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Abstract. Interactive theorem provers have been used extensively to
reason about various software/hardware systems and mathematical the-
orems. The key challenge when using an interactive prover is finding a
suitable sequence of proof steps that will lead to a successful proof re-
quires a significant amount of human intervention. This paper presents
an automated technique that takes as input examples of successful proofs
and infers an Extended Finite State Machine as output. This can in turn
be used to generate proofs of new conjectures. Our preliminary experi-
ments show that the inferred models are generally accurate (contain few
false-positive sequences) and that representing existing proofs in such a
way can be very useful when guiding new ones.
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1 Introduction

Interactive theorem provers (ITPs) provide a semi-automatic environment in
which a user can reason about the correctness of hardware and software sys-
tems and verify the proofs of significant mathematical theorems. Given a desired
property expressed in a formal logic, provers such as Coq and Isabelle
provide a framework by which to construct higher-order logic proofs in a step-
wise manner, drawing upon libraries of existing proven theorems. In the context
of computer mathematics, ITPs have successfully been used in the verification of
the Four Color Theorem ﬂgﬂ, the Kepler Conjecture and the Feit-Thompson
Theorem .

ITPs rely on the ability of an expert to choose suitable proof steps to ap-
ply. Clearly this requires not only the selection of the correct proof steps, but
also knowledge about how to sequence these proof steps in order to arrive at
a successful proof. To complicate matters further, the user must select suitable
parameters for these proof steps. In a significant development, the overall proof
effort can contain tens of thousands of lines. For example, Gonthier’s machine
checked proof of the Feit-Thompson theorem amounted to 170,000 lines of code.
This shows that a lot of human effort was needed to complete the proof.

Over the past decade, several semi-automatic tools have been developed to
simplify the verification process @ These tools adopt data mining
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and heuristic search strategies to identify proof patterns and to conjecture new
proofs. One outstanding challenge, recently highlighted by Grov et al. [12], is the
need to identify proof strategies. There is a desire not only to recognize common
syntactic patterns (as achieved by current techniques), but to take this one step
further and to capture the rules that govern the possible ordering of the proof
steps required to yield a successful proof. This is what motivates the work in
this paper.

Accordingly, we present a technique to derive sequential models (in the form
of Extended Finite State Machines (EFSM) [31]) from existing corpora of proofs.
These models can be interpreted as an instance of the proof strategies referred
to by Grov et al. The models capture the reasoning patterns that bind groups
of proofs together, and in doing so capture the possible sequences of proof steps
that have led to successful proofs. Corpora that contain tens or hundreds of
proofs can be collapsed into (relatively) compact, graphical models. We show
how these models can be used to the benefit of interactive theorem prover users.
The specific contributions of this paper are:

— A technique to automatically derive EFSM models from libraries of interac-
tive proofs (Section [3).

— An evaluation that indicates that the models are broadly precise and can be
used as an aid to yield proofs of new propositions, and to shorten existing
ones (Section [4)).

All of the example data used in this paper, along with links to EFSM inference
tool can be found online [l

2 Background and Related Work

This section discusses the problem that ITPs demand a significant amount of
time and effort to complete the proof process. After reviewing some previous
work focussed on aiding with this problem, we introduce Extended Finite State
Machines as a possible mechanism to improve proof development by representing
existing proofs by means of a descriptive, sequential model.

2.1 Interactive Theorem Provers

The expressiveness of interactive theorem provers has led to an abundance of
formal proofs becoming available in proof libraries that are distributed with
each system. These proof libraries can then be used during the development of
new proofs. As with conventional programming languages, developers can build
up and exchange their own libraries of proofs to suit their particular domain.
Nevertheless, most non-trivial proofs still require an extensive manual effort -
Wiedijk states that it takes as long as one week to formalize one page from an
undergraduate mathematics textbook [34].

!nttp://www.cs.le.ac.uk/people/tg75/efsmdata/


http://www.cs.le.ac.uk/people/tg75/efsmdata/

The emergence of tools such as Sledgehammer [29] has reduced this effort to
an extent, by enabling Isabelle to call on powerful external Automated Theorem
Provers (ATPs) that attempt to solve the goal automatically. Although such
tools have been proven to have great value, they require extensive research into
the translation between different logics as ATPs utilize different logics to the
higher order varieties typically used in ITPs [27]. An empirical study of Sledge-
hammer [3] indicated a success rate of 45% at proving goals from 7 Isabelle
theories (known collectively as the Judgement Day benchmark).

Another method of reducing human intervention is called proof planning [4].
Proof planning allows the encoding of reusable strategies that are used to guide
proof search - for example many inductive proofs follow a similar pattern which
can be encoded as a proof plan. A typical proof plan contains preconditions to
state when then plan is applicable, a postcondition stating the effects of executing
the proof plan, and the relevant proof steps to apply. Proof planning has been
implemented for Isabelle by a tool called IsaPlanner [6].

An interesting strand of research is the use of machine learning techniques
to improve theorem proving by guiding the proof search or suggesting hints
to users. One area that has benefitted greatly from machine learning is the
premise selection problem [1,|18]. Informally, this is the problem of selecting
useful premises (from a large collection) to automatically solve a new proposition.
By utilizing machine learning techniques, the performance of ATPs on large
theory reasoning significantly improved on the state of the art [19]. Recently,
machine learning capabilities have been added to Sledgehammer [22]. By using
the same empirical study (Judgement Day [3]) that was used to evaluate the
original Sledgehammer, it was shown that using machine learning can improve
the percentage of completed proofs to 70%.

Recently, there has been the emergence of a tool called ML4PG [21] that uses
statistical machine learning techniques to identify commonalities between Coq
proofs. Given a proposition that a user is trying to prove, ML4PG can automat-
ically identify clusters of existing lemmas that follow a common proof strategy.
The user can then interpret the results and formulate the proof themselves by
analogy, using the suggestions provided. ML4PG has been shown to work in a
variety of areas such as computer algebra [15] and industrial proofs [16].

2.2 Motivating Scenario

To motivate our work, let us consider the following scenario. A novice user is
trying to prove (in this case using Coq) the following app_nil_l proposition stating
that an empty list appended to a list 1 should result in 1:

Lemma app-nil l: forall 1:1list A, [] ++ 1 = 1.

We assume that the user will be aware of the possible proof methods available
in Coq. However it may be unclear how one would sequence these proof methods
to arrive at a successful proof. One approach that a user could try might be to
manually scour existing proofs to find a sequence of proof steps that will prove



app_nil_l. However, keeping track of the relevant proofs and identifying useful
reasoning patterns is time-consuming.

Even for this relatively simple example, finding a proof requires some careful
manual processing of the relevant proof libraries. In large scale developments,
the task of manually searching through proof corpora to identify the correct
steps is generally not practical. We present an automated method based on state
machine inference techniques. By providing examples of successful proofs we can
generate a model capturing all of the reasoning patterns that occur within the
chosen corpora of proofs. This model can then be used to drive the proof search
by presenting options to the user about which proof steps to try.

2.3 State Machine Inference

State machine inference techniques can address the challenge of identifying the
rules that govern a particular sequencing of events. The problem of deriving
a model from sequences of events was introduced by Gold in 1967 [8]. Since
then it has become a well-established problem, spawning several families of al-
gorithms for different types of models, learning settings and problem domains.
The archetypal model for sequences of events is the Finite State Machine (FSM).

Definition 1. Finite State Machine A Finite State Machine (FSM) is de-
fined as a tuple (S, so, F, L, T). S is a set of states, so € S is the initial state, and
F C S is the set of final states. L is as defined as the set of labels. T is the set
of transitions, where each transition takes the form (a,l,b) where a,b € S and
l € L. When referring to F'SMs, this paper assumes that they are deterministic.

In the past 40 years numerous algorithms have been developed to infer FSMs
(equivalently regular grammars) from observed sequences of events [2,[23,[33].
These sequences are referred to as traces, and are recorded from the system
under analysis. The challenge is to derive from the set of traces a FSM that
accurately captures the set of all valid sequences of events, even if they do not
belong to the initial set of traces.

Such techniques have previously been applied to proof planning. Jamnik et al.
|17] used an Inductive Logic Programming technique to infer what are ultimately
regular expressions from well chosen sets of proof methods. For example, if we
have the following two proofs (where a-d are proof methods): [a, a, ¢, d]
and [a, b, d] they may be generalized as the following: [ax, [blc], dI.

The value of even such a basic model is intuitive. Jamnik et al. demonstrated
that the models were useful for the automatic generation of new proofs in the
{2MEGA prover. However, the proof steps that were learned in the examples do
not contain any parameters, they are simply method names meaning that this
kind of model is too basic to be applied to provers such as Isabelle and Coq. A
proof in either of these provers not only relies on the sequencing of the proof
steps, but also the values of the parameters provided to these steps.

To combat this problem, this paper explores the use of the Extended Finite
State Machines [5] as a means of modelling examples of successful proofs. EFSMs



extend the traditional FSM. Transitions are labelled with guards on an under-
lying data store (although the update functions on the store are not explicitly
modelled).

Definition 2. Extended Finite State Machine An Extended Finite State
Machine (EFSM) M is a tuple (S, s, F,L,V,A,T), where S,so, F and L are
defined as in a conventional FSM. V is a store represented by a set of variables,
and v represents a set of variable values. A is the set of data guards, where
each gquard & takes the form (I,v), where | € L, v € V is the set of possible
data variable configurations specified by the guard. The set of transitions T is

an extension of the conventional FSM version, where transitions take the form
(a,1,6,b), where a,b € S, 1 € L, and § € A.

Definition 3. Traces A trace T = (eg,...,e,) is a sequence of n trace ele-
ments. Fach element e maps to a tuple (I,v), where | is a label representing the
names of function calls or input / output events, and v is a set of corresponding
variable values (this may be empty).

In recent years, algorithms have been developed to infer EFSMs from traces of
events [25//31], where events are paired with a selection of variable values. In this
work we choose the EFSMInfer tool by Walkinshaw et al. [31], which has been
shown to be reasonably accurate when applied to the task of reverse-engineering
models of software modules. We provide a brief overview of the essential steps
of the approach below.

Given a set of traces (see Definition , the approach first infers the guard
conditions. For each symbol [ € L the trace is scanned, identifying every instance
where [ is applied, the variable values v at that instance, and the label of the
subsequent step in the trace. This is used to construct a training set where,
with the use of standard machine learning algorithms (e.g. decision tree learners
like [30]), it is possible to construct a model that predicts from a given pair
label and data configuration what the subsequent label will be. In terms of
EFSMs, this gives us L, V, A, and implies some constraints on the order in which
particular configurations of labels and variables can occur.

The subsequent task is to derive an underlying state transition model that
obeys and incorporates these data guards. To achieve this EFSMInfer applies
an augmented version of the standard FSM state merging algorithm (Lang’s
Blue-Fringe algorithm [23]). The set of traces is first arranged as a prefix tree
[33], where traces with the same prefix also share the same path from the root.
Subsequently, states in the tree are merged according to the likelihood that they
represent the same state, based on the similarity of their outgoing paths.

Since this model incorporates data, the merging process includes a step to
ensure that the model remains consistent with the data guards. Each transi-
tion in the tree is mapped to its corresponding variable configurations. Pairs of
states are only merged if the resulting model completely obeys the data classi-
fiers (guard conditions) that were obtained in the previous step. If the inferred
data model predicts that the data value for a given transition is followed by
a label [, any merge involving the target state can only occur if the resulting



state machine contains an outgoing transition that is labelled by [. After each
merge, the resulting state machine is further post-processed to ensure that each
transition is deterministic [31].

EFSMInfer has several optional parameters. The most important parameter
is the choice of data classifier algorithm, which is used to infer the guards on the
transitions. For this, EFSMInfer incorporates several standard algorithms that
were implemented as part of the Weka [|14] toolset. In our experiments, we will
adopt the default parameters in EFSMInfer.

3 Inferring EFSMs from Proof Corpora

This paper shows how the EFSMInfer tool can be used to derive models from
proofs that not only describe the possible sequences of proof steps that have been
used in existing proofs, but also the necessary parameter values associated with
these proof steps. Although previous work on EFSMs has focussed on program
execution traces, they also appear to be well suited to the domain of interactive
proofs where we want to capture the interplay between control (proof steps) and
data (parameters).

In this section, we describe the process of inferring EFSMs from proofs, and
provide a description about how such a model can be interpreted. We begin by
showing how existing proofs can be converted into traces, before demonstrating
how the model is inferred from these proof traces. The example model shown
in this section is for a set of proofs called ListNat, that contains proofs about
simple properties of lists and natural numbers.

3.1 Turning existing proofs into proof traces

A typical tactical proof scriptE| contains many examples of propositions that have
been proven, along with the sequence of proof steps that the expert user entered
to complete the proof. Each proof step has the structure: proof_method p; . ..py,
where proof_method refers to a Coq command (e.g. rewrite, apply, intros)
and p;...p, constitutes the parameters provided to the Coq command. The
parameters refer to many different entities such as existing lemmas, rewrite rules
or may be related to variables in the goal.

As shown in Table[1] the encoding of Coq proofs is a straightforward trans-
lation into the trace format shown in Definition [3] With respect to the tuple of
labels and variables (I,v), the proof_method would correspond to [ whilst the
parameters p;i ...p, correspond to v. If a proof method doesn’t have any pa-
rameters provided to it, we indicate this by appending 0 to the end of the proof
method (i.e. in Table |1| we see introsg). Also, if proof steps are part of a com-
bination, which is denoted by the presence of a semicolon separating individual
proof steps, we encode this information as part of the trace. If two proof steps

2 Although this work concentrates on Cogq, the method in principle can be applied to
other ITPs.



are put in combination, it means that the first proof step is applied, and then
the next one applied to all subgoals generated. Including this information in the
model is useful so that we know when applying proof steps whether they should
be combined.

Table 1. Original proof and proof trace for an example lemma

(a) Proof Script (b) Trace
Event e|Label [ |Values v
Lemma ex : (n*m = 0)->(n=0)\/(m=0). eo introsp O
intros. . . 738}
induction n. €1 induction <p1 =n >
tauto. e tautog <>
simpl in H. : ) 9
Zight. es S}mpl (p1 in H”)
assert (m <= 0); €4 I‘lghto <>
try omega. es assert (p1="“m <07, p2 =7)
rewrite <- H. o« ”
auto with arith. €6 try . (p1 = “omega”)
Qed. er rewrite |[(p1 = “ <+ H”)
es auto (p1 = “with arith”)

3.2 Inferring the model

After converting each proof into its corresponding trace, it becomes possible to
infer a model from a collection of these traces. We choose the standard config-
uration for the EFSMInfer tool and, for the sake of illustration select the J48
decision tree learner (a Weka implementation of the C4.5 algorithm [30]). Having
chosen the classifier we can run the EFSMInfer tool and generate an EFSM.

To begin with data classifiers are inferred that, for each proof_method, pro-
duce a function that uses the parameters to predict the subsequent transition
in the model. An example data classifier can be seen in Figure [I[a) for the
induction proof method. The data classifier is interpreted as follows: if the pa-
rameter p; is equal to n,a or I, then the subsequent proof method should be
simpl. If py is equal to m then the following proof method should be trivial.
Although not the case here, the C4.5 algorithm can produce more complex trees
of if-then-else rules governing the possible value ranges for parameters if neces-
sary.

Once the data classifiers have been inferred, the state merging can commence.
Initially, the set of proof traces is arranged as a prefix tree. The tree for our
example is shown in Figure b). The labels are unreadable, but the purpose is
merely to give an intuition of what the tree might look like, and to illustrate
the ensuing state merging challenge. Each transition in the tree is associated
with a label (which is linked to one of the inferred data classifiers), along with
the variable values that correspond to that transition. The inference challenge
for the merging algorithm is to select compatible pairs of states to be merged.



These states should have similar outgoing paths, should not entail the merging
of states that are incompatible (e.g. accepting and rejecting), and should not
raise contradictions with the inferred data classifiers (as discussed in Section .
The final EFSM is shown in Figure c). The constraints on the transitions
detail the parameter configurations that are associated with each transition.
The model is deterministic; for any state there is never more than one outgoing
transition for a given combination of label and variable configuration.

4 Using EFSMs in Interactive Theorem Proving

This section seeks to determine the potential value of inferred EFSMs as a guid-
ance mechanism for users of interactive theorem provers. To assess the EFSMs
when applied to proofs, we conduct an automated experiment to measure the
accuracy of the models, whilst also producing a more informal, qualitative case
study to show how the models can be used to manually derive new proofs. Our
notion of accuracy revolves around the inferred EFSM’s ability to distinguish
whether a proof should be accepted by the model or not. We conclude the sec-
tion by highlighting some future work to improve our current technique.

4.1 Assessing the accuracy of inferred EFSMs

Measuring accuracy. Measuring the accuracy of inferred models is challenging,
especially in the absence of “gold-standard” models that could be used as a
reference. In machine learning this problem is common. One of the most popular
evaluation techniques that can be used in such a situation is known as k-folds
cross validation [20]. The dataset is randomly partitioned into k non-overlapping
sets (also known as folds). Over k iterations all bar one of the folds are used to
infer a model, and the remaining fold is used to evaluate the model according to
some metric (discussed below). For each iteration a different fold is used for the
evaluation. The final accuracy score is the average of the k accuracy scores.

Of course, given the probability that the given set of proofs is not “rich
enough”, the accuracy score cannot be interpreted as an absolute score of the
accuracy of the model. However, if we accept that the test set captures a rep-
resentative set of proofs for a given domain, then the resulting scores can be
interpreted as being at least indicative of the actual accuracy score.

To assess ‘accuracy’ there are many metrics that we can choose as a mea-
surement such as precision, sensitivity and specificity. All are computed from the
set of true-positives (TP), true-negatives (TN), false-positives (FP) and false-
negatives (FN). In this experiment we choose sensitivity (TP/(TP+FN)), and
specificity (TN/(TN+FP)).

Negative examples. As indicated above, fully assessing sensitivity and specificity
implies the existence of “negative” proof traces - traces that do not correspond
to valid proofs (and therefore should not lead to accepting states in an inferred
model). For the purposes of this evaluation we have selected some of the positive



simpl/0

MODEL FOR:induction
J48 pruned tree

(pl = n): simpl A
(pl = a): simpl

(pl = m): trivial

(p1 = 1): simpl

(a) Data rules for induction

intro/0

rewrite
((p1 =addSn)||(p1 = mulSn )|
(p1 =addnCA )||(pl =H )
|l(p1 = O_minus )||(p! = mulnS )
[[(pl =plus_Sn_m)||(pl =<-plus_n_Sm)
|[(p1 = app_nil_12)|[(p] =<-plus_n_O)
[(p1 =<-mult_n_O)||(p! =THn)|
(p1 =<-mult_O_n)|(pl =IHI)|(p1 = <-IHa )||(p1 = <- IHn )|((p1 = IHm ))

((p1=m))

lsimpl/0

rewrite

(p1 =IHL)||(p1 = <-IHa )|[(p1 = <-IHn )|[(p1 = IHm ))
simpl/0

rewrite

(p1 =IHD)||(p1 = <- IHa )|[(p1 = <- IHn )[(p1 = IHm ))

intro
(1 =1)(pl =m)]
(p1=n)(pl =H)|
((p1=2))
intros/0
intros

intro
(P11 =D)l(p1 =m)|(p1 =n)l(p1 = H))

(pl =<-plus_n_O)||(p] =<-mult_ n_O)|[(p] =IHn)||(pl =<-mult O _n) b

|[(p1 = O_minus )|[(p1 = mulnS )
[[(p1 =plus_Sn_m )||(p] =<-plus_n_Sm))

simpl/0

induction

((p1=m))

trivial/0
simpl/0

©
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©
eJoJo

(b) Prefix tree

induction
((p1=n)
(pl=a)|
(p1=1))

rewrite

((p1 = addSn)||(p! = mulSn )||(p! = addnCA )|
(pl1=H)|((p] =O_minus )||(p1 = mulnS )
[[(p1 =plus_Sn_m )||(p] =<-plus_n_Sm))

((pl =<-plus_n_O)|[(pl =<-mult_n_O)||(pl =IHn )|[(pl =<-mult O n)

rewrite
i ((pl =<-plus n O)l(pl =<-mult n O Ypt= Pl=<-mult O n)
« (p1 =IHD)||(p1 = <-IHa )|[(p1 = <- IHn )|[(p1 = IHm ))
simpl/0
rivial/0
O

(c) Inferred EFSM

Fig. 1. PTA and inferred EFSM for ListNat traces.



Table 2. Proof libraries, and the accuracy of the inferred models.

Data Set Proofs Lines|Sensitivity Specificity
ListNat 70 660 0.84 0.81
Bool 100 809 0.95 0.55
Coqglib 100 1326 0.22 0.96
Values 85 1188 0.24 0.98

examples and mutated the sequences of proof steps by randomizing them. In
addition to this, we provide sequences of proof steps from theories that are
different from the ones we have inferred a model from. In practice, these negative
examples could be captured from proof attempts that have failed to prove a
proposition. In each experiment, we use approximately 30 negative examples.

FEvaluation process. To get an idea how accurate our inferred models are we use
k-folds cross validation each of our datasets. We set the number of folds k = 5
to ensure that we have an adequate sized evaluation set at each iteration. At
each iteration of the k-folds an EFSM is inferred from the traces contained in
the training set. We then run the traces from the evaluation set and the negative
traces through the model, logging whether they are accepted or not. From this
we can compute sensitivity and specificity. Since the inference of the guards in
the EFSM depends on the selection of a suitable data classifier algorithm, we
repeat the experiment for five data classifiers provided in EFSMInfer.

Data sets. We chose four sets of Coq proofs, which are listed (along with the num-
ber of proofs and lines of code) in Table ListNat contains proofs regarding the
basic properties of lists and natural numbers. Bool contains proofs about boolean
values. To complement these datasets, we also chose two theories contained in
CompCert [24], which is a formally verified C compiler. The Coqlib theory con-
tains proofs about functions used throughout CompCert, whilst Values focuses
on proofs related to run-time values. All of our datasets are composed of hand
curated proofs so that the models don’t simply contain calls to automated tactics
that may solve the goal instantly.

Results. For each proof set, the choice of data classifier algorithm made a
negligible difference to the results. The five classifiers (all part of the Weka
distribution [14]) were J48, NaiveBayes, NNGE, AdaBoostDiscrete and JRIP.
Our results in Table [2] show the values obtained from using the J48 classifier.
For all systems apart from Bool, the specificity measures are all 85% and above.
In these cases there were very few false-positives (meaning that a low proportion
of negative examples were falsely accepted by the model).

The sensitivity values vary substantially depending on the dataset used. The
ListNat and Bool datasets have reasonably high sensitivity values (both over
80%), indicating that they were good at predicting new proofs that did not be-
long to the training data. Coglib and Values had low sensitivity scores, meaning



that the inferred models failed to predict a large proportion of proofs that were
not in the training set.

In the cases of Coqlib and Values, the low sensitivity scores are not partic-
ularly surprising and is to an extent inevitable. Whereas the proofs in ListNat
and Bool are relatively homogeneous because they are concerned with specific,
simple data structures, the proofs in Coqlib and Values are highly diverse and
have less common reasoning patterns than the other libraries. Coqlib provides a
general library of proofs that are intended for use in almost any context. Values
provides proofs that apply to the values of variables in a compiler and, given
that CompCert is entirely concerned with a compiler verification, plays a central
role in the diverse range of contexts within CompCert.

In such cases, the EFSMInfer tool is inevitably only provided with a small
fraction of the proofs that are required to constitute a truly ‘representative’
training set. Accordingly, the tool is bound to under-generalize, resulting in
models that are too conservative; the proofs that they predict are largely valid,
but they invariably miss out many other proofs that are in fact valid.

4.2 Case Studies

Although the results from the previous section provide us with a qualitative
assessment of the accuracy of the inferred models, they only provide a limited
insight into the practical value of the models from a user’s perspective. We
conclude this section with a detailed walk through the process of how a user
can derive a proof using an EFSM as guidance. We show two case studies that
demonstrate the process of using an EFSM during the proof process.

In the subsequent examples, we model the following scenario. Let us assume
that we have a collection of existing proofs available; ListNat contains proofs
about lists and natural numbers and is used in case study 1. The Bool dataset
contains proofs about boolean values, which we use in case study 2. We then
suppose that we task a Coq user to prove one of the lemmas in the dataset (and
allow them to use the remaining proofs to infer a model from). We demonstrate
that in each case we can be led to a proof using the model as guidance. We then
compare the EFSM based proof with the original proof from each dataset. In
both cases, we see interesting results when we compare.

Example 1 Let us refer back to the motivating example from Section [2] where
the user is tasked with proving the app_nil_l proposition, which is part of the
ListNat dataset. As an exercise, let us assume that the user has been given
the remainder of the ListNat proofs (minus the proof for app_nil_l). Figure c)
shows the EFSM associated with this example and was inferred from every proof
in ListNat minus app_nil_l. The process that one might follow to derive a proof
from the model is as follows:

— Our main choices to start the proof are induction or intros. We know
that typically proofs containing lists begin with induction, and the model



also suggests parameter p; = 1, so we select the first step of the proof as
induction 1.

— The first subgoal that needs proving is the base case showing that appending
2 empty lists together results in the empty list. The options that the model
suggests are the following - trivial, simpl or rewrite. This particular
subgoal is a simple equality, so it suffices to choose trivial as the next
proof step.

— We can now move on to the inductive step. The model then presents us with
3 more options - intro, simpl or rewrite. None of the parameters suggested
for rewrite seem to be applicable, they are more suited to natural number
proofs. There is nothing we can introduce, so we choose to simplify using
simpl.

— There is only one possible step that can follow, which is rewrite. Besides a
couple of existing lemmas regarding natural numbers, the model seems to be
suggesting rewriting the inductive hypothesis. By analogy with the model
we choose the parameter p; = <- IHI.

— Finally, we can complete the proof (and arrive at an accept state) by using
trivial.

We have shown by using an EFSM that one way of solving app_nil_l would
be to use the following sequence of proof steps:

induction 1. trivial. simpl. rewrite <- IHl. trivial.

So how does this proof compare against the original proof for the same proposi-
tion in ListNat? The existing proof was the following:

intro 1. case 1. simpl. trivial. intros a0 10. simpl. trivial.

Interestingly, the proof found by using the EFSM was two steps shorter, and
also required less effort in identifying the parameters required for the proof
steps. Additionally, the sequence found from traversing the EFSM was (at least
not in its entirety) part of the training data, and was only found as a result of
inferring an EFSM.

Example 2 In our second example, we try to prove the following proposition:
negb(bl || b2) = negb bl && negb b2, which states that (for two boolean val-
ues bl and b2) if bl or b2 is false, then bl is false and b2 is false. We infer a
model from all of the other proofs available in the Bool dataset. The correspond-
ing model for this example can be found on the authors webpage'. The process
of using the model to arrive at a proof is the following;:

— To begin the proof, the model suggests either destruct or intros. We try
the intros path first as there are quantified variables that we can introduce,
but we are then led to a state where nothing is applicable. So we must use
destruct instead. There are numerous parameters that are suggested, but
we see that we have bl and b2 in our goal, so it makes sense to choose
parameters that include one of these. We decide to set p; = bl and py = ;
to make the proof step destruct b1l ;



— We are presented with a number of options, most of which we can rule out
due to not being applicable e.g. rewrite, case. We do have a boolean b2
in our goal, so we follow the suggested step - destruct b2 ;

— At the next node, there are 2 possible paths. One involves the rewrite,case
steps that we still cannot apply. We take the path that uses the simplifying
method simpl and the suggested parameters which are p; =in |- * and
P2 =3

— Finally, the model suggests trivial or reflexivity to complete the proof.
Either of these lead to the proof, but we choose the trivial method for the
purposes of this example.

We have again been led to a proof by following the guidance provided by the
EFSM. The proof that corresponds to the sequence above is the following:

destruct bl; destruct b2; simpl in |- *; trivial.

The original proof from the Bool dataset corresponds to the following proof
steps:

intros; destruct_all bool; simpl in |- *;trivial;try discriminate

Although only 1 step shorter this time, we have again shown that using an EFSM
to complement the proving process can yield useful results. In this particular
example, we have shown that there is a smaller number of distinct proof methods
used in the newly found EFSM based proof than in the original one.

4.3 Threats to validity

It is important to bear in mind that these results are primarily intended to
be indicative, and as such there are several elements in the design that could
potentially invalidate the results. Firstly, we have only chosen four data sets for
our experiments. Clearly there may be other collections of proofs that could lead
to much better or worse results than the ones described here. Nevertheless, we
chose these data sets to ensure a highly diverse selection that covered a wide
broad variety of examples. Another potential threat is the generation of the
negative examples that factor into the calculation of sensitivity and specificity.
By manually inspecting the generated examples we tried to not select negative
traces that were too easy to identify as such.

4.4 Improvements and Future Work

Although we have shown that inferring models can be useful in the proof pro-
cess, we haven’t yet discussed the current limitations of the approach. We have
identified the following areas where our EFSM-based approach can be improved,
and in doing this can lead us towards our overall aim, which is to automatically
complete proofs using EFSM-based approaches.

The way we choose to represent parameters in the EFSMs can be improved.
Currently everything is treated entirely textually, so an interesting avenue for



future work would be to abstract away from the actual variable names and
investigate the inclusion of the types of the variables instead. This would help
to simplify the models, whilst also making them applicable to a larger range of
propositions.

Another limitation is being able to identify the relevant paths through the
model for any given proof. From a user’s perspective, when presented with a small
model such as the one shown in Section |3|) they can simply evaluate the options
and each step and make an informed choice. We are ultimately interested in a
system that can execute the EFSM automatically to derive proofs. This could
be done in a number of ways, for example by using a Breadth-First Search of
the EFSM to check the applicability of proof steps, or by using evolutionary
algorithms.

The negative information that we used in the experiments is not entirely
accurate, in the sense that a more robust selection of negative examples could be
actual failed proof attempts. In addition to improving the quality of the negative
examples, we are also interested in the incorporation of this negative information
within the model [32]. By including this information within the model, we may
be able to infer much more accurate models of proofs.

A final consideration is the selection of proofs that we infer EFSMs from. The
approach we use in this paper is to select similar proofs in the sense that proofs
are grouped together because they all deal with a similar data structure, or are
contained within the same theory file. An interesting addition to our tool would
be to make use of proof filtering tools such as ML4PG [21]. By using ML4PG,
we could inspect the proof obligation that we are trying to prove, before being
presented with the most relevant proofs (as suggested by ML4PG). We can then
use these suggestions as input to EFSMInfer, instead of a collection of manually
selected proofs.

5 Conclusion

We have shown how EFSMs can be derived from existing proof corpora. These
state machines have proven to be useful as they can reduce large, complex proof
files into a more manageable, concise representation. In our evaluation, we have
demonstrated that the models are reasonably accurate and that they can be used
to derive new proofs. We have also shown that in comparison to existing proofs,
the EFSM based ones can be shorter and less complex that the original. The
models not only show a user the possible sequencing of proof methods (which is
valuable enough information on its own), but also help to suggest the parameters
that may be useful in completing a proof. Finally, we have highlighted some areas
for improving our technique in the future.
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