
Development and Assessment of a Tool to Support

Pattern-based Code Generation of Time-Triggered

(TT) Embedded Systems

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

Chisanga Mwelwa BEng (Hons)

Department of Engineering, University of Leicester

Leicester, United Kingdom

October 2006

UMI Number: U601350

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U601350
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

D e v e l o p m e n t a n d A ss e s sm e n t o f a T o o l to Su p p o r t P a t t e r n -b a se d C ode

G e n e r a t io n o f T im e -T r ig g e r e d (T T) E m be d d e d Sy st e m s

Chisanga Mwelwa

Department of Engineering, University of Leicester, Leicester, United Kingdom

Abstract
This thesis is concerned with embedded systems which employ time-triggered software

architectures and for which there are both severe resource constraints and a requirement for

highly-predictable behaviour. The thesis discusses design patterns and their benefits to software

development and reviews a pattern language (the PTTES collection) previously assembled to

support the development of time-triggered embedded systems.

As embedded systems become ever more complex and - in many cases - take on an

increasing role in safety, it is widely recognised that developers require tools and techniques that

support the ‘automatic’ generation of such designs. This thesis makes a novel contribution to the

field of pattern-based automated code generation and illustrates the capabilities of this approach

in the development of reliable time-triggered embedded systems. Specifically, the approach

described in this thesis addresses a key limitation of previous work in this area, namely the

challenge of implementing the ‘one pattern, many implementations’ relationship. Furthermore,

unlike previous pattern tools, the approach described in this thesis is based on a substantial

pattern language: this paves the way for the generation of coherent application code from groups

of related patterns.

To test the above ideas, the thesis describes PTTES Builder, a pattern-based code

generation tool based on the PTTES collection. In an empirical study, the effectiveness of the

PTTES Builder approach is compared with an equivalent ‘manual’ approach. The results

obtained demonstrate that time-triggered embedded systems can be created using this approach.

There is also some evidence that the use of the tool is likely to lead to improved code reliability

and quality. In a second study discussed in the thesis, there are indications that the approach

implemented by PTTES Builder is robust enough to support the evolution of its underlying

pattern collection.

The thesis concludes by making a number of suggestions for future extensions to this

work.

-11 -

Acknowledgements
I would like to thank a number of people who have supported me in one way or another during

the course of this project.

First and foremost, Dr Michael Pont (my supervisor) for introducing me to patterns, an

inspiration of this work. Also, for his continued enthusiasm, guidance and valuable support

during the course of this project. It has been a sincere pleasure working with you.

My sincere thanks go to the EPSRC and Dr David Ward (on behalf of MIRA Ltd) for

financially supporting this project.

I would also like to thank Dr Fernando Schlindwein and Dr Da-Wei Gu for their useful

feedback at various stages of this work.

Thanks also go to the members of the Embedded Systems Laboratory (ESL) whom I

have had the pleasure of knowing. Devaraj Ayavoo for his co-operation during a number of

research collaborations and the other members of the group who have been good company when

work was not on the agenda.

I would also like to thank my parents for their support and encouragement. My brothers:

Pilula, Mulenga and Chishimba for having an interest in my work.

Last but not least, Micah for being an untimely blessing and pleasant distraction during

the course of this write up, I hope this inspires you some day.

Contents
Abstract.. ii

Acknowledgements..iii

Contents... iv

List of Abbreviations and Acronyms... vii

List of Figures.. viii

List of Tables..x

List of Associated Publications... xi

Part I: Introduction... 1

1 Introduction..2

1.1 Embedded systems and their importance in modem society.. 2

1.2 Developing embedded systems..6

1.3 Overview of thesis contributions..7

1.4 Thesis structure...7

Part II: Literature Review ..9

2 The Architecture of an Embedded System...10

2.1 T erminology... 10

2.2 Overview...11

2.3 Hardware architecture... 11

2.4 Software architecture... 13

2.5 Discussion..17

2.6 Chapter conclusions... 18

3 The Origin of Design Patterns.. 20

3.1 Christopher Alexander...20

3.2 Software patterns... 24

3.3 Chapter conclusions...30

4 Patterns for Time-Triggered Embedded Systems... 31

4.1 The rationale for the PTTES collection.. 31

4.2 The PTTES form ... 33

4.3 How useful is the PTTES collection?..37

4.4 Chapter conclusions...41

5 Automated Code Generation.. 42

5.1 Programming languages and automatic programming systems.......................................42

- iv -

5.2 Model-based code generation.. 43

5.3 Automating the application of software patterns...46

5.4 Pattern-based code generation... 48

5.5 Chapter conclusions...49

Part III: A Novel Approach to Support Code Generation Using a Pattern

Language.. 51

6 Pattern-based Code Generation - Challenges and Solutions... 52

6.1 The ‘one pattern, many implementations’ challenge.. 52

6.2 Addressing the ‘one pattern, many implementations’ challenge....................................... 53

6.3 A meta-model for the PTTES collection.. 56

6.4 Applying the PTTES meta-model...59

6.5 Chapter conclusions...61

7 PTTES Builder: A Pattern-based Code Generation CASE Tool....................................... 62

7.1 Overview of PTTES Builder..62

7.2 The PTTES repository...62

7.3 The code generation process..67

7.4 The user interface.. 70

7.5 Chapter conclusions...72

8 Developing a TT Application Using PTTES Builder..73

8.1 Developing an automotive cruise control system... 73

8.2 Using PTTES Builder to develop the CCS...74

8.3 Observations and results... 81

8.4 Chapter conclusions...82

Part IV: Assessing the Pattern-Based Code Generation Approach.............................84

9 An Assessment of the Approach...85

9.1 Overview of the study...85

9.2 A cruise control system test bed .. 85

9.3 Assessment methodology... 86

9.4 Metrics and measurement procedure...86

9.5 Results...87

9.6 Chapter conclusions...89

10 Evaluating the Extensibility of the Approach...90

10.1 Overview..90

10.2 Case study setup..90

10.3 Results.. 92
- v -

10.4 Chapter conclusions.. 95

P a r t V: To C o n c l u d e ...97

11 Thesis Conclusions.. 98

11.1 Summary...98

11.2 An analysis of the contributions..99

11.3 Limitations and future w ork...100

Bibliography...103

Appendix A The PTTES Collection...A-l

Appendix B PTTES User Survey Questionnaire.. B-l

Appendix C Two Patterns to Support Embedded Systems Development......................... C-l

Appendix D Abstracts of Associated Publications...D-l

- vi -

List of Abbreviations and Acronyms
ACM Association for Computing Machinery
ADC Analogue to Digital Converter
CASE Computer Aided Software Engineering
CCS Cruise Control System
CMFD Condition Monitoring and Fault Diagnosis
CPU Central Processing Unit
DAC Digital to Analogue Converter
EDF Earliest Deadline First
ESL Embedded Systems Laboratory
IDE Integrated Development Environment
ISR Interrupt Service Routine
J2EE Java 2 Platform Enterprise Edition
LCD Liquid Crystal Display
LOC Lines of Code
MDA Model Driven Approach
OMG Object Management Group
OOPSLA Object-Oriented Programming, Systems, Languages & Applications
PDM Platform Definition Model
PID Proportional Integral Differential
PIE Pattern Implementation Example
PIM Platform Independent Model
PLoP Pattern Languages of Programming
PSM Platform Specific Model
PTTES Patterns for Time-Triggered Embedded Systems
RAM Random Access Memory
RM Rate Monotonic
ROM Read Only Memory
SLOC Source Lines of Code
TDMA Time Division Multiple Access
TT Time-Triggered
TTC Time-Triggered Co-operative
UART Universal Asynchronous Receiver Transmitter
UML Unified Modelling Language
XML Extensible Mark-up Language
XSLT XML Style-sheet Language

- vii -

List of Figures
Figure 1-1 The Apollo Guidance Computer. This image has been used with permission from the

Computer History Museum (Computer History Museum, 2005)... 3

Figure 1-2 Moore’s Law. In 1965, Gordon Moore sketched out his prediction of the pace of

silicon technology. Decades later, Moore’s Law remains true. This image has been used

with permission from Intel (Intel, 2005).. 4

Figure 1-3 Overview of a microcontroller’s architecture (adapted from Wames, 1998, p. 442)....4

Figure 2-1 An overview of the hardware and software composition of an embedded system 11

Figure 2-2 Hardware schematic of a ‘flashing LED’ embedded application.................................. 12

Figure 2-3 A pre-emptive task execution interrupted by an ISR (adapted from: Kalinsky, 2001)

..15

Figure 2-4 A ‘time-triggered’ cyclic executive execution model (adapted from: Kalinsky, 2001)

 16

Figure 3-1 The Distribution of Towns summarised from A Pattern Language (Alexander et al.,

1977, p. 16)...22

Figure 3-2 A summary of Observer (Gamma et al., 1995, pp. 293-303).. 26

Figure 4-1 Loop Timeout (adapted from Pont, 2001, p. 298)...35

Figure 5-1 A flashing LED task in Assembly. Compare with Figure 5-2...................................... 43

Figure 5-2 The flashing LED task implemented in Assembly in Figure 5-1, now implemented in

C .. 43

Figure 6-1 Overview of the ‘componentization’ process.. 54

Figure 6-2 The PTTES meta-model...57

Figure 6-3 Using the PTTES meta-model to define TTC Platform... 58

Figure 6-4 Comparison of the MDA and the PTTES meta-model... 58

Figure 6-6 Applying the PTTES meta-model to the hardware foundations patterns..................... 60

Figure 6-7 Example of the use of the ‘Add Task’ function to integrate multiple periodic tasks

into a system design...61

Figure 7-1 Overview of PTTES Builder’s architecture..62

Figure 7-2 The directory structure implemented in the pattern repository..................................... 65

Figure 7-3 A snippet of the XML file that represents a Heartbeat LED PIE65

Figure 7-4 Heartbeat LED XSLT file used to generate a header file from a P IE 66

Figure 7-5 The directory structure within the repository used for the pattern documentation 67

Figure 7-6 A snippet of a PTTES Builder project file..68

Figure 7-7 The PTTES Builder code generation process.. 69

- viii -

Figure 7-8 The main PTTES Builder UI panel...71

Figure 7-9 Overview of the tool's browser used to read the pattern documentation...................... 72

Figure 8-1 An overview of the CCS test bed (adapted from: Ayavoo et al., 2005)....................... 74

Figure 8 -2 ... 75

Figure 8-3 First step in implementing a system using the tool, is the selection of an appropriate

hardware platform, the Extended 8051 was selected..75

Figure 8-4 Based on the microcontroller selected, an appropriate oscillator frequency is set (10

MHz in this case)...75

Figure 8-5 Selecting and configuring the Co-operative Scheduler using the ‘wizard’76

Figure 8-6 Heartbeat LED is configured to an initial delay of 0 ms and a periodic delay of 1000

m s ... 77

Figure 8-7 Port Wrapper is associated with every pattern that interfaces a microcontroller

port(s)/pin(s). Here it is used to select a port pin on which to flash the Heartbeat LED

task.. 77

Figure 8-8 Hardware Pulse Count is configured and added to the project...................................... 78

Figure 8-9 Implementation of PID Controller...79

Figure 8-10 Implementing One-Shot ADC...79

Figure 8-11 Main.c file generated as patterns are added to the project..80

Figure 8-12 PC Link configuring the on board UART that is used to link the CCS with a PC at

9600 baud ...80

Figure 8-13 The CCS’s speed over a period with speed adjustments of 30 and 45 m /s82

Figure 8-14 CCS speed over time with four changes in speed: 0 m/s, 30 m/s, 45 m/s and 60 m/s

 82

Figure 9-1 Overview of the effort involved in implementing individual patterns......................... 89

Figure 10-1 Effort involved in adding new patterns to PTTES Builder. The patterns are listed in

Table 10-1...93

- ix -

List of Tables
Table 3-1 Format used to define patterns in the Gamma collection (Gamma et al., 1995)............25

Table 8-1 CCS tasks implemented... 73

Table 9-1 Tasks implemented in the CCS... 85

Table 9-2 Results of data analysis based on the metrics defined in Section 9 .488

Table 10-1 The patterns added to PTTES Builder (in the order in which they were added)........ 94

Table 10-2 List of patterns in an ascending order of complexity where SLOC is used to measure

the complexity..95

- x -

List of Associated Publications
Below is a list, in reverse chronological order, of publications produced during the course of this

research. Material from some of these papers has been included in this thesis and where

applicable this is noted in a footnote at the beginning of the chapter concerned. Abstracts of

these publications are presented in Appendix D.

Pont, M.J., Mwelwa, C., Bonthonneau, L., Ayavoo, D., Athaide, K., Meams, D., Kurian, S. and
Ward, D., “Pattern-based development of time-triggered embedded systems using
software tools: Challenges and solutions,” Journal of Systems and Software, submitted
2006.

Mwelwa, C., Athaide, K., Meams, D., Pont, M.J. and Ward, D., “Rapid software development
for reliable embedded systems using a pattern-based code generation tool,” In-vehicle
software and hardware systems, In: Society of Automotive Engineers (Eds.), Paper
presented at the Society of Automotive Engineers (SAE) World Congress, Detroit,
Michigan, USA, 2006. [ISBN: 0-7680-1763-7].

Mwelwa, C., Pont, M.J. and Ward, D., “Developing reliable embedded systems using a pattern-
based code generation tool: A case study,” Proceedings of the 2nd UK Embedded Forum,
In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.), pp. 177-193, Birmingham, UK,
2005. [ISBN: 0-7017-0191-9].

Mwelwa, C., Pont, M.J. and Ward, D., “Code generation supported by a pattern-based design
methodology,” Proceedings of the 1st UK Embedded Forum, In: Koelmans, A., Bystrov,
A. and Pont, M.J. (Eds.), pp. 36-55, University of Newcastle upon Tyne, Birmingham,
UK, 2004b. [ISBN: 0-7017-0180-3].

Mwelwa, C., Pont, M.J. and Ward, D., “Using patterns to support the development and
maintenance of software for reliable embedded systems: A case study,” Proceedings of
the IEE/ACM Postgraduate Seminar on “Systems-on-Chip” Design, Test and
Technology, Loughborough, UK, IEE, 2004a. [ISBN: 0-86341-460-5].

Mwelwa, C. and Pont, M.J., “Two simple patterns to support the development of reliable
embedded systems,” 2nd Nordic Conference on Pattern Languages of Programming
(VikingPLoP), Bergen, Norway, 2003.

Pont, M.J. and Mwelwa, C., “Developing reliable embedded systems using 8051 and ARM
processors: Towards a new pattern language,” Proceedings of the 2nd Nordic Conference
on Pattern Languages of Programming (VikingPLoP), Bergen, Norway, 2003b.

Mwelwa, C., Pont, M.J. and Ward, D., “Towards a CASE tool to support the development of
reliable embedded systems using design patterns,” Proceedings of the 1 st International
Workshop on Quality of Service in Component-Based Software Engineering (CBSE),
Toulouse, France, CEPADUES-EDITIONS, pp. 67-80, 2003. [ISBN: 2-85428-617-0].

- xi -

PARTI: INTRODUCTION

This first part gives an introduction and an outline o f the work presented in this thesis.

- 1 -

1 Introduction
This chapter gives an introduction to embedded systems and an overview of their importance in

modem day society. Some of the challenges faced by developers of these systems are also

discussed.

1.1 Embedded systems and their importance in modern
society
An embedded system is an application that contains at least one programmable computer and is

encapsulated by the device it controls. It is dedicated to a specific function performed by pre

defined tasks it executes (Bolton, 2000, p. 64). Although embedded systems contain a

programmable computer, they do not fall into the same category as other computing devices such

as personal computers, palm computers etc; these devices have a more general application in

comparison to embedded systems that tend to be specialised applications. For instance, desktop

computers come with a range of functionalities such as spreadsheets, word processing etc. On

the other hand embedded applications have specific functionality, for example washing machines

are designed specifically for laundry purposes (Bolton, 2000, p.64; Ayala, 1991, pp. 1-2).

Increasingly today, a major distinction between embedded systems and general purpose

computers relates to the likely consequences of incorrect operation. It is unlikely that a user will

suffer any harm from the incorrect operation of a personal computer e.g. a Windows application

such as Excel that is likely to crash. However, the failure of a safety-critical embedded

application could result in direct and possibly very serious harm to human beings. For instance,

the failure of an automotive engine management or braking system could risk the lives of several

people (Storey, 1996, p. 1).

The Apollo Guidance Computer (AGC), developed for NASA’s Apollo programme

(1963 - 1972) by the MIT Instrumentation Laboratory, was probably the first recognisable

modem embedded system (Computer History Museum, 2005). It was used by astronauts to

collect and provide flight information and to automatically control all navigational functions of

the Apollo spacecraft (NASA, 2005). The first version of the AGC (Figure 1-1 is a picture of the

AGC) used 4,100 integrated circuits and it is believed to have been a major impetus to the

development and improved manufacturability of integrated circuitry (Computer History

Museum, 2005).

Figure 1-1 The Apollo Guidance Computer. This image has been used with permission from the
Computer History Museum (Computer History Museum, 2005)

The first microprocessors used in embedded systems appeared on the market in 1971

when Intel released the world’s first commercial microprocessor, the 4-bit 4004. It was

developed for a Japanese calculator company, as an alternative to integrated circuit packages, to

read and execute a set of instructions stored in memory as software. Intel’s idea was that the

software would give each calculator its unique set of features (Ayala, 1991, p. 1).

By integrating the processor into a single integrated circuit, the cost of processor power

was greatly reduced. The microprocessor allowed computers to be smaller and faster than ever

before (IBM, 2006; Intel, 2005). As a consequence the microprocessor was an overnight

success, and its use increased steadily over the next decade. Other more well established

semiconductor firms soon followed Intel’s pioneering technology so that by the late 1970s one

could choose from a dozen or so microprocessor types (Ayala, 1991, p. 1). Faster 8-bit

microprocessors followed with more and more facilities added to fill what were seen as gaps in a

highly competitive market. In recent years 16-, 32- and 64-bit devices have become available

with 16-bit devices dominating in automotive applications (Edwards, 2006, pp. 46-47).

The evolution in microprocessor technology has come to be known as ‘Moore’s Law’

(IBM, 2006; Intel, 2005). In 1965, Gordon Moore predicted that the number of transistors the

industry would be able to place on a microprocessor would double every year, Figure 1-2 is a

graph of this prediction. In 1975, he (Gordon Moore) updated his prediction to once every two

years. While originally intended as a rule of thumb in 1965, it has become the guiding principle

for the semi conductor industry to deliver powerful processors at proportionate decreases in cost.

This predicted exponential growth has driven the semiconductor industry from start-up some

fifty years ago to more than $200 billion in annual revenue which today accounts for over a

quarter of the annual sales in the semiconductor market (Intel, 2005; SIA, 2002; Gupta and

Micheli, 1997).

- 3 -

Figure 1-2 Moore’s Law. In 1965, Gordon Moore sketched out his prediction of the pace of silicon
technology. D ecades later, Moore’s Law remains true. This image has been used with permission from

Intel (Intel, 2005)

Microprocessors are today generally known as central processing units (CPUs).

Microcontrollers are by-products of microprocessors; they incorporate all the features of a

microprocessor including: ROM (Read Only Memory), RAM (Random Access Memory),

parallel and serial Input/Output (I/O), counters and a clock circuit (Antonakos, 1993, p. 6). In

essence, a microcontroller can function as a computer without the addition of external

peripherals whereas the microprocessor must have certain external integrated circuits (ICs) in

order to operate. Figure 1-3 is an overview of the architecture of a microcontroller.

MICROPROCESSOR

RAM

INTERRUPT
CONTROL

REGISTERS

TIMING AND
CONTROL ALU

PC

ACCUMULATOR SP

EPROM

PORTO PORT 1 PORT 2 PORT 3

Figure 1-3 Overview of a microcontroller’s architecture (adapted from Warnes, 1998, p. 442)

Technically, embedded systems are composed of both software and hardware elements

and are often designed and implemented as a collection of tasks that share resources and interact

with the system or environment in which they operate (Hsiung et al., 2002; Mullerburg, 1999).

The various possible system architectures may then be characterised in terms of their tasks. For

- 4 -

example, if the tasks are aperiodic (typically implemented as hardware interrupts) the system

may be described as ‘event-triggered’ (Nissanke, 1997). Alternatively, if all the tasks are

invoked periodically (e.g. every 15 ms), under the control of a timer, then the system may be

described as ‘time-triggered’ (Kopetz, 1997). However, it must be noted that these two

architectures (time-triggered and event-triggered) are not exclusive. Today it is common to find

complex systems in which both time-triggered and event-triggered protocols coexist. Chapter 2

discusses these software architectures in more detail.

Today the embedded market is worth about 100 times that of the desktop market and is

forecast to grow exponentially in the next decade (Graaf et al., 2003; Eggermont, 2002). As a

result of this market share, embedded systems now have a major impact in many areas of product

development (Heiner and Thumer, 1998; Gupta and Micheli, 1997; Storey, 1996). For example,

in the automotive industry, embedded systems were initially used in engine control units (ECU)

in order to reduce exhaust emissions and improve fuel efficiency of vehicles. This was viewed

as a practical and cost effective means of meeting the United States engine emission and fuel

economy requirements imposed in 1981 (Bereisa, 1983; Flis, 1983; Marley, 1978). Since then it

has been estimated that nearly a third of the cost of developing high-class passenger cars is spent

on electronic and software systems (Bouyssounouse and Sifakis, 2005). For example, a luxury

BMW today contains approximately fifty embedded applications serving either comfort or safety

e.g. window and engine control and anti-braking systems (Mullerburg, 1999). In fact it has been

argued that these applications increase overall vehicle safety by liberating the driver from routine

tasks and providing assistance to find solutions in critical situations (Heiner and Thumer, 1998).

Although embedded applications have become ubiquitous, the process of creating them

remains highly challenging and complex. Besides the financial and time-to-market constraints

(Jenko et al., 2001; McGinnity and Maguire, 2001), developers also face technical challenges

such as timing and hardware constraints (Gupta and Micheli, 1997; Debardelaben et al., 1997)

e.g. limited memory (Noble and Weir, 2001) and restrictions on power use (Liu et al., 2001).

Graaf et al. (2003) argue that existing software development techniques fail to address the

challenges faced by embedded developers. This argument is supported by the fact that

manufacturers still find it difficult to produce defect free products. For instance, Volkswagen

had to recall 35,000 VW Golfs because of a software fault in the airbag controller (Mullerburg,

1999). Mercedes, another automotive manufacturer, have also previously had to recall 1.3

million cars (E, SL, and CLS class models), the biggest recall in the company’s history. This

was due to a fault that caused some vehicles to switch from their advanced electronic braking

system into a ‘fail-safe’ mode (Hutton, 2005). Most recently thousands of Segway Human

Transporters were recalled because of a software bug that unexpectedly made their wheels

reverse causing users to fall off (Sanderson, 2006). Such eventualities result in increased
- 5 -

overheads and the potential loss of business.

Despite the challenges currently faced by embedded developers, the European

Commission expects embedded systems to play a key part in achieving their main transport

policy goal, which is to reduce fatalities on European roads by 50% by the year 2010 (EU

eSafety Working Group, 2003). Achieving these targets will be challenging for developers as in

the years to come the key to success will be the ability to successfully produce highly reliable

embedded systems within time-to-market constraints. Therefore, to optimise the timeliness,

productivity and quality of embedded software development, appropriate development support is

required for developers (Graaf et al., 2003; McGinnity and Maguire, 2001; Henderson et al.,

2001; Cuatto et al., 2000; Camposano and Wilberg, 1996).

1.2 Developing embedded systems
Similar to desktop computers, embedded systems require some form of operating system to

guarantee the allocation of computational and data resources to tasks in order to satisfy all timing

and functional requirements (Hsiung et al., 2002). A scheduler is an algorithm concerned with

the organisation and allocation of these resources. It manages an embedded system’s resources

such as power and memory, determines the order in which tasks are executed and also provides a

means of predicting the worst-case behaviour of a system when the scheduling algorithm is

applied (Bate, 1999; Buttazzo, 1997, p. 23). Consequently, the software architecture of an

embedded system is determined by its underlying scheduler (Locke, 1992).

There are a wide range of different types of schedulers. Two widely used scheduling

algorithms are the pre-emptive and co-operative (also known as non-pre-emptive) schedulers. In

a pre-emptive scheduling environment, tasks can be interrupted at any time and the processor

assigned to more urgent tasks ready to execute. On the other hand, in a co-operative scheduling

environment, tasks execute uninterrupted to completion (Bannatyne, 1998; Buttazzo, 1997).

Schedulers are discussed in more detail in Chapter 2.

Previous studies have demonstrated that compared to pre-emptive schedulers, time-

triggered co-operative (TTC) schedulers have a number of desirable features, particularly for use

in safety-related systems (Bate, 2000; Nissanke, 1997; Ward, 1991; Allworth, 1981). However,

if designed without due consideration of the task durations, a TTC system is likely to prove

extremely unreliable. Hence, with the level of sophistication of modem embedded systems, such

as those found in the automotive industry, developers need design techniques that can sustain the

technical and commercial development constraints they face. Furthermore, in most cases the

design of an embedded system requires a range of different expertise for a successful design.

For instance, in the design of a steer-by-wire application the design team not only require

software and hardware expertise; they also require knowledge from different engineering fields
- 6 -

such as digital signal processing and control and instrumentation. Therefore, to ensure that

valuable experience and knowledge is present during the development of these complex systems,

what is needed is a means of ‘recycling design experience’ i.e. a means of facilitating the reuse

of solutions from previously successful TTC designs.

In recent years software reuse has been seen by many as an important factor in improving

software development productivity and quality (Mili et al., 2003; Voros et al., 2003). These

observations have been supported by empirical evidence (Basili et al., 1996; Moser and

Nierstrasz, 1996; Sparks et al., 1996). Design patterns have emerged in the software community

over the last two decades as a means of facilitating design reuse or simply - ‘design recycling’

(Fowler, 2003). The use of design patterns has been observed to have a positive impact on the

way software is developed. They encourage both experienced and inexperienced developers to

reuse best practices and they also allow for good communication among members of a software

development team (Beck et al., 1996).

This thesis reviews previous and current work on patterns. In particular a collection of

patterns for time-triggered embedded systems (PTTES), assembled in the ESL at the University

of Leicester, is reviewed. The thesis explores how this collection of patterns can be used to

support automated code generation for the development of reliable time-triggered embedded

systems. To do this the thesis first seeks to address the challenges of pattern-based code

generation. The next section gives an overview of this thesis’s contributions.

1.3 Overview of thesis contributions
This thesis seeks to make the following contributions:

■ It presents the first assessment of the effectiveness of the PTTES collection.

■ It describes two new PTTES patterns (H e a r t b e a t LED and E r r o r LED).

■ It develops a novel approach to pattern-based code generation that utilises a meta

model for the PTTES collection to create the architecture of a potential CASE tool.

■ It describes the design of the meta-model itself.

■ It describes the design of a CASE tool that is based on the above meta-model.

■ It describes and evaluates a prototype implementation of the CASE tool (PTTES

Builder).

1.4 Thesis structure
The thesis is divided into five parts. Part I consists of Chapter 1 (this chapter) that gives an

introduction to the thesis.

- 7 -

Part II consists of four chapters that present the literature review. Chapter 2, the first

chapter in this part, gives an overview of an embedded system’s architecture and the design

constraints faced by developers of these systems. The focus is on small reliable embedded

systems with a time-triggered architecture. Chapter 3 discusses the origin of design patterns

from the field of architecture and their adoption in the software community. Chapter 4 reviews a

collection of ‘Patterns for Time-Triggered Embedded Systems’ (PTTES) developed in the

Embedded Systems Laboratory (ESL) at the University of Leicester. Chapter 4 also highlights

the challenges of applying these patterns ‘manually’. Based on the experience of creating two

new patterns for the PTTES collection, Chapter 4 goes on to discuss the strengths and

weaknesses of the pattern creation process. Chapter 5 reviews previous work involving both

traditional and pattern-based code generation.

In Part III, Chapter 6 discusses the challenges of pattern-based code generation and

proposes a different approach based on a pattern language that utilises an intermediate

representation of patterns. Chapter 7 puts this approach to test by applying it in the development

of a pattern-based code generation CASE tool based on the PTTES collection described in

Chapter 4. Chapter 8 illustrates the application of this CASE tool by describing its use in the

development of a non-trivial embedded application.

Part IV of the thesis assesses the effectiveness of the CASE tool in an empirical study

described in Chapter 9. Chapter 10 presents another study aimed at assessing the extensibility of

the CASE tool i.e. its ability to support the evolution of the PTTES collection.

Part V concludes the thesis by giving a summary of the thesis and its contributions in

Chapter 11. A discussion of ongoing and future work in this area is also given in Chapter 11.

PART II: LITERATURE REVIEW

This part o f the thesis reviews background material to the research presented in this thesis.

Three areas are o f particular interest: i) software and hardware architectures for embedded

systems with severe resource constraints and a requirement fo r highly-predictable behaviour.

This is covered in Chapter 2; ii) software design patterns (Chapters 3 and 4) and Hi) automated

code generation (Chapter 5). The literature review analyses the work in these three areas and

outlines the gaps this research aims to fill.

2 The Architecture of an Embedded System
This chapter gives an overview of the hardware and software architecture of an embedded

system. In going with the theme of the thesis, the primary focus of this chapter is on software

architectures that have severe resource constraints and high reliability requirements. Some of the

challenges of developing these architectures are also discussed.

2.1 Terminology
This section defines key terminology used in this chapter and the remainder of the thesis.

■ Context switch: The process of ending a task execution and starting a new one.

During this process current information is stored away for later retrieval and

information relating to the new task is retrieved from memory. Context switching

takes up processor time and consequently reduces the available computing time. It is

therefore regarded as a system overhead (Cooling, 2003, p. 202).

■ Distributed system: An embedded system with two or more processors or

microcontrollers communicating with one another. For example, a brake-by-wire

system commonly found in modem luxury vehicles may have an actuator connected to

a microcontroller on each of the vehicles wheels (Hedenetz and Belschner, 1998).

■ Earliest deadline first scheduling (EDF): This mle stipulates that priorities are

assigned to tasks dynamically and are inversely proportional to the deadlines of their

current requests. At any instant, the task with the highest priority and yet unfulfilled

request will be executed (Liu and Layland, 1973, p. 55).

■ Jitter: The variability of the transmission time i.e. maximum transmission time -

minimum transmission time. The transmission time is the time delay between

presenting a message to the sender’s interface and receiving it at the receiver’s

interface. Embedded applications tend to be sensitive to jitter. Jitter is therefore an

important parameter in the development of an embedded system (Bannatyne, 1998;

Tomgren, 1998).

■ Node: A physically independent processor or microcontroller in a distributed

embedded system.

■ Polling: The process by which the status of an external device is scanned at regular

intervals by the system it is connected to (Cooling, 2003, p. 209).

■ Rate Monotonic scheduling (RM): This scheduling assigns priorities to tasks

according to their request rates, independent of their run-times. Tasks with higher

- 1 0 -

request rates get assigned higher priorities (Liu and Layland, 1973, p. 50).

■ Task overrun: A task overrun occurs when a task exceeds its predicted execution

time. If such a situation arises and is not aborted, a domino effect on any subsequent

tasks could occur (Buttazzo, 2005).

2.2 Overview
Embedded systems are composed of hardware and software components. As such a

characteristic of embedded systems is the interaction between their hardware and software

components. Because of this, the hardware and software of these systems should never be

designed in isolation (Mooney and Micheli, 2000; Ernest, 1998; Balarin et al., 1997). Figure 2-1

is an overview of the hardware and software composition of an embedded system.

APPLICATION SOFTWARE

OS (SCHEDULER)

MICROCONTROLLER HARDWARE

 I
Figure 2-1 An overview of the hardware and software composition of an em bedded system

The remainder of this chapter gives an overview of the hardware architecture of an

embedded application and thereafter discusses software architectures.

2.3 Hardware architecture
A processor (or microcontroller) is fundamental to the operation of an embedded system. It

provides the hardware platform on which such systems are built (Heuring and Jordan, 1997). In

Section 1.1 it was noted that the main components of a microcontroller are its CPU, input and

output ports and memory - these are important resources used to store and move large amounts

of data and execute tasks as fast as possible during the lifetime of an embedded application.

The choice of processor (or at least the family of processors) to be used must be made at

an early stage of development as it has an impact on the design of an embedded application. The

choice of processor not only has an impact on the CPU load but also the available on-chip

resources (e.g. ROM and RAM), programming language and the development tools used.

Modem microcontroller families such as the 8051 offer some flexibility as the CPU is generally

the same for a given microcontroller family thus the investment in software and development

tools is not lost by selecting different members of that family (Morton, 2001, p. 18).
- 11 -

Similar to any synchronous sequential digital circuit, a microcontroller requires a system

clock to operate (Baron and Higbie, 1992, p. 9). Whereas the microcontroller may be regarded

as the ‘brains’ of an application, the clock frequency can be viewed as the ‘heartbeat’. The clock

frequency impacts other aspects of the design such as task execution rates and power dissipation.

It is therefore very important that an appropriate system clock is implemented as any unexpected

variation in frequency would have repercussions on the operation of the application. There are a

wide range of design solutions for system clocks that can be used in line with design

requirements, for instance, ceramic resonators are a least-expensive solution whereas crystal

oscillators are generally a common but expensive solution. Morton (2001, pp. 384-386)

discusses system clocks in more detail.

A microcontroller begins to execute a program immediately following a reset. A reset

routine defined in the microcontroller is required to execute at start up as a means of initialising

the hardware in preparation for operation (Barnett, 1995, p. 4). Some microcontrollers come

with built in internal reset circuits while others come with a RESET pin which is used to connect

to an external reset circuit. Resets are considered to be a form of exception because when they

are detected the next instruction is not executed by the CPU. Instead it processes the exception.

Resets can therefore be used to detect faults by using techniques such as watchdog timers that

reset the microcontroller unless the program periodically notifies the watchdog (Morton, 2001, p.

387; Barnett, 1995, pp. 4-5).

Figure 2-2 is a hardware schematic of a simple ‘flashing LED’ embedded application.

The application is composed of a simple reset circuit made up of a capacitor and resistor

connected to Pin 9 of the applications microcontroller. In addition, the application has an

external ceramic resonator connected to Pins 18 and 19. The flashing LED is connected to Pin 6.

3oon

10 MF — ------ 10 mA
LED

in
oo

12 MHz
Ceramic
Resonator

Figure 2-2 Hardware schematic of a ‘flashing LED’ embedded application

- 12-

Microcontrollers are programmed by machine code that is stored in ROM. Developers

tend to first write program code in a high-level programming language such as C, which is then

translated into machine code using a compiler. Section 5.1 gives an overview of this process. A

program called a loader is then used to load the machine language into ROM (Lippiatt, 1981, pp.

18-20). Although the cost of embedded hardware is generally low, development tools tend to be

costly. In an attempt to keep development costs at a minimum, manufacturers tend to specialise

in developing embedded applications for a particular microcontroller family (Eggermont, 2002,

pp. 50-53; Debardelaben et al., 1997; Orlikowski, 1993). As a result they avoid purchasing

licenses for different sets of tools. Furthermore, training costs for developers are kept low as

they only get trained for one microcontroller family.

For extra functionality, embedded designs generally include additional hardware

components such as UARTs and ADC circuits or have distributed designs. If implemented

appropriately a distributed embedded system may help increase the reliability of safety-critical

applications such as planes that generally have redundancy. Redundancy is the ability of a

system to maintain functionality in the event of a component failure by having backup

components that perform duplicate functions. Tanenbaum (1994) discusses the advantages of

implementing distributed designs in more detail.

2.4 Software architecture
There are two fundamental software architectures that are generally implemented in embedded

systems: event- and time-triggered architectures.

In a time-triggered (TT) architecture, all actions are derived from the progression of a

globally synchronised clock (accessible to all nodes in a distributed system). In a distributed

implementation, the TT architecture takes the form of a Time Division Multiple Access (TDMA)

protocol. In the TDMA protocol, periodic time slots are assigned to each node at design time

and are used to periodically broadcast messages (Kopetz, 1988). In event-triggered systems, all

actions are derived from the occurrence of predefined events such as external interrupts

(Bannatyne, 1998; Kopetz, 1988). It must be noted that time- and event-triggered architectures

are not exclusive as it is common to find systems in which both protocols coexist (Pop et al.,

2002).

The TT architecture has recently been gaining acceptance as a generic architecture for

highly dependable systems such as those based on the ‘x-by-wire’ concept in the automotive

industry (Blanc et al., 2004; Dilger et al., 1998; Heiner and Thumer, 1998). Also, the Time-

Triggered Group (TTG), which includes PSA Peugeot Citroen, Audi, Volkswagen, Honeywell

and Delphi Automotive Systems, promotes the use of the TT architecture across industries, e.g.

the aerospace, automotive and railway industries, where requirements for safety-critical
- 13-

applications have to be fulfilled at low costs (TTA-Group, 2006). In the ESL, previous research

has described how TT techniques can be applied in various automotive applications (Ayavoo et

al., 2005; Short et al., 2004a), a wireless electrocardiogram (ECG) monitoring system

(Phatrapomnant and Pont, 2006) and various control applications (Bautista and Pont, 2006;

Edwards et al., 2004).

The TT architecture has been shown to be more suitable than the alternative event-

triggered architecture as it satisfies the requirements of safety critical communications systems

by being deterministic and predictable (Karlsson, 2002). The architecture is also compose-able

i.e. it allows independent coding, testing, validation and certification of nodes thereby supporting

the co-ordination of development teams. Furthermore, this architecture allows the behaviour of

an overall system to be predicted by assessing the properties of the subsystem (Bannatyne,

1998).

2.4.1 Schedulers

In Section 1.2, it was noted that among other things the reliability of an embedded application

relies on the careful scheduling of its tasks in order to meet deadlines (Liu and Layland, 1973, p.

46). An algorithm known as a scheduler manages the execution schedule and resource utilisation

of these tasks. The architecture of an embedded application is characterised by this underlying

scheduling algorithm (Locke, 1992).

A ‘super loop’ is the most basic form of a scheduler that may be used in very simple

embedded systems in which tasks are only programmed to execute once or periodically in a

predefined sequence. Because of its simplicity, a super loop tends to be used in applications that

have limited memory and CPU resources but where accurate timings are not a key requirement.

Super loop schedulers are therefore not appropriate for complex embedded systems with high

reliability or time critical requirements, instead they are used in much simpler scheduling

algorithms such as the cyclic executive described in Section 2.4.1.2. In order to meet complex

functional requirements, high reliability embedded applications require scheduling algorithms

that are far more sophisticated than the super loop.

The following subsections describe the pre-emptive and co-operative schedulers - two

scheduling algorithms commonly used in embedded applications.

2.4.1.1 Pre-emptive scheduler

In a pre-emptive scheduler, tasks can be interrupted during their execution i.e. pre-empted by

other scheduled tasks. A pre-empted task is placed in a queue and resumes its execution at its

next allotted time slot, exactly where it previously left off (Cooling, 2003, pp. 201-202; Liu and

Layland, 1973, p. 48). Figure 2-3 shows the execution of a Task D pre-empted during its
- 14-

execution by an interrupt service routine (ISR). Once the ISR has been executed, Task D

continues its execution from where it was pre-empted.

Figure 2-3 A pre-em ptive task execution interrupted by an ISR (adapted from: Kalinsky, 2001)

Liu and Layland (1973) have previously described ‘priority-driven’ pre-emptive

schedulers in which tasks are allocated priorities in order to meet predefined execution orders.

This means that whenever there is a request for a task that is of higher priority than the one

currently being executed, the running task is pre-empted and the newly requested task is started.

If a pre-emptive execution schedule remains fixed during the life of a program then it is

classed as a fixed (or static) priority scheme. In this scheme, tasks are assigned priorities using

the RM priority assignment (Liu and Layland, 1973, p. 50). Alternatively, a pre-emptive task

execution schedule that can be changed during program run time is said to be a dynamic priority

scheme. The task priorities can be altered by an external event or running task. This scheme has

tasks configured using the EDF assignment rule (Liu and Layland, 1973, p. 55).

Pre-emptive scheduling enables external hardware devices to either be polled or interrupt

driven if need be and their information acquired and processed immediately. However, a pre

emptive design has to consider the tasks that can be pre-empted and those that can pre-empt

others and those that cannot be allowed to pass information to other tasks by writing or reading

shared data. Furthermore, a developer has to devise an algorithm suitable for passing

information among tasks e.g. message queues or semaphores, this complexity makes the

implementation of pre-emptive schedulers a challenging task.

2.4.1.2 Co-operative or non pre-emptive scheduier

In a co-operative scheduler, a task’s schedule is explicitly predefined before run time to produce

a feasible execution schedule that is fixed for the entire history of a program (Shaw, 2001, p. 19;

Bate, 1999, p. 51; Locke, 1992, p. 39). A key feature o f a co-operative scheduler is that tasks are

Interrupt Service
Routine (ISR) from

hardware device

- 1 5 -

executed to completion uninterrupted in accordance with their predefined schedule; this is

therefore sometimes referred to as non-pre-emptive scheduling (Bate, 1999, p. 51).

A cyclic executive (Kalinsky, 2001; Locke, 1992; Baker and Shaw, 1989) is an example

of a co-operative scheduler based on a time-triggered architecture. Figure 2-4 is an illustration

of a cyclic executive execution model. Automotive (see, Ayavoo et al., 2004) and medical

monitoring applications (see, Phatrapomnant and Pont, 2004) are examples of systems in which

a time-triggered co-operative (TTC) scheduler may be implemented.

Task A

Task D

Task B

Task C

Figure 2-4 A ‘time-triggered’ cyclic executive execution model (adapted from: Kalinsky, 2001)

The co-operative scheduler has many attractive features, it is simple and straightforward

to implement in comparison to the pre-emptive scheduler. Co-operative tasks will always

execute in their pre-allocated slots, so jitter levels are reduced (Buttazzo, 2005). The non-pre-

emption ensures executive overhead is kept low, as there are no unexpected context switches.

Furthermore, tasks can communicate with one another through shared data without special

concern about data integrity because every task always runs to completion before another task

begins running. There is therefore no danger of tasks getting inaccurate data from other tasks.

This reduces resource overheads as there is no requirement to protect the integrity of shared data

structures or other resources by the provision of mutual exclusion algorithms such as semaphores

or monitors.

Co-operative schedulers therefore pave the way for simple but yet efficient software

(Locke, 1992, p. 42). The pre-run-time scheduling of co-operative tasks also means that during

execution a system’s timing behaviour can be easily predicted (Shaw, 2001, p. 22). In the

- 1 6 -

context of scheduling, predictability is the ability to state at any time during execution the task

that will be executed next, this allows analysis that demonstrates whether timing requirements

are met (Bate, 1999, p. 26). It is therefore possible to predict the entire future history of a co

operative system provided task overruns do not occur (Locke, 1992, p. 42).

Although the co-operative scheduler may seem like an attractive option, a number of

limitations of this algorithm have been noted by various researchers. Most importantly, the

scheme assumes that accurate estimates of execution times for each task are available. These

however are not easy to ascertain (Shaw, 2001, p. 23). For instance, a co-operative system may

become fragile during overload situations since a task exceeding its predicted execution time

could generate (if not aborted) a domino effect on subsequent tasks, causing their execution to

exceed their deadline. It has also been argued that systems using this method are inflexible and

difficult to maintain (Bate, 1999, p. 52). For example, creating a new task or altering a task rate

is more than likely to affect an entire execution schedule, resulting in a complete redesign of the

scheduling plan (Buttazzo, 2005; Shaw, 2001, p. 24). Furthermore, interrupts from external

hardware devices cannot communicate directly with tasks, they would normally have to be

polled to interact with the scheduler tasks (Kalinsky, 2001).

2.5 Discussion
The fact that tasks can be pre-empted (by other tasks) at any time during run-time makes the pre

emptive scheduler more flexible and responsive in comparison to the co-operative scheduler

(Locke, 1992). However, these features come at a premium; a pre-emptive scheduler consumes

lots of RAM and processor power through ‘context switching’ and (as discussed in Section

2.4.1.1) is generally more complex to design and implement than a co-operative scheduler.

Furthermore, an important requirement of embedded systems, in particular safety critical

systems, is predictable behaviour. A system based on a co-operative scheduler exhibits more

predictable behaviour than one based on a pre-emptive scheduler (Albert, 2004; Kopetz, 1988).

However, a concern often raised about the co-operative scheduler is that long tasks can

impact the predictability of a system. A major implication of this is that a co-operative scheduler

may not respond to changes in its environment if the duration of the tasks have not been

carefully considered at design time (Allworth, 1981). Therefore, despite the design complexity

of a pre-emptive scheduler, it has previously been argued that priority-based pre-emptive

scheduling is a better scheduling solution than co-operative scheduling (Buttazzo, 2005). In

particular, the static priority scheme has been observed to be more suitable than a co-operative

design (Bate, 1999; Locke, 1992). In his thesis Bate (1999) makes a case for static priority

scheduling in safety critical systems. He argues that the principal difference between the co

operative and static priority-based approach is that the co-operative approach is deterministic
- 17-

(i.e. the ability to state before execution commences the run time ordering of tasks) while the

static priority-based approach is predictable. It can however be argued that a co-operative

scheduler also exhibits predictability provided worst-case transmission time and jitter are known

and accounted for at design time.

Building on previous work in this area, researchers in the ESL have demonstrated design

techniques that address the challenges of designing predictable embedded systems based on a co

operative scheduler (Phatrapomnant and Pont, 2006; Hughes et al., 2005; Key et al., 2003; Pont,

2003; Pont and Ong, 2002). Pont and Banner (2004) have demonstrated that using a TTC

scheduling approach can provide a relatively simple and robust scheduler. By contrast, the

increased complexity of even a comparatively simple pre-emptive environment results in a much

larger code framework (Pont and Banner, 2004).

In similar research, Xu and Pamas (2000) have expressed their preference for static as

opposed to dynamic schedulers. Xu and Pamas (2000) argue that with static scheduling, context

switching is greatly reduced therefore mn time resources such as power and memory are

preserved. Furthermore, task deadlines can be predicted at design time therefore making static

scheduling the approach of choice for safety critical applications as opposed to dynamic

scheduling where arrival times and deadlines cannot be predicted before or during run-time (Xu

and Pamas, 2000; Xu and Pamas, 1990). Meeting deadlines and achieving high resource

utilisation are the two main challenges of task scheduling in embedded applications. Therefore,

where appropriate, a static scheduling algorithm such as that provided by a TTC scheduler and

static priority-based pre-emptive scheduler is generally preferred (Fredriksson et al., 2003; Pop,

2000).

Xu also notes that a major benefit of static scheduling is the ability to predict all the

possible cases of the actual time-critical software code’s timing behaviour through rigorous

inspection and verification (Xu, 2003; Xu and Pamas, 1990). Nakata et al. (2006) have

successfully demonstrated the applicability of inspection and verification techniques, described

by Xu (2003), to ensure that the re-scheduling of a system’s tasks does not impact its external

behaviour.

2.6 Chapter conclusions
This chapter has given an overview of the hardware fundamentals of an embedded application

and discussed how this impacts the design of an embedded system.

The software architecture of an embedded application has also been discussed with

respect to pre-emptive and co-operative schedulers. Some of the challenges of implementing

these scheduling algorithms have also been discussed. It has been argued that the choice of

scheduler generally depends on the system requirements. However, if developing a safety-
- 18-

critical system this may not be an appropriate way of deciding which software architecture to

implement. Instead, as a TTC scheduler provides a more deterministic and predictable

architecture (if developed correctly), it may be appropriate that a developer first establishes

whether a TTC scheduler meets the design requirements. By so doing, the decision of which

software architecture to implement is primarily based on system reliability.

However, even though TTC schedulers can provide robust software architectures, it is

clearly not easy to implement as task durations and any potential task overruns need to be known

at design time in order to guarantee reliability. Techniques that can ease the development of

applications with TTC architectures are therefore required.

- 1 9 -

3 The Origin of Design Patterns
This chapter gives an overview of the origin of design patterns. The adoption of design patterns

in software engineering is also reviewed.

3.1 Christopher Alexander
The patterns concept stems from the work of the architect - Christopher Alexander. Alexander

graduated from Cambridge University, where he studied Mathematics. He later took his

doctorate in Architecture at Harvard University (the first PhD in architecture ever awarded at

Harvard). In his doctorate thesis, later published in 1964 as a book, Notes on the Synthesis of

Form (Alexander, 1964), Alexander proposed a rigorous approach to design that earned him

instant recognition and the first Gold Medal award for research by the American Institute of

Architects (Alexander, 2005).

3.1.1 Patterns in architecture

In his work, Alexander argued that contemporary methods in architecture, urban planning, and

construction failed to generate products that satisfied user requirements due to the growing

complexity of design problems. At the time there was also a vast amount of useful information

and specialist experience that was not archived and therefore unreachable or misused by

designers (Alexander, 1964, p. 4). Alexander believed that this resulted in inappropriate design

models that led to solutions that did not meet user requirements. Therefore, in an attempt to

improve contemporary design at the time, in Notes on the Synthesis of Form. Alexander

proposed, at the time ground-breaking, work on design processes based on structure or what he

called ‘form’. Through this work Alexander attempted to support top-down design methods

(Alexander, 1964, p. 15).

Alexander never quite completed his work on form, he instead went onto describe

patterns, an entity that, “ ...describes a problem which occurs over and over again in our

environment, and then describes the core o f the solution to that problem, in such a way that you

can use this solution a million times over, without ever doing it the same way twice ” (Alexander

et al., 1977, p. x). Patterns articulate a solution to a recurring problem in a given context; the

relationship among a problem, its context and solution is described as, “...a three-part rule,

which expresses a relation between a certain context, a problem, and a solution ” (Alexander,

1979, p. 247). Overall, Alexander’s intention was to conserve the knowledge and experience of

architects into a set of patterns that he believed could, “ ...provide a complete working alternative

1 Patterns and design patterns are used interchangeably throughout the thesis.

- 2 0 -

to [our] present ideas about architecture, building and planning... ” (Alexander, 1979, p. ii). It

would appear, from his early work that Alexander hoped that this ‘alternative’ approach to

architecture would supersede the ideas practised at the time.

Alexander’s initial work on patterns was published in three volumes. In the first volume,

The Timeless Wav of Building, the rationale for the patterns concept was presented as a modem

theory of planning and building (Alexander, 1979). In the second volume, A Pattern Language.

Alexander described what he called ‘a pattern language’, a language consisting of patterns and

their relationships among various architectural (and planning) problems and solutions

(Alexander et al., 1977). In essence a pattern language describes a collection of related practices

(in the form of patterns), that allow bigger and complex problems to be solved "... no pattern is

an isolated entity. Each pattern can exist in the world, only to the extent that it is supported by

other patterns: the larger patterns in which it is embedded, the patterns o f the same size that

surround it, and the smaller patterns which are embedded in i t” (Alexander et al., 1977, p. xiii).

In A Pattern Language Alexander described how the world, in his own view, should be

divided into independent nations, and nations into cities and towns, and how buildings and

streets should be arranged, right down to details of how buildings should be decorated. To

illustrate this, 253 coherent and detailed patterns for architectural and urban planning were

described in A Pattern Language (Alexander et al., 1977). Alexander believed that professional

designers and architects should not have the responsibility of designing communities. Instead

Alexander believed that the occupants of these communities, with the support of A Pattern

Language, should be capable of designing their own communities as only they understand their

needs better. A Pattern Language is divided into three parts. The first part defines how towns

and communities should be designed (Alexander et al., 1977, pp. 10-457). An example of a

pattern in this category is In d e p e n d e n t R e g i o n s , summarised in Figure 3-1. This pattern

suggests the demarcation of the world into independent regions with a population of between

two and ten million inhabitants each. Other related patterns in this category are T h e

D i s t r i b u t i o n o f T o w n s , C i t y C o u n t r y F i n g e r s , A g r i c u l t u r a l V a l l e y s , L a c e o f C o u n t r y

S t r e e t s , C o u n t r y T o w n s and T h e C o u n t r y s i d e .

The second part of the language describes design solutions for both individual and groups

of buildings (Alexander et al., 1977, pp. 467-931). An example of one such pattern is S m a l l

M e e t i n g R o o m s that describes how meeting rooms can be designed in order to allow participants

to get the most out of their meetings (Alexander et al., 1977, pp. 712-716). The rationale behind

this pattern is that the larger meetings are the less people get out of them. The solution presented

by S m a l l M e e t i n g R o o m s therefore stipulates that at least 70% of meeting rooms should be

small i.e. allow 12 or less occupants because the smaller the group the easier it is for all

participants to get involved. The pattern goes on to specify that meeting rooms should be evenly

- 21 -

distributed within a building so that meetings are held close to participants’ offices. By so doing,

discussions that begin in a meeting room can continue into participants’ offices, thereby

promoting a good working environment (Alexander et al., 1977, p. 715).

The third and last part of the language presents patterns that specifically deal with the

structure and construction of buildings (Alexander et al., 1977, pp. 939-1166). R o o f L a y o u t ,

F l o o r a n d C e il in g L a y o u t , T h i c k e n i n g t h e O u t e r W a l l s , C o l u m n s a t t h e C o r n e r s and F in a l

C o l u m n D i s t r i b u t i o n are some of the patterns intended to help designers work out the complete

structural layout of a building before it is constructed.

The D is tr ib u tio n o f T ow ns

Context
This is a pattern intended for the even or fair distribution o f a population in a region. It is applicable to town or city
planning.

Problem
If a region’s population is not uniformly distributed, it w ill go to ruin because its population is not where it needs to be,
to take care o f it.

Solution
Encourage a birth and death process for towns within the region, which gradually has these effects:
• The population is evenly distributed in terms o f different sizes - for example, one town with 1,000,000 people, 10

towns with 100,000 people each, 100 towns with 10,000 people each, and 1,000 towns with 100 people each.

• These towns are distributed in space in such a way that within each size category the towns are hom ogeneously
distributed all across the region.

This process can be implemented by regional zoning policies, land grants, and incentives that encourage industries to
locate according to the dictates o f the distribution.__

Figure 3-1 The Distribution of Tow ns sum m arised from A Pattern L anguage (Alexander et al., 1977, p.
16)

From the summary of T h e D i s t r i b u t i o n o f T o w n s presented in Figure 3-1, it is observed

that patterns are descriptive and hence describe solutions in an abstract form. This abstract form

therefore leaves the actual pattern implementation to the designer. As a consequence, since a

pattern language “ ...is in truth a network, there is no one sequence which perfectly captures

it... ” (Alexander et al., 1977, p. xviii), a designer is expected to tailor the implementation of a

pattern or collection of patterns in whatever order or way that matches the context of the

problem(s). Patterns therefore do not impose any restrictions on the way in which they are

applied, thereby allowing designers to maintain their individual creativity in problem solving.

To manifest his ideology, in the third volume of his work: The Oregon Experiment

(Alexander et al., 1975), Alexander presented an experiment in which he attempted to provide a

comprehensive real life example of applying his patterns. In this experiment, patterns were used

to help expand the University of Oregon (in the USA) in order to sustain its growth (Alexander

et al., 1975). However, the University of Oregon presented, “... a very special kind o f

community. Unlike most communities, it [had] a single owner (The State o f Oregon) and a

single, centralised budget” (Alexander et al., 1975, p.3). Alexander did not believe in

- 2 2 -

centralised planning, instead he believed that within a region, each city and town should be

responsible for its own land; and within each city and town, each community or individual

should similarly be responsible for their own habitat (Alexander et al., 1977). Nevertheless,

despite these perceived discrepancies, Alexander was able to adapt his pattern language in order

to meet the requirements of this ‘special kind of community’ (Alexander et al., 1975, p. 3). This

ability to adapt patterns to different contexts is desirable to designers as it provides them with

flexibility in a design setting.

3.1.2 Have patterns been accepted in architecture?

In his key note address to the 1996 Association for Computing Machinery (ACM) Conference on

Object-Oriented Programs Systems Languages and Applications (OOPSLA), Alexander

admitted that he had initially believed that he would be able to influence the world that the use of

patterns could help develop better communities (Alexander, 1996). But he conceded that he had

practically failed to convince people to take to patterns even though his patterns had influenced,

“...a few thousand buildings... ” (Alexander, 1996).

However, interestingly enough, anyone reviewing A Pattern Language is more than likely

to find a pattern they can relate to. For instance, T h e D i s t r i b u t i o n o f T o w n s (summarised in

Figure 3-1) is a potential solution to rural-urban planning in the developing world. In Zambia (a

developing country in southern Africa) for instance, one of the problems faced by urban planners

is the ‘rural-urban drift’. Rural-urban drift is the term given to the mass exodus of people from

rural areas (e.g. farms, villages and countryside) to urban areas such as towns and cities mainly

in search of employment, education and in general a much better life compared to that offered in

the rural areas. Not only does the resulting over population in urban areas cause a strain on

urban resources, it also leaves the rural areas depopulated and under maintained. T h e

D i s t r i b u t i o n o f T o w n s presents a solution to this problem by suggesting an appropriate

statistical distribution of towns (by size) and an even spread of towns across regions. However,

though this may seem an ideal solution to rural-urban drift, the cause of this problem arguably

has little to do with the planning o f rural or urban areas. The underlying cause of this problem,

faced not only by Zambia but also other developing countries, is the lack of financial resources

to make the rural areas more habitable (Saasa and Carlsson, 2002).

Over the years Alexander’s campaign to influence the use of patterns in architecture

design has led to him being isolated from the, “...mainstream commercial architectural

community... ” where it has eventually become clear that he did not succeed in replacing

contemporary architecture ideas and practices (Lea, 1994). The architectural ambitions

expressed in his work have been seen as alienating from the practice and as a result have led to

some attacks on him. For instance, the New York Times, in an article entitled, ‘Architecture’s

-23 -

Irascible Reformer’, described Alexander’s work as, “...a quixotic campaign o f messianic

ambition: to heal the world by reforming the way it builds ” (Eakin, 2003). Despite these

negative views, it can be argued that architects and civil engineers apply certain aspects of

Alexander’s work unsuspectingly. For instance, buildings are generally built on foundations.

The process and the design decisions that go with building a foundation e.g. the height, location

and capacity of the building, could be described as design patterns.

While some of his peers may have dismissed his work, it is obvious that Alexander is

today well-respected in other circles of society. Not least, the fact that he is today Professor

Emeritus at the University of California where he devotes most of his time to writing and

presenting invited talks. Alexander’s work has also been recognised by the Royal Family in the

United Kingdom where the Prince of Wales has previously invited him to serve as a Trustee of

The Prince of Wales Institute of Architecture. Furthermore, in 1996 Alexander was elected

Fellow of the American Academy of Arts and Sciences for his contributions to architecture

(Salingaros, 2006).

3.2 Software patterns
Despite his perceived failure to influence the adoption of patterns in architecture design,

Alexander has over the years gained devoted followers, more so from the software community

where the use of patterns has been welcomed. The adoption of patterns in the software

community has been influenced by the need for software reuse. Software reuse was one of the

goals of the architects of the object-oriented methodology; programmers created libraries of

reusable code and these consisted of classes that could be reused across applications (Rogers,

1997).

The first use of patterns in software development can be traced back to Cunningham and

Beck (1987) who had been using the Smalltalk programming language for designing Windows

based user interfaces. They adopted Alexander’s techniques as the basis for a small pattern

language (consisting of five patterns) intended to provide guidance to novice Smalltalk

programmers. Following a promising outcome, they presented their results at OOPSLA ’87 and

outlined their adaptation of Alexander’s pattern language concept to object-oriented

programming (Cunningham and Beck, 1987).

3.2.3 The Gamma pattern collection

Cunningham and Beck’s (1987) work was subsequently built upon by Erich Gamma, Richard

Helm, Ralph Johnson and John Vlissides (today known as the Gang of Four) who, in 1995,

published a book on general-purpose object-oriented software patterns: Design Patterns:

Elements of Reusable Object-Oriented Software (Gamma et al., 1995). This is arguably the most

- 2 4 -

influential book on software patterns published to date and was consequently merited with the

Excellence in Programming Award by Dr Dobbs Journal in 1998.

Table 3-1 Format used to define patterns in the Gamma collection (Gam m a et al., 1995)

Element name Description

Pattern Name A handle that can be used to describe a design problem, its solution and

consequences in a word or two. It also contributes to the vocabulary of

designers

Intent What design issue or problem does it (the pattern) address?

Also Known As Lists any alternative names the pattern may have

Motivation A scenario that illustrates an example design problem and how it may

be solved using the pattern

Applicability Describes situations in which the design pattern can be applied?

Structure A UML representation of the pattern’s components

Participants The classes and/or objects participating in the design pattern and their

responsibilities

Collaborations Describes how the participants (previous element) collaborate to carry

out their responsibilities

Consequences Describes the pattern’s benefits, trade-offs and drawbacks

Implementation Lists the pitfalls, hints or techniques for implementing the pattern (e.g.

language specific issues)

Sample Code Example code fragments that illustrate how one might implement the

pattern in C++

Known Uses Examples of instances where the pattern has been or can be applied

Related Patterns Lists other patterns that are closely related to the described one and

describes their differences and similarities

In their book, Gamma et al. (1995) present 23 design patterns. Each pattern, “...names,

abstracts and identifies the key aspects o f a common design structure that make it useful fo r

creating a reusable object-oriented design... Each design pattern focuses on a particular object-

oriented design problem or issue. It describes when it applies, whether it can be applied in view

o f other design constraints and the consequences and trade offs o f its use ” (Gamma et al., 1995,

pp. 3-4). The Gamma collection is organised into three categories based on the pattern

attributes: creational patterns are concerned with object creation, structural patterns address the

composition of classes and objects and behavioural patterns are concerned with the manner in

which objects interact. Similar to Alexander, Gamma et al. (1995) did not describe new or
-25 -

unproven design solutions, instead they presented designs that had never been documented

before but had previously been applied time and time again to common problems (Gamma et al.,

1995, p. 2).

Although most of the patterns in the Gamma collection include example code to illustrate

their implementation, it is important to note that patterns are not code. “Patterns are half-baked

- meaning you always have to complete them yourself and adapt them to your own environment”

(Fowler, 2003), i.e. patterns should be abstractly written in order to allow a user to easily adapt

them to their own requirements. O b s e r v e r (summarised in Figure 3-2) is an example of a

pattern from the Gamma collection, it is commonly used to design graphical user interfaces - it

helps separate the presentational aspects of an application from the underlying application data.

Therefore, classes defining application data and presentations can be reused independently,

thereby promoting software reuse (Gamma et al., 1995, pp. 293-303). Table 3-1 lists and

describes the elements that define the form of the patterns in the Gamma collection.

O b s e r v e r

Intent
D efine a one-to-many dependency between objects so that when one object changes state, all its dependents are
notified and updated automatically.

Also Known As
Dependents, Publish-Subscribe

Motivation
A comm on side effect o f partitioning a system into a collection o f co-operating classes is the need to maintain
consistency between related objects. You do not want to achieve consistency by making the classes tightly coupled,
because that reduces their reusability.

The key objects in this pattern are subject and observer. A subject may have any number o f dependent observers. A ll
observers are notified whenever the subject undergoes a change in state. In response, each observer will query the
subject to synchronise its state with the subject’s state.

Applicability
U se this pattern when:
• An abstraction has two aspects, one dependent on the other.
• A change to one object requires changing others and you do not know how many objects need to be changed.
• An object should be able to notify other objects without making assumptions about who these objects are.

Participants
Subject, Observer, ConcreteSubject and ConcreteObserver

Consequences
• The coupling between subjects and observers is abstract and minimal.
• Broadcast communication i.e. the notification that a subject sends need not specify its receiver.
• Because observers have no knowledge o f each other’s presence, they can be blind to the ultimate cost o f changing

the subject.

Related Patterns
M e d i a t o r and S i n g l e t o n ___

Figure 3-2 A summary of O bserver (Gamma et al., 1995, pp. 293 -303)

Unlike A Pattern Language (Alexander et al., 1977) that is composed of interrelated

design patterns that can be applied to solve recurring problems in architecture, the Gamma

- 2 6 -

collection is not a ‘pattern language’. This claim is supported by the authors who make it clear

that their collection, “...doesn 't have any application domain-specific patterns. It does not tell

you how to build user interfaces, how to write device drivers or how to use an object-oriented

database. Each o f these areas has its own patterns and it would be worthwhile fo r someone to

catalogue those too ” (Gamma et al., 1995, p. 2).

3.2.4 The patterns community

It is arguable that the biggest patterns community is today rooted in the object-oriented software

domain. This community includes the authors of Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma et al., 1995) and The Hillside Group that organises the world wide

Pattern Languages of Programs (PLoP) conferences at which pattern enthusiasts and

practitioners meet to share and discuss patterns. The Hillside Group was established under the

auspices of Kent Beck and Grady Booch (The Hillside Group, 2005). In addition to the pattern

conferences, several mailing lists and websites have been set up over the years and remain very

active. This has allowed for the sharing and dissemination of patterns among both experienced

and inexperienced pattern members around the world.

Patterns are not invented; they emerge from design knowledge (Fowler, 2003).

Therefore, identifying and documenting patterns is the responsibility of domain experts.

However, before a pattern is published it goes through a rigorous process of ‘refinement’ by

senior members of the patterns community, this process is called Shepherding. Shepherding

involves a series of alterations of a proposed pattern based on the reviews, comments or

suggestions of a designated Shepherd. A Shepherd is a peer selected from within the patterns

community based on their patterns experience. Following the Shepherding process, if the

proposed pattern is considered worthy of publication, it is recommended for further scrutiny at a

PLoP conference. PLoP conferences have several criteria that pattern papers should meet before

they are published (The Hillside Group, 2005).

Rather than being presented by the individual authors, the patterns are discussed in

writers’ workshops. Richard Gabriel introduced writers’ workshops at the first PLoP conference

in 1994. The primary focus of these workshops is to ensure that the pattern under scrutiny

communicates its ideas effectively to its users. It is therefore assumed that the pattern author is a

domain expert (Rising, 1998, pp. 79-80). During these workshops, the pattern authors have the

opportunity to incorporate all the comments and insights before presenting the patterns in their

finished form. From inception a pattern therefore undergoes a crystallising process that seeks to

refine it to a standard of quality common with all other patterns in the community.

Over the years, there have been many patterns that have come out of the PLoP

conferences and the focus has gradually shifted from the use, assessment and refinement of

- 2 7 -

individual object-oriented patterns, to the creation of complete pattern languages for various

software domains. For example, the telecommunications domain has a collection of patterns that

have been published by Linda Rising (Rising, 2001). These patterns deal with issues such as

high-availability requirements and jitter guarantees in communications systems. Besides

software development patterns, process and organisational patterns to support the software

development process have also been written (e.g., Coplien and Harrison, 2004). Recently the

patterns community has also been considering ways in which good design practices can be

extracted from legacy code with the intention of documenting them in the form of design

patterns, this process is known as ‘pattern mining’ (Garofalakis et al., 1999).

Beyond the patterns community, industry has also taken to patterns. For instance,

Microsoft has ‘Patterns & Practices’ guidelines. These are recommendations for how to design,

develop, deploy and operate applications for the Microsoft platform. Apart from providing

technical guidance, these recommendations also come with source code that has been put to test

in real-world applications (Microsoft, 2006). IBM also uses patterns within its organisation.

They are referred to as ‘IBM Patterns for e-business’. These are a collection of reusable assets

meant to speed the development of web-based applications (IBM, 2006).

As the numbers of patterns and pattern collections for various software domains, have

increased over the years, researchers have attempted to categorise patterns in relation to the

software development process. For example, Riehle and Zullighoven (1996) have defined

conceptual patterns, design patterns and programming patterns. A conceptual pattern is a pattern

whose form is described by means of terms and concepts from its application domain. On the

other hand a design pattern is a pattern whose form is described by means of software design

constructs such as objects, classes, inheritance and aggregation. A programming pattern is a

pattern whose form is described by means of programming language constructs; they can be

viewed as low-level derivations of design patterns for a specific programming language.

Buschmann et al. (1996) have also attempted to categorise patterns by defining

architectural patterns, design patterns and idioms. An architectural pattern defines the

fundamental structural organisation of a system’s sub-systems and design patterns define the

actual sub-systems (or components) and relationships among them. An idiom is a low-level

pattern specific to a programming language that describes how to implement sub-systems and

their relationships using the features of the language.

Buschmann et al.’s (1996) categorisation of patterns is comparable to that of Riehle and

Zullighoven’s (1996). However, Buschmann et al.’s (1996) architectural pattern differs from

Riehle and Zullighoven’s (1996) conceptual pattern in that an architectural pattern is concerned

with the structural organisation of a system’s sub-systems whereas a conceptual pattern is

concerned with the design analysis of a system’s domain.
- 2 8 -

3.2.5 Do patterns enhance software development?

Though Alexander may not have succeeded in convincing his peers that patterns could be used to

improve architecture design, the use of patterns has surprisingly gained acceptance in the

software engineering community over the last two decades. However, like in architecture, there

is yet to be any credible empirical assessment of their overall value to software development. In

fact Schmidt (1995) feels that this is because a pattern cannot be verified or validated from a

purely theoretical framework i.e. “Patterns are validated by experience rather than by testing, in

the traditional sense o f ‘unit-testing ’ or ‘integration-testing ’ o f software Schmidt (1995) has

also suggested that one way of being reassured of a patterns usefulness, is by referring to its

‘Known Uses’ attribute as the number of known uses can serve to indicate a patterns value i.e.

the more times a pattern has been used the more likely it is valuable.

Nevertheless, in recent years there have been studies performed to asses the impact of

patterns on software development. However, these assessments have focused on particular

aspects of the software development process as opposed to the entire process. For instance,

Prechelt et al. (2002) previously assessed the effect of using the Gamma collection of patterns on

software maintenance using unpaid professionals as subjects. The results from the study suggest

that patterns facilitate relevant maintenance tasks with fewer errors. In support of these results,

another study performed by Torchiano (Torchiano, 2002) concluded that pattern-specific

documentation affects the comprehension process during software development making it more

structured and disciplined. Therefore, as software systems are known to evolve into much larger

and complex systems through maintenance, it can be argued that the use of patterns does

enhance the software development process to a certain extent.

In a replication of the study carried out by Prechelt et al. (2002), Vokac et al. (2004) used

paid professionals as subjects in a real programming environment. Apart from drawing similar

conclusions and increasing the experimental realism and applicability of the results from the

Prechelt et al. (2002) study, Vokac et al. (2004) came up with new observations that indicate that

some patterns are much easier to understand and use than others, thereby concluding that each

pattern cannot be classified as either ‘good’ or ‘bad’ in general terms (Vokac et al., 2004). These

observations could either suggest that certain patterns are more complex than others or not well

presented thereby suggesting that they may not have been created well.

Despite the lack of credible empirical evidence showing the overall benefits of patterns,

Beck et al. (1996) have previously observed that patterns do have a positive impact on the way a

team develops software. In particular, the following advantages have been observed (Beck et al.,

1996):

■ Patterns encourage documenting and reusing best practices for both experienced and

- 2 9 -

inexperienced software developers

■ Inexperienced software developers can produce better designs with patterns

■ Patterns enhance communication among members of a development team, from

designers to maintainers, as they provide a common vocabulary

With the limited studies carried out to date on the usefulness of patterns, it is difficult to

establish whether they do actually enhance software development. Furthermore, the few studies

that have been preformed have mainly focused on the Gamma et al. (1995) patterns, it could

therefore be argued that the results from these studies may not be applicable to other pattern

collections. To this effect there is a need for empirical evidence that can clearly demonstrate the

effectiveness of pattern collections on the software development process.

3.3 Chapter conclusions
This chapter has given an overview of design patterns and discussed their origin in architecture

and adoption in the software field. Patterns describe a solution to a frequently recurring design

problem that can be applied in different contexts. An important aspect of the application of

patterns is that the intellectual decisions to be made lies with the user. Therefore, users bring

innovation to the solution and new experiences can be used to further improve a pattern.

Despite the lack of empirical evidence that suggests that patterns are beneficial to

software development, it has been argued that the use of patterns does have some obvious

benefits to software development. In particular, patterns facilitate design reuse by providing

developers with previously successful design solutions. Patterns also ensure best practice (for

both experienced and inexperienced users) and provide users in a team setting with a common

vocabulary. The fact that IBM and Microsoft, who are at present two of the largest software

companies in the world, are using patterns in their organisations is also a testament to the

usefulness of patterns. However, because of the tendency of corporations to protect their

intellectual property rights, it is difficult to asses the impact of patterns in industry.

The next chapter presents a domain specific pattern collection and attempts to assess the

usefulness of the collection to its domain users.

- 3 0 -

4 Patterns for Time-Triggered Embedded Systems2
In Chapter 2, it was argued that TTC schedulers provide predictable and therefore reliable

software architectures for embedded systems. However, it was noted that designing TTC

systems does pose certain challenges to developers if they are to meet reliability requirements.

This chapter presents a collection of patterns that have been produced in the ESL to support the

development of TTC applications.

4.1 The rationale for the PTTES collection
In Chapter 2, one concern raised about TTC designs is that failures tend to manifest themselves

as task overruns. This concern is crucial as any co-operative system that has been designed

without due consideration of task durations is likely to prove extremely unreliable as the

scheduling approach employed must provide adequate control of task overruns commensurate

with the reliability of the system (Bate, 1999, p. 43).

One possible way of tackling task overruns is to adapt the hardware to match the needs of

TTC designs: in other words, to create a ‘time-triggered processor’ and write custom code for it.

This is an approach that is currently being explored in the ESL (Hughes et al., 2005).

Nevertheless, despite the promising prospects of producing custom hardware designs, at present

this may not be an economically viable approach for hardware manufactures as off-the-shelf

processors and microcontrollers remain popular amongst developers (Edwards, 2006, pp. 46-47;

Gupta and Micheli, 1997). For instance, Bannatyne (2004) has predicted that the automotive

sector will see a steady growth of microcontroller use in vehicles over the next decade. Besides

the automotive sector, off-the-shelf processors are also common in other application areas such

as wireless networks used in environmental monitoring (Martinez et al., 2004) and industrial

applications such as automation robots (Apneseth, 2006).

There are a number of other alternative techniques that may be used to implement TTC

designs (Pont and Banner, 2004):

■ Using a faster processor, or a faster system oscillator to reduce the duration of long

tasks

■ Making use of an additional processor to obtain a multi-tasking capability

■ Using ‘time out’ mechanisms to ensure that tasks complete within their allotted time

■ Splitting long tasks (triggered infrequently) into shorter ‘multi-stage’ tasks (triggered

frequently) so that the processor activity can be evenly distributed

2 S om e o f the contents o f this chapter have previously been published in (M w elw a and Pont, 2003) and (M w elw a et

al., 2003).

- 3 1 -

■ Employing a ‘hybrid’ scheduler to retain most of the desirable features of the (pure)

co-operative scheduler, but still allow a single long (pre-emptive) task to be executed

In the right circumstances, each of these techniques could prove useful. However, these

solutions do not necessarily make it easier for developers to implement TTC applications. What

is needed is a means of ‘recycling design experience’: specifically, a way of allowing less

experienced software engineers to incorporate solutions in their systems from previous

successful TTC designs (Pont and Banner, 2004). The need for design experience can be

illustrated by the fact that in many embedded applications, the task duration is extremely brief.

However, where the system does have long tasks, this is often because the developer is unaware

of some simple techniques that can be used to break down these tasks in an appropriate way and

- in effect - convert Tong tasks called infrequently’ into ‘short tasks called frequently’ (Pont,

2001, p. 252). Furthermore, Bate (1999, p. 47) has previously stated that the design of

schedulers relies on informal techniques i.e. the synthesis is performed using estimated values

for task worst-case execution times. When there is a requirement change or task overrun, the

task scheduling is manually altered. It is without a doubt that appropriate design experience

would therefore improve the development of TTC systems. In fact, Voros (2003) has previously

argued that design reuse is the key to the design and development of reliable systems and that it

is a key technique in the reduction of the development time of complex systems.

In Chapter 3, it was argued that patterns offer a means of facilitating design reuse. To

this effect, a collection of patterns to support the development of TTC systems has been

assembled in the ESL under the auspices of Dr Michael Pont. Pont (2001), inspired by the work

of Erich Gamma and colleagues (1995), adapted the patterns concept to the time-triggered

embedded systems domain. Pont believes that using these patterns can allow for TTC

architectures to be simply and cost-effectively implemented in a myriad of embedded projects.

Pont began to assemble the patterns in 1996 and the first drafts of the patterns were used

internally (within the ESL), primarily for teaching and training purposes. In these drafts Pont

initially attempted to demonstrate that patterns could form the basis for solutions to some of the

problems faced in the development of simple software-based control systems (see, Pont et al.,

1999; Pont et al., 1998a; Pont, 1998b). For example, it was demonstrated that patterns could be

used to effectively develop applications for condition monitoring and fault diagnosis (CMFD) in

diesel engines (Parikh et al., 1998).

Later drafts of the patterns were presented and discussed more widely. At the fourth

European Conference on Pattern Languages of Programming and Computing (EuroPLoP 1999),

Pont (2000a) presented more patterns but this time the focus was on assisting developers with

desktop experience adapt to embedded systems development. Over the years during which

- 3 2 -

these patterns underwent continuous improvement, the focus shifted towards use in the

development of safe and reliable microcontroller-based embedded systems such as those found

in the automotive industry e.g. cruise control systems (Pont, 2000b; Wong and Pont, 2000; Pont,

1999). Through this continuous process of refinement, a great deal of useful feedback was

obtained from the patterns community and various internal (within the ESL) and external

projects. Based on this feedback, Pont subsequently focused on producing patterns to support

the development of embedded systems with TTC architectures. The eventual result was a pattern

collection consisting of more than 70 patterns aimed at supporting the development of TTC

embedded systems. These patterns are referred to as the Patterns for Time-Triggered Embedded

Systems (PTTES) collection (Pont, 2001).

4.2 The PTTES form
One of the key characteristics of a pattern is its format and concise description of a problem and

its context and solution. Pattern authors tend to adapt Alexander’s (1977) pattern format to their

domain. For instance, because the Gamma et al. (1995) patterns are associated with object-

oriented software design, their form has an element known as ‘Structure’ (see, Table 3-1 in

Section 3.2.3) that illustrates the pattern’s solution using class diagrams. In a similar manner

Pont (2001) presents the PTTES collection in a form that is associated with its domain. For

example, L o o p T i m e o u t (in Figure 4-1) presents hardware and portability implications. These

are important design issues that are considered during the design of an embedded system and

have an influence on a system’s maintainability and production cost. Appendix A contains a list

of the patterns that currently constitute the PTTES collection.

- 3 3 -

Loop Tim eout

Context
■ You are developing an embedded application using one or more members o f the 8051 fam ily o f microcontrollers.
■ The application has a time-triggered architecture, constructed using a scheduler.

Problem
H ow do you ensure that your system w ill not ‘hang’ while waiting for a task (such as a switch read, an analogue-to-
data conversion, or serial data transfer) to complete?

Background
To understand the need for LOOP TIMEOUT, consider an example.

The Philips 8Xc552 is an EXTENDED 8051 device with a number o f on-chip peripherals, including an 8-channel, 10-
bit analogue-to-digital converter (ADC). Philips provides an application note (A N 93017) that describes how to use
this microcontroller. This application note includes the following code:

// Wait until AD conversion finishes (checking ADCI)
while ((ADCON & ADCI) == 0);

Such code is not intended to be o f ‘production’ quality. However, its structure is not unusual in embedded systems.
The problem is that there are circumstances under which our application may ‘hang’. This might occur for one or
more o f the following reasons:
■ I f the ADC has been incorrectly initialized, w e cannot be sure that a data conversion w ill be carried out.
■ I f the ADC has been subjected to an excessive input voltage, then it may not operate at all.
■ I f the variable A D C O N or ADCI was not correctly initialized, they may not operate as required.

Such problems are not, o f course, unique to this particular microcontroller, or even to ADCs. Such code is common in
embedded applications.

I f your application is to be reliable, you need to be able to guarantee that no task or function w ill ‘hang’ in this way.
Loop timeouts offer a simple but effective means o f providing such a guarantee.

Solution
A loop timeout may be easily created. The basis o f the code structure is a loop delay, created as follows:

unsigned int Timeout_loop = 0;

while ((++Timeout_loop) > 0);

This loop will keep running until the variable Timeout loop reaches its maximum value (assuming 16-bit integers) o f
65535, and then overflows (to 0). When the variable overflows, the program w ill continue. Note that without some
simulation studies or prototyping, w e cannot easily determine how long this delay will be. However, w e do know that
the loop will eventually ‘time out’.

Such a loop is not terribly useful. However, i f w e consider again the ADC example given in ‘Background’, w e can
easily extend this idea. Recall that the original code was as follows:

// Wait until AD conversion finishes (checking ADCI)
while ((ADCON & ADCI) == 0);

Here is a modified version o f this code, this time incorporating a loop timeout:

tWord Timeout_loop = 0;

// Take sample from ADC
// Wait until conversion finishes (checking ADCI)
// - simple loop timeout
while (((ADCON & ADCI) == 0) && (++Timeout_loop != 0));

W e now know that the loop cannot go on ‘for ever’. Note that w e can vary the duration o f the loop timeout by
changing the initial value loaded into the loop variable.

Hardware resource implications
LOOP T i m e o u t does not use a timer and im poses an almost negligible CPU and memory load.

Reliability and safety implications
U sing LOOP T i m e o u t can result in a huge reliability and safety improvement at minimal cost. However, i f
practical, HARDWARE TIMEOUT is usually an even better solution.__

- 3 4 -

Portability
Loop timeouts w ill work in any environment. However, the timings obtained w ill vary dramatically between
microcontrollers and compilers.

Related patterns and alternative solutions
A s mentioned under Reliability and Safety Implications, HARDWARE TIMEOUT is often a better alternative to
L o o p T i m e o u t .

Overall strengths and weaknesses

© Much better than executing code without any form o f timeout protection.

© Many applications use a timer for RS232 baud rate generation, and another timer to run the scheduler. In many

8051 devices, this leaves no further timers available to implement a HARDWARE TIMEOUT. In these

circumstances, use o f a loop is the only practical w ay o f implementing effective timeout behaviour.

© Timings are difficult to calculate and timer values are not portable. HARDWARE TIMEOUT is always a better

solution, i f you have a spare timer available.

Figure 4-1 Loop Timeout (adapted from Pont, 2001 , p. 298)

In recent work, Kurian and Pont (2005) have revised the form of the PTTES patterns. In

this revised structure each pattern consists of three layers:

■ Abstract patterns

■ Patterns, and,

■ Pattern implementation examples (PIEs)

For example, Kurian and Pont (2005) have presented the abstract pattern TTC P l a t f o r m .

This abstract pattern consists of patterns: TTC-SL (S u p e r L o o p) S c h e d u l e r , TTC-ISR (In t e r r u p t

S e r v i c e R o u t i n e) S c h e d u l e r and TTC S c h e d u l e r that describe some of the ways in which TTC

P l a t f o r m can be implemented. In each of these alternative patterns, the abstract pattern is

referred to for background information (Kurian and Pont, 2005).

As discussed in Section 2.3, the choice o f processor or microcontroller in an embedded

system has a profound impact on the implementation of the patterns used in the system design.

A side effect of this is that new example code needs to be created for each software pattern in the

collection if a new hardware platform is to be supported. In order to avoid the need to edit the

patterns in these circumstances, another layer composed of ‘pattern implementation examples’

(PIEs) is derived from the patterns layer. PIEs are intended to illustrate how a particular pattern

can be implemented on different hardware platforms, e.g. on 8-, 16-, 32- and 64-bit processors.

In addition, PIEs can be used to illustrate how patterns may be implemented using different

programming languages e.g. Assembly and C (see: Key et al., 2003). As an example, Appendix

C lists two PTTES patterns: H e a r t b e a t LED and E r r o r LED with 8051 and ARM PIEs,

respectively.

It must be noted that the PTTES collection PIEs are currently based on the C

programming language. This is mainly because C is today the dominant language in embedded
-35 -

control systems. C has many fault and failure modes, but this is balanced by the fact that more is

known about how C programs fail. By avoiding these fault and failure modes, C is capable of

producing reliable systems whilst retaining its many benefits such as efficiency, small footprint,

portability, availability of experienced developers and widespread availability of development

tools (Pont, 2001; Storey, 1996; Hatton, 1994).

Similar to work by Buschmann et al. (1996) and Riehle and Zullighoven (1996) that

categorises patterns (see Section 3.2.4), Pont (2001) has categorised the patterns in the PTTES

collection based on their area of application in the embedded systems domain. The following is

a description of the categories that define the various types of patterns in the PTTES collection:

■ Hardware foundations: These patterns support the design and implementation of an

appropriate microcontroller hardware platform and associated peripherals e.g.

oscillator and reset circuits discussed in Section 2.3 (Pont, 2001, p. 27)

■ Software foundations: Patterns in this category describe how to create basic ‘Super

Loop’ architectures, how to control microcontroller port pins, and how to create

timing delays (Pont, 2001, p. 159).

■ Single-processor time-triggered architectures: These patterns describe how to

implement software architectures with a time-triggered architecture for single

processor schedulers such as those described in Section 2.4.1.2 (Pont, 2001, p. 229).

■ Multi-processor time-triggered architectures: Patterns in this category describe

how to implement time-triggered software architectures for distributed systems using a

wide range of protocols e.g. RS-232 and CAN (Pont, 2001, p. 537).

■ Specialised time-triggered architectures: These patterns are based on the single and

multi-processor time-triggered architectures. They support the implementation of

specialised software architectures for applications with specific resource constraints

e.g. applications with a low power resource (Pont, 2001, p. 891).

■ User interface patterns: Developers use patterns in this category to support the

implementation of user interfaces such as switches and keypads. The category also

includes patterns that support the implementation of LCDs (Pont, 2001, p. 359).

■ Serial interface patterns: This category of patterns support the implementation of

serial interfaces used to implement devices such as temperature sensors and memory

components (Pont, 2001, p. 491).

■ Monitoring and control patterns: Patterns in this category present techniques for

implementing a range of monitoring and control related components such as ADCs,

DACs, PWM outputs and the PID control algorithm (Pont, 2001, p. 725).
- 3 6 -

From these categories it can be noted that the PTTES collection provides patterns that

support the design and implementation of both hardware and software architectures that are

fundamental to an embedded application (see Sections 2.3 and 2.4). To support the

implementation of various functionalities, the PTTES collection also provides a wide range of

application specific patterns. With this wide range of patterns, the PTTES collection can support

the development of complete TT embedded applications. Unlike the Gamma collection, it can

therefore be argued that the PTTES collection is a pattern language as it is domain specific and is

composed of inter-related patterns that support the design of complete applications. This is

analogous to Alexander’s (1977, p. xiii) pattern language, i.e. “Eachpattern can exist in the

world, only to the extent that it is supported by other patterns: the larger patterns in which it is

embedded, the patterns o f the same size that surround it, and the smaller patterns which are

embedded in i t”, see Section 3.1.1.

4.3 How useful is the PTTES collection?
To date there have been no studies carried out to assess the effectiveness of the PTTES

collection. This section therefore attempts to analyse the usability and effectiveness of the

PTTES collection in the development of reliable TT embedded systems.

4.3.1 Usability of the PTTES collection

Over the years, the PTTES collection has received feedback from various users. For instance, in

his foreword of the PTTES book, Kent Beck, a pioneer of the software patterns movement,

wrote, “It [the PTTES collection] brought back that feeling o f opening up a fie ld o f endeavour to

someone who just has a problem to solve and who doesn’t want to be an expert in the solution.

...these patterns stand as an example o f how much more can be done with patterns than is

commonly attempted” (Pont, 2001, p. xiv). Though a good review, this does not give an

indication as to whether the PTTES collection does indeed support the development of TT

embedded systems, instead Kent Beck’s review gives praise to the use of patterns in solving

problems in the embedded domain.

Another review by Norm Kerth (2001), on Amazon, suggests that the PTTES collection

is a valuable ‘handbook’ for developers of TT embedded systems. He writes, “This book

belongs on the bookshelf o f every programmer engaged in time-triggered embedded systems... It

is the most pragmatic guide to building embedded systems programs I have seen in my 25+

years o f experience with such systems [...]. Along the way Pont tackles some o f the most baffling

topics in embedded systems - co-operative, pre-emptive and shared-clock schedulers; and the

interfacing o f multi-processor systems [...]. I f you have experience building embedded systems

then this is a book that deserves to be treated as a reference book or a handbook - that is, it
- 3 7 -

should be browsedfrom cover to cover to discover the comprehensive nature o f topics; then as

new work is assigned to you, or new problems arise, it should be the first book you consult fo r

ideas, pointers and solutions ” (Kerth, 2001). In contrast to Kent Beck, who is associated with

the object-oriented software domain and not the embedded domain, Norm Kerth is an embedded

developer and this is evident in his review of the PTTES collection in which he expresses his

appreciation of the support that the collection provides for the development of TT embedded

applications. Though not conclusive, these two peer reviews suggest that the PTTES collection

is presented appropriately and at the same time provides good coverage of some of the

challenging problems faced by embedded developers.

A review of the PTTES book by Chris Hills, suggests that the PTTES collection may

only be best suited for teaching purposes, “The book itself is, I think, aimed at students and

would be very goodfor hobby users o f the 8051 ” (Hills, 2001). Even though the PTTES

collection has primarily been used to support the teaching of Embedded Systems courses for

both MSc and undergraduate students in the ESL, contrary to Chris Hill’s opinion, the PTTES

collection has been applied successfully in non-teaching projects. For example, a recent research

project in the ESL evaluating suitable software architectures for automotive control systems, has

used the PTTES collection extensively to develop an adaptive cruise control system test bed (see,

Short et al., 2004c; Short et al., 2004b; Short et al., 2004a).

In order to get first hand information from student users on the usability of the PTTES

collection, an informal survey was carried out during the course of this research among

undergraduate and postgraduate students in the ESL. The subjects in the study were using the

PTTES collection to develop various embedded applications during the course of their degree

programmes. Five students were interviewed in the survey, two of which were in their 4th year

of an undergraduate degree, another two were in their 3rd year of the same degree and the fifth

subject was a postgraduate MSc student. The subjects had an average of approximately three

years programming experience. The survey was based on a half hour interview with each

subject. The questionnaire used for the interview is presented in Appendix B.

From the survey, it was observed that the subjects followed a similar approach when

implementing a pattern. For example, users had a tendency to first implement a hardware

platform after which an appropriate scheduler would be implemented. In most instances, users

would also implement a flashing LED task to test whether the scheduler and hardware were

functioning correctly before proceeding with the remainder of the application development. It

was also noted that the subjects did not seem to be knowledgeable of the patterns concept. In

fact, the approach generally used by the subjects when implementing the patterns would suggest

that the PTTES collection was in fact a code library rather than a collection of patterns. The

subject’s emphasis in the application of the patterns seemed to be on the reuse of the PIEs as

- 3 8 -

opposed to the actual design solutions presented. This is not the intended usage of patterns, as

discussed in Section 3.2, the code examples that come with a pattern are merely an illustration of

how a pattern can be applied. Nevertheless, the task of implementing the PIEs was observed to

be mundane, tedious and as a result error prone as a structured process is not followed. As such

the manual application of the patterns is somewhat of an ad hoc process. This is not an

appropriate way to develop software especially for reliable embedded systems. In fact, it was

observed that the subjects made common errors when implementing the patterns. For example,

not updating the microcontroller header or task array size and allocating port pins

inappropriately. These errors, though simple would cause users, especially inexperienced ones,

to spend unnecessary time debugging the resulting code.

With the potential pitfall of errors during the implementation of the patterns, it could

easily be argued that pattern-based design provides an incomplete solution to the problems of TT

software development. This is indeed a valid argument; however patterns are not a silver bullet

to the challenges faced by embedded developers. Ideally a developer should expect to use a

range of other techniques (including, for example, both patterns and time-triggered software

architectures) when dealing with complex analysis, design and implementation issues when

developing software for reliable embedded applications. Overall, embedded software is

complex, often (at least) safety-related, and developed by fallible individuals as Reason (1997, p.

25) has previously argued, “Human fallibility, like gravity, weather and terrain, is just another

foreseeable hazard. The issue is not why an error occurred, but how it failed to be corrected.

We cannot change the human condition, but we can change the conditions under which people

work”.

4.3.2 Can the PTTES collection sustain technological advancements?

An important issue to consider when adopting new technologies in software engineering e.g.

programming languages or compilers is the implication of any future technological advancement

in the field. The same would apply to the adoption of the PTTES collection. For example, when

the PTTES collection was first published in 1996, the 8051 family of microcontrollers was the

only platform used to illustrate the use of the patterns. However, since the publication of the

PTTES collection, the semiconductor industry has continued to evolve, thereby producing more

efficient processors and microcontrollers at affordable prices. There has therefore been a need to

review the PTTES collection in order to keep up with advancements in the semiconductor

industry.

In essence, as patterns are applied in different contexts and their related technologies

continue to advance, we leam more about the problems they are intended hence facilitating their

continuous refinement. However, because of the relationships among patterns in a pattern

- 3 9 -

language, a change made to one pattern may affect its relationships with its related patterns and

potentially the structure of the entire collection. Hence, the restructuring of the PTTES

collection described in Section 4.2 is meant to accommodate future changes to the collection.

The idea of having PIEs allows the PTTES collection to be extended to support new hardware

platforms. For instance, P o r t I/O in the original PTTES collection (see: Pont, 2001, p. 174) was

recently revised to allow developers to easily adapt it to other hardware platforms such as the

ARM (Pont and Mwelwa, 2003b).

Besides adapting the PTTES collection to technological advancements, new patterns are

continuously being added to the collection. However, creating patterns through the PLoP

conferences (see Section 3.2.4) is a challenging and time-consuming process, an observation

made by the author during the creation of two new PTTES patterns. From the observations made

during the PTTES user survey described in Section 4.3.1, H e a r t b e a t LED and E r r o r LED were

created (see Appendix C for a detailed description of these patterns). In particular, the use of a

flashing LED by the subjects as a means of getting tangible feedback on the status of a

microcontroller during the initial stages of development prompted the creation of these two

patterns. Through the creation of these patterns the author gained first-hand experience of the

pattern creation process at a PLoP conference.

A number of interesting observations were made during the creation of these patterns.

One of these was the level of domain knowledge possessed by the workshop participants. For

instance, the only domain experts on embedded systems were the two authors that presented the

patterns (Mwelwa and Pont, 2003). The other participants came from different domains, for

example Grone and Tabeling (2003) presented patterns for client-server development and

Marquardt (2003) presented generic patterns to support the design of architectures used in

software development. One of the main reasons for this mix of participants is that PLoP

conferences generally accept patterns from various domains e.g., client-server web development

to embedded programming as was the case at this workshop. It is therefore not always possible

to have pattern workshop sessions restricted to specific domains. Good domain knowledge by a

pattern author is therefore very important, as during a workshop non-domain experts are unable

to question the technical content of a pattern and therefore assume it is credible. Hence, the

primary focus of a pattern workshop at such a conference tends to be on the presentation and

structure of a pattern and not on its technical content.

From the observations of the pattern creation process, it is clear that patterns go through

rigorous and thorough scrutiny before publication. Technical writing can be challenging for

technical people such as software developers, therefore the pattern creation process enables

experienced writers to tutor inexperienced writers. However, as the primary focus of the pattern

creation process is on the presentation and not the technical content of a pattern it can be argued
- 4 0 -

that not every pattern in a collection has to go through the pattern creation process. Instead, a

single pattern that has been through the pattern creation process can be used as a template for all

the other patterns in the collection. In fact, not all the patterns in the PTTES collection have

gone through PLoP conferences. Having initially published patterns through PLoP conferences,

Pont has subsequently relied on this early experience to create and publish new patterns. It must

also be taken into account that the pattern creation process can take up to six months i.e. from

Shepherding to the Writers’ Workshop. This can therefore be a costly process. For instance, if

Pont had taken every single pattern in the PTTES collection, through the pattern creation

process, the PTTES book may have taken longer to publish due to the lengthy pattern creation

process. Furthermore, it would have been very costly to present all 72 patterns at PLoP

conferences.

With the observations made above, it can be argued that the PTTES collection is

manageable and accommodates changes and the addition of new patterns in line with

technological advancements. This can be attributed to the fact that Pont has become more

experienced with the pattern creation process over the years and has thus been able to

appropriately manage the evolution of the PTTES collection.

4.4 Chapter conclusions
This chapter has presented the PTTES collection that is meant to support the development of TT

embedded applications. From observations made of the use of this collection, it has been noted

that it provides developers of TT embedded applications with a ‘best practices design handbook’.

The patterns in the collection bridge the gap between expert and non-expert developers of TTC

embedded applications. For example, developing an avionics control system requires expertise

in technical areas such as control and instrumentation, which some developers may not be

familiar with; the monitoring and control patterns in the collection would support a developer in

these circumstances.

It has also been argued that the PTTES collection although initially based on the 8051

hardware platform, can be extended to support new hardware platforms. This is a good feature

of the collection, as developers do not have to worry about its ability to cope with future

technological advancements. This is particularly important in designs where maintainability is

paramount.

A disadvantage of the PTTES collection observed is its ‘manual’ application. The

manual application of the patterns involves users adapting PIEs to their design requirements.

This is an ad hoc mundane, tedious and as a result error prone process. This is clearly not an

appropriate way to develop software especially for systems with high reliability requirements.

- 4 1 -

5 Automated Code Generation
This chapter reviews previous research in both traditional and pattern-based code generation.

5.1 Programming languages and automatic programming
systems
The use of appropriate Computer Aided Software Engineering (CASE) tools can improve

software development productivity (Yang, 1999; Aaen et al., 1992). CASE tools support

methodological procedures and techniques and have been used in software development for

many years (Hoffnagle and Beregi, 1985). A compiler is arguably one of the first CASE tools to

have been widely used and accepted by computer scientists; it translates high-level programming

languages into machine code (Koffman, 1998).

It is generally suggested that the advent of compilers can be traced back to the inception

of FORTRAN - arguably one of the first high-level programming languages to have been

developed (Sammet, 1981). Sammet (1981) has argued that a major technical contribution made

by the developers of FORTRAN in the 1950s was to demonstrate that a compiler could produce

efficient object code. It then became clear that the productivity of programmers using high-level

languages could be significantly greater than that of programmers working in Assembly.

Consequently, the first FORTRAN compiler was originally called an ‘automatic programming

system’ (Buntine, 1998). Although it is sometimes argued that the emergence of high-level

programming languages resulted in the need for automatic code generation capabilities, John

Backus (1980), co-inventor of FORTRAN, has previously pointed to the economic demands at

the time, in his own words, “Instead it began with the recognition o f a basic problem o f

economics: programming and debugging costs already exceeded the cost o f running a program,

and as computers became faster and cheaper this imbalance would become more and more

intolerable ” (Backus, 1980, pp. 130-131).

Today there are a wide range of compilers available in relation to programming

languages as each programming language requires a specific compiler. As a result compiler

technology has evolved as new programming languages have become available over the last half

century. Levenez (2006) has described a timeline that illustrates the evolution of more than 50

programming languages from the inception of FORTRAN in 1954 to modem day programming

languages like Microsoft’s C#. First, second, third, fourth, and fifth generation languages i.e.

1GL, 2GL, 3GL, 4GL and 5GL respectively are groupings used by computer scientists to

represent milestones in the evolution of programming languages. 1GL is specifically associated

with machine code, 2GL with Assembly (Giloi, 1997; Shapiro, 1997; Allen, 1981). 3GLs are

high-level programming languages that are relatively easier to leam than 2GLs as the syntax

- 4 2 -

used is close in similarity to readable language. Examples of 3GLs are FORTRAN, Pascal, C

and object-oriented programming languages such as Java and C++ (Allen, 1981; Backus, 1980).

Figure 5-1 and Figure 5-2 present code snippets of a simple flashing LED task implemented in

Assembly and C respectively. These code examples illustrate the difference in readability

between a 2GL and 3GL programming language. After 3GLs comes 4GLs that are usually

associated with domain specific languages e.g. database query languages such as SQL and

scripting languages such as JavaScript (Heering and Memik, 2002).

; LED_Flash
; Flashes an LED (ON, OFF) on a specified port pin.

TASK1:

LED_Flash:
mov A,LED_Status
j z LED_on
clr LED_PORT ; turn LED off
mov LED_Status,#00
ajmp SCH_Dispatch_Tasks_end

LED_on:
setb LED_PORT ; turn LED on
mov LED_Status,#01
ajmp SCH_Dispatch_Tasks_end

Figure 5-1 A flashing LED task in A ssem bly. Com pare with Figure 5-2

/ * ___ * _

LED_Flash()

Flashes an LED (ON, OFF) on a specified port pin.
_ *___ * /
void LED_Flash(void)

{
// Turn the LED OFF to ON (or vice versa)
if (LED_state_G == 1)

{

LED_state_G = 0;
LED_pin = 0;
)

else
{
LED_state_G = 1;
LED_pin = 1;
}

}

Figure 5-2 The flashing LED task implemented in A ssem bly in Figure 5-1, now im plem ented in C

5.2 Model-based code generation
The use of design models to specify complex designs is a long-standing engineering tradition. In

model-based software development, models are used to abstract the design of a system thus

allowing developers to: 1) design applications with requirements rather than technical

specifications in mind, 2) communicate design ideas across the design team and 3) validate the

design before it is implemented (Szemethy, 2006; Martin and Muller, 2005).

The Unified Modelling Language (UML) facilitates model-driven software development,

- 4 3 -

it is a language for communicating and organising design ideas (Pawlicki, 2003). The Object

Management Group (OMG) adopted the UML in November 1997 (Object Management Group,

2006). The initial intention of UML was for the development of object-oriented software but

over the years it has become the de facto technology for the design, analysis and modelling of

various software architectures and more recently for model-based code generation. In model-

based code generation source code and (or) design documentation are automatically generated

from UML design models and in so doing alleviating the tedious and error-prone task of

manually transforming the design models into code i.e. hand-coding (Szemethy, 2006; Milicev,

2002; Smith et al., 1999; Auer et al., 1988). XML Metadata Interchange (XMI) is an Extensible

Mark-up Language (XML) that is generally used by code generators to facilitate model-based

code generation (Martin and Muller, 2005). XMI’s representation of a UML model is very rich

in detail and can therefore relate to graphical representation of the elements and references

between the various classes and objects in a design model (Object Management Group, 2006).

The OMG have also defined the Meta-Object Facility (MOF), an extensible model driven

integration framework for defining, manipulating and integrating metadata and data in a platform

independent manner, as such it is commonly used to integrate tools, applications and data

(Object Management Group, 2006).

In recent years the OMG have proposed and adopted the Model Driven Architecture

(MDA) that is based on their established standards: MOF, UML and XMI (Object Management

Group, 2006). The MDA provides a set of guidelines for structuring specifications expressed as

models. The MDA methodology allows a system’s functionality to be defined as a Platform

Independent Model (PIM) that abstracts design from implementation. Then using formal

transformation rules based on a Platform Definition Model (PDM) e.g. Microsoft’s .Net

technology, the PIM is transformed to a Platform Specific Model (PSM) from which a system

can be implemented. The transformations from PIM to PSM and PSM to code are generally

facilitated by automated CASE tools.

The adoption of model-based code generation over the years suggests parallels with the

move from Assembly (2GL) to high-level programming languages such as FORTRAN and then

Java (3GL). With this form of software development, developers can produce remarkably more

lines of code than is possible when hand-coding and at the same time eliminate any potential

errors during this stage of development (Whalen and Heimdahl, 1999). Model-based code

generation also provides support for software maintenance. Without model-based code

generation, the benefits of design modelling seldom extend throughout a product’s life cycle

because during maintenance, these design models may be ignored and the code modified

directly. This results in design models falling out of sync and therefore becoming irrelevant. On

the other hand a design model and its generated code simultaneously retain there usefulness if
- 4 4 -

used appropriately (Bell, 1998).

Despite the advantages of model-based code generation, this methodology has not quite

picked up in embedded systems development. This is mainly attributed to the fact that there

currently exists a mismatch between UML design models and embedded software designs

(Schatz et al., 2003; Martin et al., 2001). Limitations are due to the UML’s inability to address

specific constraints such as timing, the handling of periodic time-triggered tasks, limited memory

and power use and pre-defined hardware platform technology (Graaf et al., 2003; Tomgren and

Redell, 2000). Nevertheless, efforts are being made by various researchers to extend the UML to

the embedded systems domain (see for example: Kukkala et al., 2005; Vanderperren and

Dehaene, 2005). One of these efforts, the Systems Modelling Language (SysML) looks the most

promising. SysML is a domain specific language for systems engineering. It supports the

specification, analysis, design, verification and validation of a broad range of systems. These

systems may include hardware, software, information and processes (SysML Partners, 2005).

However, SysML is currently undergoing formalisation. On November 14th 2005, SysML v.1.0

alpha was made available to the public and submitted for review to the OMG (SysML Partners,

2005).

Although the embedded domain currently lacks a well defined modelling language,

certain specialist areas within the domain have relied on other code generation techniques. For

instance, Simulink, a platform for simulation and model-based design for dynamic systems,

provides an interactive graphical environment and a customisable set of block libraries

(MathWorks, 2005). Real-Time Workshop Embedded Coder from MathWorks generates C code

from Simulink models (MathWorks, 2005). Today the aerospace and automotive industries

make extensive use of such code generation tools aimed at control and signal processing systems

and many car manufacturers now rely on production code generated using these techniques (Lee

et al., 2003; Marsh, 2003; Schatz et al., 2003; O'Halloran, 2000). For instance, Pi Technology

and Ford have used MATLAB and Simulink to generate C code for the development of

electronic control units for the Ford Focus (Wartnaby et al., 2003). Ken Kamofsky, marketing

director for DSP and Communications at The MathWorks, has previously expressed his views on

the importance of this form of software development, “Engineers can’t keep writing code

manually when [the] programs take up half a million lines o f code. The predecessors o f the

engineers took a while to accept C compilers and hardware synthesis but eventually it became

main-stream. It's the same process all over again ” (Marsh, 2003).

Beyond commercial tools, researchers within the embedded systems community have

attempted to develop innovative tools. For example, POLIS is a hardware/software co-design

tool for embedded systems (Balarin et al., 1997). POLIS allows the partitioning of an

application into co-operating software and hardware modules and synthesises both the individual

- 4 5 -

modules and the interfaces among them. It can also perform system-level simulation to support

the partitioning of hardware and software. POLIS also provides the automatic generation of a

custom scheduler (Cuatto et al., 2000). Overall, POLIS provides an environment where a

systems designer can quickly evaluate choices of hardware and software architectures (Balarin et

al., 1997).

Ghezzi et al. (2002, p. 510) have previously implied that code generation is a form of

software reuse, “The generation approach to reusing code relies on a generator that generates

the application code on the basis o f input that specifies the needed components and their

integration. In some approaches, the needed components are generated automatically on the

basis o f their specification, while others assume a pre-existing set o f components that are

configured together based on the code generator’s output. ” Reuse of existing carefully designed

and extensively used software is generally accepted as the primary means of improving the

quality of new software systems and reducing development costs (Mili et al., 2003). In fact,

previous empirical studies have demonstrated that reuse is an important factor in enhancing

software production (see: Basili et al., 1996; Moser and Nierstrasz, 1996; Sparks et al., 1996).

However, in the case of compiler based code generation, any form of reuse would be at a

low level in the form of source code compilation that involves the translation of statements in

one programming language into machine code. On the other hand model-based code generation,

where UML is used, is based on purposely-designed models. UML serves well for abstracting

the design from the problem at hand and is primarily used as a notation; therefore it can be

argued that model-based code generation does not necessarily promote software reuse.

5.3 Automating the application of software patterns
Most of the previous work on software patterns, discussed in Section 3.2, has emphasised a

manual approach to their application (Henzinger et al., 2003; Pont, 2001; Prechelt and Unger,

2001; Douglass, 1999; Wild, 1996). As such, it is (sometimes implicitly) assumed that a

developer will browse a pattern collection, choose appropriate design patterns and - possibly

using some code examples or hardware schematics (if using the PTTES collection) as a starting

point - assemble a system. However, it does seem possible that we should be able to reduce

developer effort and the number of potential errors in a pattern-based software development

process by developing suitable CASE tools. Today, it is unthinkable to develop complete

software applications without using a tool-supported process (Jacobson et al., 1999).

Furthermore, as discussed in Section 5.1, the use of CASE tools has the benefit of improving

software development productivity, quality, software reuse, documentation and maintenance.

Over the years, as patterns have become widely used within the software engineering

community, various researchers have attempted to automate their application. Budinsky et al.
- 4 6 -

(1996) were pioneers in this research, they developed a tool that attempted to automate the

application of the Gamma collection of patterns described in Section 3.2. Their tool has a

‘wizard’ that allows a user to enter application specific data and select trade-offs that lead to the

generation of corresponding code declarations and implementations. Essentially the tool takes

care of the mundane aspects of the transformation of individual patterns into C++ code.

However, the tool does not generate complete code; instead it produces skeleton object-oriented

classes associated with the pattern implementation. A developer therefore has to manually add

application specific code to the generated classes in order to produce a complete application.

The tool also incorporates a browser that renders the Gamma collection into HTML to allow

easy access to the pattern documentation during development. Overall, the main benefit of this

tool is the implementation of individual patterns in C++.

Florijn et al. (1997) have also developed a pattern tool similar to that of Budinsky et al.

(1996) in that it is also intended to support the application of the Gamma collection. Similarly to

the Budinsky tool, Florijn et al.’s tool does not support complete code generation instead it

generates skeleton code that a developer has to add functionality to by adding application

specific code. The main difference between the Budinsky and Florijn tools is that Florijn’s tool

checks for consistency between the generated code and the associated patterns thus ensuring the

implementation maintains the pattern specification.

Pattern Wizard is another pattern tool similar in functionality to that of Budinsky’s

developed by Amout (2004). The main difference between the two tools is in the programming

language used to generate skeleton classes. Whereas Budinsky et al. (1996) used C++, the

programming language used in the Gamma collection, Pattern Wizard generates code in the

Eiffel programming language. At present Pattern Wizard only supports the implementation of

five patterns described in the Gamma collection (Gamma et al., 1995): S i n g l e t o n , A d a p t e r ,

D e c o r a t o r , B r i d g e and T e m p l a t e M e t h o d . Although the purpose of the tool is to simplify the

application of the Gamma collection, this work was a result of limitations in Amout’s attempts to

transform patterns into software components, Section 6.2 elaborates on this work.

FRED (Framework Editor) is a pattern tool developed by researchers at Tampere

University of Technology and University of Helsinki. FRED specialises in the design of

applications using architectural patterns (discussed in Section 3.2). This is based on Viljamaa’s

(2001) belief that there exists a close relationship between architectural patterns and frameworks.

In fact, Viljamaa (2001) argues that most pattern tools actually create application frameworks on

a small scale. This is indeed a valid argument as the tools described here do not generate

complete applications. Instead they generate skeleton code from individual patterns. A

developer then has the task of manually completing the code and integrating it with the rest of

the application. However, Viljamaa (2001) does emphasise that a framework tool must be
- 4 7 -

capable of managing groups of patterns not just single patterns as is the case with the pattern

tools described here.

In recent years, manufacturers of CASE tools have recognised the potential of pattern-

based software development such that they have begun to support the use of patterns in their

integrated development environments (IDEs). For instance, Borland (2005) have demonstrated

this in their Borland Together Developer IDE that allows a developer to browse and select a

pattern from a catalogue into a workspace where generic code templates associated with the

patterns are generated. A developer then has to add application specific code to the templates in

order to adapt them to the application being developed. Visual Studio .Net, Microsoft’s latest

development environment, also supports the use of patterns to create object-oriented class

templates that provide a framework for building applications rapidly (Microsoft, 2006). It must

however, be noted that the majority of these commercial tools have primarily focused on the

Gamma collection.

Even though some of the work on pattern tools described here has come out of the

patterns community e.g. Budinsky et al. (1996), the topic has been a contentious issue and has

been viewed as a contradiction of first principles. Coplien, a pattern enthusiast, has expressed

critical views on constructing pattern tools or indeed formalising patterns, he argues, “...by the

time technology or understanding matures to the point where we can formally capture an idea, it

ceases to have the generative, literary quality that sets patterns apart from other methods ”

(Coplien, 2003). Nevertheless, other pattern enthusiasts believe otherwise, for instance,

Viljamaa (2001) believes that the application of patterns can benefit from tool support and based

on the discussions in Section 4.3, this is a valid argument.

5.4 Pattern-based code generation
It can be argued that the pattern tools described in the previous section have actually attempted

to automate the application of individual patterns rather than support automated code generation

from patterns. In particular, they generate object-oriented skeleton classes associated with an

individual pattern which a developer then has the task of adding application specific code to and

thereafter integrating this code into a complete application. These tools do not therefore generate

integrated applications, instead they generate code modules.

Although these tools help ease the application of patterns, Heister et al. (1997) have

argued that they do not allow for the further exploitation of patterns in latter phases of software

development. In particular, the fact that developers are left to complete the implementation of

the incomplete code generated by these tools means that there is a high possibility that the

generated structures are lost in the process and thereby making it almost impossible to guarantee

whether the original design has been implemented. This is a drawback for both software
- 4 8 -

maintenance and for any attempts to reverse engineer an application developed in this manner.

To this effect Pelechano et al. (2002) have previously expressed the belief that applying patterns

in an automated code generation process would enhance pattern-based software development.

Indeed, with a well defined model, patterns are capable of supporting a code generation process.

Pattern design solutions provide a basis for the generation of quality software.

Considering the PTTES collection described in Chapter 4, using a manual approach, it

has previously been described how TTC software can be created for a range of industry-standard

hardware platforms, for example the 8051 microcontroller (Pont, 2001), ARM processor (Pont

and Mwelwa, 2003b) or PC platform (Pont et al., 2003a). While such a manual approach can be

effective, there is an imperfect match between generic processor architectures and time-triggered

software designs. For example, most processors support a wide range of interrupts, while the use

of (pure) time-triggered software architectures generally requires that only a single interrupt is

active on each processor. This leads to design guidelines, such as the ‘one interrupt per

microcontroller rule’ (Pont, 2001). Although, such guidelines can be supported by patterns, as

discussed in Section 4.3.1, the process of applying the patterns can be mundane and tedious with

the potential to be error prone and time consuming thus resulting in unreliable systems.

One way in which we might expect to improve the application of the PTTES collection

and, at the same time, the reliability of TT embedded systems, is by developing a CASE tool that

supports the generation of complete application code from the PTTES collection. Indeed,

developers of embedded systems already make extensive use of code generation tools,

particularly those supporting the development of control and signal processing systems (see

Section 5.2). However, generating code from a collection of patterns is a process that presents a

number of challenges: consequently, there is no code generation tool based on the PTTES

collection, let alone a widely used pattern tool supporting a widely used pattern collection.

Chapter 6 discusses these challenges in detail.

The pattern tools described in the previous section are inflexible and as such do not

withhold the desirable attributes of patterns. To genuinely support code generation, a pattern-

based CASE tool should be dynamic, i.e. capable of allowing developers to easily adapt the

patterns to a particular design context. Furthermore, such tools must have the ability to generate

application code from appropriately selected groups of patterns and not be restricted to

generating skeleton classes from individual patterns.

5.5 Chapter conclusions
In this chapter, it has been argued that code generation is an important technique in software

development. It has also been argued that existing pattern-based CASE tools primarily focus on

automating the application of individual patterns and do not consider the generation of complete
- 4 9 -

applications from appropriately selected groups of patterns.

It has also been argued that patterns can offer an alternative to conventional code

generation methods such as model-based code generation. Unlike UML, which is generally used

as a design notation, patterns are reusable design solutions. Therefore, code generation based on

patterns has the potential to produce code of high quality. Furthermore, pattern-based code

generation tools would allow for the exploitation of patterns in the later phases of software

development, such as maintenance and reverse engineering.

This chapter has also noted that most of the work on pattern tools to date has focused on

object-oriented designs and in particular the Gamma collection. But, as discussed in Section 3.2,

the scope of patterns has widened over the years such that there are now many pattern collections

that focus on a wide range of software domains, for example the PTTES collection described in

Chapter 4. Hence, there is a need to consider pattern-based code generation in different domains

and as such a suitable approach to pattern-based code generation is required. The remainder of

this thesis investigates a different approach to pattern-based code generation.

- 5 0 -

PART III: A NOVEL APPROACH TO SUPPORT

CODE GENERATION USING A PATTERN

LANGUAGE

Existing pattern tools have generally focused on the generation o f code from individual patterns,

they have not supported the generation o f code from appropriately selected groups ofpatterns.

Chapter 6 in this part discusses and addresses the challenges o f implementing pattern-based

code generation CASE tools. Chapter 6 goes on to present a novel approach to pattern-based

code generation. In Chapter 7 the validity o f this approach is put to test in the development o f a

prototype pattern-based code generation CASE tool based on the PTTES collection. The

application o f this tool is described in Chapter 8.

- 5 1 -

6 Pattern-based Code Generation - Challenges and
Solutions3
This chapter discusses the challenges of implementing pattern-based code generation CASE

tools. A novel approach that addresses these challenges is then described.

6.1 The ‘one pattern, many implementations’ challenge
In considering automated code generation from pattern-based designs, the objective is not to

replace or automate a developer’s design deliberations. Instead, the idea of an automated

pattern-based code generation process is to assist developers to efficiently develop applications

using design patterns. It is believed that such an approach would avoid the often tedious and

mundane manual process of implementing patterns. Furthermore, such an approach is unlikely

to be error prone, therefore resulting in the production of reliable software.

Patterns are not a set of laws; they are guidelines that suggest general solutions that can

be applied to design problems in various contexts. A pattern is therefore expected to have more

than one possible implementation (Florijn et al., 1997). Because of this ‘one pattern, many

implementations’ relationship that exists between a pattern and its implementations, users are

expected to devise their own custom solutions using the ideas presented by the pattern. Thus the

idea of automating this entire process can therefore seem ludicrous, given the amount of human

thought and pattern customisation often required (Bulka, 2002). On the other hand, adapting a

PIE to a particular hardware platform would require a developer to be familiar with the hardware

platform. However, as was highlighted in Chapter 2, there are currently a wide range of

microcontrollers available on the embedded market and new ones are constantly becoming

available. It is therefore practically impossible to expect developers to keep abreast with all the

microcontrollers available on the market.

The ‘one-to-many’ relationship between a pattern and its implementations stems from

Alexander’s theory on patterns. Alexander (1979, p. 187) notes that, “Ordinary languages and

pattern languages are finite combinatory systems which allow us to create an infinite variety o f

unique combinations, appropriate to different circumstances, at will... ”. In other words,

patterns describe a set of solutions for a family of related design problems and, as a result, it is

difficult (if not practically impossible) to implement an automated process that can generate code

for every possible solution (MacDonald et al., 2002). Hence, the one-to-many mapping between

a pattern and its implementations presents a fundamental challenge to those who wish to develop

3 Som e o f the contents o f this chapter have previously been published in (Pont et al., subm itted 2 0 06) and (M w elw a

et al., 2006).

- 5 2 -

automated pattern-based code generation solutions as for every ‘good’ pattern, a code generating

system should be capable of generating a near infinite number of possible implementations.

Pattern automation tools are therefore unlikely to be capable of always producing pattern

implementations that exactly match a developer’s requirements (Bulka, 2002).

A consequence of the ‘one pattern, many implementations’ relationship is that fitting

automated pattern templates to the exact problem at hand might in principle always be a

mismatch in the sense that say, hand crafted solutions might always be better. Hence a custom

tailored suit is always going to fit someone better than one bought off the rack. Nevertheless, do

pattern implementations always need to be ‘custom tailored’ (Bulka, 2002)? On the other hand,

‘hand coded’ pattern implementations could result in solutions that no longer meet the structural

or semantic intentions of their patterns resulting in what Garlan et al. (1995) describe as an

architectural mismatch. An architectural mismatch results from assumptions that a reusable

component makes about the structure of the system it is intended for. These assumptions often

conflict with those of the other components and are almost always implicit, making them

extremely difficult to analyse before building a system (Garlan et al., 1995). Therefore, in order

to implement automated pattern-based code generation solutions, it is imperative that the ‘one

pattern, many implementations’ issue is addressed.

6.2 Addressing the ‘one pattern, many implementations’
challenge
This section addresses the ‘one pattern, many implementations’ challenge discussed in the

previous section.

6.2.1 Can we use software components as the basis of pattern-based
code generation?

It can be argued that the usage of PIEs is comparable to that of software components. It could

therefore be further argued that a possible approach to pattern-based code generation is the

transformation of patterns into software components.

Software components are generally viewed as pre-implemented software modules used as

building blocks in the development of software applications (Wang and Shin, 2000). They are

designed to be reusable in many applications, some not yet existing. They must therefore be

well specified and easy to understand, adapt, deploy and replace (Cmkovic, 2003). Today there

are numerous component libraries available to developers across various software domains

(Zimmermann, 2005).

Meyer (2003) has described a type of software component called a ‘Trusted Component’

that he argues can guarantee the high-quality of software generally required in safety critical

- 5 3 -

applications. In fact, Meyer (1997) had previously argued that software components derived

from patterns would actually guarantee this degree of quality and make patterns more useful than

they are in their general form, in his own words, “One can hope that many o f the 'patterns ’

currently being studied will soon cease to be mere ideas, yielding instead directly usable library

classes ” (Meyer, 1997, p. 735). Amout (2004) has built on Meyer’s work and considered ways

in which software components can be derived from patterns, a process she refers to as

‘componentization’. The idea behind componentization is that certain patterns should be capable

of producing software components that can help simplify future pattern implementations (Meyer

and Amout, 2006; Amout, 2004). Amout (2004, p. 44) believes patterns should not be limited to

design reuse, instead they should also be used to promote software reuse through derivable

software components.

Amout (2004) demonstrates her componentization theory using the Gamma et al. (1995)

patterns, Figure 6-1 is an overview of the process. The patterns are transformed to components

that are made available as code libraries in the Eiffel programming language (Eiffel Software,

2006). Amout (2004) argues that this reduces the implementation effort of the patterns in Eiffel

as they are not created from scratch each time they are used in their component form.

However, Amout (2004) realised that it was not possible to componentize all the patterns

in the Gamma collection into Eiffel software components. Of the 23 patterns in the Gamma

collection, only 15 were componentizable (Amout, 2004). Several reasons made it impossible to

componentize all the patterns. Firstly some of the patterns were too context-sensitive therefore

making it impossible to derive components that were not too constrained to a particular context.

However, some of the other patterns were less context sensitive but still not componentizable,

therefore to support the application of these patterns, Amout (2004, p. 323) developed Pattern

Wizard (this tool is discussed in Section 5.3).

Furthermore, the use of Eiffel as a target programming language made it impossible for

some patterns to be componentized. For example, in order to avoid code duplication between

Pattern library from
Patternwhich reusable

com ponents are
derived

C om ponentization

C om ponent added to
object-oriented c la s s

library

R eu sab le
C om ponent

Figure 6-1 Overview of the ‘com ponentization’ process

- 5 4 -

different components derived from the D e c o r a t o r pattern, Amout (Amout, 2004, p. 7 8)

required the use of genericity4. However, this approach was not possible with the version of

Eiffel used at the time as all data types need to be known at compile time, hence there was no

support for genericity. Amout (Amout, 2004, p. 351) also realised that, “ ...there are usually

many ways to implement a design pattern, which are difficult to capture in a reusable

component. It is sometimes feasible to provide several library variants, but it is hardly possible

to foresee all possible variations. ” This realisation by Amout adds weight to the ‘one pattern,

many implementations’ discussion in Section 6.1.

Even if componentization was applicable to every pattern, once a component has been

packaged and shipped, users of the component are very unlikely to know of how the component

was created. In fact users are generally only interested in knowing whether a particular

component can solve their problem. Therefore, users wishing to adapt components to design

problems similar to those they are intended, are at a disadvantage as they would not have the

design solution from which the component was derived. This is typical with object-oriented

code libraries commonly used today, for instance Java packages can be easily modified in order

to extend their capability within the Java context (Sickle, 1996, p. vi). However, attempting to

transform a Java package into a C# package would not be an easy task without the design

solution.

Although software components promote software reuse, it is safe to say that a major

disadvantage of components is that they are implementation specific and therefore do not

promote design reuse. In essence, componentization is based on a ‘one pattern, one

implementation’ relationship and not the ‘one pattern, many implementations’ attribute

associated with patterns. A user therefore attempting to use a similar solution in a different

context e.g. applying one of Amout’s Eiffel software components in a different programming

language such as C# is unable to do so easily without any knowledge of the design solution.

This argument is supported by Zimmerman (2005), who argues that adapting software

components to different design contexts is not a straightforward task. Hirschfeld et al. (2005)

have also suggested that transforming patterns into component packages results in the lack of

traceability and therefore unusable design solutions.

To therefore preserve design reuse and at the same time promote code reuse, this thesis

proposes a pattern-based code generation approach based on the use of PIEs. With such an

approach, a user has the flexibility of selecting an appropriate pattern implementation from a

range of PIEs. This approach would adhere to the ‘one pattern, many implementations’ attribute

4 G enericity is a technique inherited from generic program m ing (G P). It is used to create param eterised classes that

h ave different data types (B ooch , 1994). A param eterised class m ust be instantiated before objects can be created.

- 5 5 -

of patterns. The remainder of this chapter describes this approach in detail.

6.3 A meta-model for the PTTES collection
Heister et al. (1997) have previously argued that if the application domain of a set of patterns is

sufficiently narrow, it is possible to define the aspects of a pattern to which code generation

principles can be applied. This argument supports the proposition described in this thesis i.e.

that a pattern language such as the PTTES collection can be used to support automated code

generation by using PIEs as ‘first class citizens’ in the process. In this context a first class

citizen refers to a PIE as a primary entity in the code generation process.

Ideally a pattern-based CASE tool should adhere to a pattern meta-model. A meta-model

is a generic model of the building blocks and rules needed to build specific models within a

domain of interest (Szemethy, 2006; Saeki et al., 1993). A pattern meta-model provides a

unified description of a pattern collection thereby ensuring the integrity of the patterns and their

application is consistent. A pattern meta-model can also provide a flexible structure that is

adaptable to the evolution of a pattern collection hence supporting the addition of new patterns or

indeed PIEs.

Pagel and Winter (1996) have previously described a meta-pattem known as ‘Hook &

Template’ used as a unified description of the Gamma et al. (1995) patterns. They argue that it

can be used to establish patterns as first class elements in CASE tools. Hook & Template

illustrates the instantiation5 of individual patterns. However, it does not provide support for the

integration of instantiated patterns into an application. Albin-Amiot and Gueheneuc (2001) have

described a similar pattern meta-model for the representation of the Gamma collection.

However, Albin-Amiot and Gueheneuc (2001) argue that besides supporting pattern-based code

generation, their meta-model also facilitates the detection of patterns in code.

The meta-models described by Pagel and Winter (1996) and Albin-Amiot and Gueheneuc

(2001) focus on the transformation of individual patterns into code - they do not provide a

means of generating integrated applications. A user would still have the task of integrating the

generated code from the individual patterns into a single application. This is therefore an

incomplete solution that is error prone as users do not adhere to any standard approach when

integrating the generated code. Furthermore, such an approach makes it difficult for a pattern-

based CASE tool to facilitate reverse engineering as a tool may not be capable of detecting

patterns in the application code due to inconsistent implementations. Albin-Amiot and

5 Instantiation is an object-oriented term inology u sed to describe the operation o f creating an object from its parent

c lass (S ick le , 1996). Instantiation is also com m only u sed in the patterns com m unity to refer to the im plem entation

o f patterns (W ild, 1996).

- 5 6 -

Gueheneuc (2001) also make note of these limitations.

To describe their meta-models, Pagel and Winter (1996) and Albin-Amiot and

Gueheneuc (2001) use the UML. This relates to previous work that has attempted to use the

UML to represent design patterns (Guennec et al., 2000; Sunye et al., 2000) and recently, work

by France et al. (2004) that has proposed a UML-based pattern specification technique that is

intended to pave the way for the development of tools that support the rigorous application of

object-oriented design patterns. Using the UML to specify the Gamma et al. (1995) patterns has

been made possible by the fact that these patterns conform to object-oriented design principles

on which the UML is closely aligned with.

For reasons already discussed in Section 5.2, it was decided not to use the UML to

specify the PTTES meta-model. Instead, the meta-model described here is based on the PTTES

form described in Section 4.2. Figure 6-2 is an illustration of the meta-model used to represent

the PTTES patterns. It consists of a design tier that represents the design analysis phase of

development based on an appropriate pattern and an implementation tier that represents the

implemented pattern as a PIE.

The generic form of the PTTES meta-model makes it possible for a pattern CASE tool

to support the application of the PTTES collection as each pattern conforms to it. For example,

Figure 6-3 illustrates how the PTTES meta-model can be used to implement TTC P l a t f o r m .

TTC P l a t f o r m can be applied in various contexts by using its associated patterns such as TTC

S c h e d u l e r generally used to implement applications with high resource constraints. Each

pattern then has a number of PIEs associated with different hardware platforms such as the ARM

and 8051 microcontrollers (Pont and Mwelwa, 2003b; Pont, 2001).

The PTTES meta-model is comparable to the OMG’s MDA methodology described in

Section 5.2. In the MDA methodology a PIM is first defined independently of the

implementation technology and then transformed into a PSM using transformation rules. This

compares to the PTTES meta-model where a pattern is transformed into a PIE based on a

specified hardware platform. However, in the PTTES meta-model the PIE generated from a

Abstract Pattern

V Design tier

Pattern nPattern 1

Implementation tier

Figure 6-2 The PTTES meta-model

- 5 7 -

pattern is actual code whereas the PSM is a conceptualised implementation that is later

transformed into code. Figure 6-4 compares the two concepts.

(Abstract Pattern)
TTC Platform

(Pattern)
TTC Scheduler

Design tier

i (Pattern) ,
' TTC-ISR Scheduler '

i (Pattern) N,
V TTC-SL Scheduler '

(PIE)
0"TC Scheduler for ARM

(PIE)
'TTC Scheduler for 8051J Implementation tier

Figure 6-3 Using the PTTES meta-model to define TTC Platform

MDA Methodology PTTES Meta-model

PIM

DOMAIN-SPECIFIC TRANSFORMATION RULES

Conceptualised
implementation

(PSM)
Java

Implementation
code

Figure 6-4 Comparison of the MDA and the PTTES meta-model

Most of the pattern meta-models previously described have been based on the Gamma

collection that is applicable to high-level programming languages such as Java that generally

result in code that is implementation independent. In contrast, as discussed in Chapter 2, the

choice of hardware platform impacts the software design of an embedded system. The PTTES

meta-model described here therefore uses PIEs as a means of associating a software pattern with

a particular hardware platform; this is illustrated in Figure 6-3 where an appropriate PIE for TTC

P l a t f o r m is implemented for a specific microcontroller. As discussed in Section 6.1, it is

practically impossible to develop a CASE tool that can generate an infinite number of pattern

implementations. Using PIEs as a means of associating software patterns with a particular

hardware platform therefore allows a CASE tool to support a finite number of PIEs and in so

doing adhering to the ‘one pattern, many implementations’ attribute of patterns.

- 5 8 -

6.4 Applying the PTTES meta-model
In order to implement the PTTES meta-model in a CASE tool, a process that describes the

application of the patterns needs to be defined. As was observed during the PTTES user study

described in Section 4.3.1, the application of the PTTES collection generally consists of three

main steps: (1) selection of the patterns that match the design requirements including hardware

and software architecture specification, (2) selection of appropriate PIEs for each pattern to

match the hardware and software architecture and then finally, (3) the implementation and

integration of the PIEs into an application. The remainder of this section describes how the

PTTES meta-model is aligned to this process.

6.4.2 Implementing a TT framework

As discussed in Chapter 2, at a minimum an embedded application requires an appropriate

microcontroller and support circuitry e.g. reset and oscillator circuits to define the hardware

architecture. A scheduling algorithm is then used to define the software architecture. In contrast

to the Gamma collection on which most of the existing pattern tools are based on (see Section

5.3), the PTTES collection consists of both software and closely-related hardware designs to

support a developer in making design decisions during the development process.

In using the PTTES meta-model, the PIEs to be implemented are determined by the

hardware platform selected. To therefore effectively generate complete PTTES applications, an

appropriate hardware platform should first be selected on which the entire application should be

based. Figure 6-5 illustrates how the meta-model is applied to support the selection of an

appropriate microcontroller using the hardware foundations patterns: S m a l l 8051, S t a n d a r d

8051 and E x t e n d e d 8051. These patterns support a user in making appropriate design decisions

regarding hardware constraints such as timing and memory that may influence the choice of

microcontroller (Pont, 2001, pp. 29-52).

Once a decision has been made on the microcontroller to be used, the next step would be

to decide on the software architecture. As discussed in Section 2.4, the software architecture of

an embedded application is characterised by its scheduling algorithm. In order to select an

appropriate scheduler the PTTES meta-model is applied to an appropriate scheduler pattern, e.g.

TTC P l a t f o r m as illustrated in Figure 6-3.

- 5 9 -

(Abstract Pattern)
Hardware Platform

V Design tier

\(Pattern)
Small 8051

(Pattern)
Extended 8051

(Pattern)
Standard 8051/

/

(PIE)
8-bit Infineon C515C

microcontroller
Implementation tier

Figure 6-5 Applying the PTTES meta-model to the hardware foundations patterns

A combined hardware and TTC software architecture that meets both design and budget

constraints provides a framework on which a TT embedded application can be built. The

following sub-section describes how the PTTES meta-model is used to build on the TT

framework to complete the development of a fully functional application.

6.4.3 Using PIEs as first class entities in pattern-based code
generation

In Section 5.4 it was argued that pattern tools based on the Gamma collection (see Section 5.3)

support the implementation of individual patterns without reference to any other part of the

design. As a consequence these tools have focused on implementing individual patterns and not

on generating application code from groups of patterns. These pattern tools have therefore

generally ignored the challenges of integrating pattern implementations.

The inability of these pattern tools to support the integration of patterns can be attributed

to the fact that the Gamma collection on which most of them are based is not a complete pattern

language; this is discussed in Section 3.2.3. In contrast, the PTTES collection is a pattern

language as it allows users to design fully functional time-triggered embedded applications using

an appropriate combination of patterns (see Section 4.2). Therefore, an appropriately designed

CASE tool should make it possible to generate complete systems from the PTTES collection.

The PTTES meta-model described in Section 6.3 defines how patterns in the PTTES

collection are transformed into code using PIEs, however in order to generate complete systems

composed of integrated PIEs, a means of integrating these PIEs needs to be defined. Section 2.4,

notes the importance of a scheduler to an embedded system, in particular how it is used to

manage system resources and task scheduling. When using any form of scheduler (or larger

operating system), there is a natural way of integrating tasks. Within the PTTES collection, TTC

S c h e d u l e r provides a mechanism of linking PIE tasks with the system through the use of the

‘Add Task’ function. Where software patterns have an associated periodic task (as many do), it

is a straightforward process to generate an appropriate Add Task function call, based on

- 6 0 -

information provided by the user. Figure 6-6 is an example of how the Add Task function is used

to integrate multiple periodic tasks into the same system design.

SCH_Add_Task (HEARTBEAT_LED_Update, 0, 1000);
SCH_Add_Task(SWITCH_Update, 0, 1000);
SCH_Add_Task(KEYPAD_Update, 0, 1000);
S C H_Add_T a s k (LE D_MX_D i sp1a y_Upda te, 0, 1000);

Figure 6-6 Example of the u se of the ‘Add Task’ function to integrate multiple periodic tasks into a system
design

It therefore follows that the scheduler implemented in the TT framework (described in

Section 6.4.2) is used to facilitate the integration of software PIEs into the system. Furthermore,

the microcontroller resources required by each software PIE are accounted for during integration

and subtracted as they are used. This helps prevent basic design errors, for example where more

than one task has assumed exclusive access to a particular port pin. This is a basic, but useful

feature when working with multiple PTTES patterns in a system design.

6.5 Chapter conclusions
This chapter has argued that it is practically impossible to develop a CASE tool capable of

transforming software patterns into all their possible implementations. Instead an appropriate

means of limiting the number of pattern implementations should be defined. To this effect a

PTTES meta-model has been described to uphold the ‘one pattern, many implementations’

attribute of patterns. In this meta-model, hardware platforms are used as a means of defining the

number of pattern implementations that can be generated.

It has also been argued that attempting to generate code from patterns that are not part of

a pattern language makes it difficult, if not almost impossible, for fully functional systems to be

generated. Using the PTTES collection, a pattern language described in Chapter 4, this chapter

has described an approach for pattern-based code generation that can support the generation of

applications from patterns. To test this theory the next chapter describes a pattern-based code

generation CASE tool that applies this approach to the PTTES collection.

- 6 1 -

7 PTTES Builder: A Pattern-based Code Generation
CASE Tool6
To test the applicability of the pattern-based code generation approach described in the previous

chapter, a prototype CASE tool: PTTES Builder was developed. The purpose of PTTES Builder

is not to aid the design deliberations of a user e.g. which pattern to use and when. This is left to

the user, as the objective is not to automate the design of software applications. Instead, the

primary goal of the tool is to transform a user’s pattern-based design into a complete integrated

application, where possible. This chapter describes the implementation of PTTES Builder.

7.1 Overview of PTTES Builder
PTTES Builder, consists of five main modules: (i) a repository used to house the patterns and

PIEs (ii) a help facility used to browse the pattern documentation (iii) a GUI-based ‘wizard’ used

to facilitate the selection of patterns and the configuration of their PIEs (iv) a code generator that

integrates PIEs into an application (v) a ‘code viewer’ also integrated with the user interface that

is used to view the generated code. Figure 7-1 is an overview of these modules and their

associations. The remainder of the chapter describes the design and implementation of these

modules.

Pattern

Help Repository
Implementation data

i i PIEs selected
using implementation data

Implementation source code
from transformed PIEs Generator

(parser)

Figure 7-1 Overview of PTTES Builder’s architecture

7.2 The PTTES repository
The repository is divided into a design and implementation tier as defined by the PTTES meta

model.

6 Som e o f the contents o f this chapter have previously been published in (M w elw a et al., 2006) and (M w elw a et al.,

2004(b)).

- 6 2 -

7.2.1 Defining the implementation tier

The implementation tier is composed of PIEs that are used as the primary entities in the code

transformation process. It was therefore important to find a suitable representation for the PIEs

that would facilitate code generation.

The representation of the PIEs also had a bearing on the mechanism used for the code

generation process. It was therefore decided to use template-based code generation (this is

discussed in detail in Section 7.3). One of the determinant factors in this decision was the fact

that using templates for the code generation process would support extensibility. As previously

discussed in Section 4.3.2, pattern collections will continue to evolve for as long as they remain

useful. Therefore, in order for PTTES Builder to remain valuable as the PTTES collection

evolved, the PTTES repository would need to be extensible. Krishnamurthi and Felleisen (1998)

define extensibility as the property of an application that allows it to be easily extended without

causing undesirable side effects to the application. This is an important feature as it takes into

consideration the evolution of an application either through the addition of new functionality or

modification of existing functionality.

A template-based design would allow straightforward additions of new patterns or

modifications to existing patterns in the repository without having to make subsequent changes

to existing parts of the repository (Herrington, 2003). For example, for reasons already

discussed in Section 4.2, C is the target programming language used in the PTTES collection,

however, should there be future need to support another programming language new templates

for the language could be implemented without having to make changes to the existing ones.

The PIE templates need to be stored in a format that is flexible and easy to manage.

Using simple text files provided an option as they are compatible with a range of other

technologies. However, their mono-structure would make them difficult to manipulate. For

instance, if a H e a r t b e a t LED PIE (presented in Appendix C) were to be placed in a text file,

locating certain information such as the PIEs tasks or header files within the file would require

searching the file line by line. This would not be an efficient process, especially when dealing

with dozens of files with hundreds of lines of code. Another option would have been to use a

relational database to store the PIEs. The ability to use SQL queries to retrieve data is very

powerful. However, although databases are the most commonly used mechanism to store data,

distributing an application that uses a database can be challenging and costly. Considering that

this work was research based as opposed to product development, a database was therefore not

used.

Instead, the Extensible Markup Language (XML) was used to define the PIEs in the

repository. XML is frequently used to exchange and store structured data and because of its

- 6 3 -

platform independence, it is becoming a standard for data exchange between different platforms

and technologies (O'Reilly, 2004). XML also provides features similar to those found in

databases e.g. storage in the form of XML documents, schemas and style-sheets (e.g. DTD and

XSLT), query languages (e.g. XQuery and XPath) and programming interfaces (e.g. SAX and

DOM). Because XML documents have no predefined tags, they can be customised to match the

structure of the PIEs. Furthermore, because the essence of XML is the separation of content

from presentation, it allowed for the separation of the PIEs from their associated patterns as

illustrated in the PTTES meta-model (see Figure 6-2).

The PTTES repository is a file directory based on a simple filing system. Within the

repository each pattern has a dedicated directory; Figure 7-2 illustrates this directory structure

using H e a r t b e a t LED as an example. The ‘docs’ folder contains the files associated with the

design tier and the ‘platform’ folders correspond to the hardware platforms supported, and as is

discussed in the previous chapter, the hardware platforms and associated microcontrollers

determine which PIEs are used. In this work, the 8051 platform, in particular the C515C

Infineon microcontroller and the AT89S53 microcontroller from Atmel were used. This version

of PTTES Builder was therefore capable of implementing two PIEs for each software pattern

supported. As illustrated in Figure 7-2, each PIE is associated with a microcontroller and within

the associated folder is an XML file and related Extensible Style-sheet Language Transformation

(XSLT) files. The XML file is used to define user specified implementation data, for example

tags such as <scheduier_task> are used as placeholders for data that is specified during the PIE

configuration process. Each XML file has a unique namespace used to preserve consistency and

avoid redundancy within the repository.

The XSLT files are used during the code generation process (described in Section 7.3).

XSLT is primarily used to transform XML documents into other types of documents or formats

(Harold, 2002). In this case the XML files were transformed into C source code. The XSLT

files are associated with a PIE’s header and implementation files. Header (or definition) files

usually contain function prototypes and any macro definitions. Ideally they should not contain

executable code beyond macro definitions. This is reserved for the implementation files (Sickle,

1996). Figure 7-4 is the XSLT file responsible for the generation of H e a r t b e a t LED header file

for the C515C microcontroller. Tags within this file are also used as place holders for project

specific information e.g. the tag: <xsl:value-of select="01astupdate"/> specifies the date and time

that the file was generated. During the code generation process certain data within the XSLT

files is obtained from the associated XML file, for instance function prototypes are retrieved

from the <header_file> element where they are listed (see Figure 7-3).

- 6 4 -

Repository

>-----------

<Pattern name>
Heartbeat LED

>----
<Platform>

8051

f > - - - - - - - '
<Microcontroller>

C515C

f > - - - - - - - 'l
<Microcontroller>

n

>
<Platform>

Heartbeat h.xslt

Heartbeat c.xslt

C515Clmpl.xml

>

docs

Figure 7-2 The directory structure implemented in the pattern repository

<?xml version="i.0" encoding="utf-8" standalone="no"?>
<!DOCTYPE pattern SYSTEM /pattern.dtd" [

<!-- Heartbeat LED implementations — >
< [ENTITY 8051Impl SYSTEM "implementation/8051Impl.xml">

] >
<!— A list of Heartbeat LED pattern implementations — >
<pattern display_name="Spattern.heartbeat-led;" help_topic="patterns.heartbeat-led.index">
<pattern_implementation xmlns="http://www.le.a c .uk/eg/cm55/heartbeatled/8051Impl">

<modules>
<module xmlns="http://www.le.a c .uk/eg/cm55/heartbeatled/heartbeatled">
<source_file name="heartbeat_led.c">
<task_header_files>
<task_header_file>#include "heartbeat_led.h"
</task_header_file>
</task_header_files>
<init_tasks>
<init_task> 0; HEARTBEAT_LED_Init();
</init_task>
</init_tasks>
<scheduler_tasks>
<scheduler_task name="HEARTBEAT_LED_Update">HEARTBEAT_LED_Update</scheduler_task>
</scheduler_tasks>
<task_pin_variables>
<task_pin_variable name="HEARTBEAT_LED_pin">sbit HEARTBEAT_LED_pin</task_pin_variable>
</task_pin_variables>
</source_file>
<header_file name="heartbeat_led.h">
<prototypes>
<prototype>void HEARTBEAT_LED_Init(void);</prototype>
<prototype>void HEARTBEAT_LED_Update(void);</prototype>
</prototypes>
</header_file>
</module>

</modules>
</pattern_implementation>
</pattern>______ __

Figure 7-3 A snippet of the XML file that represents a Heartbeat LED PIE
- 6 5 -

http://www.le.ac.uk/eg/cm55/heartbeatled/8051Impl
http://www.le.ac.uk/eg/cm55/heartbeatled/heartbeatled

<?xml version="l.0" encoding="UTF-8"?>
<xsl:stylesheet version="l.0" xmlns :xsl="http://www.w 3 .org/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:template match="/">
<xsl:apply-templates/>
</xsl:template>
<xsl:template match="project">
/ * --

This code was generated by the PTTES Builder.
File: heartbeat_led.h
Project: <xsl:value-of select="0project"/>
Author: <xsl:value-of select="@author"/>
Last updated: <xsl:value-of select="@lastupdate"/>

 * /

< ! [CDATA[
#ifndef HEARTBEAT_LED_H
#define HEARTBEAT_LED_H

♦include "main.h"

/* ------- Public function prototypes------------------------------------- */
]] >
<xsl:for-each
select="pattern_implementation/modules/module/header_file[@name='heartbeat_led.h ']/prototypes'^
<xsl:value-of select="."/>
</xsl:for-each>

#endif
j ★ ______________ _________ _________ ___ ________ ★_

 END OF FILE ---
 ★ 'k j

</xsl:template>
</xsl:stylesheet>___

Figure 7-4 Heartbeat LED XSLT file used to generate a header file from a PIE

7.2.2 Representing the design tier

In the manual application of the PTTES collection, described in Section 4.3.1, users refer to the

PTTES book in order to come up with their design decisions. To simplify this book based

process, the PTTES documentation was integrated into the CASE tool.

Initially a simple text based format was used to present the patterns, however this did not

provide a flexible means o f browsing and viewing the patterns - it was too static. XML was not

an ideal option as it is specifically used for data exchange and storage. What was needed was a

format that can present data dynamically. HTML was therefore found to be appropriate as it

supports quicker and flexible browsing with hypertext. For example, when browsing Loop

Timeout (presented in Figure 4-1 in Section 4.2) one can easily browse straight to Hardware

Timeout by using a hypertext link in the ‘related patterns’ section. The HTML files were stored

in the ‘docs’ folder within the patterns associated directory as illustrated in Figure 7-5. The

pattern documentation is accessed using a custom browser; this is described in Section 7.4.

The current version of PTTES Builder supports eleven patterns from the PTTES

collection: Standard 8051, Extended 8051, Crystal Oscillator, TTC Scheduler, Port

Wrapper, Heartbeat LED, One-Shot ADC, PID Controller, Pulse Count, RC Reset and PC

Link. In terms o f hardware, the Atmel AT89S53 microcontroller and Infineon C515C

microcontrollers are supported i.e. Standard 8051 and Extended 8051 platforms respectively.

- 6 6 -

http://www.w3.org/1999/XSL/Transform

> X

>
<Pattern name>
Heartbeat LED

> -

docs

HTML files

<Platform>
8051

Figure 7-5 The directory structure within the repository used for the pattern documentation

7.3 The code generation process
The code generation process takes place after a user has selected their required patterns and

specified the implementation preferences. A project file is created for every application

developed within PTTES Builder and is used to keep a record of the selected patterns and

implementation data. This file serves as the code generators reference point. The following

subsections discuss the project file and code generator in more detail.

7.3.3 The project file

The project file is based on the XML format. Using tags, the project file is able to store project

data such as the microcontroller to be used, oscillator frequency and the task execution rates.

The project file is populated with data as the user selects patterns and specifies implementation

data using the wizard (this is discussed in detail in Section 7.4.5).

For instance, Figure 7-6 lists the contents of a project file after a user has selected an

appropriate microcontroller, set the oscillator frequency, and configured a scheduler. Once all

the required patterns have been selected and configured, the project file is parsed through the

code generator. The code generator is a parser that uses the data in the project file to call the

necessary PIE XSLT templates that are then combined with the data in the project file to

generate code. This code generation process is described in detail in the next section.

- 6 7 -

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<project author="Jo Bloggs" lastupdate="18/6/2006" project="demo">
<pattern_implementation xmlns="http://www. le . ac . uk/eg/cm55/extended8051">
<modules xmlns="/embeddedbuilder/repository/pttes/extended8051/c515clmpl.xml">
<hardware_listing>
<hardware_item>Infineon C515C development board</hardware_item>
</hardware_listing>
</modules>
</pattern_implementation>
<pattern_implementation xmlns="http://www.le.a c .uk/eg/cm55/cooperativescheduler/ c515clmpl ">
<modules xmlns="/embeddedbuilder/repository/pttes/cooperativescheduler/c515c_implementation
/c515clmpl.xml">
<module xmlns="http://www.le.ac.uk/eg/cm55/cooperativescheduler/c515clmpl/2_01_10i">
<source_file name="2_01_10i.c">
<task_header_files>
<task_header_file>#include "2_01_10i.h"</task_header_file>
</task_header_files>
<init_tasks>
<init_task>SCH_Init_T2();</init_task>
</init_tasks>
</source_file>
<header_file name="2_01_10i.h">
<prototypes>
<prototype>void SCH_Init_T2(void);</prototype>
<prototype>void SCH_Start(void);</prototype>
</prototypes>
</header_file>
</module>
<module xmlns="http://www.le.a c .uk/eg/cm55/cooperativescheduler/c515cImpl/sch51">
<source_file name="Sch51.c">
<task_header_files>
<task_header_file>#include "Sch51.h"</task_header_file>
</task_header_files>
</source_file>
<header_file name="Sch51.h">
<sch_max_tasks>#define SCH_MAX_TASKS (0) </sch_max_tasks>
</header_file>
</module>
<module xmlns="http://www.le.a c .uk/eg/cm55/cooperativescheduler/c515clmpl/main">
<source_file name="Main.c"/>
<header_file name="Main.h">
<microcontroiler>#include "REG515C.h"</microcontroller>
<osc_freq>#define OSC_FREQ (10000000UL)</osc_freq>
<osc_per_inst>#define OSC_PER_INST (12)</osc_per_inst>
</header_file>
</module>
</modules>
</pattern_implementation>
</project>__

Figure 7-6 A snippet of a PTTES Builder project file

Apart from facilitating the code generation process, the project file also enables a user to

remove a pattern from a project, change its configuration or even swap it for another pattern.

PTTES Builder is able to do this without affecting existing generated code. However, this is

only possible within the tool environment, if changes are made to the generated code outside the

PTTES Builder environment, the tool cannot keep track of the changes made. The project file

also keeps a record of the microcontroller resources such as Port Pins consumed by each pattern

thereby reducing any possibilities of hardware conflicts.

7.3.4 The code generator

In order to generate code, the project file is parsed through the code generator. Central to the

operation of the code generator is a parser that is used to process the project file. As the project

file and template files are based on XML and XSLT technologies, a parser capable of reading

these formats was required. At present there are only two major API’s that define how XML

- 6 8 -

http://www
http://www.le.ac.uk/eg/cm55/cooperativescheduler/
http://www.le.ac.uk/eg/cm55/cooperativescheduler/c515clmpl/2_01_10i
http://www.le.ac.uk/eg/cm55/cooperativescheduler/c515cImpl/sch51
http://www.le.ac.uk/eg/cm55/cooperativescheduler/c515clmpl/main

parsers work: Simple API for XML (SAX) and Document Object Model (DOM). SAX is an

event-driven mechanism for accessing XML documents whereas the DOM specification defines

a tree-based approach to navigating an XML document at run-time (Harold, 2002).

A DOM tree is stored in memory and can be navigated and manipulated using functions

that return parent and child nodes thus providing access to the XML document data. On the

other hand SAX does not have a run time representation of the parsed document. Instead, the

parser calls handler functions when certain events (defined by the SAX specification) take place.

These events include the start and end of the document, finding a text node, finding child

elements, and hitting a malformed element (O’Reilly, 2004; Harold, 2002). The strength of the

SAX specification is that it parses gigabytes of XML documents without hitting resource limits,

because it does not create a representation in memory. It is therefore generally faster and

requires fewer resources. However, SAX is much more complex to use as the lack of a run time

representation requires writing extra code to manipulate and traverse XML documents (O'Reilly,

2004; Harold, 2002; Harold and Means, 2002). Based on this comparison, the DOM was

thought to be the appropriate parser to use in the circumstances.

Project file

PTTES repository

<Pattern>
XSLT files

Code generator

<Pattern>
XML file

Figure 7-7 The PTTES Builder code generation process

- 6 9 -

Using the data in the project file, the DOM calls the XSLT templates associated with the

selected PIEs. It must be noted that the order of the code generation process is based on the

order in which the PIEs are listed in the project file i.e. top to bottom. The first two PIEs listed

are associated with the hardware platform and scheduler. This is based on the PTTES meta

model described in Section 6.3 that specifies that a microcontroller and scheduler should always

be configured first so as to allow subsequent patterns to be integrated into the system. Figure 7-7

gives an overview of this code generation process.

7.4 The user interface
A text based user interface (UI) was implemented in the Java programming language. Java was

used for a number of reasons. Firstly, it is platform independent and supports a range of APIs

such as the DOM used in the tool’s code generator; therefore XML data can be easily accessed

and manipulated in this language. Apart from its compatibility with XML technologies, Java’s

Open Source status also provides a wealth of useful code libraries such as Swing components

used to facilitate the development of graphical components.

The user interface is composed of three main components, a wizard, pattern dialog boxes

and a browser. The following subsections describe these components in detail.

7.4.5 The PTTES Builder wizard

In Section 6.4.2 it was noted that a TT framework composed of the hardware and software

architecture is required in order to generate complete systems using the PTTES collection. In

order to ensure that users do create a basic framework for their systems, the tool requires that a

wizard is run at the beginning of each new project. The wizard guides the user through the

implementation of a TT framework. Once a TT framework has been implemented a user can

then add (or remove / replace) application specific patterns in a project using ‘pattern dialog

boxes’ (discussed in the next section). Figure 8-3, Figure 8-4 and Figure 8-5 in Chapter 8

illustrate the use of the wizard in configuring the hardware and software architecture of an

application.

7.4.6 Pattern dialog boxes

Application specific software patterns are added to the project by use of ‘Add pattern’ and

‘Remove pattern’ buttons on the front panel of the tool’s main user interface (see Figure 7-8).

The actual PIE added to the project is determined automatically by the tool by means of the TT

framework initially implemented.

The PIEs are configured via dialog boxes that pop up when the ‘Add pattern’ button is

pressed. The dialog boxes are linked to the associated pattern’s XML file in the repository. The

- 7 0 -

configuration information supplied by the user is stored in the project file. As a result of using

these dialog boxes, most of the (potentially large) list of available PIEs and extraneous pattern

information is hidden from the user: instead, the tool takes into account the microcontroller to be

used and other context information to present an appropriate list of PIEs applicable to the

particular project.

E PTTES Builder v1 .1 (alpha)

File Help

P ro jec t W orkspace j j PTTES d o c u m en ta tio n !

PTTES collection

S tan d ard 8051
E x ten d ed 8051

C rystal Oscillator
C o-operative Scheduler
Port W rapper
H e a rtb e a t LED
O ne-Shot ADC

PK) Controller

Edit p ro jec t P a tte rn s a d d e d to pro jec t

Add p a tte rn >

< R em ove p a tte rn

v
C ode viewer

S elect a file to view

Scheduler tasks

Port variables

H ardw are listing

Figure 7-8 The main PTTES Builder Ul panel

7.4.7 Code and pattern browser

As each PIE is configured or removed from the project, code is automatically re-generated. This

code is viewable in the tool’s code viewer (see Figure 8-6, Figure 8-7 and Figure 8-8 in Chapter

8). It must be noted however that this version of the tool does not permit a user to edit the

generated code within the tool as it can not keep track of changes made by users to the code.

The pattern documentation can be viewed during the development process within the

tool. This is done using a custom HTML browser illustrated in Figure 7-9.

- 71 -

u y i i i i i i
I File Help

I P ro ject W orkspace j PTTES docum entation |

J | PTTES Collection

r # Small 8051
: & S ta n d ard 8051

■ # E x ten d ed 8051
^ C rystal Oscillator

r ^ Ceramic R eso n ato r

$ Port W rapper
^ H e a r tb e a t LED

Switch In te rfa c e

A

CONTEXT:

* You a re developing an em b ed d ed application using o n e or m ore m em bers of th e 8051 family of microcontr
* The application is to h a v e a tim e-triggered a rch itec tu re , co n stru c ted using a schedu ler.

PROBLEM:

How d o you c re a te an d u se a c o -o p e ra tiv e scheduler?

SOLUTION:

A scheduler h a s th e following key com ponen ts:
* The scheduler d a ta s tru c tu re .
* An initialisation function.
* A single in te rrup t serv ice rou tine (I5R), u sed to u p d a te th e scheduler a t regular time in te rvals.
* A function for adding ta sk s to th e scheduler.
* A d ispatcher function th a t c a u se s task s to b e e x e c u te d w h en th ey a re d u e to run.
* A function for rem oving ta sk s from th e scheduler (n o t req u ired in all applications).

RELIABILITY:

HARDWARE REQUIREMENTS:

In this section w e consider som e key reliability a n d sa fe ty implications,
Make su re th e ta s k a rra y is larg e en o u g h

<

V : j

>
I ______________ ____________________________ _________________ _ _ I

Figure 7-9 Overview of the tool's browser used to read the pattern documentation

7.5 Chapter conclusions

This chapter has presented PTTES Builder - a CASE tool that supports the generation of code for

TT embedded systems using the PTTES collection. This tool is based on the design approach

described in Chapter 6. Chapter 8 presents a case study used to demonstrate the application of

PTTES Builder in the development of a non-trivial TT embedded application.

8 Developing a TT Application Using PTTES Builder7
This chapter describes a case study that illustrates how PTTES Builder can be used to develop

code (and support the hardware design decisions) for a non-trivial embedded system. The

example used is an automotive cruise-control system (CCS).

8.1 Developing an automotive cruise control system
A CCS is intended to provide the driver of a car with an option of maintaining the vehicle at a

desired speed without further intervention. Such a CCS will typically have the following

features:

■ An ON / OFF switch to enable or disable the system

■ An interface through which the driver can change the set speed while cruising

■ Switches on the accelerator and brake pedals that can be used to disengage the CCS

and return control to the driver

The CCS specification used is based on a test-bed developed in the ESL (Ayavoo et al.,

2005). It is a simplified specification that assumes that the vehicle is always in cruise mode.

While in cruise mode, a ‘speed dial’ was available to allow the simulation of a driver

dynamically changing the car speed. The tasks used to implement the CCS are illustrated in

Table 8-1. An Infineon C515C microcontroller (supported by PTTES Builder) was used as the

hardware platform.

Table 8-1 CCS tasks implemented

Task Names Task Description Task Period (ms)

LED Flash Update Flashing LED to indicate that

the board is working

1000

Compute Car Speed Computes the car speed

obtained from car model

50

Compute Throttle Calculates and sends the

required throttle to be applied

to the car model

50

Get Ref Speed Gets the desired speed from

the driver

1000

7 Som e o f the contents o f this chapter have previously appeared in (M w elw a et al., 2006), (M w elw a et al., 2005) and

(M w elw a et al., 2004(a)).

- 7 3 -

A computational model was used to represent the environment in which the CCS would

operate. The core of the car model was a simplified physical model based on Newton’s laws of

motion. This model had one input (current throttle) and one output (a train of pulses

representing the speed of the car) and was implemented on a desktop PC running the DOS

operating system. Figure 8-1 illustrates the CCS setup as described in (Ayavoo et al., 2005).

Car speed
pulses

/ c
o?4 ?

Car environment
Throttle

Set speed sent
via RS232 to PC
emulatorCruise Control System

set up on an Infineon C515C
microcontroller

Set speed (0 - 5 V from the potentiometer)

Figure 8-1 An overview of the C C S test bed (adapted from: Ayavoo et al., 2005)

8.2 Using PTTES Builder to develop the CCS
This section describes the use of the PTTES Builder to develop the CCS.

8.2.1 Creating a TT architecture for the CCS

8.2.1.11mplementing the hardware architecture

The Infineon C515C microcontroller used in the study is an Extended 8051 microcontroller that

consists of 3 timers, a UART and an analogue-to-digital converter (ADC), among other hardware

features.

The other hardware issues to be considered at this stage are the design of suitable

oscillator and reset circuits. The development board used in this project includes these features

and - in this project - the only configuration required on the board was the setting of the

oscillator frequency (10 MHz). Figure 8-3 and Figure 8-4 illustrate the selection and

configuration of a microcontroller using the PTTES Builder wizard.

- 7 4 -

Figure 8-2

Figure 8-3 First step in implementing a system using the tool, is the selection of an appropriate hardware
platform, the Extended 8051 was selected

"trizr’*

Figure 8-4 Based on the microcontroller selected, an appropriate oscillator frequency is set (10 MHz in
this ca se)

8.2.1.2 Implementing the software architecture

At present, the only scheduler supported by PTTES Builder is TTC S c h e d u l e r . This was used to

implement the software architecture of the CCS. Figure 8-5 shows a T T C S c h e d u l e r (also
-75 -

known as C o - o p e r a t i v e S c h e d u l e r in the PTTES collection) PIE being configured to the

specification of the selected microcontroller. A user is presented with a list of Timers available

with the selected microcontroller to use as a source of system ticks. Timer 2 was selected with a

1 ms timer overflow.

Figure 8-5 Selecting and configuring the Co-operative Scheduler using the ‘wizard’

8.2.2 Adding functionality to the TT framework

This section discusses the implementation of the CCS tasks listed in Table 8-1.

LED_Flash_Update: This task is implemented using H e a r t b e a t LED (presented in

Appendix C). This pattern is used to implement a flashing LED task. Figure 8-6 shows how this

pattern is implemented using PTTES Builder.

- 7 6 -

C 2 c b « d « i * r ^ mfosfc*
mx-vm **&»&,#'»*a&Ava*
jft*«*»Mte ****!&»#*

>/ **»*« $Q **#«twn ..?*** «S 1} <

// £***« */»* *CS?***t « J

& lapw&vfcjrw#* ** n,

Figure 8-6 Heartbeat LED is configured to an initial delay of 0 ms and a periodic delay of 1000 ms

\ 1
// •#**#» ***** 9# I
// $«*«***«» t**H JfO **»+■ i
// 9**** r
sesjfeartftz

..............................I !
___________ - ___ ______ ___ — _____ _ ;...................... :

Xtvfttiz*<s la u * x op tion* <**#&« #&?*t bPto**

t»*** -
tfjjrptict, tm»k» t

picxtr*ix
fajmivtip **xh!>i,h*

TLsjs s*4* w u t f 1h* STTfS Ir>l»t #***.*ct$ apitv*
Atttkpx: CAimmp* B*+lv*
t*»< *pd*f4< 94f*/$99*

Figure 8-7 Port Wrapper is associated with every pattern that interfaces a microcontroller port(s)/pin(s).
Here it is used to select a port pin on which to flash the Heartbeat LED task

Sens_Compute_Speed: This task uses an on board timer / counter (Timer 0) to count the

number of pulses that have been sent out from the car model. This pulse rate (assumed to arise

from an optical or magnetic pulse encoder in a real vehicle) provides an indication of the current

speed of the car. The raw pulse count is then scaled to obtain the actual car speed. This task is

scheduled every 50 ms.

- 7 7 -

H a r d w a r e P u l s e C o u n t was the pattern used (Pont, 2001, p. 728). This implements a

task capable of counting pulses received by the microcontroller from an external peripheral.

Figure 8-8 shows the configuration of this pattern.

ft ***** hmt*.
t :*** & i

Figure 8-8 Hardware Pulse Count is configured and added to the project

Compute_Throttle: This task uses the car’s current and set speed in a PID algorithm to

calculate the required throttle position. The throttle position is then scaled to an 8-bit value and

sent to the ‘car’. A periodic interval of 50 ms was set for this task.

PID C o n t r o l l e r was used to implement this task (Pont, 2001, pp. 861-888). Figure 8-9

illustrates PTTES Builder being used to configure the PID’s proportional, integral and

differential parameters with predetermined values described in (Ayavoo et al., 2004): PID KP =

0.005, PID KI = 0.0000, PID KD = 0.01, P1D MAX = 1, PID MIN = 0 and SAMPLE RATE

= 20 .

- 7 8 -

j! «* a; ♦ *1 *©/> iBi*A+i**4Kl*1t (Mt* k*T*.JC*̂ rur.B *); lamao*?. <t *«u *«,*? cr̂rrr %**g j> ; 5ti;*nui„tout o;

f / St+£t sit* *s*»& l«r3C*JU**liiS
«**!•{»

Figure 8-9 Implementation of PID Controller

Act_Get_Ref_Speed: This task uses the C515C’s on-chip ADC to read in the voltage

from a potentiometer (i.e. Channel 0 on Port 6, Pin 0). This value is then scaled to represent the

set speed. This task is scheduled every 1000 ms and was implemented using O n e -S h o t ADC

(Pont, 2001, p. 757), see Figure 8-10.

/ / t**k» go b*g*.
3C*_IAXC J E 2 1} ;

i i imtVUnc OOTIitt (I)

Figure 8-10 Implementing One-Shot ADC

- 7 9 -

8.2.3 Completing the development

Figure 8-11 shows the ‘Main.c’ file generated as selected patterns are configured and added to

the project.

***** ;■mjtoixjn# j
it imj?mss-C£EgT̂za£ft(} ?

// XtJffS tk»
s c s ; t « r t :}t

Figure 8-11 Main.c file generated as patterns are added to the project

KWftmtoMrttM*

/ / Ialii*Lk*4U— U*U vt k r« .
»;«UX 7*»AT_I*£ w ItU* 111

t;*Ci6t»XJiia_JUCwrTar (J ; i «* jp ♦ «*i.*s*»Xmnrm>; W»(t*8«Cf<K<

sznjn*t***hj*wk*n.

Figure 8-12 PC Link configuring the on board UART that is used to link the CCS with a PC at 9600 baud

In order to view the set speed, the C515C’s UART was linked to a PC running

‘HyperTerminal’ (see Figure 8-1). PC L in k (RS232) was used to implement the interface between
- 8 0 -

the test-bed and the PC (Pont, 2001, p. 362). Figure 8-12 shows PTTES Builder being used to

implement this pattern.

8.3 Observations and results
The response of the tool was observed to be relatively slow during the use of the pattern dialog

boxes to configure patterns. This was attributed to the use of a DOM for the XML parsing. This

was to be expected as it was noted in Section 7.3 that a major drawback of using a DOM is slow

read or write operations and large memory consumption. However, as the development of

PTTES Builder is primarily to investigate the use of patterns in automated code generation, the

efficiency of the tool was not a critical problem.

The CCS was put to test and the output speed was recorded against time. Figure 8-13 is a

plot of the recorded speed against time. The speed was initially set to 30 m/s for the first 25

seconds, at which point it was increased to 45 m/s. Figure 8-14 is a plot of results from a second

test with speed settings changing from 0 m/s to 45 m/s and then to 60 m/s. In both tests the CCS

reaches the set speed within a few seconds of adjusting the throttle. However, the response time

in both cases does vary slightly when compared to the reference plots. This variation does not

cause a concern from an experimental perspective, however in a real time critical application the

proportional, integral and differential parameters of the PID algorithm could be adjusted in order

to refine the response time (Ogata, 2002, p. 701).

- 81 -

50 —
S'lT'M:.» V |;"11|«

35 -

E Set Speed
CCS Speed

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

T im e (s)

Figure 8-13 The CCS’s speed over a period with speed adjustments of 30 and 45 m/s

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

T im e (s)

Figure 8-14 CCS speed over time with four changes in speed: 0 m/s, 30 m/s, 45 m/s and 60 m/s

8.4 Chapter conclusions
This chapter has provided an overview of how PTTES Builder can be applied in a non-trivial

development exercise. Despite the relatively slow performance of PTTES Builder during usage,

- 8 2 -

the results presented in this chapter suggest that this tool can be used to develop integrated non

trivial TT embedded applications efficiently.

Although the results from this exercise were encouraging, it was imperative to conduct a

thorough study to assess the applicability of the pattern-based code generation approach

described in this part. To this effect the next part of the thesis describes two studies performed to

assess PTTES Builder.

- 8 3 -

PART IV: ASSESSING THE PATTERN-BASED
CODE GENERATION APPROACH

The two chapters in this part o f the thesis describe two studies carried out to assess the pattern-

based code generation approach described in Chapter 6. In particular, the studies assess 1) the

effectiveness o f this approach on software quality and reliability 2) the extensibility o f the

approach with respect to the evolution o f a pattern collection.

- 8 4 -

9 An Assessment of the Approach8
This chapter presents a study carried out to assess the extent to which pattern-based code

generation, using the approach described in Chapter 6, could support the development of TT

embedded systems.

9.1 Overview of the study
This study attempted to assess the effectiveness of PTTES Builder in facilitating the approach

described in Chapter 6, to develop a non-trivial TT embedded system using a subset of the

PTTES collection. A manual design process using the same set of patterns was used as the

control experiment.

To carry out this study, a combination of various empirical techniques was used (Ayavoo

et al., 2005; Lethbridge et al., 2005; Basili and Weiss, 1984) and the CCS described in Chapter 8

was used as a test bed.

9.2 A cruise control system test bed
The CCS specified in Chapter 8 was used as a test bed in this study. Similar to Chapter 8, the

specification of the CCS was simplified such that the vehicle was assumed to always be in

‘cruise’ mode. A ‘speed dial’ was included in the design to allow the car speed to be

dynamically changed. The tasks used in the CCS are listed in Table 9-1.

Table 9-1 T asks implemented in the CCS

Task Names Task Description Task Period (ms)

LED Flash Update Flashing LED to indicate that

the board is working

1000

Compute Car Speed Computes the car speed

obtained from car model

50

Compute Throttle Calculates and sends the

required throttle to be applied

to the car model

50

Get Ref Speed Gets the desired speed from

the driver

1000

Display Ref Speed Displays the desired speed on

a terminal emulator

1000

8 The contents o f this chapter have previously been published elsew here (Pont et al., subm itted 2006).

-8 5 -

9.3 Assessment methodology
Obtaining suitable subjects for experimental studies is a common problem in empirical software

engineering (Kitchenham et al., 2002; Fenton, 1994). With the limited resources available it was

decided to use students as subjects. Although the objective of this work was to draw conclusions

valid for professional software developers, students were used as subjects as it has previously

been demonstrated that the difference in working practices between software engineering

students and professionals is minor (Host et al., 2000).

Instead of attempting to use a large group of subjects, a very small group was used. The

group of students were selected using the Small Group Methodology (SGM) described in

(Ayavoo et al., 2006). This methodology involves the use of small numbers of very well

matched student volunteers in empirical studies. In this study four students that had previously

taken two modules in embedded systems in the ESL were selected. The students were selected

such that their ability and experience in embedded systems was similar. The students all had an

average performance in embedded systems modules in the range of 70%-80%. Given the small

number of subjects used this ensured that they were well matched in background and ability

hence allowing for a reasonable comparison of results.

It was made clear to all the subjects that the CCS was to be implemented using the

following eight patterns: E x t e n d e d 8051, C o - o p e r a t i v e S c h e d u l e r , P o r t W r a p p e r , H e a r t b e a t

LED, H a r d w a r e P u l s e C o u n t , PID C o n t r o l l e r , O n e - s h o t ADC and PC L i n k . Each PTTES

book handed out to the students was marked to identify these patterns. This ensured that the

ability or inability of the students to locate the patterns did not obscure the results.

Students A and B were asked to use PTTES Builder and the PTTES book to implement

the CCS whilst Students C and D were asked to only use the PTTES book along with PIEs from

the CD accompanying the book.

9.4 Metrics and measurement procedure
The following metrics were used in the study:

■ Development time: The amount of time taken for a developer to implement a specified

code segment (Solingen and Stalenhoef, 1997; Basili and Weiss, 1984).

■ Source code changes: The measure of the number of changes made to a particular

segment in the source code. This metric has previously been used as an indicator of

system reliability and it has been argued that reliability tends to be at a maximum

when code maintenance stabilises (Schneidewind, 1999). It has also been shown that

- 8 6 -

the more changes made to a module, the more likely it is that bugs will be introduced

in the system (Purushothaman and Perry, 2005). In the study described here, the PIEs

used are a result of a rigorous development cycle. Therefore, modifying a PIE could

potentially introduce bugs into the software resulting in ‘less reliable’ code.

■ Software modularity: This is a measure of the coupling of the various modules in a

system with respect to files, functions and variables. For each module observed to be

sharing a file, function or variable with another module, a mark o f+1 is given to

indicate the level of coupling in the system. As the coupling level decreases, the

modularity of the system tends to improve (Rosenberg and Hyatt, 1997). It has been

argued that this metric can be used to indicate the maintainability and portability of a

system (Martin and Shafer, 2006).

To facilitate the use of these metrics, three data collection techniques were identified for

the study (Lethbridge et al., 2005):

1. Progress observation: Each team’s progress was observed by means of a progress form to

visually keep track of the student’s activities. Any difficulties observed e.g. misuse of

PTTES Builder were also noted on the form.

2. Email: Each team was asked to e-mail their project source code every 30 minutes to one of

the observers. The source code was used as the main source of data to measure the metrics

described above.

3. Questionnaire and interview: Each subject was given a questionnaire to complete at the end

of the experiment and a short recorded interview session was also held for each subject.

9.5 Results
The data obtained from the study, which consisted of source code, completed progress forms and

recorded interviews was analysed.

Based on the progress form, it was observed that the students using PTTES Builder

generally began developing their source code by using the PTTES patterns as a starting point

before writing the relevant tasks for the CCS. By contrast, the students that did not use the tool

would work on one pattern at a time, implementing the necessary tasks before moving on to the

next pattern.

A synchronisation process described in (Ayavoo et al., 2005) was used to compare the

source code submissions of the tool and non-tool users. This involved grouping source files with

respect to their associated patterns. The analysis of the source code was used to assess the

quality of the code produced. Each source file submitted was analysed and compared with

subsequent submissions using Araxis Merge (Araxis, 2005). It was observed that Subjects A and
-8 7 -

B who used the tool initially spent approximately sixty minutes using it. They spent fifteen

minutes of this time going over a PTTES Builder tutorial. For these subjects, 75% of the

software for their final CCSs was generated by the tool.

Table 9-2 summarises the results of the experiment. The coupling level was lower for the

subjects who used the tool. However, on closer inspection it was revealed that the two tool users

(Students A and B) produced some discrepant results. Subject B ’s effort and code changes were

not as expected when compared to Subject A. Upon further investigation (through the

interviews, questionnaire and code analysis), it became apparent that Student B had little

confidence in the tool. As a consequence, the subject had attempted to make major changes to

the generated scheduler code and its PIE tasks in the Keil IDE. This led to the introduction of

bugs and as a result the subject was held back as he attempted to resolve them. This is consistent

with the suggestion in Section 9.4 that the more changes made to a PIE the more likely it is that

bugs will be introduced in the system. This suggests that such tool support will only be more

effective if the users have confidence in the tool. This is more likely to happen with a

commercial product than a prototype such as that described here. Nevertheless, like Student A,

Student B still produced a complete CCS with better code modularity in comparison to the non

tool users.

Table 9-2 R esults of data analysis based on the metrics defined in Section 9.4

Metrics Tool (A) Tool (B) No Tool (C) No Tool (D)

Total effort for the entire project (in

minutes)
150 420 240 510

Total effort to implement the patterns (in

minutes)
71 228 145 357

Total changes made to the pattern (in LOC) 11 55 33 127

Total coupling level for all patterns

implemented
5 4 11 9

On analysis of the effort involved in implementing individual patterns it was observed

that, with the exception of Student B for reasons already discussed above, the level of effort

varied considerably among patterns. Figure 9-1 illustrates the effort of the subjects in

implementing the individual patterns with the exception of E x t e n d e d 8051 which is a hardware

pattern (Pont, 2001, pp. 29-46). Using McCabe’s Cyclomatic Complexity measures (McCabe,

1976), it was observed that PTTES Builder contributed to the reduction in effort in the

implementation of C o - o p e r a t i v e S c h e d u l e r . However, for less complex patterns (such as P o r t

W r a p p e r and H e a r t b e a t L E D) , the contribution of the tool was not as significant. This may

suggest that PTTES Builder is most effective when implementing patterns with a high

complexity.

160 -t—

140

120
</>a>3
g 100

p_Sch p_Port p_LED p_Counter P_PID p_ADC p_RS232

[H Stu A (Tool) ■ Stu B (Tool) □ Stu C (No Tool) □ Stu D (No Tool) [

Figure 9-1 Overview of the effort involved in implementing individual patterns

9.6 Chapter conclusions

The results obtained from this study suggest that the use of PTTES Builder can indeed generate

integrated TT embedded applications. Furthermore, this form of software development is likely

to lead to improved code quality and reliability. The results have also indicated that the

contribution of the tool is most significant when implementing patterns with a high level of

complexity.

The results of the study presented in this chapter are based on a single study. It would

therefore be premature to claim that they provide conclusive evidence. Therefore, a replication

of this study is worth pursing in the future with a different set of patterns and subjects.

- 8 9 -

10 Evaluating the Extensibility of the Approach
One important issue raised in Chapter 7 was the ability of a pattern-based tool such as PTTES

Builder to accommodate the evolution of its pattern collection without causing any undesirable

side effects to its existing design.

This chapter describes a case study carried out to assess the extensibility of PTTES

Builder.

10.1 Overview
A software system’s qualities can be classed as either functional or non-functional (Bass et al.,

1998). Functional qualities are observable during execution e.g. performance and security whilst

non-functional qualities such as maintainability, extensibility and portability are non-observable

during execution.

Depending on the system in question, functional and non-functional qualities are likely to

either be important or irrelevant. In the case of PTTES Builder, besides its functionality which is

primarily the generation of code from patterns, extensibility is an important non-functional

requirement. In Chapter 7 it was noted that in order for PTTES Builder to be a useful pattern-

based tool, it needed to be extensible i.e. allow for the addition of new patterns and PIEs without

affecting the tools existing functionalities.

Maintainability is another non-functional quality that refers to the ability of a system to

be modified i.e. the ease with which a software system can be modified to correct faults, improve

performance or other attributes (IEEE Std. 610.12-1990, 1993). Although similar in a way to

maintainability as both consider future change to a system, extensibility focuses on the ability of

a system’s design to evolve.

10.2 Case study setup
The case study was performed over a period of 10 weeks during which two developers were

employed and assigned the task of adding new patterns and PIEs to the tool. Prior to the study,

PTTES Builder supported eleven patterns from the PTTES collection. The microcontrollers

supported were the Atmel AT89S53 (S t a n d a r d 8051) and the Infineon C515C (E x t e n d e d 8051).

As is discussed in Chapter 4, the original PTTES collection describes 72 patterns (Pont, 2001),

meaning that at the start of this study PTTES Builder only supported 15% of the patterns from

the PTTES collection.

During the 10 weeks of the study, the developers were closely observed and data mainly

consisting of revision source code was collated and analysed in order to draw conclusions about

the tool’s extensibility. The following subsections give an overview of the subjects employed in

- 9 0 -

the study and the methodology used to assess the extensibility of the tool.

10.2.1 The subjects

For the same reasons described in Section 9.3, students were used as subjects in this study. The

main skills required by the subjects were Java and C programming. The role of the two

developers was advertised among penultimate year Engineering and Computer Science students

within the University of Leicester. The best five applicants were thereafter interviewed by a

panel of four: Dr Michael J. Pont (academic supervisor of this research), Dr David Ward

(industrial supervisor of this research), Susan Kurian (PhD candidate in the ESL) and the author.

The interview was primarily technical with the aim of establishing the candidates’ technical

abilities.

The two candidates selected, referred to as KA and DM in this thesis, were highly

recommended by their academic referees and this was underlined by their good academic

ranking among their peers. During the first four weeks of the study, the two subjects went

through a knowledge transfer period which involved familiarisation with PTTES Builder

including its capabilities, architecture and source code. This was facilitated by the author.

10.2.2 Metrics and data collection techniques employed

Generally, metrics used in software studies are based on time-oriented data referring to actions

performed by developers during development. Because of the qualitative nature of such data it

can be challenging to capture and collate; to this effect Fenton (1994) has listed three classes of

entities in software measurement that were used in the study, 1) processes: any software-related

activities that take place over time 2) products: any artefacts, deliverables, or documents that

result from processes and 3) resources: items required by processes. In this study the processes

observed were the development activities of the two developers, the source code artefacts were

the deliverables produced by the developers and the main source of data used in the analysis.

The two subjects were the main resources monitored.

The productivity of the developers was the main indicator of the ease with which new

patterns and PIEs could be added to PTTES Builder. In software studies, productivity is

generally defined as size divided by effort and traditional software metrics have used the volume

of source code produced as a means of measuring size whilst time is usually used to measure

effort (e.g., Kitchenham et al., 2002; Basili et al., 1996). However, in this study the number of

patterns added to PTTES Builder was instead used as a measure of size. This was mainly due to

the fact that the PIEs were already available and therefore the developers were not required to

write them.

Each developer was given a set of patterns to implement at the beginning of each week.

-91 -

At the end of each working day, regardless of whether changes had been made to PTTES

Builder, each developer submitted their source code to a secure depot. With each source code

submission, the developers made a note of the changes made to the code and any problems

experienced. At the end of each work week each developer’s working version of PTTES Builder

was integrated into a release and the author had an informal interview with each developer to

discuss their progress.

10.3 Results
During the study an additional 27 patterns from the PTTES collection were included in PTTES

Builder (Athaide et al., 2005). The patterns were added by following the design described in

Chapter 7 i.e. adding a pattern and its PIEs to the repository and thereafter implementing its UI

dialog boxes in the tool.

To test the new functionality of PTTES Builder, the final release was put through two

tests. The first test acted as a means of regression testing as it aimed at establishing whether the

existing functionality prior to the new changes was still functioning correctly; it involved the use

of PTTES Builder to develop a number of cruise control applications similar to the one described

in Chapter 8. In addition to replicating the cruise control application in Chapter 8, multi

processor variants were also developed as a means of testing the application of the new patterns

added to PTTES Builder e.g. SCU S c h e d u l e r (L o c a l) and SCC S c h e d u l e r implemented UART

and CAN based multi-processor cruise control systems respectively (Athaide et al., 2005; Pont,

2001).

The second test involved the development of a speech playback application that

replicates a recording of a human voice using stored data (Athaide et al., 2005). This was tested

on a range of different hardware implementations added to PTTES Builder (Athaide et al., 2005).

Despite a few minor bugs realised (and corrected on the spot) PTTES Builder applied

both the old and new patterns effectively during the studies. This was an indication that the new

patterns had been successfully added to the tool. Having established that the functionality of

PTTES Builder had not been affected by the addition of new patterns, the next analysis involved

investigating the ease at which the developers were able to add the patterns to PTTES Builder.

Using the data gathered during the study and the metrics described in Section 10.2.2, the

graph in Figure 10-1 was produced (Table 10-1 is a reference table for the patterns). The graph

shows the effort involved in adding each pattern to the tool, time (in days) was used as a measure

of effort. It must be noted that although SC CAN was one of the patterns added to PTTES

Builder during the study, it was not included in the analysis. This was due to the fact that the

PTTES collection at the time only had one PIE for SC CAN that supported the Infineon C515C

microcontroller. As a consequence, additional effort was put into writing additional PIEs for
-9 2 -

other platforms during the course of the study. In total it took about 4 weeks for these additional

PIEs to be developed and added to the tool. It was also realised that SC CAN was the most

complex pattern (in terms of LOC). To therefore ensure a fair comparison of the effort required

to add each pattern to the tool, SC CAN was excluded from the analysis.

1.2

1.0

0.8

I ■o
=§, 0.6

£ in
0.4

0.2

0.0

Figure 10-1 Effort involved in adding new patterns to PTTES Builder. The patterns are listed in Table 10-1

Upon an analysis of Figure 10-1, it is realised that the maximum effort involved in

adding a pattern was one day and the minimum effort approximately one third of a day. To

conduct a detailed analysis of these results each pattern’s level of complexity was also taken into

account. This was derived using each software pattern’s PIE for the AT89S53 microcontroller to

work out its source lines of code (SLOC). Though there has not been a consensus on how to

define software complexity to date, SLOC remains a common means of estimating software

complexity (Zuse, 1991).

S w i t c h I n t e r f a c e , SC UART, H y b r id S c h e d u l e r , 2 5 5 -T ic k S c h e d u l e r , O n - T a s k

Scheduler , Stable Scheduler and SC Interrupt required the m ost effort to add to the tool out

of the 25 patterns analysed. But upon considering the level of complexity of these patterns (see

Table 10-2); SC UART, H yb rid S c h e d u le r , 255-Tick S c h e d u le r , O n-T ask S c h e d u le r , S ta b le

S c h e d u le r and SC In te r r u p t w ere the o n ly patterns to have a h igh level o f com p lex ity .

However, looking at Table 10-2 LCD C h a r a c t e r P a n e l would have been expected to have also

required a considerable am ount o f effort as it ranked b etw een SC UART and S t a b le S c h e d u le r

in the complexity table. But upon further analysis this discrepancy was attributed to the fact that

LCD C h a r a c te r P a n e l has a h igh SLOC va lu e (or high com p lex ity leve l) as a result o f its code

- 9 3 -

.

— — I

~ Vv. 'S*\

1

:

1
I

| :

I
1

:
1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P a ttern s a d d e d to PTTES B uilder (in o rd er o f addition)

library used for the character mapping. The same was attributed to I2C. Despite having a

relatively low complexity level S w it c h I n t e r f a c e required more effort than may have initially

been expected because it consists of a hardware and software implementation which therefore

resulted in more work.

Table 10-1 The patterns added to PTTES Builder (in the order in which they w ere added)

Pattern Number Pattern Name

1 Reset

2 LCD Character Panel

3 Keypad

4 Switch Interface

5 SPI

6 One Shot ADC

7 Sequential ADC

8 SC UART

9 Software Delay

10 Ceramic Resonator

11 Watchdog

12 Loop Timeout

13 Hardware Timeout

14 Hybrid Scheduler

15 255-Tick Scheduler

16 One-Task Scheduler

17 I2C

18 MX LED

19 Stable Scheduler

20 SC Interrupt

21 SWPRM
22 SWPWM
23 Hardware PRM
24 Hardware PWM
25 3-Level PWM

The rest of the patterns required an effort ranging from a third to half a days work. The

effort required for these patterns is justifiable when their complexity level is considered

relatively to the more complex patterns.

- 9 4 -

Table 10-2 List of patterns in an ascen d in g order of complexity where SLOC is used to m easure the
complexity

Pattern Name Complexity (in SLOC)
Ceramic Oscillator 0
R eset 0
Software Delay 10
W atchdog 24
Hardware PRM 35
Loop Timeout 40
Sequential ADC 44
O ne Shot ADC 50
Keypad 60
SPI 60
SW PRM 69
MX LED 73
SW PWM 73
Hardware PWM 74
Switch Interface 80
255-Tick Scheduler 94
O ne Task Scheduler 98
3-Level PWM 120
Hybrid Scheduler 180
I2C 204
Hardware Timeout 260
SC UART 275
LCD 295
Stable Scheduler 363
SC Interrupt 713
SC CAN 1243

10.4 Chapter conclusions
From the results of the study it was concluded that the same amount of effort is required to add

patterns of the same complexity level to PTTES Builder. Furthermore, the more complex a

pattern the more effort is required to add it to the tool. It can also be concluded that, based on

the average time the users took to add a new pattern to the tool, the exercise was manageable

once those responsible had grasped an understanding of the tool’s design.

From the interviews and the daily notes written by the developers it was also observed

that when adding a pattern the majority of the work involved the development of the pattern

dialog window. Although each pattern was more than likely to have a unique dialog window for

its configuration, it was strongly felt that this was something that could be improved upon in the

tool design.

Although this study did not have a set of results to use as a benchmark, the results of the

study gave a good indication that PTTES Builder is indeed extensible. The study also provided a

means of realising areas of the tool that could be improved upon such as the implementation of

pattern dialog boxes in the UI.

- 9 5 -

- 9 6 -

PART V: TO CONCLUDE

This part concludes the thesis.

11 Thesis Conclusions
This chapter summarises the work presented in this thesis and concludes by discussing the

contributions made. The limitations and future areas of work are then discussed.

11.1 Summary
This thesis has addressed a range of issues concerning the development of reliable time-triggered

embedded systems, design patterns and pattern-based code generation.

It has been argued that static schedulers such as the TTC scheduler provide a more

deterministic and predictable architecture for embedded systems (if developed correctly) in

comparison to dynamic schedulers. It may therefore be appropriate that during design a

developer first establishes whether a TTC scheduler meets the design requirements. By so

doing, the design of an application's software architecture is based on high reliability

requirements. However, implementing TTC architectures comes with challenges such as the

need to know task durations and any potential task overruns at design time in order to guarantee

reliability.

An account of design patterns and their benefits to software development has been given.

It has been argued that patterns facilitate the reuse of best practice design solutions. A collection

of patterns referred to as the PTTES collection was presented and it was argued that this is a

pattern language capable of supporting the development of applications with TTC architectures.

However, it was observed that the ‘manual’ implementation of the PTTES collection and other

software patterns in general does have a number of disadvantages. In particular, the

transformation of patterns from design to implementation has no structured process and it

typically involves users adapting example code to their design specifications. This is an ad hoc

mundane, tedious and as a result error prone process that is not suitable for the development of

software for systems with high reliability requirements.

The importance of code generation and CASE tools in modem day software development

has also been discussed. The thesis has gone on to argue that pattern-based code generation can

offer an alternative method to model-based code generation. In fact, it has been argued that

pattern-based code generation has the potential to produce code of high quality and efficiently.

Previous work on pattern-based CASE tools has also been reviewed and it has been argued that

these tools have merely supported the application of individual patterns and not complete

application code generation from appropriate groups of patterns. Furthermore, the majority of

these tools have focused on the Gamma collection.

The challenges of generating application code from groups of patterns have been

highlighted and addressed in this thesis. In particular, it has been argued that PIEs can be used to

- 9 8 -

uphold the ‘one pattern, many implementations’ characteristic of patterns in a pattern-based

CASE tool. It has also been argued that in order for a CASE tool to support the generation of

coherent code from a set of patterns, the patterns must be members of a pattern language.

PTTES Builder, a prototype CASE tool based on the PTTES collection, has been implemented in

order to test these hypotheses in the context of TT embedded systems.

Two studies were conducted to assess the viability of the approach described above. The

first study was aimed at establishing the effect of this approach on user effort, code quality and

reliability. The study concluded that PTTES Builder contributed to the development process by

reducing the effort of the developers and in particular when implementing patterns with a high

level of complexity. There were also some initial indications that the use of PTTES Builder is

likely to lead to improved code quality. The objective of the second study was to investigate the

extensibility of the approach i.e. whether it could cope with the evolution of the PTTES

collection. The study concluded that the approach is extensible and therefore can support the

evolution of a pattern collection.

11.2 An analysis of the contributions
This thesis makes a novel contribution to pattern-based code generation and illustrates the

capabilities of this approach to the development of reliable time-triggered embedded systems.

The individual contributions are now examined in more detail, highlighting the benefits.

PTTES Builder is a tool that supports pattern-based code generation for embedded

systems with a time-triggered architecture. The approach used to implement PTTES Builder is

the primary contribution of the work presented in this thesis. It addresses the ‘one pattern, many

implementations’ relationship of patterns that previous pattern-based code generation CASE

tools have not addressed. Furthermore, the approach is based on a domain-specific pattern

language thus facilitating the generation of integrated applications from appropriately selected

patterns. This is a significant extension of previous work in this area that primarily focused on

the transformation of individual patterns to code.

The primary goal of implementing PTTES Builder was to use it as a means of

demonstrating the feasibility and consequences of adopting the pattern-based code generation

approach described in Chapter 6. PTTES Builder is therefore a proof of concept that illustrates

the benefits of this approach in the development of embedded systems with a time-triggered

architecture using a pattern language in this domain. PTTES Builder clearly achieves its

objectives and demonstrates how pattern-based code generation, using the approach described,

can be used to generate robust code efficiently.

Through the use of a pattern language: patterns for time-triggered embedded systems

(referred to in this text as the PTTES collection), PTTES Builder addresses some of the
- 9 9 -

challenges that come with developing reliable embedded applications. In particular, PTTES

Builder incorporates a wizard to assist a user in the creation of an appropriate hardware and

software architecture. Using this wizard and a division of the pattern library into ‘patterns’ and

‘pattern implementation examples’, the tool is able to present a user with only those design

options which are applicable to the design context. Furthermore, the wizard enforces certain

mechanisms to ensure that important design decisions are followed. For instance, the tool keeps

an inventory of certain hardware resources for the selected microcontroller (e.g. port pins) as

they are used by other patterns in the design. This helps to avoid basic design errors (where, for

example, two tasks have assumed exclusive access to a UART or particular port pin). This is a

useful feature when working with multiple patterns in such a system design. Also, the scheduler,

derived from the software architecture, facilitates the integration of the rest of the system’s

patterns. The TT schedulers described in the PTTES collection have a natural way of integrating

tasks through the use of the ‘Add Task’ function.

In an empirical study described in Chapter 9, the effectiveness of the PTTES Builder

approach was compared with an equivalent ‘manual’ approach. The results obtained

demonstrate that time-triggered embedded systems can be created using this approach. There is

also some evidence that the use of the tool is likely to lead to improved code reliability and

quality. It was also observed that the contribution of the tool was most significant when

implementing patterns with a high level of complexity. In another study described in Chapter 10

it has been demonstrated that the approach implemented by PTTES Builder can sustain the

evolution of its underlying pattern collection. These results are encouraging and have

demonstrated that the approach implemented in PTTES Builder is a novel and practical approach

to pattern-based software development.

11.3 Limitations and future work
In this section a number of limitations of the PTTES Builder approach are discussed some of

which may be addressed by future work in this area. Other extensions to this work are also

highlighted.

The pattern-based code generation approach described in this thesis and implemented by

PTTES Builder has been implemented using the PTTES collection. This is a limitation and

therefore future research should attempt to investigate the applicability of this approach in other

software domains in order to assess its applicability. Over the years the patterns community has

seen the creation of more domain specific pattern collections such as the Core J2EE Patterns that

provide a range of solutions for Java enterprise applications (Alur et al., 2001). Coupled with

this, is the availability of application frameworks like Apache Struts, a free open-source

framework for creating Java web applications (The Apache Software Foundation, 2006). The
- 100 -

Struts framework is designed to help developers create web applications that have an architecture

based on M o d e l V ie w C o n t r o l (MVC) described in the Gamma collection (Gamma et al., 1995).

Struts provide the glue that links the various elements of a Java enterprise application into a

coherent whole. Future work can therefore investigate the applicability of the pattern-based code

generation approach, described in this thesis, in the J2EE context where the Struts architecture

can be utilised in the same way as T T C S c h e d u l e r is applied in PTTES Builder. This exercise

can be the basis of further empirical studies to establish the extent to which the code generation

approach described in this work can be applied.

Section 5.2 discussed the current use of UML as a basis for model-based code generation.

As the SysML (discussed in Section 5.2) becomes widely accepted as a UML extension for

embedded systems design, future versions of the tool should explore the possibility of having a

graphical modeling user interface based on SysML. This work would involve exploring the

representation of the PTTES collection in SysML.

The version of PTTES Builder described in this thesis is based on the waterfall model,

beginning with the selection of hardware and software architectures (as outlined in Section

8.2.1). If the resources are exhausted, a user needs to repeat the design process (in a new

project) with a different processor. This is a limitation that future work can consider, a user

could be given the option of completing the software design and then - on the basis of the

resource requirements - selecting a suitable hardware platform.

Kurian and Pont (2006) have been exploring techniques which can be used to support the

maintenance of embedded systems developed using the PTTES collection. The focus has been

on techniques that will allow users to exchange patterns in such a project - with minimal or no

human intervention after a project has gone into production. In doing so the aim is to identify

the implementation of the pattern which a user wishes to change in the system code. Having

done so, a user can remove the relevant code and then substitute a suitable implementation of the

replacement pattern. Early work in this area is described in (Kurian and Pont, in press a; Kurian

and Pont, 2006) and the techniques described will be incorporated in a future version of PTTES

Builder.

The automation of the code generation process also presents the opportunity to enforce

more general (low level) coding standards. To illustrate this, ongoing work on PTTES Builder in

the ESL has incorporated support for the MISRA C coding guidelines (MISRA, 2004). These

guidelines were originally written to help improve the quality of code written for automotive

applications; however, they are now much more widely employed in other safety-related and

safety-critical systems (Patemotte, 2002). To support these guidelines, a MISRA C module has

been implemented that pre-processes and parses PTTES Builder’s generated code into an

Abstract Syntax Tree (AST) (Mwelwa et al., 2006). The AST is then traversed, checking for
- 101 -

MISRA C compliance. To aid in the compliance checking, symbol tables are created for each

scope during the AST traversal. It must be noted that while some rules are checked during the

pre-processing stage, the majority of rules can only be checked once a complete AST has been

generated. For example, Rule 5.5 requires that - for example - the same variable name should

not be re-used in different modules (MISRA, 2004, p.27): clearly, it is impossible to determine if

this rule has been broken until all of the system source code is checked.

As was discussed in Chapter 2, task jitter is a concern in many embedded systems. Time-

triggered Hybrid (TTH) software architectures are a good choice in a wide range of systems (e.g.

data acquisition and control designs) in which jitter is an important consideration. Ongoing work

in the ESL has previously described two techniques (‘planned pre-emption’ and ‘delayed

resource locking’) which can reduce this jitter level (Maaita and Pont, submitted 2005). These

techniques can be incorporated in future versions of the tool. Jitter can also occur due to

variations in message transmission times in distributed TT designs, in this case techniques such

as ‘software bit stuffing’ can be incorporated in the tool to reduce jitter levels (Nahas et al.,

2005).

The focus of the work presented in this thesis has been on the application of software

design patterns for the development of TT embedded applications. However, the potential

benefits of using patterns in hardware design have recently been explored by a number of

researchers (Rincon et al., 2005; Damasevieius et al., 2003; Yoshida, 2001). Future versions of

the tool can consider the support for hardware design patterns such as the design of a system’s

hardware in relation to its software architecture.

- 102-

Bibliography
Aaen, I., Siltanen, A., Srensen, C. and Tahvanainen, V.-P., "A tale o f two countries: CASE

experiences and expectations," The Impact of Computer Supported Technologies on
Information Systems Development, IFIP Transactions, North-Holland, In: Kendall, K.E.,
Lyytinen, K. and DeGross, J.I. (Eds.), pp. 61-93, 1992.

Albert, A., "Comparison of event-triggered and time-triggered concepts with regard to
distributed control systems," Proceedings o f Embedded World, Numberg, Germany, pp.
235-252, 2004.

Albin-Amiot, H. and Gueheneuc, Y.-G., "Meta-modeling design patterns : application to pattern
detection and code synthesis," ECOOP’Ol : Workshop on Automating Object-Oriented
Software Development Methods, Eotvos Lorand University, Budapest, Hungary, 2001.

Alexander, C., "Notes on the Synthesis o f Form, "Harvard University Press, 1964. [ISBN: 0-674-
62751-2].

Alexander, C., "The Timeless Way o f Building," Oxford University Press, 1979. [ISBN: 0-19-
502402-8].

Alexander, C., "The origins of pattern theory the future of the theory and the generation of a
living world," Keynote Address: Object-Oriented Programs, Systems, Languages and
Applications (OOPSLA ’96), San Jose, California, USA, 1996.

Alexander, C., "Christopher Alexander," http://www.pattemlanguage.com/leveltwo/ca.htm,
Accessed in 2005.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fisksdahl-King, I. and Angel, S., "A
Pattern Language," Oxford University Press, 1977. [ISBN: 0-19-501919-9].

Alexander, C., Silverstein, M., Angel, S., Ishikawa, S. and Abrams, D., "The Oregon
Experiment," Oxford University Press, 1975. [ISBN: 0-19-501824-9].

Allen, F.E., "The history of language processor technology in IBM," IBM Journal o f Research
and Development, Vol. 25, (5), pp. 535-548, 1981.

Allworth, S.T., "An Introduction to Real-Time Software Design," Macmillan, 1981.

Alur, D., Cmpi, J. and Malks, D., "Core J2EE Patterns: Best Practices and Design Strategies,"
Prentice Hall / Sun Microsystems Press, 2001. [ISBN: 0130648841].

Antonakos, J.L., "The 68000 Microprocessor: Hardware and Software Principles and
Applications," Macmillan Publishing Company, 1993.

Apneseth, C., "Embedded system technology in ABB," ABB Review, 2/2006.

Araxis, "Araxis Merge," http://www.araxis.com/merge/index.html, Accessed in 2005.

Amout, K., "From Patterns to Components," Doctoral Thesis, Swiss Institute of Technology,
Zurich, 2004.

Athaide, K., Meams, D. and Mwelwa, C., "PTTES Builder," University o f Leicester, Leicester,
Reference No. KA/DM - 2005/3, 2005.

- 103 -

http://www.pattemlanguage.com/leveltwo/ca.htm
http://www.araxis.com/merge/index.html

Auer, A., Kemppainen, P., Okkonen, A. and Seppanen, V., "Automated code generation of
embedded real-time systems," Microprocessing and Microprogramming, Vol. 24, pp. 51-
56, 1988.

Ayala, K.J., "The 8051 Microcontroller: Architecture, Programming and Applications," West
Publishing Company, 1991. [ISBN: 0-314-77278-2].

Ayavoo, D., Pont, M.J., Fang, J., Short, M. and Parker, S., "A 'Hardware-in-the Loop' testbed
representing the operation of a cruise-control system in a passenger car," Proceedings o f
the 2nd UK Embedded Forum, 20th October, Birmingham, UK, 2005.

Ayavoo, D., Pont, M.J. and Parker, S., "Using simulation to support the design o f distributed
embedded control systems: A case study," Proceedings of the 1st UK Embedded Forum,
In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.), pp. 54-65, University of Newcastle
upon Tyne, Birmingham, UK, 2004. [ISBN: 0-7017-0180-3].

Ayavoo, D., Pont, M.J. and Parker, S., "Observing the development o f a reliable embedded
system," Proceedings of the 10th Ada-Europe International Conference on Reliable
Software Technologies, Lecture Notes in Computer Science, In: Vardanega, T. and
Wellings, A. (Eds.), pp. 167-179, Springer-Verlag, York, UK, 2005. [ISBN: 3-540-
26286-5].

Ayavoo, D., Pont, M.J. and Parker, S., "Does a 'simulation first' approach reduce the effort
involved in the development of distributed embedded control systems?," Proceedings o f
the 6th UKACCInternational Control Conference, Glasgow, Scotland, 2006.

Backus, J., "Programming in America in the 1950s - some personal impressions," A History of
Computing in the Twentieth Century, In: Metropolis, N., Howlett, J. and Rota, G.-C.
(Eds.), Academic Press, 1980.

Baker, T.P. and Shaw, A.C., "The cyclic executive model and Ada," Real-Time Systems, Vol. 1,
(l),pp . 7-25, 1989.

Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Passerone, C.,
Sangiovanni-Vincentelli, A., Sentovich, E., Suzuki, K. and Tabbara, B., "Hardware-
Software Co-Design o f Embedded Systems: The Polis Approach," Kluwer Academic
Publishers, 1997.

Bannatyne, R., "Time triggered protocol-fault tolerant serial communications for real-time
embedded systems," Wescon '98. Conference Proceedings, Anaheim, CA, USA, pp. 86-
91, 1998.

Bannatyne, R., "Microcontrollers for the Automobile," Micro Control Journal,
http://www.mcjoumal.com/, Accessed in 2004.

Barnett, R.H., "The 8051 Family o f Microcontrollers," Prentice Hall, 1995. [ISBN: 0-02-
306281-9].

Baron, R.J. and Higbie, L., "Computer Architecture," Addison-Wesley Publishing Company,
1992.

Basili, V., Briand, L. and Melo, W., "How reuse influences productivity in object-oriented
systems," Communications o f the ACM, Vol. 39, (10), pp. 104-116, 1996.

Basili, V. and Weiss, D., "A methodology for collecting valid software engineering data," IEEE

- 1 0 4 -

http://www.mcjoumal.com/

Transactions on Software Engineering, Vol. 10, pp. 728-738, 1984.

Bass, L., Clements, P. and Kazman, P., "Software architecture in practice," Addison Wesley,
1998.

Bate, I., "Scheduling and Timing Analysis of Safety Critical Hard Real-time Systems," Doctoral
Thesis, Real-Time Systems Research Group, University of York, York, 1999.

Bate, I., "Introduction to scheduling and timing analysis," The Use of Ada in Real-Time System,
In: (Eds.), IEE Conference Publication 00/034, 2000.

Bautista, R. and Pont, M.J., "Is fuzzy logic a practical choice in resource-constrained embedded
control systems implemented using general-purpose microcontrollers?," Proceedings o f
the 9th IEEE International Workshop on Advanced Motion Control, Istanbul, Turkey, pp.
692-697, 2006.

Beck, K., Crocker, R., Meszaros, G., Coplien, J.O., Dominick, L., Paulisch, F. and Vlissides, J.,
"Industrial experience with design patterns," 18th International Conference on Software
Engineering (ICSE), March 25 - 29, Berlin, GERMANY, IEEE Computer, 1996.

Bell, R., "Code Generation from Object Models," Embedded.com,
http://www.embedded.com/98/9803fe3.htm, Accessed in 1998.

Bereisa, J., "Applications of microcomputers in automotive electronics," IEEE Transactions on
Industrial Electronics, Vol. IE-30, (2), pp. 87, 1983.

Blanc, S., Gracia, J. and Gil, P., "Experiences during the experimental validation of the time-
triggered architecture," Proceedings o f Design, Automation and Test in Europe (DATE
2004), 2004.

Bolton, W., "Microprocessor Systems," Longman, 2000. [ISBN: 0 582 41881 X].

Booch, G., "Object-Oriented Analysis and Design with Applications," The Benjamin/Cummings
Publishing Company, Inc., 1994. [ISBN: 0-8053-5340-2].

Borland, "Together Technologies," http://www.borland.com/us/products/together/, Accessed in
2005.

Bouyssounouse, B. and Sifakis, J., "Current Design Practice and Needs in Selected Industrial
Sectors," Embedded Systems Design: The ARTIST Roadmap for Research and
Development, In: Bouyssounouse, B. and Sifakis, J. (Eds.), pp. 15-38, Springer-Verlag
GmbH, 2005.

Budinsky, F., Finnie, M., Vlissides, J. and Yu, P., "Automatic code generation from design
patterns," IBM Systems, Vol. 35, (2), pp. 151-171, 1996.

Bulka, A., "Design pattern automation," 3rd Australasian Conference on Pattern Languages o f
Programs (KoalaPLoP), The Country Place, Melbourne, Australia., 2002.

Buntine, W., "Will Domain-Specific Code Synthesis Become a Silver Bullet?," IEEE Intelligent
Systems, Vol. 13, (2), pp. 9-15, 1998.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., "Pattern-Oriented
Software Architecture, Volume 1: A System o f Patterns," Wiley Computer Publishing,
1996.

- 105-

http://www.embedded.com/98/9803fe3.htm
http://www.borland.com/us/products/together/

Buttazzo, G.C., "Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications," Kluwer Academic Publishers, 1997. [ISBN: 0792399943].

Buttazzo, G.C., "Rate monotonic vs. EDF: Judgment day," Real-Time Systems, Vol. 29, pp. 5-26,
2005.

Camposano, R. and Wilberg, J., "Embedded system design," Design Automation fo r Embedded
Systems, Vol. 1, (1-2), pp. 5, 1996.

Computer History Museum, "Computer History Museum - Apollo Guidance Computer,"
http://www.computerhistory.org/exhibits/highlights/apollo.shtml, Accessed in 2005.

Cooling, J., "Software Engineering fo r Real-Time Systems, "Pearson Education, 2003. [ISBN: 0
201 59620 2].

Coplien, J., "Jim Coplien," http://c2.com/cgi/wiki7JimCoplien, Accessed in 2003.

Coplien, J.O. and Harrison, N.B., "Organisational Patterns o f Agile Software Development,"
Prentice Hall, 2004. [ISBN: 0-13-146740-9].

Cottet, F. and David, L., "A solution to the time jitter removal in deadline based scheduling of
real-time applications," 5th IEEE Real-Time Technology and Applications Symposium -
WIP, Vancouver, Canada, pp. 33-38, 1999.

Cmkovic, I., "Component-based Software Engineering - New Challenges in Software
Development," Journal o f Computing and Information Technology, Vol. 11, (3), pp. 151-
162, 2003.

Cuatto, T., Passerone, C., Sansoe, C., Gregoretti, F., Jurecska, A. and Sangiovanni-Vincentelli,
A., "A case study in embedded systems design: An engine control unit," Design
Automation fo r Embedded Systems, Vol. 6, pp. 71-88, 2000.

Cunningham, W. and Beck, K., "Using pattern languages for object-oriented programs,"
Presented to the OOPSLA'87 workshop on the Specification and Design fo r Object-
Oriented Programming, Orlando, Florida, USA, 1987.

Damasevieius, R., Majauskas, G. and Stuikys, V., "Application of design patterns for hardware
design," Proceedings o f the 40th Conference on Design Automation, Session: Design
Analysis Techniques, Anaheim, CA, USA, pp. 48 - 53, 2003. [ISBN: 1-58113-688-9].

Debardelaben, J.A., Madisetti, V.K. and Gadient, A.J., "Incorporating cost modeling in
embeddeds-system design," IEEE Design and Test o f Computers, Vol. 14, (3), pp. 24-35,
1997.

Dilger, E., Fuhrer, T. and Muller, B., "Distributed fault-tolerant and safety-critical applications in
vehicles - a time-triggered approach," Computer Safety, Reliability and Security: 17th
International Conference, SAFECOMP'98, Heidelberg, Germany, Springer Berlin /
Heidelberg, 1998.

Douglass, B.P., "Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns," Addison Wesley, 1999. [ISBN: 0-201-49837-5].

Eakin, E., "Architecture’s irascible reformer," New York Times, July 12th, 2003.

Edwards, C., "Gap closes in microcontrollers," IET Electronics Systems and Software Magazine,

- 10 6 -

http://www.computerhistory.org/exhibits/highlights/apollo.shtml
http://c2.com/cgi/wiki7JimCoplien

April/May 2006.

Edwards, T., Pont, M.J., Short, M., Scotson, P. and Crumpler, S., "An initial comparison o f
synchronous and asynchronous network architectures fo r use in embedded control
systems with duplicate processor nodes," Proceedings of the Second UK Embedded
Forum, In: Koelmans, A., Bystrov, A., Pont, M.J., Ong, R. and Brown, A. (Eds.), pp.
290-303, University of Newcastle upon Tyne, Birmingham, UK, 2004.

Eggermont, L.D.J. (Ed.) "Embedded Systems Roadmap 2002," Technology Foundation (STW),
2002. [ISBN: 90-73461-30-8].

Eiffel Software, "Eiffel Programming Language," http://www.eiffel.com/products/, Accessed in
2006.

Ernest, R., "Co-design of embedded systems: status and trends," IEEE Design and Test o f
Computers, Vol. Vol. 15, (2), pp. 45-54, 1998.

EU eSafety Working Group, "eSafety: the use of information and communication technology
(ICT) for road safety," Communication from the Commission to the Council and the
European Parliament on Information and Communications Technologies fo r Safe and
Intelligent Vehicles, Brussels, Reference No. COM (2003) 542 Final, 2003.

Fenton, N., "Software measurement: A necessary scientific basis," IEEE Transactions - Software
Engineering, Vol. 20, (3), pp. 199-206, 1994.

Flis, T.J., "The use of microprocessors for electronic engine control," IEEE Transactions on
Industrial Electronics, Vol. IE-30, (2), pp. 75-87, 1983.

Florijn, G., Meijers, M. and Winsen, P., "Tool support for object-oriented patterns," ECOOP'97,
Finland, 1997.

Fowler, M., "Patterns," IEEE Software, Vol. 20, (2), pp. 57, 2003.

France, R.B., Kim, D.-K., Ghosh, S. and Song, E., "A UML-based pattern specification
technique," IEEE Transactions on Software Engineering, Vol. 30, (3), pp. 193-206, 2004.

Fredriksson, J., Akerholm, M., Sandstrom, K. and Dobrin, R., "Attaining flexible real-time
systems by bringing together component technologies and real-time systems theory,"
Proceedings o f the 29th Conference on EUROMICRO, Washington, DC, USA, IEEE
Computer Society, 2003. [ISBN: 0-7695-1996-2].

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., "Design Patterns: Elements o f Reusable
Object-Oriented Software," Addison-Wesley, 1995.

Garlan, D., Allen, R. and Ockerbloom, J., "Architectural mismatch, or why it's hard to build
systems out of existing parts," In Proceedings o f the 17 th International Conference on
Software Engineering, Seattle, USA, 1995.

Garofalakis, M.N., Rastogi, R. and Shim, K., "SPIRIT: Sequential pattern mining with regular
expression constraints," The VLDB Journal, pp. 223-234, 1999.

Ghezzi, C., Jazayeri, M. and Mandrioli, D., "Fundamentals o f Software Engineering," Prentice
Hall, 2002. [ISBN: 0133056996].

Giloi, W.K., "Konrad Zuse's Plankalkul: The first high-level "non von Neumann" programming

- 10 7 -

http://www.eiffel.com/products/

language," IEEE Annals o f the History o f Computing, Vol. 19, (2), pp. 17-24, 1997.

Graaf, B., Lormans, M. and Toetenel, H., "Embedded software engineering: The state of the
practice," IEEE Software, Vol. 20, (6), pp. 61-69, 2003.

Grone, B. and Tabeling, P., "A system of patterns for concurrent request processing servers," 2nd
Nordic Conference on Pattern Languages o f Programming (VikingPLoP), Bergen,
Norway, 2003.

Guennec, A., Sunye, G. and Jezequel, J., "Precise modeling of design patterns," Proceedings o f
the 3rd International Conference on the Unified Modelling Language (UML 2000), York,
UK, LNCS, pp. 482-496, 2000.

Gupta, R.K. and Micheli, G.D., "Specification and analysis of timing constraints for embedded
systems," IEEE Transactions on CAD /ICAS, Vol. 16, (3), pp. 240-256, 1997.

Harold, E.R., "Processing XML with Java: A Guide to SAX, DOM, JDOM, JAXP, and TrAX,"
Addison Wesley, 2002.

Harold, E.R. and Means, W.S., "XML in a Nutshell," O'Reilly, 2002.

Hatton, L., "Safer C: Developing Software fo r High-integrity and Safety-critical Systems,"
McGraw-Hill Book Company Europe, 1994. [ISBN: 0-07-707640-0].

Hedenetz, B. and Belschner, R., "Brake-by-wire without mechanical backup by using a TTP-
communication network," SAE World Congress, Detroit Michigan, Warrendale, PA,
USA, SAE Press, 1998.

Heering, J. and Memik, M., "Domain-specific languages for software engineering," Proceedings
o f the 35th Hawaii International Conference on System Sciences (HICSS-35), 2002.

Heiner, G. and Thumer, T., "Time-triggered architecture for safety-related distributed real-time
systems in transportation systems," 28th Annual Symposium on Fault Tolerant
Computing, Munich, Germany, IEEE Computer Society Press, pp. 402-407, 1998.

Heister, F., Riegel, J.P., Schtitze, M., Schulz, S. and Zimmermann, G., "Pattern-Based Code
Generation for Well-Defined Application Domains," EuroPLoP '97, Kloster Irsee,
Germany, 1997.

Henderson, P., Howard, Y.M. and Walters, R.J., "A Tool for Evaluation of the Software
Development Process," The Journal o f Systems and Software, Vol. 59, pp. 355-362,
2001 .

Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A. and Pree, W., "From control models to real
time code using Giotto," IEEE Control Systems Magazine, Vol. 23, (1), pp. 50-64, 2003.

Herrington, J., "Code Generation in Action," Manning Publications Co., 2003. [ISBN: 1-930110-
97-9].

Heuring, V.P. and Jordan, H.F., "Computer Systems Design and Architecture,"
Benjamin/Cummings, 1997.

Hills, C., "ACCU Reviews: Patterns for Time-Triggered Embedded Systems,"
http://www.accu.Org/bookreviews/public/reviews/p/p003031.htm, Accessed in 2001.

Hirschfeld, R. and Lammel, R., "Reflective designs," IEE Proceedings on Software, Vol. 152,
- 108-

http://www.accu.Org/bookreviews/public/reviews/p/p003031.htm

(1), pp. 38-51, 2005.

Hoffnagle, G.F. and Beregi, W.E., "Automating the Software Development Process," IBM
Systems Journal, Vol. 24, (2), pp. 102-120, 1985.

Hong, S., "Scheduling algorithm of data sampling times in the integrated communication and
control systems," IEEE Transactions on Control Systems Technology, Vol. 3, (2), 1995.

Host, M., Regnell, B. and Wohlin, C., "Using students as subjects - A comparative study of
students and professionals in lead-time impact assessment," Empirical Software
Engineering, Vol. 5, pp. 201-214, 2000.

Hsiung, P.-A., Lee, T.-Y., See, W.-B., Fu, J.-M. and Chen, S.-J., "VERTAF: an object-oriented
application framework for embedded real-time," 5th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, Washington, D.C., USA, IEEE
Computer Society, pp. 322-329, 2002.

Hughes, Z., Pont, M.J. and Ong, R., "The PH Processor: A soft embedded core for use in
university research and teaching," Proceedings of the 2nd UK Embedded Forum, 20th
October, In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.), Birmingham, UK, 2005.

Hutton, R., "Mercedes calls back 1.3m cars," The Sunday Times, April 3rd, 2005.

IBM, "Great Moments in Microprocessor History," http://www-
128.ibm.com/developerworks/library/pa-microhist.html?ca=dgr-mw08MicroHistory,
Accessed in 2006.

IBM, "IBM Patterns for e-Business," http://www-128.ibm.com/developerworks/pattems/,
Accessed in 2006.

IEEE Std. 610.12-1990, "Glossary of Software Engineering Terminology," Software
Engineering Standards Collection, Los Alamitos, Calif., IEEE CS Press, 1993. [ISBN:
1048-06T].

Intel, "Intel Museum - Moore's Law,"
http://www.intel.com/museum/archives/history_docs/mooreslaw.htm, Accessed in 2005.

Jacobson, I., Booch, G. and Rumbaugh, J., "The Unified Software Development Process,"
Addison Wesley, 1999. [ISBN: 0-201-57169-2].

Jenko, M., Medjeral, N. and Butala, P., "Component-based software as a framework for
concurrent design of programs and platforms - an industrial kitchen appliance embedded
system," Microprocessors and Microsystems, Vol. 25, pp. 287-296, 2001.

Jerri, A.J., "The Shannon sampling theorem: its various extensions and applications a tutorial
review f Proceedings o f the IEEE, IEEE, pp. 1565-1596, 1977.

Kalinsky, D., "Context Switch," Embedded Systems Design,
http://www.embedded.com/story/OEG20010222S0038, Accessed in 2001.

Karlsson, A., "X-by-Wire Systems and Time-Triggered Protocols," MSc Thesis, Uppaal
Research Group, Department of Information Technology, Uppsala University, Uppsala,
Sweden, 2002.

Kerth, N., "Amazon Reviews: Patterns for Time-Triggered Embedded Systems,"

- 109-

http://www-
http://www-128.ibm.com/developerworks/pattems/
http://www.intel.com/museum/archives/history_docs/mooreslaw.htm
http://www.embedded.com/story/OEG20010222S0038

http://www.amazon.com/gp/product/0201331381 /102-6313247-
9522544?v=glance&n=283155&%5Fencoding=UTF8&v=glance, Accessed in 2001.

Key, S., Pont, M. and Edwards, S., "Implementing low -cost TTCS systems using assembly
language," Proceedings of the 8th European Conference on Pattern Languages of
Programs (EuroPLoP 2003), In: Henney, K. and Schutz, D. (Eds.), pp. 667-690,
Universitatsverlag Konstanz, Irsee, Germany, 2003. [ISBN: 3-87940-788-6].

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., Emam, K.E. and
Rosenberg, J., "Preliminary guidelines for empirical research in software engineering,"
IEEE Transactions - Software Engineering, Vol. 28, (1), pp. Pp. 721-734, 2002.

Koffman, E.B., "Turbo Pascal," Addison-Wesley, 1998. [ISBN: 0201350866].

Kopetz, H., "The time-triggered architecture," In Proceedings o f the 1 st International
Symposium on Object-Oriented Realtime Distributed Computing, pp. 22-29, 1988.

Kopetz, H., "Real-time Systems: Design Principles for Distributed Embedded Applications,"
Kluwer Academic, 1997.

Krishnamurthi, S. and Felleisen, M., "Toward a formal theory of extensible software,"
Proceedings o f the 6th ACM SIGSOFT International Symposium on Foundations o f
Software Engineering, Lake Buena Vista, Florida, United States, ACM Press, New York,
USA, pp. 88 -98 , 1998.

Kukkala, P., Riihimaki, J., Hannikainen, M., Hamalainen, T.D. and Kronlof, K., "UML 2.0
profile for embedded system design," Design, Automation and Test in Europe (DATE
’05), pp. 710-716, 2005.

Kurian, S. and Pont, M.J., "Building reliable embedded systems using Abstract Patterns,
Patterns, and Pattern Implementation Examples," Proceedings of the 2nd UK Embedded
Forum, 20th October, In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.), Birmingham,
UK, 2005.

Kurian, S. and Pont, M.J., "Evaluating and improving pattern-based software designs for
resource-constrained embedded systems," Paper to be presented at "Safety and
Reliability fo r Managing Risk 2006" (ESREL 2006), Estoril, Portugal, 2006.

Kurian, S. and Pont, M.J., "Restructuring a pattern language which supports time-triggered co
operative software architectures in resource-constrained embedded systems," Paper to be
presented at the 11th European Conference on Pattern Languages o f Programs
(EuroPLoP 2006), Germany, 2006.

Kurian, S. and Pont, M.J., "Maintenance and evolution of resource-constrained embedded
systems created using design patterns," Journal o f Systems and Software, in press a.

Lea, D., "Christopher Alexander: An introduction for object-oriented designers," Source ACM
SIGSOFT Software Engineering Notes, Vol. 19, (1), pp. 39-46, 1994.

Lee, W., Yoon, M. and Sunwoo, M., "A cost- and time-effective hardware-in-the-loop
simulation platform for automotive engine control systems," Proceedings o f the IM ECH
E Part D Journal o f Automobile Engineering, Vol. 217, (1), pp. 41-52, 2003.

Lethbridge, T.C., Sim, S.E. and Singer, J., "Studying software engineers: data collection
techniques for software field studies," Empirical Software Engineering, Vol. 10, pp. 311-

- 110-

http://www.amazon.com/gp/product/0201331381

341,2005.

Levenez, E., "Computer Languages History," http://www.levenez.com/lang/, Accessed in 2006.

Lippiatt, A.G., "The Architecture o f Small Computer Systems," Prentice/Hall International, 1981.
[ISBN: 0-13-044750-1].

Liu, C.L. and Layland, J.W., "Scheduling algorithms for multiprogramming in a hard real-time
environment," Journal o f the Association for Computing Machinery, Vol. 20, (1), pp. 46-
61, 1973.

Liu, J., Chou, P.H., Bagherzadeh, N. and Kurdahi, F., "Power-aware scheduling under timing
constraints for mission-critical embedded systems," Proceedings o f the 38 th Conference
on Design Automation, Las Vegas, Nevada, USA, pp. 840-845, 2001. [ISBN: 1-58113-
297-2].

Locke, C.D., "Software architecture for hard real-time applications: Cyclic executives vs. fixed
priority executives," Real-Time Systems, Vol. 4, (1), pp. 37-53, 1992.

Maaita, A. and Pont, M.J., "Techniques for jitter reduction in time-triggered embedded systems
in which limited pre-emption is required," Control Engineering Practice, submitted
2005.

MacDonald, S., Szafron, D., Schaeffer, J., Anvik, J., Bromling, S. and Tan, K., "Generative
design patterns," Proceedings 17th IEEE International Conference on Automated
Software Engineering (ASE'02), Edinburgh, Scotland, IEEE Computer Society, 2002.

Marley, J., "Evolving microprocessors which better meet the needs of automotive electronics,"
Proceedings o f the IEEE, Vol. 66, (2), pp. 142-150, 1978.

Marquardt, K., "Neglected Architecture," 2nd Nordic Conference on Pattern Languages o f
Programming (VikingPLoP), Bergen, Norway, 2003.

Marsh, P., "Models of control," IEE Electronics Systems and Software, Vol. 1, (6), pp. 16-19,
2003.

Mart, P., Fuertes, J.M., Vill?, R. and Fohler, G., "On Real-Time Control Tasks Schedulability,"
European Control Conference (ECC01), Porto, Portugal, pp. 2227-2232, 2001.

Martin, G., Lavagno, L. and Louis-Guerin, J., "Embedded UML: a merger of real-time UML and
co-design," Proceedings o f the 9th International Symposium on Hardware/Software
Codesign, Copenhagen, Denmark, pp. 23 - 28, 2001.

Martin, G. and Muller, W. (Eds.), "UML for SOCDesign," Springer, 2005. [ISBN: 0-387-25744-
6].

Martin, R.A. and Shafer, L.A., "Providing a framework for effective software quality
measurement: Making a science of risk assessment," Massachusetts, USA, The 6th
Annual International Symposium of International Council on Systems Engineering
(INCOSE), Systems Engineering: Practices and Tools, 2006.

Martinez, K., Hart, J. and Ong, H.L.R., "Environmental sensor networks," IEEE Computer, Vol.
37, (8), pp. 50-56, 2004.

MathWorks, "The MathWorks," http://www.mathworks.com/, Accessed in 2005.

- I l l -

http://www.levenez.com/lang/
http://www.mathworks.com/

McCabe, T., "A software complexity measure," IEEE Transactions on Software Engineering,
Vol. 2, pp. 308-320, 1976.

McGinnity, T.M. and Maguire, L.P., "A CASE-tool oriented approach for embedded systems
design," Microprocessors and Microsystems, Vol. 24, pp. 493-499, 2001.

Meyer, B., "Object-OrientedSoftware Construction, "Prentice Hall, 1997.

Meyer, B., "The grand challenge of trusted components," 25th International Conference on
Software Engineering, IEEE Computer Society, pp. 660-667, 2003.

Meyer, B. and Amout, K., "Componentization: The Visitor Example," IEEE Computer, Vol. 39,
(7), pp. 23-30, 2006.

Microsoft, "Microsoft .Net," http://www.microsoft.com/net/default.mspx, Accessed in 2006.

Microsoft, "Microsoft Patterns & Practices," http://msdn.microsoft.com/practices/, Accessed in
2006.

Mili, H., Ah-Ki, E., Godin, R. and Mcheick, H., "An experiment in software component
retrieval," Information and Software Technology, Vol. 45, pp. 633-649, 2003.

Milicev, D., "Automatic model transformations using extended UML object diagrams in
modeling environments," IEEE Transactions on Software Engineering, Vol. 28, (4), pp.
413-431,2002.

MISRA, "Guidelines for the use of the C language in critical systems," The Motor Industry
Software Reliability Association, Reference No. MISRA-C:2004, 2004.

Mooney, V.J. and Micheli, G.D., "Hardware/software co-design of run-time schedulers for real
time systems," Design Automation fo r Embedded Systems, Vol. 6, pp. 89 - 144, 2000.

Morton, T.D., "EmbeddedMicrocontrollers,"Prentice Hall, 2001. [ISBN: 0-13-907577-1].

Moser, S. and Nierstrasz, O., "The effect of object oriented frameworks on developer
productivity," IEEE Computer, Vol. 29, (9), pp. 45-51, 1996.

Mullerburg, M., "Software intensive embedded systems," Information and Software Technology,
Vol. 41, pp. 979-984, 1999.

Mwelwa, C., Athaide, K., Meams, D., Pont, M.J. and Ward, D., "Rapid software development
fo r reliable embedded systems using a pattern-based code generation tool," In-vehicle
software and hardware systems, In: Society of Automotive Engineers (Eds.), Paper
presented at the Society of Automotive Engineers (SAE) World Congress, Detroit,
Michigan, USA, 2006. [ISBN: 0-7680-1763-7].

Mwelwa, C. and Pont, M.J., "Two simple patterns to support the development of reliable
embedded systems," 2nd Nordic Conference on Pattern Languages o f Programming
(VikingPLoP), Bergen, Norway, 2003.

Mwelwa, C., Pont, M.J. and Ward, D., "Towards a CASE tool to support the development of
reliable embedded systems using design patterns," Proceedings o f the 1st International
Workshop on Quality o f Service in Component-Based Software Engineering (CBSE),
Toulouse, France, CEPADUES-EDITIONS, pp. 67-80, 2003. [ISBN: 2-85428-617-0].

Mwelwa, C., Pont, M.J. and Ward, D., "Using patterns to support the development and
- 1 1 2 -

http://www.microsoft.com/net/default.mspx
http://msdn.microsoft.com/practices/

maintenance of software for reliable embedded systems: A case study," Proceedings o f
the IEE/ACMPostgraduate Seminar on "Systems-on-Chip" Design, Test and Technology,
Loughborough, UK, IEE, 2004(a). [ISBN: 0 86341 460 5].

Mwelwa, C., Pont, M.J. and Ward, D., "Code generation supported by a pattern-based design
methodology," Proceedings of the 1st UK Embedded Forum, In: Pont, M.J. (Eds.), pp.
36-55, University of Newcastle upon Tyne, Birmingham, UK, 2004(b).

Mwelwa, C., Pont, M.J. and Ward, D., "Developing reliable embedded systems using a pattern-
based code generation tool: A case study," Proceedings of the 2nd UK Embedded Forum,
In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.), pp. 177-193, Birmingham, UK,
2005. [ISBN: 0-7017-0191-9].

Nahas, M., Short, M.J. and Pont, M.J., "Exploring the impact of software bit stuffing on the
behaviour of a distributed embedded control system implemented using CAN,"
Proceedings o f the 10th international CAN Conference, Rome, Italy, pp. 10-1 to 10-7,
2005.

Nakata, A., Tanimoto, T., Sasaki, S. and Higashino, T., "A global timed bisimulation preserving
abstraction for parametric time-interval automata," International Journal o f Foundations
o f Computer Science, Vol. 17, (4), pp. 833-850, 2006.

NASA, "The Apollo Program (1963 - 1972),"
http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo.html, Accessed in 2005.

Nissanke, N., "Realtime Systems," Prentice Hall, 1997.

Noble, J. and Weir, C., "Small Memory Software, "Addison Wesley, 2001.

Object Management Group, "Model Driven Architecture," www.omg.org/mda/, Accessed in
2006.

Object Management Group, "Object Management Group," http://www.omg.org, Accessed in
2006.

Ogata, K., "Modern Control Engineering," Prentice-Hall, 2002.

O'Halloran, C., "Issues for the automatic generation of safety critical software," The 15th IEEE
International Conference on Automated Software Engineering, Grenoble, France, 2000.
[ISBN: 0-7695-0710-7].

O'Reilly, "XML from the Inside Out," www.xml.com, Accessed in 2004.

Orlikowski, W.J., "CASE tools as organizational change: Investigating incremental and radical
changes in systems development," Management Information Systems, Vol. 117, (3), pp.
309-341, 1993.

Pagel, B.-U. and Winter, M., "Towards pattern-based tools," EuropLop’96, Kloster Irsee,
Germany, 1996.

Parikh, C.R., Pont, M.J., Li, Y.H., Jones, N.B. and Twiddle, J.A., "Towards a flexible
application framework for data fusion using real-time design patterns," Proceedings o f
6th European Congress on Intelligent Techniques & Soft Computing (EUFIT), Aachen,
Germany, pp. 1131-1135, 1998.

- 113-

http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo.html
http://www.omg.org/mda/
http://www.omg.org
http://www.xml.com

Patemotte, S., "MISRA C in safety-critical systems: how COTS compiler technologies enforce
best-practice programming," COTS Journal, Vol. 4, (2), pp. 20-26, 2002.

Pawlicki, J., "Formalisation of embedded system development: History and present," Annual
Quality Congress, Kansas City, USA, pp. 581-588, 2003.

Pelechano, V., PAstor, O. and Insfran, E., "Automated code generation of dynamic
specialisations: An approach based on design patterns and formal techniques," Data &
Knowledge Engineering, Vol. 40, pp. 315-353, 2002.

Phatrapomnant, T. and Pont, M., "The application of dynamic voltage scaling in embedded
systems employing a TTCS software architecture: a case study," Proceedings o f the IEE /
ACM Postgraduate Seminar on System-On-Chip Design, Test and Technology,
Loughborough, UK, pp. 3-8, 2004.

Phatrapomnant, T. and Pont, M.J., "Reducing jitter in embedded systems employing a time-
triggered software architecture and dynamic voltage scaling," IEEE Transactions on
Computers (Special Issue on Design and Test o f Systems-On-a-Chip), Vol. 55, (2), pp.
113-124, 2006.

Pont, M.J., "Control system design using real-time design patterns," Proceedings o f Control '98,
Swansea, UK, pp. 1078-1083, 1998b.

Pont, M.J., "Patterns for embedded systems," Invited presentation to IEE East Midland Centre,
Lincolnshire, UK, 1999.

Pont, M.J., "Designing and implementing reliable embedded systems using patterns,"
Proceedings of the 4th European Conference on Pattern Languages of Programming and
Computing (EuroPLoP 1999), In: Devos, M. (Eds.), Universittsverlag Konstanz, 2000a.
[ISBN: 3-87940-774-6].

Pont, M.J., "Can patterns increase the reliability of embedded hardware-software co-designs?,"
IEE Colloquium on Hardware-Software Co-Design, Savoy Place, London, IEE
Colloquium Digests, 2000b.

Pont, M.J., "Patterns fo r Time-Triggered Embedded Systems," Addison-Wesley, 2001.

Pont, M.J., "Supporting the development of time-triggered co-operatively scheduled (TTCS)
embedded software using design patterns," Informatica, Vol. 27, pp. 81-88, 2003.

Pont, M.J. and Banner, M.P., "Designing embedded systems using patterns: A case study,"
Journal o f Systems and Software, Vol. 71, (3), pp. 201-213, 2004.

Pont, M.J., Li, Y., Parikh, C.R. and Wong, C.P., "The design of embedded systems using
software patterns," Proceedings o f Condition Monitoring, Swansea, UK, pp. 221-236,
1998a.

Pont, M.J., Li, Y.H., Parikh, C.R. and Wong, C.P., "The design of embedded systems using
software patterns," Proceedings o f Condition Monitoring 1999, Swansea, UK, pp. 221-
236, 1999.

Pont, M.J. and Mwelwa, C., "Developing reliable embedded systems using 8051 and ARM
processors: Towards a new pattern language," Proceedings o f the 2nd Nordic Conference
on Pattern Languages o f Programming (VikingPLoP), Bergen, Norway, 2003b.

- 114-

Pont, M.J., Mwelwa, C., Bonthonneau, L., Ayavoo, D., Athaide, K., Meams, D., Kurian, S. and
Ward, D., "Pattern-based development of time-triggered embedded systems using
software tools: Challenges and solutions," Journal o f Systems and Software, submitted
2006.

Pont, M.J., Norman, A.J., Mwelwa, C. and Edwards, T., "Prototyping time-triggered embedded
systems using PC hardware," Proceedings of the 8th European Conference on Pattern
Languages of Programs (EuroPLoP 2003), In: Henney, K. and Schutz, D. (Eds.), pp. 691-
716, Universitatsverlag Konstanz, Irsee, Germany, 2003a. [ISBN: 3-87940-788-6].

Pont, M.J. and Ong, H.L.R., "Using watchdog timers to improve the reliability of TTCS
embedded systems," Proceedings o f the 1st Nordic Conference on Pattern Languages o f
Programs, pp. 159-200, 2002.

Pop, P., "Scheduling and Communication Synthesis for Distributed Real-Time Systems,"
Doctoral Thesis, Institute of Technology, University of Linkopings, Linkopings, 2000.

Pop, T., Eles, P. and Peng, Z., "Holistic scheduling and analysis of mixed time/event-triggered
distributed embedded systems," Proceedings o f the 10th International Symposium on
Hardware/Software Codesign, pp. 187-192, 2002. [ISBN: 1-58113-542-4].

Prechelt, L. and Unger, B., "An experiment measuring the effects of personal software process
(PSP) training," IEEE Transactions on Software Engineering, Vol. 27, (5), pp. 465-472,
2001.

Prechelt, L., Unger, B., Philippsen, M. and Tichy, W.F., "Two controlled experiments assessing
the usefulness of design pattern documentation in program maintenance," IEEE
Transactions on Software Engineering, Vol. 28, (6), pp. 595-606, 2002.

Purushothaman, R. and Perry, D.E., "Toward understanding the rhetoric of small source code
changes," IEEE Transactions on Software Engineering, Vol. 31, (6), pp. 511-526, 2005.

Reason, J., "Managing the Risks o f Organizational Accidents," Ashgate, 1997.

Riehle, D. and Zullighoven, H., "Understanding and using patterns in software development,"
Theory and Practice o f Object Systems, Vol. 2, (1), pp. 3-13, 1996.

Rincon, F., Moya, F., Barba, J. and Lopez, J.C., "Model Reuse through Hardware Design
Patterns," Design, Automation and Test in Europe (DATE’05), pp. 324-329, 2005.

Rising, L., "Pattern Writting," The Patterns Handbook : Techniques, Strategies, and
Applications, In: Rising, L. (Eds.), Cambridge University Press, 1998.

Rising, L. (Ed.) "Design Patterns in Communications Software," Oxford University Press, New
York, USA, 2001. [ISBN: 0521790409].

Rogers, G.F., "Framework Based Software Development in C++," Prentice Hall PTR, 1997.

Rosenberg, L. and Hyatt, L., "Software Quality Metrics for Object Oriented Development," In:
SATC, N. (Eds.), 1997.

Saasa, O. and Carlsson, J., "Aid and Poverty Reduction in Zambia: Mission Unaccomplished,"
The Nordic Africa Institute, 2002. [ISBN: 9171064893].

Saeki, A.M., Iguchi, K., Wen-yin, K. and Shinohara, M., "A meta-model for representing

- 115-

software specification & design methods," Proceedings o f the IFIP WG8.1 Working
Conference on Information System Development Process, North Holland, pp. 149-166,
1993.

Salingaros, N.A., "Some Notes on Christopher Alexander,"
http://www.math.utsa.edu/sphere/salingar/Chris.text.html, Accessed in 2006.

Sammet, J.E., "History of IBM’s Technical Contributions to High Level Programming
Languages," IBM Journal o f Research and Development, Vol. 25, (5), pp. 520-534, 1981.

Sanderson, D., "How scooter of the future went into an embarrassing reverse," The Times, 15th
September 2006.

Schatz, B., Hain, T., Houdek, F., Prenninger, W., Rappl, M., Romberg, J., Slotosch, O., Strecker,
M. and Wisspeintner, A., "CASE tools for embedded systems," Technical University o f
Munich, Munich, Reference No. TUM-I0309, 2003.

Schmidt, D.C., "Using design patterns to develop reusable object-oriented communication
software," Communications o f the ACM, Vol. 38, (10), pp. 65-74, 1995.

Schneidewind, N.F., "Measuring and evaluating maintenance process using reliability, risk and
test metrics," IEEE Transactions on Software Engineering, Vol. 25, (6), pp. 769-781,
1999.

Shapiro, S., "Splitting the difference: The historical necessity of synthesis in software
engineering," IEEE Annals o f the History o f Computing, Vol. 19, (1), pp. 20-54, 1997.

Shaw, A.C., "Real-Time Systems and Software," Wiley, 2001.

Short, M., Pont, M.J. and Huang, Q., "Safety and reliability of distributed embedded systems:
Simulation of vehicle longitudinal dynamics," Embedded Systems Laboratory, University
o f Leicester, Leicester, Reference No. ESL04/01, 2004a.

Short, M., Pont, M.J. and Huang, Q., "Safety and reliability of distributed embedded systems:
Simulation of motorway traffic flows," Embedded Systems Laboratory, University o f
Leicester, Leicester, Reference No. ESL04/02, 2004b.

Short, M., Pont, M.J. and Huang, Q., "Safety and reliability of distributed embedded systems:
Development of a hardware-in-the-loop test facility for automotive ACC
implementations," Embedded Systems Laboratory, University o f Leicester, Leicester,
Reference No. ESL04/03, 2004c.

SIA, "Semiconductor Industry Association," SIA, http://www.sia-online.org/home.cfm,
Accessed in 2002.

Sickle, T.V., "Reusable Software Components: Object-Oriented Embedded Systems
Programming in C," Prentice Hall, 1996. [ISBN: 0136136885].

Smith, J., Kokar, M. and Baclawski, K., "Formal verication of UML diagrams: A first step
towards code generation," Proceedings o f the 14th Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 99),
1999.

Solingen, R.V. and Stalenhoef, P., "Effort measurement of support to software products,"
Proceeding o f the International Workshop on Empirical Studies o f Software

- 11 6 -

http://www.math.utsa.edu/sphere/salingar/Chris.text.html
http://www.sia-online.org/home.cfm

Maintenance, Bari, Italy, 1997.

Sparks, S., Benner, K. and Faris, C., "Managing object-oriented framework reuse," IEEE
Computer, Vol. 29, (4), pp. 52-62, 1996.

Storey, N., "Safety-Critical Systems," Addison-Wesley, 1996. [ISBN: 0-201-42787-7].

Stothert, A. and MacLeod, I., "Effect of timing jitter on distributed computer control system
performance," Proceedings ofDCCS’98 - 15 th IF AC Workshop on Distributed Computer
Control Systems, 1998.

Sunye, G., Guennec, A.L. and Jezequel, J., "Design patterns application in UML," Proceedings
o f the 14th European Conference on Object-Oriented Programming (ECOOP 2000),
Sophia Antipolis and Cannes, France, LNCS 1850, pp. 44-62, 2000.

SysML Partners, "SysML Open Source Project," http://www.sysml.org/, Accessed in 2005.

Szemethy, T., "Case study: Model transformations for time-triggered languages," Electronic
Notes in Theoretical Computer Science, Vol. 152, pp. 175-190, 2006.

Tanenbaum, A.S., "Distributed Operating Systems," Prentice Hall, 1994. [ISBN: 0-13-219908-
4].

The Apache Software Foundation, "The Apache Struts Project," http://struts.apache.org/,
Accessed in 2006.

The Hillside Group, "The Patterns Home Page," http://www.hillside.net/, Accessed in 2005.

Torchiano, M., "Documenting pattern use in java programs," Proceedings o f IEEE International
Conference on Software Maintenance (ICSM2002), Montreal, Canada, pp. 230-233,
2002.

Tomgren, M., "Fundamentals of implementing real-time control applications in distributed
computer systems," Real-Time Systems, Vol. 14, pp. 219-250, 1998.

Tomgren, M. and Redell, O., "A modelling framework to support the design and analysis of
distributed real-time control systems," Microprocessors and Microsystems, Vol. 24, pp.
81-93,2000.

TTA-Group, "The Cross-Industry Consortium for Time-Triggered Systems,"
http://www.ttagroup.org/index.htm, Accessed in 2006.

Vanderperren, Y. and Dehaene, W., "UML 2 and SysML: an approach to deal with complexity
in SoC/NoC design," Design, Automation and Test in Europe (DATE ’05), pp. 716-718,
2005.

Viljamaa, A., "Pattern-based Framework Annotation and Adaptation - A Systematic Approach,"
University o f Helsinki, Helsinki, Reference No. C-2001-52, 2001.

Vokac, M., Tichy, W., Sjoberg, D.I.K., Arisholm, E. and Aldrin, M., "A controlled experiment
comparing the maintainability of programs designed with and without design patterns - A
replication in a real programming environment," Empirical Software Engineering, Vol. 9,
pp. 149-195,2004.

Voros, N., Sanchez, L., Alonso, A., Birbas, A., Birbas, M. and Jerraya, A., "Hardware/software
codesign of complex embedded systems: An approach using efficient process models,

- 117-

http://www.sysml.org/
http://struts.apache.org/
http://www.hillside.net/
http://www.ttagroup.org/index.htm

multiple formalism specification and validation via cosimulation," Design Automation for
Embedded Systems, Vol. 8, pp. 5-49, 2003.

Wang, S. and Shin, K.G., "An architecture for embedded software integration using reusable
components,” Proceedings o f the 2000 International Conference on Compilers,
Architecture and Synthesis fo r Embedded Systems, San Jose, California, USA, ACM
Press, pp. 110- 118,2000. [ISBN: 1-58113-338-3].

Ward, N.J., "The static analysis o f a safety-critical avionics control system,” Air Transport
Safety: Proceedings of the Safety and Reliability Society Spring Conference, In: Corbyn,
D.E. and Bray, N.P. (Eds.), SaRS, 1991.

Wames, L., "Electronic and Electrical Engineering," MacMillan Press, 1998. [ISBN: 0-333-
74311-3].

Wartnaby, C.E., Bennett, S.M. and Ellims, M., "Auto-generated production code development
for Ford/Think Fuel Cell Vehicle Programme,” Presented at the Society o f Automotive
Engineers (SAE) World Congress, Detroit, Michigan, USA, 2003. [ISBN: SAE-2003-
03AE-60].

Whalen, M.W. and Heimdahl, M.P.E., "On the requirements of high-integrity code generation,”
Proceedings o f the 4th High Assurance in Systems Engineering Workshop, Washington
DC, 1999.

Wild, F., "Instantiating code patterns - Patterns applied to software development,” Dr Dobb's
Journal, Vol. 21, (6), pp. 12-lb, 1996.

Wong, C.P. and Pont, M.J., "An overview o f an evolutionary algorithm pattern language,"
Advances in Soft Computing: Soft Computing Techniques and Applications, In: John, R.
and Birkenhead, R. (Eds.), pp. 129-134, Springer-Verlag, Heidelberg, 2000.

Xu, J., "On inspection and verification of software with timing requirements,” IEEE
Transactions on Software Engineering, Vol. 29, (8), pp. 705-720, 2003.

Xu, J. and Pamas, D.L., "Scheduling processes with release times, deadlines, precedence and
exclusion relations,” IEEE Transactions on Software Engineering, Vol. 16, (3), pp. 360-
369, 1990.

Xu, J. and Pamas, D.L., "Priority scheduling versus pre-run-time scheduling,” International
Journal o f Time-Critical Systems, Vol. 18, (7-23), 2000.

Yang, H.L., "Adoption and implementation of CASE tools in Taiwan,” Information &
Management, Vol. 35, pp. 89-112, 1999.

Yoshida, N., "Design patterns applied to object-oriented SoC design,” 10th Workshop on
Synthesis and System Integration o f Mixed Technologies (SASIMI), Nara, Japan, 2001.

Zimmermann, W., "Reusable software libraries,” IEE Proceedings on Software, Vol. 152, (1),
pp. 1-1,2005.

Zuse, H., " Software Complexity Measures and Methods," Walter de Gruyter, 1991.

- 118-

Appendix A The PTTES Collection

Table A-1 The 72 patterns in the original PTTES collection (Pont, 2001)

Standard 8051 Small 8051 Extended 8051

Crystal Oscillator Ceramic Oscillator RC Reset

Robust Reset On-Chip Memory Off-Chip Data Memory

Off-Chip Code Memory Naked LED Naked Load

IC Buffer BJT Driver IC Driver

MOSFET Driver SSR Driver (DC) EMR Driver

SSR Driver (AC) Super Loop Project Header

Port I/O Port Header Hardware Delay

Software Delay Hardware Watchdog Co-operative Scheduler

Hardware Timeout Loop Timeout Multi-Stage Task

Multi-State Task Hybrid Scheduler PC Link (RS-232)

Switch Interface (Software) Switch Interface (Hardware) On-Off Switch

Multi-state Switch Keypad Interface Mx LED Display

LCD Character Panel I2C Peripheral SPI Peripheral

SCI Scheduler (Tick) SCI Scheduler (Data) SCU Scheduler (Local)

SCU Scheduler (RS-232) SCU Scheduler (RS-485) SCC Scheduler

Data Union Long Task Domino Task

Hardware Pulse-Count Software Pulse-Count Hardware PRM

Software PRM One-Shot ADC ADC Pre-Amp

Sequential ADC A-A Filter Current Sensor

Hardware PWM PWM Smoother 3-Level PWM

Software PWM DAC Output DAC Smoother

DAC Driver PID Controller 255-Tick Scheduler

One-Task Scheduler One-Year Scheduler Stable Scheduler

Table A-2 R ecent additions to the original PTTES collection (Kurian and Pont, 2006; Mwelwa and Pont,
2003; Key et al., 2003; Pont et al., 2003a)

H e a r t b e a t LED E r r o r LED P o r t W r a p p e r (PC)
S a n d w i c h D e l a y TTC-SL S c h e d u l e r TTC-ISR S c h e d u l e r

TTCo S c h e d u l e r (A s s e m b l y

L a n g u a g e /
TTCo S c h e d u l e r (DOS)f

t PIEs for TTC Scheduler also know n as C o-operative Scheduler in the original PTTES collection (Pont, 2001).

A-1

Appendix B PTTES User Survey Questionnaire

Table B-1 Questionnaire used in PTTES user survey

1.) W hat is your current course o f study and current year (i f applicable)?

2.) G ive a b rief description o f an em bedded system you have recently developed.

3.) D id you use patterns to d evelop your system (Y /N)?

4 .) D escribe three patterns you have used for this system ?

a) For each pattern, explain how you applied it.

b) For each pattern, what other sources o f information did you refer to w hen applying it?

c) For each pattern, W here there any features o f this pattern that w ere unclear? I f so why?

5.) D id use o f any o f these patterns interfere w ith any other patterns you w ere using?

6.) D id the code work first tim e? I f not, why?

7.) H ow do you com m ence the design o f an em bedded system (number applicable ch o ices in appropriate order)?

a) Search the w eb for any sim ilar work

b) Look at PTTES for any similar work

c) Sketch a softw are or hardware design

d) G o straight into coding

e) B uild a basic m icrocontroller circuit

8.) W hat aspect o f an em bedded project do you deal w ith first?

a) Hardware design b) Software design

9.) W ould you rather w rite your ow n code from scratch i f you had enough tim e as opposed to relying on PTTES

(Y /N)?

10.) D o you find PTTES beneficia l in your work (Y /N)?

a) I f Y E S, in w hat w ay? b) I f NO, w hy not?

11.) H ow do you find the task o f adapting code from PTTES for your application (tick appropriate answer)?

a) Easy b) Fair c) Hard

12.) H ow do you find the task o f finding an appropriate softw are com ponent in PTTES (tick appropriate answer)?

a) Fairly straight forward b) Complicated

13.) I f com plicated w as the answ er to Q .12, w hy (select appropriate answer)?

a) Poor nom enclature b) Poor docum entation

14.) Is there anything you fee l could enhance the use o f PTTES?

15.) D o you use any C A D or C A SE too l (apart from the com piler) to aid you w ith your design process (Y /N)?

16.) I f Y E S w as the answ er to Q .15, w hich tool do you use and what is it used for?

17.) I f N O w as the answ er to Q .15, why?

a) N ot enough tim e

b) I do not know h ow to u se the tools available

c) I do not understand U M L

d) I rely on electronic text books for m y hardware design

e) W ould rather sketch m y design on paper

B-1

Appendix C Two Patterns to Support Embedded

Systems Development

This appendix presents two patterns: H e a r t b e a t LED and E r r o r LED (Mwelwa and Pont, 2003)

presented at the Viking PLoP 2003 conference during the course of the work described in this

thesis.

C-l

H eartbeat LED
Context
■ You are developing (or maintaining) an embedded application based on a microcontroller or microprocessor.
■ You are programming in C (or a similar language).
■ Your application has an architecture based on som e form o f scheduler.

Problem
How can you tell, at a glance, i f your system is “alive”?

Design constraints
Many embedded systems have little or no user interface. There is not generally a screen on which you can display
error messages or warnings to the user. I f you are working on a system prototype, or performing maintenance in the
field, how can you tell that the system is “alive” - that it has power and (at least) the scheduler is running?

Y ou could, o f course, hook up a debugging link (e.g. a JTAG link), or a simpler serial link (based on R S-232), but this
takes time and including suitable ports on your production system may not be practical or cost effective. Often a very
simple, low-cost solution is required.

Solution
Every time w e implement an embedded system, the first task we include is one that flashes a “heartbeat” LED.
Wherever possible, this LED stays with the system, right into production.

W e tend to use a 50% duty cycle and a frequency o f 0.5 Hz (that is, the LED runs continuously, on for one second, o ff
for one second, and so on) but this is - o f course - up to you.

U se o f this simple technique provides the follow ing key benefit:

• The development team, the maintenance team and, where appropriate, the users, can tell at a glance that the system
has power, and that the scheduler is operating normally.

In addition, during development, there are two less significant (but still useful) side benefits:
• After a little practice, the developer can tell “intuitively” - by watching the LED - whether the scheduler is running

at the correct rate: i f it is not, it may be that the timers have not been initialized correctly, or that an incorrect
crystal frequency has been assumed.

• B y adding the “Heartbeat” task to the scheduler array after all other tasks have been included, the developer can
tell immediately i f the task array is large enough to match the needs o f the application (if the array is not large
enough, the LED w ill never flash).

Reliability and safety implications
U se o f this simple technique may help to improve system reliability since it provides those developing the system with
an indication o f its health throughout the development lifecycle.

Hardware requirements
HEARTBEAT LED has minimal hardware requirements. The only requirements are a port pin connected to an
appropriate LED (with an appropriate resistor i f required).

Cost implications
A s noted above, the hardware requirements are very limited. The time taken to implement this pattern is also likely to
be minimal. Overall, the costs are very low.

Overall strengths and weaknesses

© HEARTBEAT L E D provides a simple, low -cost way o f determining whether your system is “alive”.

© U ses a port pin and associated LED hardware.

Fig C-1 Heartbeat LED

C-2

/* -- ★
Heartbeat L E D .C
Simple 'Heartbeat LED' PIE for an Infineon C515C microcontroller
If everything is OK, flashes at 0.5 Hz

★ _*/
#include "Main.H"
#include "Port.H"
#include "Heartbeat LED.H"

// ------ Private variable definitions ---------------------------------
static bit Heartbeat led state G;

/* --- ★
H EART BEAT_LE D_In i t ()
Prepare for HEARTBEAT Update () task.

★ -*/
void HEARTBEAT LED Init(void)

ri
Heartbeat led state G = 0;
}

/* --- . *
HEARTBEAT_LED_Update()

Flashes an LED on a specified port pin.
Must schedule at twice the required flash rate: thus, for 0.5 Hz
flash (on for 1 second, off for 1 second) must schedule at 1 Hz.

_★____ ___ __ __ ____ -*/
void HEARTBEAT_LED_Update(void)

;i
// Change the LED from OFF to ON (or vice versa)
if (Heartbeat led state G == 1)

ri
Heartbeat led state G = 0;
Heartbeat led pin = 0;
iJ

else
/1
Heartbeat led state G = 1;
Heartbeat led pin = 1;
}

}/* --- ★
r M h r \ T? T T T T T.Lj JNJJ Ur r H j Hj

_________ _______________ __________________ __ _______ __ __________ _________________________________ __ __ — ______________-*/

Fig C-2 Heartbeat LED PIE for the 8051 platform

C-3

E r r o r LED

Context
■ You have implemented HEARTBEAT L E D and you now require a means o f reporting errors.

Problem
If your embedded system is not working correctly, how can you tell what is wrong?

Design constraints
See HEARTBEAT L E D for the design constraints.

HEARTBEAT LED can provide a very cost-effective way of telling whether your system is “alive”. If the system is
functioning, but has detected some errors, HEARTBEAT LED may not be of great help.

How can you report errors, without significantly increasing the system (or development) costs?

Solution
To implement ERROR LED a single LED is used to report error codes to the developer or (if appropriate) the user. In
most cases, w e like to base the ERROR LED on HEARTBEAT LED so that, if there are no errors, w e see the usual
(comforting) 0.5 Hz signal. If there is a problem, the display changes, and - by observing the different pulse rates -
w e can often identify the cause.

Implementation
W e use a (global) error variable, and maintain a list o f error codes (in Main.H). In the event o f an error, w e adjust the
output o f ERROR L E D accordingly.

Reliability and safety implications
Most forms o f error reporting - like ERROR L E D - provide a means o f improving system reliability.

Hardware requirements
See HEARTBEAT LED hardware requirements.

Cost implications
Implementing a basic implementation o f ERROR LED will cost you little more than implementing HEARTBEAT
LED. However, it takes time to include error reporting in your program code, and this may add to the development
costs.

Maintenance
ERROR LED can be very valuable during system maintenance as it can be used to debug reported bugs.

Portability
Highly portable - can be implemented on a w ide range o f hardware platforms.

Related patterns and alternative solutions
See HEARTBEAT LED for the related patterns.

A s an alternative solution one could easily substitute a buzzer for the LED, and thereby draw the attention o f
developers (or users) to errors using various sounds or different pulse frequencies.

Overall strengths and weaknesses

© ERROR L E D provides a low-cost, non-invasive, means o f error reporting.

© Uses a port pin and associated LED hardware.

© Adding error reporting takes time and hence may increase development costs.

Fig C-3 Error LED

C-4

J -k__ * _

Error_LED.C
Simple 'Error L E D 1 task for a Philips LPC2106 ARM microcontroller.
If everything is OK, flashes at 0.5 Hz. If there is an error code active, this is

displayed.
 ★ _ _ ____ _ _ — — _—___________ ★ j

♦include "Main.H"
♦include "Port.H"
♦include "Error_LED.H"
// see Scheduler for definition
extern int Error_code_G;
j ________________________________ ■*_

Prepare for ERROR_LED_Update() function.
_ ~k * j

void ERROR_LED_Init(void)
{
// Set up Heartbeat_pin as GPIO
PINSELO &= ~Heartbeat_pin;
// Set Heartbeat_pin to output mode
IODIR |= Heartbeat_pin;
}

j ~k ____ * _

ERROR_LED_Update()
Flashes at 0.5 Hz if error code is zero. Otherwise, displays error code.
Must schedule every second (soft deadline).

_ * ___ * /

void ERROR_LED_Update(void)
{

static int LED_state = 0;
static int Error_state = 0;
if (Error_code_G == 0)

{

// No errors recorded
// - just flash at 0.5 Hz
// Change the LED from OFF to ON (or vice versa)
if (LED_state == 1)

{
LED_state = 0;
IOCLR = Error_pin; // Set to 0
} else {
LED_state = 1;
IOSET = Error_pin; // Set to 1

}
return;
}

// If we are here, there is an error code ...
Error_state++;
if (Error_state < Error_code_G*2)

{
LED_state = 0;
IOCLR = Error_pin; // Set to 0
} else {
if (Error_state < Error_code_G*4)

{
// Change the LED from OFF to ON (or vice versa)
if (LED_state == 1)

{
LED_state = 0;
IOCLR = Error_pin; // Set to 0
}

else {
LED_state = 1;
IOSET = Error_pin; // Set to 1

}

} else {
Error_state = 0;
}

}

}
j -k * —

 END OF FILE ---
_ * __* /

Fig C-4 An Error LED PIE for the ARM platform

C-5

Appendix D Abstracts of Associated Publications

Pont, M J., Mwelwa, C., Bonthonneau, L., Ayavoo, D., Athaide, K., Meams, D., Kurian, S. and
Ward, D., “Pattern-based development of time-triggered embedded systems using software tools:
Challenges and solutions,” Journal of Systems and Software, submitted 2006.

Abstract: In this paper, we identify four key design challenges which must be addressed i f

we wish to make effective use o f tool support when generating embedded systems from a pattern-

based design. We describe a prototype tool - PTTES Builder - which is intended to address

these design challenges. We then go on to present the results from an empirical study in which

the effectiveness o f tool-based pattern development was compared with an equivalent “manual”

approach. The results obtained from this study suggest that - in almost all cases - the use o f the

PTTES Builder tool reduced the development effort. The paper concludes by making a number

o f suggestions for future work in this area.

Mwelwa, C., Athaide, K., Meams, D., Pont, M.J. and Ward, D., “Rapid software development
for reliable embedded systems using a pattern-based code generation tool,” In-vehicle software
and hardware systems, In: Society of Automotive Engineers (Eds.), Paper presented at the
Society of Automotive Engineers (SAE) World Congress, Detroit, Michigan, USA, 2006.
[ISBN: 0-7680-1763-7].

Abstract: Automated code generation has developed over the last half century from

techniques based on assembly language through high-level programming languages to those

based on modeling languages (such as UML). We have previously argued that the use o f design

patterns to support automated code generation represents a logical next step in this process. To

support this claim, a pattern-based code generation tool has been developed. In this paper, we

describe the tool and explore its effectiveness by means o f an automotive case study.

Mwelwa, C., Pont, M.J. and Ward, D., “Developing reliable embedded systems using a pattern-
based code generation tool: A case study,” Proceedings of the 2nd UK Embedded Forum, In:
Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.), pp. 177-193, Birmingham, UK, 2005. [ISBN:
0-7017-0191-9].

Abstract: Automated code generation has developed over the last half century from

techniques based on assembly language through high-level programming languages to those

based on modelling languages (such as UML). We have previously argued that the use o f design

patterns to support automated code generation represents a logical next step in this evolutionary

process. To support this claim, a prototype pattern-based code generation tool has been

developed in the Embedded Systems Laboratory. In this paper, we describe the tool and

illustrate its effectiveness by applying it in a non-trivial case study.

D-l

Mwelwa, C., Pont, M.J. and Ward, D., “Code generation supported by a pattern-based design
methodology,” Proceedings of the 1st UK Embedded Forum, In: Koelmans, A., Bystrov, A. and
Pont, M.J. (Eds.), pp. 36-55, University of Newcastle upon Tyne, Birmingham, UK, 2004b.
[ISBN: 0-7017-0180-3].

Abstract: Automatic code generation from high-level models (such as those based on

UML) are becoming increasingly common. Various researchers have sought to carry out a

similar code production process beginning with a pattern-based representation: such efforts

have not proved overwhelmingly successful. In this paper, we consider some o f the challenges

involved in creating code from patterns, and argue that the one-pattern-to-many-

implementations relationship - which is fundamental to a pattern-based design — makes it very

difficult to create general-purpose code-generation tools. We go on to propose a solution using

components as an intermediate representation. We illustrate our discussions using a prototype

tool that uses this form o f representation to support code generation using design patterns in the

development o f high-reliability embedded systems.

Mwelwa, C., Pont, M.J. and Ward, D., “Using patterns to support the development and
maintenance of software for reliable embedded systems: A case study,” Proceedings of the
IEE/ACM Postgraduate Seminar on “Systems-on-Chip” Design, Test and Technology,
Loughborough, UK, IEE, 2004a. [ISBN: 0-86341-460-5].

Abstract: One o f the challenges o f SoC design is the integration o f the hardware and

software components into a reliable system. In previous papers, we have argued that the use o f

a pattern-based design can help to support such a development process. In the present paper we

present a simple case study, which illustrates how - with appropriate tool support -pattern-

based design has the potential to support both the development and maintenance o f software for

reliable embedded systems. We also discuss the extension o f these techniques to more general

SoC development.

Mwelwa, C. and Pont, M.J., “Two simple patterns to support the development of reliable
embedded systems,” 2nd Nordic Conference on Pattern Languages of Programming
(VikingPLoP), Bergen, Norway, 2003.

Abstract: As the title suggests, this paper is concerned with the development o f software

fo r embedded systems. Typical application areas fo r this type o f software range from passenger

cars and aircraft through to common domestic equipment, such as washing machines and

microwave ovens.

We have previously described a ''pattern language ’ consisting o f more than eighty

patterns. This language is intended to support the development o f reliable embedded systems

using low-cost embedded hardware with severe memory constraints. Typical implementations

will employ embedded microcontrollers with a few kilobytes o f available RAM.

D-2

Over the last few years, we have had the chance to observe many people use this

collection when developing a range o f different systems: these observations have included

industrial projects and various university research projects. In this paper, we present two

patterns that have resulted from these observations: H e a r tb e a t LED and E r r o r LED.

The two patterns are related. H e a r tb e a t LED provides a simple, low-cost mechanism for

providing feedback on the overall health o f your system: i f the LED is flashing, the core o f the

system is running correctly. E r r o r LED goes one step further and provides a mechanism for

error reporting.

Pont, M.J. and Mwelwa, C., “Developing reliable embedded systems using 8051 and ARM
processors: Towards a new pattern language,” Proceedings of the 2nd Nordic Conference on
Pattern Languages of Programming (VikingPLoP), Bergen, Norway, 2003b.

Abstract: We have previously described a “language ” consisting o f more than eighty

patterns, which will be referred to here as the “PRES Collection ”. This language is intended to

support the development o f reliable embedded systems using small resource-constrained

microcontrollers, including - fo r example - devices from the 8051 family with a few hundred

bytes o f available memory.

The first complete set o f these patterns was completed around three years ago and they

have since been used in a range o f industrial systems, numerous university research projects, as

well as in undergraduate and postgraduate teaching on many university courses (e.g. see Pont

and Banner, 2004; Pont, 2003). We have also begun to develop a tool to support the

development o f embedded systems using these patterns (Mwelwa et al., 2003).

As our experience with the collection has grown, we have began to add a number o f new

patterns and revised some o f the existing ones (e.g. see Key et al., 2003; Pont et al., 2003a; Pont

and Ong, 2002). Inevitably, by definition, a language consists o f an inter-related set ofpatterns:

as a result, it is unlikely that it will ever be possible to refine or extend such a system without

causing some side effects. However, as we have worked with this collection, we have felt that

there were ways in which the overall architecture could be improved in order to reduce the

impact o f future changes.

The paper briefly describes some o f the main alteration we have made when re-factoring

our original pattern collection. It then goes on to describe one o f the new patterns that has

resulted from this process.

Mwelwa, C., Pont, M.J. and Ward, D., “Towards a CASE tool to support the development of
reliable embedded systems using design patterns,” Proceedings of the 1 st International
Workshop on Quality of Service in Component-Based Software Engineering (CBSE), Toulouse,
France, CEPADUES-EDITIONS, pp. 67-80, 2003. [ISBN: 2-85428-617-0].

D-3

Abstract: As design complexity grows, it is becoming more difficult to implement reliable

embedded systems. We have previously argued that component-based design (using design

patterns) can help to alleviate such problems. In this paper we discuss the development o f a

CASE tool that is intended to support the development o f embedded systems using patterns.

D-4

