T . The result of V H or V G is a matrix in which the

elements of H or G in odd-numbered rows are eliminated. This process is known

as downsampling. In correspondence with downsampling, upsampling inserts zeros

into alternate rows of a matrix, which is operated by Λ. Consequently, the result of

ΛV H or ΛV G is a matrix in which the elements in odd-numbered rows are zeros.

The moving averages and moving differences of the data sequence are both equiv-
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alent to the first stage of the Haar discrete wavelet transform. From the matrix

notation perspective, this stage is expressed by the following:

[
α

β

]
=

[
V H

V G

]
Y = QY =



h0 0 0 0 0 0 0 h1

0 h1 h0 0 0 0 0 0

0 0 0 h1 h0 0 0 0

0 0 0 0 0 h1 h0 0

g0 0 0 0 0 0 0 g1

0 g1 g0 0 0 0 0 0

0 0 0 g1 g0 0 0 0

0 0 0 0 0 g1 g0 0





y0

y1

y2

y3

y4

y5

y6

y7


, (2.3)

where the column vector α is constructed using the amplitude coefficients of the

wavelet filter and the column vector β is constructed using the amplitude coefficients

of the scaling filter. Thus,

α = V HY =


h0y0 + h1y7

h1y1 + h0y2

h1y3 + h0y4

h1y5 + h0y6

 =
1√
2


y0 − y7

y2 − y1

y4 − y3

y6 − y5

 , (2.4)

β = V GY =


g0y0 + g1y7

g1y1 + g0y2

g1y3 + g0y4

g1y5 + g0y6

 =
1√
2


y0 + y7

y1 + y2

y3 + y4

y5 + y6

 . (2.5)

It is not difficult to discover that the amplitude coefficients (α) of the wavelet filter

are the results of a moving difference of the data sequence, while the amplitude

coefficients (β) of the scaling filter are identical to the results of a moving average.

It is easily confirmed that the matrix Q is an orthonormal matrix in which QQ′ =

Q′Q = I. Consequently, the vector Y can be synthesised by the vectors α and β as

follows:

Y = Q′

[
α

β

]
=

[
V H

V G

]′ [
α

β

]
= H ′Λα +G′Λβ = H ′ΛV HY +G′ΛV GY. (2.6)
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Normally, it is preferable to refer to H ′Λα = w1 and G′Λβ = v1. Thus,

Y = w1 + v1, (2.7)

where the vector w1 comprises high-frequency components of the data sequence

and the vector v1 contains low-frequency components. The vector w1 is mutually

orthogonal with v1, as demonstrated subsequently. The relationship between w1

and v1 indicates that the corresponding components are also orthogonal. This sim-

ple MRA (multiresolution analysis) method separates each component of a data

sequence into an individual frequency band for analysis. This type of analysis is an

ideal method of studying a complex data sequence. It is widely accepted that the

characteristics or relationships of economic or financial variables vary over frequen-

cies, as verified by a number of studies. Accordingly, it is reasonable and efficient

to study the variables in corresponding frequencies and then to identify which re-

sults are more convincing. For example, when one studies data that exhibit cyclical

behaviour and/or that are affected by seasonal effects, it is preferable to remove sea-

sonal components to estimate trend or residuals which are useful to capture some

information, because seasonal effects can veil both the true underlying movement

in the series and particular non-seasonal characteristics in which analysts may be

interested.

However, economics or financial variables undoubtedly evolve over time; thus, the

time-domain methods and/or models have dominated economics and finance studies

for many years. Consequently, the temporal and frequency properties of data are

important. Because wavelet analysis considers both the time and frequency domains,

this type of MRA is an excellent method for solving issues that are simultaneously

related to time and frequency.

2.2 Wavelet Analysis

The above introduction to wavelets is the first stage of a dyadic decomposition. In

fact, the data sequence could be decomposed further, depending on its length. More-

over, many other filters in wavelet theory are more advanced than Haar wavelets,

such as Daubechies wavelets or Morlet wavelets, which also belong to bandpass fil-

ters.9 Because the use of wavelets can clearly improve our work, it is important to

learn about them and apply them to the fields of economics and finance. First, we

introduce wavelet theory in detail below.

9Wavelets are generated by imposing additional constraints on a wavelet filter which will be
introduced in the below sections. The Daubechies wavelets are discussed in detail in the appendix.
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2.2.1 Wavelets

Wavelets literally mean small waves because they have finite length and are oscil-

latory. Wavelets on finite support begin at a certain point in time and then die

out subsequently. The localised nature of wavelets enables them to be used in the

analysis of episodic variations in the frequency composition of data, and they are

thus referred to as a “mathematical microscope”. There are two different func-

tions in wavelet theory: a wavelet function (ψ(t)) and a scaling function (φ(t)). By

definition, the wavelet function ψ0(t) should satisfy the following two conditions:

1 :

∫ +∞

−∞
ψ0(t) dt = 0, (2.8)

2 :

∫ +∞

−∞
ψ0(t− k)ψ0(t− j) dt =


1 if k = j

0 if k 6= j

. (2.9)

The scaling function φ0(t) also should fulfil two conditions:

1 :

∫ +∞

−∞
φ0(t) dt = 1, (2.10)

2 :

∫ +∞

−∞
φ0(t− k)φ0(t− j) dt =


1 if k = j

0 if k 6= j

, (2.11)

where condition 2 of the wavelet and scaling functions guarantees that each is an

orthonormal function.10

Suppose that there is a space V0. Under wavelet analysis, this space can be

decomposed orthogonally into many different subspaces: W1, W2, W3,· · · . More

precisely, the space V0, which is in the range of frequencies [0, π], is decomposed

orthogonally into two subspaces W1 and V1, which correspond to the frequency

bands (π/2, π] and [0, π/2], respectively. Because subspacesW1 and V1 are mutually

orthogonal, the sum of W1 and V1 is V0: W1 ⊕ V1 = V0. V1 is then decomposed

into two mutually orthogonal subspacesW2 and V2, which belong to the frequencies

(π/4, π/2] and [0, π/4]. We repeat this process of decomposing the space of scaling

functions J times. Finally, we obtain the Jth subspacesWJ and VJ . This algorithm,

known as the Pyramid Algorithm, reduces computation and improves efficiency.

10The subscript represents the decomposed level. The details are introduced as follows.
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Because subspaces at the same level are mutually orthogonal, the algorithm may be

expressed as follows from a mathematical perspective:

V0 =W1 ⊕ V1

=W1 ⊕W2 ⊕ V2

...

=W1 ⊕W2 ⊕W3 ⊕ · · · ⊕ VJ ,

(2.12)

Wj and Vj are mutually orthogonal, which may be expressed as “Wj⊥Vj” and

is known as “lateral orthogonal”. Wj and Wk (j 6= k) are mutually orthogonal,

expressed as “Wj⊥Wk” as well and known as “sequential orthogonal”. However,

Vj and Vk (j 6= k) are not mutually orthogonal. In sum, the scaling subspace Vj
is not orthogonal across scales; orthogonality across scales comes from the wavelet

subspace Wj. Here, j (1 6 j 6 J) is called the decomposed level and is related to

scale (2j−1), which is the inverse of the frequency band ((π/2j, π/2j−1]) for wavelet

subspace Wj.

For a function f(t) (t = 0, · · · , T−1, where T = 2J) in V0, the projection of f(t) in

W1 is ∆f1(t), and the projection of f(t) in V1 is f1(t). Because V0 =W1⊕V1, f(t) =

∆f1(t) + f1(t). Given the Pyramid Algorithm, f(t) could be a linear combination of

∆fj(t) (1 6 j 6 J) and fJ(t): f(t) =
∑J

j=1 ∆fj(t) + fJ(t). This approach is defined

as multiresolution analysis (MRA). Note that the scaling function φj(t) constitutes

an orthonormal basis of subspace Vj, whereas the wavelet function ψj(t) constructs

an orthonormal basis of subspace Wj. Therefore, fj(t) can be approximated by

φj(t), and ∆fj(t) can be expressed by ψj(t). To clarify these functions, the first

necessary step is to introduce the scaling function φj(t) and the wavelet function

ψj(t) in the following subsections.

2.2.2 The Dilation Equation

In subspace V1 ∈ V0, V1 is spanned by the basis scaling function φ1(t), whereas V0

is constituted by the basis scaling function φ0(t); therefore, these two functions are

related. This relationship may be expressed as follows:

φ1(t) = 2−1/2φ0(2−1t). (2.13)

Generally, the adjacent level scaling functions also have this relationship. φ2(t) =

2−1/2φ1(2−1t), and φ1(t) is replaced by φ0(t) according to Equation (2.13): φ2(t) =

2−2/2φ0(2−2t). By recursion of this procedure, the general version of the scaling
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function φj(t) can be achieved by the following:

φj(t) = 2−j/2φ0(2−jt). (2.14)

Because subspace V1 is half of V0, the time rate in the scaling function φ1(t) is also

halved and is equal to 2−1t. The factor 2−1/2 on the RHS of Equation (2.13) leads

the scaling function φ1(t) to fulfil condition 2 in Equation (2.11) because∫
φ2

1(t) dt = 2−1

∫
φ2

0(2−1t) dt = 2−1

∫
φ2

0(τ)2 dτ = 1, (2.15)

where τ = 2−1t. It is not difficult to infer that condition 2 is valid for all scaling

functions φj(t) (0 6 j 6 J).

Equation (2.13) could also be written as follows:

φ0(t) = 21/2φ1(2t). (2.16)

Normally, we prefer the latter expression. φ1(t) is the dilated version of φ0(t), and

its translated version is φ1(t − k), which is a function of the orthonormal basis of

V1. Consequently, φ1(t − k) = 2−1/2φ0(2−1t − k), which is called the dilated and

translated version of φ0(t). The general version of the scaling function is as follows:

φj,k = 2−j/2φ0(2−jt− k), k = 0, · · · , T
2j
− 1. (2.17)

The time rate t in the scaling function φ0(t) is from 0 to T − 1 and is now halved in

the scaling function φ1(t), from 0 to (T − 1)/2. The translated function φ1(t − k)

begins at time t = k+0 and ends at time t = k+(T−1)/2. In conclusion, the scaling

function φ0(t− k); k = 0, ..., T − 1 is located at each sample point; alternatively, it

is identical to each scaling function residing within a cell of unit width. During the

first stage of decomposition, there is a wavelet function ψ1,k(t) at every second point;

alternatively, the function is in successive cells of width two, together with a scaling

function φ1,k(t) on alternate points. Generally, at each level of decomposition, the

successions of wavelet functions and scaling functions span the entire sample. More

details will be provided in the following section associated with Figure [2.2].

Because subspace V1 is involved in V0, φ1(t) is an element of the basis of space V0

as well as φ0(t). The elements must be combined as the basis of V0. The appropriate

expression is as follows:

φ1(t) =
∑
k

gkφ0(t+ k) = 21/2
∑
k

gkφ1(2t+ k), (2.18)
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where gk = 〈φ1(t), φ0(t + k)〉 =
∫∞
−∞ φ1(t)φ0(t + k) dt, which is known as a scaling

filter. Equation (2.18) is referred to as the Dilation Equation.11 Corresponding with

the scaling function satisfying two conditions, the scaling filter should fulfil three

conditions. First, the sum of gk is
√

2 because∫
φ1(t) dt = 2−1/2

∫
φ0(2−1t) dt = 2−1/2 · 2

∫
φ0(τ) dτ =

√
2, (2.19)

where τ = 2−1t, and∫
φ1(t) dt =

∫ ∑
gkφ0(t+ k) dt =

∑
gk

∫
φ0(t+ k) dt =

∑
gk. (2.20)

Thus,
∑
gk =

√
2. Second, the sum of gk squared is one because∫

φ2
1(t) dt =

∫ ∑
g2
kφ

2
0(t+ k) dt =

∑
g2
k, (2.21)

according to Equation (2.15):
∫
φ2

1(t) dt = 1,
∑
g2
k = 1. Because the integral of any

scaling function φj(t) squared is equal to one,
∑
g2
k = 1 is the condition applied to

all scaling functions.

A more important condition that guarantees orthogonality is
∑

k gkgk+2m = 0,

which is derived from condition 2 in Equation (2.11). Because
∫
t
φ1(t)φ1(t−m) dt = 0

(m 6= 0) and
∫
t
φ1(t)φ1(t) dt = 1 (m = 0), in accordance with the Dilation Equation,

we obtain the following:∫
t

φ1(t)φ1(t−m) dt =

∫
t

∑
k

∑
j

gkgjφ0(t+ k)φ0(t−m+ j) dt

= 2

∫
t

∑
k

∑
j

gkgjφ1(2t+ k)φ1(2(t−m) + j) dt

= 0.

(2.22)

If k = j − 2m, then Equation (2.22) is written as follows:

2
∑
k

gkgk+2m

∫
t

φ1(2t+ k)φ1(2t+ k)dt =
∑
k

gkgk+2m = 0. (2.23)

If k 6= j − 2m, then Equation (2.22) is expressed as follows:

2

∫
t

∑
k

∑
j

gkgjφ1(2t+ k)φ1(2t+ j − 2m) dt =
∑
k

∑
j

gkgj · 0 = 0, (2.24)

11The Dilation and Wavelet Equations are summarised in Strang (1989).
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where 2
∫
φ1(2t + k)φ1(2t + j − 2m) dt = 0, which is the second condition that the

scaling function must fulfil. Consequently,
∑

k gkgk+2m = 0 (m 6= 0) is obtained

from the combination of two results. We refer to the equations
∑

k g
2
k = 1 and∑

k gkgk+2m = 0 (m 6= 0) collectively as the orthonormal properties of the scaling

filter.

2.2.3 The Wavelet Equation

The relationship among the adjacent level wavelet functions corresponds to the

relationship between the adjacent level scaling functions. Consequently, the wavelet

function ψj at level j is expressed as follows:

ψj = 2−j/2ψ0(2−jt). (2.25)

A dilated and translated version of the wavelet function is the following:

ψj,k = 2−j/2ψ0(2−jt− k), k = 0, · · · , T
2j
− 1, (2.26)

which constitutes the orthonormal basis of the wavelet subspace Wj. Because the

wavelet function ψ1(t) constitutes the basis of W1 and because W1 is involved in

V0, it is possible to express the wavelet function ψ1(t) as a linear combination of the

elements of the basis of V0. The appropriate expression is the following:

ψ1(t) =
∑
k

hkφ0(t+ k) = 21/2
∑
k

hkφ1(2t+ k), (2.27)

where hk is called a wavelet filter and hk = 〈ψ1(t), φ0(t+k)〉 =
∫∞
−∞ ψ1(t)φ0(t+k) dt.

Equation (2.27) is referred to as the Wavelet Equation.

The expression of the wavelet filter hk in Equation (2.27) is similar to that of

the scaling filter gk in Equation (2.18). The difference is that φ1(t) is replaced by

ψ1(t). Because condition 2 in Equations (2.9) and (2.11) is always valid for wavelet

functions and scaling functions, respectively, the wavelet filter hk also fulfils two

conditions:
∑
h2
k = 1 and

∑
hkhk+2m = 0 (m 6= 0), as was the case with the

scaling filter gk. Furthermore, ψ1(t) =
∑
hkφ0(t + k), and the integral of scaling

function φ0(t) is one; thus,
∫
t
ψ1(t) dt =

∫
t

∑
hkφ0(t + k) dt =

∑
hk. Because∫

t
ψ1(t) dt =

∫
t
2−1/2ψ0(2−1t) dt = 0,

∑
hk = 0.

In conclusion, the wavelet filter hk and the scaling filter gk should satisfy the three
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conditions below:∑
hk = 0,

∑
h2
k = 1,

∑
hkhk+2m = 0 (m 6= 0),∑

gk =
√

2,
∑

g2
k = 1,

∑
gkgk+2m = 0 (m 6= 0),

(2.28)

which guarantee that the wavelet function or the scaling function is orthogonal to

itself at different displacements, and these functions construct the orthonormal basis

of subspace Wj or Vj.
Another condition for estimating the mutual orthogonality of Wj and Vj is the

following:

∑
k
gkhk+2m = 0 (m 6= 0), (2.29)

which restricts the scaling function φj(t) of the basis of Vj and the wavelet function

ψj(t − m) of the basis of Wj; those at different displacements will be mutually

orthogonal.

Another condition is imposed to guarantee that the scaling function φj(t) and the

wavelet function ψj(t) will be mutually orthogonal at the same displacement level.

This condition is described as follows:

∑
k
gkhk = 0. (2.30)

Generally, there is a relationship between the scaling filter and the wavelet filter:

gk = (−1)k+1hL−k−1, (2.31)

and the inverse relationship is as follows:

hk = (−1)kgL−k−1, (2.32)

where L, the width of filter, must be even. {gk} is referred to as the “quadrature

mirror filter” (QMF), corresponding to {hk}. The scaling filter gk is a lowpass filter

that retains only the low-frequency components of the signal, whereas the wavelet

filter hk is a highpass filter that preserves only the high-frequency components.

2.2.4 The Decomposition of a Function in Space V0

As noted earlier in the paper, a space V0 can be decomposed orthogonally into two

subspaces W1 and V1, whose bases are constructed by the wavelet function ψ1(t)

and the scaling function φ1(t), respectively. One consequence is that a continuous

23



function f(t) that belongs to the space V0 can be decomposed into elements for the

subspaces W1 and V1, respectively. It follows that

f(t) = f1(t) + ∆f1(t), (2.33)

where f1(t) is the projection of f(t) on the subspace V1 and ∆f1(t) is the projection

of f(t) on the subspace W1. Because the scaling function φ1(t) and the wavelet

function ψ1(t) constitute the bases of subspaces V1 and W1, respectively, f(t) may

also be decomposed as follows:

f(t) =
∑
k

c1,kφ1,k(t) +
∑
k

d1,kψ1,k(t), (2.34)

where k = 0, 1, · · · , T/2 − 1; c1,k = 〈f(t), φ1,k(t)〉 =
∫∞
−∞ f(t)φ1,k(t) dt; d1,k =

〈f(t), ψ1,k(t)〉 =
∫∞
−∞ f(t)ψ1,k(t) dt; φ1,k(t) = φ1(t − k); and ψ1,k(t) = ψ1(t − k).

Nevertheless, d1,k are the amplitude coefficients of the wavelet function ψ1,k for

the projection of f(t) on the subspace W1, whereas c1,k are the amplitude co-

efficients of the scaling function φ1,k for the projection of f(t) on the subspace

V1. Here,
∑

k c1,kφ1,k(t) = f1(t) and
∑

k d1,kψ1,k(t) = ∆f1(t). In the Pyramid

Algorithm, fj(t) (1 6 j < J) is decomposed as in f(t) until J. For example,

f1(t) =
∑

k c2,kφ2,k(t)+
∑

k d2,kψ2,k(t) = f2(t)+∆f2(t), where k = 0, 1, · · · , T/4−1.

Therefore,

f(t) =
J∑
j=1

∆fj(t) + fJ(t) =
J∑
j=1

∑
k

dj,kψj,k(t) +
∑
k

cJ,kφJ,k(t), (2.35)

where k = 0, 1, · · · , T/2j − 1; dj,k are the amplitude coefficients of the wavelet

function ψj,k(t), dj,k =
∫∞
−∞ f(t)ψj,k dt; and cJ,k are the amplitude coefficients of

the scaling function φJ,k(t), cJ,k =
∫∞
−∞ f(t)φJ,k dt. Note that ∆fj(t) belongs to the

subspace Wj and is thus in the range of frequencies (π/2j, π/2j−1] as well, whereas

fj(t) is located in the subspace Vj and is thus in the frequency interval of [0, π/2j].

2.2.5 Discrete Wavelet Transform

In economics and finance, a time series is regarded as discrete, but the above expres-

sions apply to continuous time. Accordingly, their discrete versions are needed. The

sampling theorem indicates that if there is an upper limit to the frequencies of the

components of a continuous process f(t), then it is possible to convey information

regarding that process via a discrete sample yt, t = 0, · · · , T − 1, provided that
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the sampling is sufficiently rapid.12 f(t) '
∑

k ykφ(t − k): observe that there are

no limits on the index k, i.e., k ∈ (−∞,+∞). In the basic statement of sampling

theorem, φ(t) is a sinc function that has infinite support, but f(t) has the bounded

domain of the entire real line. Thus, the linkage between the LHS and RHS of the

equation is “'”.

The theorem can be adapted to cater to periodic functions or, equally, to the

periodic extension of a function defined on finite support, in which the sinc function

is replaced by a Dirichlet kernel defined on a circle of circumference T (which is the

number of samples obtained from a single cycle of the function). From a mathemat-

ical perspective, the continuous function f(t) is the result of the convolution of a

discrete time series y(t) and a scaling function φ0(t), which is expressed as follows:

f(t) =
T−1∑
t=0

y(τ)φ0(t− τ), (2.36)

where φ0(t) is viewed as a train of the impulse function in the sampling theorem

and y(τ) is the inner production of f(t) and φ0(t − τ): y(τ) = 〈f(t), φ0(t − τ)〉 =∫
t
f(t)φ0(t− τ) dt.

It is already known that the dilation and wavelet equations are

φ1(t) = 21/2
∑
k

gkφ1(2t+ k),

ψ1(t) = 21/2
∑
k

hkφ1(2t+ k).
(2.37)

Any shifted versions of the scaling function φ1(t−m) and wavelet function ψ1(t−m)

are equal to the following:

φ1(t−m) = 21/2
∑

gkφ1(2t− 2m+ k)

= 21/2
∑

gkφ1(2t+ k − 2m)

=
∑

gkφ0(t+ k − 2m), (2.38)

and

ψ1(t−m) = 21/2
∑

hkφ1(2t− 2m+ k)

= 21/2
∑

hkφ1(2t+ k − 2m)

=
∑

hkφ0(t+ k − 2m). (2.39)

12The sampling theorem is demonstrated in the appendix.
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Accordingly, the inner production of f(t) and φ1(t−m) is

〈f(t), φ1(t−m)〉 = 〈f(t),
∑

gkφ0(t+ k − 2m)〉 =
∑

gky2m−k, (2.40)

which can also be explained by the sampling theorem. These coefficients are asso-

ciated with the basic function φ1(t−m).

Similarly, the coefficients associated with the basic function ψ1(t−m) are

〈f(t), ψ1(t−m)〉 = 〈f(t),
∑

hkφ0(t+ k − 2m)〉 =
∑

hky2m−k. (2.41)

Thus, the projection of f(t) on the level-one subspace V1 is

f1(t) = 〈f(t), φ1(t−m)〉φ1(t−m) =
∑

gky2m−kφ1(t−m), (2.42)

whereas the projection of f(t) on the level-one subspace W1 is

∆f1(t) = 〈f(t), ψ1(t−m)〉ψ1(t−m) =
∑

hky2m−kψ1(t−m). (2.43)

The synthesis of f(t) is

f(t) = f1(t) + ∆f1(t) =
∑

gky2m−kφ1(t−m) +
∑

hky2m−kψ1(t−m). (2.44)

Let α1,m denote the coefficients of the level-one wavelet function ψ1(t) and β1,m

denote the coefficients of the level-one scaling function φ1(t). These functions are

α1,m =
T−1∑
k=0

hky2m−k; m = 0, 1, · · · , T/2− 1,

β1,m =
T−1∑
k=0

gky2m−k; m = 0, 1, · · · , T/2− 1,

(2.45)

where T is the length of the data sequence. Because the data sequence is finite, a

problem arises when a filter is applied at the end of the sample and required data

lie beyond the end point. To overcome this problem, the filter can be applied to the

data via a process of circular convolution, thus applying the filter to the periodic

extension of data. Specifically, a data sequence of infinite length that would support

all wavelets could be generated by the periodic extension of the sample. It is more

appropriate to envisage wrapping the data around a circle of circumference T , which

is equal to the number of data points, such that the end of the sample becomes

adjacent to its beginning.
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Another strategy involves applying the periodic extension of the filter to finite

data. The filter is typically supported on an interval of a width that is less than

the length of the data sequence. The filter can be wrapped around the circle of

circumference T , which is identical to the number of data points. If the width of

the filter exceeds the circumference, then it can continue to be wrapped around the

circle, and its overlying ordinates can be added. Thus,

α1,m =
T−1∑
k=0

hky2m−k mod T =
T−1∑
k=0

h2m−k mod Tyk; m = 0, 1, · · · , T/2− 1,

β1,m =
T−1∑
k=0

gky2m−k mod T =
T−1∑
k=0

g2m−k mod Tyk; m = 0, 1, · · · , T/2− 1,

(2.46)

where h2m−k mod T and g2m−k mod T , generated by wrapping h2m−k and g2m−k around

the circle of circumference T , are periodic extensions of the wavelet filter h2m−k and

the scaling filter g2m−k, respectively. Normally, the second strategy is preferred.

The procedure in the second stage is exactly the same as that in the first stage.

The only difference is that yt is replaced by the scaling coefficients β1,m as inputs.

Thus, the coefficients associated with the wavelet filter and the scaling filter, respec-

tively, at the second level are as follows:

α2,m =

T/2−1∑
k=0

h2m−k mod T
2
β1,k; m = 0, 1, · · · , T/4− 1,

β2,m =

T/2−1∑
k=0

g2m−k mod T
2
β1,k; m = 0, 1, · · · , T/4− 1.

(2.47)

The remaining procedures are treated in exactly the same manner as in the first

and second stages. The complete process is more apparent and intuitive when using

matrix notation. Suppose that there is a T -dimensional column vector Y whose tth

element is yt. A T × T orthonormal matrix Ω (ΩΩ′ = IT×T ) defines a T × 1 column

vector α whose elements are wavelet coefficients: α = ΩY . According to a MRA,
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the column vector α could be divided as follows:

α(1) = [α0, α1, · · · , αT
2
−1]′ = [α1,0, α1,1, · · · , α1,T

2
−1]′,

α(2) = [αT
2
, αT

2
+1, · · · , α 3T

4
−1]′ = [α2,0, α2,1, · · · , α2,T

4
−1]′,

...

α(J−1) = [αT−4, αT−3]′ = [αJ−1,0, αJ−1,1]′,

α(J) = [αT−2] = [αJ,0],

β(J) = [αT−1] = [βJ,0],

(2.48)

where only two wavelet coefficients are in the last decomposed level and the last

αT−1 is denoted by β(J). Scaling coefficients accompany the wavelet coefficients;

although the scaling coefficients are not the objective of the analysis, their presence

is necessary to obtain the wavelet coefficients. Therefore, a (T − 2) × 1 column

vector β whose elements are scaling coefficients is introduced, and it is partitioned

as follows:

β(1) = [β1,0, β1,1, · · · , β1,T
2
−1]′,

β(2) = [β2,0, β2,1, · · · , β2,T
4
−1]′,

...

β(J−1) = [βJ−1,0, βJ−1,1]′.

(2.49)

The consequence is that α = [α0, α1, · · · , αT−1]′ =
[
α′(1), α

′
(2), · · · , α′(J), β

′
(J)

]′
. Ac-

cording to the property of orthonormal transform, ΩΩ′ = IT×T , Y = Ω′α. The

partition of α is identical to the following:

Y = Ω′α =
J∑
j=1

Ω′jα(j) + ν ′Jβ(J), (2.50)

where Ωj and νj are portions of the matrix Ω. The T/2× T matrix Ω1 constitutes

the elements of Ω from the k = 0 up to the T/2 − 1 rows, the T/4 × T matrix

Ω2 is formed from the k = T/2 up to 3T/4 − 1 rows, and so forth until the 1 × T
matrices ΩJ and νJ constitute the second-to-last and last row, respectively. In sum,

Ω = [Ω′1,Ω
′
2, · · · ,Ω′J , ν ′J ]′, where Ωj is a T/2j × T matrix for j = 1, · · · , J and νJ

is a T dimensional row vector that is the last row of the matrix Ω. This form of Ω

corresponds to J + 1 portions of the DWT coefficient vector α.

At this point, Ω′jα(j) is defined as wj: wj = Ω′jα(j) for j = 1, · · · , J , which is a T

dimensional column vector whose elements are associated with changes in Y at scale
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2j−1 and is the portion of the synthesis Y = Ω′α attributable to scale 2j−1. ν ′Jβ(J)

is defined as vJ : vJ = ν ′Jβ(J). Thus, Equation (2.50) could be written as follows:

Y = Ω′α =
J∑
j=1

Ω′jα(j) + ν ′Jβ(J) =
J∑
j=1

wj + vJ , (2.51)

which forms a MRA of Y . wj is referred to as the jth level wavelet detail. To clearly

and intuitively demonstrate the discrete wavelet transform using matrix notation,

a simple example is illustrated in which the width of filter L is assumed to be four

and the length of sequence T is eight. In accordance with the first stage of wavelet

decomposition in Equation (2.46), we have the following:

α1,0

α1,1

α1,2

α1,3

β1,0

β1,1

β1,2

β1,3


=



h0 0 0 0 0 h3 h2 h1

h2 h1 h0 0 0 0 0 h3

0 h3 h2 h1 h0 0 0 0

0 0 0 h3 h2 h1 h0 0

g0 0 0 0 0 g3 g2 g1

g2 g1 g0 0 0 0 0 g3

0 g3 g2 g1 g0 0 0 0

0 0 0 g3 g2 g1 g0 0





y0

y1

y2

y3

y4

y5

y6

y7


. (2.52)

This stage actually contains a downsampling process (denote as “↓ 2”) that retains

even-numbered elements and discards odd-numbered elements. Define a 8 by 8

matrix H1 that is constituted by the wavelet filter hk (k = 0, 1, 2, 3):

H1 =



h0 0 0 0 0 h3 h2 h1

h1 h0 0 0 0 0 h3 h2

h2 h1 h0 0 0 0 0 h3

h3 h2 h1 h0 0 0 0 0

0 h3 h2 h1 h0 0 0 0

0 0 h3 h2 h1 h0 0 0

0 0 0 h3 h2 h1 h0 0

0 0 0 0 h3 h2 h1 h0


. (2.53)

In terms of polynomial expression,

H1 = H(K8) = h0K
0
8 + h1K

1
8 + h2K

2
8 + h3K

3
8 , (2.54)

where KT = [e1, e2, · · · , eT−1, e0] is established by shifting the first column of an
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identity matrix (I = [e0, e1, · · · , eT−1]) to the last column. Here, T = 8 is the length

of the original time series, and the polynomial degree 3 (L−1) is determined by the

width of filter (L). The downsampled matrix H1 is the following:

(↓ 2)H1 =


h0 0 0 0 0 h3 h2 h1

h2 h1 h0 0 0 0 0 h3

0 h3 h2 h1 h0 0 0 0

0 0 0 h3 h2 h1 h0 0

 , (2.55)

which also can be expressed as V H1, where V = Λ′ = [e0, e2, · · · , eT−2]′, which is

derived from the identity matrix (I = [e0, e1, · · · , eT−1]) by deleting the alternate

rows.

The scaling filter gk constructs a matrix G1, whose format is the same as that for

H1:

G1 = G(K8) = g0K
0
8 + g1K

1
8 + g2K

2
8 + g3K

3
8 . (2.56)

The first stage of wavelet decomposition by matrix notation can be written as

follows: 

α1,0

α1,1

α1,2

α1,3

β1,0

β1,1

β1,2

β1,3


=

[
V H1

V G1

]



y0

y1

y2

y3

y4

y5

y6

y7


, (2.57)

or [
α(1)

β(1)

]
=

[
V H1

V G1

]
Y. (2.58)

In the second stage of wavelet decomposition, the first-level wavelet coefficients are

preserved. The first-level scaling coefficients as inputs are decomposed into wavelet

coefficients associated with second-level wavelet filter and scaling coefficients asso-
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ciated with the second-level scaling filter. This stage is expressed by the following:

α1,0

α1,1

α1,2

α1,3

α2,0

α2,1

β2,0

β2,1


=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 h0 h3 h2 h1

0 0 0 0 h2 h1 h0 h3

0 0 0 0 g0 g3 g2 g1

0 0 0 0 g2 g1 g0 g3





α1,0

α1,1

α1,2

α1,3

β1,0

β1,1

β1,2

β1,3


, (2.59)

or 
α(1)

α(2)

β(2)

 =


I4×4 04×4

02×4 V H2

02×4 V G2


[
α(1)

β(1)

]
, (2.60)

where both H2 and G2 are 4 by 4 matrices. In terms of polynomial expression, H2 =

H(K4) = h0K
0
4 +h1K

1
4 +h2K

2
4 +h3K

3
4 andG2 = G(K4) = g0K

0
4 +g1K

1
4 +g2K

2
4 +g3K

3
4 ,

where K4 is a 4× 4 matrix that shifts the first column of an identity matrix to the

last column.

In the last round, the inputs of the Pyramid Algorithm are only two pieces of data.

With respect to the two filters of width 4, the consequence is that the precedent

scaling coefficients (inputs) β20 and β21 must be used twice in the last round of

computation. This round is represented by the following

[
α3,0

β3,0

]
=

[
h0 h3 h2 h1

g0 g3 g2 g1

]
β2,0

β2,1

β2,0

β2,1

 . (2.61)

To avoid using β2,0 and β2,1 twice, another expression may apply:[
α3,0

β3,0

]
=

[
h0 + h2 h3 + h1

g0 + g2 g3 + g1

][
β2,0

β2,1

]
. (2.62)

Note that V H3 =
[
h0 + h2 h3 + h1

]
and V G3 =

[
g0 + g2 g3 + g1

]
, where

H3 = H(K2) = h0K
0
2 + h1K

1
2 + h2K

2
2 + h3K

3
2 and G3 = G(K2) = g0K

0
2 + g1K

1
2 +
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g2K
2
2 + g3K

3
2 . Consequently, this expression is represented by the following:[

α3,0

β3,0

]
=

[
V H3

V G3

][
β2,0

β2,1

]
. (2.63)

In conclusion, the wavelet coefficients associated with the jth-level wavelet filter

are written as follows:

α(j) = VjHjVj−1Gj−1 · · ·V1G1Y = ΩjY, (2.64)

and the scaling coefficients associated with the jth-level scaling filter are expressed

by the following:

β(j) = VjGjVj−1Gj−1 · · ·V1G1Y, (2.65)

where Vj = Λ′j = [e0, e2, · · · , eT/2j−1−2]′, which is established by deleting the alternate

rows of an identity matrix (IT/2j−1 = [e0, e1, · · · , eT/2j−1−1]).13 The matrices Hj and

Gj are written in polynomial expressions as follows:

Hj = H(KT/2j−1) = h0K
0
T/2j−1 + h1K

1
T/2j−1 + · · ·+ hL−1K

L−1
T/2j−1 ,

Gj = G(KT/2j−1) = g0K
0
T/2j−1 + g1K

1
T/2j−1 + · · ·+ gL−1K

L−1
T/2j−1 .

(2.66)

It is not difficult to find that

VjHjVj−1Gj−1 · · ·V1G1 = VjVj−1 · · ·V1H(K2j−2
T )G(K2j−4

T ) · · ·G(KT ),

VjGjVj−1Gj−1 · · ·V1G1 = VjVj−1 · · ·V1G(K2j−2
T )G(K2j−4

T ) · · ·G(KT ),
(2.67)

where the jth-level wavelet filter {hj,l} forms the following matrix:

H(K2j−2
T )G(K2j−4

T ) · · ·G(KT ), (2.68)

and the jth-level scaling filter {gj,l} constructs the following matrix:

G(K2j−2
T )G(K2j−4

T ) · · ·G(KT ), (2.69)

in which j is no smaller than 2. If j = 1, the first-level wavelet and scaling fil-

ters correspond to the matrices H(KT ) and G(KT ), respectively. Accordingly, the

13To unify the matrix expression, the matrices V and Λ in the jth decomposed level are rewritten
as Vj and Λj , respectively.
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wavelet amplitudes and the scaling amplitudes are also identical to the following:

α(j) = VjVj−1 · · ·V1H(K2j−2
T )G(K2j−4

T ) · · ·G(KT )Y,

β(j) = VjVj−1 · · ·V1G(K2j−2
T )G(K2j−4

T ) · · ·G(KT )Y.
(2.70)

It is apparent that both the wavelet filter and the scaling filter are involved in the

jth-level wavelet filter because its matrix form contains the scaling filter matrices.

2.2.6 Reconstruction of a Time series Using Wavelet Coef-

ficients

From the previous section, we already know how to estimate the wavelet coefficients

associated with a specific level of wavelet filter; those coefficients can be used to con-

struct wavelet variance, which is in turn used to identify the contribution of variance

in a frequency band to the overall variance. Then attention is devoted to the compo-

nents of the time series within this frequency band. Furthermore, some factors, such

as earthquakes and war, occasionally affect economies and/or financial markets and

produce noise in the data that reveals unusual or insignificant characteristics. As a

result, it is necessary to remove this noise. Typically, when magnitudes of wavelet

coefficients are below the threshold for many methods (Donoho and Johnstone (1994,

1995), Donoho et al. (1995), and Nason (1995)), they are set to zero according to

four rules (Percival and Walden (2000)).14 Subsequently, the zero wavelet coeffi-

cients are combined with the other unaffected wavelet coefficients to generate a new

time series without noise through a recovery process. Eventually, an important task

emerges: to reconstruct a time series using wavelet coefficients.

As introduced earlier in the paper, the process of generating wavelet coefficients

compromises downsampling: the odd-numbered elements of the time series are dis-

carded, and only the even-numbered elements are preserved. To recover the original

time series, we do not need two full-length signals to replace one. It is not desirable

to double the volume of data. The information is not doubled: the outputs from the

two filters must be redundant. Consequently, another process, which is known as

upsampling, is needed. This operation inserts zeros between each element to ensure

that the odd-numbered elements of the upsampled wavelet coefficients sequence are

zeros and to ensure that the even-numbered elements of the upsampled wavelet co-

efficients sequence are the wavelet coefficients. The matrix notation for this process

is Λ.

The Shannon Sampling Theorem indicates that for a band-limited signal, the odd-

14See Nason (1995) to review various methods for selecting a threshold.
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numbered elements are recovered from the even-numbered elements.15 Note that the

outputs corresponding to the wavelet filter are highpass components and that the

outputs associated with the scaling filter are lowpass components. Consequently, the

time series recovered by the wavelet coefficients or the scaling coefficients lacks some

information (lowpass components or highpass components). These components are

synthesised to generate the original time series. By matrix notation, wj (1 6 j 6

J) comprises the components of a time series associated with the frequency band

(π/2j, π/2j−1], and vj contains the components of a time series associated with

the frequency band [0, π/2j]. Because α(j) = VjHjVj−1Gj−1 · · ·V1G1Y = ΩjY in

Equation (2.64), wj = Ω′jα(j), which is identical to the following:

wj = [VjHjVj−1Gj−1 · · ·V1G1]′α(j). (2.71)

Similarly,

vj = [VjGjVj−1Gj−1 · · ·V1G1]′β(j). (2.72)

In accordance with Equation (2.67), these equations are identical to the following:

wj = [VjVj−1 · · ·V1H(K2j−2
T )G(K2j−4

T ) · · ·G(KT )]′α(j)

= G(K−1
T ) · · ·G(K4−2j

T )H(K2−2j
T )Λ1 · · ·Λj−1Λjα(j), (2.73)

and

vj = [VjVj−1 · · ·V1G(K2j−2
T )G(K2j−4

T ) · · ·G(KT )]′β(j)

= G(K−1
T ) · · ·G(K4−2j

T )G(K2−2j
T )Λ1 · · ·Λj−1Λjβ(j), (2.74)

where K−1
T = K ′T . According to the orthogonality conditions of the wavelet and

scaling filters on Equations (2.28), (2.29) and (2.30), we have the following:[
VjHj

VjGj

] [
(VjHj)

′ (VjGj)
′
]

=

[
VjHjH

′
jΛj VjHjG

′
jΛj

VjGjH
′
jΛj VjGjG

′
jΛj

]
=

[
IT/2j 0T/2j

0T/2j IT/2j

]
,

(2.75)

and

[
(VjHj)

′ (VjGj)
′
] [ VjHj

VjGj

]
= H ′jΛjVjHj +G′jΛjVjGj = IT/2j−1 . (2.76)

15The proof is given in the appendix.
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Consequently, it is not difficult to infer that

v′jwj = 0,

w′jwk = 0 (j 6= k),

J∑
j=1

wj + vJ = Y,

(2.77)

which illustrate lateral orthogonality (“wj⊥vj”) and sequential orthogonality

(“wj⊥wk”), respectively. Thus, a data sequence can be decomposed orthogonally

into components by time scales using wavelets.

2.3 The Analysis of Two-Channel Filter Banks

The architecture of a dyadic wavelet analysis is easily understood by considering the

nature of a two-channel quadrature mirror filter. This filter highlights the asym-

metric characteristics of wavelet coefficients and the symmetric characteristics of

wavelet components, and reveals the essence of wavelet analysis.

Consider a sequence {yt, t = 0, 1, · · · , T −1} in which the tth element of a column

vector Y is yt. This sequence undergoes the highpass filter H1 that is constructed by

wavelet filters via a downsampling process (↓ 2) in which the odd-numbered elements

of the filtered signal are discarded and the even-numbered elements are preserved.

The filtered and downsampled signal, which holds half of the information of yt, is

then stored and transmitted. Subsequently, this signal undergoes an anti-imaging

highpass filter C1, which is constructed using wavelet filters. Prior to this procedure,

upsampling (↑ 2) is performed by inserting zeros between each element of the filtered

and downsampled signal. Finally, w1, involving a half component of the signal yt

in the specific frequency band, is obtained. This process is also applied to scaling

filters, and v1, which contains the other half of yt, is derived. The graphic of this

flow path is thus the following:

Y −→ H1 −→ ↓ 2 −→'−→ ↑ 2 −→ C1 −→ w1 ,

Y −→ G1 −→ ↓ 2 −→'−→ ↑ 2 −→ D1 −→ v1 ,

where the structures of matrices G1 and D1 are the same as those of matrices H1

and C1, respectively. Both the lowpass filter G1 and the anti-imaging lowpass filter

D1 are constructed using scaling filters. Here, filters H1 and G1 are called analysis

filters, and filters C1 and D1 are called synthesis filters. The symbol ' represents
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the storage and transmission of the signal. The output signals formed by the two-

channel filter banks are w1 and v1, and their combination is the original signal:

w1 + v1 = Y .

Normally, compared with temporal notation, frequency notation is preferred to

express this flow path because it can show certain properties of these filters. There-

fore, the highpass and lowpass flow paths are expressed, respectively, as follows:

y(z) −→ H1(z) −→ ↓ 2 −→'−→ ↑ 2 −→ C1(z) −→ w1(z) ,

y(z) −→ G1(z) −→ ↓ 2 −→'−→ ↑ 2 −→ D1(z) −→ v1(z) ,

where z could be ω or e−iω, and this expression has more generality. It has been

proven that the Fourier transforms of (↓ 2)yt and (↑ 2)yt are [ε(ω/2)+ε(ω/2+π)]/2

and ε(2ω), respectively.16 Because e−iω/2 = z1/2 and e−i(ω/2+π) = −z1/2 where

z = e−iω, in terms of the z-transform, they can be written as follows:

(↓ 2)yt ←→ [ε(z1/2) + ε(−z1/2)]/2 and (↑ 2)[(↓ 2)yt]←→ [ε(z) + ε(−z)]/2,

(2.78)

where “←→” denotes the Fourier transform, and the RHS term is the Fourier trans-

form coefficient.

In conclusion, in terms of the z-transform, the highpass and lowpass flow paths

are expressed by two equations, respectively:

w1(z) =
1

2
C1(z)[H1(z)y(z) +H1(−z)y(−z)],

v1(z) =
1

2
D1(z)[G1(z)y(z) +G1(−z)y(−z)].

(2.79)

It is presumed that the synthesis of w1(z) and v1(z) is x(z); thus,

x(z) =
1

2
[C1(z)H1(z) +D1(z)G1(z)]y(z)

+
1

2
[C1(z)H1(−z) +D1(z)G1(−z)]y(−z).

(2.80)

As y(−z) is a result of aliasing from the downsampling process, it must be elimi-

16The details are provided in the appendix: downsampling doubles frequency and upsampling
halves frequency.
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nated.17 Here, we set C1(z) = −z−dG1(−z) and D1(z) = z−dH1(−z), where d is

identical to L − 1 and L is the width of the filter. Thus, Equation (2.80) becomes

the following:

x(z) =
z−d

2
[H1(−z)G1(z)−H1(z)G1(−z)]y(z). (2.81)

Note that the aliasing term y(−z) can be cancelled by any choice of H1(z) and

G1(z) when the anti-imaging filters C1(z) and D1(z) are identical to −z−dG1(−z)

and z−dH1(−z), respectively. However, a restriction on the choice ofH1(z) andG1(z)

is imposed such that the coefficients of the wavelet and scaling filters are mutually

orthogonal, including being both sequentially orthogonal and laterally orthogonal.

To demonstrate this restriction, we assume that the width of the filter is four. Thus,

G1(z) = g0 + g1z + g2z
2 + g3z

3,

H1(z) = h0 + h1z + h2z
2 + h3z

3.
(2.82)

Because {gk} is referred to as the “quadrature mirror filter” (QMF), corresponding

to {hk}, hk = (−1)kgL−k−1 indicates that Equation (2.82) could be written as follows:

G1(z) = −h3 + h2z − h1z
2 + h0z

3 = z3H1(−z−1) = D1(z−1),

H1(z) = g3 − g2z + g1z
2 − g0z

3 = −z3G1(−z−1) = C1(z−1),
(2.83)

where

D1(z) = −h3 + h2z
−1 − h1z

−2 + h0z
−3 = z−3H1(−z) = G1(z−1),

C1(z) = g3 − g2z
−1 + g1z

−2 − g0z
−3 = −z−3G1(−z) = H1(z−1).

(2.84)

C1(z) = H1(z−1) and D1(z) = G1(z−1) indicate that the synthesis filters are simply

the reversed-sequence anti-causal versions of the analysis filters. Equations (2.83)

17Aliasing may occur when a temporal sequence is Fourier transformed in terms of its frequency.
Aliasing occurs because the basis of the Fourier analysis is the cosine and sine functions. Suppose
that the angular velocity ω exceeds the Nyquist value (π), ω ∈ (π, 2π], and define ω∗ = 2π − ω,
ω∗ ∈ [0, π). Thus, for all values of t = 0, . . . , T − 1, cos(ωt) = cos(2πt− ω∗t) = cos(2πt) cos(ω∗t) +
sin(2πt) sin(ω∗t) = cos(ω∗t). Thus, the cosine functions at the frequencies ω and ω∗ are identical;
this problem is called “aliasing”. It is not possible to distinguish the angular frequency ω from the
value of the cosine (or sine) function. To avoid aliasing, the positive frequencies in the spectral
analysis of a discrete time process are limited to the interval [0, π]. Whether an aliasing problem
exists depends on the structure of the particular time series. For many econometric time series,
the problem does not arise because their positive frequencies are limited to the average [0, π].
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and (2.84) indicate that Equation (2.81) can be rendered as follows:

x(z) =
1

2
[H1(z)H1(z−1) +G1(z)G1(z−1)]y(z)

=
1

2
[D1(−z)G1(−z) +D1(z)G1(z)]y(z)

=
1

2
[P (−z) + P (z)]y(z), (2.85)

where

P (−z) = D1(−z)G1(−z) = H1(z)H1(z−1),

P (z) = D1(z)G1(z) = G1(z)G1(z−1).
(2.86)

To achieve the perfect reconstruction in which x(z) is equal to y(z), the following

condition is imposed:

H1(z)H1(z−1) +G1(z)G1(z−1) = 2. (2.87)

This condition guarantees the perfect reconstruction of the original sequence y(t)

from outputs using two-channel filter banks. The terms in H1(z)H1(z−1) and

G1(z)G1(z−1) with an odd power of z are cancelled because of the relationship

between the wavelet filter {hl} and the scaling filter {gl} (Equations (2.29) and

(2.30)). The orthogonality conditions of {hl} and {gl} (Equation (2.28)) make the

terms that have an even power of z equal to zero and make the terms associated

with a zero power of z identical to 2. Consequently, Equation (2.87) is always valid

in wavelet theory.

It is of interest to use the circulant matrix KT to replace z in Equation (2.82).

The results are matrix representations of the filters H1 and G1, which are shown in

Equations (2.54) and (2.56). Because K−1
T = K ′T , the filter matrices H ′1 and G′1 are

associated with H1(z−1) and G1(z−1), respectively. This result is also applied to the

further decomposition and reconstruction in DWT. Thus, the sum of the component

signals is the original signal:
∑J

j=1 wj + vJ = Y . In conclusion, we briefly introduce

the deconstruction and perfect reconstruction of a time series using two-channel

filter banks. These two-channel filter banks offer us the entire architecture for the

dyadic wavelet analysis and facilitate our interpretation of this analysis.
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2.4 The Symmetric and Asymmetric Properties

In terms of the z-transform, the gain function of the jth-level wavelet filter {hj,l} is

as follows:

H(z2j−2)G(z2j−4) · · ·G(z), (2.88)

and the gain function of the jth-level scaling filter {gj,l} is as follows:

G(z2j−2)G(z2j−4) · · ·G(z), (2.89)

which are derived easily using z rather than KT in Equations (2.68) and (2.69),

respectively. These equations show that the wavelet and scaling filters are asym-

metric. Consequently, the wavelet and scaling amplitudes have phase shifts with the

original time series. However, the component signal does not have phase displace-

ments with the original signal because the term z−d that is involved in filters C1(z)

and D1(z) in Equation (2.84) has the ability to compensate for time lags or time

advances caused by the asymmetric filters H1(z) and G1(z). For instance, following

the previous example, the component signals w1 and v1 are as follows:

w1 = H ′1ΛV H1Y,

v1 = G′1ΛV G1Y,
(2.90)

where H ′1ΛV H1 is

h2
0 + h2

2 h1h2 h0h2 0 0 h0h3 h0h2 h0h1 + h2h3

h1h2 h2
1 + h2

3 h0h1 + h2h3 h1h3 h0h3 0 0 h1h3

h0h2 h0h1 + h2h3 h2
0 + h2

2 h1h2 h0h2 0 0 h0h3

0 h1h3 h1h2 h2
1 + h2

3 h0h1 + h2h3 h1h3 h0h3 0

0 h0h3 h0h2 h0h1 + h2h3 h2
0 + h2

2 h1h2 h0h2 0

h0h3 0 0 h1h3 h1h2 h2
1 + h2

3 h0h1 + h2h3 h1h3

h0h2 0 0 h0h3 h0h2 h0h1 + h2h3 h2
0 + h2

2 h1h2

h0h1 + h2h3 h1h3 h0h3 0 0 h1h3 h1h2 h2
1 + h2

3


,

(2.91)
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and G′1ΛV G1 is

g2
0 + g2

2 g1g2 g0g2 0 0 g0g3 g0g2 g0g1 + g2g3

g1g2 g2
1 + g2

3 g0g1 + g2g3 g1g3 g0g3 0 0 g1g3

g0g2 g0g1 + g2g3 g2
0 + g2

2 g1g2 g0g2 0 0 g0g3

0 g1g3 g1g2 g2
1 + g2

3 g0g1 + g2g3 g1g3 g0g3 0

0 g0g3 g0g2 g0g1 + g2g3 g2
0 + g2

2 g1g2 g0g2 0

g0g3 0 0 g1g3 g1g2 g2
1 + g2

3 g0g1 + g2g3 g1g3

g0g2 0 0 g0g3 g0g2 g0g1 + g2g3 g2
0 + g2

2 g1g2

g0g1 + g2g3 g1g3 g0g3 0 0 g1g3 g1g2 g2
1 + g2

3


,

(2.92)

which are symmetric block-Toeplitz matrices. This result implies the absence of any

phase effects. Because the component signals w1 and v1 are the results of filtering

signal Y with the symmetric filter matrices H ′1ΛV H1 and G′1ΛV G1, respectively,

they are perfectly aligned with the original signal. From another perspective, the

synthesis of the component signals is the original signal, also illustrating this view.

In conclusion, the evidence indicates that the component signal does not have phase

displacements from the original signal.

As a consequence of the downsampling (V ) and upsampling (Λ) operations, the

filter matrix H ′1ΛV H1 or G′1ΛV G1 is not a matrix representation of any linear

symmetric filter. Although H ′1H1 or G′1G1 is related to a linear symmetric fil-

ter whose gain function is the squared gain function of the wavelet filter {hl} or

the scaling filter {gl}, we cannot find an ordinary linear symmetric filter asso-

ciated with the symmetric filter matrix H ′1ΛV H1 or G′1ΛV G1. This result im-

plies that the filter that is used to generate the component signal in DWT has

no gain function. In addition, the z−transform functions of the component sig-

nals also demonstrate this point: w1(z) = 1
2
H1(z−1)[H1(z)y(z) + H1(−z)y(−z)] or

v1(z) = 1
2
G1(z−1)[G1(z)y(z)+G1(−z)y(−z)]. We can use the squared gain function

of the wavelet filter or the scaling filter to approximate the gain function of this filter.

Accordingly, the squared gain function of the jth-level wavelet filter {hj,l} or the

jth-level scaling filter {gj,l} yields approximate changes in the amplitudes of a time

series in the specific frequencies, and the function accounts for the coefficient 1/2j.

In fact, only the first term in the z−transform function of the component signal

shows this effect. Regarding the gain functions of the jth-level wavelet and scaling

filters in Equations (2.88) and (2.89), the squared gain functions of the jth-level
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wavelet and scaling filters are denoted by Γj and Θj, respectively, as follows:

Γj = H(z2j−2)G(z2j−4) · · ·G(z)H(z2−2j)G(z4−2j) · · ·G(z−1),

Θj = G(z2j−2)G(z2j−4) · · ·G(z)G(z2−2j)G(z4−2j) · · ·G(z−1),
(2.93)

Γj/2
j and Θj/2

j are used to show the approximate changes in the data components

in the specific frequencies by the corresponding filters in DWT.

2.5 Structure of Wavelet Analysis

Generally, wavelet analysis decomposes a signal into shifted (translated) and scaled

(dilated or compressed) versions of a wavelet function. All of the basis functions

(wavelet functions or scaling functions) are self-similar, which is to say that they

differ from one another only in the translations and the changes of scale. Wavelets

are particular types of functions that are localised both in time and frequency do-

main, whereas each of the sines and cosines that compose the basis function of

Fourier transform is itself a function of frequency-by-frequency basis. The wavelet

transform utilises a basic function (called the wavelet function or mother wavelet),

which is shifted (translated) and scaled (dilated or compressed) to capture features

that are local in time and in frequency. Therefore, wavelets are good at manag-

ing the time-varying characteristics found in most real-world time series and are

an ideal tool for studying non-stationary or transient time series while avoiding the

assumption of stationarity.

Figure [2.2] provides a good explanation of the effectiveness of wavelets. The

horizontal axis is time, whereas the vertical axis is scale (frequency). It is easily

found that scale decreases further along the vertical axis. As the scale declines, it

reduces the time support, increases the number of frequencies captured, and shifts

towards higher frequencies, and vice versa. In the dyadic wavelet case, from one

scale to the next scale, the bandwidth of frequency is halved and the temporal

dispersion of wavelet is doubled. The frequency band of the original time series is

[0, π], and the time horizon is its time, such as 1 minute for per-minute data, 1 day

for daily data, or 1 month for monthly data. Regarding scale 2j−1 (1 6 j 6 J), the

corresponding frequency band is (π/2j, π/2j−1] and the time horizon is 2j times of

the original time series, such as the time interval [2j, 2j+1) minutes for per-minute

data, the time interval [2j, 2j+1) days for daily data, or the time interval [2j, 2j+1)

months for monthly data. This treatment indicates that scale is related to time

horizon and the inverse of frequency band.
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Consequently, the wavelet transform provides good frequency resolution (and poor

time resolution) at low frequencies and good time resolution (and poor frequency

resolution) at high frequencies. It maintains a balance between frequency and time.

From the top to the bottom of Figure [2.2], the frequency resolution improves and the

time resolution worsens, which implies that wavelets provide a flexible framework

for the time series. By combining several functions of shifted and scaled mother

wavelet, the wavelet transform is able to capture all information contained in a time

series and associate it with specific time horizons and locations in time.

π/8
π/4

π/2

π

0 32 64 96 128

Figure 2.2: The partitioning of the time-frequency plane according to a multiresolution
analysis of a data sequence of 128 = 27 point.

The resulting time-frequency partition corresponding to the wavelet transform

is long in time when capturing low-frequency events and thus has good frequency

resolution for these events, and it is long in frequency when capturing high-frequency

events and thus has good time resolution for events where the wavelet transform

has the ability to capture events that are localised in time. The wavelet transform

intelligently adapts itself to capture features across a wide range of frequencies,

making it an ideal tool for studying non-stationary or transient time series.

2.6 Literature Review

In the markets, different agents have various investing purposes, such as speculative

and value investments. As a consequence, some agents concentrate on daily market

movement, whereas others are concerned with yearly movement. Moreover, some

agents’ interest in market movement is based on shorter or longer time horizons.

Thus, the actions of agents that determine economic or financial processes differ.

Consequently, economic or financial processes vary over time in a way that is closely

related to frequency. An economic or financial time series is a combination of com-
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ponents that operate on different frequencies. High-frequency components capture

short-term behaviours, whereas low-frequency components reflect long-term fluctu-

ations. It is useful to study time series from a frequency domain perspective, which

provides new insights into economic and/or financial issues. Differing results or

differing phenomena stemming from issues in the short and long run are always

puzzling. The analysis from the frequency domain provides a novel description to

explain these puzzles and presents an improvement on the time domain approach

(Lucas (1980), Knif et al. (1995), Barucci and Reno (2002a,b), Kanatani (2004),

Rua and Nunes (2005), Mancino and Sanfelici (2008)).18

The frequency domain is typically related to Fourier analysis, which has the ability

to reveal joint characteristics that are not obvious in the time domain.19 For exam-

ple, Lucas (1980) finds that the frequency level determines the relationship between

monetary growth and inflation. The Fourier transform involves the projection of a

time series onto an orthonormal set of trigonometric components: cosine and sine

functions. The Fourier transform disregards temporal properties and yields only

the frequency properties of data. The temporal property is important for any data.

Accordingly, Fourier analysis is unable to capture time-varying features, which are

common in economics and finance. For example, the link between monetary growth

and inflation evolves over time as well as across frequencies (see, e.g., Rolnick and

Weber (1997), Christiano and Fitzgerald (2003), Sargent and Surico (2008), Benati

(2009)). Given this limitation, Fourier analysis is less appealing. Moreover, Fourier

analysis belongs within global nature analysis because cosine and sine functions do

not fade or change over time. Any slight disturbance will change all Fourier coeffi-

cients; thus, it is not effective for studying a time series that contains irregularities,

such as discontinuities and spikes. A time series must be stationary for Fourier

analysis, but this strong assumption is not often applicable in practice.

To overcome this limitation, the windowed Fourier transform, which combines the

Fourier transform with a window of fixed length as it slides across all the data, is

proposed in the literature. Accordingly, the assumption of homogeneous data may

be relaxed, and the time dependent feature may be captured. However, the win-

dowed Fourier transform generates a uniform partition of the time-frequency plane

because of a constant length window. An overrepresentation of high-frequency com-

ponents and an underrepresentation of low-frequency components may be the result.

Hence, the windowed Fourier transform does not yield an adequate resolution for

18Phase, gain, coherency and spectrum are common indicators for research in the frequency
domain.

19In the time domain, it is difficult to identify lead/lag structures if they are different in various
frequency bands and/or if they are not stable over time.
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all frequencies. By contrast, the wavelet transform provides a flexible resolution

in both the frequency and time domains, as shown in Figure [2.2], because the lo-

cal base functions can be dilated and translated. Given this feature, the wavelet

transform becomes more attractive than the windowed Fourier transform for non-

stationary time series. Wavelet analysis is localised in time and frequency simul-

taneously because wavelets oscillate and decay in a limited time period. Wavelet

analysis therefore belongs within local nature analysis. Wavelet analysis is more

useful than other methods for detecting structural breaks or jumps and for simul-

taneously assessing how variables are related on different frequencies and how this

relationship has evolved over time, among other patterns.

Although wavelets are primarily used in signal and image processing, meteorology,

astronomy and physics, the body of literature on wavelet applications in economics

and finance has grown rapidly over the last two decades. Ramsey and his coau-

thors present a series of pioneering works. More specifically, Ramsey et al. (1995)

use wavelets to study U.S stock price behaviour. The wavelet transform localised

in time indicates how the power of the projection of a time series onto the kernel

varies according to the scale of observation. Ramsey and Zhang (1997) use wave-

form dictionaries to decompose the time series contained within three tick-by-tick

foreign exchange rates. The waveform dictionary is a class of transforms that gener-

alises both windowed Fourier transforms and wavelets. The authors conclude that

waveform dictionaries are most useful for analysing data that are not stationary and

even non-stationary up to the second order. Ramsey and Lampart (1998a,b) inves-

tigate the relationships between money supply and output and between income and

consumption in terms of restrictions on the given time scales using wavelet MRA.

According to the frequency-dependent relationship between money supply and

output, Dalkir (2004) uses the Wald variant of the Granger test on the wavelet

time-scale components of the two variables above to examine their relationship in

different time scales. Lee (2004) utilises wavelets to orthogonally decompose the

KOSPI and DJIA daily stock market indices into different respective time-scale

components. The regression of the time-scale components of KOSPI on the cor-

responding time-scale components of the DJIA and the reverse regression show a

positive and significant transmission from the U.S. stock market to the Korean stock

market, but the reverse was not found. Fernandez (2005) employs wavelet analysis

to quantify price spillovers among a wide range of regional stock markets on different

time horizons. Yogo (2008) decomposes an economic time series (GDP data) into a

trend, cycles and noise according to MRA and then measures business cycles. Based

on wavelet multiresolution analysis, Gallegati et al. (2014) examine the relationship
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between future output and a variety of financial indicators using ‘scale-by-scale’ and

‘double residuals’ regression analysis. Maslova et al. (2014) use wavelets to study

growth and volatility of GDP series over different time horizons, where the focus is

on changes in the growth rates as well as the levels of GDP.

The discounted cash flow valuation model indicates that financial stock prices

are related to aggregate economic activity. A number of empirical works show that

stock returns have predictive power with respect to real economic activity and that

this power increases as the time horizon lengthens. Empirical studies employ OLS

regression, vector autoregressive and vector error correction models to investigate the

interactions between stock returns and real economic activity. However, because of

a lack of appropriate tools, the time scales are typically decomposed into the short

and long run. Different agents in the financial markets have various investment

purposes, ranging from speculative to investment activity, which implies that the

relevant time scales are not only short and long run but also include time from

minutes to years. In the presence of wavelet analysis, Kim and In (2003, 2005) study

the lead-lag relationship between financial variables and real economic activity and

the relationship between stock returns and inflation on different time scales, whereas

Gallegati (2008) constructs wavelet correlation and cross-correlation to examine the

lead-lag relationship between stock returns and real economic activity.

Consider the issue of forecasting. Some empirical works provide evidence that

wavelet analysis improves forecast accuracy. In particular, Wong et al. (2003) pro-

vide an example in which wavelet-based methods are used to forecast foreign ex-

change rates. Arino et al. (2004) use the DWT and the scalogram, which is a

DWT analogue of the well-known periodogram in spectral analysis, to detect and

separate periodic components in time series. These researchers forecast each com-

ponent using a regular ARIMA formulation and then combine the results to obtain

the forecast for the complete time series. The proposed method is then used to

forecast a Spanish concrete production data set. Yousefi et al. (2005) illustrate an

application of wavelets to investigate the issue of market efficiency in the futures

market for oil. A wavelet-based prediction procedure is introduced and used to fore-

cast market data for crude oil over different forecasting horizons. Using MRA, Rua

(2011) proposes the wavelet approach with factor-augmented models to assess the

short-term forecasting of quarterly GDP growth in the major Euro area countries,

namely, Germany, France, Italy and Spain. The results show that this approach

outperforms other models, including AR models, factor-augmented models, and the

wavelet approach with an AR model, for forecasting purposes.

These papers consider the time scale (frequency) and show obvious improvements
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compared with past empirical works using wavelets. Economists realised very early

that time scale is relevant to the structure of decision-making processes and the

strength of relationships among variables. Unfortunately, an appropriate tool for

decomposing economic time series into orthogonal components has historically been

lacking; thus, this important feature is not considered in conventional econometric

models. The major innovation in most of these papers stems from decomposing time

series into their time-scale components in an attempt to unravel the characteristics

or relationships among economic or financial variables that vary over time and across

frequencies simultaneously. The core strategy of this methodology is to employ stan-

dard econometric models to study the wavelet-decomposed time-scale components

of these variables. Accordingly, the primary contribution of these papers is at-

tributed to wavelets. These papers confirm that the characteristics, structures, and

relationships of economic or financial variables vary over both time and frequency

simultaneously, which aids in resolving some anomalies in the empirical literature.

Moreover, this methodology clarifies that an individual’s decision-making process is

generated over time horizons that are more complex than simply the short and long

run that are usually considered by economists.

Another important application of wavelets is related to wavelet coefficients. Given

that wavelets are localised in time and scale (frequency), wavelet coefficients are ac-

cordingly concentrated in time and scale. It is intuitive to construct wavelet variance

or wavelet covariance on a scale-by-scale basis to study the scaling properties or re-

lationships between economic and/or financial variables. Variance is an important

statistic and indicator in economics and finance, and it is a common tool for mea-

suring risks in risk management. Variance refers to the degree to which variables

or data fluctuate from the mean of the entire sample. A larger variance suggests

that the data at that time are farther from the mean. Therefore, variance is the

prevalent method of detecting risks and certain abnormal events.

Conventionally, it has always been believed that variance is only associated with

time. However, the time domain variance, which is considered the overall or aggre-

gate variance, is incapable of revealing all information in the data related to market

turmoil that may be shadowed in the individual variance. For example, there are

many different types of financial market crashes. Through the graphics of overall

variances, these types are quite similar: preceding a crash, variance is quite stable;

it rises dramatically and oscillates at a high level during the crash; and it then de-

cays to a normal level after the crash. It is difficult to distinguish different financial

market crashes from the aggregate variance that veils their personal characteristics.

However, the frequencies of observables in economics and finance related to time
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horizons are distinct. Hence, variance changes across frequencies and over time,

and this change may thus provide another angle from which to study several issues.

Moreover, the sample variance that is used as the estimator of variance may have

poor bias properties for particular stationary processes because of the need to esti-

mate the process mean µx using the sample mean (µx is rarely known a priori when

a stationary process is used as a model for an observed time series). In addition,

there are certain non-stationary processes with stationary differences for which the

sample variance is not a particularly useful statistic because of the inability to define

process variance that is both finite and time invariant.

The statistical properties of non-stationary time series, such as their mean, vari-

ance, and autocorrelation, vary over time (Giovannini and Jorion (1989), Lore-

tan and Phillips (1994), Karuppiah and Los (2005), Kyaw et al. (2006), Los and

Yalamova (2006)). However, some econometric models implicitly assume that these

statistical properties are constant over time. Thus, non-stationary data must be

converted into stationary data. Wavelets can transform non-stationary time series

into stationary time series using the stationary differencing process. This process

is identical to the differencing method, which is widely used to stationarise time

series. For example, any Daubechies wavelet filter involves a L/2th order backward

difference filter in which L is the width of the filter; thus, the corresponding wavelet

coefficients are stationary.

If wavelet coefficients are independent (simulation studies by Whitcher (1998) and

Whitcher et al. (2000) demonstrate that the decorrelation is good in terms of the

test statistic), then the wavelet variance constructed by them will be time inde-

pendent. This property of wavelet variance is appealing to economics and finance

scholars because many econometric models implicitly assume time-independent vari-

ance. Wavelets have another advantage in that they provide a zero mean for wavelet

coefficients. The zero mean avoids the issue of the bias properties of sample vari-

ance, which occurs because the mean is rarely known a priori when estimating the

sample variance. In sum, it is reasonable to use wavelet coefficients to construct

wavelet variance on a scale-by-scale basis.

Wavelet variance is viewed as an individual variance because the sum of all wavelet

variances over scales is the overall variance estimated by the sample variance. The

wavelet variance measures the variability over a certain scale, whereas the over-

all variance assesses global variability. Thus, the wavelet variance more precisely

reflects the local characteristics of observables in one time period; it records the

contribution of components in a given scale (or frequency) to the overall variance

of the process. If a scale contributes a larger proportion of the overall variance,
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then this scale is thought to be more important, and the corresponding components

are more meaningful compared with a scale that contributes a smaller amount of

the overall variance. These components, which are believed to contain significant

information, could then be extracted from the entire time series and provide impor-

tant subjects for analysis. In conclusion, wavelet analysis provides several new and

different insights into economic and/or financial issues.

A number of papers demonstrate the successful application of wavelet variance

in many areas, including meteorology (e.g., Torrence and Compo (1998)), and eco-

nomics and finance (e.g., Jensen (1999, 2000), Whitcher and Jensen (2000), Gen-

cay et al. (2001a,b, 2003, 2005), Connor and Rossiter (2005), Crowley and Lee

(2005), Fernandez (2006a,b), Gallegati and Gallegati (2007), Gallegati (2008), Fan

and Gencay (2010), Gencay et al. (2010)). Jensen (1999) estimates the differenc-

ing parameter d of the ARIMA (p, d, q) long-memory process using the log-linear

relationship between the wavelet variance and the scaling parameter, with a small

sample bias and variance. Jensen (2000) uses the wavelet transform to decompose

the variance of a long-memory process and to construct a wavelet covariance ma-

trix; he then develops a wavelet maximum likelihood estimator alternative to the

frequency domain estimators of the long-memory parameter, but only for globally

stationary long-memory processes. Whitcher and Jensen (2000) devise an estimator

of the time-varying long memory parameter using the log-linear relationship between

the local variance of the maximum overlap discrete wavelet transform’s (MODWT)

coefficients and the scaling parameter for locally stationary long-memory processes.

Gencay et al. (2001b) investigate the scaling properties of foreign exchange volatil-

ity using the wavelet multiscaling approach, and they detect the degree of persistence

in the volatility and the correlation between foreign exchange volatilities. Regard-

ing the features of beta (systemic risk) in the capital asset pricing model (CAPM),

which are affected by the return interval, Gencay et al. (2003, 2005) introduce a

new method using the wavelet multiscaling approach to estimate the beta on a

scale-by-scale basis. Fernandez (2006a) employs wavelets to estimate the CAPM

and the value at risk (VaR) on different time scales for the Chilean stock mar-

ket. Connor and Rossiter (2005) use wavelets to estimate price correlations on a

scale-by-scale basis as well as long memory in the volatility of commodity prices

to investigate heterogeneous trading in such markets. Crowley and Lee (2005) em-

ploy MODWT to construct static wavelet variance, correlation and co-correlation

(to measure the phase) by time scale, and they apply the DCC-GARCH model

on the wavelet time-scale components to estimate dynamic correlations by time

scale and to study the comovements among the European business cycles. Fernan-
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dez (2006b) adopts wavelet-based variance analysis to detect structural breaks in

volatility during the 1997-2002 period, including the Asian crisis and the terrorist

attacks of September 11. In and Kim (2006) propose three ways to use the wavelet-

based approach to examine the relationship between stock and futures markets over

different time scales: the lead-lag relationship using the Granger causality test on

time-scale components, the correlation by measuring the ratio of wavelet covariance

over wavelet variance, and the hedge ratio by computing wavelet covariance and

variance.

Gallegati and Gallegati (2007) apply the estimator of MODWT wavelet variance

to detect the occurrence and sources of decline in output volatility over the past

forty years based on data from the industrial production index of the G-7 countries

between 1961:1 and 2006:10. Gallegati (2008) employs the wavelet coefficients of

stock returns and the growth rates of industrial production to develop wavelet vari-

ances and to identify their scaling properties. They then adopt these coefficients

to construct a wavelet cross-correlation to study the lead-lag relationship between

these two variables on a scale-by-scale basis. Fan and Gencay (2010) present a

wavelet spectral approach to test the presence of a unit root in a stochastic pro-

cess by measuring the test statistic, which is equal to the ratio of the variance of

unit-scale scaling coefficients to the total variance of the time series via the DWT.

Note that there are two approaches for detecting the relationship between eco-

nomic and/or financial variables on a scale-by-scale basis. The first method con-

structs the correlation between the time-scale components of these variables, whereas

the second method employs the wavelet coefficients of these variables to estimate

the wavelet covariance or correlation. Some researchers, such as Kim and In (2003,

2005) use both methods with consistent results.

Early works have explored the DWT in economics and finance contexts. Recently,

the continuous wavelet transform (CWT) has drawn much attention from economists

as well. In practice, economic and financial data are observed at pre-ordained points

in time and represent stochastic processes in continuous time. Hence, it is intuitive to

apply the CWT to economics and finance. The CWT avoids one particular problem:

in most of the literature from the frequency domain, the cut-off of the frequency

band is arbitrary for the analysis. The CWT provides a continuous assessment of

relationships or structures, as well as other observations.

Consider the case of spectral analysis, which can identify periodicities in data.

The power spectrum is estimated using the Fourier transform; therefore, spectral

analysis has the same problems as the Fourier transform. The results based on

spectral analysis are misleading when the time series is not stationary. Consequently,
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spectral analysis is unable to detect transient and irregular cycles and structural

breaks in the periodicity of those cycles. Fortunately, wavelet spectral analysis can

serve this purpose. Wavelet spectral analysis is analogous to spectral analysis but

uses the CWT rather than the Fourier transform. Because wavelets yield frequency

and time information simultaneously, the wavelet power spectrum varies over time

and across frequencies. Wavelet spectral analysis measures the variance distribution

of a time series in the time-frequency space. Changes in periodicity across time may

be recorded in the wavelet power spectrum; thus, we can easily capture irregular

cycles and identify time periods of different predominant cycles in the time series.

The tools within the CWT used by economists include not only the wavelet power

spectrum but also cross-wavelet power, cross-wavelet coherency, the wavelet phase

and the wavelet phase-difference. These tools have analogous concepts in Fourier

analysis but are based on the CWT rather than the Fourier transform. Specifi-

cally, cross-wavelet power depicts the local variance between two time series. Cross-

wavelet coherency describes the local correlation between two time series at each

time and scale. The wavelet phase provides time information regarding the position

of a time series in the cycle, and the wavelet phase-difference provides information

regarding the possible lead-lag relationship of the oscillations of two series as a func-

tion of time and scale. These tools within wavelet analysis enable us to study the

time-frequency dependencies between two time series, which are considered to be

important features of economic and financial data. Consider the link between infla-

tion and interest rates. If inflation rises, then the central bank may increase interest

rates to dampen this increase, which implies that the short-run relationship between

inflation and interest rates is positive, while the long-run relationship is negative.

Consequently, their relationship differs in frequency in relation to the time horizon.

In addition, this relationship varies over time, which is widely acknowledged; for ex-

ample, some factors do not fundamentally change but affect the relationship across

time. To study this case, a tool to simultaneously examine features of time and

frequency is required. Wavelets provide such a tool.

To overcome the limitations of the two approaches measuring comovement, includ-

ing one based on the time domain and the other based on the frequency domain,

Rua and Nunes (2009) define wavelet squared coherency. This tool plays a role as

the correlation coefficient around each moment in time and frequency; it is the abso-

lute value squared of the smoothed cross-wavelet power normalised by the smoothed

wavelet power; and it is used to measure the extent to which two time series move

together over time and across frequency and to study the VaR based on wavelet

covariance and wavelet variance. Rua (2010) proposes a wavelet-based measure of
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comovement that combines the analyses from the time and frequency domains. This

measure assesses the changes in the degree of comovement across frequencies and

over time. Regarding the evidence that the link between monetary growth and in-

flation varies over time and across frequencies, Rua (2012) employs wavelet squared

coherency and the wavelet phase-difference to simultaneously measure the strength

of the contemporaneous relationship and the lead-lag relationship over time and

across frequencies, respectively. Similarly, given the time-frequency varying feature

of beta (market risk), Rua and Nunes (2012) construct a wavelet-based estimator of

beta from the CAPM to measure systematic risk, and they use a wavelet-based R2

to assess the importance of systematic risk to the total risk in the time-frequency

space. These approaches provide additional insights into risk assessment issues,

including the consideration of emerging markets as a case in their paper.

Aguiar-Conraria and Soares (2011) design a metric using the wavelet transform to

measure and test business cycle synchronisation across the EU-15 and EU-12 coun-

tries, and they use the wavelet coherency and the wavelet phase-difference to exam-

ine the strength of the contemporaneous relationship and the lead-lag relationship,

respectively. Aguiar-Conraria et al. (2012a) apply three wavelet tools, including the

wavelet power spectrum, the cross-wavelet coherency, and the phase-difference, to

study cycles in American elections and war severity. These researchers detect tran-

sient and irregular cycles and structural breaks in the periodicity of those cycles.

Likewise, Aguiar-Conraria et al. (2012b) employ the same three wavelet tools to

study the relationship between three Nelson-Siegel latent factors of the yield curve

(the level, slope and curvature) and four macroeconomic variables (unemployment,

an index of macroeconomic activity, inflation and the monetary policy interest rate)

in the U.S. across time and frequencies.

Wavelets also provide insight into econometrics and other topics in the economic

and financial fields. Lee and Hong (2001) design a wavelet-based consistency test for

a serial correlation of unknown form in univariate time series models. The proposed

test statistic is constructed by comparing an estimator of the wavelet spectral density

function and the null spectral density.20 The simulation study shows that this test

outperforms a kernel-based test when the time series has distinctive local spectral

features but underperforms the kernel-based test when the time series is smooth

with no peaks or spikes. Duchesne (2006a) devises a similar wavelet-based test for

serial correlation that is used for multivariate time series models and obtains results

similar to those of Lee and Hong (2001). Hong and Kao (2004) use the wavelet

20The wavelet spectral density function is the orthogonal projection of the spectral density
function on wavelet bases.
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spectral density estimator to construct consistency tests for a serial correlation of

unknown form in the estimated residuals of a panel regression model in the presence

of substantial inhomogeneity in serial correlation across individuals. The simulation

study demonstrates that these tests perform well in small and finite samples relative

to some existing tests.

Hong and Lee (2001) devise a one-sided test for ARCH effects using a wavelet

spectral density estimator at frequency zero for a squared regression residual se-

ries. The simulation study shows that the wavelet-based test is more powerful than

a kernel-based test in small samples when ARCH effects are persistent or when

ARCH effects have a long distributional lag. Duchesne (2006b) extends Duchesne

(2006a)’s approach to the ARCH effects of multivariate time series and advocates for

a test statistic by comparing a multivariate wavelet-based spectral density estimator

of the squared and cross-residuals to the spectral density under the null hypothesis

of no ARCH effects. This method is a useful complement to the existing tests for

vector ARCH effects, particularly for spectral density that exhibits nonsmooth fea-

tures. Boubaker and Peguin-Feissolle (2013) develop a Wavelet Exact Local Whit-

tle estimator and a Wavelet Feasible Exact Local Whittle estimator of memory

parameter d in the fractionally integrated process I(d). Simulation experiments

show that the new estimators outperform traditional ones under most situations

in the stationary and nonstationary cases. Barunik and Kraicova (2014) construct

wavelet-based Whittle estimator of the Fractionally Integrated Exponential Gener-

alized Autoregressive Conditional Heteroscedasticity (FIEGARCH) model, and find

wavelet-based estimator may become an attractive robust and fast alternative to the

traditional methods of estimation for data in presence of jumps. Xue et al. (2014)

propose a wavelet-based test to identify jump arrival times in high frequency finan-

cial time series data. The test is robust for different specifications of price processes

and the presence of the microstructure noise. Among others, Jensen (1999, 2000)

and Whitcher and Jensen (2000) study the long-memory parameter using wavelet

variance analysis.

Davidson et al. (1997) present a semi-parametric approach using wavelets to study

commodity prices. These researchers conclude that wavelet analysis is particularly

useful for describing the general features of commodity prices, such as structural

breaks, comovements of prices, unstable variance structure and time-dependent

volatility. Because of contamination in time series, which are highly perturbed by

exogenous forces and factors, Capobianco (1999) employs wavelet shrinkage to de-

noise data and finds that this approach is useful for improving volatility prediction

power through the GARCH model. Struzik (2000) uses the wavelet transform to
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display the local spectral (multifractal) contents of the S&P 500 index and studies

the collective properties of the local correlation exponent as perceived by traders,

exercising various time horizon analyses of the index. Struzik and Siebes (2002) pro-

pose wavelet-based multifractal formalism to detect and localise outliers in financial

time series and other stochastic processes. Los and Yalamova (2006) introduce the

notion of a scalogram, which is a 2-dimensional array that yields normalised risks or

variances across time and scale, and they propose Gibb’s partition function, which

effectively computes the moments of the absolute values of wavelet coefficients. Gen-

cay et al. (2010) apply the wavelet-based hidden Markov tree models to the volatil-

ities of high-frequency data and report the asymmetric volatility dependence across

different time horizons. Grane and Veiga (2010) develop a wavelet-based procedure

to detect and correct outliers in financial time series. The intensive Monte Carlo

study shows that this approach is effective for detecting isolated outliers and outlier

patches and is significantly more reliable than other alternatives.

A thorough discussion of the economic and financial applications of wavelets can

be found in the survey articles by Ramsey (1999, 2002). Moreover, Crowley (2007)

briefly introduces different types of tools in wavelet analysis related to economics

and finance and provides a survey of their application in the literature. Abramovich

et al. (2000) review wavelet analysis in statistical applications, including its use

in nonparametric regression, density estimation, and certain aspects of time series.

These applications provide different insights into the economic and financial fields.

Note that in the last decade, the main literature of wavelets in economics and

finance is focused on multiresolution analysis (MRA). There are still many benefits

of wavelets for these fields to explore. For example, wavelets are able to extract

business cycles from a data sequence the way as the commonly used filters, and to

rearrange the structure of data, to unveil economic natures or phenomena that are

always ignored. Moreover, wavelets remain local features of time series caused by

events in decomposed components, which are useful for studying local events. As

far as we know, there are not many papers to serve this purpose using wavelets.

Therefore, our thesis fills these gaps by studying three interesting phenomena and

providing new insights into them.
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Chapter 3

Extracting Business Cycles and

Detrending via Wavelets

3.1 Introduction

In macroeconomics, the cyclical fluctuations surrounding a secular trend are believed

to be business cycles. The secular trend provides long-term information, whereas the

business cycles offer short-term information. Economists have long been concerned

about isolating these cycles; the tool used in this task is commonly called a “filter”.

The Hodrick-Prescott filter is the best known and, to the best of my knowledge, is

still widely used. Originally, the Hodrick-Prescott filter was applied in detrending

quarterly data. However, according to one argument, the detrended data from the

Hodrick-Prescott filter, which are considered to represent business cycles, appear to

be volatile. Because business cycles are required to be smooth, the Hodrick-Prescott

filter is widely criticised.

Economists have presented several other filters for extracting business cycles from

a time series. These filters are designed based on spectral analysis theory, which

states that data are the sum of different unrelated frequency components. These fre-

quency components are linked with three types of economic data: the high-frequency

components are noise; the low-frequency components are the trend; and the comple-

mentary components are business cycles, which are defined as cyclical components

ranging from 6 quarters to 32 quarters.21 With respect to this definition, the business

cycles lie in the intermediate range of frequencies [2π/32, 2π/6].

An ideal filter should serve two purposes. First, the filter should fully preserve

all components in the frequencies between a specific lower and upper frequency,

21This definition, initially proposed by Baxter and King (1999), is widely quoted in recent
literature.
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which is referred to as the passband. Second, the filer should completely eliminate

components in other frequencies, which is known as the stopband. However, an

ideal filter is possible only when applied to an infinite time series because the order

of its coefficients is doubly infinite. Because a limitation in the length of time

series in practice, we must approximate the ideal filter. Accordingly, Baxter and

King (1999), Pollock (2000), and Christiano and Fitzgerald (2003) present their

own filters to extract business cycles.

There is no consensus on the relationship between business cycles and trends. If

we suppose that they are related, it is still not possible to accurately understand

this relationship in practice. To facilitate the study of economic issues, business

cycles and trends are sometimes assumed to be linearly independent in empirical

analyses. For instance, consider a shock to an economy. It is of interest to examine

the effect of the shock on the trend and business cycles because such a significant

effect indicates that the long- or short-run equilibrium, respectively, of the economy

is affected. To simplify this investigation, the trend and business cycles are assumed

to be linearly independent. As a result, the linear relationship between the shock

and the trend does not affect the relationship between the shock and the business

cycles. Otherwise, the results are ambiguous.

Consequently, a filter that can produce linearly independent frequency compo-

nents is required, but the above four filters cannot meet this requirement. For-

tunately, the wavelet filter, which orthogonally decomposes data into different fre-

quency components, is a potential solution.22 Orthogonality implies that different

frequency components are linearly independent and thus simplifies some economic

issues. Because the wavelet filter is a symmetric filter, it does not result in the phase

effect or the corresponding phase shift in time. The temporal properties of data are

important in economics, and a phase shift in time is thus not allowed. Moreover, the

base functions of the wavelet filter are time- and scale-localised (frequency-localised),

whereas the base functions of the Fourier transform on the which other four filters

are estimated are only frequency-localised. Consequently, the wavelet filter provides

better resolution in the time domain, which is more useful for capturing the changing

volatility of business cycles. Given the attractive properties of the wavelet filter, it is

believed to be a good alternative filter for isolating different frequency components

of data.

Lacking an ideal filter as a benchmark, it is difficult to evaluate the wavelet filter

22In this paper, the wavelet filter is a general notion that represents wavelets, including scaling
filters and wavelet filters. We apply the Daubechies least asymmetric (LA) wavelet filter of width
8 in this paper. This filter is recommended by Percival and Walden (2000) and is widely used in
the literature of economic and financial applications of wavelets.
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and other filters when they are applied to real data. These other filters consist of

the Hodrick-Prescott filter, the digital butterworth filter, the Baxter-King bandpass

filter and the Christiano-Fitzgerald bandpass filter. To compare the different filters,

this paper uses the root-mean-square deviation (RMSD), which is derived using a

Monte Carlo simulation. A smaller RMSD value indicates better performance of

the filter. Generally, we find that the Baxter-King bandpass filter, the wavelet filter

and the digital butterworth filter outperform the other filters for annual data, quar-

terly data and monthly data to extract business cycles, respectively. Furthermore,

when a filter is used to extract the trend from data, the Baxter-King bandpass filter

outperforms the other filters for annual and quarterly data, and the digital butter-

worth filter is the optimal choice for monthly data. It is important to note that the

first K and the last K data are not processed in the Baxter-King bandpass filter.23

Moreover, there is a high deviation at the end of the filtered data in the digital

butterworth filter. It is recommended that these data be discarded. However, the

data at the end are important to current analysis in economics. These issues reflect

major disadvantages of these two filters, but they are not associated with the use of

the wavelet filter.

This paper is organised as follows. Section 2 provides an overview of the clas-

sical Wiener-Kolmogorov filters (consisting of the Hodrick-Prescott filter and the

digital butterworth filter) and the bandpass filters (consisting of the Baxter-King

bandpass filter and the Christiano-Fitzgerald bandpass filter). Section 3 describes

the performance of these filters, compares them by frequency response functions,

and demonstrates the gain and phase effects of the Christiano-Fitzgerald bandpass

filter in a three-dimensional figure. As a result of the downsampling and upsam-

pling process, the wavelet filter does not have its own gain function; hence, it is not

adopted for comparison with other filters here. Section 4 constructs artificial data

for an experiment, including annual data, quarterly data and monthly data. Section

5 summarises the results of these filters as applied in the experiment. Section 6

concludes the paper and illustrates the effect of the wavelet filter’s drawbacks in

extracting business cycles or trends from data.

232K + 1 is the width of the Baxter-King bandpass filter.
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3.2 Overview of Four Commonly Used Filters

3.2.1 The Classical Wiener-Kolmogorov Filter

This section briefly introduces four commonly used filter models. Many filters

involving the Baxter-King bandpass filter (abbreviated as the BK filter) and the

Christiano-Fitzgerald bandpass filter (abbreviated as the CF filter) have been pro-

posed over the past two decades to extract business cycles from a trended data

sequence, but the Hodrick-Prescott filter (abbreviated as HP filter below) dating

back to 1980 is still used widely in economics. Because the HP filter is an exam-

ple of a classical Wiener-Kolmogorov filter, which is a signal extracting device that

minimises the mean squared errors (MSE) of data estimates with observations, it is

natural to introduce this filter first.

Here, a signal and noise generate an observed data sequence expressed as follows:

y(t) = x(t) + ε(t), (3.1)

where the signal x(t) and noise ε(t) are mutually independent white noise processes.

Consequently, the autocovariance generating function γyy(L) of y(t) is a combination

of those of x(t) and ε(t), denoted as γxx(L) and γεε(L), respectively:

γyy(L) = γxx(L) + γεε(L), (3.2)

where L is the lag operator as Lxt = xt−1 and the autocovariance generating function

is γ(L) =
∑∞
−∞ γhL

h, in which γh is the covariance. x(t) and ε(t) are mutually

independent, which implies that

γyx(L) = γxx(L). (3.3)

A Wiener-Kolmogorov filter Bx(L) extracts the signal from observations while

minimising the MSE of the estimates with the observations, which can be expressed

as follows:

x̂(t) = Bx(L)y(t) =
∑

j
BjL

jy(t)

within min
∞∑

t=−∞

[x(t)− x̂(t)]2,
(3.4)

here, the number of observations is infinite, and the filter is an infinite impulse

response (IIR).
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x̂(t) is estimated by minimising the MSE criterion, which implies that the errors

of x(t) with x̂(t) should be uncorrelated with the observations. Otherwise, given the

current information, we can improve the accuracy of the estimates by the observa-

tions. Accordingly,

0 = E[y(t− k)(x(t)− x̂(t))]

= E[y(t− k)x(t)− y(t− k)x̂(t)]

= E[y(t− k)x(t)− y(t− k)
∑

j
BjL

jy(t)]

= γyxk (L)−
∑

j
Bjγ

yy
k−j(L) for all k. (3.5)

The z−transform function is written as follows:

γyx(z) = Bx(z)γyy(z). (3.6)

According to Equations (3.2) and (3.3), Bx(z) is identical to the following:

Bx(z) =
γyx(z)

γyy(z)
=

γxx(z)

γxx(z) + γεε(z)
. (3.7)

The complement of this filter is Bε(z):

Bε(z) = 1−Bx(z) =
γεε(z)

γxx(z) + γεε(z)
. (3.8)

Because the autocovariance generating functions are positive-definite, they are fac-

torised by the following:

γyy(z) = ψ(z)ψ(z−1) and γεε(z) = φ(z)φ(z−1). (3.9)

Consequently, the filter Bε(z) is identical to the following:

Bε(z) =
φ(z)φ(z−1)

ψ(z)ψ(z−1)
. (3.10)

Equation (3.10) tells us that a detrended data sequence ε(t) can be estimated

from a data sequence {y(t); t = 0,±1,±2, · · · } using two recursive operations.

First, an intermediate sequence q(t) is the result of the forward pass of the fil-

ter: q(z) = φ(z−1)/ψ(z−1)y(z). Second, the detrended data sequence ε(t) is the

output generated by the backward pass in q(t): ε(z) = φ(z)/ψ(z)q(z).
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3.2.2 The Hodrick-Prescott Filter

The HP filter is designed to remove a smooth trend from a data sequence that follows

a second-order random walk. The data sequence y(t) is postulated as the sum of a

trend x(t) that follows a second-order random walk and a white noise process ε(t):

y(t) = x(t) + ε(t). (3.11)

To use the Wiener-Kolmogorov formulation, the second difference is applied in

the data sequence:

(1− L)2y(t) = (1− L)2x(t) + (1− L)2ε(t)

= κ(t) + η(t). (3.12)

The following are the autocovariance generating functions of the differenced com-

ponents:

γκ(L) =
∞∑

h=−∞

γκhL
h = σ2

κ,

γη(L) =
∞∑

h=−∞

γηhL
h = σ2

η(1− L)2(1− L−1)2,

(3.13)

where γκ(L) and γη(L) are the autocovariance generating functions of the sequence

κ(t) with variance σ2
κ and of the sequence η(t) with variance σ2

η, respectively.

In accordance with the Wiener-Kolmogorov principle, the detrending filter is es-

tablished from the ratio of the autocovariance generating functions in terms of the

z−transform function:

HP (z) =
γη(z)

γη(z) + γκ(z)
=

σ2
η(1− z)2(1− z−1)2

σ2
η(1− z)2(1− z−1)2 + σ2

κ

=
λ(1− z)2(1− z−1)2

λ(1− z)2(1− z−1)2 + 1
,

(3.14)

where λ = σ2
η/σ

2
κ is a parameter that simultaneously controls the cut-off frequency

and the rate of transition from the stopband to the passband. Hodrick and Prescott

(1997) recommend λ = 1600 for quarterly data. λ = 100 and λ = 14400 are

consistently applied to the annual data and monthly data, respectively. However,

Ravn and Uhlig (2002) argue that λ = 6.25 for annual data and λ = 129600 for

monthly data are better via the equation λ = s4λq, where s = 1/4 for annual data,

s = 3 for monthly data and λq = 1600.

Equation (3.14) is the z−transform function of the HP filter. HP (0) = 0 and
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HP (−1) ≈ 1 indicate that it is a highpass filter. Moreover, the HP filter is a linear

time-invariant symmetric filter, which implies that there is no phase displacement

in the estimates with observations because HP (z) = HP (z−1). The detrended data

that are deemed business cycles are generated by filtering the data sequence y(t)

using HP (z). The complementary lowpass filter 1−HP (z) extracts a smooth trend

from the observations.

Based on Equation (3.14), the frequency response function of the infinite version

of the HP filter is obtained using eiω to replace z, which is stated as follows:

HP (ω) =
λ(1− eiω)2(1− e−iω)2

λ(1− eiω)2(1− e−iω)2 + 1
=

4λ(1− cosω)2

4λ(1− cosω)2 + 1
, (3.15)

the term (1 − eiω)2(1 − e−iω)2 in the numerator has 4 zeros at zero frequency; it

is thus able to stationarise an I(4) process. However, this term in the denomina-

tor exacerbates this effect, indicating that the HP filter can remove non-stationary

components that are integrated of an order less than 4 (King and Rebelo (1993)).

As the infinite impulse response is associated with an infinite time series, which

is not realistic in economics, it is necessary to construct a finite version of the filter.

In terms of the inverse Fourier transform, the finite impulse response HPj is

HPj =
1

2π

∫ π

−π

4λ(1− cosω)2

4λ(1− cosω)2 + 1
eiωjdω. (3.16)

The cut-off frequency ωc associated with the parameter λ is calculated when the

transition occurs at a frequency for which the frequency response equals 0.5. From

the equation HP (ωc) = 0.5, we obtain the following:

ωc = 2 arcsin(
λ−1/4

2
),

or λ = [2 sin(
ωc
2

)]−4.
(3.17)

Therefore, for quarterly data, the cut-off frequency is 0.1582, which is related to

39.7 quarters. In other words, the periodicity of the business cycle is less than 39.7

quarters based on the suggestion of Hodrick and Prescott (1997). According to the

definition of U.S. business cycles from Baxter and King (1999), the upper cut-off

frequency ωuc = 2π/6 = 1.0467 is associated with the upper parameter λu = 1, and

the lower cut-off frequency ωlc = 2π/32 = 0.1963 corresponds to the lower parameter

λl = 677.13.24

24These frequencies indicate that the duration of U.S. business cycles lasts no fewer than 6
quarters (18 months) but fewer than 32 quarters (8 years).
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One problem is always ignored when adopting the HP filter to detrend an eco-

nomic time series. As noted earlier, the results from filtering a data sequence using

the HP filter are detrended data, which are typically regarded as business cycles.

However, detrending and extracting business cycles are two different concepts. A

macroeconomic time series is regarded as a combination of a trend, business cycles

and noise. Thus, the estimates using the HP filter contain not only business cycles

but also noise. These estimates are not smooth, as Baxter and King (1999) argue.

At a theoretical level, this result implies that the HP filter performs worse than the

bandpass filters, which are able to separate business cycles from a data sequence.

Given the inferences on the parameters λ for the lower and upper cut-off frequencies

from Equation (3.17), we can use the following procedure to extract business cycles

using a highpass filter such as the HP filter. It is supposed that business cycles lie

in the range of frequencies
[
ωl, ωu

]
. First, we use the highpass filter with the lower

cut-off frequency ωc = ωl that is associated with λl via Equation (3.17) for the HP

filter to generate data estimates that include business cycles and noise. We then

adopt the filter with the upper cut-off frequency ωc = ωu that is related to λu via

Equation (3.17) for the HP filter to estimate the noise. Second, the business cycles

are separated by subtracting the noise from the data estimates.

3.2.3 The Digital Butterworth Filter

Pollock (2000) develops a more general version of this type of filter to detrend an

economic time series; this version is known as a digital butterworth filter (abbrevi-

ated to the BW filter). The BW filter is well known in electrical engineering. Based

on the specific properties of the BW filter,

ψ(z)ψ(z−1) = φL(z)φL(z−1) + λφH(z)φH(z−1),

φ(z)φ(z−1) = λφH(z)φH(z−1),
(3.18)

in Equation (3.9), where

φL(z) = (1 + z)n and φH(z) = (1− z)n. (3.19)

Accordingly, the highpass BW filter is

BWH(z) =
λ(1− z)n(1− z−1)n

λ(1− z)n(1− z−1)n + (1 + z)n(1 + z−1)n
, (3.20)

where λ = (1/ tan ωc
2

)2n and ωc is the cut-off frequency that BWH(e−iω)|n→∞ = 1

if ω > ωc; otherwise, BWH(e−iω)|n→∞ = 0. The lowpass BW filter (BWL(z)) is
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the complement of the highpass BW filter (BWH(z)): BWL(z) = 1 − BWH(z).

It appears that the BW filter is a linear time-invariant symmetric filter that can

remove or extract the trend from a data sequence. Here, n is the order of the filter

that determines the rate of transition from the stopband to passband within the

cut-off frequency ωc. The role of λ in the HP filter is implemented by ωc and n

separately in the BW filter. A higher value for n and a shift in the cut-off frequency

ωc away from the mid-point π/2 increase the rate of transition from the stopband

to passband but also cause a stability problem.

As shown by the z−transform function of the HP filter, Equation (3.20) indicates

that the BW filter is also an IIR. In economics, because of a sample size limita-

tion, Pollock (2000) presents a finite-sample version of the BW filter to detrend

an economic time series. A so-called transient effect, which is liable to affect all

processed values, arises when a discernible disjunction appears where the beginning

and the end of the sample are joined. Accordingly, proper values for the forward

and backward pass are interpolated by forecasting and backcasting. One approach

to address this issue involves converting the non-stationary data sequence into a sta-

tionary sequence by differencing or by extracting a polynomial trend. The start-up

and end-sample values are zeros, which are the unconditional expectations of the

stationary data sequence.

According to Equation (3.12), a procedure that converts a non-stationary data

sequence into a stationary sequence using second-order differencing is involved in

the HP filter. Thus, the transient effect does not arise when we use the HP filter.

For the BW filter, the model under this consideration is expressed by the following:

y(t) = s(t) + c(t), (3.21)

where s(t) is a stochastic trend, c(t) is a cycle, and y(t) is a non-stationary data

sequence integrated by order d and denoted by I(d). Here, the d−order difference

is adopted to convert the data sequence y(t) into a stationary sequence as follows:

(1− L)dy(t) = (1− L)ds(t) + (1− L)dc(t). (3.22)

Accordingly,

y(t) =
(1 + L)n

(1− L)d
v(t) +

(1− L)n

(1− L)d
η(t), (3.23)

where v(t) and η(t) are white noise processes with variances V {v(t)} = σ2
v and

V {η(t)} = σ2
η, respectively, (1 − L)ds(t) = (1 + L)nv(t) and (1 − L)dc(t) = (1 −
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L)nη(t). In terms of matrix notation, the estimate of a cycle from a sample with T

observations is then given by the following:

ĉ = λΣQ(ΩL + λΩH)−1Q′y, (3.24)

where ĉ and y are T ×1 vectors, respectively; Σ is a T ×T Toeplitz matrix generated

by [(1−L)(1−L−1)]n−d; Q represents the d-order difference operator (1−L)d in the

form of a matrix, which is a T×(T−d) matrix with the coefficients of the polynomial

(1 − L)d in the elements with index (k, j), k = j, · · · , j + d and j = 1, · · · , T ; and

ΩL and ΩH are (T − d)× (T − d) Toeplitz matrices generated by (1 +L)n(1 +L−1)n

and (1− L)n(1− L−1)n, respectively.

As a highpass filter, the BW filter confronts the same problem as the HP filter

in that the data estimates contain both noise and business cycles. Accordingly, the

approach to addressing this problem above is applied when using the BW filter to

extract business cycles.

3.2.4 The Bandpass Filters

A macroeconomic time series is typically assumed to be the sum of a trend, business

cycles and noise. As noted earlier, the HP and BW filters are detrending filters.

Researchers and economists normally aim to extract business cycles from a time

series. However, the detrended data still have irregular components. Consequently,

a more straightforward idea is proposed: using a filter to separate business cycles

from the other components directly. Because business cycles lie in the intermediate

range of frequencies, the type of filter needed for this task is referred to as a bandpass

filter. The components in a specific frequency interval can completely pass through

a bandpass filter, while the other components are blocked. Actually, the highpass

and lowpass filters are special types of bandpass filters.

Consider the following structural time series:

y(t) = x(t) + c(t) + ε(t), (3.25)

where x(t) is a trend, c(t) is a business cycle, and ε(t) is a white noise process with

variance σ2
ε . From a frequency perspective, the cycle c(t) has the power only in the

frequency interval {[ωl, ωu] ∪ [−ωu,−ωl]} ∈ (−π, π), the trend x(t) has the power

only in the frequencies {(0, ωl) ∪ (−ωl, 0)} ∈ (−π, π), and the power of noise ε(t)

works in terms of the complementarity of these frequencies in (−π, π). For an ideal
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bandpass filter B(L),

c(t) = B(L)y(t) =
∞∑

j=−∞

BjL
jy(t), (3.26)

where Bj = B−j implies that it is a symmetric filter. The transfer function of B(L)

is B(ω) =
∑

j Bje
−iωj and is characterised by the following:

B(ω) =

{
1 |ω| ∈ [ωl, ωu]

0 otherwise
, (3.27)

where |B(ω)| is the gain function of the “ideal” filter with the passband |[ωl, ωu]|.
In terms of the inverse Fourier transform, the filter’s weights are as follows:

Bj =
1

2π

∫ π

−π
B(ω)eiωjdω. (3.28)

These weights are identical to the following:

Bj =
sin(jωu)− sin(jωl)

jπ
, j = ±1,±2, · · ·

B0 =
ωu − ωl

π
.

(3.29)

3.2.5 The Baxter-King Bandpass Filter

Because the ideal bandpass filter is an IIR, a finite sample approximation of the

ideal filter is devised for most finite macroeconomic time series in practice. It is

already known that phase shifts in filtered data cause time lags or time advances

for observations. These shifts are problematic in economics because the temporal

properties of data are important and should be retained. Consequently, a symmetric

filter whose phase function is zero and thus does not introduce phase shifts in the

filtered data is recommended. Given this consideration, Baxter and King (1999)

adopt a symmetric window to truncate the ideal bandpass filter to establish an

optimal symmetric filter.

The symmetric property indicates that the filter is expressed byA(L) =
∑K

j=−K AjL
j,

where Aj = A−j. The objective is to find the appropriate filter’s weights Aj to make

A(L) converge with the ideal filter. Accordingly, a loss function Q should be min-

imised:

Q =
1

2π

∫ π

−π
|B(ω)− A(ω)|2dω, (3.30)
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where A(ω) is the frequency response function of A(L): A(ω) =
∑K

j=−K Aje
−iωj.

If this approximating bandpass filter is used as a lowpass filter, then A(ω) = 1 at

ω = 0 indicates that the filter’s weights sum to unity. The constraint A(0) = 1 as a

slide condition and the minimisation problem in Equation (3.30) yield the following

results:

Aj = Bj + θ , j = 0,±1, · · · ,±K,

θ =
1−

∑K
j=−K Bj

2K + 1
,

(3.31)

where Bj are the ideal filter’s weights, as previously demonstrated in detail. Based

on the summary statistics for several U.S. quarterly macroeconomic time series and

the definition of business cycles that has evolved from that of Burns and Mitchell

(1946), Baxter and King (1999) recommend the following parameters for quarterly

data: K = 12, ωl = 2π/32, and ωu = 2π/6.25

3.2.6 The Christiano-Fitzgerald Bandpass Filter

Because filtered data are generated by ŷ(t) =
∑K

j=−K AjL
jy(t) in the BK filter,

it is apparent that the first K sample values and the last K sample values remain

unprocessed, which avoids the so-called end-sample problem that will be discussed in

detail subsequently. However, these unprocessed values create a disadvantage for the

BK filter when it is used to execute the current analysis: the data at the end of the

sequence are often important in economics. With respect to this issue, Christiano

and Fitzgerald (2003) propose another approach to truncate the ideal bandpass filter

to construct an optimal filter. In their opinion, the phase shift issue for filtered data

with observations is not a serious issue. The restriction on the symmetric property of

the filter could be released, and an asymmetric approximation to the ideal bandpass

filter could thus be constructed.

The finite impulse sequence of the approximating filter a(L) is {aj}n2
j=−n1

with

n1 6= n2. Based on the CF filter, the estimated business cycles are as follows:

ĉ(t) = a(L)y(t) =

n2∑
j=−n1

ajL
jy(t). (3.32)

25Corresponding to the parameters for quarterly data, K = 36, ωl = 2π/96, and ωu = 2π/18 are
applied to monthly data, whereas K = 3, ωl = 2π/8, and ωu = 2π/2 are applied to annual data.
It is noted that the duration of business cycles is shorter than 8 years but greater than 1.5 years.
Correspondingly, the upper cut-off frequency ωu is 2π/1.5 for annual data. However, this cut-off
exceeds the maximum frequency π and is thus adjusted to 2π/2.
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The filter’s weights aj are generated by minimising the MSE criterion,

aj = arg minE[(c(t)− ĉ(t))2|y] , y = [y1, · · · , yT ]′, (3.33)

and thus, they are

aj = Bj, for j = −n1 + 1, · · · , n2 − 1,

a−n1 =
a0

2
−

n1−1∑
j=0

aj and an2 =
a0

2
−

n2−1∑
j=0

aj,
(3.34)

where n1 = T − t and n2 = t − 1. From an2 = a0/2 −
∑t−2

j=0 aj, we know that t

should be not less than 3; thus, the first 2 processed data are distorted, and it is

recommended that they be discarded. The variables n1 and n2 associated with time

t indicate that the finite impulse sequence {aj}n2
j=−n1

varies with time, illustrating

that the CF filter is time-variant. Moreover, the CF filter is clearly asymmetric. In

matrix notation, Equation (3.32) is written as follows:

C = AAy, (3.35)

where C is a T × 1 vector containing business cycle information, observation y is

a column vector with T dimensions, and the matrix form of the corresponding CF

filter is as follows:

AA =



1
2B0 B1 B2 B3 · · · BT−3 BT−2 − 1

2B0 −
T−2∑
j=1

Bj

− 1
2B0 B0 B1 B2 · · · BT−4 BT−3 − 1

2B0 −
T−3∑
j=1

Bj

− 1
2B0 −B1 B1 B0 B1 · · · BT−5 BT−4 − 1

2B0 −
T−4∑
j=1

Bj

...
...

...
...

. . .
...

...
...

− 1
2B0 −

T−4∑
j=1

Bj BT−4 BT−5 BT6 · · · B0 B1 − 1
2B0 −B1

− 1
2B0 −

T−3∑
j=1

Bj BT−3 BT−4 BT−5 · · · B1 B0 − 1
2B0

− 1
2B0 −

T−2∑
j=1

Bj BT−2 BT−3 BT−4 · · · B2 B1
1
2B0


T×T

.

(3.36)

Actually, every row in matrix AA corresponds to a linear asymmetric filter, evidently

indicating that every observation has its own CF filter.

The frequency response function of the filter is a(ω) =
∑n2

j=−n1
aje
−iωj. a(ω) =∑n2

j=−n1
aj = 1 at ω = 0 is analogous to the constraint on the BK filter that the
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frequency response function at zero frequency should be equal to one when the CF

filter is used as a lowpass filter. It is easy to adjust the CF filter to a symmetric

filter, as in the work of Baxter and King (1999). Accordingly, the BK filter appears

to be a special type of CF filter. Unlike the BK filter, the data at the beginning

and end of sequence are processed, which is a promising property of the CF filter

for the current analysis. In addition, the CF filter is derived from a model-based

methodology, with a priori knowledge regarding the spectral density of a time series.

The CF filter is optimal when the process y(t) is a random walk with a constant

drift. To estimate business cycles, it is recommended that a linear trend be extracted

from the non-stationary process y(t) prior to filtering.

We should be cautious in addressing the end-sample problem when detrending a

finite time series. If the appropriate approach is not used to resolve this problem,

then all of the processed values would be affected. To detrend a data sequence at

the beginning or at the end as well as in the middle, we should supply pre-sample

and post-sample values for the symmetric filter, which can be either finite or infi-

nite. Otherwise, the symmetric filter becomes a one-sided filter that is asymmetric

when it is applied at the beginning or end of a data sequence, leading to phase

displacement in these processed data. Note that the transient effect is generated by

choosing inappropriate values for the forward or backward pass. There should be no

distinguishable disjunction where the beginning and end of the sample are joined.

Consequently, a data sequence should be detrended to the extent that the ap-

parent disjunction is diminished, which can be accomplished by differencing or by

applying a polynomial regression of degree d. The data values interpolated at the

beginning and at the end are zeros, which are the unconditional expectations of a

stationary data sequence according to the HP and BW filters. The HP filter converts

a non-stationary data sequence into a stationary sequence by second-order differ-

encing, whereas the BW filter stationarises a data sequence by d−order differencing.

However, this approach leads to a strong distortion at the end of the processed data

sequence when it is applied to the BW filter, as will be shown subsequently. To fur-

ther smooth the transition between the end and the beginning, we can interpolate

a piece of pseudo-data at that location. In the wavelet filter, these data are esti-

mated by backcasting and forecasting the residuals, which are results in removing

the polynomial trend from a data sequence.

Furthermore, two other methods are recommended to solve the end-sample prob-

lem. Regarding the symmetric filter, a more straightforward method involves elim-

inating some sample values at the beginning and end of the sequence, as the BK

filter does. From a different perspective, an asymmetric filter such as the CF fil-
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ter that accounts for all observations when estimating filtered data may also be

recommended.

3.3 Comparison of These Filters Using the Gain

Function

The gain function yields changes in the amplitude of a time series over specific fre-

quency intervals. Therefore, we compare these filters from a theoretical perspective.

The wavelet filter is interesting in that its gain function is difficult to derive because

of downsampling and upsampling. Moreover, the CF filter is an asymmetric and

time-variant filter, which implies that it actually consists of many asymmetric fil-

ters. It is meaningless to show the gain effect of only one of its filters. Consequently,

we will compare only the HP, BW and BK filters below. In addition, the gain effect

and the phase effect of the CF filter will be discussed.

As noted previously, for an ideal bandpass filter, the desired components are able

to completely pass, while other components are blocked. In addition, economics

research requires that no time delay or time advance be produced during this process.

From a frequency domain perspective, the amplitudes of the desired components are

not altered while those of the other components are set to zero: the implication is

that the ideal filter’s gain function in the desired frequency intervals has a value

of one while the other values are zero. Accordingly, for an ideal bandpass filter,

the shape of the gain function is a square wave with an instantaneous transition

between the stopband and passband. Moreover, the values of the filter’s phase

function should be identical to zero, suggesting that it is a symmetric filter. In this

paper, we have revealed the symmetric filters involving the HP filter, the BW filter,

the BK filter and the wavelet filter, noting an exception for the CF filter. Following

the definition of business cycles suggested by Baxter and King (1999), the frequency

band for the BW filter with n = 8 and the BK filter with K = 12 is [2π/32, 2π/6],

and the parameter λ is identical to 1600 for the HP filter in quarterly data.

When these filters are applied to a time series, three phenomena involving leak-

age, compression and exacerbation arise because these approximating filters are not

ideal. As shown in Figure [3.1], some elements in the range of frequencies below

the lower cut-off frequency or above the upper cut-off frequency (which should be

prevented) pass through the filter; this phenomenon is called “leakage”. Some ele-

ments in the desired range of frequencies do not fully pass the filter, which is called

“compression”. Finally, when the amplitudes of the gain function are greater than

one, some elements are amplified, which is referred to as “exacerbation”. Because
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Figure 3.1: the gain functions of different filters

the ideal filter is not realistic, some of these phenomena always exist. These is-

sues demonstrate that the extracted business cycles contain some elements of trend

and/or noise but do not thoroughly capture real business cycles.

In contrast to the HP and BW filters, only the BK filter introduces the exacer-

bation effect. These three phenomena in the BK filter are caused by truncating the

ideal filter; furthermore, the constraint condition imposes a constant on the ideal

filter’s weights, worsening the leakage at high frequencies. The negative frequency

responses are associated with phase shifts, although Baxter and King (1999) regard

them as minor issues. There is still no phase displacement within the entire filtered

data sequence.

The most rapid transition from stopband to passband or from passband to stop-

band occurs in the BW filter, which means that it has the least leakage and compres-

sion issues. The steepness from stopband to passband or from passband to stopband

is weaker in the HP and BK filters, which indicates that the leakage and compression

effects are stronger in those filters. Figure [3.1] indicates that the BW filter is more

advanced on a theoretical level. The gain functions of the HP and BW filters derive

from their infinite versions, as does the approximating filter’s gain function for the

BK filter. In practice, the results estimated by these filters may not be what we

find in Figure [3.1]. Furthermore, the performance of the CF filter and the wavelet

filter is unclear from the gain function perspective. Therefore, a simulation study is

conducted to assess the values of these five filters applied in an artificial series.

As discussed in the section above, the HP filter is a highpass filter. The filtered
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data, which are always considered to be business cycles, actually involve noise in

addition to business cycles, as illustrated in Figure [3.1]. Thus, the HP filter is a

detrending filter, and it would therefore not be consistent to compare the results

for this filter with those of the bandpass filters. Generally, the HP filter could be

constructed as a bandpass filter with the lower parameter λl = 677.13 and the

upper parameter λu = 1 for quarterly data, as denoted by the bpHP filter. Figure

[3.1] indicates that this approximation is poor because the leakage and compression

effects are too strong. Because economists conventionally use the HP filter to extract

business cycles and then critically analyse it using bandpass filters, we will compare

the traditional HP filter to other filters below in the simulation study.

Figures [3.2] and [3.3] display the gain and phase effects of the CF filter, respec-

tively. The asymmetric and time-variant CF filter actually has a corresponding

filter for every observation. Here, the size of the underlying data sample is 150. The

passband is consistent with that for the BW and BK filters, [2π/32, 2π/6], which

corresponds to a periodicity ranging from 6 quarters to 32 quarters. Leakage, com-

pression and exacerbation arise in both the CF and BK filters. In particular, the

leakage in the frequencies above the passband is pronounced, at least for the first 12

and last 12 data points. At the end of the data sequence, some of the exacerbation

is substantial. Consequently, they suggest that these data be discarded, which is

consistent with the first and last data points in the BK filter.

Figure 3.2: the gain effect of the CF filter

As implied by the transfer function, phase shifts are introduced by the CF filter.

Figure [3.3] shows only the phase effect in the passband. The phase effect at the

beginning or end of the data sequence is obvious. The absolute maximum value of
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the phase is approximately 1.4 quarters. As a result, some elements shift upward

±1.4 quarters, causing a maximum 2.8 quarters shift from the original data. Thus,

the phase effect on the filtered data is strong, which contradicts the argument of

Christiano and Fitzgerald (2003). Moreover, in a simulation study, Iacobucci and

Noullez (2005) show a strong phase effect in data processed using the CF filter. The

phase shifts in the filtered data cause time delays or time advances from the original

data. As a consequence, the temporal and correlation properties among different

frequency components within the series or among different filtered data sequences

are meaningless, and the CF filter thus becomes less attractive.
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Figure 3.3: the phase effect of the CF filter

3.4 Monte Carlo Simulation

In spectral analysis theory, a macroeconomic time series is believed to be a com-

bination of a trend at low frequencies, business cycles at intermediate frequencies,

and noise at high frequencies. The various components are unrelated in their own

specific frequency intervals. According to this theory, an ideal filter is required to

isolate these components. Unfortunately, it is not realistic to apply the ideal filter,

which is an IIR filter, to a macroeconomic time series because of the short length

of the series. As a result, a filter to approximate the ideal filter is applied to a data

sequence instead. Some leakage, compression and exacerbation effects arise and are

attributed to the approximations. It is not easy to illustrate whether a filter is de-

sirable for extracting a trend or business cycles, as the benchmark ideal filter does

not exist in practice.
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Accordingly, an artificial series is constructed to investigate the performance of a

filter in extracting the trend or business cycles. Following the finding that important

macroeconomic variables tend to be series with a unit root by Nelson and Plosser

(1982), the trend xA(t) is postulated as a random walk with drift in the simulation:

xAt = xAt−1 + 0.02 + εAt , εAt ∼ N(0, 0.0004). (3.37)

Because of the common application of the natural logarithm to data in practice,

the trend here is interpreted as 2% annual economic growth with fluctuations in the

range of [−0.02, 0.02].

Baxter and King (1999) propose a definition of U.S. business cycles in which the

duration of cyclical components ranges from 6 quarters (18 months) to 32 quarters

(8 years). With respect to this definition, the simplest model to measure business

cycles in annual data is the following:

cAt = 0.008[sin(
2πt

8
)− 0.15 sin(

2πt

2
)], (3.38)

where the periodicities of the function are 2 and 8. To remove this cyclical compo-

nent, the passband should be [2, 8], which is consistent with the definition of business

cycles. The 1.5-year periodicity of cycles should be adjusted to 2 years because of

the maximum frequency π. For annual data, the passband for a filter is thus [2, 8]

years in time duration, which is associated with cut-off frequencies of [π/4, π].

Overall, an annual data sequence yA(t) is a sum of the trend xA(t), the business

cycles cA(t) and the noise ηA(t):

yAt = xAt + cAt + ηAt , (3.39)

where ηA(t) is a white noise process with a variance of 0.0002. To ensure consistency

when constructing an artificial series, the quarterly data sequence yQ(t) is as follows:

yQt = xQt + cQt + ηQt , (3.40)

where the trend is a random walk with drift: xQt = xQt−1 + 0.02/4 + εQt with εQt ∼
N(0, 0.0004/16); the cycles are cQt = 0.0008[sin(2πt/32) − 0.15 sin(2πt/6)]; and the

white noise process ηQ(t) has a variance of 0.0002/16.

The monthly data sequence yM(t) is

yMt = xMt + cMt + ηMt , (3.41)
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where the trend is xMt = xMt−1 +0.02/12+εMt with εMt ∼ N(0, 0.0004/144); the cycles

are cMt = 0.001[sin(2πt/96) − 0.15 sin(2πt/18)]; and the white noise process ηM(t)

has a variance of 0.0002/144.

In sum, the periodicities of the cycles are 2 years and 8 years for annual data,

6 quarters and 32 quarters for quarterly data, and 18 months and 96 months for

monthly data. Correspondingly, the bands in time duration for the filter are [2, 8]

years, [6, 32] quarters and [18, 96] months, respectively. Thus, the cut-off frequencies

are submultiples of the signal duration. Because the decomposed frequency is dyadic

in the wavelet filter, the cut-off frequencies are adjusted to [π/16, π/4] for quarterly

data and [π/32, π/8] for monthly data, whereas the cut-off frequencies remain the

same, [π/4, π], for annual data. Furthermore, the traditional value of the parameter

λ in the HP filter is used here: 100 for annual data, 1600 for quarterly data and

14400 for monthly data.

The RMSD is a measure of the average error between actual observation and es-

timated observation. A smaller value of RMSD indicates that the estimated obser-

vation is closer to the actual value, which illustrates that the filter performs better

than other filters. Because business cycles are a common concern in economics,

demonstrating whether a filter is effective in extracting these cycles is the primary

purpose of our investigation. In addition, estimating the trend is often a secondary

goal. To evaluate the value of the filter used to extract the trend or business cycles,

we build two types of RMSD:

RMSDt =

√√√√ 1

T

T∑
t=1

(xt − x̂t)2,

RMSDb =

√√√√ 1

T

T∑
t=1

(ct − ĉt)2,

(3.42)

where RMSDt and RMSDb measure the estimated trend and the estimated business

cycles, respectively. Lower values for RMSDt or RMSDb indicate that the filter is

better able to extract the trend or business cycles. To provide a reliable result, we

run the model 10000 times and obtain the sum of RMSDt or RMSDb.

3.4.1 The Simulation Findings

Tables [B.1] and [B.2] sum the results of the five filters used to extract the trend and

business cycles, respectively. The remaining tables record the corresponding RMSDt

and RMSDb values when each parameter in the artificial series is altered. Because
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the first K sample values and the last K sample values are not filtered in the BK

filter, we also list the results obtained when these processed data are excluded in

other filters for a consistent comparison between these filters. Moreover, the filtered

data at the beginning or end are affected by extrapolation; thus, the RMSD values

in the middle segment reflect the true consequences of these approximating filters

applied to data at various sampling frequencies without the influence of the end-

sample problem. As a result, the entire data sequence is divided into three segments

to show the corresponding performance of the filters.

The results are quite robust with a few exceptions, regardless of the parameter

of the artificial series. As the sampling frequency of data increases, the RMSD

values decrease. This result is partly caused by eliminating irregular components

of the quarterly or monthly data from the estimated data, which also contributes

to declines in the oscillations of the trend. When these five filters are applied to

an annual data sequence, they are actually highpass filters and are thus detrending

filters. The frequency band for annual data is [π/4, π], where π is the maximum

frequency, referred to as the Nyquist frequency. Thus, the bandpass filters, such as

the BK filter, the CF filter and the wavelet filter, become highpass filters. The data

estimated by these filters consist of business cycles and noise. In our simulation, the

value of the variance of noise in the annual data sequence is highest in the data at

three sampling frequencies. This result explains why RMSD values are the highest

for the annual data. The comparisons of the estimated trend are identical to those

of the estimated business cycles, which are illustrated by the same values of RMSDt

and RMSDb for annual data.

With regard to estimating the trend from a time series, the BK filter is the optimal

choice and the HP filter is the worst choice for annual data in most cases. The results

for the BK, BW and CF filters are similar. For quarterly data, the RMSDt values for

the BK filter are the smallest, whereas the values for the BW filter are the largest.

In fact, the values for the BK, CF, HP and wavelet filters are close. The results

indicate that the BK filter is the optimal choice and that the BW filter the worst

choice for extracting the trend from a quarterly data sequence. In addition, the BW

filter dominates for monthly data, whereas the CF and BK filters perform poorly

for such data. The RMSDt values in the HP wavelet filters show that they are also

reasonable choices. Tables [B.23] and [B.25] indicate that all of the filters construct

a smooth trend. When the data fluctuate greatly, which is evidenced by high values

for the parameters of the variance in the trend in the artificial series, the quality of

results from these filters declines substantially.

For the purpose of extracting business cycles, these five filters show the same
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results as when they are used to extract the trend from an annual data sequence:

the BK filter is the optimal choice, and the HP filter is the worst choice. However,

in some cases, the BW filter outperforms the BK filter. The smallest values for

RMSDb in the wavelet filter indicate that this method is optimal for extracting

business cycles from a quarterly data sequence, whereas high values indicate that

the BW filter is the worst choice. For monthly data, the BW filter is dominant in

extracting business cycles. The BK and CF filters yield the highest RMSDb values

when they extract business cycles from a monthly data sequence, which indicates

that they perform poorly with respect to extracting business cycles. The wavelet

filter is nearly the second-best choice, and the HP filter is also a reasonable choice.

As introduced in the section above, the RMSD values in the middle segment of the

data sequence capture the real performance of these approximating filters without

the influence of the end-sample problem. The results are nearly identical to those for

the entire data sequence without the first and last K sample values. In accordance

with the RMSD values for the three segments, we find that the results are similar,

with the exception of the BW filter. When the last K processed sample values are

involved at the end of the sequence, the values for the RMSD either at the end or

in the entire sequence increase substantially. As a result, it is advisable to eliminate

these values. For the other three filters, the last K processed sample values do not

affect the results. In some cases, the RMSD values at the end of the sequence are

smaller than those for the middle segment. Therefore, it is recommended that these

values be preserved. In addition, this result implies that the appropriate approach

is being used to address the end-sample problem in these filters.

Indeed, it is not fair to compare the HP filter with the three bandpass filters

involving the BK filter, the CF filter and the wavelet filter when used to extract

business cycles. The data estimated using the HP filter as a highpass filter contain

business cycles and noise, whereas the bandpass filters extract only business cycles.

We can construct a bandpass version of the HP filter using a method that is adopted

for the BW filter as well. For the BW filter, which is also a highpass filter, the noise

is removed when the estimated data with an upper cut-off frequency are subtracted

from those with a lower cut-off frequency. However, it is not common to extract

business cycles using the HP filter, and the results are poor, as shown in Figure

[3.1], from a theoretical perspective. Accordingly, this method for the HP filter is

not employed here.

Consequently, the RMSDb values should be large when the HP filter is used to ex-

tract business cycles, as shown in many cases. However, it is surprising to find that

the RMSDb values are small when the HP filter is applied to quarterly or monthly
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data to extract business cycles. The small oscillations in the irregular components

explain this finding. Although these oscillations are involved in the estimated data,

they cannot affect the results substantially. When irregular components fluctuate

greatly, which is reflected in large values of the noise parameter, the HP filter yields

the worst results because the irregular components are heavily weighted in the esti-

mated data. Tables [B.12], [B.14], [B.16] and [B.18] justify our inferences here.

It is acknowledged that the trend is not linearly dependent on the business cycles

in the simulations. Although linear independence is not identical to orthogonality,

the results for the wavelet filter in the simulation may somehow contribute to this

set. From another perspective, if business cycles and trends are required to be

linearly independent in empirical works, then the wavelet filter would be a good

choice.

3.5 Conclusion

In sum, the consequences of applying these five filters at various sampling frequencies

are different when estimating trends and extracting business cycles. No filter has the

ability to dominate in all situations, with the exception of the wavelet filter, which

always extracts the best business cycles from a quarterly data sequence. Given

economists’ concerns regarding business cycles, the BK filter, the wavelet filter and

the BW filter show the smallest RMSDb values for annual data, quarterly data, and

monthly data, respectively, implying that these filters are the optimal choices for

data at these specific sampling frequencies. Furthermore, from the perspective of

estimating a trend, the BK filter dominates for annual and quarterly data, and the

BW filter generates the best trend from a monthly data sequence.

In general, the BK, CF and wavelet filters provide similar results in many cases,

particularly the former two filters, as their construction principles are similar. Be-

cause of the asymmetric property of the CF filter, the BK filter is preferred. However,

the first K sample values and the last K sample values are not processed by the BK

filter. The data at the end of the sequence are important in economics, especially

for the current analysis; therefore, this shortcoming of the BK filter makes it less

appealing to economists and researchers.

A so-called distortion problem is identified by eliminating the first and last K

sample values, as implemented by the BK filter. The majority of tables show high

deviations at the end of the estimated data sequence using these data in the BW

filter. This result suggests that it is preferable to discard these data. In other filters,

the distortion problem does not appear to arise. This problem is naturally avoided
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by the BK and the CF filters, which use all data to estimate the filtered data. For the

wavelet filter, forecasting and backcasting data are based on residuals by removing

a polynomial trend from the data sequence; they are then interpolated at the end

and at the beginning, respectively. This approach thus minimises the effects of this

issue. It is interesting to observe the declines in RMSD values when the first and last

K sample values are included. In comparison with the middle segment of the data

sequence, the RMSD values at the end are even smaller. This result implies that

the last K processed sample values could be retained in the wavelet filter, which is

a promising feature of the wavelet filter for the current analysis.

Moreover, the base functions of the wavelet filter are localised in time and in

frequency, which can be stretched and translated using a flexible resolution (in both

time and frequency) to capture features that are local in both time and frequency.

The sine and cosine functions that are the base functions of the Fourier transform

are localised in frequency but not in time, although they extend over the entire real

line. Accordingly, compared with the other four filters that are estimated using the

Fourier transform, the wavelet filter provides a better resolution in the time domain

and is more useful for capturing the changing volatility of business cycles. The

wavelet filter is thus believed to be a good alternative filter for isolating different

frequency components of data.

In addition, the main attractive property of the wavelet filter is that it orthog-

onally decomposes data into different components with various frequencies that

are associated with time horizons. Orthogonality implies that different frequency

components, including the business cycles and the trend, are linearly independent.

Sometimes this relationship is required because it eases and simplifies the study of

certain economic issues. According to the results of the above Monte Carlo sim-

ulation, using the wavelet filter to estimate the trend or business cycles is quite

reasonable, especially when using it to extract business cycles from a quarterly data

sequence. Consequently, if the business cycles and trend are required to be linearly

independent, then the wavelet filter will provide promising results. Over the last

two decades, a growing number of papers have studied economic or financial issues

using the wavelet filter; see the literature review section.

A disadvantage of the wavelet filter is its strict dyadic frequency. The cut-off

frequencies are adjusted for the wavelet filter when it is applied to quarterly or

monthly data. However, this problem is not believed to be sufficiently serious to

require abandoning the wavelet filter. First, this strategy has been used with annual

data for all bandpass filters. The duration of business cycles is defined as being

between 1.5 and 8 years. For the bandpass filter, the passband is not [1.5, 8] years
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but is adjusted to [2, 8] years because the Nyquist frequency is π. Second, the

approximating filter is not ideal, such that the leakage effect is not prevented. An

adjustment in the passband that causes the leakage can thus be tolerated. Third,

in our simulation study, the periodicity of cycles is already known. The results for

the wavelet filter are quite good. Especially for quarterly data, the wavelet filter is

the dominant method for extracting business cycles. Thus, an adjustment in the

passband for the filter is acceptable.

Finally, the duration of business cycles is not precisely defined. In the empirical

literature, different business cycle lengths are used, e.g., 4 years by Croux et al.

(2001), between 12 and 32 quarters by Levy and Dezhbakhsh (2003), between 8 and

32 quarters by Crowley and Lee (2005), between 16 and 128 months by Gallegati

and Gallegati (2007), between 4 and 32 quarters by Yogo (2008), between 2 and 8

years by Aguiar-Conraria and Soares (2011), and between 4 and 12 years by Aguiar-

Conraria et al. (2012b). By contrast, the trend is defined as fluctuations longer than

8 years by Jaeger (2003), 4 years by Assenmacher-Wesche and Gerlach (2008a,b), or

30 years by Benati (2009). This evidence appears to suggest possible durations for

business cycles. Moreover, Aguiar-Conraria et al. (2012b) report that the duration of

business cycles varies among countries. As shown by Bergman et al. (1998), business

cycles last for 4.8 years on average during the post-war period, with Finland having

longer average cycles (5.8 years) and Norway having shorter cycles (3.6 years).

In this paper, we use the definition proposed by Baxter and King (1999), who

further develop the definition of Burns and Mitchell (1946). Burns and Mitchell

(1946) offer the following definition of business cycles: “in duration business cycles

vary from more than one year to ten or twelve years”. Accordingly, there is no precise

definition regarding the duration of business cycles; the definite is only approximate

and can be adjusted to ensure good results. In many studies addressing the proper

design of a detrending filter, the objective is to work with U.S. data. However, for

many other countries, we do not even know the rough periodicity of business cycles.

In conclusion, the insufficient prior knowledge of the periodicity of business cycles

suggests that the cut-off frequencies should not be fixed when a filter is adopted

to extract business cycles. From another perspective, this lack of knowledge also

demonstrates that the drawback of the wavelet filter with its fixed cut-off frequencies

does not affect our considerations when using a filter to extract the trend or business

cycles from a data sequence.
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Chapter 4

No Contagion, Only

Interdependence: New Insights

from Stock Market Comovements

by Wavelet Analysis

4.1 Introduction

The 1997 Asian crisis, the 2007-2008 financial crisis, and the recent Euro sovereign

debt crisis are cases in which extreme instability hit not only the original market but

also the entire region, and even the global markets. Economists use the concept of

contagion to describe the spreading of crisis from one market to other markets, such

as a contagious disease. However, it is debated whether this propagation of a shock

from one specific market across other markets is, in fact, contagion. Although there

is some support for this argument, others believe that this phenomenon is merely a

continuation of the same cross-market linkages that exist during more tranquil peri-

ods and is not a contagion of a crisis. For instance, southeast Asian markets or Euro

markets in the same region have similar economic structures and histories. They

have strong economic linkages, which implies that they are correlated in tranquil

periods. A shock to one market could propagate to other markets through a normal

transmission mechanism. This process is not contagion but merely interdependence.

To clarify this debate, it is necessary to understand contagion thoroughly.

Generally, the concept of contagion is intended to describe incidents in which a

financial crisis in one country imposes a negative impact on another country and

induces a crisis in that country as well. However, this concept is difficult to distin-

guish from interdependence, which arises among countries because their economic
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fundamentals are linked through the balance of payments. As in the above argu-

ment, contagion was identical to “financial interdependence” in many early works

(Fratzscher (2003)). Is it contagion if a simultaneous occurrence of financial crises

in many countries is derived from a common shock? Consequently, a more precise

definition of contagion is needed to distinguish these incidents. Unfortunately, there

remains no consensus on this issue.

Many economists advocate that “abnormal” excess comovements should accom-

pany contagion. Consistent with this suggestion, Kaminsky et al. (2003) refer to

contagion as “an episode in which there are significant immediate effects in a number

of countries following an event-that is, when the consequences are fast and furious

and evolve over a matter of hours and days”.26 This definition is appealing because

the phrase “fast and furious” distinguishes contagion and interdependence. The

gradual response to a shock is considered a continuation of a transmission mecha-

nism in tranquil periods. This response is labelled “spillovers” by Kaminsky et al.

(2003). Before proposing our definition of contagion, it is necessary to introduce the

channels by which a shock to one market initially propagates across other markets.

Without a clear understanding of this phenomenon, we cannot evaluate the issue

precisely or propose appropriate policy measures to limit it.

The way that a shock to one specific market propagates across other markets is a

core research topic in the study of “contagion”. Kaminsky et al. (2003) review the

relative literature. Generally, there are two channels by which a shock propagates

across markets. Initially, economists thought that it spread through trade linkages

(or real linkages), which are estimated on macroeconomic fundamentals, such as

trade or international business cycles. For instance, a country trades with another

country not only through bilateral trade links but also through indirect trade links

resulting from an intermediate country. A crisis in the first country induces the

devaluation of currency and reduces the demands for imports. To remain competi-

tive and stimulate exports, the second country devalues the currency as well. The

following negative events cause a crisis in the second country.

Considerable attention has been devoted to trade linkages in the early period. At

the theoretical level, Helpman and Razin (1978), Cole and Obstfeld (1991), Backus

et al. (1992), Baxter and Crucini (1993), Cass and Pavlova (2004), and Pavlova

and Rigobon (2007) utilise macroeconomic theory to explain how a shock to one

market affects others. Under the analysis of trade, policy coordination, country

reevaluation, and random aggregate shocks, the empirical literature (Eichengreen

26Forbes and Rigobon (2002) propose a similar definition of contagion but adopt “shift-
contagion” instead.
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et al. (1996), Glick and Rose (1999), Kaminsky and Reinhart (2000)) illustrates

that trade linkage is an efficient transmission mechanism for shocks.

However, a growing number of economists question this channel and believe

that the transmission mechanism that exists during more tranquil periods does not

change. Kindleberger (1985) has argued that such trade linkages are “too strung

out with lags to explain the near simultaneity of crisis”. Moreover, this approach is

not able to explain many phenomena arising in these two decades. For example, the

fact that the currency devaluations in Turkey and Argentina in 2001 did not affect

neighbouring countries illustrates the invalidity of this channel. Brazil’s currency

and equity prices declined in 1999 after the Russian default in 1998, but there was

nearly zero trade between two countries: only 0.2 percent of Brazil’s exports were

destined for the Russian market. Consequently, it was eventually realised that trade

linkages were not sufficient for explaining contagion.

An increasing number of theoretical and empirical studies present financial link-

ages to explain how a shock propagates across markets. As globalisation deepens,

capital flows are relatively easier; consequently, the amount of capital flows is larger

than ever before. Table [C.1] lists the relative data in the late 1980s and 1990s. In

global markets, annual average capital flows increased from 15.0 billion U.S. dol-

lars in the late 1980s to 151.1 billion U.S. dollars during 1990-1996. Among these

capital flows, net direct investment and net portfolio investment also substantially

increased, from 13.1 U.S. dollars to 61.7 U.S. dollars and from 3.6 billion U.S. dollars

to 54.9 U.S. dollars since the late 1980s. According to these data, the percentage

of net portfolio investment in net private capital flows has risen from 24 percent to

36.3 percent, which illustrates the importance of net portfolio investment strength-

ening. Specifically, net private capital flows consisting of net direct investment and

net portfolio investment in every region have increased substantially.

Consequently, a greater number of investors (in particular, commercial banks,

mutual funds, and hedge funds) hold multiple types of assets in a diverse range of

markets. When there is a shock in one market, arbitrageurs fear the outflow of funds.

To satisfy marginal calls or to meet liquidity requirements, they will sell another

market’s assets in their portfolios. It is very difficult to sell assets whose prices have

already collapsed given the lemon problem. Even when these assets are sold, the

withdrawn fund is too small to meet arbitrageurs’ purposes. Consequently, investors

prefer to sell other assets in portfolios. This action propagates the shock to a second

market. It is observed that these are implemented by portfolio rebalancing activity.

Furthermore, to meet capital constraints, banks withdraw foreign loans, which hurts

another country’s economy and induces a crisis in that country. Therefore, financial
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integration leads to a significant increase in global leverage, doubles the probability

of balance sheet crises for any one country, and dramatically increases the degree of

‘contagion’ across countries. (Devereux and Yu (2014))

At the theoretical level, King and Wadhwani (1990) propose a correlated infor-

mation channel, Fleming et al. (1998) and Calvo (1999) introduce a portfolio re-

balancing activity channel, and Kyle and Xiong (2001) and Yuan (2005) propose a

correlated liquidity channel to illustrate financial linkages. Moreover, Kodres and

Pritsker (2002) present a rational expectation model to explain financial contagion.

Kaminsky and Reinhart (2000) show that trade linkage (trade in goods and ser-

vices) through a third party is a transmission mechanism for some cases, but finan-

cial linkage through common bank creditors has recently been more prominent than

trade linkage in driving the propagation of shocks for most markets. To identify a

set of underlying variables that contribute to vulnerability to contagion and provide

some useful suggestions for policymakers, Mody and Taylor (2003) examine the vul-

nerability of a region to the occurrence of a crisis and cast doubt on the role of trade

linkages in the propagation process. Compared with lag effects in trade linkages,

financial linkages are associated with nearly simultaneous effects. The authors find

this result because the responses of traders in financial markets are able to immedi-

ately adjust asset prices. Consequently, the latter driver is better able to explain the

propagation of a shock across markets. In conclusion, financial linkage dominates in

the propagation mechanism of a shock, which is a main channel by which a shock

to one market spreads to other, unrelated fundamental macroeconomic markets.

4.2 Heterogeneity of Asymmetric Information and

Contagion

Pasquariello (2007) proposes a model that rules out the above three financial linkage

channels (correlated information, portfolio rebalancing activity, and correlated liq-

uidity channel) to explain financial contagion across unrelated markets from a new

insight: heterogeneity of asymmetric information.

In his model, three types of investors, including informed speculators, uninformed

market makers (MMs), and liquidity traders, trade multiple asset types in various

markets on three dates and over two time periods. At time t = 0 (first date),

informed speculators do not have any asymmetric information about assets. In the

first time period between time t = 0 and t = 1, each speculator receives two sets

of private and noisy signals about idiosyncratic and systematic shock. Then, the

speculators utilise their informational advantage to trade at the end of time t = 1.
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In the second time period, between time t = 1 and t = 2, the MMs observe the order

flow, learn the activity of speculators, and rationally update their beliefs about the

terminal payoffs of the trading assets before setting equilibrium prices. Based on

their cross-inferences, they set the payoffs of multiple assets at the end of time

t = 2.27

The multiple asset types include N risky assets and a riskless asset (the nu-

meraire), whose gross return is normalised to one. An N × 1 vector v that is

multivariate normally distributed (MND) with mean v̄ and nonsingular covariance

matrix Σv denotes the N + 1 assets. At the end of time t = 2, the terminal payoffs

of the risky assets are gained. The vector v is linearly dependent on idiosyncratic

shock (N × 1 random vector µ) and systematic shock (F × 1 random vector ϑ) and

may be expressed by

v = µ+ βϑ, (4.1)

where β is an N × F matrix of factor loadings.28 µ and ϑ are assumed to be MND

with means µ̄ and ϑ̄ and covariance matrices Σµ and Σϑ (diagonal and nonsingular);

thus, v̄ = µ̄+βϑ̄ and Σv = Σµ+βΣϑβ
′ are nondiagonal and nonsingular.29 Here, µ is

interpreted as future realisations of domestic risk factors and ϑ as future realisations

of global risks.

At time t = 0, all traders share information and do not have informational ad-

vantage. The prices of risky assets (P0) are set to be the unconditional means of

their terminal payoffs: P0 = v̄. In the first time period during time t = 0 and t = 1,

each speculator (k) receives two sets of private (µ and ϑ) and noisy signals (εµk and

εϑk) about future realisations of µ and ϑ: Sµk = µ + εµk and Sϑk = ϑ + εϑk, where

εµk ∼ MND(0,Σεµk) and εϑk ∼ MND(0,Σεϑk). Here, µ, ϑ, all εµk and εϑk are

mutually independent and induce Σεµk = Σεµ and Σεϑk = Σεϑ (Σεµ and Σεϑ are di-

agonal). Consequently, before trading with the MMs, each speculator’s expectation

27The uninformed MMs may use the observed demand for assets of one market to learn about
terminal payoffs of other markets’ assets. This learning activity is referred to as “cross-inference”.

28In the model, β measures the relationships among markets. β(n, j) = 0 indicates that two
countries (n and j) are fundamentally unrelated. β 6= 0 means that some countries share the same
factors. For example, two emerging markets (Thailand and Brazil) are fundamentally unrelated,
but one developed market (Germany) is economically interconnected with both emerging markets.
When β = 0, these three countries are fundamentally macroeconomically unrelated.

29To remove the impact of correlated information, portfolio rebalancing activity, and correlated
liquidity channel on the model, Σµ and Σϑ are diagonal. Therefore, in the model, only the hetero-
geneity of asymmetric information is considered.
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of v at time t = 1, is

E(v|Sµk, Sϑk) = Ek
1 (v) = P0 + ΣvΣ

−1
Sv

(Svk − P0)

= v̄ + ΣµΣ−1
Sµ

(Sµk − µ̄) + βΣϑΣ−1
Sϑ

(Sϑk − ϑ̄), (4.2)

where Svk = Sµk +βSϑk, ΣSv = ΣSµ +βΣSϑβ
′, ΣSµ = Σµ + Σεµ and ΣSϑ = Σϑ + Σεϑ.

Thus, the benefits from informational advantage that are obtained from speculators

trading with the uninformed MMs are δk: δk = Ek
1 (v)− v̄ ∼MND(0,Σδ), and

var(δk) = Σδ = ΣµΣ−1
Sµ

Σµ + βΣϑΣ−1
Sϑ

Σϑβ
′ (4.3)

is nonsingular. Therefore, for any two δk and δi,

cov(δk, δi) = Σc = ΣµΣ−1
Sµ

ΣµΣ−1
Sµ

Σµ + βΣϑΣ−1
Sϑ

ΣϑΣ−1
Sϑ

Σϑβ
′ (4.4)

is an symmetric positive definite (SPD) matrix. Consequently, Ek
1 (δi) = ΣcΣ

−1
δ δk.

In this setting, if Sµk = Sµ and Sϑk = Sϑ, which implies Σc = Σδ, the informed

speculators receive the same or similar information; if Sµk 6= Sµi and Sϑk 6= Sϑi but

Σc = ρΣδ (ρ ∈ (0, 1)), it is called information homogeneity (Σc = ρΣδ). Accordingly,

Σc 6= ρΣδ indicates that the speculators receive heterogeneous information. Σc 6=
ρΣδ is referred to as information heterogeneity.

Homogeneously informed speculators trade more aggressively and act noncoop-

eratively to maximise their benefits from information advantage because they are

worried that the MMs will learn their information, which dissipates their advantage.

Heterogeneously informed speculators trade as a monopoly and less aggressively be-

cause they do not want the MMs and other investors to learn their information. They

should protect their informational advantage to maximise their benefits. In accor-

dance with their behaviours, the MMs correctly anticipate homogeneously informed

speculators’ strategic trading activities from their aggressive behaviours, which in-

dicate that their informational advantage is dissipated. However, the MMs cannot

correctly anticipate heterogeneously informed speculators’ behaviours because it is

very difficult for the MMs to find the information that heterogeneously informed

speculators hold from the observed order flow. In addition, liquidity traders pre-

vent the aggregate order flow from becoming sufficient information for the MMs to

learn the speculators’ trading strategies. In conclusion, heterogeneously informed

speculators and liquidity traders induce MMs’ inferences about payoffs of multiple

assets that are not correct. As a result, the MMs lose to heterogeneously informed

speculators but compensate their losses from liquidity traders.

84



At time t = 1, the MMs set the equilibrium prices of multiple assets after spec-

ulators and liquidity traders submit their orders. The demand of liquidity traders

is z, with mean z̄ and nonsingular covariance matrix Σz. Each speculator’s utility

function of the net asset value (NAV) of his portfolio at time t = 2 is

Uk = U(NAV2k) = NAV0k +X ′k(v − P1), (4.5)

where Xk (N × 1 vector) is the demand of speculator k for the multi-asset portfolio,

NAV0k is the amount of the riskless asset, and NAV2k is announced at the end of the

second period, after v is realised. Accordingly, the total demand of all K speculators

is
∑K

i=1 Xi. The order flow of demand for the multi-asset portfolio (w1) that the

MMs receive is w1 =
∑K

i=1 Xi + z, and then the MMs set the market-clearing price

P1(w1) based on it. Because Xk = arg maxX E
k
1 (Uk), the optimal demand on risky

assets is estimated on informational advantage δk: Xk = Xk(δk). The competition

among the investors drives individual investors’ expectations of long-term profits

based on the signal that they observe w1 to zero: w1[E(v|w1)− P1] = 0; thus,

E(v|w1) = P1 (4.6)

is applied to the semi-strong market efficiency hypothesis. Suppose that the price

P1 and the demand Xk are linearly dependent on w1 and δk, respectively, given the

maximal expectation of utility function Ek
1 (Uk), Equations (4.5) and (4.6) tell us

P1 = P0 +

√
K

2
Λ(w1 − z̄) = P0 +H

K∑
i=1

δi +

√
K

2
Λ(z − z̄), (4.7)

and the optimal demand for each speculator

Xk = Cδk, (4.8)

where Λ = Σ
−1/2
z Ψ1/2Σ

−1/2
z is an SPD matrix, Ψ = Σ

1/2
z ΓΣ

1/2
z , Γ = 2[Σδ − (K −

1)HΣc][H
−1 + (K − 1)(Σ−1

δ Σc − ΣcΣ
−1
δ )]−1 is an SPD matrix, C = 2√

K
Λ−1H, and

H = [2I + (K − 1)ΣcΣ
−1
δ ]−1.30 If there is only one speculator (K=1), then H = 1

2
I;

if there are many homogeneously informed speculators (K > 1 and Σc = ρΣδ),

then H = 1
2+ρ(K−1)

I is diagonal; and if there are many heterogeneously informed

30It is presumed that P1 = A0 +A1w1 and Xk = B0 +B1δk.
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speculators (K > 1 and Σc 6= ρΣδ), then the matrix H is nondiagonal. Therefore,

var(Xk) =
1

K
Σz,

var(P1) = KHΣδ.
(4.9)

For homogeneously informed speculators, H is diagonal and var(P1) = K
2+ρ(K−1)

Σδ;

therefore, the fundamental structure of var(P1) is similar to Σv implanted in covari-

ance Σδ (Equation (4.3)). For heterogeneously informed speculators, H is nondiag-

onal, and the fundamental structure of var(P1) is different from Σv.

This is the general description of the model. Financial contagion is defined as a

phenomenon whereby “a shock to one market affects prices of other markets funda-

mentally unrelated either to that shock or to that market”. (Pasquariello (2007))

Thus, Pasquariello uses the following definition to make it operational in the frame-

work.

Definition of contagion: In equilibrium, financial contagion from country j to

country n occurs if, as a result of a real shock (to µ or ϑ) or an information noise

shock (to εuk or εϑk),

∂P1(n)

∂Sµk(j)
6= 0 or

∂P1(n)

∂Sϑk(j)
6= 0, but β(n, j) = 0, (4.10)

or if, as a result of a noise trading shock (to z),

∂P1(n)

∂z(j)
6= 0. (4.11)

Conversely, interdependence between country n and country j occurs if

∂P1(n)

∂Sµk(j)
6= 0 or

∂P1(n)

∂Sϑk(j)
6= 0, and β(n, j) 6= 0. (4.12)

Regarding this model, there are three types of shocks: real shocks (µ or ϑ),

information noise shocks (εµk or εϑk), and noise trading shocks (z). In accordance

with these three types, contagion can be expressed by the following:

For real shocks µ or ϑ, the impact of shocks to u on P1 is given by the N × N
matrix

∂P1

∂µ′
= KHΣµΣ−1

Sµ
, (4.13)
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whereas the impact of shocks to ϑ on P1 is given by the N × F matrix

∂P1

∂ϑ′
= KHβΣϑΣ−1

Sϑ
. (4.14)

For information noise shocks εµk or εϑk, the impact of shocks to any εµk on P1 is

given by the N ×N matrix

∂P1

∂ε′µk
= HΣµΣ−1

Sµ
, (4.15)

whereas the impact of shocks to any εϑk on P1 is given by the N × F matrix

∂P1

∂ε′ϑk
= HβΣϑΣ−1

Sϑ
. (4.16)

When β 6= 0, there is financial contagion from those shocks if and only if specu-

lators are heterogeneously informed; otherwise, it is only dependence if speculators

are homogeneously informed. When β = 0, there is no such contagion.

In contrast, for noise trading shocks (z), the impact of shocks to z on P1 is given

by the N ×N matrix

∂P1

∂z′
=

√
K

2
Λ. (4.17)

When β 6= 0, contagion always exists regardless of whether speculators are het-

erogeneously informed or homogeneously informed. When β = 0, there is no such

contagion.

The off-diagonal terms in Equations (4.13), (4.14), (4.15), (4.16), and (4.17) mea-

sure the magnitude of contagion by real shocks or information noise shocks or noise

trading shocks. Accordingly, the number of informed speculators (K) and the degree

of heterogeneity of asymmetric information (α) assess the vulnerability to contagion

and the magnitude of contagion.31 Heterogeneous asymmetric information prevents

the MMs from learning whether the shock is idiosyncratic or systematic and whether

it is caused by news or noise. Consequently, µ, ϑ, εµk, and εϑk have the same ef-

fect on a speculator’s informational advantage δk, and the only difference is that K

speculators observe the news (µ or ϑ), but only one speculator k has the noise signal

(εµk or εϑk). Therefore, Equations (4.13) and (4.14) are K times Equations (4.15)

and (4.16), respectively. This relationship implies that not only the real shock but

also the personal misleading information about a country affect contagion between

31α ∈ [0, 1]. When α = 0, the information is homogeneous; when α = 1, the information is
maximally heterogeneous.
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countries.

It is clear that the degree of heterogeneity of asymmetric information (α) increases

the vulnerability and magnitude of contagion (through H) because all of |∂P1

∂µ′
|, |∂P1

∂ϑ′
|,

| ∂P1

∂ε′µk
|, | ∂P1

∂ε′ϑk
|, and |∂P1

∂z′
| increase in α. In contrast, only |∂P1

∂µ′
| and |∂P1

∂ϑ′
| increase in

K. This relationship suggests that a higher number of informed speculators (K)

increases the vulnerability and magnitude of contagion by real shocks. In addition,

the idiosyncratic shock (µ) to one specific country initially increases this country’s

vulnerability to contagion (∂P1

∂µ′
higher) but improves the perceived quality of specula-

tors’ signal on this country, indicating that the order flow (w1) for the MMs is more

reliable. Therefore, the multi-asset portfolio’s prices set by the cross-inference of

the MMs are closer to real values, and the vulnerability and magnitude of contagion

decrease. In conclusion, a greater idiosyncratic shock (µ) initially leads to greater

contagion, but the latter force eventually dominates and reduces the vulnerability

and magnitude of this contagion between countries.

For information noise shocks, the presence of a greater number of informed specu-

lators (K) has two contrasting effects. A greater number of informed speculators (K)

makes it more difficult for MMs to learn their behaviours, which increases the vul-

nerability and magnitude of contagion; however, it makes the order flow of multiple

assets more informative about their strategic trading activities and the equilibrium

prices (P1) less sensitive to individual trades (|Λ| smaller), which limits contagion.

Finally, the latter channel has a greater effect on contagion, which implies that the

rising participation of informed speculators on the various markets for multiple as-

sets reduces the vulnerability of all countries to contagion through information noise

shocks.

Although the noise trading shocks lead to the incorrect cross-inference about the

order flow (w1) that causes contagion, neither the informed speculators nor the

MMs are aware of the noise trading shocks, which indicates that the number of

informed speculators (K) and H do not affect whether contagion exists. However, a

greater number of informed speculators (K) makes each market more liquid, which

reduces the impact of d(z) on P1 (limk→∞
∂P1

∂z′
= 0); thus, it reduces the magnitude

of contagion by noise trading shocks. In contrast, the greater number of speculators

(K) has two contrasting effects for the MMs to learn the order flow (w1): learning

the shared portions of speculators’ signals more easily is accompanied by greater

difficulty in learning the private portions of their signals. In conclusion, the more

informed speculators initially increase the magnitude of contagion and eventually

reduce it.

This model is particularly suited for emerging markets. Suppose that there are
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two emerging markets (Thailand and Brazil, as examples in the paper) that are

fundamentally unrelated and one developed market (Germany) that is economically

interconnected to both emerging markets. This model explains how a shock to

one emerging market (Thailand) propagates to another emerging market (Brazil)

through an intermediate market (Germany). For example, Equation (4.1) could be

expressed by

v(1) = µ(1) + ϑ(1),

v(2) = µ(2) + 0.5ϑ(1) + 0.5ϑ(2),

v(3) = µ(3) + ϑ(2).

(4.18)

Country 1 (Thailand) and country 3 (Brazil) are autarkic and fundamentally

unrelated (cov[v(1), v(3)] = 0) but share exposure to the “core” country 2 (Germany)

through the systematic factors ϑ(1) and ϑ(2). We find that country 2 is economically

interconnected with country 1 and country 3. When a negative idiosyncratic shock

hits country 1 (dµ(1) < 0), in the short run (at time t = 1), K, informed speculators

receive this signal and reduce their optimal demands for that security (dw1(1) < 0).

The MMs observe the resulting outflow from country 1 (dw1(1) < 0) and downgrade

their beliefs about v(1), which leads to an equilibrium price P1(1) that is lower

(dP1(1) < 0). To attenuate the negative impact of decreasing price in country 1

and maintain expected profits from trading the multi-asset basket, the informed

speculators also buy more (sell fewer) units of country 2’s index, leading to a price

increase in country 2.

This trade leads the MMs to make an incorrect cross-inference about the or-

der flow: good news for country 2 or good news leading to a positive systematic

shock (dϑ(1) > 0) because both country 1 and country 2 are exposed to this fac-

tor (β(1, 1) > 0 and β(2, 1) > 0). This supposition increases the price in country

2 (dP1(2) > 0) and attenuates the drop in P1(1). Moreover, the increase of price

in country 2 prompts the informed speculators to buy more assets in country 2

(dXk(2) > 0).

However, country 2 is also exposed to ϑ(2) (β(2, 2) > 0), which ultimately miti-

gates the impact of these trades on the dealers’ beliefs about ϑ(1). Regarding the

positive factor (β(3, 2) > 0) for ϑ(2) in country 3, the speculators sell more (buy

fewer) units of country 3’s index (dXk(3) < 0) to induce the MMs to adjust their

beliefs about ϑ(2) downward (dϑ(2) < 0) and about ϑ(1) upward (dϑ(1) > 0), thus

mitigating both dP1(2) > 0 and dP1(1) < 0.

During this process, the MMs gradually learn the economic structure of Equation
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(4.18) and then rationally cross-infer the new information about other countries’

assets from the order flow for one country’s assets. To prevent the MMs from learn-

ing this process, imperfectly competitive informed speculators strategically trade in

these three countries (dXk(1) < 0, dXk(2) > 0, and dXk(3) < 0) to protect their

informational advantage on the idiosyncratic shock to country 1 as much as possi-

ble. dϑ(1) > 0 and dϑ(2) < 0 lead the MMs to set a smaller price P1 (dP1(1) < 0)

and price P3 (dP1(3) < 0) but a larger price P2 (dP1(2) > 0), thus inducing the

speculators to obtain greater benefit from trading in three markets than exclusively

in country 1. If there is only one or many homogeneously informed speculators, the

MMs may correctly anticipate their information from their aggressive behaviours.

This result implies that the shock to country 1 cannot propagate across the other

two countries: dP1(2) = 0 and dP1(3) = 0.

In other words, a developed market plays an intermediate role in the contagious

propagation process. Without this role, the shock to emerging country 1 cannot

spread to emerging country 3. Although country 1 and country 3 are fundamen-

tally uncorrelated, they are economically interconnected with country 2 (developed

country).

This finding tells policymakers that in the short run, globalisation increases con-

tagion because of an increasing number of informed speculators. However, in the

long run, the dissipation of heterogeneous asymmetric informational advantage re-

duces contagion. Therefore, the finding suggests that financial capital controls are

a temporary measure. Globalisation implies greater participation of common credi-

tors (e.g., commercial banks, mutual funds, and hedge funds) in the developed and

emerging markets, and the use of uniform and stringent information disclosure rules

is an effective means of reducing vulnerability to contagion and the magnitude of

contagion.

In conclusion, the heterogeneity of asymmetric information plays a key role in

the model. The degree of heterogeneity and the number of informed speculators

determine the susceptibility to contagion and the magnitude of contagion. This

conclusion emphasises that “the model is best suited to capture the immediate,

‘fast and furious’ propagation of shocks across uncorrelated markets that, according

to Kaminsky et al. (2003), take place over a matter of hours or days during most

episodes of financial contagion” (Pasquariello (2007)).

Generally, many theories about financial linkages, such as Pasquariello’s model,

are generated from the point of view of the trader. When traders realise the oc-

currence of financial turmoil, they will react as soon as possible to maximise their

benefits or minimise their losses; thus, their actions are “fast and furious”. This
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behaviour is consistent with the argument of Moser (2003): traders in financial

markets respond to a shock causing immediate corrections in asset prices.

In Pasquariello’s model, two time periods (two intervals of three dates) are very

short for the fundamentals and factor loadings (β) in the model to be taken as given

and thus are sufficiently short to enable us to reach a meaningful comparative statics

analysis. The MMs set the payoffs of multiple assets, but the asymmetric informa-

tion about shocks that changes economic fundamentals remains unpublished. Due

to monopoly and the less aggressive trading behaviours of heterogeneous informed

speculators, the MMs are unable to distinguish them from all traders. Consequently,

the MMs set equilibrium prices based solely on the order flow. At this point, they

believe economic fundamentals are still the same as in the past. Otherwise, they

are aware of changes in economic fundamentals and update their beliefs about equi-

librium prices of the multi-asset basket. As a result, the equilibrium prices reflect

the true values of multiple assets and the informed speculators’ asymmetric infor-

mational advantage dissipates, contradicting those illustrated by the model. This

finding implies that economic fundamentals are assumed to not change in the model.

In accordance with economic theories, the relationships among markets that change

due to trading behaviours of informed speculators and liquidity traders hold in the

short run. “It is consistent with extant empirical evidence suggesting that, in prox-

imity of most financial crises, conjoined asset price changes are often not only sudden

and excessive but also short-lived” (Pasquariello (2007)).

It is a stylised fact about speculative markets (especially emerging markets) that

better-informed traders (if large enough) use their informational advantage to in-

fluence prices instead of taking them as given. It would be “irrational” (Grinblatt

and Ross (1985)) if we take prices as given because they respond to traders’ actions.

It is very difficult for informed speculators to hold their information advantage for

a long time. To maximise their benefits in a short time and avoid doubts over

whether others learn their information, informed speculators like to trade several

assets through a series of trading transactions in a short time. Thus, the short-

run relationships among markets substantially increase in the presence of contagion,

which is consistent with a proposal by Bekaert et al. (2005): contagion is referred

to as a correlation between markets that is higher than what is accounted for by

economic fundamentals.

This relationship facilitates a more precise detection of contagion within short

time horizons. Financial linkages as well as trade linkages already exist in tranquil

periods. There is consensus that contagion occurs when the transmission mecha-

nism changes during crisis periods. Many empirical works study financial contagion
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based on the idea that the relationships among markets should increase significantly

from tranquil periods to crisis periods. In this manner, the definition of contagion

in this study is similar. However, the relationships should occur in the short run,

which was introduced early. Generally, as technology develops, information spreads

across markets faster than ever before. An event that occurs in one country could be

reported synchronously in another faraway country. Traders’ reactions to a financial

turmoil are “fast and furious”. The repercussions of the turmoil in other markets

are generated in a short time, such as hours or days. Accordingly, “contagion” is

when the short-run relationships among markets increase significantly from tran-

quil periods to crisis periods. Correspondingly, a significant increase in long-run

relationships among markets is not an indication of contagion and is thus called

“interdependence”.32 This definition is consistent with those proposed by Masson

(1998), Kaminsky et al. (2003), Bekaert et al. (2005), and Pasquariello (2007). This

definition precisely captures the characteristics of responses of a diverse range of

traders on an abnormal event, which leads to a significant increase in short-run

relationships among markets. Our definition only considers the propagation mecha-

nism that is estimated on traders’ behaviours, particularly for liquidity traders and

informed speculators. The results provide evidence to implicitly illustrate whether

liquidity traders and informed speculators have the ability to cause financial conta-

gion.

It is acknowledged that the economic and financial process is a combination of var-

ious traders’ actions. Consequently, there are more than two time periods involved

in an economic decision-making process, including the short run and the long run.

Heterogeneous traders make decisions over different time horizons and/or operate

at each moment on various time scales, with purposes ranging from speculation to

investment activity.33 Accordingly, the structure of the decision-making process, the

strength of relationships among relevant variables, and even their characteristics dif-

fer by frequency, which is associated with time scale. High frequency is associated

with a short time horizon, and low frequency corresponds to a long time horizon.

With regard to the relationship between the two variables, high frequency shows the

short-run relationship, whereas low frequency illustrates the long-run relationship.

The importance of dynamic adjustments was realised very early by economists.

Unfortunately, there has been a historical lack of an appropriate tool to decompose

economic time series into orthogonal components. Wavelets, as a relevantly new

32It simply increases the linkages across markets that already exist in tranquil periods. The
linkages may be small in tranquil periods, but an abnormal event broadens and makes them
visible.

33As mentioned earlier, the time scale is closely related to the investment horizon.
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tool, are adopted to produce an orthogonal decomposition of some economic and

financial variables by time scale in an attempt to unveil some previously ignored

phenomena. A number of studies (Ramsey and Lampart (1998a,b), Kim and In

(2003, 2005), Yousefi et al. (2005)) in these two decades consider this feature and

clearly improve past empirical works using wavelets.

Wavelets are particular types of functions that are localised both in time and fre-

quency domains. The wavelet transform utilises a basic function (called the wavelet

function or mother wavelet) that is shifted (translated) and scaled (dilated or com-

pressed) to capture features that are local in time and in frequency. Therefore,

wavelets are good at managing the time-varying characteristics found in most real-

world time series and are an ideal tool for studying non-stationary or transient time

series while avoiding the assumption of stationarity. It is a stylised fact that financial

crises lead to jumps in asset prices in financial markets. Due to the localised nature

of wavelets, the local characteristics of a sequence of asset returns are maintained

in orthogonal components.

Because a high-frequency relationship is classified as being in the short run, we

use wavelets to orthogonally decompose the sequence of asset returns by small time

scale, which is associated with high frequency. Many important economic indicators

that reflect economic fundamentals are published monthly. They are closely watched

indicators in financial markets, especially after the outbreak of a crisis. Economic

fundamentals are believed to be relatively stable in a month. Accordingly, for our

purposes, we are going to define the short run as “no greater than one month”. The

maximum decomposed level by wavelets is five, which corresponds to a frequency

interval of [π/32, π/16]. This figure is associated with a time interval of [32, 64)

days, which is just over one month.34 By definition, the time periods associated

with the first five levels are linked to the “short run”.

The 1997 Asian crisis is a good case for investigating contagion because the crisis

is unexpected that only informed speculators have informational advantage about

the shock. A total of 27 global representative markets including Thailand, which is

the source of the crisis, are selected in the sample to be analysed. Given the stock

market index as an important economic indicator, the sequences of every market’s

stock returns, which are differences in the natural logarithms of the stock market

indexes, are decomposed orthogonally into five subseries in corresponding frequencies

associated with time horizons. Next, the subseries of Thailand and other 26 markets

34The relationship between the decomposed level, scale, and frequency is described as follows:
the jth decomposed level is related to the 2j−1 scale, where the frequency is in the interval(
π/2j , π/2j−1

]
. Because the frequency ω has a relationship with the time horizon T : ω = 2π/T ,

the jth decomposed level denotes the time interval [2j , 2j+1).
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at the same level as inputs are used to perform further analysis to estimate short-run

pair-wise relationships.

Forbes and Rigobon (2002) show that heteroscedasticity in market returns ex-

aggerates simple correlation coefficients between two market returns, which leads

to incorrect conclusions. In addition, because simple correlation coefficients only

reflect static relationships, it is not appropriate to establish time-varying relation-

ships during the crisis period using them. To overcome the problem of biased simple

correlation coefficients and to capture the dynamic characteristics of correlations,

we use a multivariate GARCH model to estimate short-run conditional correlation

coefficients. The BEKK model, as a type of this model that guarantees positive con-

ditional variances, reduces the computational demand, and improves the efficiency

of parameters for a small size sample, is applied on subseries of 27 markets’ stock

returns to capture the dynamic feature of short-run correlations. Furthermore, be-

cause conditional correlations only measure contemporaneous relationships among

markets and because a shock from one market may take time to spread across other

markets, it is natural to adopt a Granger causality test, which is also applied on

a subseries of 27 markets’ stock returns, to assess short-run lead-lag relationships

among markets. The combinations of both findings of short-run pair-wise contem-

poraneous correlations and lead-lag relationships between Thailand and 26 other

markets identify whether this is financial contagion or merely interdependence.

Our empirical analysis provides new insight into the study of financial contagion

from short-run relationships involving contemporaneous correlations and lead-lag

relationships among markets perspective. This new insight reflects traders’ reactions

to a shock in a market, which are “fast and furious”. It is believed that the results

are more accurate for revealing financial contagion and offer some useful suggestions

to policymakers and portfolio managers.

The empirical findings in this paper consistently show that the short-run pair-wise

relationships consisting of contemporaneous correlations and lead-lag relationships

between Thailand and the majority of markets in the sample do not increase signif-

icantly, particularly when the short run is related to a time interval of [2, 4) days,

[4, 8) days, [8, 16) days, or [16, 32) days. Even when it is extended to a time interval

of [32, 64) days, which is longer than one month, a significant increase in the short-

run relationship between Thailand and only one market is found. These findings

implicitly refute the implications of Pasquariello’s model. Because the heterogeneity

of asymmetric information is a driver of financial contagion, his model implies sig-

nificant increases in short-run relationships among markets. However, our findings

provide evidence to reject this.
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Accordingly, financial contagion does not arise in a majority of markets when a

crisis erupts in a market. Because the short run is regarded as “no greater than

one month”, our results explain a phenomenon in which major negative events in

global markets began to occur a month after the outbreak of the crisis. Moreover,

because there are at most 2 markets out of 7 in the same region as Thailand for

which the short-run relationships increase significantly, the view that contagion is

regional is not supported. The economic changes reflected by stock market returns

in this study are attributed to interdependence, which already exists during normal

period by trade linkages and/or financial linkages. This finding implies that the

changes are not avoided. However, many measures are recommended to minimise

the impact of crisis in one market on other markets.

The remainder of the paper is organised as follows. Section 3 explains the reason

we use the 1997 Asian crisis as the sample and describes the data. Section 4 in-

troduces the methodologies, including brief wavelet analysis, conditional correlation

analysis, and a Granger causality test. Section 5 presents the estimation results of

the bivariate VAR-BEKK model, measures the conditional correlation coefficients

at two different phases of the crisis, reports the results of the Granger causality test,

and summarises the results of both methodologies. Section 6 concludes the empirical

findings and provides some suggestions for policymakers and portfolio-makers.

4.3 Data and Descriptive Statistics

Kaminsky et al. (2003) conclude that anticipated crises are preceded by credit rating

downgrades and widening interest spreads, whereas for unanticipated crises, the

downgrades and widening spreads occur during or after crises. The authors indicate

that the tequila crisis of Mexico in 1994, the Asian crisis in 1997, and the Russian

default in 1998 were unanticipated. Table [C.2] reports capital flows in percent of

GDP in selected Asian economies in the 1980s and 1990s. Although fluctuations

exist, net private capital flows consisting of net direct investment and net portfolio

investment in Thailand, Philippines, Malaysia, South Korea, and Indonesia from

1992 to 1996, hard-hit markets during the crisis, are positive with the exception of

Singapore and Taiwan, which implies capital inflows to these markets. There is no

sign of an onset of the Asian crisis before 1997. Accordingly, the 1997 Asian crisis

is a good example to study the effectiveness of Pasquariello’s model because in the

sample, only informed speculators have informational advantage about the shock.

The “fast and furious” actions of traders to the shock should induce the significant

increases in short-run relationships between the shock-hit market and other markets,
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in the presence of contagion.

The 1997 Asian crisis begins with the collapse of the Thai Baht on July 2, 1997.

To remove the impact of the 1998 Russian default (August) in other markets, the

sample period is from January 1, 1996 to December 31, 1997. Accordingly, the

tranquil period is from January 1, 1996 to July 1, 1997, and the remaining time

period is referred to as the crisis period. The daily data on main stock market

indices are collected from Datastream, including 8 East Asian emerging markets

(Indonesia, South Korea, Malaysia, Philippines, Singapore, Taiwan, Thailand, and

Hong Kong), 5 Latin American markets (Argentina, Brazil, Chile, Mexico, and

Peru), 12 developed markets (Austria, Australia, Canada, France, Germany, Italy,

Japan, Netherlands, Spain, Sweden, the UK, and the USA), and two other emerging

markets (China and India). The preliminary step in managing the data is to obtain

a market’s stock return (rt) that is identical to a daily log-difference of stock market

closing prices. This is expressed by: rt = ln(pt) − ln(pt−1), where pt is the stock

market closing quote at date t, and pt−1 is the quote at date t− 1.

Table [C.3] reports descriptive statistics on daily stock market indices returns

for 27 markets from January 1, 1996 to December 31, 1997. Due to differences in

national holidays, bank holidays, and other holidays, data in some markets on some

days are not available. To maintain consistency, the data are assumed to be the

same as the previous trading data. The data are summarised for 519 observations

in the sample, including 389 observations in the tranquil period and 130 observations

in the crisis period. The highest average return is 0.0017 for MSCI Brazil of Brazil,

whereas the lowest average return is −0.0024 for Bangkok S.E.T of Thailand, which

is not surprising given that Thailand was the source of the 1997 Asian crisis. The

most volatile data are observed for SEE of China with a standard deviation of

0.0241, whereas the least volatile data are recorded for the IGPA of Chile, with

a standard deviation of 0.0057.35 The skewness and kurtosis of the data indicate

empirical distributions with heavy tails and sharp peaks at the centre compared to

the normal distribution for most time series.

4.4 Methodology

It is a stylised fact that abnormal events, including financial crises, cause jumps

in asset prices. Wavelets, which are called a “mathematical microscope”, are an

ideal tool to orthogonally decompose a time series into many subseries in a diverse

35The Bangkok S.E.T and SEE represent the Stock Exchange of Thailand and Shanghai Se
Composite, respectively. MSCI Brazil, Bangkok S.E.T, SEE, and IGPA are the names of stock
market indices, which are introduced in detail in Table [C.3].
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range of frequencies that are associated with time horizons under the premise that

the local characteristics of the time series remain. The next subsections present a

brief introduction to wavelet functions, multiresolution analysis, and the structure

of wavelet analysis. The bivariate VAR-BEKK model and Granger Causality test

are demonstrated as well.

4.4.1 Wavelet Analysis

4.4.1.1 The Wavelets

Wavelets literally mean small waves because they have finite length and are oscil-

latory. Wavelets on a finite support begin at a point in time and then die out at

a later point in time. Their localised nature enables them to be used in analysing

episodic variations in the frequency composition of data and thus are referred as a

“mathematical microscope”. There are two different functions in the wavelet theory:

wavelet function (ψ(t)) and scaling function (φ(t)). According to the definition, the

wavelet function ψ0(t) should satisfy the below two conditions:

1 :

∫ +∞

−∞
ψ0(t) dt = 0, (4.19)

2 :

∫ +∞

−∞
ψ0(t− k)ψ0(t− j) dt =


1 if k = j

0 if k 6= j

, (4.20)

and the scaling function φ0(t) also should fulfil the two conditions:

1 :

∫ +∞

−∞
φ0(t) dt = 1, (4.21)

2 :

∫ +∞

−∞
φ0(t− k)φ0(t− j) dt =


1 if k = j

0 if k 6= j

, (4.22)

where condition 2 of the wavelet and scaling functions guarantees that each of them

is an orthonormal function.36

Suppose that there is a space V0. Under wavelet analysis, it can be decomposed

orthogonally into many different subspaces: W1, W2, W3,· · · . More precisely, the

space V0, which is in the range of frequencies [0, π], is decomposed orthogonally

36The subscript represents the decomposed level. The details are introduced as follows.
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into wavelet subspace W1 and scaling subspace V1, which correspond to frequency

bands (π/2, π] and [0, π/2], respectively. Because subspacesW1 and V1 are mutually

orthogonal, the sum of W1 and V1 is V0: W1 ⊕ V1 = V0. Then, V1 is decomposed

into two mutually orthogonal subspaces W2 and V2, which belong to frequencies

(π/4, π/2] and [0, π/4]. We repeat this process of decomposing the scaling space

J times. Finally, we obtain Jth subspaces WJ and VJ . It is noticed that the

wavelet function ψj(t) constructs an orthonormal basis of subspace Wj, whereas

the scaling function φj(t) constitutes an orthonormal basis of subspace Vj. This

algorithm is called the Pyramid Algorithm, which reduces computation and improves

efficiency. Because the subspaces at the same level are mutually orthogonal, from a

mathematical perspective, it may be expressed as

V0 =W1 ⊕ V1

=W1 ⊕W2 ⊕ V2

...

=W1 ⊕W2 ⊕W3 ⊕ · · · ⊕ VJ ,

(4.23)

Wj and Vj are mutually orthogonal, which may be expressed as “Wj⊥Vj” and is

called “lateral orthogonal”. Wj andWk (j 6= k) are mutually orthogonal “Wj⊥Wk”

as well, called “sequential orthogonal”. However, Vj and Vk (j 6= k) are not mu-

tually orthogonal. In a word, scaling subspace Vj is not orthogonal across scales;

orthogonality across scales comes from wavelet subspace Wj. Here, j (1 6 j 6 J)

is called the decomposed level and is related to scale (2j−1), which is the inverse of

the frequency band ((π/2j, π/2j−1]) for wavelet subspace Wj.

Because subspace V1 ∈ V0 where V1 is spanned by the basis scaling function

φ1(t) whereas V0 is constituted by the basis scaling function φ0(t), there exists a

relationship between these two functions. This relationship may be expressed as

φ1(t) = 2−1/2φ0(2−1t). (4.24)

It is expected that the adjacent level scaling functions have this relationship as

well. The scaling function φ2(t) = 2−1/2φ1(2−1t), which may be replaced by φ0(t):

φ2(t) = 2−2/2φ0(2−2t). By recursion of this procedure, the general version of φj(t)

is achieved by

φj(t) = 2−j/2φ0(2−jt). (4.25)

In correspondence with the relationship between each-level scaling functions, wavelet
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functions at different levels have this relationship as well. Generally, wavelet func-

tion ψj at level j may be expressed as

ψj = 2−j/2ψ0(2−jt). (4.26)

4.4.1.2 Multiresolution Analysis

For a function f(t) (t = 0, · · · , T − 1, where T = 2J) in V0, the projection of f(t) in

W1 is ∆f1(t), and the projection of f(t) in V1 is f1(t). Because V0 =W1⊕V1, f(t) =

∆f1(t) + f1(t). Given the Pyramid Algorithm, f(t) could be a linear combination of

∆fj(t) (1 6 j 6 J) and fJ(t): f(t) =
∑J

j=1 ∆fj(t) + fJ(t). This approach is defined

as multiresolution analysis (MRA).

Because scaling function φ1(t) and wavelet function ψ1(t) constitute the basis of

subspace V1 and W1, respectively, f(t) may also be decomposed as follows:

f(t) =
∑
k

c1,kφ1,k(t) +
∑
k

d1,kψ1,k(t), (4.27)

where k = 0, 1, · · · , T/2 − 1; c1,k = 〈f(t), φ1,k(t)〉 =
∫∞
−∞ f(t)φ1,k(t) dt; d1,k =

〈f(t), ψ1,k(t)〉 =
∫∞
−∞ f(t)ψ1,k(t) dt; φ1,k(t) = φ1(t − k); and ψ1,k(t) = ψ1(t − k).

Nevertheless, d1,k are the amplitude coefficients of wavelet function ψ1,k for the pro-

jection of f(t) on the subspaceW1, whereas c1,k are the amplitude coefficients of scal-

ing function φ1,k for the projection of f(t) on the subspace V1. Here,
∑

k c1,kφ1,k(t) =

f1(t) and
∑

k d1,kψ1,k(t) = ∆f1(t). In the Pyramid Algorithm, fj(t) (1 6 j < J) is

decomposed as in f(t) until J. For example, f1(t) =
∑

k c2,kφ2,k(t)+
∑

k d2,kψ2,k(t) =

f2(t) + ∆f2(t), where k = 0, 1, · · · , T/4− 1. Therefore,

f(t) =
J∑
j=1

∆fj(t) + fJ(t) =
J∑
j=1

∑
k

dj,kψj,k(t) +
∑
k

cJ,kφJ,k(t), (4.28)

where k = 0, 1, · · · , T/2j − 1; dj,k are the amplitude coefficients of wavelet function

ψj,k(t), dj,k =
∫∞
−∞ f(t)ψj,k dt; cJ,k are the amplitude coefficients of scaling function

φJ,k(t), cJ,k =
∫∞
−∞ f(t)φJ,k dt. Note that ∆fj(t) belongs to the subspace Wj and

thus is in the range of frequencies (π/2j, π/2j−1] as well, whereas fj(t) is located in

the subspace Vj and thus is in the frequency interval of [0, π/2j].

4.4.1.3 Structure of Wavelet Analysis

Generally, wavelet analysis decomposes a signal into shifted (translated) and scaled

(dilated or compressed) versions of a wavelet function. All of the basis functions
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(wavelet functions or scaling functions) are self-similar, which is to say that they

differ from one another only in the translations and the changes of scale. Wavelets

are particular types of functions that are localised both in time and frequency do-

mains, whereas each of the sines and cosines that compose the basis function of

Fourier transform is itself a function of frequency-by-frequency basis. The wavelet

transform utilises a basic function (called the wavelet function or mother wavelet),

which is shifted (translated) and scaled (dilated or compressed) to capture features

that are local in time and in frequency. Therefore, wavelets are good at manag-

ing the time-varying characteristics found in most real-world time series and are

an ideal tool for studying non-stationary or transient time series while avoiding the

assumption of stationarity.

Figure [2.2] provides a good explanation of the effectiveness of wavelets. The

horizontal axis is time, whereas the vertical axis is scale (frequency). It is easily

found that scale decreases further along the vertical axis. As the scale declines, it

reduces the time support, increases the number of frequencies captured, and shifts

towards higher frequencies, and vice versa. In the dyadic wavelet case, from one

scale to the next scale, the bandwidth of frequency is halved and the temporal

dispersion of wavelet is doubled. The frequency band of the original time series is

[0, π], and the time horizon is its time, such as 1 minute for per-minute data, 1 day

for daily data, or 1 month for monthly data. Regarding scale 2j−1 (1 6 j 6 J), the

corresponding frequency band is (π/2j, π/2j−1] and the time horizon is 2j times of

the original time series, such as the time interval [2j, 2j+1) minutes for per-minute

data, the time interval [2j, 2j+1) days for daily data, or the time interval [2j, 2j+1)

months for monthly data. This treatment indicates that scale is related to time

horizon and the inverse of frequency band.

Consequently, the wavelet transform provides good frequency resolution (and poor

time resolution) at low frequencies and good time resolution (and poor frequency

resolution) at high frequencies. It maintains a balance between frequency and time.

From the top to the bottom of Figure [2.2], the frequency resolution improves and the

time resolution worsens, which implies that wavelets provide a flexible framework

for the time series. By combining several functions of shifted and scaled mother

wavelet, the wavelet transform is able to capture all information contained in a time

series and associate it with specific time horizons and locations in time.

The resulting time-frequency partition corresponding to the wavelet transform

is long in time when capturing low-frequency events and thus has good frequency

resolution for these events, and it is long in frequency when capturing high-frequency

events and thus has good time resolution for events where the wavelet transform
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has the ability to capture events that are localised in time. The wavelet transform

intelligently adapts itself to capture features across a wide range of frequencies,

making it an ideal tool for studying non-stationary or transient time series.

It is widely accepted that financial crises lead to jumps in asset prices in finan-

cial markets. A signal or a time series may be decomposed orthogonally by time

scale using wavelets while its local characteristics are maintained. As a result, it

is appropriate to use wavelets to estimate short-run relationships among markets

affected by financial crises. According to Equation (4.28), two time series {X(t)}
and {Y (t)} as sequences of Thailand’s stock returns and another market’s stock

returns are decomposed orthogonally into many components in various frequencies.

The wavelets used in the decomposition are the Daubechies least asymmetric (LA)

wavelet filter of width 8, which is recommended by Percival and Walden (2000) and

is widely used in the literature on wavelet analysis (Kim and In (2003), Gallegati

(2008)). Components at the first five decomposed levels contain information within

time intervals of [2, 4) days, [4, 8) days, [8, 16) days, [16, 32) days, and [32, 64) days.

The relationship between the components of two time series at the same level is

associated with the corresponding time period.

In this case, it is only decomposed into five levels. On the one hand, the sample

size and the filter width restrict the decomposed level. The maximum decomposed

level in this sample with the selected filter is six; therefore, the data decomposed

at a further level are biased. On the other hand, the fifth level is associated with

periods over one month (time interval of [32, 64) days), which is the longest time

interval in the first five levels. Many important economic indicators (e.g., CPI,

PPI, RSI, CCI, CES) that reflect economic fundamentals are published monthly.37

Traders in financial markets make the interpretation that economic fundamentals are

relatively consistent within a month during the crisis. Regarding economic theories,

it is meaningful that the components at the first five levels are used to describe short-

run relationships, especially for the components at the first four levels. This finding

is consistent with Moser (2003)’s view that traders in financial markets respond to a

shock, causing immediate corrections in asset prices, and the argument of Kaminsky

et al. (2003) that the propagation of a shock to a specific market across markets

should be fast and furious and should evolve in a matter of hours and days. This

finding is also consistent with that implied by the near simultaneity of crisis, which

Kindleberger (1985) believes to be unexplainable by trade linkage. In a word, {X(t)}
37CPI, PPI, RSI, CCI, and CES represent the consumer price index, producer price index, retail

sales index, consumer confidence index, and current employment statistics, respectively.
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and {Y (t)} are decomposed as follows:

X(t) =
5∑
j=1

∆Xj(t) +X5(t),

Y (t) =
5∑
j=1

∆Yj(t) + Y5(t),

(4.29)

where ∆Xj(t) and ∆Yj(t) (1 6 j 6 5) in the same level are adopted to conduct a

further analysis in the next subsections.

4.4.2 Conditional Correlation Analysis

Cross-market correlations are widely used to investigate financial contagion in the

literature. However, Forbes and Rigobon (2002) state that heteroskedasticity in

market returns increases the correlation coefficient between two markets returns be-

cause the increase in the correlation coefficient is attributed to the high volatility in

the crisis period even when the relationship between two markets does not change.

Thus, cross-market correlation analysis misleads us to infer incorrect results. After

adjusting for heteroskedasticity in market returns, the correlation coefficients during

the crisis period are smaller, and no contagion is found. However, Corsetti et al.

(2001) indicate that this methodology is based on a single-factor model that reduces

the correlation coefficients. Furthermore, in contrast to time-invariant simple corre-

lation coefficients, it is better to use time-varying correlation coefficients to capture

the cross-market relationships that vary with sustained shocks.

Regarding time-varying correlation coefficients and heteroskedasticity in market

returns, it is natural to take GARCH models into consideration. Univariate models

only estimate a structure that the conditional variance of series X is an explica-

tive variable in the conditional variance of series Y , or vice versa, but ignore the

possibility of an interaction between both variances and do not consider the covari-

ance between both series. To address these issues efficiently, multivariate GARCH

models were developed to estimate interactions among variances of N different time

series together. Based on maximum likelihood (ML), variances and covariances of

the N series are simultaneously estimated. An N × 1 vector stochastic process {yt}
is expressed as follows:

yt = µt(θ) + εt, (4.30)

where µt(θ) is the conditional mean vector: µt(θ) = E(yt|It−1); It−1 is information
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about yt generated until time t− 1; θ is a vector of finite parameters; and

εt = H
1/2
t (θ)zt, (4.31)

where zt is an N × 1 random vector whose mean is the zero vector and variance is

the identity matrix (IN). Ht(θ) is an N ×N positive definite matrix: the diagonal

elements are conditional variances, and the off-diagonal elements are conditional

covariances. In practice, the issues of multivariate GARCH models involve how to

ensure that Ht is positive definite and reduce the computational demand of param-

eters. It is necessary to impose some restrictions on models and thus develop many

types of multivariate GARCH models, including VEC models, BEKK models, con-

stant conditional correlation (CCC) models, and dynamic conditional correlation

(DCC) models.

In this study, we use the BEKK model to capture the dynamic feature of correla-

tions and then detect financial contagion. The BEKK model is a special type of VEC

model. The number of parameters in the VEC model is N(N + 1)(N(N + 1) + 1)/2,

whereas the number of parameters in the BEKK(1, 1, K) model is 2KN2 +N(N +

1)/2. Compared with the VEC model, the BEKK model reduces the computational

demand and improves the efficiency of parameters for a small size sample. Further-

more, it guarantees that Ht is positive definite. However, it is seldom used when

the number of series (N) is larger than 3 or 4 due to high computational demand.

In this paper, we only consider the pair-wise correlation between Thailand and an-

other market. Therefore, the BEKK model is a case of bivariate GARCH models

and avoids the issue of heavy computation. The bivariate BEKK(1, 1, K) model is

defined as follows:

Ht = C ′C +
K∑
k=1

A′kεt−1ε
′
t−1Ak +

K∑
k=1

G′kHt−1Gk, (4.32)

where Ak and Gk are 2 × 2 matrices, C is a 2 × 2 upper triangular matrix, and

the parameter K determines the general representation of a BEKK-type model.38

An identification problem arises when K > 1 because a representation of the model

could have several different groups of parameters. As a consequence, K is usually

defined as 1 in practice. Due to the heavy computation in the full BEKK(1, 1, 1)

38To increase the generality of the BEKK model, Engle and Kroner (1995) present some propo-
sitions to govern K.
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model, the diagonal version is applied here, which is expressed as

Ht = C ′C + A′1εt−1ε
′
t−1A1 +G′1Ht−1G1, (4.33)

where

Ht =

[
h11,t h12,t

h12,t h22,t

]
εt−1 =

[
ε1,t−1 ε2,t−1

]′
,

C =

[
c11 c12

0 c22

]
A1 =

[
a11 0

0 a22

]
G1 =

[
g11 0

0 g22

]
.

It is obvious that the conditional covariance h12,t is a linear combination of lagged

cross-products of errors ε12,t−1 and lagged conditional covariance h12,t−1. In this

case, 1 represents Thailand, and 2 represents another market in the paper. The

conditional correlation is measured by

ρ12,t =
h12,t√

h11,t

√
h22,t

, (4.34)

where ρ12,t is the conditional correlation coefficient between market 1 (Thailand)

and market 2 (another market); h11,t is the conditional variance of Thailand’s stock

returns; h22,t is the conditional variance of market 2 returns; and h12,t is the condi-

tional covariance of Thailand and market 2 returns.

As in the univariate case, the parameters of the diagonal BEKK(1, 1, 1) model are

estimated by maximising the Gaussian log-likelihood function. The log-likelihood

of a sample is given by

L =
T∑
t=1

lt = −NT
2

ln(2π)− 1

2

T∑
t=1

ln(|Ht|)−
1

2

T∑
t=1

ε′tH
−1
t εt, (4.35)

where lt is the contribution of a single observation to the log-likelihood. The vari-

ance equation is illustrated above, and the mean equation is generated on a vector

autoregressive (VAR) model. The reason for this treatment is that current market

returns are affected not only by past market returns but also by another market

past returns, especially in the crisis period. Based on the purpose of our study, the

VAR model is a bivariate one as well:

rt = α0 +

p∑
j=1

αjrt−j + εt, (4.36)
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where market returns rt = [r1,t, r2,t]
′, errors εt = [ε1,t, ε2,t]

′ with εt|It−1 ∼ N(0, Ht),

and Ht follows the diagonal BEKK(1, 1, 1) process. The lag length p is determined

by the Akaike information criterion (AIC) and Lagrange multiplier test (LM). Based

on Equations (4.36) and (4.33), the positive definite matrix Ht is established.

The subseries of Thailand’s stock returns and market 2 stock returns (∆Xj(t)

and ∆Yj(t), 1 6 j 6 5) at the same level are regressed on Equations (4.36), (4.33),

and (4.34). The specific short-run conditional correlations are generated, which are

associated with time intervals of [2, 4) days, [4, 8) days, [8, 16) days, [16, 32) days,

and [32, 64) days, respectively.

4.4.3 Granger Causality Test

The conditional correlations in the above subsection are used to measure the pair-

wise contemporaneous relationships between Thailand and other markets. Because

the repercussions of the shock to Thailand on other markets may take time, the

relationships between Thailand and other markets have a lag effect. It is necessary

to analyse the lead-lag relationships between them. The Granger causality test is

able to investigate the lead-lag relationship between two time series. In the paper,

this test is used to identify whether a shock to one market has an impact on an-

other market. If so, the market is causally linked to another, which implies that

the shock propagates to that market. From the point of view of numerical analysis,

a time series {r1,t} for the shock-hit market should precede a time series {r2,t} for

another market. This phenomenon is called “Granger causality” and was proposed

by Granger (1969). Notice that Granger causality does not capture a true causality

but instead reflects that one endogenous variable precedes another endogenous vari-

able. Because there is a problem in distinguishing whether the relationship of two

sequences entails a lead or a lag, the Granger causality is double-directional. This

test is easily incorporated into a VAR model (Equation (4.36)):

rt = α0 +

p∑
j=1

αjrt−j + εt, (4.37)

where market returns rt = [r1,t, r2,t]
′, errors εt = [ε1,t, ε2,t]

′ with εt|It−1 ∼ N(0, Ht).

In the standard Granger causality test, Ht is assumed to be a diagonal matrix with

constants, which implies that the errors are independent and identically distributed.

However, it contradicts the set of Ht in the conditional correlations that follows the

diagonal BEKK(1, 1, 1) process. To maintain consistency, investigating whether the

Ht is diagonal is necessary prior to performing the Granger causality test. The null
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hypothesis H0 that some specific parameters of the diagonal BEKK(1, 1, 1) model

are jointly zeros (c12 = a11 = a22 = g11 = g22 = 0) is proposed to be tested.

The rejection of H0 indicates the covariance matrix Ht is generated by the diagonal

BEKK(1, 1, 1) model. Otherwise, the covariance matrix Ht is diagonal with constant

elements. In this study, we find the null hypothesis H0 is rejected in every case.39

Accordingly, the parameters in Equation (4.37) are generated by the bivariate VAR-

BEKK(1, 1, 1) model.

With respect to the Granger causality test, if it rejects the zeros coefficients of

lagged r2 values on r1 that α1,12 = α2,12 = · · · = αp,12 = 0 and fails to reject the

zeros coefficients of lagged r1 values on r2 that α1,21 = α2,21 = · · · = αp,21 = 0,

the increase in r2,t increases r1,t, so the Granger causality from {r2,t} to {r1,t} is

unidirectional. If it rejects α1,21 = α2,21 = · · · = αp,21 = 0 and fails to reject

α1,12 = α2,12 = · · · = αp,12 = 0, r1,t precedes r2,t. Consequently, {r1,t} Granger

causes {r2,t}. Notice that the coefficients in the null hypothesis must always be the

off-diagonal elements of αj, which capture the effect of one lagged variable on a

different variable.

It is noted that {r1,t} and {r2,t} should be stationary–that is, I(0). If they are

nonstationary–that is, the difference (∆) is used to convert them into stationary

series, which are available for the Granger causality test. They are expressed by

∆rt = α0 +

p∑
j=1

αj∆rt−j + εt. (4.38)

However, MacDonald and Kearney (1987) note that this procedure is not correct

if these two time series are cointegrated. Moreover, Engle and Granger (1987) note

that the causality test is misspecified in the presence of cointegration and thus

include an error correction term in the model to resolve this issue. First, the error

terms εt are estimated when two time series {r1,t} and {r2,t}, which are nonstationary

and cointegrated, are regressed on equation r1,t = θr2,t + εt. Second, the estimators

of error terms (ε̂t) as error correction terms (ECT) are added in Equation (4.38),

which may be expressed as follows:

∆rt = α0 +

p∑
j=1

αj∆rt−j + λβ′rt−1 + εt, (4.39)

where ECT = λβ′rt−1, λ = [λ1, λ2]′ and β = [1,−θ]′. In Equation (4.39), cointegra-

tion between {r1,t} and {r2,t} does not cause “spurious Granger causality”.

39Due to the space limitations, the relative data on this Wald test are not attached to the paper.
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Consequently, before testing Granger causality, the first step is to use the Aug-

mented Dickey-Fuller (ADF) test to examine whether the two time series are sta-

tionary and to investigate whether they are cointegrated using the Johansen cointe-

gration test. If they are stationary, Equation (4.37) is used to test Granger causality.

If they are nonstationary and not cointegrated, the stationary outputs from differ-

encing them are applied on Equation (4.38) to test Granger causality. If they are

nonstationary and cointegrated, they are converted to stationary by difference, and

the outputs are used to detect Granger causality by Equation (4.39). The lag length

p is determined by the AIC and LM criteria.

Generally, the Granger causality test in this study, like the analysis of condi-

tional correlation, is based on a bivariate VAR model. It is adopted to investigate a

lead-lag relationship between the shock-hit market and another market, which is an

indicator of financial contagion. The rejection of the null hypothesis indicates that

an endogenous variable Granger causes another endogenous variable, which shows

existence of a lead-lag relationship between two variables. Otherwise, there is no

Granger causality between two variables, which is identical to no lead-lag relation-

ship. The standard Wald test is used to examine the hypothesis. By definition, if

two variables cointegrate, there must be Granger causality in at least one direction.

The examination is implemented separately in both time periods, including the

tranquil period and the crisis period. Suppose {r1,t} is a sequence of Thailand’s

stock returns and {r2,t} is a time series of another market’s stock returns. {r1,t}
Granger causing {r2,t} only in the crisis period implies the shock from Thailand

propagates to the other market, which is an indication of contagion; {r1,t} Granger

causing {r2,t} and {r2,t} Granger causing {r1,t} simultaneously in the crisis period

represent an interaction of two markets, which is not an indication of contagion but

merely interdependence; and {r1,t} Granger causing {r2,t} in the crisis period as well

as in the tranquil period indicates the existence of a lead-lag relationship between

two markets throughout the time period. However, contagion is elusive because it

is not certain that {r1,t} Granger causing {r2,t} in the crisis period attributes to

the shock spreading to that market; rather, the causation in the crisis period could

merely be a continuation of the relationship during the tranquil period. The other

cases of causation do not provide evidence of contagion.

The subseries of Thailand’s stock returns and another market’s stock returns

(∆Xj(t) and ∆Yj(t), 1 6 j 6 5) at the same level as well as applied on the condi-

tional correlation analysis are used to test Granger causality. The specific short-run

lead-lag relationships are obtained, which are associated with time intervals of [2, 4)

days, [4, 8) days, [8, 16) days, [16, 32) days, and [32, 64) days, respectively.
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In conclusion, two different methodologies are proposed to investigate financial

contagion in this paper. The conditional correlation is analysed from the perspec-

tive of pair-wise contemporaneous relationships between Thailand and other mar-

kets, and the Granger causality test is based on the pair-wise lead-lag relationships

between Thailand and other markets. These tests investigate financial contagion

from two different aspects and provide evidence to support our arguments.

4.5 Empirical Findings

4.5.1 Estimation of the Bivariate VAR-BEKK Model

As financial contagion is linked with “fast and furious” spreading, investigating the

short-run relationships between the shock-hit market and other markets is more

reasonable for identifying whether it is a contagion. Wavelets could orthogonally

decompose the time series over various frequencies that are associated with time

horizons. Because many important economic indicators which reflect economic fun-

damentals are published monthly, the short run is regarded as “no greater than one

month”. Under the orthogonal decomposition on the sequence of stock market re-

turns by wavelets, the short-run pair-wise correlations between Thailand and other

26 markets are analysed based on five groups: at the first level, associated with a

time interval of [2, 4) days; at the second level, associated with a time interval of

[4, 8) days; at the third level, associated with a time interval of [8, 16) days; at the

fourth level, associated with a time interval of [16, 32) days; and at the fifth level,

associated with a time interval of [32, 64) days. The coefficients in the variance

equations are reported in Tables [C.4], [C.5], [C.6], [C.7], and [C.8].40 Figures [C.1],

[C.2], [C.3], [C.4], and [C.5] show pair-wise conditional correlation coefficient series

between the stock returns of Thailand and the other 26 markets during the time

period 1996 − 1997. The dotted line, associated with the day 07/02/1997, divides

the entire time period into a tranquil period and a crisis period.

It appears that almost pair-wise conditional correlation coefficients at the first

three levels fluctuate more widely than at the fourth level in the range of [−1, 1].

Moreover, they oscillate in a smaller range at the fifth level. In comparison with

in the tranquil period, all of the conditional correlation coefficients appear to have

no substantial difference in the crisis period. As a result, this finding roughly indi-

cates that the short-run contemporaneous relationships between Thailand and the

other 26 markets do not change significantly, which implies no contagion but merely

40Because the lag length p in every case is different, the coefficients in the mean equations are
not attached here.
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interdependence during the crisis period.

It is noted that in either the tranquil period or the crisis period, the fluctuations of

the most conditional correlation series at each level are large, which implies that they

are volatile. This finding suggests that adopting constant correlation coefficients to

measure the vulnerability of contagion is not appropriate and is unable to capture

the dynamic characteristics of correlation coefficients. Consequently, it is reasonable

to use conditional correlation coefficients to study contagion.

4.5.2 Statistical Analysis of Conditional Correlation Coeffi-

cients in Two Different Phases of the Crisis

As illustrated by the graphics of the conditional correlation series, there appears to

be no contagion. Next, the statistical analysis of conditional correlations is intro-

duced to provide more convincing evidence. Because the sample time period consists

of a tranquil period and a crisis period, a dummy variable (DM1,t) is used to dis-

tinguish between them. The dynamic feature of conditional correlations associated

with two different phases of the crisis is captured by a model, which is expressed by

ρ12,t = c+

p∑
k=1

λkρ12,t−k + γ0DM1,t + ε∗12,t, (4.40)

where the errors have a time-varying variance h∗12,t with ε∗12,t|It−1 ∼ N(0, h∗12,t);

the optimal lag length p in Equation (4.40) is determined by the AIC and LM

criteria; and the dummy variable DM1,t is set to 0 from time period 01/01/1996 to

07/01/1997 and is equal to 1 from time period 07/02/1997 to 12/31/1997. Because

the mean equation has been associated with a dummy variable, the variance equation

is a GARCH(1,1) process associated with the dummy variable DM1,t as well:

h∗12,t = A0 + A1ε
∗2
12,t−1 +B1h

∗
12,t−1 + γ1DM1,t. (4.41)

The significance of the estimated parameters on the dummy variable (γ0 and γ1)

indicates the structure change in mean or/and variance shifts of the correlation coef-

ficients in two different phases of the crisis, which implies that the shock significantly

affects the cross-market linkages.

Here, the dummy variable DM1,t is used to distinguish between two phases: a

tranquil period and a crisis period, providing more reliable evidence from a statistical

perspective. Because the optimal lag length p in the mean equation (4.40) varies

over different pair-wise correlations, Tables [C.9], [C.10], [C.11], [C.12], and [C.13]

only list parameters and the corresponding z−statistic values (in parentheses) of
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the constant and the dummy variable DM1,t in the mean equation (4.40) and of

all variables in the variance equation (4.41) for the conditional correlation series at

the first level, at the second level, at the third level, at the fourth level, and at the

fifth level, which are associated with time intervals of [2, 4) days, [4, 8) days, [8, 16)

days, [16, 32) days, and [32, 64) days, respectively. ∗ and ∗∗ represent statistical

significance at the 5% and 10% levels, respectively.

At the first level, which is related to a time interval of [2, 4) days, the dummy

variable DM1,t is significant only in the conditional correlations between Thailand

and the USA. This variable denotes only the structure of its mean equation changes,

and its conditional correlations in the crisis period are significantly different from

those in the tranquil period, whereas the other conditional correlations are not sig-

nificantly distinct in the two periods. In particular, the parameter of its dummy

variable DM1,t is negative, which indicates that the conditional correlations be-

tween Thailand and the USA significantly decrease from the tranquil period to the

crisis period. Moreover, the dummy variables DM1,t in the pair-wise conditional

correlations for the Thailand-Peru and Thailand-Korea pairs at the second level are

statistically significant, and the corresponding parameters are positive, indicating

that their correlations associated with the time interval of [4, 8) days significantly

increase from the tranquil period to the crisis period.

With respect to the coefficients and statistical significance of DM1,t in the mean

equations for the conditional correlation series at the third level, which corresponds

to the [8, 16) day time interval, the pair-wise correlations for the Thailand-Austria,

Thailand-Japan, Thailand-Hong Kong, and Thailand-Taiwan pairs increase sig-

nificantly, whereas the pair-wise correlations for the Thailand-Canada, Thailand-

Netherlands, Thailand-UK, Thailand-USA, and Thailand-Singapore pairs decrease

significantly. Furthermore, the pair-wise correlations for the Thailand-Chile, Thailand-

Mexico, Thailand-Italy, and Thailand-Sweden pairs at the fourth level, which is

associated with the [16, 32) day interval, increase significantly. At the fifth level,

which is related to the [32, 64) day interval, we only find significant increases in the

pair-wise correlations for Thailand-Australia and significant decreases in the pair-

wise correlations for the Thailand-Argentina, Thailand-Brazil, Thailand-German,

Thailand-Singapore, and Thailand-Hong Kong pairs from the tranquil period to the

crisis period.

To summarise, the short-run international stock markets’ comovements are anal-

ysed based on five categories: the conditional correlation coefficients at the first

level, at the second level, at the third level, at the fourth level, and at the fifth

level, which are associated with time intervals of [2, 4) days, [4, 8) days, [8, 16) days,
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[16, 32) days, and [32, 64) days, respectively. Only in 2 cases at the second level,

4 cases at the third level, 4 cases at the fourth level, and 1 case at the fifth level

do the pair-wise correlations significantly increase from the tranquil period to the

crisis period, and no case is reported to show a significant increase in the 26 pairs of

relationships at the first level. In comparison, 1 case at the first level, 5 cases at the

third level, and 5 cases at the fifth level show that pair-wise conditional correlations

between Thailand and other markets decrease significantly. Few cases suggest the

presence of contagion among the total 26 cases of pair-wise correlations at each level.

The highest number at the five levels is only 4 at the third or fourth level, which

only occupies 15.38 percent in the total sample. Consequently, the findings provide

supportive evidence of no contagion in the majority of markets. From the short-run

contemporaneous correlations point of view, it is argued that only interdependence

is found in the crisis period as well as in the tranquil period for the majority of

markets. This finding implies that the shock to Thailand propagates across markets

through an existing channel in the tranquil period and that no new channel is built

that enables the spreading of shocks across markets.

It is of interest to study the volatility of pair-wise conditional correlation series.

According to the parameters of the dummy variable DM1,t in the variance equation

(4.41) for the conditional correlation series, 14 cases at the first level, 3 cases at the

second level, 9 cases at the third level, 4 cases at the fourth level, and 7 cases at

the fifth level show that the volatility in conditional correlation coefficients signifi-

cantly increases from the tranquil period to the crisis period, whereas 3 cases at the

third level, 9 cases at the fourth level, and 11 cases at the fifth level illustrate that

the volatility in conditional correlation coefficients significantly decreases from the

tranquil period to the crisis period.

Compared with the dummy variable in the mean equation, there are more cases

presenting a statistically significant dummy variable in the variance equation, in-

cluding positive and negative values. To be specific, among the all 26 conditional

correlation series, 53.85% at the first level, 11.54% at the second level, 46.15% at

the third level, 50.00% at the fourth level, and 69.23% at the fifth level show that

the volatility of conditional correlation series changes significantly. The evidence

suggests that correlation coefficients change substantially when a crisis occurs in

a market, and this variability could be prolonged for a significant period of time.

Accordingly, the estimates and the inferences could be misleading if constant corre-

lation coefficients are used in the model that takes the crisis into account.
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4.5.3 Results of Granger Causality Test

Before performing the Granger causality test, the time series as inputs should be

examined regardless of whether they are stationary. According to the ADF test,

all the time series are stationary-I(0), and thus Equation (4.37) is adopted in the

paper. The AIC and LM criteria indicate the optimal lag length p in the bivariate

VAR model. Because the optimal lag length p is different in each case, those are

not reported here. Next, the standard Wald test is implemented. If the absolute

value of χ2−statistic is larger than its absolute value for the significance levels, in-

cluding 5% and 10%, the null hypothesis that each coefficient of the lagged values of

a variable on another variable is zero should be rejected. It is interpreted that the

former endogenous variable Granger causes the latter one, which is called “Granger

causality”. Tables [C.14], [C.15], [C.16], [C.17], and [C.18] report the χ2−values of

the Wald test, the corresponding probability values, and the results of the Granger

causality test in the tranquil period and in the crisis period at the five levels. Fur-

thermore, ∗ and ∗∗ reflect the statistical significances of the χ2−values for Granger

causality test at the 5% and 10% levels, respectively.

In general, one market’s stock returns preceding another market’s stock returns

is interpreted as the existence of a lead-lag relationship between two markets. As

mentioned earlier, if financial contagion exists, Thailand, as the source of the crisis,

has the ability to cause instability in other markets. The market’s stock return as

an indicator may reflect this phenomenon. Because Thailand’s stock returns may

affect other markets’ stock returns, the lagged values of Thailand’s stock returns

impose the impact on the current values of other markets’ stock returns in the crisis

period. According to the definition of financial contagion, whereby the short-run

relationship increases significantly, only Thailand’s stock returns Granger causing

another market’s stock returns in the crisis period indicates contagion. In the other

cases, contagion does not exist, which was explained in detail in the above section.

The appearances of a causality pattern are mixed in both periods. In the tranquil

period, the highest number of causality pattern cases, 51, is found at the fifth

level, whereas the lowest number of causality pattern cases, 21, is reported at the

fourth level. In the crisis period, the majority are at the fifth level, with 48 cases,

whereas the minority are at the second level, with 30 cases. The crisis-contagion

is interpreted such that the causality pattern that is absent in the tranquil period

emerges in the crisis period. Regarding the causality pattern only in the crisis period

as an indication of contagion, no case illustrates the propagation of the crisis from

Thailand across other markets at all five levels.

As a result, no contagion is indicated in all global representative markets based
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on the lead-lag relationships associated with time intervals of [2, 4) days, [4, 8) days,

[8, 16) days, [16, 32) days, and [32, 64) days (over one month). Turning to the short-

run lead-lag relationships, the findings claim that the propagation of the crisis from

Thailand to all markets is attributed as occurring through an existing channel in

normal time rather than through a new channel, which was initially thought to be

established in the crisis period.

4.5.4 Summary of Findings in Conditional Correlation Anal-

ysis and Granger Causality Test

The conditional correlation analysis and Granger causality test investigate financial

contagion from two different aspects: short-run pair-wise contemporaneous relation-

ships and lead-lag relationships between Thailand and other 26 markets. When the

findings on contemporaneous relationships and on lead-lag relationships at the same

level are combined, zero cases at the first level, 2 cases at the second level, 4 cases

at the third level, 4 cases at the fourth level, and 1 case at the fifth level denote

significant increases in the short-run pair-wise relationships between Thailand and

those markets. According to the definition of financial contagion, the evidence does

not support the view of contagion in the majority of markets. Even at the third

or fourth level, where the most cases are found, the minority of markets show the

existence of contagion in 4 markets. As a result, it is argued that there is no con-

tagion and only interdependence in the majority of markets when the short run is

associated with a time interval of [2, 4) days, [4, 8) days, [8, 16) days, or [16, 32) days.

Even when the short run is increased to a time interval of [32, 64) days (over one

month), it is found that contagion arises only in one global representative market

in the sample.

It is of interest to study contagion in the same region with Thailand. For the other

7 East Asian emerging markets in the sample, only 1 case at the second level and

2 cases at the third level are found to support the view of contagion, with 14.29%

at the second level and 28.57% at the third level. However, 1 case at the third

level and 2 cases at the fifth level show significant decreases in the relationships

between Thailand and those markets from the tranquil period to the crisis period.

Consequently, these findings refute the argument that contagion is usually associated

with “regional” markets; the other markets in the same region are easily affected

by a crisis that erupts in a market. In addition, only interdependence is identified

for the majority of markets in the same region. Markets in the same region have a

strong economic linkage in normal time because of similar economic fundamentals.
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Consequently, the shock to Thailand propagates across the majority of markets in

the region through an existing channel, and no new channel is built during this

process for the majority of markets in the region.

4.6 Conclusion

We examine financial contagion based on wavelets, from a new insight: short-run

relationships among markets. These relationships capture the characteristics of

international stock markets’ comovements during a crisis. Therefore, contagion and

international stock markets’ comovements during a crisis can be better understood

in accordance with the frequency-domain-based methodology. Thus, researchers

and policymakers can propose appropriate measures to reduce the negative impact

of a crisis in an individual market, and portfolio-makers can reduce risks when they

invest in global markets.

Based on the analysis of short-run pair-wise relationships between Thailand and

the other 26 markets from the perspective of contemporaneous correlations and

lead-lag relationships, our findings indicate that there is no contagion and only in-

terdependence in the majority of markets, especially for markets in the same region

as Thailand, the source of the crisis. The changes in short-run pair-wise relation-

ships between Thailand and these markets are attributed to a normal transmission

mechanism, which already exists in the tranquil period. Regarding interdepen-

dence between Thailand and these markets at the level of financial linkage, these

markets’ asset prices change when a shock hits Thailand and devalues its assets.

Consequently, the shock to Thailand leads to repercussions in these markets. An

extremely negative and abnormal event gives the illusion that a shock to Thailand,

such as a disease, spreads across markets and is thus called “contagion”. However,

our findings indicate no new propagation mechanism established in these markets.

The propagation of the shock to Thailand across these markets is only a continuation

of a normal transmission mechanism in the tranquil period.

The shock enlarges the transmission mechanism between Thailand and the major-

ity of markets and makes their interdependence more visible. For example, it is very

difficult to believe that Thailand is correlated to Argentina from a macroeconomic

perspective; there is almost no bilateral trade between two markets. However, as

international financial markets integrate and capital flows across markets are rel-

atively easier, Thailand’s and Argentina’s assets are held in traders’ (e.g., mutual

funds, hedge funds) portfolios together. Therefore, the relationship between two

markets is enhanced at the financial linkage level. This link is always ignored, so
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an increase in the short-run relationship between two markets may be attributed

to a new propagation mechanism. In fact, the responses of liquidity traders and

informed speculators to the shock in Thailand drive the impact on other markets

and thus change the short-run relationships between Thailand and other markets.

Table [C.19] lists the major events in the world from 07/02/1997 to 12/31/1997,

following the depreciation of Thailand’s Baht on July 2, 1997. Although some neg-

ative events are reported in July, the majority of events begin to occur a month

after the outbreak of the crisis. The changes in short-run relationships consisting

of contemporaneous correlations and lead-lag relationships between Thailand and

the majority of markets indicate no contagion and merely indicate interdependence

in these markets, implying that the crisis in Thailand propagates across these mar-

kets through an existing channel that already exists in normal time, especially for

relationships associated with a time interval of [2, 4) days, [4, 8) days, [8, 16) days,

[16, 32) days, or even [32, 64) days, which is longer than one month. Because conta-

gion is connected with “fast and furious” propagation, in this phenomenon, major

negative events in the global markets would not occur a month after the crisis erupts,

which is consistent with the finding in Table [C.19]. Rather, they arise long after

the crisis occurs in a market, which may be attributed to the incremental results

of the negative impact of the crisis in these markets through a normal transmission

mechanism.

Consequently, our findings are implicitly inconsistent with the implications of

Pasquariello’s model. The model claims that contagion is caused by the hetero-

geneity of asymmetric information. As introduced earlier, the short-run correlations

between the shock-hit market and other markets should increase significantly, which

is implied by this model. However, our finding that there is no significant increase

in short-run relationships between Thailand and the majority of markets implicitly

refutes it. The changes in correlations among markets due to heterogeneity do not

support the presence of contagion in a majority of markets. In addition, hetero-

geneity as a driver of contagion, financial linkage channels, such as the correlated

information channel, the portfolio rebalancing activity channel, and the correlated

liquidity channel are ruled out in the model. This assumption implies that markets

are assumed to be unrelated in terms of financial linkage during normal period, which

contradicts real life. Consequently, the model overestimates the role of heterogene-

ity in contagion, which is identified in our findings. However, the heterogeneity of

asymmetric information may make the correlation coefficients more volatile, which

is verified by significant changes in the volatility of conditional correlation coeffi-

cients. Accordingly, we believe that informed speculators and liquidity traders do
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not have the ability to cause contagion but have the ability to change cross-market

comovements in a majority of markets.

Our results offer some useful suggestions for policymakers and portfolio managers.

First, to some extent, it is not necessary to worry about liquidity traders and in-

formed speculators. Although these parties have an impact on many markets, the

transmission mechanism always exists either in the tranquil period or in the crisis

period. Shocks only make these links more visible. Second, eliminating this impact is

nearly impossible because international financial markets are integrated and capital

flows in current global economies are difficult to halt. One way for policymakers to

reduce this impact or to isolate contagion in some markets is to allow more liquidity

in markets. When traders do not worry about liquidity issues, they do not need to

sell other assets from their portfolios. Therefore, limiting liquidity concerns reduces

the impact of the shock to Thailand on many markets or may isolate contagion in

some markets. One problem for this measure is that government as an institution is

too slow to respond to shocks. Rather, it should spend some time injecting liquidity

into markets. However, this impact is so “fast and furious” that government may

miss the optimal time to inject. Moreover, as Pasquariello suggests, another way

to restrict this impact is to strengthen information disclosures. A more uniform,

consistent, and complete disclosure of information reduces the number of informed

traders. Consequently, the impact of the shock on other markets declines.

Third, governments should pay more attention to net private capital flows. In

contrast to foreign direct investment (FDI), net portfolio investment is relatively

easier to withdraw. During the withdrawal process, crisis propagates across markets.

Data on the different types of net capital flows show that FDI dominates net capital

inflows in China, which is not affected significantly by the crisis. Net portfolio

investments are substantial in Indonesia, Korea, Philippines, and Taiwan, which

are hit seriously by the crisis. In particular, net portfolio investments in Thailand,

which is the source of the crisis, are dominant, amounting to 0.5% − 3.2% of the

GDP in each of the years 1992 − 1996, whereas FDI is only approximately 1% of

GDP (Table [C.2]). Accordingly, governments should regulate net private capital

flows, especially for net portfolio investment. It is admitted that the stringent

capital control policies are a good and temporary way to isolate contagion or to

reduce the negative impact of a crisis on a local market, as shown by China, which

is not highly affected by the crisis. Fourth, an essential measure is to implement

consistent domestic macroeconomic and exchange rate policies, improve economic

fundamentals, and strengthen financial systems, which reduces the fragility and

vulnerability of markets to adverse developments.
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Finally, to some extent, the absence of significantly high correlation coefficients

during crisis periods implies that the gain from international portfolio diversification

on many global markets stocks is not affected by the crisis. However, for the ma-

jority of markets, the significantly high volatility of correlation coefficients, which

may be attributed to either an unstable covariance, an abnormal variance, or both

implies that, certainty of estimated correlation coefficients create some difficulties

for portfolio managers and increase the probability that they will make inappropri-

ate decisions. Note that it is difficult to determine the full extent of the gain from

the use of wavelets in this context without a true benchmark comparison - hard to

really quantify the gain.
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Chapter 5

Stock Prices and Liquidity in the

U.S. Stock Market: The Response

to Economic News across the

Business Cycle

5.1 Introduction

Many economic indicators that reflect economic fundamentals have a major impact

on financial markets. Therefore, scheduled macroeconomic news announcements,

such as the employment report, CPI (consumer price index), and PPI (producer

price index), are a natural focus for market participants. How do market participants

respond to news announcements? Is public information about the economy immedi-

ately reflected in asset prices, or does its effect on volatility persist over the course of

several days? How does the impact on financial markets from announcements per-

sist? Market participants’ responses to news announcements are interpreted by the

way information spreads in the market, which is viewed as information processing.

Information processing is an important topic in financial economics. Consequently,

much attention has been devoted to its study.

In the early stage, economists found mixed and relatively weak empirical evidence

using monthly or daily data. Cornell (1983), Pearce and Roley (1983, 1985), and

Hardouvelis (1987) find a negative effect of monetary announcement surprises on

stock prices. However, limited evidence supports the view that stock prices signif-

icantly react to nonmonetary announcement surprises. Schwert (1981) finds that

daily stock prices significantly but weakly react to the announcement of unexpected

information in the CPI. A limited impact of inflation (PPI) surprises and no impact
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of industrial production and unemployment rate surprises on stock prices are found

by Pearce and Roley (1985), and only the unemployment rate, trade deficit, and

personal income of eleven announcements are found to be significant in Hardouvelis

(1987). Edison (1997) only finds a statistically significant response for daily exchange

rates and short-term and long-term interest rates for nonfarm payroll information

in six U.S. news announcements.

Over time, the sampling frequency of data in the literature has been questioned.

Low frequency data, consisting of monthly or daily data, are believed to be unable

to capture the impact on financial markets of news announcements. Oberlechner

and Hocking (2004) find that the speed of information is the primary characteristic

of important foreign exchange market news, the importance of which is actually

rated higher than the accuracy and content of news by a questionnaire survey of 321

traders and 63 financial journalists from leading banks and financial news providers

in the European foreign exchange market. Market participants’ responses to news

announcements are so fast that they cause immediate changes in asset prices. The

daily or monthly data are unable to reflect these behaviours. Furthermore, several

announcements and other news may be released on the same day but at different

times. The price behaviour is difficult to attribute to any specific announcement us-

ing daily or monthly data. Consequently, higher frequency data have been preferred

in the past two decades. A growing number of works in the literature study the

impact of macroeconomic news announcements on financial markets using intraday

data, such as one-minute or five-minute data. Ederington and Lee (1993) find that

most price adjustments to announcements are within one minute of the monthly

economic information releases; volatility remains considerably higher than normal

for another fifteen minutes or so and slightly higher for several hours. Following

this study, Ederington and Lee (1995) study the price changes in interest rate and

foreign exchange futures markets to monthly announcements in the short run. They

conclude that asset prices adjust to the scheduled announcements within the first

10 seconds. The adjustments are small but rapid, which implies that some trades

occur at nonequilibrium prices. Furthermore, it takes 40-50 seconds to complete the

major adjustments to the initial releases.

These empirical studies focus on scheduled macroeconomic news announcements

and examine their impact on futures markets, including Treasury bond and for-

eign exchange futures markets, which are highly related to spot markets. However,

according to challenges to the efficient market hypothesis, asset prices not only

reflect all information in the market but also include market participants’ expecta-

tions. Market participants constantly discount expectations of the future in their
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present buying and selling decisions. As a result, the importance of news announce-

ments in financial markets declines. This observation is consistent with the findings

of Oberlechner and Hocking (2004): foreign exchange traders regard news that is

unanticipated by the foreign exchange market and that contradicts an expectation

of the foreign exchange market as more important than the reliability of the news

source and the perceived accuracy of the news. This view is also implicitly identified

by Ederington and Lee (1993). For a total of 19 monthly announcements, they find

that the employment report, PPI, CPI and durable goods orders are most impor-

tant for the Treasury bond and Eurodollar futures prices. In addition, the monthly

announcements with the greatest impact on the dollar-deutsche mark exchange rate

are the employment report, merchandise trade deficit, PPI, durable goods orders,

GNP, and retail sales: note that they are listed in order of decreasing impact. The

employment report that imposes the greatest impact on financial markets is nor-

mally the first government release concerning economic activity in a given month.

Furthermore, the PPI is released before the CPI. Ederington and Lee (1993) infer

that later releases are less important because they are partially predictable based

on earlier releases.

Consequently, announcements are worth less as expectations conform more closely

to them. The unanticipated components of announcements, but not the announce-

ments themselves, affect asset prices. As a result, the credibility of the findings

of previous studies is challenged. Moreover, they allow us to assess the different

impacts of several announcements that are released simultaneously. Ederington and

Lee (1993) and Fleming and Remolona (1997) study the impact of macroeconomic

news announcements on financial markets by using dummy variables to represent

announcements as regressors in the model. However, it is impossible to individually

evaluate the effects of several announcements that are released at the same time. To

study information processing, it is important to estimate expectations. On the one

hand, expectations can be produced from extrapolative benchmarks such as ARMA

models, a strategy that is adopted by Schwert (1981). On the other hand, expec-

tations can be collected from financial companies, such as the International Money

Market Services (MMS) and the Bloomberg Terminal.41 Compared to the expecta-

tions generated by econometric models, the MMS survey data are unbiased and less

variable (Andersen et al. (2003)). Accordingly, these data are proposed to represent

the expectations of market participants on scheduled macroeconomic news. Cor-

nell (1983), Pearce and Roley (1983, 1985), Hardouvelis (1987), Harvey and Huang

41Every week since 1977, MMS has conducted a Friday telephone survey of approximately forty
money managers, collected forecasts for all figures from news announcements to be released during
the next week, and reported the median forecasts from the survey.
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(1993), McQueen and Roley (1993), Edison (1997), Balduzzi et al. (2001), and An-

dersen et al. (2003) use data from the MMS survey and announced macroeconomic

news to generate announcement surprises and then study the response of asset prices

to them.

We extend the literature in four directions. First, how does the stock market

respond to scheduled news announcements? Previous papers (Ederington and Lee

(1993, 1995), Edison (1997), Fleming and Remolona (1997, 1999), Balduzzi et al.

(2001), Andersen et al. (2003), Goldberg and Grisse (2013), Altavilla et al. (2014)

and Paiardini (2014)) primarily focus on the Treasury bond and foreign exchange

markets using low frequency and high frequency data. Although some papers (Schw-

ert (1981), Cornell (1983), Pearce and Roley (1983, 1985), Hardouvelis (1987), and

McQueen and Roley (1993)) have studied the impact of news announcements on the

stock market using low frequency data−(daily data), to the best of our knowledge,

no previous studies have used high frequency data to examine this impact.

Second, do news announcements immediately or eventually affect the stock market

in the form of price volatility and trading volume? Ederington and Lee (1993,

1995), Fleming and Remolona (1997, 1999), Balduzzi et al. (2001), and Andersen

et al. (2003) propose that the information contained in news announcements is

incorporated in asset prices so immediately that a sharp and instantaneous price

change occurs at the news release time. However, the implicit information from a

news announcement is not fully learned when it is released. Market participants’

responses to the information are based on their initial analyses. They need to adjust

their investment decisions to reconcile their different views about the news after

the release. The subsequent adjustment of prices induces significant and persistent

increases in price volatility and trading volume. Accordingly, the impact of news

announcements on the stock market comprises an immediate impact and an eventual

impact. Price volatility and trading volume by one-minute intervals and by five-

minute intervals, respectively, are used to study these impacts.

Naturally, two questions are raised regarding which announcements immediately

or eventually affect the stock price. Based on a questionnaire survey with traders

and financial journalists, news that contradicts market expectations is considered

far more important than news that confirms these expectations (Oberlechner and

Hocking (2004)). To address the first question, we thus regress one-minute price

changes on announcement surprises. Regarding the second question, the traditional

literature fixes the time before the announcement and shifts the examined time

after the announcement. The largest time interval in which the price changes sig-

nificantly in reaction to the news announcement indicates the time during which
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the news announcement’s impact on the market remains significant. However, the

analysis based on these static changes in prices cannot explain why increases in

price volatility persist over a longer time, as has been found by Ederington and

Lee (1993), Balduzzi et al. (2001), and Andersen et al. (2003). This issue stems

from static changes in prices, which cannot fully reflect the eventual impact of a

news announcement on the market. To manage the disadvantages of these static

changes, we use wavelets to construct wavelet-scale price changes. These data are

then regressed on announcement surprises to answer the second question. Moreover,

because wavelets produce an orthogonal decomposition of a data sequence by time

scale, wavelet-scale price changes on different time scales are mutually orthogonal,

which implies that they are linearly independent. The combination of estimation

results from the OLS regression model of static price changes and of wavelet-scale

price changes gives us the time-profile for the news announcement’s impact on stock

prices.

Third, we study the different responses of the stock market to news announce-

ments over various stages of the business cycle. The same type of news is considered

a positive signal regarding the economy in some states of the business cycle and a

negative signal of the economy in others. Consequently, the market’s responses are

different. For example, on the one hand, a negative surprise in the announcement

of the unemployment rate during a boom reduces asset prices because the market

fears that the economy is overheating and policy makers will increase the interest

rate to cool it down. On the other hand, the same negative surprise in the unem-

ployment rate during a gloom raises asset prices because the market considers it a

signal of economic recovery. Even when the market has the same interpretation of

news announcements over different stages of the economy, the response of the mar-

ket to news announcements is unlikely to be consistent considering the divergent

behaviours of market participants conditional on the state of the economy. It is

interesting to examine the stability of the market’s response over various stages of

the business cycle. Due to the significant impact of only monetary announcement

surprises on daily stock prices, McQueen and Roley (1993) classify economic states

into high, medium, and low based on the industrial production index. They find

different responses for daily stock prices from a variety of news announcements con-

ditional on the state of the economy. The low frequency data in this paper motivate

us to investigate the market’s response to news announcements over different stages
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of the business cycle using high frequency data.42

The fourth direction is to examine a so-called “calm before the storm” effect on

the stock market. As the weather is particularly calm before a storm, this effect may

also observed in financial markets. Market participants withdraw from the market

and stabilise asset prices prior to the arrival of a scheduled news announcement,

which is taken as a shock to the market, because they do not want to undergo the

news release with heavily held stocks. This strategy implies high uncertainty.

This paper is organised as follows. In section 2, we introduce the tick-by-tick

data, news announcements, and corresponding forecast data used in the analysis.

In section 3, we document price volatility and trading volume. According to the

results, we divide the market’s response to news announcements into two stages:

the immediate response in the first stage and the subsequent adjustment in the

second stage. We infer market participants’ behaviours conditional on the stages

of the economy. In section 4, we propose a simple “news” model and use the data

on news announcements and market surveys to generate announcement surprises.

Then, we introduce the wavelet analysis and estimate wavelet-scale price changes.

We regress static price changes and wavelet-scale price changes on announcement

surprises using an ordinary-least squares (OLS) regression model to identify which

announcements immediately and which eventually move the stock market. In section

5, we summarise our findings.

5.2 Data

This section provides a detailed description of the data set used in the empirical

analysis: S&P 500 index futures data and data on news announcement release values

and the corresponding forecast survey values.

42We follow the method of McQueen and Roley (1993) and examine the response of daily clos-
ing prices of the S&P 500 index to news announcements conditional on the economic states in
the sample, which runs from February 3, 1997 to January 30, 2009. Unlike these authors, our
results are quite weak. In our opinion, this difference is due to the emergence of the Internet and
other advanced communication technologies that facilitate the spread of information during our
sample period. In McQueen and Roley (1993), the sample period covers September 1977 to May
1988. Consequently, low frequency data are not appropriate for examining the impact of news
announcements on financial markets.

123



5.2.1 S&P 500 Index Futures

The sample data collected are tick-by-tick S&P 500 index futures from February

3, 1997 to January 30, 2009.43 Due to the need for high-frequency data but the

lack of high-frequency S&P 500 index data, it is only possible to use tick-by-tick

S&P 500 index futures, which are highly related to the spot assets, to study the

news announcements’ impact on the stock market. The S&P 500 index futures have

been listed on the Chicago Mercantile Exchange (CME) since the spring of 1982

and comprise the largest 500 listed stocks. They are traded from 09 : 30 to 16 : 15

Eastern Time (ET) on working days except holidays.44 The price of the tick-by-tick

S&P 500 index futures is recorded when a trading transaction occurs. Therefore, we

know the trading prices and the number of ticks in a one-minute interval, but not the

second when a trading transaction occurs. The one-minute price change is defined

as the difference in the price from the last trade in the previous minute interval to

the last trade in the current minute interval by percentage. The two-minute price

change is the price of the last trade in the current minute interval subtracted from

the price of the last trade in the minute interval two minutes previously in percentage

terms, and so on. In addition, the total number of trading transactions in a time

period is the proxy of the corresponding trading volume. Following this definition,

the one-minute trading volume is the total number of ticks in a one-minute interval,

and so on.

5.2.2 News Announcements and Market Survey Data

The data on news announcements and the corresponding market expectations are

from the Bloomberg Terminal, which is a global financial market database providing

data, business news, and analytics. The forecasts of news announcements’ release

values are collected from a number of economists in different companies on a variety

of days before the news announcement. The last forecast of an news announcement

in each month is usually conducted only one day before the announcement. The

standard deviation of all forecasts of the same news announcement in each month is

small, approximately 0.1% to 0.2%. This standard deviation suggests that the survey

data, which reflect the market’s expectations on news announcements’ release val-

43Tarde and Quote (TAQ) database is another source of intraday trades and quotes for all
securities listed on the New York Stock Exchange, American Stock Exchange, Nasdaq National
Market System and SmallCap issues.

44In this paper, the time is based on American Eastern Standard Time.
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ues, include all publicly available information one day before the announcements.45

The median of the survey data for a news announcement represents the market’s

expectation for it.

The 17 monthly news announcements that we consider are reported in Table [D.1].

Seven of the announcements are released at 8:30, two at 9:15, six at 10:00, one at

14:00, and one at 15:00.46 The precise release times of these announcements stem

from the Bloomberg Terminal. For the nonfarm payrolls, trade balance, consumer

confidence, new single-family home sales, PMI (purchasing managers index), fed-

eral budget, and consumer credit, we convert the announcement release values into

percentage changes from the previous month’s announced level.

5.3 Price Volatility and Trading Volume

To examine intraday volatility, the standard deviations of the one-minute price

changes at the same time interval across all 3003 trading days are shown in Figure

[D.1A].47 The means of the corresponding trading volumes at the same time interval

across all trading days are shown in Figure [D.1B] as well. In these and other figures,

the time on the horizontal axis denotes the end of the interval in Eastern Time (e.g.,

10:00 for 9:59 to 10:00 price changes). An apparent spike emerges over the 16:15

to 9:30 period in Figure [D.1A]. It is not surprising to find high volatility in price

changes at this time interval because of overnight information. Indeed, this price

change does not belong to the one-minute price change. The price change over the

9:59 to 10:00 period is also very volatile. The corresponding trading volumes over

the 16:15 to 9:30 period and over the 9:59 to 10:00 period are unusually high. The

difference between them is that trading volume declines substantially after 9:30 but

falls slowly after 10:00. It is observed that 9 of our news announcements occur before

9:30, which is the opening time of the CME; 6 of the news announcements occur

at 10:00; 1 news announcement occurs at 14:00; and 1 news announcement occurs

at 15:00. To investigate whether the price volatility and trading volume patterns

observed in Figures [D.1A] and [D.1B] are attributed to news announcements, we

45One could conjecture that the survey data miss some information and cannot precisely re-
flect the market’s expectations because the market updates its expectations on the later released
announcement in accordance with the earlier released one. However, the survey data from the
Bloomberg Terminal are collected on a variety of days before the announcement. The last forecast
is usually conducted one day before the announcement, and the standard deviation of all forecasts
of the same news announcement in each month is small, approximately 0.1% to 0.2%, which implies
that the survey data do not miss the information before the announcement.

46The release times of these announcements change in some months. Here, we classify the times
in terms of when they are usually released.

47Given the small magnitude of intraday price changes, they are all multiplied by 100.
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divide the sample into those days that contain at least one of our seventeen news

announcements (1541 days) and those with none (1462 days). As shown in Figure

[D.2A], the 9:59 to 10:00 spike in price volatility disappears on nonannouncement

days. Figure [D.2B] also indicates that the 9:59 to 10:00 trading volume on an-

nouncement days is significantly higher than on nonannouncement days. Moreover,

price volatility and trading volume remain considerably higher than normal for a

time after the news announcements, particularly for those released at 10:00.

Consequently, the price volatility and trading volume patterns observed in the

above figures are due to news releases. Given the price volatility and trading volume

over the 16:15 to 9:30 period, it is very difficult to clarify whether news announce-

ments before 9:30 affect the stock market because overnight information dominates.

However, the persistent increases in price volatility and trading volume after 9:30

on announcement days are shown in Figures [D.2A] and [D.2B], respectively. It is

believed that these patterns are related to news announcements before 9:30.

The above study in price volatility and trading volume only concentrates on the

sample period. The findings imply that market participants’ response to news is the

same in different stages of the economy. However, market participants’ behaviours

may vary for different macroeconomic environments: there is no reason to believe

in a consistent response to news announcements over different stages of the busi-

ness cycle.48 An economic expansion denotes an increase in the level of economic

activity, whereas an economic contraction represents a decline in the economy and

more volatile financial markets. Market participants chase returns in an expansion

period, whereas they prefer to decrease their exposure to aggregate risk factors in

a contraction period (Cederburg (2008)). McQueen and Roley (1993) utilise an ex-

ample to show that market participants’ behaviours are related to divergent levels

of economic activity. A negative surprise in the unemployment rate, which was re-

leased on February 4, 1983 after 16 months of recession, increased the Dow Jones

Industrial Average because it was viewed as an signal of economic recovery (“The

Chairmen of the Council of Economic Advisers, Martin Feldstein, commented that

a recovery was either beginning or already here in the Wall Street Journal, February

7, 1983”). However, a similar surprise, which was announced on November 4, 1988

after six years of expansion, reduced stock prices because it was considered a sig-

nal of tighter Fed Policies that would increase the interest rate, which is called the

“policy anticipation effect” by Urich and Wachtel (1981) (“Bond market investors

reacted with gloom, sending interest rates higher on fears of tighter Fed Policy.

The stock market also fell. They were reported by Wall Street Journal, November

48It implies that multicollinearity in the data does not exist.
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7, 1988”). Consequently, market participants adapt their behaviours to different

macroeconomic environments. This observation infers that their response to news

announcements will vary for different stages of the business cycle, as McQueen and

Roley (1993) argue.

Accordingly, it would be interesting to explore the patterns in price volatility and

trading volume over different stages of economic activity. It is necessary to first

classify the divergent levels of the economy. Due to the lack of a widely accepted

definition, we quote the NBER business cycle as the classification. Regarding the

definition of the NBER business cycle, the time periods from February 1997 to March

2001 and from December 2001 to December 2007 are classified as the expansion

period, and the rest of the sample is in the contraction period.49 As a result, the

announcement days and nonannouncement days are divided into two groups: the

expansion period and the contraction period. There are 1314 announcement trading

days in the expansion period and 227 announcement trading days in the contraction

period, and there are 1252 nonannouncement trading days in the expansion period

and 210 nonannouncement trading days in the contraction period.

On both announcement days and nonannouncement days, Figures [D.5A] and

[D.6A] show that price volatility during the contraction period is apparently greater

than during the expansion period. As introduced earlier, the spike over the 16:15

to 9:30 period emerges on both announcement days and nonannouncement days,

whereas the spike over the 9:59 to 10:00 period only appears on announcement

days. Conditional on the business cycle, aside from the greater volatility over the

9:59 to 10:00 period, price volatility remains higher than normal within the minutes

following 9:30 or 10:00 in both the expansion period and the contraction period,

as shown in Figures [D.3A] and [D.4A]. Moreover, the increases in price volatility

persist over a longer period of time in the expansion period compared with the

contraction period, especially for 10:00 announcements.

Figures [D.5B] and [D.6B] show that trading volume in the contraction period

is generally lower than in the expansion period on both announcement days and

nonannouncement days. One of the few time intervals contradicting this finding is

from 9:59 to 10:00, when trading volume in the contraction period is higher than

in the expansion period on announcement days. As shown in Figures [D.3B] and

[D.4B], for the same stage of the business cycle, trading volume over the 9:59 to 10:00

period on announcement trading days is higher than on nonannouncement trading

days. Subsequently, trading volume falls less after 10:00 in the expansion period

49The NBER indicates that contractions (recessions) start at the peak of a business cycle and
end at the trough.
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compared with the contraction period. Furthermore, it is found that trading volume

remains higher than normal within nearly an hour after 10:00 in the expansion

period. However, this persistence in the contraction period is not as obvious, and the

time is shorter. In addition, trading volume in the expansion period remains higher

than normal within the minutes following the market opening at 9:30, whereas this

phenomenon is not observed in the contraction period. It is concluded that persistent

increases in price volatility and trading volume emerge after news announcements

but vary with different stages of economic activity.

5.3.1 The First Stage: The Immediate Impact of Public

Information

In the above section, we briefly introduce the impact of news announcements on price

volatility and trading volume. Based on the findings that price volatility and trading

volume surge in the news release minute and show persistent increases afterwards,

we divide the news announcements’ impact on the stock market into two categories:

the immediate impact and the eventual impact. To examine the impact of news

announcements on the stock market in detail, we form 4 groups of announcements

based on their release times: 8:30 & 9:15 announcements, 10:00 announcements,

the 14:00 announcement, and the 15:00 announcement.50 Consequently, the an-

nouncement days only include the trading days when a specific-time announcement

is released, whereas the nonannouncement days are trading days excluding all days

when an announcement is released. Table [D.2] reports price volatility and trading

volume by one-minute intervals as well as a comparison between announcement and

nonannouncement days using the ratio of price volatility and the difference in trading

volume mean. The Brown-Forsythe-modified Levene F-statistic comparing variances

for announcement and nonannouncement days and the t-statistic comparing means

for announcement and nonannouncement days assuming unequal variances are also

included in this table. All one-minute intervals between 9:30 and 9:41 and the time

period over 16:15 to 9:30 are examined for the 8:30 & 9:15 announcements. For

other announcements, we examine all one-minute intervals from 5 minutes before

the announcement to 7 minutes after the announcement.

50Because the market is open from 9:30 to 16:15, 8:30 and 9:15 announcements, which are
released before the opening time, are put into one group. The 8:30 & 9:15 announcements are CPI,
PPI, civilian unemployment, nonfarm payrolls, personal consumption, personal income, the trade
balance, capacity utilisation, and IP (industrial production); 10:00 announcements are consumer
confidence, durable goods orders, the leading index, manufacturers’ new orders, new single-family
home sales, and PMI; the 14:00 announcement is federal budget; and the 15:00 announcement is
consumer credit.
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Panel A of Table [D.2] shows that the ratio of price volatility on announcement

days to that on nonannouncement days increases in the news release minute and/or

the next minute, reflecting the market’s initial reaction to the announcement. The

ratio increases in the next minute for the 8:30 & 9:15 announcements and the 14:00

announcement and increases in both the news release minute and the next minute

for the 10:00 announcements. In particular, price volatility surges at these time

intervals. This surge denotes that price volatility on announcement days is greater

than on nonannouncement days. Moreover, the results of the B-F-L test indicate

that price volatility between these two different types of days is significantly dis-

tinguished in the corresponding time intervals. Meanwhile, trading volume signifi-

cantly increases for the same time intervals along with an increase in price volatility,

particularly for the 10:00 announcements, as shown in Panel B. For the 14:00 an-

nouncement, the increase in price volatility is not accompanied by a higher trading

volume.

Some important macroeconomic news consisting of civilian unemployment, CPI,

and IP fall into the category of 8:30 & 9:15 announcements. Ederington and Lee

(1993, 1995), Fleming and Remolona (1997, 1999), Balduzzi et al. (2001), and An-

dersen et al. (2003) find a fierce initial response to these types of announcements on

other markets including the Treasury bond and foreign exchange markets. However,

the market’s initial response to 8:30 & 9:15 announcements in terms of stock prices

is not as intense as it is for other markets’ asset prices and is not as the same as

it is for 10:00 announcements. Stock prices significantly change only over the next

minute when the market opens because the market participants already know the

contents of these news announcements, and the market responds to them based on

the performance of other 24-hour markets after these announcements. The stock

prices are changed by more homogeneous analyses, whereas other markets’ asset

prices are affected by more heterogeneous analyses, similar to the change in stock

prices from 10:00 announcements.

Tables [D.3] and [D.4] compare announcement with nonannouncement days by

one-minute price volatility and trading volume during the expansion and contraction

periods, respectively. As shown in Table [D.2] for the entire sample period, price

volatility and trading volume rise in the news release minute or the next minute.

The difference is that the significant increase in price volatility in the expansion

period is larger than in the contraction period, whereas the significant increase in

trading volume in the expansion period is smaller than in the contraction period.

Accordingly, news announcements induce larger price changes per interval in the

expansion period and more price changes in the contraction period. These tables
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also demonstrate the divergent market’s behaviours at different stages of economic

activity. In the expansion period, market participants who are relatively calm on

normal days are more sensitive to news announcements and prefer to use a lower

number of trading transactions to achieve a greater price change. However, in the

contraction period, market participants who are relatively susceptible on normal

days are less sensitive to news announcements. Their response to announcements is

more prudent; they prefer to change stock price on a smaller scale through a higher

number of trading transactions.

It is noted that these comparisons are based on the same stage of economic activ-

ity. As shown in Figures [D.5A], [D.5B], [D.6A], and [D.6B], Tables [D.3] and [D.4]

report higher price volatility and lower trading volume in the contraction period

in comparison with the expansion period on both announcement days and nonan-

nouncement days. These figures illustrate that the market is more susceptible and

less active during the contraction period compared with the expansion period. It

is not surprising to find that the magnitude of price volatility in the news release

minute or the next minute over the contraction period is greater than that at the

same time intervals over the expansion period, whereas the magnitude of the cor-

responding trading volume over the contraction period is generally lower than that

over the expansion period, with an exception for the trading volume over the 9:59

to 10:00 period.

It is interesting to note that price volatility and trading volume significantly de-

cline 2 or 3 minutes before the 10:00 announcements, as shown in Tables [D.2], [D.3],

and [D.4], because market participants reduce trading transactions and stabilise the

stock price at those times to prepare for the arrival of announcements. This pat-

tern is called the “calm before the storm” effect by Jones et al. (1998), although

these authors use daily data to investigate this effect. This effect is consistent with

the claim of the financial press that financial markets are particularly quiet prior

to scheduled news announcements. However, the effect of news announcements on

financial markets lasts only a few hours. Thus, it is doubtful that markets remain

silent for the days. We find that the effects only last a few minutes.

In conclusion, the market’s initial response to news announcements is strong and

induces a sharp and nearly instantaneous price change along with a rise in trading

volume. The information contained in news announcements is incorporated into

stock prices immediately. There are different market behaviours conditional on the

business cycle: a larger initial price change is driven by a lower trading volume in the

expansion period, whereas a smaller initial price change is accompanied by a higher

trading volume in the contraction period. Moreover, the “calm before the storm”
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effect arises 2 or 3 minutes before an announcement because market participants

withdraw from the market just prior to lower their risk.

5.3.2 The Second Stage: The Eventual Impact of Public

Information

After an announcement, market participants need to adjust their initial reactions in

accordance with others’ behaviour. To obtain profits or avoid losses when an news

announcement is released, market participants immediately react based on their

initial analyses. After the announcements, they learn others’ decisions from changes

in stock prices and trading volume. The participants may then realise that their

initial behaviours were an over- or underreaction and may then further adjust their

response. Consequently, stock prices are still volatile and are still accompanied by

high trading volume for a long time before equilibrium is reached.

We characterise the subsequent adjustment to news announcements measured

through price volatility and trading volume by five-minute intervals from 9:30 to

10:25, adding the measurements over the closing (16:15) to opening (9:30) time

period for 8:30 & 9:15 announcements, and from 5 minutes before to 55 minutes

after for other announcements, including the 10:00, 14:00, and 15:00 announcements.

Tables [D.5], [D.6], and [D.7] present the comparisons between announcement days

and nonannouncement days over the entire sample period, over the expansion period,

and over the contraction period, respectively, following the same format as in Tables

[D.2], [D.3], and [D.4]. Standard deviations of five-minute price changes across the

trading days for the specific economic period are presented in Panel A, and five-

minute trading volume means are shown in Panel B.

The sharp initial price change is followed by a significantly prolonged increase in

trading volume along with high price volatility for the 8:30 & 9:15 announcements

and the 10:00 announcements. This pattern indicates the persistent increases in

price volatility and trading volume. Panel A of Table [D.5] and Figure [D.2A] show

that price volatility remains significantly higher than normal from 9:45 to 10:20

for 8:30 & 9:15 announcements and from 10:00 to 10:40 for 10:00 announcements,

respectively. Panel B of Table [D.5] and Figure [D.2B] indicate significantly higher

trading volume across the announcement days from 9:35 to 10:10 for 8:30 & 9:15

announcements and from 10:00 to 10:40 for 10:00 announcements, respectively. We

do not find persistent increases in either price volatility or trading volume for the

14:00 or the 15:00 announcement. Because there is only one announcement at these

times, the subsequent adjustment is too small to significantly change the stock price
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or increase the trading volume.

The higher price volatility and trading volume following 8:30 & 9:15 announce-

ments indicate that market participants still need to adjust their initial decisions

for more than an hour after the announcements. This length of time implies that

market participants cannot accurately absorb the implicit information from news

announcements until that time, although they already know the response to these

announcements for other markets. Ederington and Lee (1993), Fleming and Re-

molona (1999), Balduzzi et al. (2001), and Andersen et al. (2003) find that price

volatility remains considerably higher than normal for approximately one hour and

up to several hours on the Treasury bond and foreign exchange markets. The persis-

tent increases in price volatility and trading volume on the stock market from 8:30

& 9:15 announcements are accompanied by these continued adjustments in asset

prices for other markets.

The above results for the entire sample period vary over the two different stages

of the economy. In the expansion period, the eventual effects of announcements on

price volatility and trading volume persist over time for as long as they do for the

entire sample period. Both price volatility and trading volume remain significantly

higher than normal from 9:35 to 10:20. The 10:00 announcements induce higher

price volatility and higher trading volume from 10:00 to 10:40. However, in the con-

traction period, the time encompassing persistent increases in price volatility and

trading volume is shorter. For 8:30 & 9:15 announcements, price volatility remains

significantly higher than normal only from 10:00 to 10:20, whereas trading volume

is significantly higher only over the 10:00 to 10:05 period. For 10:00 announce-

ments, price volatility and trading volume are significantly higher than normal only

from 10:00 to 10:05. These results provide evidence for our earlier arguments: in

the expansion period, news-sensitive market participants overreact or underreact

to news announcements and thus need to spend more time adjusting their initial

behaviours. In the contraction period, news-insensitive market participants react to

news announcements moderately based on prudent decisions; thus, they spend less

time adjusting their initial behaviours.

In conclusion, market participants reconcile the differential views over a prolonged

second stage that induces an increase in price volatility and trading volume after

the announcements. Because market participants initially overreact or underreact

to news announcements, they need to adjust their initial responses according to

others’ behaviour as seen in the market’s performance. This process causes persis-

tent increases in price volatility and trading volume within an hour and over even

a longer time. In the expansion period, the patterns in price volatility and trading
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volume are similar to those for the entire sample period. However, the increases

in price volatility and trading volume persist over a shorter time in the contraction

period. Compared to nonannouncement days at the same stage of economic activ-

ity, news-sensitive market participants make larger subsequent adjustments in stock

prices through a higher number of trading transactions across a longer time in the

expansion period, whereas news-insensitive market participants are so cautious that

they make smaller subsequent adjustments in stock prices through a lower num-

ber of trading transactions across a shorter time in the contraction period. These

findings imply that there is a more efficient market in the contraction period. Ac-

cordingly, news announcements induce substantial and long-term repercussions in

the stock market over the expansion period, whereas they have small and short-term

repercussions on the stock market over the contraction period.

5.4 Economic News and Stock Prices

The results shown in the above figures and tables demonstrate that scheduled

macroeconomic news announcements significantly affect stock prices. Naturally,

the next question involves identifying which announcements move the stock market.

In this section, we propose a simple “news” model for stock prices to explain why

announcement surprises affect them. Then, we study the impact of different news

announcements on stock prices, including the immediate impact and the eventual

impact.

5.4.1 The Theoretical Framework of the “News” Model

The underlying principle of investment in the stock market is that stock prices are

identical to the present discounted values of rationally expected future dividends

through infinity, which is called the dividend discount model. This model is ex-

pressed as follows:

Pt =
∞∑
τ=1

EtDt+τ

1 + Etrt+τ
, (5.1)

where Pt is the stock price at time t, Dt+τ is the dividend at time t+ τ , rt+τ is the

stochastic discount rate of cash flows at time t+τ , and Et [·] denotes the mathemat-

ical expectation conditional on available information Ωt at time t. Correspondingly,
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the stock price at time t− 1 is Pt−1, which is equal to

Pt−1 =
∞∑
τ=1

Et−1Dt−1+τ

1 + Et−1rt−1+τ

. (5.2)

Consequently, the stock price change from time t− 1 to t is

Pt − Pt−1 =
∞∑
τ=1

EtDt+τ

1 + Etrt+τ
−
∞∑
τ=1

Et−1Dt−1+τ

1 + Et−1rt−1+τ

= − Et−1Dt

1 + Et−1rt
+
∞∑
τ=1

(
EtDt+τ

1 + Etrt+τ
− Et−1Dt+τ

1 + Et−1rt+τ
)

=
Dt

1 + rt
− Et−1Dt

1 + Et−1rt
+
∞∑
τ=1

(
EtDt+τ

1 + Etrt+τ
− Et−1Dt+τ

1 + Et−1rt+τ
)− Dt

1 + rt
.

(5.3)

Suppose that the dividend and the discount factor are only determined by the

economic fundamentals; we then have

Dt

1 + rt
= f(zt), (5.4)

where zt is the vector of fundamental variables, and f [·] is the linear function with

the variable zt. Market participants rationally expect the next period’s dividend

using Equation (5.4).51 Specifically, the participants use all publicly available infor-

mation at time t− 1 to form their expectation of the dividend at time t:

Et−1Dt

1 + Et−1rt
= f(Et−1zt). (5.5)

Subtracting Equation (5.5) from Equation (5.4), we have

Dt

1 + rt
− Et−1Dt

1 + Et−1rt
= f(zt − Et−1zt), (5.6)

where f(zt) − f(Et−1zt) = f(zt − Et−1zt) because f [·] is the linear function with

the variable zt. zt − Et−1zt is the unexpected component of the fundamentals in

zt, which is defined as “news”. This component is interpreted as the announce-

ment surprise and shows the deviation of the actual value of the figure on an news

announcement from its mathematical expected value. This deviation should be ran-

dom in the sense that it has an average value of zero and displays no systematic

51Here, it is assumed that market participants know the underlying structural model between
the endogenous variables, Dt and rt, and the fundamental variable, zt. This assumption allows us
to infer that the same structural model links the expectations of those variables.
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pattern over time. Otherwise, market participants could obtain the potentially pre-

dictable element from it to upgrade their expectation at the time. Although the

news releases the previous month’s data about fundamentals, these data involve

the latest reliable information about economic fundamentals. Market participants

use these announcements to update their knowledge about fundamentals. The ef-

ficient market hypothesis implies that market participants immediately respond to

information when it becomes available. As a result, stock prices should react when

market participants perceive information about fundamentals, which is at the same

time that the institution collects the relative data. However, Schwert (1981) finds

the contrary result that the stock market does not respond to unexpected inflation

during the period in which CPI data is collected, which is before the release date,

but the market significantly reacts to unexpected inflation around the time that it

is released. Therefore, zt−Et−1zt is viewed as the unexpected component of a news

announcement that occurs at time t.

Similarly, the relationship between the expected dividend and the expected fun-

damentals at time t+ 1 conditional on the information at time t is

EtDt+1

1 + Etrt+1

= f(Etzt+1). (5.7)

The expected dividend and the expected discount factor at time t + 1 are deter-

mined by the expected fundamentals at time t+1 based on all available information

at time t− 1:

Et−1Dt+1

1 + Et−1rt+1

= f(Et−1zt+1). (5.8)

Consequently, the first term in the bracket on the right-hand side of Equation

(5.3) is generated by subtracting Equation (5.8) from Equation (5.7):

EtDt+1

1 + Etrt+1

− Et−1Dt+1

1 + Et−1rt+1

= f(Etzt+1 − Et−1zt+1). (5.9)

The expected fundamentals zt are generated by using the past information about

fundamentals, which is assumed to be

Et−1zt =
∑

i
λizt−i, (5.10)

where λi is the decreasing weight. At time t− 1, market participants anticipate the

future fundamentals at time t + 1 using the past fundamentals and the expected

future fundamentals at time t based on the information set Ωt−1. Following the
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same format as Equation (5.10), we have the expected fundamentals at time t + 1,

which are

Et−1zt+1 = λ1Et−1zt +
∑

i
λi+1zt−i. (5.11)

According to Equation (5.10), the expected fundamentals at time t+ 1 conditional

on the information set Ωt, are identical to

Etzt+1 =
∑

i
λizt+1−i. (5.12)

Subtracting Equation (5.11) from Equation (5.12), we have

Etzt+1 − Et−1zt+1 =
∑

i
λizt+1−i − (λ1Et−1zt +

∑
i
λi+1zt−i)

= λ1(zt − Et−1zt). (5.13)

Therefore, the first term in the bracket on the right-hand side of Equation (5.3) can

also be expressed by

EtDt+1

1 + Etrt+1

− Et−1Dt+1

1 + Et−1rt+1

= f [λ1(zt − Et−1zt)]. (5.14)

Based on the same method, it is not difficult to determine that every term in the

bracket on the right-hand side of Equation (5.3) can be represented by the function

f [·] with the variable zt − Et−1zt. Consequently, Equation (5.3) is identical to

Pt − Pt−1 = − Dt

1 + rt
+
∞∑
i=1

f [µi(zt − Et−1zt)]. (5.15)

The left-hand side of this equation is the stock price change from time t − 1 to

t. The unexpected component of the fundamentals in zt, which is revealed by the

announcement surprise, is the variable in the function f [·] on the right. It is the

simple “news” model about stock prices, and it tells us that the announcement

surprise affects the stock price change.

5.4.2 “News”

“News” is defined as the difference between the expected and real values for an

announcement. The unanticipated component of announcement j is

Sj,t =
Aj,t − Ej,t

σ̂j
, (5.16)
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where Aj,t is the real value for announcement j at time t, Ej,t is the median of

the market-based survey forecast for announcement j, which is collected from the

Bloomberg Terminal, and σ̂j is the sample standard deviation of surprise Aj,t−Ej,t,
which is used to facilitate the comparison between stock market responses to differ-

ent news announcements. Therefore, Sj,t is interpreted as the standardised surprise

of announcement j. The regression coefficient shows how much a one standard de-

viation change in the surprise affects the price change when regressing price changes

on announcement surprises. Due to the constant standard deviation σ̂j across all

observations for announcement j, the standardisation affects neither the significance

of the estimates nor the fit of the regression.

Table [D.1] reports the sample standard deviations of announcement surprises

and the descriptive statistics for the data on standardised announcement surprises,

including the number of observations, the number of zero values for standardised

announcement surprises, the means, and the t-statistics testing the zero mean for the

entire sample period, for the expansion period, and for the contraction period. The

highest ratio for the number of zero values over the number of observations occurs

for the leading index (36.17%), with the CPI (32.64%) and civilian unemployment

(31.69%) following for the entire sample period. Regarding the different stages of

the economy, the highest ratio is for civilian unemployment (35.53%), following the

leading index (35%) and CPI (34.96%) during the expansion period. The leading

index (42.86%) with the PPI (40%) following for the contraction period. Moreover,

the mean of every standardised announcement surprise is close to zero. However,

only the standardised surprise of personal income is significantly different from zero

for the entire sample period. Regarding the different stages of the business cycle, the

means of the standardised surprises are significantly different from zero for civilian

unemployment, personal income, and trade balance for the expansion period and

PPI and federal budget for the contraction period. These results are consistent

with our inference in the “news” model that the average of the deviations for the

actual value of an news announcement from its mathematical expectation should be

zero.52 This result is attributed to random deviation; otherwise market participants

would be able to improve their expectation according to the potentially predictable

information from the deviation. Consequently, this result provides indirect evidence

that the survey data from the Bloomberg Terminal are rational forecasts.

52The mean of the announcement surprises equals the production of the mean of the standardised
surprises and the standard deviation of surprises. Because the standard deviation of surprises is
smaller than 1, the mean of announcement surprises is more likely to approximate zero. The
t-statistic for the mean of the announcement surprises is identical to that of the standardised
surprises.
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5.4.3 Which News Announcements Immediately Affect Stock

Prices?

To investigate which news announcements immediately affect stock prices, we regress

one-minute price changes on the surprises for the 17 economic variables:

(Pt − Pt−1)/Pt−1 ∗ 100 = C +
17∑
k=1

βkS
′
k,t + et, (5.17)

where

i) Pt is the price of the last trade in the current minute interval;

ii) Pt−1 is the price of the last trade in the previous minute interval. Because

the magnitude of the one-minute price change is small, we multiply it by 100 and

interpret it as a change in percentage;

iii) βk is the response coefficient of the price to the kth announcement;

iv) S ′k,t is the kth economic variable. It is equal to the standardised surprise of

the kth announcement Sk,t when the kth announcement occurs at time t; otherwise,

it is identical to zero.

The model takes concurrent news announcements into account. For example, the

civilian unemployment and the nonfarm payroll figures are always announced in the

same report. The different values for the standardised surprises of concurrent news

announcements distinguish them, but the dummy variables that have been used to

represent news announcements in previous papers cannot separate them. This dif-

ference is one advantage of adopting announcement surprises as regressors. Another

advantage is the ability to study whether asset prices increase when news announce-

ments are better than expected by assessing the response coefficients. However,

this ability is not available when dummy variables represent news announcements.

In the literature, to reduce the computational burden, only data around the news

release time are analysed. The results of these two methods are similar, except for

the higher adjusted R2 in the latter method. Because the market is open from 09:30

to 16:15, we take the 8:30 and 9:15 announcements as the 9:30 announcements in

the model.

Table [D.8] presents the estimation results of the model, including the response

coefficients and the t-statistics.53 Intercept terms are not listed because they are

rarely significant. The results show the significant response of the stock price to 6

announcement surprises regarding PPI, consumer confidence, durable goods orders,

53To address the heteroskedasticity issue, standard errors and test statistics use the HAC coef-
ficient covariance matrix. We use the slash line instead of the data if the response coefficient on
the announcement surprise is not significant in every time period.
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the leading index, PMI, and federal budget. Of these announcements, PPI is re-

leased at 8:30, federal budget is released at 14:00, and the other 4 announcements

are released at 10:00. The positive signs for the response coefficients on the 10:00 an-

nouncement surprises indicate that the stock price rises when these announcements

are better than expected, implying that the economy has outperformed market ex-

pectation, and drops when these announcements are worse than expected, implying

that the economy has underperformed market expectation. Moreover, the negative

signs of the response coefficients for the the PPI surprise and the federal budget

surprise show a reverse movement in the stock price. An unexpectedly high PPI

reduces the stock price, whereas an unexpectedly low PPI increases the stock price.

A positive surprise in federal budget reduces the stock price, whereas a negative

surprise increases the stock price. The market’s response to news announcements

is ambiguous. Our results indicate the overall market reaction to these surprises in

the sample period.

It would be interesting to examine the stability of the response coefficients over

different stages of the business cycle. Seven announcements consisting of CPI, PPI,

consumer confidence, the leading index, PMI, federal budget and consumer credit

significantly affect stock price in the expansion period, whereas seven different an-

nouncements comprising nonfarm payrolls, consumer confidence, durable goods or-

ders, new single-family home sales, PMI, federal budget, and consumer credit signif-

icantly affect the stock price in the contraction period. Compared to the results for

the entire sample period, more news announcements have a significant impact on

stock prices when examining different stages of the economy. This finding implies

that the market is only responsive to surprises in some news announcements over a

particular economic period but not over the entire sample period. In addition, stock

prices react to some announcement surprises over both economic periods, including

PMI, consumer confidence, federal budget, and consumer credit. In particular, the

signs of the response coefficients for these announcement surprises are quite stable

in both stages of the business cycle. The one exceptional announcement is consumer

credit, which is negatively related to stock prices in the expansion period and pos-

itively related to stock prices in the contraction period. We do not find that the

market significantly reacts to consumer credit over the entire sample period because

the signs of its response coefficients vary based on the stage of economic activity.

The overall response of the stock market to these news announcements is described

as follows: unexpected high figures in the leading index in the expansion period and

durable goods orders and new single-family home sales in the contraction period

increase the stock price, whereas unexpected low figures in these announcements for
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the corresponding periods reduce the stock price. Moreover, unexpected CPI and

PPI in the expansion period negatively affect the stock price. In both economic

periods as well as in the entire sample period, surprises in consumer confidence and

PMI have a positive impact on the stock price, whereas in federal budget have a

negative impact on the stock price.

In terms of the size of the impact of news announcements on stock prices in the

entire sample period, PPI is the most significant. It is noted that the standard devia-

tion of the daily price change for the S&P 500 index futures is 1.37%. A one standard

deviation surprise in the PPI, which is related to a 0.27% monthly variation in the

index, causes a price change of approximately 11.41% in the normal daily volatility

of price changes.54 Consumer confidence (8.58%), durable goods orders (6.38%),

PMI (2.66%), the leading index (2.65%),and federal budget (0.33%) lead to price

changes between 0.33% and 8.58% of daily volatility, and their importance decreases

by the listing order.55 According to the effect of news announcements on stock prices

in the expansion period, PPI is also the most important announcement with an ef-

fect of approximately 11.03% of daily volatility on the price change. In terms of

the decreasing size of the news announcements’ impact on stock prices, PPI is fol-

lowed by consumer confidence (8.70%), CPI (7.82%), PMI (2.32%), federal budget

(0.30%), and consumer credit (0.30%), where federal budget and consumer credit

are of identical importance. In the contraction period, new single-family home sales

have the greatest impact on the market with an effect of approximately 171.25%

of daily volatility on the price change. Next are nonfarm payrolls with an effect

of approximately 65.23% of daily volatility, followed by consumer credit (28.62%),

durable goods orders (15.11%), consumer confidence (8.39%), and PMI (3.57%).

Federal budget (2.05%) has the smallest effect on stock prices. In conclusion, the

magnitudes of the response coefficients on news announcement surprises in the con-

traction period are generally greater than those in the expansion period. This result

suggests that the impact of news announcements on stock prices is more consider-

able in contraction period. This finding is consistent with Figure [D.5A] and Tables

[D.2] and [D.3], which show that price volatility in the contraction period is higher

than in the expansion period when news announcements are released.

54The seventh column of Table [D.1] reports the sample standard deviations of announcement
surprises. The response coefficients in the regression model combined with these standard devia-
tions provide the economic interpretations of the estimation results.

55The value in the brackets shows how much the stock price changes given a one standard
deviation surprise of an announcement in terms of the normal daily volatility of price changes.
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5.4.4 Which News Announcements Eventually Affect Stock

Prices?

The results of the regression model of one-minute price changes on announcement

surprises identify which announcements move the stock market and confirm the im-

mediate impact of those announcements on the stock price. As discussed earlier, the

news announcements’ impact on the stock market comprises the immediate and the

eventual impact. The eventual impact induces persistent increases in price volatility

and trading volume. Regressing price changes from the time before the announce-

ment to the time after the announcement on the surprises in the economic variables

or on the dummy variables that represent news announcements is a commonly used

method, and this paper also adopts this method to study the immediate impact of

announcements on the stock price. To investigate how long news announcements

affect asset prices, the time before the announcement is often fixed, and the time

after the announcement is moved to obtain the price change for different time inter-

vals. The largest time interval over which the price change is significantly affected

by a news announcement tells us the market’s response until that time. Because

this type of price change is static, the method used to study the impact of news

announcements on the price change is defined as static analysis. Ederington and

Lee (1993, 1995), Balduzzi et al. (2001), and Andersen et al. (2003) find that as-

set prices significantly react to news announcements from between one minute to

five minutes after the announcements based on this type of static analysis or price

volatility over the short time interval. However, Ederington and Lee (1993), Fleming

and Remolona (1999), Balduzzi et al. (2001), and Andersen et al. (2003) find that

price volatility and trading volume remain considerably higher than normal over

approximately an hour and up to even several hours.

Consequently, the static analysis cannot explain why increases in price volatility

persist over longer than the maximum time discovered by economists. The differ-

ence in time between them is caused by temporal aggregation. A simple example

illustrates why this question arises. Suppose the asset price is P1 one minute be-

fore an announcement at time t, and it increases considerably to P2 when the news

is released. The price then drops to P3 one minute after the announcement and

rises to P4 two minutes after the announcement. The relationships between these

prices are P2 > P4 > P1 > P3 and P1P4 > P2P3, as illustrated in Figure [D.7A].

By the regression model, the asset price significantly reacts to the news announce-

ment through the one-minute price change (P2 − P1)/P1, but it does not react

through the two-minute price change (P3−P1)/P1 or the three-minute price change
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(P4 − P1)/P1 because those magnitudes are smaller than that of one-minute price

change (P2 − P1)/P1. Thus, the static analysis claims that the effect of the news

announcement on the financial market is within one minute. However, the price

change (P4 − P3)/P3, whose magnitude is greater than that of (P2 − P1)/P1, shows

that price volatility remains significantly higher than normal within three minutes

after the announcement. Consequently, we find that the effects of announcements

on price volatility persist longer than the maximum time declared by the static anal-

ysis. Because the asset price changes from P1 to P2, P3 and P4 are attributed to

the news announcement, the static analysis cannot properly examine the eventual

impact of news announcements on the financial market.

Furthermore, in terms of static price change, two scenarios are indistinguishable.

In the first scenario, the asset price is assumed to be P1 one minute before an an-

nouncement. When the announcement is released, the asset price surges to the

threshold price P2, which reflects the significant response of the market to the an-

nouncement and remains constant for four minutes. According to the static analysis,

we fix the time before the announcement. As a result, the one-minute price change

(P2 − P1)/P1 is identical to the two-minute price change, and so on. The static

analysis shows the impact of the news announcement on the financial market within

five minutes, although it occurs within one minute. In the second scenario, the asset

price is still assumed to be P1 one minute before an announcement. The announce-

ment induces a linear increase in the price to P2 in the fourth minute. As a result,

the price changes by different time intervals are distinct. The impact of the news

announcement on the financial market is within five minutes. These two different

scenarios are shown in Figure [D.7B]. They are deemed to be the same when we

regress the five-minute price changes on announcement surprises.

Consequently, these examples motivate us to better aggregate the data to capture

the eventual impact of news announcements on stock prices. Consider the first

example again. If a mathematical operation called first-difference is applied to the

one-minute price change, the price change from the first one minute to the second

one minute is (P3 − P2)/P2 − (P2 − P1)/P1. Its magnitude is smaller than that of

the first one minute ((P2−P1)/P1). However, the price change from the second one

minute to the third one minute is (P4−P3)/P3−(P3−P2)/P2, which has a magnitude

greater than that of the first one minute. Thus, we conclude that it is within three

minutes by using the first-difference to investigate the speed of the eventual impact,

which is consistent with reality. Moreover, when this type of temporal aggregation

is applied to the second example, the two scenarios are easily distinguished.
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5.4.4.1 Why Do We Use Wavelets?

The first-difference is a type of filter that performs mathematical operations to

rearrange a data structure. In empirical works in economics and finance, the required

frequency of observations is commonly not available because it is very expensive

or not possible to collect data in the required frequency for particular variables.

However, there is no reason to believe that data collected in the required frequency

would be able to fully capture the movement of the economy. To solve this issue, a

mathematical method referred to as temporal aggregation is required. The implicit

assumption of this method is that the underlying stochastic process in continuous

time is observed in discrete intervals. When the required frequency of observations

is not available, the temporal aggregation is applied to obtain the ideal frequency

of data.

Consider a case in which monthly observations of an economic variable are col-

lected from the market. However, quarterly data for this variable are actually re-

quired to study an empirical issue. A simple and frequently used way of converting

the observations would be to take the sums or the averages of successive sets of three

months. This process is equivalent to subjecting the data to a three-point moving

sum or average and then subsampling the resulting sequence by picking one in ev-

ery three points. However, a problem called “aliasing” arises with this procedure.

Aliasing refers to an effect that leads to different data sequences that are indistin-

guishable when sampled. For instance, in the second example, the five-minute price

changes in the two scenarios are the same. We cannot use them to distinguish the

groups to which they belong.

To avoid the aliasing problem, it is appropriate to use a filter that can better

aggregate data without creating this problem and losing any data points in the

process. Although several filters fulfil this condition, they cannot make the filtered

data linearly independent on different time scales. Linear independence means that

when price changes on different time scales are applied in an OLS regression model

that studies a linear relationship between price changes and announcement surprises,

the results do not affect each other. Otherwise, they are ambiguous. As a result,

the time profile for a news announcement’s impact on the stock price is revealed.

Furthermore, news announcements cause jumps in asset prices (Andersen et al.

(2003)), which requires the filter to maintain this feature when processing data.

Fortunately, wavelet theory provides this type of filter. Wavelets literally mean

small waves because they have finite length and are oscillatory. Wavelets on a

finite support begin at a point in time and then die out at a later point in time.

Their localised nature enables them to be used to analyse episodic variations in
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the frequency composition of data; thus, they are referred to as a “mathematical

microscope”. Consequently, wavelets have the ability to isolate jumps at different

time scales. The filters, which are based on a Fourier transform, are not appropriate

here because they smooth jumps.

There are two different filters in the wavelet theory: the wavelet filter ({hk}) and

the scaling filter ({gk}). Generally, there is a relationship between these filters

gk = (−1)k+1hL−k−1, (5.18)

and an inverse relationship

hk = (−1)kgL−k−1, (5.19)

where L, the width of filter, must be even. {gk} is referred to as the “quadrature

mirror filter” (QMF), corresponding to {hk}. The scaling filter gk is a lowpass filter

that preserves the contents of the signal at a low frequency and discards the contents

at a high frequency, whereas the wavelet filter hk is a highpass filter that retains

only the high-frequency components. The wavelet filter and the scaling filter should

fulfil three conditions, respectively:∑
hk = 0,

∑
h2
k = 1,

∑
hkhk+2m = 0 (m 6= 0),∑

gk =
√

2,
∑

g2
k = 1,

∑
gkgk+2m = 0 (m 6= 0).

(5.20)

Furthermore, two more conditions are imposed on the wavelet and scaling filters:∑
k
gkhk+2m = 0 (m 6= 0),∑

k
gkhk = 0.

(5.21)

These conditions guarantee that a data sequence can be decomposed orthogonally

into components by time scales via discrete wavelet transform (DWT). Correspond-

ingly, a pyramid algorithm is proposed to implement this transform. Specifically,

scaling coefficients from the previous level are used as inputs and processed by

wavelet and scaling filters to estimate the current level wavelet and scaling coeffi-

cients, respectively. The only exception is at the first level, in which the wavelet and

scaling filters are applied to the original data sequence. It is noted that jth level is

associated with frequency interval (π/2j, π/2j−1]. Because frequency ω is related to

time horizon T : ω = 2π/T , the jth level indicates that the relative data sequence

contains information inside the time interval [2j, 2j+1). Wavelet and scaling coeffi-

cients can be used to recover the original data sequence or to construct subseries in
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specific frequency intervals. Here, we use two-channel filter banks to demonstrate

wavelet decomposition and synthesis.

5.4.4.2 The Analysis of Two-Channel Filter Banks

A sequence {yt, t = 0, 1, · · · , T − 1}, where the tth element of a column vector Y

is yt, goes through a highpass filter H1 that is constructed by wavelet filters via

a downsampling process (↓ 2) in which the odd-numbered elements of the filtered

signal are discarded and the even-numbered elements are preserved. Then, the

filtered and downsampled signal, which holds half the information of yt, is stored

and transmitted. Later, this signal goes through an anti-imaging highpass filter C1,

which is constructed by wavelet filters. Prior to this procedure, upsampling (↑ 2) is

performed by inserting zeros between each element of the filtered and downsampled

signal. Finally, w1, involving a half component of the signal yt in the specific

frequency band, is achieved. This process is applied for scaling filters as well, and

v1, which contains the other half part of yt, is derived. Therefore, the graphic of

this flow path is

Y −→ H1 −→ ↓ 2 −→'−→ ↑ 2 −→ C1 −→ w1,

Y −→ G1 −→ ↓ 2 −→'−→ ↑ 2 −→ D1 −→ v1 ,

where the structures of matrices G1 and D1 are the same as matrices H1 and C1,

respectively. Both the lowpass filter G1 and the anti-imaging lowpass filter D1 are

constructed by scaling filters. Here, filters H1 and G1 are called analysis filters, and

filters C1 and D1 are called synthesis filters. The symbol ' represents the storage

and transmission of the signal. The output signals formed by the two-channel filter

banks are w1 and v1, respectively, and their combination is the original signal:

w1 + v1 = Y .

Normally, compared to temporal notation, frequency notation is preferred to ex-

press this flow path because it can show some properties of these filters. Therefore,

the highpass and lowpass flow paths are expressed, respectively, as

y(z) −→ H1(z) −→ ↓ 2 −→'−→ ↑ 2 −→ C1(z) −→ w1(z),

y(z) −→ G1(z) −→ ↓ 2 −→'−→ ↑ 2 −→ D1(z) −→ v1(z) ,

where z could be ω or e−iω, and this expression has more generality. It has been

proven that the Fourier transforms of (↓ 2)yt and (↑ 2)yt are [ε(ω/2)+ε(ω/2+π)]/2
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and ε(2ω), respectively.56 Because e−iω/2 = z1/2 and e−i(ω/2+π) = −z1/2 where

z = e−iω, in terms of the z-transform, they can be written as

(↓ 2)yt ←→ [ε(z1/2) + ε(−z1/2)]/2 and (↑ 2)[(↓ 2)yt]←→ [ε(z) + ε(−z)]/2,

(5.22)

where “←→” denotes the Fourier transform, and the right term is the Fourier trans-

form coefficient.

In conclusion, in terms of the z-transform, the highpass and lowpass flow paths

are expressed by two equations, respectively:

w1(z) =
1

2
C1(z)[H1(z)y(z) +H1(−z)y(−z)],

v1(z) =
1

2
D1(z)[G1(z)y(z) +G1(−z)y(−z)].

(5.23)

It is presumed that the synthesis of w1(z) and v1(z) is x(z); thus,

x(z) =
1

2
[C1(z)H1(z) +D1(z)G1(z)]y(z)

+
1

2
[C1(z)H1(−z) +D1(z)G1(−z)]y(−z).

(5.24)

As y(−z) is caused by aliasing from the downsampling process, it must be elim-

inated.57 Here, we set C1(z) = −z−dG1(−z), and D1(z) = z−dH1(−z), where d is

identical to L− 1, and L is the width of filter. Thus, Equation (5.24) becomes

x(z) =
z−d

2
[H1(−z)G1(z)−H1(z)G1(−z)]y(z). (5.25)

It is noted that the aliasing term y(−z) can be cancelled by any choice of H1(z) and

G1(z) when the anti-imaging filters C1(z) and D1(z) are identical to −z−dG1(−z)

and z−dH1(−z), respectively. However, a restriction on the choice ofH1(z) andG1(z)

is imposed so that the coefficients of the wavelet and scaling filters are mutually

56The details are provided in the appendix: downsampling doubles frequency and upsampling
halves frequency.

57Aliasing may occur when a temporal sequence is Fourier transformed in terms of its frequency.
This occurs because the basis of the Fourier analysis is the cosine and sine functions. Suppose
the angular velocity ω exceeds the Nyquist value (π), ω ∈ (π, 2π], and define ω∗ = 2π − ω,
ω∗ ∈ [0, π). Thus, for all values of t = 0, . . . , T − 1, cos(ωt) = cos(2πt− ω∗t) = cos(2πt) cos(ω∗t) +
sin(2πt) sin(ω∗t) = cos(ω∗t). Thus, the cosine functions at the frequency ω and ω∗ are identical;
this problem is called “aliasing”. It is not possible to distinguish the angular frequency ω from the
value of the cosine (or sine function). To avoid aliasing, the positive frequencies in the spectral
analysis of a discrete time process are limited to the interval [0, π]. Whether an aliasing problem
exists depends on the structure of the particular time series. For many econometric time series,
the problem does not arise because their positive frequencies are limited to the average [0, π].
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orthogonal, including sequential orthogonal and lateral orthogonal. To demonstrate

this, we assume that the width of the filter is four. Thus,

G1(z) = g0 + g1z + g2z
2 + g3z

3,

H1(z) = h0 + h1z + h2z
2 + h3z

3.
(5.26)

Because {gk} is referred to as the “quadrature mirror filter” (QMF) corresponding

to {hk}, hk = (−1)kgL−k−1 indicates that Equation (5.26) could be written as

G1(z) = −h3 + h2z − h1z
2 + h0z

3 = z3H1(−z−1) = D1(z−1),

H1(z) = g3 − g2z + g1z
2 − g0z

3 = −z3G1(−z−1) = C1(z−1),
(5.27)

where

D1(z) = −h3 + h2z
−1 − h1z

−2 + h0z
−3 = z−3H1(−z) = G1(z−1),

C1(z) = g3 − g2z
−1 + g1z

−2 − g0z
−3 = −z−3G1(−z) = H1(z−1),

(5.28)

C1(z) = H1(z−1) and D1(z) = G1(z−1) indicate that the synthesis filters are simply

the reversed-sequence anti-causal versions of analysis filters. Equations (5.27) and

(5.28) tell us that Equation (5.25) can be rendered as

x(z) =
1

2
[H1(z)H1(z−1) +G1(z)G1(z−1)]y(z)

=
1

2
[D1(−z)G1(−z) +D1(z)G1(z)]y(z)

=
1

2
[P (−z) + P (z)]y(z), (5.29)

where

P (−z) = D1(−z)G1(−z) = H1(z)H1(z−1),

P (z) = D1(z)G1(z) = G1(z)G1(z−1).
(5.30)

To achieve the perfect reconstruction in which x(z) is equal to y(z), a condition

is imposed:

H1(z)H1(z−1) +G1(z)G1(z−1) = 2. (5.31)

This condition guarantees the perfect reconstruction of the original sequence y(t)

from outputs by two-channel filter banks. The terms in H1(z)H1(z−1) and

G1(z)G1(z−1) with an odd power of z are cancelled because of the relationship

between the wavelet filter {hl} and the scaling filter {gl} (Equation (5.21)). The
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orthogonality conditions of {hl} and {gl} (Equation (5.20)) make the terms with

an even power of z equal to zero and the terms associated with a zero power of z

identical to 2. Consequently, Equation (5.31) is always valid in the wavelet theory.

This result is applied to the further decomposition and reconstruction in DWT as

well. Thus, the sum of component signals is the original signal:
∑J

j=1 wj + vJ = Y .

In conclusion, we briefly introduce the deconstruction and the perfect reconstruction

of a time series by two-channel filter banks. These two-channel filter banks offer us

the entire architecture for the dyadic wavelet analysis and help us to interpret this

analysis more easily.

The above introduction of dyadic wavelet analysis concentrates on frequency no-

tation. Returning to temporal notation, we use the circulant matrix KT to replace z

in Equation (5.26), where KT = [e1, e2, · · · , eT−1, e0], which is established by shifting

the first column of an identity matrix (I = [e0, e1, · · · , eT−1]) to the last column, and

T is the length of the original time series. The results are the filter matrices H1 and

G1. Because K−1
T = K ′T , the filter matrices H ′1 and G′1 are associated with H1(z−1)

and G1(z−1), respectively. Because C1(z) = H1(z−1) and D1(z) = G1(z−1) in Equa-

tion (5.28), the anti-imaging highpass filter matrix C1 and lowpass filter matrix D1

are equal to the transpose of the highpass filter matrix H1 and the lowpass filter

matrix G1, respectively. The operation “downsampling” can be represented by a

matrix V , where V = Λ′ = [e0, e2, · · · , eT−2]′. This comes from the identity matrix

(I = [e0, e1, · · · , eT−1]), in which the alternate rows are deleted. As introduced ear-

lier by frequency notation, a sequence goes through a highpass filter matrix H1 or

a lowpass filter matrix G1 and then is downsampled (V ). The outputs are wavelet

coefficients associated with the highpass filter or scaling coefficients associated with

the lowpass filter. The wavelet and scaling coefficients at the first level are referred

to as α(1) and β(1), respectively, and are identical to

α(1) = V H1Y,

β(1) = V G1Y.
(5.32)

To construct the component signals w1 and v1, they are first upsampled. Matrix

Λ can be used to represent this operation. Second, the upsampled coefficients go

through the anti-imaging highpass filter matrix C1 or the lowpass filter matrix D1,

in which C1 = H ′1 and D1 = G′1. The results are the component signal w1 or v1,
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which is equal to

w1 = H ′1Λα(1) = H ′1ΛV H1Y,

v1 = G′1Λβ(1) = G′1ΛV G1Y.
(5.33)

Because the synthesis of the component signals w1 and v1 is the original time

series, we have

Y = w1 + v1 = H ′1ΛV H1Y +G′1ΛV G1Y. (5.34)

This entire process is also applied on the further decomposition and reconstruc-

tion. The only difference is that scaling coefficients from the previous level are

used as inputs instead. Consequently, the wavelet coefficients associated with the

jth-level wavelet filter are

α(j) = VjHjVj−1Gj−1 · · ·V1G1Y , (5.35)

and the scaling coefficients associated with the jth-level scaling filter are

β(j) = VjGjVj−1Gj−1 · · ·V1G1Y , (5.36)

where Vj = Λ′j = [e0, e2, · · · , eT/2j−1−2]′, which is established by deleting the alternate

rows of an identity matrix (IT/2j−1 = [e0, e1, · · · , eT/2j−1−1]).58 The matrices Hj and

Gj, in terms of polynomial expression, can be written as

Hj = H(KT/2j−1) = h0K
0
T/2j−1 + h1K

1
T/2j−1 + · · ·+ hL−1K

L−1
T/2j−1 ,

Gj = G(KT/2j−1) = g0K
0
T/2j−1 + g1K

1
T/2j−1 + · · ·+ gL−1K

L−1
T/2j−1 ,

(5.37)

where L is the width of the filter and T is the length of original time series. It is

not difficult to find that

VjHjVj−1Gj−1 · · ·V1G1 = VjVj−1 · · ·V1H(K2j−2
T )G(K2j−4

T ) · · ·G(KT ),

VjGjVj−1Gj−1 · · ·V1G1 = VjVj−1 · · ·V1G(K2j−2
T )G(K2j−4

T ) · · ·G(KT ),
(5.38)

where the jth-level wavelet filter {hj,k} forms the matrix:

H(K2j−2
T )G(K2j−4

T ) · · ·G(KT ), (5.39)

58To unify the matrix expression, the matrices V and Λ in the first decomposed level are rewritten
as V1 and Λ1, respectively.
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and the jth-level scaling filter {gj,k} matrix is

G(K2j−2
T )G(K2j−4

T ) · · ·G(KT ), (5.40)

in which j is no smaller than 2. If j = 1, the first-level wavelet and scaling fil-

ters correspond to the matrices H(KT ) and G(KT ), respectively. Accordingly, the

wavelet and scaling amplitudes can also be expressed by

α(j) = VjVj−1 · · ·V1H(K2j−2
T )G(K2j−4

T ) · · ·G(KT )Y,

β(j) = VjVj−1 · · ·V1G(K2j−2
T )G(K2j−4

T ) · · ·G(KT )Y.
(5.41)

Observing the component signal w1, we find that it is estimated by multiplying

the transpose of the production of matrices V and H1 by wavelet coefficients α(1),

which are the results of multiplying the production itself by the original time series

Y . This mathematical operation also works on another component signal v1 with the

scaling filter matrix G1. Generally, we find that it is always valid for the component

signals wj and vj at the jth level. Consequently, the component signal wj is

wj = [VjHjVj−1Gj−1 · · ·V1G1]′α(j) (5.42)

= [VjVj−1 · · ·V1H(K2j−2
T )G(K2j−4

T ) · · ·G(KT )]′α(j),

and the component signal vj is

vj = [VjGjVj−1Gj−1 · · ·V1G1]′β(j) (5.43)

= [VjVj−1 · · ·V1G(K2j−2
T )G(K2j−4

T ) · · ·G(KT )]′β(j).

According to the orthogonality conditions of wavelet and scaling filters on Equa-

tions (5.20) and (5.21), we have[
VjHj

VjGj

] [
(VjHj)

′ (VjGj)
′
]

=

[
VjHjH

′
jΛj VjHjG

′
jΛj

VjGjH
′
jΛj VjGjG

′
jΛj

]
=

[
IT/2j 0T/2j

0T/2j IT/2j

]
,

(5.44)

and

[
(VjHj)

′ (VjGj)
′
] [ VjHj

VjGj

]
= H ′jΛjVjHj +G′jΛjVjGj = IT/2j−1 . (5.45)
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As a result, we infer that

v′jwj = 0,

w′jwk = 0 (j 6= k),

J∑
j=1

wj + vJ = Y,

(5.46)

which illustrate the lateral orthogonality (wj⊥vj) and sequential orthogonality

(wj⊥wk), respectively. A data sequence can be decomposed orthogonally into com-

ponents by time scales using wavelets. Because orthogonality is a special case of lin-

ear independence, the components at different time scales are linearly independent.

The component signal wj is associated with the frequency interval (π/2j, π/2j−1],

which implies that it contains information inside the time interval [2j, 2j+1).

In this paper, we use the Daubechies least asymmetric (LA) wavelet filter of width

8 to orthogonally decompose one-minute price changes by ten scales.59 The tenth

scale, which indicates that the time interval of the data sequence is [210, 211) minutes

(approximately one day change), shows the maximum change in time during the ten

scales. Because the increases in price volatility persist over approximately an hour

in the paper, which is longer than an hour but shorter than the one day suggested

by a number of papers, price changes on this scale and smaller scales are sufficient

to examine the eventual impact of news announcements on the stock market. Price

changes on each scale that are estimated using wavelets are called “wavelet-scale

price changes”.

5.4.4.3 The Findings of News Announcements’ Eventual Impact on Stock

Prices

We regress the wavelet-scale price changes on the surprises in the 17 economic vari-

ables, as in the static analysis. Table [D.9] reports the estimation results of the

model of the wavelet-scale price changes using different time intervals, including

response coefficients and t-statistics, following the same format as Table [D.8]. The

results show the subsequent adjustment of the stock market to more news announce-

ments. In the entire sample period, there are six announcements that significantly

affect the price change at the first scale. In these six announcements, this price

change is positively related to unexpected components of consumer confidence, the

leading index and PMI, and it is negatively related to unexpected components of

59This filter with this width is recommended by Percival and Walden (2000) and is widely used
in the literature on wavelet analysis (Kim and In (2003), Gallegati (2008)).
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PPI, new single-family home sales and consumer credit. Similarly, three announce-

ments significantly affect the price change at the second scale. In particular, the

unexpected announcements of PPI and consumer credit have a positive impact on

this price change, whereas the unexpected announcement of new single-family home

sales has a negative impact on this price change.

In addition, the price change at the third scale positively reacts to unanticipated

changes in capacity utilisation, new single-family home sales and PMI and negatively

reacts to unanticipated changes in PPI and nonfarm payrolls. The price change

at the fourth scale positively reacts to IP, consumer confidence, and new single-

family home sales and negatively reacts to personal consumption. The price change

at the fifth scale positively reacts to civilian unemployment and consumer credit

and negatively reacts to personal consumption, trade balance, and federal budget.

The price change at the sixth scale positively reacts to personal consumption and

negatively reacts to capacity utilisation and trade balance. The price change at the

seventh scale positively reacts to personal consumption and durable goods orders

and negatively reacts to IP and personal income. Finally, the price change at the

eighth scale negatively reacts to CPI, personal income, durable goods orders, and

consumer credit; the price change at the ninth scale negatively reacts to PPI; and

the price change at the tenth scale negatively reacts to consumer confidence.

As shown in the static analysis, the wavelet analysis finds that more announce-

ments affect the stock market conditional on the business cycle, and some have an

eventual impact only for a particular type of economic period. To explore this obser-

vation further, consumer confidence, the leading index, and federal budget positively

affect price change at the first scale, whereas PPI, new single-family home sales, and

consumer credit negatively affect this price change in the expansion period. PMI

and durable goods orders positively affect the price change and nonfarm payrolls

negatively affect the price change by the same time interval in the contraction pe-

riod. Consumer credit has a positive impact, whereas new single-family home sales

have a negative impact on the price change at the second scale in the expansion

period. Manufacturers’ new orders are positively related, whereas civilian unem-

ployment and personal consumption are negatively related to the price change at

the same scale in the contraction period.

Moreover, the price change at the third scale positively reacts to new single-

family home sales in the expansion period and capacity utilisation and PMI in the

contraction period, and it negatively reacts to CPI, PPI, and personal consump-

tion in the expansion period and civilian unemployment and nonfarm payrolls in

the contraction period. The price change at the fourth scale positively reacts to
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new single-family home sales in the expansion period and PPI, IP, and PMI in the

contraction period, and it negatively reacts to federal budget in the contraction pe-

riod and personal consumption in both economic periods. The price change at the

fifth scale positively reacts to consumer credit in the expansion period and civil-

ian unemployment in both economic periods, and it negatively reacts to personal

consumption and federal budget in the expansion period, capacity utilisation and

new single-family home sales in the contraction period, and trade balance in both

economic periods. The price change at the sixth scale positively reacts to federal

budget in the expansion period, new single-family home sales in the contraction pe-

riod, and personal consumption in both economic periods, and it negatively reacts

to capacity utilisation in the expansion period and PMI and federal budget in the

contraction period. The price change at the seventh scale positively reacts to PPI

and manufacturers’ new orders in the expansion period, nonfarm payrolls, capacity

utilisation, the trade balance, consumer confidence, durable goods orders, and con-

sumer credit in the contraction period, and federal budget in both economic periods.

It negatively reacts to personal income in the expansion period and IP and the lead-

ing index in the contraction period. The price change at the eighth scale positively

reacts to new single-family home sales in the contraction period, and it negatively

reacts to CPI, personal income, durable goods orders, and consumer credit in the

expansion period and trade balance and federal budget in the contraction period.

The price change at the ninth scale positively reacts to PPI and negatively reacts

to PMI in the contraction period; and the price change at the tenth scale negatively

reacts to consumer confidence in the contraction period.

In sum, more news announcements cause the subsequent adjustments of the stock

market when examining different stages of the economy. The eventual impact of

news announcements on the stock market is quite stable conditional on the business

cycle. Furthermore, the signs of the response coefficients on the same announce-

ment surprise vary over wavelet-scale price changes by different time intervals. This

finding is attributed to the market participants’ subsequent adjustments to news an-

nouncements. Only some announcements significantly affect the stock price based

on the static analysis. In comparison, all of the news announcements found by the

wavelet analysis impose an eventual impact on the stock market over different time

periods, regardless of the size of the impact. The stock market significantly reacts

to more announcements through price changes at smaller time scales and reacts to

fewer announcements through price changes at bigger time scales.

Kimmel (2004), and Oberlechner and Hocking (2004) find that market partici-

pants are concerned about rumours in financial markets. The financial press re-
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port these rumours, including the Wall Street Journal ’s “Heard on the Street” and

“Abreast of the Market” columns, Business Week ’s “Inside Wall Street” column,

and SmartMoney ’s web site.60 This reporting indicates the importance of rumours

and implies that rumours can sometimes affect financial markets as much as sched-

uled news announcements. Thus, we believe that all reliable news announcements

can have a significant impact on the market unless market participants perfectly

expect them. This belief contradicts the results of previous papers, which claim

that the market responds to only some announcements. As mentioned earlier, pre-

vious papers examine the market’s response to news announcements based on static

changes in prices, which ignores the impact of announcements on the price changes

by different time scales, denoting that price change information occurs in different

time intervals.

Regarding the size of the eventual impact of news announcements on stock prices,

the most important announcements during the entire sample period, the expansion

period, and the contraction period are shown as follows, respectively: consumer

confidence, PPI, and nonfarm payrolls at the first scale; PPI, new single-family

home sales, and nonfarm payrolls at the second scale; capacity utilisation, PPI, and

capacity utilisation at the third scale; IP, personal consumption, and federal budget

at the fourth scale; civilian unemployment, personal consumption, and new single-

family home sales at the fifth scale; capacity utilisation, capacity utilisation, and

new single-family home sales at the sixth scale; IP, personal income, and consumer

credit at the seventh scale; and personal income, personal income, and new single-

family home sales at the eighth scale. In the entire sample period and the contraction

period, PPI has a larger eventual impact on the stock price change at the ninth scale,

and consumer confidence is the only announcement that still significantly affects the

stock price change at the tenth scale.

It is noted that the magnitudes of the response coefficients are considerably re-

duced over the larger time scales. In particular, the magnitudes for the price change

at the sixth scale and the larger scales are smaller than 10−6, whereas almost all

magnitudes for the price change at the smaller scales are notably larger than 10−6.

These findings imply that the eventual impact of news announcements is very small

over longer than an hour after the announcements because the sixth scale indicates

a time interval for the data sequence of approximately an hour. Consequently, this

finding provides evidence of why price volatility remains considerably higher than

normal over approximately an hour but less than a day.

According to the results of the wavelet analysis over the entire sample period,

60SmartMoney ’s content was merged into MarketWatch in 2013.
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the expansion period and the contraction period, most announcements that im-

pose a significant eventual impact on the stock market are released at 8:30 or 9:15.

These announcements belong to the 8:30 & 9:15 announcements category. This re-

sult is consistent with the findings in Tables [D.5], [D.6], and [D.7] showing that

the increases in price volatility persist over approximately an hour for 8:30 & 9:15

announcements, whereas they persist over a shorter time for other announcements.

5.5 Conclusion

This paper examines the impact of monthly news announcements on the price, trad-

ing volume, and price volatility of S&P 500 index futures. The market participants’

responses to scheduled news announcements are viewed as information processing

in financial markets. In accordance with the participants’ initial analyses, they im-

mediately react when a news announcement is released. Then, market participants

adjust their investing decisions by observing the market’s subsequent performance.

Accordingly, the way information spreads in the market is understood by examining

market participants’ responses to news announcements in two distinct stages.

In sum, the effect of news announcements includes immediate and eventual ef-

fects, which are identified by price volatility and trading volume by one-minute and

five-minute intervals, respectively. The immediate effect is a sharp and nearly in-

stantaneous price change along with a rise in trading volume, and the eventual effect

causes a persistent increase in price volatility and trading volume. Furthermore, the

static analysis indicates which announcements immediately affect the stock price,

whereas the wavelet analysis shows which announcements eventually affect the stock

price. The combination of these results provides us with the time-profile for each

type of news announcement’s impact on the stock price and demonstrates that the

impact is short lived to within a day. Although many announcements do not have

an immediate impact on stock price, all announcements impose an eventual impact

on stock price over different time periods.

It is important to note that price is more volatile and trading volume is lower

over contraction period in comparison with expansion period on both announcement

days and nonannouncement days, as shown in Figures [D.5A], [D.5B], [D.6A], and

[D.6B], because market participants are more susceptible and less active in the

contraction period. This result explains why the magnitudes of response coefficients

in the contraction period are always greater than those in the expansion period. On

the one hand, market participants react to news announcements more moderately

during the contraction period. They are news insensitive and change stock prices
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by a smaller scale through a higher number of trading transactions. They then

make smaller subsequent adjustments to stock prices along with a lower number of

trading transactions across a shorter time to reconcile their different views on news

announcements. On the other hand, market participants are news sensitive in the

expansion period and change stock prices by a larger scale through a lower number

of trading transactions. They then make larger subsequent adjustments of stock

prices accompanied by a higher number of trading transactions across a longer time

to reconcile their different views of news announcements.

Consequently, news announcements create larger immediate price changes per in-

terval in the expansion period and more immediate price changes per interval in the

contraction period from the old equilibrium to the approximate new equilibrium. It

takes smaller subsequent adjustments of stock prices along with a lower number of

trading transactions across a shorter time in the contraction period for the informa-

tion contained in news announcements to be incorporated fully in stock prices. This

finding implies a more efficient market in the contraction period and shows that the

market participants’ behaviour is conditional on the economic state. The market’s

response to news announcements varies over different stages of the business cycle,

although the signs of the response coefficients are quite consistent which implies no

difference of changes in price direction caused by news announcements in terms of

upswings and downswings in the economy. The combination of the results from the

examination of the two different stages of the business cycle shows that the market

significantly reacts to more announcements in comparison with the results from the

entire sample period because some news announcements impose a significant impact

only in a particular type of economic period.

Because the arrival of scheduled news announcements brings high uncertainty

into the market, market participants generally withdraw from the market prior to

announcements to avoid the high risk. Price volatility and trading volume thus

significantly decline prior to announcements. The “calm before the storm” effect

arises 2 or 3 minutes before announcements. The financial press usually claims that

this effect is observed over the days prior to the announcements, as supported by

Jones et al. (1998). However, this finding is questioned because the effect of new

announcements on financial markets does not last over a day, a result that has

been found by a number of previous papers and this paper. Accordingly, we believe

that the “calm before the storm” effect is only observed some minutes prior to the

announcements, as found in this paper.
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Chapter 6

Conclusion

The previous chapters have introduced wavelet theory in detail and have presented

three new applications for wavelets in the economic and financial fields. In the

second chapter, wavelet theory, including the discrete wavelet transform (DWT),

multiresolution analysis (MRA), orthogonal decomposition and reconstruction of

a time series by wavelets, is discussed. A thorough survey of the economic and

financial applications of wavelets is presented here as well.

In the third chapter, the wavelet filter is applied in a time series to extract business

cycles or trend.61 As a symmetric filter, the wavelet filter does not cause the phase

effect; thus, there are no time differences between the filtered data and the original

data. Because the base functions of the wavelet filter are localised in time and in

frequency, which implies that it provides a good resolution in the time domain, the

wavelet filter is useful for capturing the changing volatility of business cycles. The

wavelet filter’s performance is compared with the performance of four traditionally

used filters. Regarding the orthogonal property of the wavelet filter, its extracted

business cycles and trend are linearly independent, which is often a promising result.

Note that the cut-off frequencies are required to be dyadic for the wavelet filter. In

addition, we should be cautious in addressing a so-called end-sample problem when

detrending a finite time series. If an appropriate approach is not used to resolve

this problem, then all of the processed values would be affected. To detrend a data

sequence at the beginning or at the end as well as in the middle, we should supply

pre-sample and post-sample values for the symmetric filter, which can be either finite

or infinite. A so-called transient effect is generated by choosing inappropriate values

for the forward or backward pass. There should be no distinguishable disjunction

where the beginning and end of the sample are joined. Otherwise, the distortion

problem arises. In the third chapter, we interpolate a piece of pseudo-data at that

61In this chapter, the wavelet filter is a general notion that describes wavelets.
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location to smooth the transition between the end and the beginning for the wavelet

filter. These data are estimated by backcasting and forecasting the residuals, which

are results in removing the polynomial trend from a data sequence.

The fourth chapter studies the presence of contagion among major world mar-

kets based on wavelets, providing new insights regarding short-run relationships

among markets. A bivariate VAR-BEKK(1, 1, 1) model and a Granger-causality

test are applied to the results of wavelets for 27 representative global markets’ daily

stock-return data series from 1996.1 to 1997.12 to generate short-run pair-wise con-

temporaneous correlations and lead-lag relationships, respectively, both of which are

involved in short-run relationships. This chapter extends the contagion literature

by proposing a more precise definition of contagion and by measuring short-run

relationships to distinguish contagion from interdependence.

The fifth chapter uses one-minute and five-minute data to examine the immediate

and eventual effects, respectively, of monthly news announcements on the price,

trading volume, and price volatility of S&P 500 index futures over various business

cycles. Correspondingly, static and wavelet analyses are used to investigate which

announcements immediately affect the stock price and which eventually affect the

stock price, respectively. This study reveals how the U.S. stock market responds to

scheduled news announcements and how the behaviours of market participants vary

over the business cycle.

The last three chapters present promising results. In terms of the Monte Carlo

simulation, the third chapter indicates that the Baxter-King bandpass filter, the

wavelet filter and the digital butterworth filter are dominant in extracting business

cycles from annual data, quarterly data and monthly data, respectively. Moreover,

from the perspective of estimating a trend, the Baxter-King bandpass filter outper-

forms the other filters in annual and quarterly data, and the digital butterworth

filter generates the best trend from a monthly data sequence. However, the Baxter-

King bandpass filter and the digital butterworth filter are not appropriate for the

current analysis because the former discards the first and last sample values to avoid

a so-called distortion problem and because the latter results in wide deviations at

the end of the estimated data sequence. However, this issue does not arise with the

wavelet filter, which makes this method more appealing to economists.

Moreover, the base functions of the wavelet filter are localised in time and fre-

quency, and can be stretched and translated with a flexible resolution to capture

features that are local in both time and frequency. By contrast, the sine and cosine

functions that are the base functions of the Fourier transform are localised only in

frequency. Accordingly, compared with the other four filters estimated based on the
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Fourier transform, the wavelet filter provides a better resolution in the time domain

that is more useful for capturing the changing volatility of business cycles. In ad-

dition, the most attractive property of the wavelet filter is that its extracted trend

and business cycles are linearly interdependent, which facilitates the investigation

of certain issues.

The empirical findings of the fourth chapter illustrate that there is no contagion

but only interdependence in the majority of markets, especially for markets in the

same region as the shock-hit market. Consequently, the regional view of contagion is

not supported. Shocks increase the visibility of the normal transmission mechanism

that always exists during tranquil periods. Contagion is merely an illusion of inter-

dependence. This study thus distinguishes between contagion and interdependence,

which are believed to be identical in many works (Fratzscher (2003)).

The fifth chapter shows that the effects of news announcements on the stock

market comprise both immediate and eventual effects, which are identified based

on price volatility and trading volume using one-minute and five-minute intervals,

respectively. The immediate effect generates a sharp and nearly instantaneous price

change along with a rise in trading volume, and the eventual effect causes a persis-

tent increase in price volatility and trading volume within approximately one hour.

The static analysis indicates that only 6 of 17 announcements have a significant im-

mediate effect, whereas the wavelet analysis shows that all announcements have an

eventual effect over different time periods. The combination of the results of both

analyses provides us with a time profile for the effect of each type of news announce-

ment on stock prices and shows that the effect is significant within approximately

one hour but dissipates after a day. The empirical findings also demonstrate that

price volatility and trading volume significantly decline prior to announcements.

The “calm before the storm” effect arises 2 or 3 minutes before announcements are

released.

Furthermore, the market’s response to news announcements varies over different

stages of the business cycle. News announcements create larger immediate price

changes per interval during the expansion period and more immediate price changes

per interval during the contraction period from the old equilibrium to the approx-

imate new equilibrium. During the contraction period, smaller subsequent adjust-

ments of stock prices and fewer trading transactions across a shorter time period

are needed for the information contained in news announcements to be fully incor-

porated into stock prices.

In sum, this thesis further extends the application of wavelets to the economics

and finance fields. The analyses based on wavelets provide new insights into the
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study of three interesting issues and show promising results. The ability to work

with non-stationary data and to study characteristics, relationships or structures

in the time-frequency space makes wavelets a useful tool for exploring economic

and financial problems from different perspectives. Wavelets thus have significant

potential for empirical economic and financial research.

Although wavelets have been used widely in economics and finance over the last

two decades, four categories of their applications summarised by Ramsey (2002)

could still be explored further:

1. Exploratory analysis - time scale versus frequency. Many time-domain econo-

metric methodologies are presented for time-varying characteristics of data. How-

ever, there is no frequency-domain methodology for frequency-varying characteris-

tics of data. For example, an event causes structural breaks or jumps in frequency

components of a time series. Wavelets enable us to detect them.

2. Density estimation and local inhomogeneity. As Lee and Hong (2001), Hong

and Kao (2004), and Duchesne (2006a,b) show that wavelet estimators are superior

to kernel estimators whenever there are local inhomogeneity, I speculate that many

statistical tests could be re-designed using wavelets to replace kernel functions for

data that spatial inhomogeneities are embodied in.

3. Time-scale decomposition. It is estimated on a recognition that certain eco-

nomic issues could be addressed more easily by study relationships between economic

and/or financial variables at the disaggregate (scale) level rather than at an aggre-

gate level. Distinguishing financial contagion from interdependence in the fourth

chapter is based on this idea. Regarding the complexity of relationships between

economic and/or financial variables, wavelets have a promising future in this kind

of application.

4. Forecasting by scale. The idea that is decomposing a time series into different

time-scale components and then adopting corresponding methodologies to forecast

them has already been realised. The results show that wavelets enable to enhance

the forecasting. This method is especially useful for data within local inhomogeneity.

Moreover, we can use this method to forecast the permanent components of a time

series that is contaminated by local noises. For instance, an earthquake temporarily

affects a year’s GDP data. Wavelets enable to improve the forecast of economic

growth trend by removing this effect.

Besides these four categories of economic and financial applications of wavelets,

another important application of wavelets is related to wavelet coefficients. Given

that wavelets are localised in time and scale (frequency), wavelet coefficients are

accordingly concentrated in time and scale. If wavelet coefficients are independent

160



(simulation studies by Whitcher (1998) and Whitcher et al. (2000) demonstrate that

the decorrelation is good in terms of the test statistic), then the wavelet variance

constructed by them will be time independent. This property of wavelet variance

is appealing to economics and finance scholars because many econometric models

implicitly assume time-independent variance. Wavelets have another advantage in

that they provide a zero mean for wavelet coefficients. The zero mean avoids the

issue of the bias properties of sample variance, which occurs because the mean is

rarely known a priori when estimating the sample variance. In sum, it is reasonable

to use wavelet coefficients to construct wavelet variance on a scale-by-scale basis

to study the scaling properties or relationships between economic and/or financial

variables.

The applications of wavelets in economics and finance introduced above are based

on discrete wavelet transform (DWT). In recent years, the economics and financial

applications of continuous wavelet transform (CWT) are gradually developed. The

CWT avoids one particular problem: in most of the literature from the frequency

domain, the cut-off of the frequency band is arbitrary for the analysis. The CWT

provides a continuous assessment of relationships or structures, as well as other

observations.

Consider the case of spectral analysis, which can identify periodicities in data.

The power spectrum is estimated using the Fourier transform; therefore, spectral

analysis has the same problems as the Fourier transform. The results based on

spectral analysis are misleading when the time series is not stationary. Consequently,

spectral analysis is unable to detect transient and irregular cycles and structural

breaks in the periodicity of those cycles. Fortunately, wavelet spectral analysis can

serve this purpose. Wavelet spectral analysis is analogous to spectral analysis but

uses the CWT rather than the Fourier transform. Because wavelets yield frequency

and time information simultaneously, the wavelet power spectrum varies over time

and across frequencies. Wavelet spectral analysis measures the variance distribution

of a time series in the time-frequency space. Changes in periodicity across time may

be recorded in the wavelet power spectrum; thus, we can easily capture irregular

cycles and identify time periods of different predominant cycles in the time series.

The tools within the CWT used by economists include not only the wavelet power

spectrum but also cross-wavelet power, cross-wavelet coherency, the wavelet phase

and the wavelet phase-difference. These tools have analogous concepts in Fourier

analysis but are based on the CWT rather than the Fourier transform. These

tools within wavelet analysis enable us to study the time-frequency dependencies

between two time series, which are considered to be important features of economic
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and financial data.

In conclusion, the potential applications of wavelets in economics and finance

are waiting to be explored further. Wavelets lead new insights into economic and

financial phenomena.
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Appendix A

to Chapter 2
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A.1 Sampling Theorem

The sampling theorem establishes a link between a continuous signal and a discrete

signal. Under the sampling theorem, without any loss of information, a continuous

time signal can be represented by a sequence of values sampled at regular intervals

of T time units. However, before formally introducing the sampling theorem, we

need to know the impulse function, the train of the impulse function, and the Dirac

Delta function.

The unit impulse sequence, also known as the Delta sequence, is the fundamental

model of discrete time and a simple signal filter, and it is described as follows:

δ(t) =

{
1 t = 0

0 otherwise
. (A.1)

If we delay the sample time by k units, then it becomes

δ(t− k) =

{
1 t = k

0 otherwise
. (A.2)

Moreover, the train of the impulse function is derived from the unit impulse sequence

and is as follows:

g(t) =
∞∑

j=−∞

δ(t− jT ), (A.3)

which is both periodic and discrete. It means that the sum of the impulse disperses

along the time axis at intervals of T units of time.

This unit impulse is discrete time, and accordingly, the Dirac Delta function (δ(t))

is the continuous time version of it, which is expressed by

δ(t) = 0 (for all t 6= 0) and

∫ ∞
−∞

δ(t) dt = 1. (A.4)

These two properties imply that δ(t) must be infinite at t = 0.62 If we delay the

sample time by τ units, then the expression becomes the following:

δ(t− τ) = 0 (for all t 6= τ) and

∫ ∞
−∞

δ(t− τ) dt = 1. (A.5)

Clearly,
∫∞
−∞ f(t)δ(t − τ) dt = f(τ), where f(t) is an integrable function. This

equation illustrates the sifting property of Dirac Delta, which means that the value

f(τ) is selected or sifted out from the continuous time signal f(t).

62Because
∫∞
−∞ δ(t) dt = δ(0) · 0 = 1, δ(0) =∞.
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The Fourier transform of the Dirac Delta function δ(t− τ) is the following:

ε(ω) =

∫ ∞
−∞

δ(t− τ)e−iωt dt = e−iωτ , (A.6)

where ω is not the fundamental frequency. If τ = 0, then ε(ω) = 1. Thus, the

Fourier transform of the impulse function, which is localised in time, disperses over

the entire line.

Suppose that a function f(t) is the convolution of the unit impulse δ(t) and a

discrete time sequence y(t). Because the transform of δ(t − τ) is exp(−iωt), the

signal f(t) and its Fourier transform φ(ω) are expressed, respectively, as follows:

f(t) =
∞∑

τ=−∞

δ(t− τ)y(τ),

φ(ω) =
∞∑

t=−∞

y(t)e−iωt.

(A.7)

The approach to estimate the Fourier transform of f(t) is the discrete temporal

sequence y(t) associated with the Fourier transform of the unit impulse δ(t − τ),

which implies that we have managed to subsume the discrete sequence case under

Fourier integral theory.63

Here, the impulse functions introduced above are in the time domain, and the

corresponding frequency domain impulse functions are quite similar. From a math-

ematical perspective, these functions are indistinguishable. A frequency domain

impulse at ω = ω0 with an amplitude 2π is expressed by ε(ω) = 2πδ(ω − ω0); thus,

its inverse Fourier transform is the following:

y(t) =
1

2π

∫ ∞
−∞

2πδ(ω − ω0)eiωt dt = eiω0t. (A.8)

This expression is the continuous time version of y(t). Suppose that there is a sum

of the discrete-frequency impulse δ(ω − jω0) that is displaced along the frequency

axis at intervals of ω0 units of frequency and there is its inverse Fourier transform,

63The Fourier integral is applied to continuous time functions whose Fourier transform in
frequency is continuous as well; Fourier series, which will be mentioned subsequently, are ap-
propriate for continuous time functions with a discrete Fourier transform. It is straightfor-
ward to find the difference between these two from the following equations: Fourier integral:
y(t) = 1

2π

∫∞
−∞ ε(ω)eiωtdω, and its Fourier transform is ε(ω) =

∫∞
−∞ y(t)e−iωt dt; Fourier series:

y(t) =

∞∑
j=−∞

εje
iωjt, and its Fourier transform is εj = 1

T

∫ T
0
y(t)e−iωjt dt.
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they are expressed as follows:

ε(ω) =
∞∑

j=−∞

εj2πδ(ω − jω0),

y(t) =
∞∑

j=−∞

εje
iω0jt =

∞∑
j=−∞

εje
iωjt.

(A.9)

Equations (A.9) are in exactly the same form of Fourier series representation of

a continuous signal. In effect, we successively evaluate the case of the continuous

function under the theory of the Fourier integral. It is notable that the relationship

between the Fourier integral and Fourier series can be evaluated using the sampling

theorem.

Because of the periodic nature of the train of the impulse function g(t), the func-

tion is extended to a Fourier series expansion:

g(t) =
∞∑

j=−∞

γje
iωjt. (A.10)

The coefficients of this expansion, γj, can be inferred by integrating over merely one

cycle.

γj =
1

T0

∫ T0

0

g(t)e−iωjt dt =
1

T0

∫ T0

0

δ(t)e−iωjt dt =
1

T0

e−iωj0 =
1

T0

. (A.11)

Thus, Equation (A.10) becomes the following:

g(t) =
1

T0

∞∑
j=−∞

eiωjt. (A.12)

Because the inverse Fourier transform of the frequency domain impulse 2πδ(ω−jω0)

is exp(iωjt), the transform of g(t) is as follows:

γ(ω) =
1

T0

∞∑
j=−∞

2πδ(ω − jω0) = ω0

∞∑
j=−∞

δ(ω − jω0), (A.13)

where ω0 = 2π/T0 is the fundamental frequency. This implies a discrete periodic

train of the impulse function g(t) in the time domain corresponding to the aperiodic

train of the impulse function γ(ω) in the frequency domain.

At this point, we have sufficient materials and information to demonstrate the

sampling theorem. As stated previously , the sampling theorem establishes the link

between the continuous function and the discrete function. With the assistance of
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the train of the impulse function g(t), we obtain the following:

ys(t) = y(t)g(t) =
∞∑

j=−∞

y(jT0)δ(t− jT0), (A.14)

where y(t) is the continuous function in the time domain, and ys(t) is the sampled

discrete time function.

Observing the last term of Equation (A.14), the Fourier transform εs(ω) of ys(t)

is the modulation of ε(ω) and γ(ω), which are the Fourier transforms of y(t) and

g(t), respectively. Thus,

εs(ω) = γ(ω) ∗ ε(ω) =
1

2π

∫ ∞
−∞

γ(λ)ε(ω − λ) dλ. (A.15)

Using Equation (A.13) to replace γ(λ), we obtain the following:

εs(ω) =
1

2π

∫ ∞
−∞

ω0

∞∑
j=−∞

δ(λ− jω0)ε(ω − λ) dλ

=
1

T0

∞∑
j=−∞

∫ ∞
−∞

ε(ω − λ)δ(λ− jω0) dλ

=
1

T0

∞∑
j=−∞

ε(ω − jω0). (A.16)

An alternative approach to obtain the Fourier transform of ys(t) is directly inferred

from the definition. We use Equation (A.12) to substitute g(t) and obtain the Fourier

transform of ys(t):

εs(ω) =

∫ ∞
−∞

ys(t)e
−iωt dt

=

∫ ∞
−∞

[y(t)
1

T0

∞∑
j=−∞

eiωjt]e−iωt dt

=
1

T0

∫ ∞
−∞

∞∑
j=−∞

y(t)e−it(ω−ωj) dt

=
1

T0

∞∑
j=−∞

ε(ω − ωj)

=
1

T0

∞∑
j=−∞

ε(ω − jω0), (A.17)

where ωj = 2πj/T0, ω0 = 2π/T0, and ωj = jω0. This result indicates that the

Fourier transform of the sampled function is a periodic function consisting of super-
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imposed copies of the transform of the continuous time signal. That is, sampling

in the time domain at intervals of T0 units replicates the spectrum of the original

signal successively through the frequency range (−∞,∞) at intervals of ω0 radians.

Caution must be exercised regarding the problem of aliasing. If the original signal

y(t) has a frequency band [0, ωc], then the sampled frequency ω0 must be larger than

2ωc to avoid this problem.

A.2 Downsampling Doubles Frequency

For a sequence X(t), the output of downsampling X(t) is X(2t), which can be

expressed by the following:

X(2t) =
1

2π

∫ π

−π
ε(ω)eiω·2t dω

=
1

4π

∫ 2π

−2π

ε(
λ

2
)eiλt dλ

=
1

4π

∫ −π
−2π

ε(
λ

2
)eiλt dλ+

1

4π

∫ 2π

π

ε(
λ

2
)eiλt dλ+

1

4π

∫ π

−π
ε(
λ

2
)eiλt dλ

=
1

4π

∫ π

0

ε(
λ

2
− π)eiλt dλ+

1

4π

∫ 0

−π
ε(
λ

2
+ π)eiλt dλ+

1

4π

∫ π

−π
ε(
λ

2
)eiλt dλ,

(A.18)

where λ = 2ω. Because ε(ω) is a function with period 2π, ε(λ/2− π) = ε(λ/2 + π),

and

X(2t) =
1

4π

∫ π

−π
ε(
λ

2
+ π)eiλt dλ+

1

4π

∫ π

−π
ε(
λ

2
)eiλt dλ

=
1

2π

∫ π

−π

ε(λ
2

+ π) + ε(λ
2
)

2
eiλt dλ. (A.19)

It is clearly shown that the frequency (λ) of the downsampled sequence X(2t) is

double the original sequence X(t), and the Fourier coefficient is [ε(λ/2) + ε(λ/2 +

π)]/2.

A.3 Upsampling Halves Frequency

For a sequenceX(t), its upsampled sequence is v(t), which implies that v(2t) = X(t),

and v(2t+ 1) = 0. The Fourier transform of v(t) is v(ω), which can be represented
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by the following:

v(ω) =
∑

t
v(t)e−iωt

=
∑

t
v(2t)e−iω·2t

=
∑

t
X(t)e−iω·2t

= ε(2ω). (A.20)

This result indicates that the frequency of the upsampled sequence v(t) is half of

the original time series X(t).

A.4 Shannon (Down-) Sampling Theorem

First, a special case is illustrated in which the output (↓ 2)X is an impulse δ =

(· · · , 0, 1, 0, · · · ).64 The question is how to obtain X from δ. In the band-limited

signal (|ω| < π/2), the frequency response of input X is

ε(ω) =

{
2 0 6 |ω| < π

2

0 π
2
6 |ω| < π

. (A.21)

Because downsampling doubles every frequency, (↓ 2)X has a full band of fre-

quencies ([0, π)) in equal amounts.65 The inverse Fourier transform is the following:

X(t) =
1

2π

∫ π

−π
ε(ω)eiωt dω =

1

2π

∫ π
2

−π
2

2eiωt dω =
2

πt
sin

πt

2
. (A.22)

Therefore, the input X before downsampling has been recovered as a sinc function:

Xsinc(t) = sin(πt/2)/(πt/2), which implies that

X(t) =

{
0 t 6= 0

1 otherwise
. (A.23)

In the Shannon Sampling Theorem, the band-limited frequencies are restricted

because downsampling doubles every frequency. Therefore, a signal with full band

frequencies is not appropriate. Otherwise, in this case, X = δ would also be a

solution.

Generally, any discrete time sequence (↓ 2)X can be regarded as a number of

64The precise definition of the discrete time impulse function is δ(t) = 1 (only t = 0), otherwise
δ(t) = 0.

65The proof is provided in the appendix.
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discrete values combined with an impulse and can be written as follows:

(↓ 2)X = (X(0), 0, X(2), 0, · · · ) = X(0)δ +X(2)δ2 + · · · . 66 (A.24)

Because the input to yield (↓ 2)X = δ is a sinc function, X can be expressed by

the following:

X(t) = X(0)Xsinc(t) +X(2)Xsinc(t− 2) + · · · (A.25)

=
∞∑
k=0

X(2k)
sin((t− 2k)π/2)

(t− 2k)π/2
,

for event t, all terms are zero, except t = 2k, which yields X(t). When 2k is replaced

by m, the output of (↓ 2)X is the following:

X(t) =
∞∑
m=0

X(m)
sin((t−m)π/2)

(t−m)π/2
. (A.26)

It is more generally applied to all cases. This ordinary Shannon Sampling Theo-

rem indicates that the original time series can be recovered using the downsampled

sequence.

A.5 A Linear Filter and Its Properties

A linear filter modifies a time series by changing the amplitudes of its components

in a specific frequency interval and advancing or delaying them in time. The gain

and phase functions of the filter yield these effects, respectively. For example, the

transfer function of a linear filter H(L) =
∑

j HjL
j could be derived by replacing L

with e−iω:

H(ω) =
∞∑

j=−∞

Hje
−iωj, (A.27)

whose polar representation is

H(ω) = |H(ω)|eiθ(ω). (A.28)

According to Euler’s formula eiω = cosω + i sinω, H(ω) is also identical to

H(ω) = Hre(ω) + i ·H im(ω), (A.29)

66δn delays the impulse n units. Fox example, δ2 = (· · · , 0, 0, 0, 0, 1, · · · ).
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where Hre(ω) is a cosine function with a variable ω that is the real part of H(ω),

whereas H im(ω) is a sine function with a variable ω that is the imaginary part of

H(ω). |H(ω)|, the modulus of H(ω) that is identical to
√

[Hre(ω)]2 + [H im(ω)]2, is

called a gain function; θ(ω) is called a phase function, which is equal to

arctan{H im(ω)/Hre(ω)}. The gain function alters the amplitudes of the original

time series, and the phase function imposes phase shifts on the filtered data, which

implies time differences between the filtered data and the original data.

In economics, the temporal property of a time series is so important that it should

be retained. Thus, a zero phase filter, which is also referred to as a symmetric filter,

is preferred. The zero phase filter denotes the symmetry in the filter’s weights:

Hj = H−j. Accordingly, the frequency response of the symmetric filter H(L) for

frequency −ω is as follows:

H(−ω) =
∑

j
Hje

iωj

=
∑

j
H−je

−iω(−j)

=
∑

k
Hke

−iωk (for k = −j)

= H(ω). (A.30)

Combining this result with Equation (A.29), we obtain Hre(ω) = Hre(−ω) and

H im(ω) = H im(−ω). H im(ω) is a sine function that belongs to the odd functions,

which implies thatH im(ω) = 0. Consequently, the value of this filter’s phase function

arctan{H im(ω)/Hre(ω)} is identical to zero, which demonstrates why the symmetric

filter is associated with a zero phase. When e−iω is replaced by z in Equation (A.30),

the symmetric property of the filter is expressed in terms of the z-transform function:

H(z) = H(z−1).

A.6 The Method of Daubechies

When designing the filters for a wavelet analysis, the first concern is to ensure the

sequential orthogonality of a lowpass filter G(z) and its complementary highpass

filter H(z). The focus is typically on the lowpass filter G(z). It is natural to

obtain the corresponding highpass filter H(z) via the equation H(z) = G(−z).

Thus, the lateral orthogonality of G(z) is automatically satisfied. The following
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autocorrelation function is a key part of the sequential orthogonality condition:

P (z) = G(z)G(z−1) =
L−1∑
j=0

pj(z
j + z−j). (A.31)

According to the orthogonality properties of the wavelet and scaling filters, a

coefficient with even power should be equal to zero: p2j = 0, j = ±1, · · · ,±(L/2−1).

The normalisation requirement is p0 = 1. The form of this autocorrelation function

could be adjusted as follows:

P (z) = G(z)G(z−1) = (
1 + z

2
)
L
2W (z)(

1 + z−1

2
)
L
2 . (A.32)

In terms of the Fourier transform, z is replaced by e−iω in P (z):

P (ω) = (
1 + e−iω

2
)
L
2W (ω)(

1 + eiω

2
)
L
2

= (cos2 ω

2
)
L
2W (ω). (A.33)

The functions W (z) and W (−z) with z = e−iω can be expressed as trigonometrical

polynomials:

W (ω) = Q(sin2 ω

2
),

W (ω + π) = Q(cos2 ω

2
).

(A.34)

Setting y = sin2(ω/2), we can rewrite Equation (A.33) as follows:

P (ω) = (1− y)
L
2Q(y),

P (ω + π) = y
L
2Q(1− y).

(A.35)

According to the sequential orthogonality condition P (z) +P (−z) = 2, we obtain

the following:

P (ω) + P (ω + π) = (1− y)
L
2Q(y) + y

L
2Q(1− y) = 2. (A.36)

Finally, the function Q(y) is found to be identical to the following:

Q(y) = 2

L
2
−1∑

k=0

(
L
2

+ k − 1

k

)
yk, (A.37)
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such that P (ω) is the following:

P (ω) = G(ω)G(ω + π) = 2(cos2 ω

2
)
L
2

L
2
−1∑

k=0

(
L
2

+ k − 1

k

)
yk(sin2 ω

2
)k

= 2(cos
ω

2
)L

L
2
−1∑

k=0

(
L
2

+ k − 1

k

)
yk(sin

ω

2
)2k. (A.38)

Actually, G(ω)G(ω + π) is the squared gain function of G(ω) and denotes that

the squared gain function of Daubechies wavelet filters is the following:

P (ω) = 2(cos
ω

2
)L

L
2
−1∑

k=0

(
L
2

+ k − 1

k

)
yk(sin

ω

2
)2k. (A.39)

The squared gain function of the complementary Daubechies wavelet filter H(ω) is

the following:

P (ω + π) = 2(sin
ω

2
)L

L
2
−1∑

k=0

(
L
2

+ k − 1

k

)
yk(cos

ω

2
)2k = D

L
2 (ω)AL(ω), (A.40)

where

D(ω) = 4 sin2(
ω

2
),

AL(ω) =
1

2L−1

L
2
−1∑

k=0

(
L
2

+ k − 1

k

)
yk(cos

ω

2
)2k,

(A.41)

D(ω) is the squared gain function of a first-order backward difference operator {a0 =

1, a1 = −1}. Hence, the Daubechies wavelet filter is regarded as a combination of

two filters: the first is an L/2th order backward difference filter, and the second is

a weighted average filter that is essentially a lowpass filter. P (ω) converges to the

squared gain function of an ideal lowpass filter as L increases.

The sequence of the scaling filter {gl} can be estimated by factorising its squared

gain function P (ω), which is known as spectral factorisation. Generally, there are

two choices: extremal phase and least asymmetric. The difference in these sequences

of scaling filters {gl} is only in their phase functions; their gain functions are the

same. Percival and Walden (2000) recommend the LA family of scaling filters, with

L = 8 in practice, based on the least asymmetric choice, which is denoted by LA(8)

or Sym(8). Figure [A.1] shows the Daubechies least asymmetric wavelet filter and

its corresponding scaling filter with width 8. In addition, the corresponding syn-
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thesis filters are plotted. Furthermore, the squared gain function of the Daubechies

wavelet filter from the first level to the fourth level and the squared gain function

of Daubechies scaling filter at the fourth level are listed in Figure [A.2]. The dotted

lines are associated with the squared gain function of an ideal filter in the specific

frequencies.
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(a) Lowpass analysis filter
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(b) Highpass analysis filter
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(c) Lowpass synthesis filter
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(d) Highpass synthesis filter

Figure A.1: Impulse response of the analysis and synthesis filters of the LA8
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(a) Level 1 detail: 2-4 period cycles
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(b) Level 2 detail: 4-8 period cycles
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(c) Level 3 detail: 8-16 period cycles
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(d) Level 4 detail: 16-32 period cycles
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(e) Level 4 approximation: 32+ period cy-
cles

Figure A.2: The LA8 wavelet and scaling filters in the frequency domain. Plots
(a) to (d) show the squared gain functions of the first-level to the fourth-level wavelet
filters, and plot (e) illustrates the squared gain function of the fourth-level scaling filter.
The dotted lines exhibit the shape of the squared gain function of an ideal bandpass filter.
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to Chapter 3
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 137.0473 137.5130 137.1473 137.7064

BW 143.9370 140.9702 141.2997 142.2430

CF 144.7403 144.5198 144.8704 145.1514

HP 182.5504 184.8813 182.4425 184.5742

Wavelet 151.8003 151.4446 150.1265 151.7139

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 137.0473 137.5130 137.1473 137.7064

BW 143.4780 140.9702 156.3205 146.2913

CF 145.1738 144.5198 145.3381 145.3690

HP 181.6614 184.8813 181.5958 184.0723

Wavelet 153.1769 151.4446 151.8339 152.4812

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 61.5497 62.3492 61.8735 62.5741

BW 77.9675 84.2701 87.2960 85.0473

CF 61.7270 63.1383 61.9888 63.1717

HP 63.2365 64.5732 63.5692 64.6400

Wavelet 62.8842 64.3365 63.7720 64.5707

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 61.5497 62.3492 61.8735 62.5741

BW 74.1059 84.2701 137.014 101.4226

CF 61.2053 63.1383 61.3718 62.7532

HP 62.1957 64.5732 62.4322 63.9578

Wavelet 62.7987 64.3365 63.6243 64.4101

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 35.1419 35.6295 35.2329 35.8075

BW 22.3592 22.4717 22.5867 22.5849

CF 35.3029 35.9796 35.3333 36.0958

HP 28.4023 28.7733 28.5584 28.8567

Wavelet 30.3554 30.8213 30.7580 31.0149

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 35.1419 35.6295 35.2329 35.8075

BW 22.1608 22.4717 31.6862 25.8047

CF 34.9606 35.9796 34.8492 35.7456

HP 28.0730 28.7733 28.0617 28.5495

Wavelet 30.9117 30.8213 30.0825 30.9121

Table B.1: The filters are adopted to extract the trend from the original
time series
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 172.0446 172.8385 172.3608 173.0487

BW 174.1548 172.8014 172.8837 173.7629

CF 175.5107 175.9319 175.6882 176.3973

HP 220.6110 222.7137 221.3179 222.6406

Wavelet 181.5913 181.5053 180.5388 181.8915

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 172.0446 172.8385 172.3608 173.0487

BW 172.0009 172.8014 186.0572 176.7924

CF 174.9811 175.9319 175.2518 176.1262

HP 219.0572 222.7137 219.7843 221.8141

Wavelet 182.2907 181.5053 181.8747 182.3886

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 58.7263 59.9478 58.7834 60.0909

BW 73.8900 80.6048 83.5477 81.4214

CF 57.5403 59.3390 57.6246 59.3327

HP 71.3867 72.6663 71.4675 72.5733

Wavelet 55.3206 57.1862 55.3235 57.3596

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 58.7263 59.9478 58.7834 60.0909

BW 70.1126 80.6048 134.6369 98.4465

CF 56.8079 59.3390 56.8082 58.7762

HP 70.2407 72.6663 70.2384 71.8527

Wavelet 55.0084 57.1862 54.7001 56.9704

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 32.1790 32.7881 32.2508 33.0897

BW 15.0507 15.3092 15.3405 15.4692

CF 31.5492 32.3288 31.5018 32.5463

HP 30.7232 30.9713 30.7929 31.0590

Wavelet 26.5207 26.8816 26.7734 27.2446

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 32.1790 32.7881 32.2508 33.0897

BW 15.1795 15.3092 27.7699 20.3782

CF 31.1885 32.3288 31.0105 32.1654

HP 30.3973 30.9713 30.3497 30.7815

Wavelet 27.0595 26.8816 25.9653 27.0876

Table B.2: The filters are adopted to extract the business cycles from
the original time series
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 137.2574 137.4294 136.8858 137.6588

BW 144.1984 141.0445 141.0390 142.2901

CF 145.0580 144.6829 144.5499 145.2355

HP 182.8203 184.6227 182.4342 184.5261

Wavelet 151.9620 151.4339 149.8745 151.6917

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 137.2574 137.4294 136.8858 137.6588

BW 143.7667 141.0445 156.1861 146.3863

CF 145.5547 144.6829 145.0676 145.4826

HP 181.9920 184.6227 181.6023 184.0514

Wavelet 153.4505 151.4339 151.5894 152.4961

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 61.5837 62.2570 61.5634 62.4538

BW 77.4126 83.6315 86.6487 84.3767

CF 61.7293 63.0275 61.6984 63.0367

HP 63.2115 64.5090 63.2200 64.5093

Wavelet 62.9568 64.2726 63.3720 64.4633

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 61.5837 62.2570 61.5634 62.4538

BW 73.5383 83.6315 135.8925 100.6015

CF 61.1152 63.0275 61.0391 62.5799

HP 62.0830 64.5090 62.0405 63.7880

Wavelet 62.7462 64.2726 63.1820 64.2502

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 35.0832 35.6501 35.1019 35.7684

BW 22.3269 22.5419 22.5486 22.6025

CF 35.1791 36.0051 35.2063 36.0435

HP 28.3161 28.7999 28.4488 28.8199

Wavelet 30.3455 30.8724 30.6145 31.0021

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 35.0832 35.6501 35.1019 35.7684

BW 22.1407 22.5419 31.6928 25.8354

CF 34.9107 36.0051 34.8311 35.7390

HP 28.0193 28.7999 28.0145 28.5316

Wavelet 30.9118 30.8724 30.0073 30.9129

Table B.3: The filters are adopted to extract the trend from the time
series with the drift that is 10 times smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 172.2843 172.6708 172.1665 172.9661

BW 174.2696 172.5997 172.7659 173.6481

CF 175.6844 175.6595 175.6596 176.2921

HP 220.9830 222.7256 220.7892 222.6051

Wavelet 181.6650 181.4698 180.4374 181.8580

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 172.2843 172.6708 172.1665 172.9661

BW 172.1472 172.5997 185.6069 176.5947

CF 175.2272 175.6595 175.1803 176.0349

HP 219.5042 222.7256 219.2309 221.7919

Wavelet 182.4991 181.4698 181.6511 182.3612

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 58.9606 59.8268 58.8866 60.1172

BW 74.4137 80.7929 83.3303 81.6260

CF 57.7454 59.3253 57.6735 59.3881

HP 71.5727 72.6169 71.5466 72.6206

Wavelet 55.6203 57.2226 55.5310 57.5055

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 58.9606 59.8268 58.8866 60.1172

BW 70.6112 80.7929 134.0183 98.4062

CF 57.0232 59.3253 56.8473 58.8377

HP 70.4623 72.6169 70.3494 71.9205

Wavelet 55.3236 57.2226 54.8656 57.1199

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 32.1183 32.7157 32.1565 32.9934

BW 15.0804 15.3162 15.4018 15.5000

CF 31.3083 32.2513 31.4437 32.4196

HP 30.6353 30.9496 30.7982 31.0223

Wavelet 26.3257 26.8886 26.8281 27.2052

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 32.1183 32.7157 32.1565 32.9934

BW 15.2020 15.3162 28.2342 20.5823

CF 30.9691 32.2513 30.9954 32.0625

HP 30.3007 30.9496 30.3391 30.7385

Wavelet 26.8350 26.8886 26.0041 27.0313

Table B.4: The filters are adopted to extract the business cycles from
the time series with the drift that is 10 times smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 137.3119 137.7453 137.0283 137.8650

BW 144.0514 141.2767 141.1837 142.4068

CF 144.8859 144.8796 144.8075 145.3582

HP 182.9508 185.0896 182.5759 184.8340

Wavelet 151.9075 151.8566 150.0459 151.9350

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 137.3119 137.7453 137.0283 137.8650

BW 143.6172 141.2767 156.0336 146.4035

CF 145.3662 144.8796 145.2578 145.5776

HP 182.0390 185.0896 181.7255 184.3272

Wavelet 153.3369 151.8566 151.6450 152.6857

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 61.7598 62.1322 61.5760 62.4260

BW 77.4196 83.8138 86.7458 84.5168

CF 61.9178 62.9327 61.7563 63.0330

HP 63.4628 64.3639 63.2345 64.4899

Wavelet 63.3121 64.1386 63.3430 64.4566

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 61.7598 62.1322 61.5760 62.4260

BW 73.5364 83.8138 136.5554 100.9493

CF 61.3324 62.9327 61.1209 62.6064

HP 62.3856 64.3639 62.0917 63.8088

Wavelet 63.1015 64.1386 63.2274 64.2865

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 35.2612 35.6483 35.2911 35.8677

BW 22.4256 22.5176 22.5417 22.6144

CF 35.3908 35.9106 35.4313 36.1169

HP 28.4972 28.7435 28.5611 28.8703

Wavelet 30.5824 30.8112 30.8202 31.0882

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 35.2612 35.6483 35.2911 35.8677

BW 22.2115 22.5176 31.8048 25.8870

CF 35.0916 35.9106 35.0201 35.8115

HP 28.1787 28.7435 28.1186 28.5877

Wavelet 31.1025 30.8112 30.1714 30.9974

Table B.5: The filters are adopted to extract the trend from the time
series with the drift that is 10 times larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 172.3708 172.8692 172.3536 173.1453

BW 174.4018 172.7698 172.8189 173.7920

CF 175.8701 175.8462 175.7040 176.4537

HP 221.3197 222.6348 221.6098 222.8586

Wavelet 181.9748 181.6795 180.4695 182.0566

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 172.3708 172.8692 172.3536 173.1453

BW 172.3016 172.7698 186.0944 176.8693

CF 175.3462 175.8462 175.3021 176.1981

HP 219.7517 222.6348 220.1392 222.0538

Wavelet 182.6792 181.6795 181.7797 182.5508

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 58.6801 59.8386 58.8619 60.0425

BW 74.2214 80.5388 83.7282 81.5273

CF 57.5565 59.2335 57.7981 59.3169

HP 71.3174 72.6287 71.4693 72.5417

Wavelet 55.2290 57.0618 55.5354 57.3059

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 58.6801 59.8386 58.8619 60.0425

BW 70.4199 80.5388 135.2085 98.6977

CF 56.8196 59.2335 56.9532 58.7661

HP 70.2727 72.6287 70.2896 71.8541

Wavelet 54.9510 57.0618 54.8516 56.9212

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 32.0690 32.6911 32.1784 32.9904

BW 15.1109 15.3472 15.3353 15.5079

CF 31.3739 32.1556 31.4234 32.3995

HP 30.6651 30.9308 30.7249 31.0099

Wavelet 26.2979 26.8633 26.6403 27.1519

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 32.0690 32.6911 32.1784 32.9904

BW 15.2585 15.3472 27.7527 20.4014

CF 31.0363 32.1556 30.9241 32.0241

HP 30.3549 30.9308 30.2588 30.7276

Wavelet 26.8176 26.8633 25.8196 26.9641

Table B.6: The filters are adopted to extract the business cycles from
the time series with the drift that is 10 times larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 135.0292 135.5601 134.9868 135.6850

BW 139.3108 138.5507 138.2343 139.1045

CF 140.6430 142.1981 140.8088 141.9393

HP 182.6742 184.9812 182.8827 184.7890

Wavelet 144.1490 143.9664 143.0472 144.2859

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 135.0292 135.5601 134.9868 135.6850

BW 138.6323 138.5507 151.5134 142.5804

CF 140.3886 142.1981 140.5413 141.7708

HP 181.6706 184.9812 181.8762 184.2189

Wavelet 145.1097 143.9664 144.4610 144.8785

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 61.6125 62.0767 61.6251 62.3623

BW 77.4868 83.5290 86.7155 84.3363

CF 61.6011 62.7123 61.8316 62.8506

HP 63.2449 64.2985 63.2979 64.4036

Wavelet 62.9906 64.0559 63.4754 64.3628

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 61.6125 62.0767 61.6251 62.3623

BW 73.5400 83.5290 136.6091 100.8577

CF 60.9744 62.7123 61.1610 62.4095

HP 62.0918 64.2985 62.1281 63.6964

Wavelet 62.7147 64.0559 63.3377 64.1668

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 35.0480 35.3723 35.0189 35.5942

BW 21.3506 21.3601 21.3862 21.4915

CF 35.0890 35.6588 35.0509 35.7942

HP 27.9202 28.1908 27.9302 28.2822

Wavelet 29.7295 30.0221 29.8655 30.2414

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 35.0480 35.3723 35.0189 35.5942

BW 21.0476 21.3601 30.8920 24.8470

CF 34.6799 35.6588 34.5766 35.4366

HP 27.5001 28.1908 27.4811 27.9697

Wavelet 30.1738 30.0221 29.3467 30.1594

Table B.7: The filters are adopted to extract the trend from the time
series with the parameter of cycles that is 10 times smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 170.1498 170.9659 170.3334 171.1272

BW 170.1251 170.3184 170.0310 170.8007

CF 171.8992 173.3816 172.0088 173.3000

HP 220.5522 222.5767 221.0939 222.5102

Wavelet 174.8970 174.9555 174.1646 175.4028

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 170.1498 170.9659 170.3334 171.1272

BW 167.8102 170.3184 181.6938 173.3556

CF 170.8140 173.3816 170.9055 172.7089

HP 218.8839 222.5767 219.4442 221.6258

Wavelet 175.2659 174.9555 175.1971 175.7390

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 58.5986 59.7846 58.5775 59.9397

BW 73.4081 80.5057 83.2749 81.1880

CF 57.5490 59.2476 57.4471 59.2472

HP 71.3027 72.6004 71.3153 72.4954

Wavelet 55.2526 57.0462 55.2660 57.2612

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 58.5986 59.7846 58.5775 59.9397

BW 69.5945 80.5057 133.7927 97.9473

CF 56.7021 59.2476 56.7855 58.6974

HP 70.0863 72.6004 70.2327 71.7843

Wavelet 54.8197 57.0462 54.7557 56.8675

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 31.9130 32.5759 31.9766 32.8345

BW 13.3921 13.5037 13.3084 13.7486

CF 31.1028 31.9877 31.1033 32.1542

HP 30.2108 30.4354 30.1819 30.5095

Wavelet 25.6074 25.9388 25.7132 26.3057

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 31.9130 32.5759 31.9766 32.8345

BW 13.3911 13.5037 26.9898 19.1805

CF 30.6502 31.9877 30.6316 31.7484

HP 29.7943 30.4354 29.7528 30.2101

Wavelet 25.9437 25.9388 25.0458 26.1289

Table B.8: The filters are adopted to extract the business cycles from
the time series with the parameter of cycles that is 10 times smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 279.6456 283.2578 279.5625 281.8704

BW 392.6987 315.9696 324.2367 338.8078

CF 372.4385 321.8072 372.3950 348.1383

HP 185.5313 185.4603 185.5501 186.3767

Wavelet 498.6185 504.8087 482.1977 498.0276

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 279.6456 283.2578 279.5625 281.8704

BW 400.3066 315.9696 425.8094 369.3254

CF 399.4302 321.8072 399.5365 363.7631

HP 197.1033 185.4603 197.2038 192.2976

Wavelet 513.6700 504.8087 493.6340 504.4887

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 66.1936 67.3305 66.9415 67.5638

BW 85.0901 84.5249 93.3631 88.2582

CF 69.3506 69.4110 69.4960 70.0968

HP 65.3882 66.4168 65.5996 66.6246

Wavelet 67.4850 67.0310 65.3414 67.4190

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 66.1936 67.3305 66.9415 67.5638

BW 85.0780 84.5249 147.9779 107.9028

CF 72.0463 69.4110 70.4408 70.9829

HP 67.4442 66.4168 64.8557 66.8228

Wavelet 67.4442 66.4168 64.8557 66.8228

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 46.8677 48.9736 48.4184 48.8816

BW 70.5336 74.8394 75.4303 73.9432

CF 53.0430 51.8844 53.1305 53.1685

HP 59.7766 63.3048 63.9742 62.7872

Wavelet 69.6819 76.3871 75.7406 74.7719

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 46.8677 48.9736 48.4184 48.8816

BW 73.5337 74.8394 76.2136 74.9951

CF 59.4665 51.8844 54.0386 55.4182

HP 63.6939 63.3048 62.6308 63.3320

Wavelet 74.8421 76.3871 70.6200 74.3661

Table B.9: The filters are adopted to extract the trend from the time
series with the parameter of cycles that is 10 times larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 298.4975 301.8130 298.3752 300.5918

BW 405.1267 331.1956 339.3107 353.1147

CF 385.6418 336.8982 385.6457 362.1849

HP 222.8766 223.0432 223.1164 223.8261

Wavelet 508.9333 514.7245 492.7829 508.0429

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 298.4975 301.8130 298.3752 300.5918

BW 411.7537 331.1956 437.4374 382.2795

CF 411.3140 336.8982 411.5293 376.9778

HP 231.8124 223.0432 232.1927 228.3635

Wavelet 523.4256 514.7245 503.8822 514.2875

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 62.9652 64.3396 63.5001 64.5981

BW 81.9767 81.5148 90.5741 85.4795

CF 66.0659 66.3451 66.0179 67.0377

HP 73.4926 74.4104 73.6666 74.5490

Wavelet 61.2012 60.9745 58.4151 61.3738

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 62.9652 64.3396 63.5001 64.5981

BW 82.3057 81.5148 147.2714 106.0397

CF 68.8172 66.3451 67.1485 67.9399

HP 75.1476 74.4104 72.8544 74.6438

Wavelet 65.8416 60.9745 57.7555 62.2526

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 42.2790 44.7530 44.1081 44.7043

BW 68.3513 73.3533 74.1235 72.3306

CF 50.6950 49.8026 51.3946 51.1984

HP 60.8928 64.3254 64.9956 63.8215

Wavelet 67.8722 75.2518 74.5326 73.4681

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 42.2790 44.7530 44.1081 44.7043

BW 71.7387 73.3533 72.3196 72.6755

CF 57.3834 49.8026 52.0287 53.4287

HP 64.7053 64.3254 63.6541 64.3447

Wavelet 73.2131 75.2518 69.3132 73.0392

Table B.10: The filters are adopted to extract the business cycles from
the time series with the parameter of cycles that is 10 times larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 124.0619 124.4564 124.1296 124.6764

BW 125.1922 123.3790 123.8339 124.4488

CF 126.8426 126.6347 126.9284 127.3151

HP 178.0898 180.0915 178.7511 180.1579

Wavelet 134.3824 134.2179 133.2739 134.5353

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 124.0619 124.4564 124.1296 124.6764

BW 123.6944 123.3790 138.3874 128.1426

CF 126.9181 126.6347 127.0103 127.3378

HP 176.6740 180.0915 177.3431 179.3993

Wavelet 135.5597 134.2179 134.8513 135.2234

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 60.7745 61.7215 61.1733 61.8915

BW 76.8496 83.2711 86.3307 83.9869

CF 60.7701 62.2909 61.1667 62.2980

HP 62.4532 64.0344 62.8299 63.9961

Wavelet 62.0840 63.4669 62.6937 63.6790

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 60.7745 61.7215 61.1733 61.8915

BW 72.7740 83.2711 136.4358 100.5081

CF 59.9904 62.2909 60.4194 61.7841

HP 61.2625 64.0344 61.6237 63.2505

Wavelet 61.7505 63.4669 62.5045 63.4453

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 35.1938 35.4259 35.1801 35.7059

BW 22.1620 22.3170 22.3787 22.4060

CF 35.2940 35.7604 35.2281 35.9604

HP 28.3576 28.6055 28.4308 28.7288

Wavelet 30.3168 30.6456 30.5941 30.8800

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 35.1938 35.4259 35.1801 35.7059

BW 21.9510 22.3170 31.6428 25.6842

CF 34.9706 35.7604 34.8196 35.6549

HP 28.0405 28.6055 27.9979 28.4520

Wavelet 30.8915 30.6456 29.9775 30.8063

Table B.11: The filters are adopted to extract the trend from the time
series with the parameter of noise variance that is 100 times smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 124.5240 124.8613 124.5290 125.0947

BW 125.5859 123.7418 124.2016 124.8222

CF 127.2372 126.9914 127.2841 127.6829

HP 178.5600 180.5036 179.1466 180.5762

Wavelet 134.7466 134.5506 133.6360 134.8829

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 124.5240 124.8613 124.5290 125.0947

BW 124.0737 123.7418 138.7150 128.4990

CF 127.3059 126.9914 127.3532 127.7009

HP 177.1407 180.5036 177.7318 179.8154

Wavelet 135.9159 134.5506 135.2062 135.5675

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 55.8077 57.0630 56.2712 57.3063

BW 71.4956 78.4223 81.4753 79.2839

CF 54.4755 56.3237 54.9023 56.3865

HP 62.5368 64.1201 62.9258 64.0820

Wavelet 53.0511 54.8806 53.5428 55.1963

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 55.8077 57.0630 56.2712 57.3063

BW 67.5084 78.4223 133.4599 96.6754

CF 53.6169 56.3237 54.0966 55.8105

HP 61.3449 64.1201 61.7161 63.3354

Wavelet 52.6644 54.8806 52.9755 54.8239

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 32.0055 32.3814 31.9850 32.7693

BW 14.8396 15.1133 15.1500 15.2667

CF 31.2687 31.8928 31.1941 32.1834

HP 28.3814 28.6297 28.4541 28.7521

Wavelet 26.0936 26.5194 26.4278 26.8744

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 32.0055 32.3814 31.9850 32.7693

BW 14.9673 15.1133 27.8540 20.3009

CF 30.9154 31.8928 30.7438 31.8305

HP 28.0641 28.6297 28.0205 28.4751

Wavelet 26.6368 26.5194 25.6506 26.7198

Table B.12: The filters are adopted to extract the business cycles from
the time series with the parameter of noise variance that is 100 times
smaller.

188



The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 125.5061 125.8581 125.3886 126.0456

BW 127.1747 125.1818 125.4462 126.2238

CF 128.7573 128.4467 128.5476 129.0807

HP 178.9880 180.5755 178.8115 180.6415

Wavelet 136.3857 136.0350 134.7197 136.2996

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 125.5061 125.8581 125.3886 126.0456

BW 125.7730 125.1818 139.7331 129.8530

CF 128.8975 128.4467 128.6439 129.1223

HP 177.6263 180.5755 177.4115 179.8960

Wavelet 137.5710 136.0350 136.2923 136.9836

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 61.1121 61.8322 61.1774 62.0287

BW 77.4083 83.2394 86.2547 84.0540

CF 61.1342 62.4228 61.2170 62.4600

HP 62.7923 64.1274 62.8267 64.1215

Wavelet 62.3212 63.7789 62.5982 63.8684

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 61.1121 61.8322 61.1774 62.0287

BW 73.2704 83.2394 136.4953 100.6148

CF 60.4057 62.4228 60.4257 61.9539

HP 61.6217 64.1274 61.6238 63.3855

Wavelet 62.0949 63.7789 62.4230 63.6479

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 35.1975 35.5620 35.1176 35.7587

BW 22.2144 22.3868 22.4163 22.4642

CF 35.2564 35.9114 35.2083 36.0232

HP 28.3775 28.7186 28.4418 28.7955

Wavelet 30.3695 30.7596 30.6528 30.9627

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 35.1975 35.5620 35.1176 35.7587

BW 21.9831 22.3868 31.4484 25.6318

CF 34.9313 35.9114 34.7940 35.6979

HP 28.0494 28.7186 27.9937 28.5008

Wavelet 30.9116 30.7596 30.0160 30.8680

Table B.13: The filters are adopted to extract the trend from the time
series with the parameter of noise variance that is 10 times smaller
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 129.7843 130.1249 129.5391 130.3042

BW 130.9133 129.0531 129.2235 130.0639

CF 132.5197 132.2381 132.2258 132.8603

HP 183.3377 184.8577 182.9713 184.8946

Wavelet 140.0117 139.6458 138.3024 139.9214

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 129.7843 130.1249 129.5391 130.3042

BW 129.3146 129.0531 143.2492 133.5573

CF 132.5329 132.2381 132.2179 132.8408

HP 181.9034 184.8577 181.5278 184.1211

Wavelet 141.1093 139.6458 139.8419 140.5743

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 56.4237 57.4050 56.4472 57.6734

BW 72.2784 78.5308 81.5653 79.5105

CF 55.1066 56.6866 55.1618 56.7806

HP 63.6677 64.9974 63.7359 64.9880

Wavelet 53.4692 55.4024 53.5922 55.5695

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 56.4237 57.4050 56.4472 57.6734

BW 68.2263 78.5308 133.7203 96.9458

CF 54.2846 56.6866 54.2932 56.2044

HP 62.4824 64.9974 62.5193 64.2468

Wavelet 53.1837 55.4024 53.0045 55.1919

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 32.0070 32.5420 31.8867 32.8256

BW 14.8964 15.1894 15.1714 15.3282

CF 31.2234 32.0721 31.1556 32.2552

HP 28.6128 28.9449 28.6657 29.0191

Wavelet 26.1818 26.6778 26.4886 26.9854

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 32.0070 32.5420 31.8867 32.8256

BW 14.9955 15.1894 27.6073 20.2140

CF 30.8714 32.0721 30.7040 31.8806

HP 28.2877 28.9449 28.2187 28.7265

Wavelet 26.6791 26.6778 25.6841 26.8032

Table B.14: The filters are adopted to extract the business cycles from
the time series with the parameter of noise variance that is 10 times
smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 221.6521 222.9630 221.2367 223.4942

BW 256.0715 248.7985 246.6210 251.6313

CF 253.3874 255.0373 252.6960 255.5961

HP 220.2442 221.6259 219.6433 222.0490

Wavelet 258.4161 259.3073 255.2111 259.6746

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 221.6521 222.9630 221.2367 223.4942

BW 259.9793 248.7985 266.6231 258.0632

CF 255.5690 255.0373 254.9009 256.6434

HP 222.5999 221.6259 222.0324 223.2136

Wavelet 260.8959 259.3073 257.3441 260.7848

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 65.3430 66.0790 65.2942 66.2764

BW 82.6153 89.4878 90.1867 89.6334

CF 66.9117 68.2038 67.0281 68.2690

HP 66.7466 67.8789 66.7064 67.9616

Wavelet 68.3940 69.3936 68.6512 69.6907

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 65.3430 66.0790 65.2942 66.2764

BW 80.4386 89.4878 140.5897 106.2736

CF 67.7574 68.2038 67.8872 68.5743

HP 66.5564 67.8789 66.5084 67.7211

Wavelet 68.8652 69.3936 69.2173 69.8383

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 35.4631 35.7111 35.4980 35.9898

BW 23.9633 23.9861 23.9882 24.1029

CF 35.6575 36.1484 35.6890 36.3477

HP 28.9358 29.2077 29.0636 29.3279

Wavelet 31.0582 31.3599 31.3209 31.5926

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 35.4631 35.7111 35.4980 35.9898

BW 24.1550 23.9861 33.1211 27.4130

CF 35.6810 36.1484 35.5702 36.2328

HP 28.6813 29.2077 28.6931 29.0887

Wavelet 31.5828 31.3599 30.7366 31.5136

Table B.15: The filters are adopted to extract the trend from the time
series with the parameter of noise variance that is 10 times larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 397.1558 398.8292 396.8339 399.2572

BW 402.9761 401.6658 400.0938 402.9929

CF 404.1151 406.0848 403.7713 406.4209

HP 448.9787 450.9714 448.2906 451.1223

Wavelet 408.4534 408.7886 406.2623 409.4724

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 397.1558 398.8292 396.8339 399.2572

BW 398.0342 401.6658 414.8510 405.5746

CF 401.7101 406.0848 401.5122 405.1729

HP 446.3498 450.9714 445.7583 449.7482

Wavelet 408.2784 408.7886 407.1955 409.6060

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 79.2066 80.0530 79.1014 80.4314

BW 92.9745 98.6511 100.7533 99.3650

CF 79.2165 80.5561 79.1327 80.7845

HP 124.3310 125.2399 124.5536 125.3036

Wavelet 71.5103 72.9713 71.1994 73.3453

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 79.2066 80.0530 79.1014 80.4314

BW 90.4382 98.6511 150.9323 115.5260

CF 78.9432 80.5561 78.7585 80.4601

HP 123.4695 125.2399 123.5222 124.7202

Wavelet 71.1592 72.9713 70.3570 72.8853

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 33.6729 34.1369 33.7853 34.5087

BW 16.6495 16.9123 16.9051 17.1055

CF 33.0464 33.7754 33.1524 34.0473

HP 46.2803 46.4460 46.3856 46.4990

Wavelet 28.4631 28.8511 28.8419 29.2276

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 33.6729 34.1369 33.7853 34.5087

BW 17.2005 16.9123 30.0116 22.3366

CF 32.9562 33.7754 32.8582 33.8134

HP 45.9768 46.4460 45.9891 46.2629

Wavelet 28.8694 28.8511 27.9860 29.0122

Table B.16: The filters are adopted to extract the business cycles from
the time series with the parameter of noise variance that is 10 times
larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 590.9072 595.4321 590.9077 598.8825

BW 713.4270 691.0979 684.1064 701.5365

CF 701.0232 708.5082 701.7173 711.6308

HP 438.7163 441.0767 438.3170 446.6595

Wavelet 706.4465 712.2160 699.8049 714.4540

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 590.9072 595.4321 590.9077 598.8825

BW 730.8185 691.0979 733.6463 719.4401

CF 709.6492 708.5082 709.7039 715.5541

HP 455.7741 441.0767 455.0589 455.3796

Wavelet 714.2829 712.2160 705.3526 717.6278

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 94.0433 95.7722 93.8341 96.4754

BW 117.5146 127.8873 121.7189 126.9097

CF 103.9468 105.9076 103.7068 106.8199

HP 93.5664 95.1680 93.4144 95.9858

Wavelet 105.9811 107.1221 105.4394 108.3313

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 94.0433 95.7722 93.8341 96.4754

BW 124.8276 127.8873 179.5015 147.1545

CF 112.6609 105.9076 112.3087 111.2148

HP 98.6318 95.1680 98.2869 98.3997

Wavelet 110.0074 107.1221 109.6407 110.2828

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 38.0375 38.3459 37.8982 38.6022

BW 35.7969 35.3756 34.8607 35.7271

CF 39.4233 39.7027 39.3388 40.0420

HP 33.5767 33.9243 33.6181 34.0824

Wavelet 36.3898 37.0238 36.4889 37.1323

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 38.0375 38.3459 37.8982 38.6022

BW 38.2492 35.3756 45.5641 40.1205

CF 41.8888 39.7027 41.8932 41.5387

HP 34.1477 33.9243 34.1312 34.3325

Wavelet 36.9906 37.0238 36.6077 37.2361

Table B.17: The filters are adopted to extract the trend from the time
series with the parameter of noise variance that is 100 times larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 1201.3204 1204.5815 1196.6195 1205.9254

BW 1218.9723 1215.4760 1208.0753 1218.7252

CF 1221.7691 1227.4625 1217.3089 1227.7660

HP 1314.8349 1319.0919 1311.6372 1320.0518

Wavelet 1228.1725 1228.5936 1219.5887 1230.4967

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 1201.3204 1204.5815 1196.6195 1205.9254

BW 1204.6999 1215.4760 1243.5876 1224.2025

CF 1214.0783 1227.4625 1209.8132 1223.7003

HP 1307.9552 1319.0919 1304.8300 1316.3985

Wavelet 1226.9495 1228.5936 1221.2581 1230.4082

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 183.7162 186.1239 183.8100 186.8760

BW 195.5582 201.6863 203.5116 202.8000

CF 187.2604 190.1907 187.7166 190.8265

HP 344.0812 345.6181 344.9178 346.1720

Wavelet 157.6630 160.7995 157.2468 161.5500

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 183.7162 186.1239 183.8100 186.8760

BW 196.5656 201.6863 259.5708 219.8112

CF 188.0902 190.1907 188.8064 190.9947

HP 342.6221 345.6181 343.5963 345.2679

Wavelet 156.9503 160.7995 155.4403 160.5614

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 46.4797 47.0580 46.4576 47.4373

BW 28.3346 27.9474 27.7071 28.5381

CF 46.8971 47.4032 46.8235 47.8327

HP 118.5997 118.8379 118.5615 118.8895

Wavelet 44.0604 44.2830 44.2726 44.8566

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 46.4797 47.0580 46.4576 47.4373

BW 30.5889 27.9474 46.7061 36.3282

CF 48.1252 47.4032 48.1181 48.4806

HP 118.3606 118.8379 118.3739 118.7088

Wavelet 43.9710 44.2830 43.4780 44.4941

Table B.18: The filters are adopted to extract the business cycles from
the time series with the parameter of noise variance that is 100 times
larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 63.7970 64.5222 64.0345 64.7203

BW 79.8477 74.7832 74.4427 76.6011

CF 77.7424 76.5152 78.1528 77.8384

HP 43.8632 43.9874 43.9451 44.6220

Wavelet 84.4420 85.8731 83.2645 85.6296

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 63.7970 64.5222 64.0345 64.7203

BW 81.7403 74.7832 83.0105 79.4514

CF 79.8007 76.5152 80.1821 78.9099

HP 46.0719 43.9874 46.1245 45.7750

Wavelet 85.9602 85.8731 84.3305 86.2493

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 9.6941 9.9538 9.7567 10.0099

BW 12.1790 12.9184 12.6085 12.9715

CF 10.7986 11.0317 10.8475 11.1342

HP 9.4851 9.6906 9.5272 9.7681

Wavelet 10.7914 10.9358 10.7045 11.0438

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 9.6941 9.9538 9.7567 10.0099

BW 13.1084 12.9184 18.8858 15.2612

CF 11.8213 11.0317 11.7421 11.6220

HP 10.1591 9.6906 10.0391 10.0610

Wavelet 11.4150 10.9358 11.1207 11.2942

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 4.8736 5.0831 5.0171 5.0801

BW 7.5439 7.9351 7.9281 7.8809

CF 5.5440 5.4217 5.5515 5.5694

HP 6.2092 6.5519 6.5915 6.5216

Wavelet 7.2180 7.8737 7.7673 7.7363

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 4.8736 5.0831 5.0171 5.0801

BW 7.9654 7.9351 8.2231 8.0854

CF 6.3325 5.4217 5.8493 5.9141

HP 6.6294 6.5519 6.5089 6.5995

Wavelet 7.7208 7.8737 7.3145 7.7061

Table B.19: The filters are adopted to extract the trend from the time
series with the parameter of trend variance that is 100 times smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 122.4032 122.7677 122.5583 123.0242

BW 127.1386 124.5515 124.7382 125.6444

CF 126.7979 125.8160 126.9593 126.7413

HP 131.3362 131.7246 131.5498 131.9690

Wavelet 131.6330 131.7750 130.7883 131.8449

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 122.4032 122.7677 122.5583 123.0242

BW 126.0638 124.5515 130.8410 126.9825

CF 126.9289 125.8160 127.0922 126.8091

HP 130.8928 131.7246 131.0948 131.7257

Wavelet 132.1221 131.7750 131.3644 132.0944

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 18.5166 18.8203 18.5425 18.8689

BW 19.8851 20.2730 20.6614 20.4828

CF 19.0122 19.3031 19.0314 19.3584

HP 34.4877 34.6706 34.4602 34.6882

Wavelet 15.9831 16.2428 15.8019 16.3037

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 18.5166 18.8203 18.5425 18.8689

BW 20.1310 20.2730 26.6890 22.3835

CF 19.2227 19.3031 19.1772 19.4167

HP 34.4147 34.6706 34.3428 34.6143

Wavelet 16.1268 16.2428 15.5977 16.2501

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 5.3895 5.5995 5.5330 5.6044

BW 7.2624 7.7196 7.7878 7.6293

CF 6.1473 6.0524 6.1881 6.1930

HP 12.9862 13.1467 13.1749 13.1297

Wavelet 7.6451 8.3101 8.2667 8.1668

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 5.3895 5.5995 5.5330 5.6044

BW 7.6786 7.7196 8.1627 7.8698

CF 6.8074 6.0524 6.3675 6.4514

HP 13.1465 13.1467 13.0850 13.1409

Wavelet 8.1067 8.3101 7.7711 8.1128

Table B.20: The filters are adopted to extract the business cycles from
the time series with the parameter of trend variance that is 100 times
smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 73.8251 74.3432 73.8967 74.4889

BW 87.7577 83.2001 82.8701 84.7561

CF 86.3573 85.2243 86.3602 86.2728

HP 69.6458 70.1262 69.7816 70.3091

Wavelet 92.9959 93.9038 91.5451 93.6763

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 73.8251 74.3432 73.8967 74.4889

BW 89.2110 83.2001 92.3639 87.7534

CF 88.0227 85.2243 88.0506 87.1489

HP 70.7100 70.1262 70.8575 70.8452

Wavelet 94.3472 93.9038 92.6735 94.2768

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 20.8401 21.0110 20.7816 21.0979

BW 26.2786 28.1830 28.8976 28.4179

CF 21.4348 21.7178 21.3562 21.7764

HP 21.2138 21.4974 21.1389 21.5485

Wavelet 21.7505 22.0032 21.7518 22.1081

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 20.8401 21.0110 20.7816 21.0979

BW 25.6839 28.1830 45.0558 33.8447

CF 21.7682 21.7178 21.6676 21.9045

HP 21.2062 21.4974 21.0855 21.4901

Wavelet 21.9878 22.0032 21.9327 22.1802

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 11.5915 11.7272 11.6356 11.8087

BW 9.8896 10.1704 10.2132 10.1475

CF 11.9088 11.9452 11.8670 12.0788

HP 10.4169 10.6605 10.6532 10.6792

Wavelet 11.4656 11.9411 11.9184 11.9199

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 11.5915 11.7272 11.6356 11.8087

BW 10.1399 10.1704 12.4660 10.9892

CF 12.1793 11.9452 11.9108 12.1507

HP 10.5777 10.6605 10.5218 10.6569

Wavelet 11.8983 11.9411 11.4988 11.8775

Table B.21: The filters are adopted to extract the trend from the time
series with the parameter of trend variance that is 10 times smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 127.8355 128.3504 127.6614 128.4580

BW 132.0475 129.9027 129.6107 130.7801

CF 131.9956 131.3604 131.8573 132.0590

HP 141.9695 142.6578 141.7368 142.6614

Wavelet 136.8952 137.2735 135.8055 137.1869

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 127.8355 128.3504 127.6614 128.4580

BW 130.8472 129.9027 136.6179 132.3276

CF 132.0049 131.3604 131.9054 132.0666

HP 141.3353 142.6578 141.1225 142.3230

Wavelet 137.3842 137.2735 136.4565 137.4503

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 25.1773 25.4072 25.0586 25.5269

BW 29.5787 31.1519 32.1977 31.5218

CF 25.2888 25.6206 25.1482 25.7098

HP 39.4580 39.6309 39.3268 39.6566

Wavelet 22.7637 23.1169 22.5777 23.2652

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 25.1773 25.4072 25.0586 25.5269

BW 28.8413 31.1519 48.3326 36.7871

CF 25.2191 25.6206 25.1212 25.6366

HP 39.1781 39.6309 39.0421 39.4828

Wavelet 22.7299 23.1169 22.3312 23.1419

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 10.9659 11.1610 11.0190 11.2685

BW 8.2989 8.6978 8.7736 8.6429

CF 11.1420 11.2435 11.1265 11.4015

HP 15.4812 15.6258 15.6178 15.6257

Wavelet 10.7811 11.3321 11.3050 11.3134

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 10.9659 11.1610 11.0190 11.2685

BW 8.6605 8.6978 11.6280 9.7766

CF 11.3977 11.2435 11.1250 11.4443

HP 15.5397 15.6258 15.4826 15.5871

Wavelet 11.2093 11.3321 10.8098 11.2379

Table B.22: The filters are adopted to extract the business cycles from
the time series with the parameter of trend variance that is 10 times
smaller.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 389.2604 390.7984 390.0717 391.4511

BW 386.5665 386.4315 387.5156 388.2675

CF 393.1554 396.6983 394.0607 396.8238

HP 562.9296 570.8244 565.2315 570.2979

Wavelet 405.8384 404.7268 404.2807 406.7177

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 389.2604 390.7984 390.0717 391.4511

BW 381.2191 386.4315 427.7873 398.0710

CF 391.2870 396.6983 392.1166 395.7608

HP 558.3963 570.8244 560.6518 567.8233

Wavelet 408.4597 404.7268 408.5220 408.4468

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 193.6910 195.4098 192.6015 195.9711

BW 244.3351 263.5520 271.9014 265.6318

CF 193.6801 197.3513 192.5133 197.3285

HP 199.1445 202.6740 198.1200 202.6826

Wavelet 198.0775 201.3278 197.7310 201.9454

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 193.6910 195.4098 192.6015 195.9711

BW 231.2769 263.5520 429.5330 317.3868

CF 191.2381 197.3513 190.3467 195.7358

HP 195.3581 202.6740 194.4854 200.3774

Wavelet 197.0774 201.3278 197.3569 201.2562

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 110.1286 111.4813 110.7824 112.2156

BW 67.2460 67.2398 67.4151 67.6923

CF 110.0795 112.2589 110.8239 112.7307

HP 87.9368 88.8828 88.4000 89.2471

Wavelet 93.7223 94.5911 94.5230 95.4098

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 110.1286 111.4813 110.7824 112.2156

BW 66.1972 67.2398 97.2740 78.2137

CF 108.7822 112.2589 109.3090 111.5947

HP 86.6614 88.8828 86.9153 88.2607

Wavelet 95.1381 94.5911 92.7852 95.1454

Table B.23: The filters are adopted to extract the trend from the time
series with the parameter of trend variance that is 10 times larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 402.9229 404.6037 403.7479 405.2448

BW 398.7721 399.0436 399.9096 400.8102

CF 405.4075 409.0240 406.2390 409.1749

HP 576.4564 584.3954 578.8860 583.8078

Wavelet 417.9111 416.9088 416.2051 418.8800

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 402.9229 404.6037 403.7479 405.2448

BW 392.8562 399.0436 439.3595 410.1991

CF 403.2294 409.0240 403.9294 407.9430

HP 571.7728 584.3954 574.0559 581.2362

Wavelet 420.3046 416.9088 420.2706 420.5018

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 178.6937 181.3818 177.7728 182.1688

BW 227.8963 248.6502 257.0861 251.2092

CF 174.3920 179.1926 173.2535 179.2934

HP 201.7571 205.4156 200.9213 205.3629

Wavelet 170.1558 174.7660 169.2630 175.6871

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 178.6937 181.3818 177.7728 182.1688

BW 215.1177 248.6502 420.5221 305.6465

CF 171.7001 179.1926 170.7887 177.4606

HP 198.0249 205.4156 197.2533 203.0636

Wavelet 169.0078 174.7660 167.5467 174.5030

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 99.9575 101.9248 100.7480 102.9596

BW 42.1875 42.5406 42.4071 43.3716

CF 97.1028 100.0319 98.0231 100.7110

HP 88.6923 89.6370 89.1479 89.9861

Wavelet 80.0512 81.1829 80.9553 82.4343

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 99.9575 101.9248 100.7480 102.9596

BW 42.0648 42.5406 84.6155 60.1247

CF 95.6653 100.0319 96.3329 99.3843

HP 87.4230 89.6370 87.6634 89.0030

Wavelet 81.2464 81.1829 78.7051 81.8879

Table B.24: The filters are adopted to extract the business cycles from
the time series with the parameter of trend variance that is 10 times
larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The cut-off frequency is π/4.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 1218.2514 1222.0215 1216.0693 1223.4778

BW 1199.0401 1203.0040 1201.9216 1206.7343

CF 1222.7693 1234.7701 1221.1837 1233.8158

HP 1786.3305 1802.8886 1776.5875 1801.1820

Wavelet 1261.3193 1254.4062 1249.1478 1260.8260

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 1218.2514 1222.0215 1216.0693 1223.4778

BW 1180.3196 1203.0040 1322.4402 1235.3043

CF 1215.2430 1234.7701 1213.5305 1229.6490

HP 1771.4708 1802.8886 1761.4996 1793.1032

Wavelet 1268.5304 1254.4062 1261.9104 1265.8704

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The cut-off frequency is π/16.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 609.6496 618.3494 607.5198 618.9619

BW 772.4767 832.0477 861.4746 840.0234

CF 610.3015 622.8136 606.2472 622.2969

HP 626.6585 641.2351 624.3331 639.9555

Wavelet 623.6939 636.8545 622.9598 637.6937

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 609.6496 618.3494 607.5198 618.9619

BW 731.0110 832.0477 1358.4283 1004.0937

CF 602.3323 622.8136 598.5350 616.9928

HP 614.7454 641.2351 612.0291 632.3645

Wavelet 620.5130 636.8545 620.9108 635.1820

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The cut-off frequency is π/48.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 350.4753 354.0003 350.0668 356.0514

BW 211.4117 211.4934 211.4482 212.7415

CF 350.3722 356.8549 350.3043 357.8886

HP 279.0803 281.3946 278.6710 282.3920

Wavelet 297.6313 299.5347 298.2006 302.0470

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 350.4753 354.0003 350.0668 356.0514

BW 208.0847 211.4934 308.1085 246.9251

CF 345.5887 356.8549 345.3003 354.0026

HP 274.4010 281.3946 273.9705 279.0822

Wavelet 301.4179 299.5347 292.6799 301.0200

Table B.25: The filters are adopted to extract the trend from the time
series with the parameter of trend variance that is 100 times larger.
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The sample size of annual data is 197. The first 3 and last 3 processed data are

excluded in the top of table. The lower cut-off frequency is π/4 and the upper

cut-off frequency is π.

beginning (4 : 50) middle (51 : 147) end (148 : 194) entire (4 : 194)

BK 1223.0341 1226.4768 1220.4360 1228.0040

BW 1203.4029 1207.1277 1205.9695 1210.9234

CF 1227.1525 1238.8105 1225.1612 1237.9510

HP 1790.9574 1807.1113 1780.8454 1805.4882

Wavelet 1265.7207 1258.2327 1253.1781 1264.8573

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 1223.0341 1226.4768 1220.4360 1228.0040

BW 1184.4927 1207.1277 1326.1686 1239.3396

CF 1219.5268 1238.8105 1217.4238 1233.7399

HP 1775.9975 1807.1113 1765.7532 1797.3846

Wavelet 1272.7777 1258.2327 1265.8947 1269.8556

The sample size of quarterly data is 197. The first 12 and last 12 processed data are

excluded in the top of table. The lower cut-off frequency is π/16 and the upper cut-off

frequency is π/3.

beginning (13 : 50) middle (51 : 147) end (148 : 185) entire (13 : 185)

BK 559.8732 572.1359 557.8039 573.1561

BW 718.8015 783.6578 812.8447 793.0585

CF 547.1867 563.3659 542.8592 563.1446

HP 627.5725 642.1545 625.2499 640.8539

Wavelet 533.3701 551.8859 531.5168 553.4064

beginning (1 : 50) middle (51 : 147) end (148 : 197) entire (1 : 197)

BK 559.8732 572.1359 557.8039 573.1561

BW 678.3311 783.6578 1328.5771 965.7863

CF 538.5527 563.3659 534.4799 557.1983

HP 615.6203 642.1545 612.9684 633.2591

Wavelet 529.6694 551.8859 525.4698 549.3793

The sample size of monthly data is 405. The first 36 and last 36 processed data are

excluded in the top of table. The lower cut-off frequency is π/48 and the upper cut-off

frequency is π/9.

beginning (37 : 120) middle (121 : 285) end (286 : 369) entire (37 : 369)

BK 318.6158 323.8301 318.2406 326.8319

BW 131.9465 132.4225 131.4061 135.0955

CF 309.7218 318.0531 309.6065 319.8163

HP 279.3037 281.6223 278.8883 282.6112

Wavelet 254.4389 256.8345 255.0871 260.8053

beginning (1 : 120) middle (121 : 285) end (286 : 405) entire (1 : 405)

BK 318.6158 323.8301 318.2406 326.8319

BW 131.4008 132.4225 267.6639 189.3563

CF 304.3884 318.0531 304.1121 315.3498

HP 274.6235 281.6223 274.2009 279.3044

Wavelet 257.3252 256.8345 247.9769 258.8657

Table B.26: The filters are adopted to extract the business cycles from
the time series with the parameter of trend variance that is 100 times
larger.
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Table C.1: Developing countries, countries in transition, and newly industrialised economies:
net capital flows1 (In billions of U.S. dollars).

1984− 892 1990− 962 1992 1993 1994 1995 1996 1997
Total
Net private capital flows3 15.0 151.1 124.9 162.4 147.2 191.5 259.3 181.5

Net direct investment 13.1 61.7 37.4 56.2 77.9 93.6 115.9 125.6
Net portfolio investment 3.6 54.9 58.6 104.6 95.5 29.3 39.6 18.2
Other net investment ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

Developing countries
Net private capital flows3 18.8 130.6 119.7 142.0 116.2 149.4 216.3 144.6

Net direct investment 12.1 54.6 33.8 49.5 71.9 78.8 101.6 106.2
Net portfolio investment 4.1 47.7 51.6 88.9 84.1 15.6 39.2 28.1
Other net investment 2.6 28.2 34.3 3.6 −40.0 54.6 75.1 10.1

Africa
Net private capital flows3 4.5 5.3 ∼ 2.8 9.0 10.9 12.9 6.8

Net direct investment 1.1 2.8 2.0 2.0 3.5 3.3 5.0 5.2
Net portfolio investment −0.8 0.0 −0.7 0.8 0.4 1.9 0.6 0.2
Other net investment 4.2 2.5 −1.2 ∼ 5.1 5.8 7.3 1.4

Asia
Net private capital flows3 13.0 55.3 21.0 53.4 62.4 89.2 101.2 34.2

Net direct investment 4.5 32.2 17.6 34.1 43.4 49.6 58.9 51.1
Net portfolio investment 1.5 5.8 1.0 11.7 10.0 9.3 7.9 0.2
Other net investment 7.0 17.2 2.4 7.6 8.9 30.3 34.4 −17.0

Middle East and Europe
Net private capital flows3 2.0 23.9 42.8 22.6 −1.0 12.2 19.1 15.7

Net direct investment 1.1 1.5 1.3 1.8 1.8 1.4 1.2 2.2
Net portfolio investment 4.4 13.0 21.0 15.3 12.5 11.6 5.6 4.1
Other net investment −3.5 9.5 20.5 5.5 −15.3 −0.9 12.3 9.4

Western Hemisphere
Net private capital flows3 −0.8 46.1 55.9 63.3 45.8 37.1 83.1 87.9

Net direct investment 5.4 18.1 12.9 11.6 23.2 24.6 36.6 47.7
Net portfolio investment −1.0 28.9 30.4 61.1 61.1 −7.2 25.0 23.7
Other net investment −5.2 −1.0 12.6 −9.4 −38.7 19.4 21.2 16.4

Countries in transition
Net private capital flows3 −1.0 14.0 7.7 12.1 17.3 29.5 28.6 30.0

Net direct investment −0.1 6.3 4.2 6.0 5.4 13.1 13.0 15.6
Net portfolio investment ∼ 2.3 −0.8 3.6 2.9 3.8 5.5 7.5
Other net investment ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

Newly industrialised economies4

Net private capital flows3 −2.7 6.5 −2.5 8.3 13.6 12.6 14.3 6.8
Net direct investment 1.1 0.9 −0.6 0.8 0.6 1.7 1.3 3.8
Net portfolio investment −0.4 4.9 7.8 12.1 8.5 9.8 −5.2 −17.4
Other net investment −3.4 −1.1 −8.4 −7.1 2.8 −1.1 10.7 12.2

1Net capital flows comprise net direct investment, net portfolio investment, and other long- and short-term net
investment flows, including official and private borrowing.
2Annual averages.
3Because of data limitations, other net investment may include some official flows.
4 Hong Kong, Korea, Singapore, Taiwan, and Israel.
Source: IMF, “World Economic Outlook: Interim Assessment”, December 1997 table 6.
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Table C.2: Selected Asian economies: capital flows1 (In percent of GDP)

1983− 882 1989− 952 1991 1992 1993 1994 1995 1996 1997
China
Net private capital flows3 1.2 2.5 1.7 −0.9 4.5 5.6 5.2 4.7 3.7

Net direct investment 0.4 2.9 0.9 1.7 5.3 5.9 4.8 4.6 4.3
Net portfolio investment 0.2 0.2 0.1 ∼ 0.7 0.7 0.1 0.3 0.2
Other net investment 0.5 −0.6 0.7 −2.6 −1.5 −0.9 0.2 −0.3 −0.8

India
Net private capital flows3 1.5 1.2 1.0 0.3 1.4 1.7 1.5 2.0 2.9

Net direct investment 0.1 0.2 0.1 0.1 0.2 0.4 0.6 0.6 0.7
Net portfolio investment ∼ 0.5 ∼ 0.1 1.1 1.2 0.8 0.8 0.8
Other net investment 1.5 0.6 0.9 0.2 0.1 0.1 0.1 0.6 1.4

Indonesia
Net private capital flows3 1.5 4.2 4.6 2.5 3.1 3.9 6.2 6.3 1.6

Net direct investment 0.4 1.3 1.2 1.2 1.2 1.4 2.3 2.8 2.0
Net portfolio investment 0.1 0.4 ∼ ∼ 1.1 0.6 0.7 0.8 −0.4
Other net investment 1.0 2.6 3.5 1.4 0.7 1.9 3.1 2.7 0.1

Korea
Net private capital flows3 −1.1 2.1 2.2 2.4 1.6 3.1 3.9 4.9 2.8

Net direct investment 0.2 −0.1 −0.1 −0.2 −0.2 −0.3 −0.4 −0.4 −0.2
Net portfolio investment 0.3 1.4 1.1 1.9 3.2 1.8 1.9 2.3 −0.3
Other net investment −1.6 0.8 1.3 0.7 −1.5 1.7 2.5 3.0 3.4

Malaysia
Net private capital flows3 3.1 8.8 11.2 15.1 17.4 1.5 8.8 9.6 4.7

Net direct investment 2.3 6.5 8.3 8.9 7.8 5.7 4.8 5.1 5.3
Net portfolio investment ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
Other net investment 0.8 2.3 2.9 6.2 9.7 −4.2 4.1 4.5 −0.6

Philippines
Net private capital flows3 −2.0 2.7 1.6 2.0 2.6 5.0 4.6 9.8 0.5

Net direct investment 0.7 1.6 1.2 1.3 1.6 2.0 1.8 1.6 1.4
Net portfolio investment ∼ 0.2 0.3 0.1 −0.1 0.4 0.3 −0.2 −5.3
Other net investment −2.7 0.9 0.2 0.6 1.1 2.5 2.4 8.5 4.5

Singapore
Net private capital flows3 5.0 3.8 1.7 −2.7 9.4 2.5 1.3 −10.1 −5.5

Net direct investment 8.7 6.0 8.8 2.1 5.5 4.8 4.9 4.3 5.3
Net portfolio investment −0.5 0.1 −2.1 3.3 0.5 1.1 0.9 −16.2 −14.4
Other net investment −3.2 −2.4 −5.1 −8.0 3.4 −3.4 −4.6 1.8 3.6

Taiwan
Net private capital flows3 0.2 −4.0 −1.2 −3.2 −2.1 −0.6 −3.6 −3.2 −3.8

Net direct investment −0.2 −1.2 −0.3 −0.5 −0.7 −0.5 −0.4 −0.7 −0.6
Net portfolio investment −0.3 ∼ ∼ 0.2 0.5 0.4 0.2 −0.4 −0.6
Other net investment 0.7 −2.8 −0.9 −3.0 −1.9 −0.5 −3.3 −2.1 −2.6

Thailand
Net private capital flows3 3.1 10.2 10.7 8.7 8.4 8.6 12.7 9.3 −10.9

Net direct investment 0.8 1.5 1.5 1.4 1.1 0.7 0.7 0.9 1.3
Net portfolio investment 0.7 1.3 ∼ 0.5 3.2 0.9 1.9 0.6 0.4
Other net investment 1.5 7.4 9.2 6.8 4.1 7.0 10.0 7.7 −12.6

1Net capital flows comprise net direct investment, net portfolio investment, and other long- and short-term net
investment flows, including official and private borrowing.
2Annual averages.
3Because of data limitations, other net investment may include some official flows.
Source: IMF, “World Economic Outlook: Interim Assessment”, December 1997 table 1.
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Table C.3: Descriptive statistics on stock returns (01/01/1996− 12/31/1997)

Market1 Stock Market Index2 Stock Returns3

Mean St.Dev. Skewness Kurtosis
Argentina Merval Buenos Aires (MERVAL) 0.0005 0.0178 −1.7041 13.8805
Australia S&P/ASX 200 0.0003 0.0087 −0.8673 14.9229
Austria ATX 0.0006 0.0104 −1.2192 14.3054
Brazil MSCI Brazil 0.0017 0.0229 −1.0593 11.5980
Canada S&P/TSX 0.0007 0.0069 −1.8782 18.2237
Chile Chile Santiago Se General (IGPA) −0.0003 0.0057 0.0953 5.0487
China Shanghai Se Composite (SEE) 0.0015 0.0241 −0.5387 6.5611
France CAC 40 0.0009 0.0111 −0.1351 5.7664
Germany DAX 30 0.0012 0.0120 −1.0228 10.0196
Hong Kong Hang Seng Index 0.0001 0.0189 −0.0874 25.8897
India India BSE 100 0.0002 0.0137 0.1053 6.9039
Indonesia IDX Composite −0.0005 0.0158 −0.3300 12.9872
Italy Milan MIBTEL 0.0011 0.0118 0.0399 5.4234
Japan NIKKEI 225 −0.0005 0.0137 −0.0054 6.4259
Korea Korea Se Composite (KOSPI) −0.0016 0.0193 −0.3584 9.3217
Malaysia FTSE Bursa Malaysia KLCI −0.0010 0.0174 0.1676 16.0818
Mexico Mexico IPC 0.0012 0.0148 −0.9113 25.3799
Netherlands AEX 0.0012 0.0117 −0.3269 5.6694
Peru Lima Se General (IGBL) 0.0007 0.0110 −0.4152 7.9143
Philippines Philippines Se I (PSEi) −0.0006 0.0145 −0.4508 9.6063
Singapore Straits Times Index (STI) −0.0008 0.0104 −0.3528 14.2087
Spain Madrid Se General (IGBM) 0.0013 0.0103 −0.3055 6.8540
Sweden OMX Stockholm 30 0.0011 0.0117 −0.0418 5.9429
Taiwan Taiwan Se Weighted TAIEX 0.0009 0.0145 −0.5482 6.2611
Thailand Bangkok S.E.T. −0.0024 0.0183 0.5038 5.6854
UK FTSE 100 0.0006 0.0079 −0.1919 4.5710
USA S&P 500 0.0009 0.0095 −0.6837 10.4409

1 In order to save space, the names of markets in the paper are abbreviated as follows:
Argentina (ARG); Australia (AUS2); Austria (AUS1); Brazil (BRA); Canada (CAN); Chile
(CHI1); China (CHI2); France (FRA); Germany (GER); Hong Kong (HK); India (IND1);
Indonesia (IND2); Italy (ITA); Japan (JAP); Korea (KOR); Malaysia (MAL); Mexico
(MEX); Netherlands (NET); Peru (PER); Philippines (PHI); Singapore (SIN); Spain (SPA);
Sweden (SWE); Taiwan (TAI); Thailand (THA); UK (UK); USA (USA); Singapore (SIN).
2The indexes are daily adjusted closing prices from 01/01/1996 − 12/31/1997. The number
of data points in each market is not consistent, because of differences in the holidays for each
market. In order to maintain consistency, the prices in holidays are assumed to be the same
as the previous trading data. In sum, there are 519 observations for each time series in the
sample, including 389 observations in the tranquil period and 130 observations in the crisis
period.
3 Daily log-difference of stock market closing prices.
Data source: Datastream.
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Table C.4: Estimation results of the bivariate VAR-BEKK(1,1,1) model at the first level

Variance equations

c1,1 c1,2 c2,2 a1,1 a2,2 g1,1 g2,2 H0

ARG-THA 0.0014∗ 4.67E − 06 0.0008∗ 1.0538∗ 0.7717∗ −0.1497 ∗ ∗ 0.6979∗ 3413.631∗
(18.7605) (0.0268) (7.4278) (14.1844) (11.4979) (−1.6522) (21.5311) 0.0000

BRA-THA 0.0018∗ −2.71E−05 0.0010∗ 1.0491∗ 0.8162∗ −0.1388 ∗ ∗ 0.6219∗ 1954.153∗
(13.7155) (−0.1637) (10.0059) (16.6182) (12.2843) (−1.8847) (16.0981) 0.0000

CHI1-THA 0.0005∗ 0.0002 ∗ ∗ 0.0011∗ 0.9327∗ 0.8102∗ 0.0640 0.5871∗ 1017.115∗
(20.6073) (1.7830) (8.8728) (13.2222) (12.6733) (0.6787) (13.7333) 0.0000

MEX-THA 0.0010∗ 0.0005∗ 0.0010∗ 1.1908∗ 0.8442∗ −0.0160 0.5700∗ 1713.118∗
(12.6342) (2.6009) (10.2275) (15.1198) (11.4235) (−0.1880) (16.0023) 0.0000

PER-THA 0.0011∗ −0.0001 0.0014∗ 0.8904∗ 1.0176∗ 0.1242 −0.1460 243.079∗
(19.9459) (−1.0282) (14.8183) (12.4490) (13.4130) (0.8616) (−1.3487) 0.0000

AUS1-THA 0.0007∗ 0.0002 0.0015∗ 0.9580∗ 0.9076∗ 0.3817∗ −0.2686∗ 665.204∗
(11.1775) (1.0776) (15.4852) (13.5404) (12.3134) (6.7342) (−3.9779) 0.0000

AUS2-THA 0.0007∗ 0.0002 0.0012∗ 1.0438∗ 0.8291∗ 0.1360∗ −0.5675∗ 1170.619∗
(14.5091) (1.1300) (8.1818) (13.7045) (11.3157) (2.3268) (−10.5764) 0.0000

CAN-THA 0.0005∗ 0.0001 0.0010∗ 0.9711∗ 0.8652∗ −0.0951 0.5447∗ 1206.563∗
(15.7426) (0.8713) (10.4231) (14.6611) (12.0502) (−0.9936) (11.0361) 0.0000

FRA-THA 0.0009∗ 0.0004∗ 0.0008∗ 0.9265∗ 0.8798∗ −0.3010 0.5640∗ 1789.139∗
(13.9167) (2.5853) (6.6074) (12.4723) (12.5394) (−5.4058) (15.4836) 0.0000

GER-THA 0.0012∗ 0.0003∗ 0.0016∗ 1.0169∗ 0.9377∗ 0.0913 −0.1295 247.417∗
(23.8766) (2.1310) (19.1443) (13.5254) (12.5481) (1.0621) (−1.2004) 0.0000

ITA-THA 0.0012∗ −0.0001 0.0009∗ 0.8976∗ 0.8328∗ −0.2154∗ 0.5850∗ 1243.796∗
(15.4276) (−0.3849) (8.4020) (11.8977) (12.8012) (−3.1165) (13.6048) 0.0000

JAP-THA 0.0005∗ 0.0001 0.0016∗ 0.7510∗ 0.9072∗ 0.7348∗ −0.1185 2933.477∗
(3.9472) (0.2967) (18.2910) (13.4787) (13.7735) (22.9797) (−1.2358) 0.0000

NET-THA 0.0010∗ 0.0001 0.0016∗ 0.8297∗ 0.8950∗ 0.4854∗ −0.1452 531.724∗
(10.6530) (0.5435) (21.6550) (11.6013) (12.7691) (7.4165) (−1.4450) 0.0000

SPA-THA 0.0009∗ 0.0002 0.0009∗ 0.8424∗ 0.8677∗ 0.3333∗ −0.5546∗ 1345.004∗
(11.9351) (1.5314) (8.8338) (11.2825) (12.2589) (4.1717) (−14.4274) 0.0000

SWE-THA 0.0011∗ 0.0003∗ 0.0008∗ 0.8657∗ 0.8619∗ −0.2682∗ 0.5803∗ 1706.163∗
(14.5835) (2.1081) (6.9805) (12.4357) (12.3946) (−3.6996) (14.9622) 0.0000

UK-THA 0.0008∗ 0.0001 0.0011∗ 0.9088∗ 0.8408∗ −0.1878∗ 0.5630∗ 1338.908∗
(17.8905) (0.7822) (11.4844) (13.0719) (12.5417) (−2.7075) (13.7267) 0.0000

USA-THA 0.0011∗ 0.0002 0.0013∗ 0.9476∗ 0.9733∗ −0.2050 ∗ ∗ 0.3012∗ 344.240∗
(12.1640) (1.1579) (13.3738) (11.9101) (12.0257) (−1.7675) (3.7822) 0.0000

CHI2-THA 0.0023∗ 0.0001 0.0009∗ 1.0308∗ 0.7800∗ −0.0225 0.6541∗ 1909.955∗
(20.4075) (1.1842) (8.2836) (15.1786) (12.7389) (−0.2944) (19.7226) 0.0000

KOR-THA 0.0008∗ −0.0001 0.0016∗ 0.8157∗ 0.9327∗ 0.6254∗ −0.0190 1203.239∗
(8.0745) (−0.5134) (18.0088) (11.8907) (12.7915) (15.6108) (−0.1749) 0.0000

SIN-THA 0.0008∗ 0.0006∗ 0.0009∗ 0.8625∗ 0.7498∗ −0.3957∗ 0.6216∗ 1794.698∗
(16.4412) (2.7990) (4.9068) (11.5702) (11.1476) (−6.0700) (14.4751) 0.0000

MAL-THA 0.0009∗ 0.0001 0.0010∗ 1.0955∗ 0.7658∗ 0.0697∗ 0.6667∗ 1955.425∗
(17.1912) (0.4235) (9.5904) (18.2230) (12.8157) (2.0347) (19.5131) 0.0000

HK-THA 0.0007∗ 0.0007∗ 0.0016∗ 0.8489∗ 0.8318∗ 0.6215∗ −0.1044 41787.228∗
(8.6826) (2.9861) (12.1614) (13.9526) (12.6184) (16.3311) (−1.1067) 0.0000

IND1-THA 0.0014∗ −0.0001 0.0019∗ 0.9100∗ 0.8442∗ −0.0013 0.0031 194.101∗
(18.8117) (−0.4644) (19.6765) (12.0834) (11.5692) (−0.0001) (0.0004) 0.0000

IND2-THA 0.0006∗ 0.0003 0.0014∗ 0.7740∗ 0.9955∗ 0.6365∗ −0.1586∗ 1754.243∗
(9.1689) (1.0168) (16.8615) (11.7522) (14.0789) (14.1820) (−2.8748) 0.0000

PHI-THA 0.0009∗ −0.0001 −0.0010∗ 1.0021∗ 0.7977∗ −0.1179 0.6081∗ 1861.945∗
(16.6573) (−0.9071) (−10.3120) (13.9617) (10.5914) (−1.5828) (16.4668) 0.0000

TAI-THA 0.0011∗ −0.0003 0.0008∗ 1.0852∗ 0.7929∗ −0.1142 ∗ ∗ 0.6616∗ 2650.311∗
(12.4111) (−1.6258) (9.3825) (14.9058) (12.3914) (−1.8054) (22.4018) 0.0000

The parameters and Z−statistic values (in parentheses) are estimated on Equation (4.33) in the text. The lag length p in Equation
(4.36) is determined by the AIC and LM criteria. Because the optimal lag length p in every case is different, the parameters and
Z−statistic values of variables in the mean equation are not attached here. The null hypothesis H0 is that all of the parameters of
variables in the variance equation are equal to zero. Accordingly, the χ2−values and the corresponding p−values are listed here as well.
∗ and ∗∗ represent statistical significance at the 5% and 10% levels, respectively.
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Table C.5: Estimation results of the bivariate VAR-BEKK(1,1,1) model at the second level

Variance equations

c1,1 c1,2 c2,2 a1,1 a2,2 g1,1 g2,2 H0

ARG-THA 0.0007∗ 0.0001 0.0007∗ 0.6753∗ 0.5958∗ 0.7484∗ 0.7975∗ 5032.088∗
(8.4044) (0.8865) (7.1266) (12.9932) (12.2053) (25.1820) (30.5330) 0.0000

BRA-THA 0.0002∗ 0.0001 0.0003∗ 0.6029∗ 0.4878∗ 0.8308∗ 0.8775∗ 18619.440∗
(5.1731) (1.1815) (7.7414) (12.1207) (11.9472) (36.3975) (53.8448) 0.0000

CHI1-THA 0.0003∗ −1.12E−05 −0.0007∗ 0.6261∗ 0.6024∗ 0.7648∗ 0.7850∗ 5746.925∗
(7.2691) (−0.1433) (−7.5783) (11.2478) (10.9569) (21.1308) (27.0023) 0.0000

MEX-THA 0.0007∗ −1.02E−05 0.0007∗ 0.6863∗ 0.6235∗ 0.6985∗ 0.7749∗ 3832.052∗
(9.5044) (−0.1307) (7.0488) (10.5205) (10.7630) (17.2341) (24.1439) 0.0000

PER-THA 0.0006∗ 0.0001 0.0008∗ 0.5896∗ 0.6379∗ 0.7588∗ 0.7474∗ 4053.847∗
(7.9509) (1.2464) (7.9541) (10.5063) (10.0161) (20.4267) (20.0694) 0.0000

AUS1-THA 0.0004∗ 0.0002 ∗ ∗ 0.0008∗ 0.6926∗ 0.6046∗ 0.7345∗ 0.7648∗ 4035.971∗
(8.9560) (1.9135) (7.8787) (13.3921) (11.1379) (23.8287) (24.1666) 0.0000

AUS2-THA 0.0004∗ 0.0001 0.0008∗ 0.6316∗ 0.6052∗ 0.7750∗ 0.7716∗ 5795.607∗
(8.0192) (1.0434) (7.8730) (11.2014) (10.8820) (23.9741) (23.8237) 0.0000

CAN-THA 0.0002∗ −0.0001 0.0010∗ 0.5899∗ 0.6910∗ 0.8287∗ 0.6881∗ 17254.248∗
(5.8173) (−0.7988) (8.6933) (12.9309) (11.4113) (35.4806) (15.3456) 0.0000

FRA-THA 0.0002∗ −2.01E−05 0.0004∗ 0.5963∗ 0.7031∗ 0.8301∗ 0.7522∗ 6790.609∗
(5.8583) (−0.3375) (6.9108) (11.2025) (11.5645) (32.3848) (20.8743) 0.0000

GER-THA 0.0003∗ −3.67E−05 0.0008∗ 0.5837∗ 0.6225∗ 0.8292∗ 0.7529∗ 12196.640∗
(6.3133) (−0.2854) (9.4674) (15.7732) (11.7003) (57.8845) (23.2427) 0.0000

ITA-THA 0.0005∗ 0.0003∗ 0.0007∗ 0.6035∗ 0.6427∗ 0.7766∗ 0.7620∗ 4512.278∗
(7.2570) (3.6304) (7.7799) (10.0851) (12.4669) (21.5241) (30.7871) 0.0000

JAP-THA 0.0005∗ 0.0001 0.0008∗ 0.6383∗ 0.5593∗ 0.7763∗ 0.7934∗ 6376.603∗
(7.4944) (0.5198) (7.2936) (9.0775) (9.8986) (21.7143) (22.8767) 0.0000

NET-THA 0.0002∗ 2.85E − 05 0.0004∗ 0.6038∗ 0.6645∗ 0.8248∗ 0.7811∗ 8445.232∗
(7.2459) (0.5886) (7.0790) (12.2674) (13.1285) (37.0202) (26.4112) 0.0000

SPA-THA 0.0004∗ 0.0002 ∗ ∗ 0.0009∗ 0.5645∗ 0.6986∗ 0.8185∗ 0.6945∗ 4976.217∗
(6.0390) (1.9188) (8.5487) (13.4768) (11.7116) (30.3315) (17.0357) 0.0000

SWE-THA 0.0005∗ 0.0001 0.0008∗ 0.5692∗ 0.6191∗ 0.8073∗ 0.7455∗ 4013.517∗
(6.2112) (1.1146) (8.6936) (9.5565) (10.7707) (24.1601) (19.7424) 0.0000

UK-THA 0.0002∗ 0.0001 0.0011∗ 0.6128∗ 0.7457∗ 0.8117∗ 0.5809∗ 5734.087∗
(5.5288) (0.2861) (14.0017) (12.0020) (12.3969) (35.0178) (12.5218) 0.0000

USA-THA 0.0005∗ −4.92E−05 0.0008∗ 0.6496∗ 0.6290∗ 0.7465∗ 0.7467∗ 3041.043∗
(6.7673) (−0.5514) (6.9697) (10.3551) (9.4932) (18.2081) (16.5921) 0.0000

CHI2-THA 0.0009∗ −4.25E−05 0.0007∗ 0.6994∗ 0.5957∗ 0.7270∗ 0.7918∗ 4917.172∗
(8.0928) (−0.4653) (6.4772) (12.2220) (10.6163) (19.7823) (23.4944) 0.0000

KOR-THA 0.0007∗ 0.0001 0.0006∗ 0.7087∗ 0.5841∗ 0.7225∗ 0.8145∗ 6722.523∗
(11.0926) (1.1307) (5.5877) (12.5020) (13.0122) (23.9244) (32.7477) 0.0000

SIN-THA 0.0003∗ 0.0003∗ 0.0003∗ 0.6728∗ 0.5746∗ 0.7807∗ 0.8536∗ 16634.240∗
(9.4141) (5.3981) (3.4193) (14.4835) (16.0867) (34.9732) (64.6940) 0.0000

MAL-THA 0.0004∗ 0.0001 0.0007∗ 0.6578∗ 0.6809∗ 0.7819∗ 0.7425∗ 5623.079∗
(7.5435) (1.3891) (8.4585) (13.0248) (12.1473) (28.8814) (22.8040) 0.0000

HK-THA 0.0006∗ 0.0002∗ 0.0006∗ 0.7136∗ 0.5420∗ 0.7085∗ 0.8292∗ 6939.115∗
(9.3531) (3.2383) (6.2060) (12.0275) (12.4923) (20.9659) (36.2389) 0.0000

IND1-THA 0.0007∗ 6.21E − 06 0.0006∗ 0.6493∗ 0.6343∗ 0.7545∗ 0.7765∗ 4846.642∗
(7.3768) (0.0712) (6.5954) (11.7733) (10.8979) (22.2067) (24.5793) 0.0000

IND2-THA 0.0005∗ 0.0001 0.0007∗ 0.6915∗ 0.6889∗ 0.7626∗ 0.7415∗ 5702.456∗
(9.3173) (1.3536) (7.4285) (15.5759) (12.5657) (39.5097) (22.1980) 0.0000

PHI-THA 0.0002∗ 0.0001∗ 0.0002∗ 0.5474∗ 0.5517∗ 0.8567∗ 0.8597∗ 15517.400∗
(5.9900) (2.7353) (5.2983) (12.6034) (11.7309) (46.2015) (42.1025) 0.0000

TAI-THA 0.0008∗ 1.24E − 05 0.0008∗ 0.6336∗ 0.6395∗ 0.7392∗ 0.7512∗ 3640.078∗
(7.1339) (0.1760) (7.8829) (9.0122) (10.9533) (14.9954) (23.5803) 0.0000

The parameters and Z−statistic values (in parentheses) are estimated on Equation (4.33) in the text. The lag length p in Equation
(4.36) is determined by the AIC and LM criteria. Because the optimal lag length p in every case is different, the parameters and
Z−statistic values of variables in the mean equation are not attached here. The null hypothesis H0 is that all of the parameters of
variables in variance equation equal zero. Accordingly, the χ2−values and the corresponding p−values are listed here as well. ∗ and ∗∗
represent statistical significance at the 5% and 10% levels, respectively.

208



Table C.6: Estimation results of the bivariate VAR-BEKK(1,1,1) model at the third level

Variance equations

c1,1 c1,2 c2,2 a1,1 a2,2 g1,1 g2,2 H0

ARG-THA 3.75E − 05∗ −4.59E−05∗∗ 0.0001∗ 0.6498∗ 0.6948∗ 0.8300∗ 0.7659∗ 9798.123∗
(3.3813) (−1.9594) (4.5563) (14.0318) (12.2305) (46.6986) (26.4065) 0.0000

BRA-THA 0.0001∗ −3.43E − 05 0.0001∗ 0.6904∗ 0.6350∗ 0.7805∗ 0.7868∗ 6213.569∗
(3.7136) (−1.5492) (6.1299) (12.4081) (10.2588) (29.9398) (24.5035) 0.0000

CHI1-THA 4.76E − 05∗ 0.0001∗ 7.24E − 06 0.4983∗ 0.5209∗ 0.8337∗ 0.8560∗ 21137.190∗
(7.5768) (6.9885) (4.99E−05) (13.6683) (14.5496) (39.7679) (55.0452) 0.0000

MEX-THA 4.59E − 05∗ −1.44E − 05 0.0001∗ 0.6540∗ 0.7375∗ 0.8013∗ 0.7688∗ 6084.660∗
(4.8992) (−0.7540) (4.9981) (12.6578) (12.7163) (33.9708) (26.4923) 0.0000

PER-THA 0.0001∗ 9.36E − 06 0.0001∗ 0.7873∗ 0.6716∗ 0.6924∗ 0.7944∗ 5843.239∗
(7.7755) (0.4607) (4.5290) (13.2794) (11.6098) (19.9903) (32.5092) 0.0000

AUS1-THA 2.16E − 05∗ −0.0001∗ −5.06E−07 0.6138∗ 0.6904∗ 0.8385∗ 0.7943∗ 11676.180∗
(4.5217) (−4.4346) (−0.0006) (13.3475) (14.2229) (42.3666) (39.3959) 0.0000

AUS2-THA 1.98E − 05∗ 0.0001∗ 3.72E − 06 0.5420∗ 0.4300∗ 0.8541∗ 0.9010∗ 26411.250∗
(5.1828) (5.0264) (1.59E−05) (16.3000) (11.0432) (54.6619) (64.4772) 0.0000

CAN-THA 1.81E − 05∗ 0.0001∗ 5.21E − 06 0.4088∗ 0.4688∗ 0.9109∗ 0.8798∗ 29461.900∗
(4.1213) (4.3407) (1.93E−05) (12.7873) (11.1192) (62.4348) (48.2637) 0.0000

FRA-THA 0.0001∗ 2.32E − 05 ∗ ∗ 0.0001∗ 0.6994∗ 0.5465∗ 0.7048∗ 0.8600∗ 8798.825∗
(9.1098) (1.8946) (3.0941) (11.4088) (10.2087) (18.4215) (40.6018) 0.0000

GER-THA 1.42E − 05∗ 0.0001∗ 4.87E − 06 0.4464∗ 0.4417∗ 0.9040∗ 0.8851∗ 29794.490∗
(2.9773) (3.9391) (1.21E−05) (13.5312) (10.7802) (74.9732) (51.3429) 0.0000

ITA-THA 0.0001∗ 1.86E − 05 0.0001∗ 0.7163∗ 0.5960∗ 0.7051∗ 0.8030∗ 4439.383∗
(7.7190) (1.1441) (5.1747) (11.5214) (10.5864) (17.1030) (27.3574) 0.0000

JAP-THA 3.31E − 05∗ −1.42E − 06 0.0001∗ 0.5840∗ 0.5973∗ 0.8434∗ 0.8245∗ 9933.670∗
(4.1534) (−0.0959) (4.7192) (11.1783) (11.3042) (37.2113) (36.1729) 0.0000

NET-THA 2.25E − 05∗ 0.0001∗ 1.86E − 05 0.5026∗ 0.4174∗ 0.8794∗ 0.9005∗ 42252.220∗
(4.2390) (6.2414) (0.0003) (14.0832) (11.0056) (62.5991) (57.6940) 0.0000

SPA-THA 1.74E − 05∗ 0.0001∗ 7.24E − 06 0.5022∗ 0.4654∗ 0.8810∗ 0.8764∗ 22402.010∗
(2.8087) (4.6391) (2.84E−05) (13.1432) (11.7276) (57.0393) (52.4007) 0.0000

SWE-THA 3.37E − 05∗ −3.39E − 05∗ 0.0001∗ 0.6836∗ 0.6231∗ 0.7918∗ 0.8233∗ 9997.279∗
(3.9011) (−2.0635) (3.3973) (12.2096) (11.6907) (31.7616) (37.3923) 0.0000

UK-THA 1.88E − 05∗ 0.0001∗ 5.82E − 06 0.4153∗ 0.4595∗ 0.9117∗ 0.8852∗ 38967.050∗
(4.3597) (4.9498) (0.0001) (12.6284) (12.1782) (74.6149) (58.5057) 0.0000

USA-THA 3.85E − 05∗ 0.0001∗ 0.0001∗ 0.6391∗ 0.6664∗ 0.8025∗ 0.7798∗ 6159.888∗
(6.2662) (3.6309) (6.5347) (12.0459) (12.3761) (32.5910) (28.7101) 0.0000

CHI2-THA 3.77E − 05∗ 0.0001∗ 0.0001∗ 0.6391∗ 0.6664∗ 0.8025∗ 0.7798∗ 6385.954∗
(6.2662) (3.6309) (6.5347) (12.0459) (12.3761) (32.5910) (28.7101) 0.0000

KOR-THA 0.0001∗ 2.82E − 05 0.0001∗ 0.6335∗ 0.6016∗ 0.8121∗ 0.8194∗ 9629.555∗
(5.5279) (1.4863) (4.6253) (12.6397) (11.6282) (37.8931) (36.2558) 0.0000

SIN-THA 4.47E − 05∗ 4.84E − 05∗ 0.0001∗ 0.6532∗ 0.7048∗ 0.7997∗ 0.7848∗ 8990.161∗
(6.6133) (3.4231) (3.6281) (13.5475) (13.8541) (38.8710) (37.7445) 0.0000

MAL-THA 3.28E − 05∗ 0.0001∗ 3.07E − 05 0.4445∗ 0.4301∗ 0.9004∗ 0.8984∗ 34719.040∗
(4.9178) (6.2750) (0.0010) (13.6122) (13.1866) (72.3048) (69.1353) 0.0000

HK-THA 4.02E − 05∗ 1.73E − 05 2.80E − 05∗ 0.6553∗ 0.6373∗ 0.8150∗ 0.8362∗ 16514.980∗
(4.9853) (1.2001) (3.0280) (14.4320) (14.3926) (41.5267) (48.1755) 0.0000

IND1-THA 0.0001∗ 5.20E − 06 0.0001∗ 0.8498∗ 0.7741∗ 0.6941∗ 0.7667∗ 6575.631∗
(7.5170) (0.3419) (3.7765) (14.2362) (14.0294) (23.5579) (34.6770) 0.0000

IND2-THA 0.0001∗ 0.0001∗ 0.0001∗ 0.8170∗ 0.6479∗ 0.6671∗ 0.8106∗ 8238.811∗
(7.7259) (3.7347) (4.6819) (14.1133) (12.1610) (22.7031) (38.3236) 0.0000

PHI-THA 4.05E − 05∗ 2.68E − 05 0.0001∗ 0.6597∗ 0.5648∗ 0.8067∗ 0.8624∗ 17092.420∗
(4.7023) (1.3948) (3.5733) (13.3499) (12.2488) (40.4305) (48.8490) 0.0000

TAI-THA 0.0001∗ 3.61E − 05∗ 0.0001∗ 1.5490∗ 1.5023∗ 0.2471∗ 0.3257∗ 969.200∗
(12.8154) (2.4026) (9.0109) (17.6563) (17.6759) (13.1938) (15.3455) 0.0000

The parameters and Z−statistic values (in parentheses) are estimated on Equation (4.33) in the text. The lag length p in Equation (4.36) is
determined by the AIC and LM criteria. Because the optimal lag length p in every case is different, the parameters and Z−statistic values
of variables in the mean equation are not attached here. The null hypothesis H0 is that all of the parameters of the variables in the variance
equation equal zero. Accordingly, the χ2−values and the corresponding p−values are listed here as well. ∗ and ∗∗ represent statistical
significance at the 5% and 10% levels, respectively.
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Table C.7: Estimation results of the bivariate VAR-BEKK(1,1,1) model at the fourth level

Variance equations

c1,1 c1,2 c2,2 a1,1 a2,2 g1,1 g2,2 H0

ARG-THA 1.41E − 05∗ 1.17E − 05∗ 3.02E − 06 0.4471∗ 0.4954∗ 0.8947∗ 0.8840∗ 24074.430∗
(4.6837) (5.0469) (0.0003) (11.4229) (13.3421) (52.6091) (59.2230) 0.0000

BRA-THA 1.99E − 06 ∗ ∗ 1.81E − 06 1.55E − 06 0.4150∗ 0.3604∗ 0.9308∗ 0.9438∗ 130998.700∗
(1.6985) (0.4993) (0.4420) (11.9054) (14.3174) (89.8390) (139.1314) 0.0000

CHI1-THA 2.04E − 05∗ 1.23E − 05∗ 4.33E − 07 0.3873∗ 0.5087∗ 0.7746∗ 0.8763∗ 20113.890∗
(12.3695) (6.3167) (1.18E − 05) (13.5391) (12.5037) (32.5906) (52.7267) 0.0000

MEX-THA 2.98E − 06∗ 1.89E − 06 2.59E − 06 ∗ ∗ 0.4359∗ 0.3921∗ 0.9210∗ 0.9351∗ 88325.940∗
(2.3262) (1.0239) (1.7181) (11.3390) (14.5945) (76.3852) (131.3863) 0.0000

PER-THA 5.90E − 06∗ 1.31E − 05∗ 1.03E − 07 0.3946∗ 0.4973∗ 0.9215∗ 0.8801∗ 31808.140∗
(4.1730) (3.9190) (1.73E − 06) (14.0943) (13.6324) (87.1790) (66.9674) 0.0000

AUS1-THA 1.41E − 06∗ 7.54E − 07 3.31E − 06∗ 0.4584∗ 0.3871∗ 0.9103∗ 0.9346∗ 76797.150∗
(2.4922) (0.3949) (2.9471) (11.9645) (13.0407) (77.6348) (108.2390) 0.0000

AUS2-THA 1.18E − 05∗ 3.66E − 06∗ −1.45E − 07 0.3873∗ 0.2446∗ 0.7746∗ 0.9711∗ 171008.000∗
(8.9318) (3.6498) (−2.11E−06) (5.9124) (8.9373) (17.4870) (170.4483) 0.0000

CAN-THA 9.18E − 07 1.59E − 06 5.14E − 06∗ 0.6455∗ 0.6523∗ 0.8452∗ 0.8403∗ 22597.020∗
(1.5932) (0.5998) (2.9964) (15.4504) (15.1532) (65.0053) (62.8954) 0.0000

FRA-THA 9.80E − 06∗ 1.18E − 05∗ 2.77E − 07 0.3876∗ 0.4959∗ 0.9163∗ 0.8834∗ 26048.770∗
(5.2231) (4.7857) (5.62E − 06) (11.9738) (13.0319) (55.0107) (57.0499) 0.0000

GER-THA 7.47E − 06∗ 1.23E − 05∗ 7.69E − 07 0.4338∗ 0.4690∗ 0.9030∗ 0.8940∗ 24710.250∗
(5.2528) (4.5679) (1.57E − 05) (12.4252) (13.4446) (55.0675) (65.2539) 0.0000

ITA-THA −1.93E − 06∗ 6.37E − 07 2.12E − 06∗ 0.4769∗ 0.4353∗ 0.9022∗ 0.9208∗ 82790.490∗
(−4.3838) (0.6574) (2.1064) (14.7057) (14.2664) (95.6779) (104.3618) 0.0000

JAP-THA 7.10E − 06∗ 1.06E − 05∗ 2.55E − 06 0.4294∗ 0.5110∗ 0.9064∗ 0.8781∗ 35900.140∗
(4.5454) (4.8950) (0.0003) (14.1503) (14.5676) (71.7881) (63.8982) 0.0000

NET-THA 2.86E − 06∗ 3.76E − 06 −4.35E − 06∗ 0.6812∗ 0.6799∗ 0.8327∗ 0.8201∗ 15479.140∗
(3.0934) (1.2841) (−2.9222) (16.2804) (16.0390) (59.0323) (58.1633) 0.0000

SPA-THA 1.07E − 05∗ 1.24E − 05∗ 5.55E − 07 0.4352∗ 0.5036∗ 0.8938∗ 0.8784∗ 29234.810∗
(6.7404) (6.0670) (2.51E − 05) (11.8649) (12.2604) (50.4591) (50.7278) 0.0000

SWE-THA 6.03E − 06∗ 1.16E − 05∗ 2.16E − 07 0.4436∗ 0.5043∗ 0.9049∗ 0.8792∗ 32150.600∗
(3.6180) (3.5798) (4.81E − 06) (12.3703) (12.9971) (62.0274) (61.5771) 0.0000

UK-THA −1.33E − 06 5.61E − 06 3.32E − 06 0.6191∗ 0.6131∗ 0.8515∗ 0.8474∗ 23593.970∗
(−0.9206) (1.3652) (0.7301) (14.4067) (13.2458) (66.6922) (61.4660) 0.0000

USA-THA 1.01E − 06 −2.01E − 06 −1.58E − 08 0.4767∗ 0.4102∗ 0.9125∗ 0.9304∗ 119853.800∗
(1.2499) (−0.7238) (−0.0001) (13.2869) (15.0353) (83.0383) (130.5689) 0.0000

CHI2-THA 3.03E − 05∗ 2.81E − 05∗ 4.12E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 330035.500∗
(20.2055) (20.6100) (0.0017) (38.1583) (40.4551) (128.3997) (100.8617) 0.0000

KOR-THA 4.23E − 06∗ 1.08E − 05∗ 3.56E − 06 0.4389∗ 0.5028∗ 0.9128∗ 0.8816∗ 42811.900∗
(2.7704) (2.8930) (0.0002) (16.7390) (15.5878) (107.3187) (64.3556) 0.0000

SIN-THA 1.44E − 05∗ 3.93E − 06∗ 1.38E − 10 0.3873∗ 0.2194∗ 0.7746∗ 0.9759∗ 176505.800∗
(10.3914) (3.6605) (3.84E − 09) (6.8328) (7.5415) (21.0047) (171.1253) 0.0000

MAL-THA 2.01E − 06∗ 8.70E − 07 3.66E − 06∗ 0.3339∗ 0.3747∗ 0.9499∗ 0.9383∗ 103146.500∗
(3.5058) (0.5060) (3.3152) (10.9385) (12.3156) (108.0987) (101.7455) 0.0000

HK-THA 7.61E − 07 −3.38E − 07 3.16E − 06∗ 0.4513∗ 0.3632∗ 0.9204∗ 0.9413∗ 114411.600∗
(0.3982) (−0.0844) (2.4814) (13.4672) (12.9652) (90.9940) (121.7725) 0.0000

IND1-THA 1.12E − 05∗ 1.36E − 05∗ 7.44E − 07 0.4709∗ 0.4836∗ 0.8882∗ 0.8853∗ 25844.000∗
(4.2629) (4.6256) (2.47E − 05) (11.7457) (13.1231) (50.8842) (55.1409) 0.0000

IND2-THA 1.48E − 05∗ 2.81E − 05∗ 2.77E − 05 0.3873∗ 0.3873∗ 0.7746∗ 0.7747∗ 200267.400∗
(26.7952) (27.3224) (0.0023) (45.0238) (45.3322) (157.6261) (148.7455) 0.0000

PHI-THA 1.46E − 05∗ 1.35E − 05∗ 1.70E − 06 0.3877∗ 0.5009∗ 0.9142∗ 0.8772∗ 23452.350∗
(5.2472) (5.7321) (0.0001) (12.5415) (13.2018) (64.9900) (56.0077) 0.0000

TAI-THA 6.58E − 06∗ 1.55E − 05∗ 4.55E − 07 0.4451∗ 0.5100∗ 0.9023∗ 0.8687∗ 28807.990∗
(5.3920) (4.2304) (8.22E − 06) (15.2539) (13.0559) (79.7514) (52.4853) 0.0000

The parameters and Z−statistic values (in parentheses) are estimated on Equation (4.33) in the text. The lag length p in Equation (4.36)
is determined by the AIC and LM criteria. Because the optimal lag length p in every case is different, the parameters and Z−statistic
values of variables in the mean equation are not attached here. The null hypothesis H0 is that all of the the parameters of the variables in
the variance equation equal zero. Accordingly, the χ2−values and the corresponding p−values are listed here as well. ∗ and ∗∗ represent
statistical significance at the 5% and 10% levels, respectively.
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Table C.8: Estimation results of the bivariate VAR-BEKK(1,1,1) model at the fifth level

Variance equations

c1,1 c1,2 c2,2 a1,1 a2,2 g1,1 g2,2 H0

ARG-THA 2.07E − 06∗ 3.14E − 06∗ 2.39E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 123308.800∗
(19.6178) (21.0015) (0.0023) (38.2056) (37.1974) (92.0072) (119.9974) 0.0000

BRA-THA 2.87E − 06∗ 3.05E − 06∗ 1.56E − 05 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 99765.410∗
(19.7850) (18.3726) (0.0174) (44.6975) (37.0928) (115.3288) (92.1710) 0.0000

CHI1-THA 1.57E − 06∗ 3.39E − 06∗ 3.28E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 86299.300∗
(22.6675) (23.4899) (0.0002) (46.6992) (44.4631) (134.2086) (124.8247) 0.0000

MEX-THA 2.40E − 06∗ 3.23E − 06∗ 3.77E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 134811.700∗
(22.9454) (20.3831) (0.0024) (53.0790) (37.8994) (149.4166) (97.9754) 0.0000

PER-THA 2.54E − 06∗ 3.21E − 06∗ 2.08E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 143000.500∗
(25.4687) (24.9269) (0.0030) (54.6929) (56.3808) (182.7606) (172.9094) 0.0000

AUS1-THA 1.66E − 06∗ 2.92E − 06∗ 8.00E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 95559.990∗
(21.1015) (18.0296) (0.0015) (36.8328) (44.6981) (100.4933) (121.7015) 0.0000

AUS2-THA 1.46E − 06∗ 2.77E − 06∗ 5.89E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 103580.900∗
(19.0710) (17.9813) (0.0004) (36.3690) (38.4579) (99.1873) (100.0788) 0.0000

CAN-THA 1.09E − 06∗ 3.14E − 06∗ 1.84E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 136983.000∗
(28.8844) (27.8518) (0.0005) (47.6034) (41.0487) (126.4934) (120.2028) 0.0000

FRA-THA 1.69E − 06∗ 2.85E − 06∗ 8.88E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 90557.040∗
(21.2172) (18.9138) (0.0014) (42.4734) (29.4057) (102.2710) (83.0021) 0.0000

GER-THA 1.43E − 06∗ 2.96E − 06∗ 7.43E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 97253.030∗
(23.7554) (20.5622) (0.0014) (45.9311) (30.2755) (127.7858) (88.5824) 0.0000

ITA-THA 2.80E − 07∗ 3.99E − 08∗ 1.28E − 07 0.4237∗ 0.4691∗ 0.9225∗ 0.9100∗ 119109.600∗
(4.4326) (0.3740) (1.1322) (13.0081) (12.3778) (108.3116) (86.6369) 0.0000

JAP-THA 1.54E − 06∗ 2.55E − 06∗ 9.59E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 81496.650∗
(15.1225) (15.3876) (0.0016) (41.4438) (37.3514) (102.0058) (96.6542) 0.0000

NET-THA 1.81E − 06∗ 3.01E − 06∗ 1.40E − 05 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 104812.200∗
(24.9067) (21.9066) (0.0059) (45.7183) (41.9595) (120.1525) (106.7851) 0.0000

SPA-THA 1.57E − 06∗ 2.79E − 06∗ 6.44E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 94174.780∗
(20.5156) (18.7604) (0.0011) (32.3725) (38.7203) (87.1399) (97.6448) 0.0000

SWE-THA 1.88E − 06∗ 3.02E − 06∗ 7.29E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 91660.010∗
(22.2430) (18.9483) (0.0013) (40.7060) (37.5749) (123.5265) (103.5310) 0.0000

UK-THA 1.25E − 06∗ 2.65E − 06∗ 6.85E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 94663.690∗
(17.7169) (16.2074) (0.0012) (30.9728) (37.6189) (86.1559) (114.7183) 0.0000

USA-THA 1.95E − 06∗ 2.87E − 06∗ 1.13E − 05 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 70256.690∗
(16.9316) (16.1131) (0.0014) (35.3031) (33.1681) (89.2878) (90.9220) 0.0000

CHI2-THA 4.30E − 06∗ 2.98E − 06∗ 4.10E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 67500.460∗
(18.6048) (17.7708) (0.0009) (28.5654) (33.0710) (77.2868) (89.6074) 0.0000

KOR-THA 1.73E − 06∗ 2.85E − 06∗ 1.71E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 154303.500∗
(23.1252) (22.1388) (0.0009) (41.7596) (36.3790) (111.9661) (93.4963) 0.0000

SIN-THA 1.36E − 06∗ 3.18E − 06∗ 3.66E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 159161.900∗
(28.0801) (28.7069) (0.0037) (57.4469) (42.1051) (153.4686) (115.1208) 0.0000

MAL-THA 1.73E − 07∗ 5.41E − 08∗ 1.16E − 07 0.4140∗ 0.4233∗ 0.9196∗ 0.9245∗ 118466.900∗
(6.4469) (0.5101) (1.1080) (12.9884) (12.9678) (98.4455) (108.2768) 0.0000

HK-THA 2.46E − 06∗ 3.22E − 06∗ 5.16E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 125760.100∗
(25.5114) (21.3931) (0.0045) (47.2829) (34.0268) (140.8639) (88.5907) 0.0000

IND1-THA 4.55E − 06∗ 4.75E − 06∗ 1.70E − 05 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 215486.700∗
(19.8473) (19.2079) (0.0316) (39.9219) (38.0357) (106.8361) (103.4827) 0.0000

IND2-THA 3.13E − 07∗ 1.01E − 07∗ 4.77E − 09 0.4256∗ 0.4363∗ 0.9191∗ 0.9200∗ 130145.800∗
(6.6939) (1.2203) (0.0028) (10.8281) (13.4732) (80.3668) (108.4662) 0.0000

PHI-THA 1.59E − 06∗ 3.19E − 06∗ 7.00E − 06 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 143241.900∗
(22.0721) (24.3542) (0.0022) (41.7529) (37.9060) (99.7180) (105.3203) 0.0000

TAI-THA 1.82E − 06∗ 3.16E − 06∗ 1.11E − 05 0.3873∗ 0.3873∗ 0.7746∗ 0.7746∗ 84195.010∗
(20.0446) (18.9617) (0.0013) (45.2985) (36.3502) (120.2650) (95.6740) 0.0000

The parameters and Z−statistic values (in parentheses) are estimated on Equation (4.33) in the text. The lag length p in Equation
(4.36) is determined by the AIC and LM criteria. Because the optimal lag length p in every case is different, the parameters and
Z−statistic values of the variables in the mean equation are not attached here. The null hypothesis H0 is that all of the parameters of
the variables in the variance equation equal zero. Accordingly, the χ2−values and the corresponding p−values are listed here as well.
∗ and ∗∗ represent statistical significance at the 5% and 10% levels, respectively.
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Table C.14: Granger Causality Test at the first level

H0: A;B Tranquil Period Crisis Period

H1: A⇒B χ2 value p value Causality χ2 value p value Causality

THA⇒ARG 53.2421 0.0000 Yes∗ 4.0741 0.5388 No

ARG⇒THA 13.0202 0.0232 Yes∗ 2.6504 0.7537 No

THA⇒BRA 2.0364 0.8441 No 25.4035 0.0001 Yes∗
BRA⇒THA 16.3463 0.0059 Yes∗ 37.0080 0.0000 Yes∗
THA⇒CHI1 16.6149 0.0053 Yes∗ 3.4833 0.6259 No

CHI1⇒THA 2.3836 0.7939 No 2.2478 0.8139 No

THA⇒MEX 7.0571 0.4230 No 92.3563 0.0000 Yes∗
MEX⇒THA 31.9789 0.0000 Yes∗ 16.6674 0.0052 Yes∗
THA⇒PER 6.2058 0.5159 No 35.1427 0.0000 Yes∗
PER⇒THA 74.9207 0.0000 Yes∗ 11.8169 0.0374 Yes∗
THA⇒AUS1 7.0474 0.4240 No 4.6126 0.4650 No

AUS1 ⇒THA 10.6696 0.1537 No 15.5721 0.0082 Yes∗
THA⇒AUS2 35.3452 0.0000 Yes∗ 27.4943 0.0000 Yes∗
AUS2⇒THA 21.6103 0.0006 Yes∗ 68.8211 0.0000 Yes∗
THA⇒CAN 23.3989 0.0007 Yes∗ 4.3581 0.4991 No

CAN ⇒THA 18.6155 0.0049 Yes∗ 2.4009 0.7913 No

THA⇒FRA 37.0738 0.0000 Yes∗ 5.6251 0.3444 No

FRA⇒THA 11.1842 0.1308 No 134.2011 0.0000 Yes∗
THA⇒GER 2.5154 0.7742 No 9.4922 0.0910 Yes∗∗
GER⇒THA 2.8446 0.7239 No 26.2865 0.0001 Yes∗
THA⇒ITA 17.5070 0.0076 Yes∗ 14.4133 0.0132 Yes∗
ITA⇒THA 43.8591 0.0000 Yes∗ 16.2175 0.0062 Yes∗
THA⇒JAP 31.0183 0.0001 Yes∗ 3.3226 0.6504 No

JAP⇒THA 15.3628 0.0316 Yes∗ 57.2069 0.0000 Yes∗
THA⇒NET 17.6701 0.0136 Yes∗ 1.5520 0.9070 No

NET⇒THA 30.5820 0.0001 Yes∗ 10.8377 0.0547 Yes∗∗
THA⇒SPA 14.8998 0.0108 Yes∗ 11.2107 0.0474 Yes∗
SPA⇒THA 7.0829 0.2145 No 10.8520 0.0544 Yes∗∗
THA⇒SWE 1.4094 0.9653 No 3.5583 0.6146 No

SWE⇒THA 4.7019 0.5826 No 75.6129 0.0000 Yes∗
THA⇒UK 8.2583 0.3104 No 10.3164 0.0667 Yes∗∗
UK⇒THA 9.0232 0.2510 No 10.8301 0.0549 Yes∗∗
THA⇒USA 30.9352 0.0001 Yes∗ 6.8745 0.2301 No

USA⇒THA 111.8163 0.0000 Yes∗ 5.7240 0.3340 No

THA⇒CHI2 12.2708 0.0313 Yes∗ 2.7903 0.7323 No

CHI2⇒THA 14.0905 0.0150 Yes∗ 0.5609 0.9897 No

THA⇒KOR 7.4426 0.1897 No 7.8049 0.1673 No

KOR⇒THA 6.6940 0.2444 No 35.7908 0.0000 Yes∗
THA⇒SIN 4.8419 0.4355 No 6.9114 0.2273 No

SIN⇒THA 29.1283 0.0000 Yes∗ 36.1568 0.0000 Yes∗
THA⇒MAL 11.0243 0.0509 Yes∗∗ 17.6810 0.0034 Yes∗
MAL⇒THA 1.3632 0.9283 No 5.2804 0.3826 No

THA⇒HK 19.5487 0.0066 Yes∗ 3.7489 0.5861 No

HK⇒THA 24.3701 0.0010 Yes∗ 137.0034 0.0000 Yes∗
THA⇒IND1 0.7249 0.9816 No 12.5908 0.0275 Yes∗
IND1⇒THA 16.7667 0.0050 Yes∗ 32.6856 0.0000 Yes∗
THA⇒IND2 29.2535 0.0000 Yes∗ 11.9097 0.0360 Yes∗
IND2⇒THA 28.8133 0.0000 Yes∗ 41.5384 0.0000 Yes∗
THA⇒PHI 13.2213 0.0669 Yes∗∗ 15.9496 0.0070 Yes∗
PHI⇒THA 123.9025 0.0000 Yes∗ 2.3454 0.7996 No

THA⇒TAI 24.1019 0.0011 Yes∗ 37.4920 0.0000 Yes∗
TAI⇒THA 16.6009 0.0202 Yes∗ 43.8210 0.0000 Yes∗

∗ and ∗∗ represent statistical significance at the 5% and 10% levels, respectively. Because the first level
is associated with a time interval of [2, 4) days, the relationship between Thailand and another market is
related to the time interval of [2, 4) days as well.
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Table C.15: Granger Causality Test at the second level

H0: A;B Tranquil Period Crisis Period

H1: A⇒B χ2 value p value Causality χ2 value p value Causality

THA⇒ARG 6.0149 0.1980 No 9.9061 0.0420 Yes∗
ARG⇒THA 1.4624 0.8333 No 20.7396 0.0004 Yes∗
THA⇒BRA 5.2979 0.2581 No 11.5858 0.0719 Yes∗∗
BRA⇒THA 16.7593 0.0022 Yes∗ 29.6612 0.0000 Yes∗
THA⇒CHI1 21.2106 0.0003 Yes∗ 4.6387 0.7954 No

CHI1⇒THA 12.2271 0.0157 Yes∗ 16.0644 0.0415 Yes∗
THA⇒MEX 10.6767 0.0989 Yes∗∗ 14.8526 0.0214 Yes∗
MEX⇒THA 44.4203 0.0000 Yes∗ 4.7276 0.5792 No

THA⇒PER 100.4227 0.0000 Yes∗ 4.5794 0.5988 No

PER⇒THA 24.2648 0.0021 Yes∗ 0.1069 1.0000 No

THA⇒AUS1 26.0826 0.0000 Yes∗ 5.2540 0.5117 No

AUS1 ⇒THA 0.5274 0.9708 No 17.8241 0.0067 Yes∗
THA⇒AUS2 8.3797 0.0786 Yes∗∗ 74.3693 0.0000 Yes∗
AUS2⇒THA 14.2222 0.0066 Yes∗ 51.6653 0.0000 Yes∗
THA⇒CAN 15.7486 0.0461 Yes∗ 13.3106 0.0384 Yes∗
CAN ⇒THA 20.8726 0.0075 Yes∗ 6.4310 0.3767 No

THA⇒FRA 21.6431 0.0056 Yes∗ 28.2088 0.0001 Yes∗
FRA⇒THA 33.9946 0.0000 Yes∗ 6.5414 0.3653 No

THA⇒GER 9.6367 0.2915 No 6.8442 0.3355 No

GER⇒THA 4.8814 0.7702 No 3.4572 0.7497 No

THA⇒ITA 4.8550 0.3025 No 95.9746 0.0000 Yes∗
ITA⇒THA 7.9574 0.0932 Yes∗∗ 5.3774 0.4964 No

THA⇒JAP 86.4466 0.0000 Yes∗ 8.2588 0.2197 No

JAP⇒THA 16.2680 0.0387 Yes∗ 2.5414 0.8638 No

THA⇒NET 38.4533 0.0000 Yes∗ 30.9235 0.0000 Yes∗
NET⇒THA 10.9458 0.2048 No 9.7386 0.1361 No

THA⇒SPA 10.1039 0.0387 Yes∗ 31.1769 0.0000 Yes∗
SPA⇒THA 8.6256 0.0712 Yes∗∗ 4.1887 0.6512 No

THA⇒SWE 3.0666 0.5467 No 5.1588 0.5236 No

SWE⇒THA 10.1511 0.0380 Yes∗ 1.9518 0.9241 No

THA⇒UK 27.6967 0.0005 Yes∗ 39.0049 0.0000 Yes∗
UK⇒THA 10.6719 0.2210 No 21.1606 0.0017 Yes∗
THA⇒USA 78.8937 0.0000 Yes∗ 9.8869 0.1295 No

USA⇒THA 8.9467 0.3468 No 4.3170 0.6339 No

THA⇒CHI2 10.6607 0.0307 Yes∗ 33.2600 0.0000 Yes∗
CHI2⇒THA 2.3013 0.6805 No 18.7580 0.0046 Yes∗
THA⇒KOR 10.6501 0.0308 Yes∗ 38.2276 0.0000 Yes∗
KOR⇒THA 1.3390 0.8547 No 40.9109 0.0000 Yes∗
THA⇒SIN 1.7714 0.7777 No 35.0495 0.0000 Yes∗
SIN⇒THA 4.3808 0.3569 No 17.8604 0.0223 Yes∗
THA⇒MAL 8.2056 0.4136 No 7.3820 0.4960 No

MAL⇒THA 42.1047 0.0000 Yes∗ 0.0002 1.0000 No

THA⇒HK 39.7953 0.0000 Yes∗ 17.7445 0.0014 Yes∗
HK⇒THA 20.0883 0.0100 Yes∗ 23.3187 0.0001 Yes∗
THA⇒IND1 8.1615 0.0858 Yes∗∗ 12.0827 0.0601 Yes∗∗
IND1⇒THA 1.1199 0.8911 No 14.7606 0.0222 Yes∗
THA⇒IND2 0.9154 0.9223 No 1.0245 0.9061 No

IND2⇒THA 3.9055 0.4190 No 27.2560 0.0000 Yes∗
THA⇒PHI 19.8554 0.0005 Yes∗ 26.6793 0.0002 Yes∗
PHI⇒THA 15.6929 0.0035 Yes∗ 10.5764 0.1024 No

THA⇒TAI 0.4805 0.9754 No 84.2997 0.0000 Yes∗
TAI⇒THA 11.4296 0.0221 Yes∗ 16.2563 0.0389 Yes∗

∗ and ∗∗ represent statistical significance at the 5% and 10% levels, respectively. Because the second level
is associated with a time interval of [4, 8) days, the relationship between Thailand and another market is
related to the time interval of [4, 8) days as well.
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Table C.16: Granger Causality Test at the third level

H0: A;B Tranquil Period Crisis Period

H1: A⇒B χ2 value p value Causality χ2 value p value Causality

THA⇒ARG 38.5550 0.0000 Yes∗ 16.1316 0.0405 Yes∗
ARG⇒THA 64.5048 0.0000 Yes∗ 1537.5510 0.0000 Yes∗
THA⇒BRA 45.3247 0.0000 Yes∗ 23.1051 0.0032 Yes∗
BRA⇒THA 145.3844 0.0000 Yes∗ 78.3395 0.0000 Yes∗
THA⇒CHI1 6.2181 0.5145 No 7.5386 0.4798 No

CHI1⇒THA 22.7813 0.0019 Yes∗ 269.9656 0.0000 Yes∗
THA⇒MEX 23.5717 0.0027 Yes∗ 3.6922 0.8838 No

MEX⇒THA 20.9139 0.0074 Yes∗ 496.6629 0.0000 Yes∗
THA⇒PER 40.2970 0.0000 Yes∗ 25.8201 0.0011 Yes∗
PER⇒THA 22.7513 0.0019 Yes∗ 90.5100 0.0000 Yes∗
THA⇒AUS1 53.1646 0.0000 Yes∗ 21.4473 0.0060 Yes∗
AUS1 ⇒THA 30.1635 0.0002 Yes∗ 44.2529 0.0000 Yes∗
THA⇒AUS2 31.4955 0.0001 Yes∗ 38.4411 0.0000 Yes∗
AUS2⇒THA 13.9471 0.0832 Yes∗∗ 379.3201 0.0000 Yes∗
THA⇒CAN 83.3122 0.0000 Yes∗ 27.3080 0.0006 Yes∗
CAN ⇒THA 55.9003 0.0000 Yes∗ 195.3355 0.0000 Yes∗
THA⇒FRA 36.9100 0.0000 Yes∗ 25.2872 0.0014 Yes∗
FRA⇒THA 64.4105 0.0000 Yes∗ 524.3319 0.0000 Yes∗
THA⇒GER 102.6478 0.0000 Yes∗ 31.2945 0.0001 Yes∗
GER⇒THA 38.2739 0.0000 Yes∗ 381.8075 0.0000 Yes∗
THA⇒ITA 102.6290 0.0000 Yes∗ 35.7107 0.0000 Yes∗
ITA⇒THA 24.1030 0.0022 Yes∗ 77.5642 0.0000 Yes∗
THA⇒JAP 28.4399 0.0004 Yes∗ 318.5542 0.0000 Yes∗
JAP⇒THA 132.7427 0.0000 Yes∗ 474.5543 0.0000 Yes∗
THA⇒NET 46.2769 0.0000 Yes∗ 19.3755 0.0130 Yes∗
NET⇒THA 18.2300 0.0196 Yes∗ 33.1825 0.0001 Yes∗
THA⇒SPA 34.2853 0.0000 Yes∗ 34.8713 0.0000 Yes∗
SPA⇒THA 12.6452 0.1247 No 371.6014 0.0000 Yes∗
THA⇒SWE 19.5589 0.0033 Yes∗ 56.4999 0.0000 Yes∗
SWE⇒THA 17.4004 0.0079 Yes∗ 763.7298 0.0000 Yes∗
THA⇒UK 42.5432 0.0000 Yes∗ 6.7408 0.5648 No

UK⇒THA 55.7307 0.0000 Yes∗ 207.5835 0.0000 Yes∗
THA⇒USA 30.7880 0.0002 Yes∗ 8.9973 0.3425 No

USA⇒THA 25.5292 0.0013 Yes∗ 1193.3340 0.0000 Yes∗
THA⇒CHI2 15.4811 0.0168 Yes∗ 35.4941 0.0000 Yes∗
CHI2⇒THA 28.2366 0.0001 Yes∗ 14.5998 0.0674 Yes∗∗
THA⇒KOR 6.5888 0.0371 Yes∗ 6.7731 0.5613 No

KOR⇒THA 3.5007 0.1737 No 151.0501 0.0000 Yes∗
THA⇒SIN 127.8665 0.0000 Yes∗ 12.9131 0.1149 No

SIN⇒THA 6.3789 0.3821 No 9.0477 0.3383 No

THA⇒MAL 20.5171 0.0085 Yes∗ 13.1565 0.1066 No

MAL⇒THA 34.3658 0.0000 Yes∗ 30.6140 0.0002 Yes∗
THA⇒HK 68.5327 0.0000 Yes∗ 4.4903 0.8104 No

HK⇒THA 58.3491 0.0000 Yes∗ 136.6980 0.0000 Yes∗
THA⇒IND1 90.9311 0.0000 Yes∗ 24.1845 0.0021 Yes∗
IND1⇒THA 22.6271 0.0020 Yes∗ 11.7307 0.1636 No

THA⇒IND2 44.9289 0.0000 Yes∗ 16.8048 0.0322 Yes∗
IND2⇒THA 19.6152 0.0032 Yes∗ 21.1478 0.0068 Yes∗
THA⇒PHI 29.3527 0.0003 Yes∗ 2.4568 0.9637 No

PHI⇒THA 19.0619 0.0145 Yes∗ 0.2946 1.0000 No

THA⇒TAI 31.2692 0.0000 Yes∗ 23.1452 0.0016 Yes∗
TAI⇒THA 6.6178 0.3576 No 68.4112 0.0000 Yes∗

∗ and ∗∗ represent statistical significance at the 5% and 10% levels, respectively. Because the third level
is associated with a time interval of [8, 16) days, the relationship between Thailand and another market
is related to the time interval of [8, 16) days as well.
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Table C.17: Granger Causality Test at the fourth level

H0: A;B Tranquil Period Crisis Period

H1: A⇒B χ2 value p value Causality χ2 value p value Causality

THA⇒ARG 1.3864 0.8466 No 30.3671 0.0002 Yes∗
ARG⇒THA 2.7161 0.6064 No 23.4649 0.0028 Yes∗
THA⇒BRA 34.9917 0.0000 Yes∗ 18.0963 0.0205 Yes∗
BRA⇒THA 87.8369 0.0000 Yes∗ 14.2839 0.0747 Yes∗∗
THA⇒CHI1 4.8334 0.3048 No 9.3899 0.0521 Yes∗∗
CHI1⇒THA 1.8898 0.7560 No 15.6997 0.0034 Yes∗
THA⇒MEX 40.1227 0.0000 Yes∗ 5.7308 0.6774 No

MEX⇒THA 44.0177 0.0000 Yes∗ 7.1861 0.5167 No

THA⇒PER 4.8458 0.3035 No 54.8706 0.0000 Yes∗
PER⇒THA 7.2968 0.1210 No 41.4151 0.0000 Yes∗
THA⇒AUS1 0.9398 0.9188 No 26.3661 0.0009 Yes∗
AUS1 ⇒THA 1.2672 0.8669 No 29.8714 0.0002 Yes∗
THA⇒AUS2 2.0587 0.7250 No 49.6910 0.0000 Yes∗
AUS2⇒THA 1.0194 0.9068 No 33.3905 0.0001 Yes∗
THA⇒CAN 38.9962 0.0000 Yes∗ 14.1906 0.0769 Yes∗∗
CAN ⇒THA 6.1913 0.6258 No 11.8595 0.1576 No

THA⇒FRA 9.1300 0.1040 No 4.2291 0.3759 No

FRA⇒THA 3.4790 0.6266 No 17.4683 0.0016 Yes∗
THA⇒GER 70.0920 0.0000 Yes∗ 11.9271 0.0179 Yes∗
GER⇒THA 12.5359 0.1288 No 13.0883 0.0109 Yes∗
THA⇒ITA 1.6442 0.8008 No 27.2774 0.0001 Yes∗
ITA⇒THA 3.7854 0.4358 No 86.5583 0.0000 Yes∗
THA⇒JAP 2.1842 0.8231 No 23.8871 0.0024 Yes∗
JAP⇒THA 17.1469 0.0042 Yes∗ 116.8539 0.0000 Yes∗
THA⇒NET 47.7525 0.0000 Yes∗ 5.9538 0.2026 No

NET⇒THA 41.3133 0.0000 Yes∗ 11.7064 0.0197 Yes∗
THA⇒SPA 25.2864 0.0001 Yes∗ 4.5939 0.8000 No

SPA⇒THA 28.9341 0.0000 Yes∗ 10.7773 0.2146 No

THA⇒SWE 0.7120 0.9498 No 13.7642 0.0081 Yes∗
SWE⇒THA 3.9162 0.4175 No 21.7905 0.0002 Yes∗
THA⇒UK 11.4507 0.0219 Yes∗ 82.9299 0.0000 Yes∗
UK⇒THA 7.5422 0.1099 No 58.2164 0.0000 Yes∗
THA⇒USA 27.2543 0.0006 Yes∗ 18.1943 0.0011 Yes∗
USA⇒THA 8.0119 0.4323 No 23.6894 0.0001 Yes∗
THA⇒CHI2 22.9398 0.0034 Yes∗ 18.3516 0.0187 Yes∗
CHI2⇒THA 1.7495 0.9878 No 18.1357 0.0202 Yes∗
THA⇒KOR 2.0377 0.7288 No 27.2689 0.0001 Yes∗
KOR⇒THA 1.5311 0.8211 No 41.0970 0.0000 Yes∗
THA⇒SIN 25.7934 0.0011 Yes∗ 50.5612 0.0000 Yes∗
SIN⇒THA 8.2053 0.4137 No 28.5986 0.0001 Yes∗
THA⇒MAL 10.5505 0.2285 No 20.1368 0.0026 Yes∗
MAL⇒THA 8.1604 0.4180 No 34.1449 0.0000 Yes∗
THA⇒HK 27.1039 0.0007 Yes∗ 18.5993 0.0049 Yes∗
HK⇒THA 23.3310 0.0030 Yes∗ 38.7831 0.0000 Yes∗
THA⇒IND1 1.1285 0.8897 No 16.3816 0.0118 Yes∗
IND1⇒THA 3.6215 0.4596 No 68.7475 0.0000 Yes∗
THA⇒IND2 39.7109 0.0000 Yes∗ 43.1889 0.0000 Yes∗
IND2⇒THA 9.8270 0.2774 No 125.3331 0.0000 Yes∗
THA⇒PHI 17.1607 0.0285 Yes∗ 6.1508 0.1882 No

PHI⇒THA 24.6936 0.0018 Yes∗ 10.1302 0.0383 Yes∗
THA⇒TAI 16.2091 0.0028 Yes∗ 9.5415 0.0489 Yes∗
TAI⇒THA 6.3093 0.1772 No 14.5413 0.0058 Yes∗

∗ and ∗∗ represent statistical significance at the 5% and 10% levels, respectively. Because the fourth level
is associated with a time interval of [16, 32) days, the relationship between Thailand and another market
is related to the time interval of [16, 32) days as well.
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Table C.18: Granger Causality Test at the fifth level

H0: A;B Tranquil Period Crisis Period

H1: A⇒B χ2 value p value Causality χ2 value p value Causality

THA⇒ARG 573.0763 0.0000 Yes∗ 26.8082 0.0002 Yes∗
ARG⇒THA 195.2163 0.0000 Yes∗ 32.5374 0.0000 Yes∗
THA⇒BRA 42.4251 0.0000 Yes∗ 135.8198 0.0000 Yes∗
BRA⇒THA 36.4852 0.0000 Yes∗ 40.3831 0.0000 Yes∗
THA⇒CHI1 169.1729 0.0000 Yes∗ 32.4224 0.0001 Yes∗
CHI1⇒THA 671.0209 0.0000 Yes∗ 17.6178 0.0243 Yes∗
THA⇒MEX 130.2006 0.0000 Yes∗ 106.7552 0.0000 Yes∗
MEX⇒THA 693.2796 0.0000 Yes∗ 59.6874 0.0000 Yes∗
THA⇒PER 818.5763 0.0000 Yes∗ 38.2643 0.0000 Yes∗
PER⇒THA 1826.1110 0.0000 Yes∗ 42.3725 0.0000 Yes∗
THA⇒AUS1 48.7968 0.0000 Yes∗ 20.2614 0.0011 Yes∗
AUS1 ⇒THA 196.7827 0.0000 Yes∗ 20.7238 0.0009 Yes∗
THA⇒AUS2 56.3279 0.0000 Yes∗ 2060.7870 0.0000 Yes∗
AUS2⇒THA 120.1372 0.0000 Yes∗ 529.4557 0.0000 Yes∗
THA⇒CAN 37.8283 0.0000 Yes∗ 203.7735 0.0000 Yes∗
CAN ⇒THA 61.6278 0.0000 Yes∗ 76.5512 0.0000 Yes∗
THA⇒FRA 77.4852 0.0000 Yes∗ 104.5377 0.0000 Yes∗
FRA⇒THA 28.7319 0.0004 Yes∗ 37.2463 0.0000 Yes∗
THA⇒GER 15.2896 0.0538 Yes∗∗ 10.0237 0.0746 Yes∗∗
GER⇒THA 53.4492 0.0000 Yes∗ 35.8421 0.0000 Yes∗
THA⇒ITA 820.4581 0.0000 Yes∗ 102.4740 0.0000 Yes∗
ITA⇒THA 1089.5910 0.0000 Yes∗ 65.3976 0.0000 Yes∗
THA⇒JAP 30.6549 0.0002 Yes∗ 95.4223 0.0000 Yes∗
JAP⇒THA 22.7810 0.0037 Yes∗ 39.3317 0.0000 Yes∗
THA⇒NET 68.1279 0.0000 Yes∗ 10.1164 0.0720 Yes∗∗
NET⇒THA 234.8626 0.0000 Yes∗ 33.4311 0.0000 Yes∗
THA⇒SPA 22.4703 0.0041 Yes∗ 66.5360 0.0000 Yes∗
SPA⇒THA 23.6164 0.0027 Yes∗ 62.5048 0.0000 Yes∗
THA⇒SWE 9.2733 0.3198 No 6.0730 0.2992 No

SWE⇒THA 183.9887 0.0000 Yes∗ 35.3768 0.0000 Yes∗
THA⇒UK 38.3176 0.0000 Yes∗ 15.9114 0.0071 Yes∗
UK⇒THA 75.4174 0.0000 Yes∗ 30.1577 0.0000 Yes∗
THA⇒USA 21.8480 0.0052 Yes∗ 13.3182 0.0206 Yes∗
USA⇒THA 33.3751 0.0001 Yes∗ 31.6011 0.0000 Yes∗
THA⇒CHI2 26.0827 0.0010 Yes∗ 10.0892 0.0727 Yes∗∗
CHI2⇒THA 99.5972 0.0000 Yes∗ 31.4390 0.0000 Yes∗
THA⇒KOR 13482.9000 0.0000 Yes∗ 7.3703 0.3914 No

KOR⇒THA 42396913.0000 0.0000 Yes∗ 23.5234 0.0014 Yes∗
THA⇒SIN 318.6406 0.0000 Yes∗ 120.4053 0.0000 Yes∗
SIN⇒THA 193.8153 0.0000 Yes∗ 25.3869 0.0013 Yes∗
THA⇒MAL 386.8816 0.0000 Yes∗ 8.8718 0.3532 No

MAL⇒THA 1023.6460 0.0000 Yes∗ 1.1479 0.9971 No

THA⇒HK 140.1609 0.0000 Yes∗ 9.8438 0.0798 Yes∗∗
HK⇒THA 721.8621 0.0000 Yes∗ 37.8274 0.0000 Yes∗
THA⇒IND1 47.6346 0.0000 Yes∗ 256.0565 0.0000 Yes∗
IND1⇒THA 232.6314 0.0000 Yes∗ 173.9112 0.0000 Yes∗
THA⇒IND2 79.0141 0.0000 Yes∗ 464.7581 0.0000 Yes∗
IND2⇒THA 17.3184 0.0270 Yes∗ 469.0665 0.0000 Yes∗
THA⇒PHI 636.6009 0.0000 Yes∗ 675.7232 0.0000 Yes∗
PHI⇒THA 340.5465 0.0000 Yes∗ 274.2892 0.0000 Yes∗
THA⇒TAI 193.1572 0.0000 Yes∗ 9944.6950 0.0000 Yes∗
TAI⇒THA 317.1534 0.0000 Yes∗ 58.4895 0.0000 Yes∗

∗ and ∗∗ represent statistical significance at the 5% and 10% levels, respectively. Because the fifth level
is associated with a time interval of [32, 64) days, the relationship between Thailand and another market
is related to the time interval of [32, 64) days as well.
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Table C.19: The Baht currency crisis triggers a series of negative events in the global
markets.

Date Country Description of what happened

July 2, 1997 Thailand After four months of defending the weakening Baht, the Bank of Thailand
announces the free float of Baht. Baht loses 10% of its pre-float value.

July 8 Malaysia Malaysia’s central bank intervenes to defend its currency, the ringgit.

July 11 Philippine The Philippine peso is devalued.

Indonesia Indonesia widens its trading band for the rupiah in a move to discourage spec-
ulators.

July 20 Philippines IMF grants US $1000 million as emergency grant after Peso falls outside
widened a band to defend the basket peg.

July (undated) Thailand IMF warns Thailand to cut its spending, requests that it take a loan from the
IMF.

July 24 Malaysia Malaysian Ringgit comes under speculative attack. Asian currencies fall dra-
matically.

Singapore The Singapore dollar starts a gradual decline.

August 5 Thailand Thailand agrees to adopt tough economic measures proposed by the IMF in
return for a US $17 billion loan from the international lender and Asian nations.
The Thai government closes 42 ailing finance companies and imposes tax hikes
as part of the IMF’s insistence on austerity.

August 11 Thailand IMF led by Japan’s pressure pledges US $16 billion to Thailand as rescue
package.

August 13-14 Indonesia The Indonesian rupiah comes under severe pressure. Indonesia abolishes its
system of managing its exchange rate through the use of a band.

August 28 Asia Asian stock markets plunge in unison: 9.3% in Manila; 4.5% in Jakarta, etc.

September 4 Philippines Philippine Peso falls to the lowest level before central bank intervenes to main-
tain basket peg.

Malaysia Malaysian ringgit continues to fall. Malaysia spends US $20 billion to prop up
the share markets.

October 8 Indonesia Rupiah hits a low. Indonesia considers asking IMF for an emergency bailout
after the rupiah falls more than 30% in two months, despite interventions by
the country’s central bank to prop up the currency.

October 23 Korea The South Korean won begins to weaken.

October 27 U.S.A New York share market loses 7.2% in value.

October 28 Korea The value of the Korean won drops as investors sell Korean stocks.

October 23-28 Hong Kong Hong Kong share market declines by nearly 25% in value.

October 31 Indonesia The IMF agrees to a loan package for Indonesia that eventually swells to US
$40 billion. In return, the government closes 16 financially insolvent banks and
promises other wide-ranging reforms.

Russia The IMF announces that it will delay a US $700 million quarterly disbursement
to Russia due to the country’s lax tax collection.

November 3 Japan Japan’s Sanyo Securities files for bankruptcy with liabilities of more than US
$3 billion.

Korea Korea Won loses 7%, largest one-day loss.

Korea begins talk with IMF for tens of billions in emergency aid.

November 5 Indonesia The IMF announces a stabilisation package of approximately US $40 billion for
Indonesia. The United States pledges a standby credit of US $3 billion.
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Table 19 (continued)

Date Country Description of what happened

November 8 Japan Japan’s third financial house to apply for closure: the seventh-largest Yamaichi
Securities.

November 17 Japan Hokkaido Takushoku Bank Ltd., one of Japan’s top 10 banks, collapses under
a pile of bad loans.

Korea The Bank of Korea abandons its effort to prop up the value of the won, allowing
it to fall below 1000 against the dollar, a record low.

November 20 Korea Korean Stock Market plunges with a loss of 7.2%.

November 24 Japan Tokyo City Bank, regional bank, closes.

November 25 Korea Korea agrees to IMF conditions for restructuring US $55 billion.

December 3 Malaysia Malaysia imposes tough reforms to reduce its balance of payments deficit.

Korea Korea and IMF agree on US $57 billion support package, the largest in history.

December 8 Thailand The Thai government announces that it will close 56 insolvent finance com-
panies as part of the IMF’s economic restructuring plan. 30,000 white-collar
workers lose their jobs.

December 12 Russia The IMF restarts its loan disbursement to Russia. The pact releases US $700
million delayed in October. In the accord, the IMF urges Russia to boost
revenues and cut spending.

December 22 Korea Korean Won plunges further.

December 23 Korea In an unprecedented move, the World Bank releases an emergency loan of US
$3 billion, part of a US $10 billion support package, to South Korea to help
salvage its economy.

December 25 Korea IMF and lender nations move to finance US $10 billion loan to Korea.

Source: Internet; congressional research service report: the 1997-98 Asian financial crisis; Khalid and
Kawai (2003), Was financial market contagion the source of economic crisis in Asia? Evidence using a
multivariate VAR model, table 1.
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Figure C.1: Pair-wise conditional correlation series between Thailand and other 26 markets
at the first level
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Note: (a): conditional correlation series of Thailand-Argentina; (b): conditional correlation series of Thailand-
Brazil; (c): conditional correlation series of Thailand-Chile; (d): conditional correlation series of Thailand-Mexico;
(e): conditional correlation series of Thailand-Peru; (f): conditional correlation series of Thailand-Austria; (g):
conditional correlation series of Thailand-Australia; (h): conditional correlation series of Thailand-Canada; (i):
conditional correlation series of Thailand-France; The dotted line, which is associated with the day 07/02/1997,
divides the entire sample time into the tranquil period and crisis period.
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Figure C.1 (continued)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(f)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(g)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(h)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(i)

Note: (a): conditional correlation series of Thailand-Germany; (b): conditional correlation series of Thailand-Italy;
(c): conditional correlation series of Thailand-Japan; (d): conditional correlation series of Thailand-Netherlands;
(e): conditional correlation series of Thailand-Spain; (f): conditional correlation series of Thailand-Sweden; (g):
conditional correlation series of Thailand-UK; (h): conditional correlation series of Thailand-USA; (i): conditional
correlation series of Thailand-China; The dotted line, which is associated with the day 07/02/1997, divides the
entire sample time into the tranquil period and crisis period.
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Figure C.1 (continued)
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Note: (a): conditional correlation series of Thailand-Korea; (b): conditional correlation series of Thailand-
Singapore; (c): conditional correlation series of Thailand-Malaysia; (d): conditional correlation series of
Thailand-Hong Kong; (e): conditional correlation series of Thailand-India; (f): conditional correlation series of
Thailand-Indonesia; (g): conditional correlation series of Thailand-Philippines; (h): conditional correlation series
of Thailand-Taiwan; The dotted line, which is associated with the day 07/02/1997, divides the entire sample time
into the tranquil period and crisis period.
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Figure C.2: Pair-wise conditional correlation series between Thailand and other 26 markets
at the second level
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Note: (a): conditional correlation series of Thailand-Argentina; (b): conditional correlation series of Thailand-
Brazil; (c): conditional correlation series of Thailand-Chile; (d): conditional correlation series of Thailand-Mexico;
(e): conditional correlation series of Thailand-Peru; (f): conditional correlation series of Thailand-Austria; (g):
conditional correlation series of Thailand-Australia; (h): conditional correlation series of Thailand-Canada; (i):
conditional correlation series of Thailand-France; The dotted line, which is associated with the day 07/02/1997,
divides the entire sample time into the tranquil period and crisis period.
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Figure C.2 (continued)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(f)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(g)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(h)

   04/01/96  07/01/96  10/01/96  01/02/97  04/01/97  07/01/97  10/01/97   
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(i)

Note: (a): conditional correlation series of Thailand-Germany; (b): conditional correlation series of Thailand-Italy;
(c): conditional correlation series of Thailand-Japan; (d): conditional correlation series of Thailand-Netherlands;
(e): conditional correlation series of Thailand-Spain; (f): conditional correlation series of Thailand-Sweden; (g):
conditional correlation series of Thailand-UK; (h): conditional correlation series of Thailand-USA; (i): conditional
correlation series of Thailand-China; The dotted line, which is associated with the day 07/02/1997, divides the
entire sample time into the tranquil period and crisis period.
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Figure C.2 (continued)
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Note: (a): conditional correlation series of Thailand-Korea; (b): conditional correlation series of Thailand-
Singapore; (c): conditional correlation series of Thailand-Malaysia; (d): conditional correlation series of
Thailand-Hong Kong; (e): conditional correlation series of Thailand-India; (f): conditional correlation series of
Thailand-Indonesia; (g): conditional correlation series of Thailand-Philippines; (h): conditional correlation series
of Thailand-Taiwan; The dotted line, which is associated with the day 07/02/1997, divides the entire sample time
into the tranquil period and crisis period.
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Figure C.3: Pair-wise conditional correlation series between Thailand and other 26 markets
at the third level
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Note: (a): conditional correlation series of Thailand-Argentina; (b): conditional correlation series of Thailand-
Brazil; (c): conditional correlation series of Thailand-Chile; (d): conditional correlation series of Thailand-Mexico;
(e): conditional correlation series of Thailand-Peru; (f): conditional correlation series of Thailand-Austria; (g):
conditional correlation series of Thailand-Australia; (h): conditional correlation series of Thailand-Canada; (i):
conditional correlation series of Thailand-France; The dotted line, which is associated with the day 07/02/1997,
divides the entire sample time into the tranquil period and crisis period.
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Figure C.3 (continued)
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Note: (a): conditional correlation series of Thailand-Germany; (b): conditional correlation series of Thailand-Italy;
(c): conditional correlation series of Thailand-Japan; (d): conditional correlation series of Thailand-Netherlands;
(e): conditional correlation series of Thailand-Spain; (f): conditional correlation series of Thailand-Sweden; (g):
conditional correlation series of Thailand-UK; (h): conditional correlation series of Thailand-USA; (i): conditional
correlation series of Thailand-China; The dotted line, which is associated with the day 07/02/1997, divides the
entire sample time into the tranquil period and crisis period.
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Figure C.3 (continued)
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Note: (a): conditional correlation series of Thailand-Korea; (b): conditional correlation series of Thailand-
Singapore; (c): conditional correlation series of Thailand-Malaysia; (d): conditional correlation series of
Thailand-Hong Kong; (e): conditional correlation series of Thailand-India; (f): conditional correlation series of
Thailand-Indonesia; (g): conditional correlation series of Thailand-Philippines; (h): conditional correlation series
of Thailand-Taiwan; The dotted line, which is associated with the day 07/02/1997, divides the entire sample time
into the tranquil period and crisis period.
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Figure C.4: Pair-wise conditional correlation series between Thailand and other 26 markets
at the fourth level
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Note: (a): conditional correlation series of Thailand-Argentina; (b): conditional correlation series of Thailand-
Brazil; (c): conditional correlation series of Thailand-Chile; (d): conditional correlation series of Thailand-Mexico;
(e): conditional correlation series of Thailand-Peru; (f): conditional correlation series of Thailand-Austria; (g):
conditional correlation series of Thailand-Australia; (h): conditional correlation series of Thailand-Canada; (i):
conditional correlation series of Thailand-France; The dotted line, which is associated with the day 07/02/1997,
divides the entire sample time into the tranquil period and crisis period.
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Figure C.4 (continued)
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Note: (a): conditional correlation series of Thailand-Germany; (b): conditional correlation series of Thailand-Italy;
(c): conditional correlation series of Thailand-Japan; (d): conditional correlation series of Thailand-Netherlands;
(e): conditional correlation series of Thailand-Spain; (f): conditional correlation series of Thailand-Sweden; (g):
conditional correlation series of Thailand-UK; (h): conditional correlation series of Thailand-USA; (i): conditional
correlation series of Thailand-China; The dotted line, which is associated with the day 07/02/1997, divides the
entire sample time into the tranquil period and crisis period.
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Figure C.4 (continued)
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Note: (a): conditional correlation series of Thailand-Korea; (b): conditional correlation series of Thailand-
Singapore; (c): conditional correlation series of Thailand-Malaysia; (d): conditional correlation series of
Thailand-Hong Kong; (e): conditional correlation series of Thailand-India; (f): conditional correlation series of
Thailand-Indonesia; (g): conditional correlation series of Thailand-Philippines; (h): conditional correlation series
of Thailand-Taiwan; The dotted line, which is associated with the day 07/02/1997, divides the entire sample time
into the tranquil period and crisis period.
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Figure C.5: Pair-wise conditional correlation series between Thailand and other 26 markets
at the fifth level
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Note: (a): conditional correlation series of Thailand-Argentina; (b): conditional correlation series of Thailand-
Brazil; (c): conditional correlation series of Thailand-Chile; (d): conditional correlation series of Thailand-Mexico;
(e): conditional correlation series of Thailand-Peru; (f): conditional correlation series of Thailand-Austria; (g):
conditional correlation series of Thailand-Australia; (h): conditional correlation series of Thailand-Canada; (i):
conditional correlation series of Thailand-France; The dotted line, which is associated with the day 07/02/1997,
divides the entire sample time into the tranquil period and crisis period.
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Figure C.5 (continued)
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Note: (a): conditional correlation series of Thailand-Germany; (b): conditional correlation series of Thailand-Italy;
(c): conditional correlation series of Thailand-Japan; (d): conditional correlation series of Thailand-Netherlands;
(e): conditional correlation series of Thailand-Spain; (f): conditional correlation series of Thailand-Sweden; (g):
conditional correlation series of Thailand-UK; (h): conditional correlation series of Thailand-USA; (i): conditional
correlation series of Thailand-China; The dotted line, which is associated with the day 07/02/1997, divides the
entire sample time into the tranquil period and crisis period.
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Figure C.5 (continued)
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Note: (a): conditional correlation series of Thailand-Korea; (b): conditional correlation series of Thailand-
Singapore; (c): conditional correlation series of Thailand-Malaysia; (d): conditional correlation series of
Thailand-Hong Kong; (e): conditional correlation series of Thailand-India; (f): conditional correlation series of
Thailand-Indonesia; (g): conditional correlation series of Thailand-Philippines; (h): conditional correlation series
of Thailand-Taiwan; The dotted line, which is associated with the day 07/02/1997, divides the entire sample time
into the tranquil period and crisis period.
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Figure D.1A
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Figure D.1: Price volatility and trading volume. The standard deviations of one-
minute price changes and the means of one-minute trading volumes, which are proxied
by the number of ticks in one minute intervals, at the same time interval across all 3003
trading days from February 3, 1997 to January 30, 2009 are shown in Figures [D.1A] and
[D.1B], respectively. The one-minute price changes are the calculated values times 102,
and the times shown on the horizontal line are the interval ending times.
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Figure D.2A
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Figure D.2: Price volatility and trading volume on announcement and nonan-
nouncement days. The standard deviations of one-minute price changes and the means
of one-minute trading volumes, which are proxied by the number of ticks in one minute
intervals, are reported for days with at least one of the seventeen announcements (solid
line) and days with none of these announcements (dashed line) in Figures [D.2A] and
[D.2B], respectively. The one-minute price changes are the calculated values times 102,
and the times shown on the horizontal line are the interval ending times.
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Figure D.3A
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Figure D.3: Price volatility and trading volume on announcement and nonan-
nouncement days in the expansion period. According to the NBER business cycle,
trading days from February 3, 1997 to March 30, 2001 and from December 3, 2001 to
December 31, 2007 are the expansion period. The standard deviations of one-minute price
changes and the means of one-minute trading volumes, which are proxied by the number
of ticks in one minute intervals, are reported for days in the expansion period with at least
one of the seventeen announcements (solid line) and days in the expansion period with
none of these announcements (dashed line) in Figures [D.3A] and [D.3B], respectively.
The one-minute price changes are the calculated values times 102, and the times shown
on the horizontal line are the interval ending times.
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Figure D.4A

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time−of−Day

S
ta

nd
ar

d 
D

ev
ia

tio
n

09
:3

0
09

:4
5
10

:0
0
10

:1
5
10

:3
0
10

:4
5
11

:0
0
11

:1
5
11

:3
0
11

:4
5
12

:0
0
12

:1
5
12

:3
0
12

:4
5
13

:0
0
13

:1
5
13

:3
0
13

:4
5
14

:0
0
14

:1
5
14

:3
0
14

:4
5
15

:0
0
15

:1
5
15

:3
0
15

:4
5
16

:0
0
16

:1
5

Figure D.4B
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Figure D.4: Price volatility and trading volume on announcement and nonan-
nouncement days in the contraction period. According to the NBER business cycle,
trading days from April 2, 2001 to November 30, 2001 and from January 2, 2008 to Jan-
uary 30, 2009 are the contraction period. The standard deviations of one-minute price
changes and the means of one-minute trading volumes, which are proxied by the number
of ticks in one minute intervals, are reported for days in the contraction period with at
least one of the seventeen announcements (solid line) and days in the contraction period
with none of these announcements (dashed line) in Figures [D.4A] and [D.4B], respectively.
The one-minute price changes are the calculated values times 102, and the times shown
on the horizontal line are the interval ending times.
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Figure D.5A
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2

4

6

8

10

12

Time−of−Day

T
ra

di
ng

 V
ol

um
e

09
:3

0
09

:4
5
10

:0
0
10

:1
5
10

:3
0
10

:4
5
11

:0
0
11

:1
5
11

:3
0
11

:4
5
12

:0
0
12

:1
5
12

:3
0
12

:4
5
13

:0
0
13

:1
5
13

:3
0
13

:4
5

14
:0

0
14

:1
5
14

:3
0
14

:4
5
15

:0
0
15

:1
5
15

:3
0
15

:4
5
16

:0
0
16

:1
5

Figure D.5: Price volatility and trading volume on announcement days in the
expansion period and in the contraction period. According to the NBER business
cycle, trading days from February 3, 1997, to March 30, 2001, and from December 03,
2001, to December 31, 2007, are the expansion period, and trading days from April 2,
2001, to November 30, 2001, and from January 2, 2008, to January 30, 2009, are the
contraction period. The standard deviations of one-minute price changes and the means
of one-minute trading volumes, which are proxied by the number of ticks in one minute
intervals, are reported for days in the expansion period with at least one of the seventeen
announcements (solid line) and days in the contraction period with at least one of the
seventeen announcements (dashed line) in Figures [D.5A] and [D.5B], respectively. The
one-minute price changes are the calculated values times 102, and the times shown on the
horizontal line are the interval ending times.
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Figure D.6A
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Figure D.6: Price volatility and trading volume on nonannouncement days in
the expansion period and in the contraction period. According to the NBER
business cycle, trading days from February 3, 1997 to March 30, 2001 and from December
3, 2001 to December 31, 2007 are the expansion period, and trading days from April
2, 2001 to November 30, 2001 and from January 2, 2008 to January 30, 2009 are the
contraction period. The standard deviations of the one-minute price changes and the
means of the one-minute trading volumes, which are proxied by the number of ticks in
one minute intervals, are reported for days in the expansion period with none of seventeen
announcements (solid line) and days in the contraction period with none of seventeen
announcements (dashed line) in Figures [D.6A] and [D.6B], respectively. The one-minute
price changes are the calculated values times 102, and the times shown on the horizontal
line are the interval ending times.
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Figure D.7A
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Figure D.7: The difference between static price changes. The times shown on the
horizontal line are the interval ending times. A news announcement is released at time t.
Price changes with and without the effect of a news announcement are shown by the solid
and dashed lines, respectively, in Figure [D.7A]. Under the impact of a news announcement
at time t on the market, price changes in the first scenario and in the second scenario are
drawn with a solid line and a dashed line, respectively, in Figure [D.7B].
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