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Alglat for Modules over FSI Rings and Reflexivity Nicole Jane Snashall
ABSTRACT

For a bimodule M, where R and A are rings with unity, alglat zM, is the ring
of all A—endomorphisms of M leaving invariant every R-submodule of M. The
bimodule is said to be reflexive if the elements of alglat yM, are precisely the left
scalar multiplications by elements of R.

For most of the thesis A = R, a commutative ring with unity. However, in the
early work, some results on the general structure of alglat are obtained, and in
particular, Theorem 1.9 shows that it is an inverse limit.

The next section of the thesis is concerned with reflexivity, and considers
rings R for which all non-torsion or all finitely generated R—modules are reflexive.
Theorem 3.4 gives eight equivalent conditions on an h-local domain R to the
assertion that every finitely generated R—module is reflexive, that is R is scalar-
reflexive. A local version of this property is introduced, and it is shown in
Theorem 2.17 that a locally scalar-reflexive ring is scalar-reflexive.

The remainder of this thesis considers alglat for all modules over an FSI ring.
The local FSI rings are precisely the almost maximal valuation rings, and this is
the {irst case to be settled. More details are then given of the structure of FSI
rings and related rings. A completion is introduced in 6.4 to enable alglat to be
determined for certain torsion modules over an indecomposable FSI ring. Theorem
7.3, in summarising the work of the last two chapters of the thesis, gives a
complete characterisation of alglat for all modules over an FSI ring.
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Introduction

This thesis looks at ellgleLtRMA given rings R and A with unity and an
R—A-bimodule M. The definition of alglat for a bimodule was made by Fuller,
Nicholson and Watters in [5], where alglat rM, is defined to be the ring of all
endomorphisms of MA leaving invariant every R—submodule of MA' The bimodule
is said to be reflexive if the elements of alglat RMA are precisely the left scalar
multiplications by elements of R. In the majority of the work A = R with R being
a commutative ring with unity.

There are three distinct but related parts to this thesis. The first chapter
looks at decomposition theorems which help to determine the structure of alglat.
After this the ring R is always commutative and any R—module M may then be
considered as an R—R—bimodule. Chapters 2 and 3 look at the idea of reflexivity
and in particular the case when all finitely generated modules over a given ring are
reflexive. Chapter 4 looks at local rings and characterises alglat for all modules
over an almost maximal valuation ring. The final three chapters extend Chapter 4
and determine alglat for all modules over an FSI ring.

Before describing this work in more detail some background information on

reflexivity and alglat is given.

Halmos, in his paper [10], considered a complex Hilbert space . To each set
of (bounded) operators A on } he defined Lat A to be the set of all (closed)
subspaces of 36 invariant under every operator in A. Dually to each set £ of
(closed) subspaces there corresponds the set Algl of those (bounded) operators
that leave invariant each element of £. Thus Lat A = {X | X subspace of 1,

AX C X for all A€ A} and Algf = {A | A operator on 3, AL C L for all L €&}.
Then it is clear that 4 C AlglLat A and £ C LatAlgf. Halmos defines a lattice £
to be reflexive if £ = LatAlgf. Similarly, an algebra A is said to be reflexive if

A = Alglat A.



Following on from this definition Hadwin, in his paper [7] considered a vector
space X over a field F and a single linear transformation T. He defined the notion
of algebraic reflexivity. In Halmos’ terminology this amounts to: a linear
transformation T is algebraically reflexive if and only if the algebra generated by
1 and T is reflexive.

This notion of reflexivity is extended to bimodules RMA in the paper by
Fuller, Nicholson and Watters ([5]). They observe that if V is a finite-dimensional
vector space over a field K and R is a subaigebra of End VK’ then V is an
R—K-bimodule. Moreover AlglatR consists of those endomorphisms in End VK
which leave invariant every R—submodule of RV' Thus AlglLatR is determined by
the R—K-bimodule RVK‘ For a bimodule RMA where R and A are rings with unity,
they define alglatRMA to be the ring of all endomorphisms of MA leaving
invariant every R—submodule of MA‘ Defining the map A : R — alglat RMA by A(r)
acts on M as left multiplication by r, AM(R) is always contained in alglat rMa-

When equality holds, that is alglatpM, = MR), the bimodule is said to be
reflexive. Much of their work considers the case where M is a left R—module and
A = End RM; for then M has the structure of an R—A—bimodule.

Hadwin and Kerr studied reflexive modules in [8] and [9] where all rings are
commutative with unity. Their work centred on whether or not a module is
reflexive, and has not discussed alglatM when the module M is not reflexive. In
[8], Hadwin and Kerr defined a ring R to be strongly scalar-reflexive if every
R—module is reflexive and strictly scalar-reflexive if every finitely generated
R—module is reflexive. They omitted the word “strictly” in [9], calling a ring R
scalar-reflexive if every finitely generated R—module is reflexive. Hadwin and
Kerr considered this change in terminology to be appropriate since they completely
characterised all strongly scalar-reflexive rings in [9]. Throughout this thesis a
ring in which every finitely generated module is reflexive will be called scalar-

reflexive, following [9]. Properties of these rings taken from (8] will also be used.



Chapter 1 looks at the general structure of alglat. The first decomposition
result involves inverse limits and may be applied to any R—S—bimodule where R
and S are rings with unity (not necessarily commutative). It is known that any
module is the direct limit of its finitely generated submodules and that the index
set is directed. Using the category equivalence of R—S—bimodules and left
R®S®®~modules, any R—S—bimodule M is the direct limit of its finitely generated
R—S—sub-bimodules (Mk | k € K} and again the index set K is directed. Both
direct and inverse limits are used in Theorem 1.9 to prove that, in this case,
alglat R(l_ir"n Mk)S = 1‘131 (alglatRMk S)' Thus given any R—S—bimodule M,
alglat RMS is always expressible as an inverse limit. This result is not used
directly later in the thesis but motivated the theorems involving completions, as
every topological completion is an inverse limit.

Two more specific decompositions are also given in Chapter 1, which are used in
later work in determining alglat for modules over an FSI ring. The first of these
is applicable when the ring R is a finite direct sum of rings, R = énDRi. Then any

i=1

R—module T may also be expressed as a direct sum with T = '_Q:?Ti and each Ti is
an Ri—-module. The result given in Theorem 1.10 uses this known decomposition of
T to prove that alglatT = '€n91 alglatTi. This theorem is useful when a ring is a
finite direct sum of indecomposable rings, the structures of which are known.

The third decomposition applies to h-local domains. In [15] (1.11) Matlis defined
an h-local domain to be an integral domain such that (i) each non-zero prime ideal
is contained in a unique maximal ideal, and (ii) each non-zero element is contained
in only finitely many maximal ideals. Matlis showed in [15]} (1.12) that any torsion
module T over an h-local domain R may be written as a direct sum T = GETM
where M ranges over all maximal ideals of R and Ty, is the corresponding
localisation. Theorem 1.18 uses this decomposition to show, for any torsion module
T over an h-local domain R, that alglatT = I;Ialglat Twm where M ranges over all

maximal ideals of R. This result is extended in Theorem 1.21 to the case where P

is a prime ideal of R such that R/P is an h-local domain and T is a torsion



R—module with P C AnnT such that T is also a torsion R/P—module. It is in this

form that the decomposition is used in Chapter 7.

Chapters 2 and 3 are concerned with reflexive modules, leaving a discussion of
alglat in non-reflexive cases until the later chapters. Chapter 2 is particularly
concerned with reflexive non-torsion modules. In [9; Proposition 7], Hadwin and
Kerr proved that for a commutative domain R every non-torsion R—module is
reflexive. This chapter looks at classes of rings for which it is true that every
non-torsion module is reflexive. The main result of this chapter shows that it is
sufficient to have this condition for 2—generated non-torsion modules. This
result, given in Theorem 2.2, states that for a commutative ring R, the condition
that every non-torsion R—module is reflexive, is equivalent to every 2—generated
non-torsion R—module being reflexive. The result of Hadwin and Kerr concerning
domains can be derived from this result and is given as Corollary 2.3. In [9]
Hadwin and Kerr defined a ring R to be scalar-reflexive if every finitely generated
R-module is reflexive. Another corollary (which appears as Corollary 2.5 and is
not proven by Hadwin and Kerr) shows that every non-torsion module over a
scalar-reflexive ring is reflexive.

Hadwin and Kerr raise various questions about the property of scalar-
reflexivity in [8]. In particular, having stated that scalar-reflexive rings are
closed under direct sums and under quotients, they ask what happens under
localisations. In their second paper [9], Hadwin and Kerr gave equivalent conditions
for a local ring to the ring being scalar-reflexive (see Theorem 2.11). In particular
a local ring is scalar-reflexive if and only if it is an almost maximal valuation ring.
This motivates the definition in 2.12 where a ring is defined to be locally scalar-
reflexive if every localisation at a maximal ideal is scalar-feflexive. Thus a ring
is locally scalar-reflexive if each localisation at a maximal ideal is an almost
maximal valuation ring. Theorem 2.17 provides a link between the two concepts of

being scalar-reflexive and locally scalar-reflexive, proving that every locally



scalar-reflexive ring is scalar-reflexive. Thus if every localisation of a ring R is
scalar-reflexive then every localisation at a maximal ideal is scalar-reflexive and
so R is scalar-reflexive. It is still an open question as to whether or not the
converse is true.

A theorem of Hadwin and Kerr concerning scalar-reflexivity is given in
Theorem 2.18. This result shows that if R is an h-local domain with R an almost
maximal valuation ring for all maximal ideals M then R is scalar-reflexive. Thus
the hypotheses require R to be locally scalar-reflexive and an h-local domain.
Thus using Theorem 2.17, the condition that R be an h-local domain is redundant,
and Theorem 2.17 is seen to be an extension of this theorem of Hadwin and Kerr.

Returning to non-torsion modules at the end of the chapter, Corollary 2.19
shows that every non-torsion module over a locally scalar-reflexive ring is
reflexive. This plays an important part in the discussion of alglat for non-torsion

modules in the later chapters.

Chapter 3 continues the theme of scalar-reflexive and locally scalar-reflexive
rings. The main result is Theorem 3.4, which gives eight properties of an h-local
domain which are equivalent to the condition that the ring is locally scalar-
reflexive. One of these equivalent properties is that every 2—generated torsion
module is a direct sum of cyclic modules. This links the study of alglat and
reflexivity with the structure and decomposition of modules. Conditions on
finitely generated modules also appear in Theorem 3.4.

The main part of the proof of Theorem 3.4 is to show that, for an h-local
domain R with every 2—generated R—module reflexive, then R is locally scalar-
reflexive. This result appears in Theorem 3.1. It is worth remarking that
Theorem 3.1 shows that an h-local domain is scalar-reflexive if and only if it is
locally scalar-reflexive. This provides a partial converse to the result that every
locally scalar-reflexive ring is scalar-reflexive.

Chapter 3 finishes with an example of a domain which is locally scalar-reflexive



and thus scalar-reflexive but is not an h-local domain. This answers a question of
Hadwin and Kerr posed in [9; p12] in the negative and leaves the scalar-reflexive
domains as yet unclassified. The scalar-reflexive h-local domains are classified

here in a variety of ways.

The remaining chapters are concerned with determining alglat for all modules
over particular classes of rings. Chapter 4 looks at alglat for all modules over an
almost maximal valuation ring. These rings are scalar-reflexive and so all finitely
generated and all non-torsion modules over an almost maximal valuation ring are
reflexive. The study of torsion modules divides into two cases, considering
faithful and non-faithful modules. Theorem 4.3 shows that, for any almost
maximal valuation ring R and R—module T which is not faithful, T is reflexive.

Results of Gill and of Hadwin and Kerr reduce the study to the case of a
faithful torsion module over an almost maximal valuation domain. This is where
the non-reflexive cases arise. In view of the decomposition of Theorem 1.9 a
completion is an obvious choice of candidate for alglat in these cases, and it is the
R-completion which is used. This is defined for an integral domain which is not a
field and is discussed by Matlis in [15; §6] (4.4). This topology takes the non-zero
principal ideals of R to form a subbase for the open neighbourhoods of 0 in R. A
domain R is Hausdorff in this topology so R embeds in its completion. Theorem 4.9
shows that, for a faithful torsion R—module T over an almost maximal valuation
domain R, alglatT is isomorphic to the R-completion of R. The results of Chapter
4 are summarised in Theorem 4.10 which shows that the only modules which are
not reflexive over an almost maximal valuation ring R are those which are faithful

and torsion when R is not maximal.

The aim of Chapter 5 is to provide information on FSI rings and on related
rings. Much of this will be used in Chapters 6 and 7 to determine alglat for all

modules over an FSI ring. A large part of this material is in the literature. In



[25], Vamos defined a ring to be fractionally self-injective (FSI) if for each ideal I
of R the classical ring of quotients of R/l is self-injective. As well as studying
FSI rings, Vamos also studied FGC rings. Other work on FGC rings by Shores and
R. Wiegand includes a study of CF rings.

Structure theorems are given for all three types of ring. These three classes
of rings are related in that all FGC rings are FSI rings and all FSI rings are CF
rings. Examples are also given in this chapter to show that the classes of rings
are distinct.

It is known that the local FGC rings are the almost maximal valuation rings and
as such are scalar-reflexive. Vamos proved that the local FSI rings are also
precisely the almost maximal valuation rings. Thus every FSI ring is locally
scalar-reflexive. Every FSI ring is a finite direct sum of indecomposable FSI
rings. The indecomposable FSI rings are the almost maximal valuation rings, the
locally almost maximal h-local domains and a third type, the locally almost maximal
torch rings. (Torch rings are not domains and are discussed in Chapter 5.) Note
that a ring is locally almost maximal if each localisation at a maximal ideal is an
almost maximal valuation ring.

The obvious generalisation of alglat for modules over an FSI ring is to
determine alglat for all modules over a CF ring. Every wvaluation ring is a CF ring,
and in view of Theorem 2.11, arbitrary valuation rings are not reflexive. Thus
not every CF ring is scalar-reflexive. An example is given at the end of Chapter
5 which determines alglat for a specific 2—generated module over a valuation ring
which is not almost maximal. The nature of the work in Chapters 6 and 7 together
with this example indicates that any characterisation of aiglat for modules over CF
rings will not be a simple extension of the results for modules over FSI rings.
However it is hoped that a study of examples such as this will help determine the

structure of alglat for a larger class of rings than FSI rings.



Chapter 6 outlines the strategy to characterise alglat for modules over FSI
rings and does most of the work to reach this end. It was remarked in the
comments about Chapter 5 that every FSI ring is locally scalar-reflexive. Thus all
non-torsion modules over an FSI ring are reflexive. This leaves the study of
torsion modules. Every FSI ring is a finite direct sum of indecomposable FSI rings.
Using the second decomposition theorem of Chapter 1, this may be reduced to the
study of torsion modules over an indecomposable FSI ring.

Any indecomposable FSI ring R has a unique minimal prime ideal P which is
comparable to every ideal of R and such that the ideals of R contained in P form a
chain. For a torsion module over an indecomposable FSI ring R either AnnT C P
or P C AnnT. Chapter 6 studies the case where AnnT C P. Then P s 0 and so
R is not a domain. From the work in Chapter 4 on almost maximal valuation rings,
this reduces the case AnnT C P to the study of alglat where R is a locally almost
maximal torch ring. This is further reduced to the study of alglat for a faithful
torsion module over a locally almost maximal torch ring.

To characterise alglat in this case a completion is introduced in 6.4. In order
to describe alglat in terms of a completion, the ring must be Hausdorff in the
topology. This ensures that there is an embedding of the ring in its completion.
The unique minimal prime ideal P of a locally almost maximal torch ring R is
comparable to every ideal of R and the ideals of R contained in P form a chain. It
is shown that (] Rp C AnnT for all torsion R—modules T. So if T is a faithful

O#peP
torsion R—module, then AnnT = 0 and hence [} Rp = 0. The P-topology

O#peP
(defined in 6.4) takes the non-zero principal ideals of R contained in P to form a
sub-base for the open neighbourhoods of 0 in R. Thus if R has a faithful torsion
module then R is Hausdorff in this topology. In determining alglat, the results
proved are more general than those required for this particular case, but they are
included as they may be of independent interest. Corollary 6.8 states that, for a

locally almost maximal torch ring with unique minimal prime ideal P and faithful

torsion R—module T, alglatT is isomorphic to the completion of R in the



P-topology. This completes the case where AnnT C P. A summary of these

results is given in Theorem 6.10 to bring all the results of Chapter 6 together.

Chapter 7 discusses the case where P C AnnT and T is a torsion R/P—module.
(The non-torsion case has been dealt with in Chapter 6.) Since R is an
indecomposable FSI ring the factor ring R/P is an h-local domain. Theorem 7.1
uses the decomposition result of Theorem 1.21 to write alglatRTR = I;IalglatTM
where M ranges over all maximal ideals of R and T, is an Ry—module. Each
localised ring R, is an almost maximal valuation ring, and has R.-completion 1?,:1
whenever Ry, is in addition a domain. The results of Chapter 4 are used to show
that alglatpTp = (MI:IX MRL) B (MIJY MR.)), where X = {M I M is a maximal ideal
of R, Ry is not Ry-complete, AnnTy, = 0} and ¥ = (M | M is a maximal ideal of R,
M & X}. (It is noted in Theorem 7.1 that if M € X then R is indeed a domain and
so the completion }'2:4 exists.)

The final theorem of Chapter 7 combines this result with those of Chapter 6 to
give a complete characterisation of alglat for all modules over an FSI ring. The

chapter ends with an illustration indicating the nature of alglat for any module

over an FSI ring.

This thesis discusses the general structure of alglat, showing it to be an
inverse limit, as well as the more specific case of determining alglat for all modules
over an FS| ring. The work on reflexivity and on scalar-reflexive rings extends

that known previously from the literature.



Notation

All the rings considered are rings with unity.

Let R be a commutative ring with unity and let T be an R—module. Then the
bimodule structure of T is always that of an R—R—bimodule with rm = mr for all
r in R and m in M. Where it will not cause confusion alglat T is written for
alglat RTR'

For a ring R with maximal ideal M and R—module T, Ry, is the ring localised at
M and T, is the module localised at M. Then Ty, is an Ry—module with the
obvious product.

The notation “Ann” is used to indicate the annihilator of a module. For any
S—module M, AnnM is taken to be the annihilator of M in the ring S. In
particular, for finitely generated modules, AnnRx denotes the annihilator of the
R—module Rx in R whereas AnnRyy is used for the annihilator of the R,—module
Rumy in Ry.

The notation C is always used to denote a strict inclusion. The symbol C is
used to indicate an inclusion which is not necessarily strict.

All maps are written on the left of the elements upon which they act.
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Chapter 1 Decomposition theorems for alglat

This chapter examines the structure of alglat and gives three decomposition
theorems for alglat. The definitions of alglat RMA and reflexivity for an
R—A—bimodule M are given in 1.1. (Recall that all the rings considered in this
thesis have a 1.) The first decomposition theorem of alglat RMA applies in the
general case where R and A are any rings with unity and M is any R—A—bimodule.
The remaining two decompositions concern alglatRMR where R is a commutative
ring with unity and M is an R—R—bimodule. These results will be used in later
chapters to characterise alglat for all modules over particular classes of rings.

Theorem 1.9 gives the first decomposition and uses direct and inverse limits to
describe the structure of alglat. It is known that any R—S—bimodule M can be
expressed as the direct limit of its finitely generated R—S—sub-bimodules
{Mk |l k € K} where R and S are any rings with 1, not necessarily commutative.
For reference this result is included as Theorem 1.6. Theorem 1.9 uses this
description of M to give a characterisation of alglatM in terms of the inverse limit
of the family of rings {alglath | k € K}). This decomposition of alglatM in terms
of an inverse limit may be applied to any R—S—bimodule M.

Theorem 1.9 is not used directly in any later results but has motivated the
theorems which involve completions, since every completion is an inverse limit.
Topological completions play an important role in determining alglat RMR where R
is a commutative ring and M is not reflexive.

The other two decompositions given in the chapter are not so general but do
provide useful information in determining the structure of alglat. For these two
results, and indeed for the remainder of the thesis after Theorem 1.9, it will be
assumed that R is a commutative ring with 1 and that M is an R—module with the
bimodule structure as described in 1.2(b).

The second decomposition result of this chapter can be used when the ring R

(commutative with 1) is a finite direct sum of rings R;, i = 1, ..., n. Then there

11



are idempotent elements e, in Ri with 1 =e¢;, + ... + egand R; = eiR. In this
case an R—module M has a decomposition as the direct sum ‘Qn? eiM. Writing M; =
e;M, each Mi can be considered as an R;—R;—bimodule. Theorem 1.10 shows that in
this case alglatM = é? alglat Mi‘ This theorem is used in Chapter 6 to determine
the structure of alglat for all modules over FSI rings, since every FSI ring is a
finite direct sum of indecomposable FSI rings, the structure of which are known.
The third decomposition applies to torsion modules over h-local domains. Again
the decomposition of alglatT is motivated by a known decomposition for the
module T. Matlis defined an h-local domain in [15]) and showed in the same paper
that any torsion module T over an h-local domain R may be expressed as a direct
sum T = %‘BTM where M ranges over all maximal ideals of R and Ty, is the
corresponding localisation. Theorem 1.18 gives a decomposition for alglat in this
case, showing that alglatT = I;IalglatTM where M ranges over all maximal ideals
of R and T, is considered as an Ry—Ry—bimodule. This result is extended in
Theorem 1.21 to the situation where P is a prime ideal of R such that R/P is an
h-local domain and T is a torsion R—module with P C AnnT such that T is also a

torsion R/P—module. Theorem 1.21 is the third decomposition theorem of this

chapter and is used in Chapter 7.

The first section gives the definitions of alglat RMA and reflexivity as made in

{5] by Fuller, Nicholson and Watters.

1.1 Definitions of alglatpM, and reflexivity ([5])

Let M be an R—-A-bimodule where R and A are rings with unity. The ring
alglat RMA is the ring of all endomorphisms of MA which leave invariant every
R-submodule of M. Thus alglatRMA = {¢p € EndMA | N C N for all RN < RM}
= {¢ € EndM, | ¢m € Rm for all m € M}.

Let N\ be the map defined by A : R —+ alglatpM,, Mr) : M = M, m —~ rm. Then

it is always the case that A(R) C alglat RMA‘ The bimodule is said to be reflexive

12



if there is equality, that is if MR) = alglat RMA‘ Thus the module is reflexive if
the elements of the ring alglat RMA are precisely the left scalar multiplications by
elements of R.

The map A gives rise to a map from R to AMR) defined by r ~ Ar). This is
always a surjective ring homomorphism and has kernel AnnM. Thus MR) =

R/AnnM. In particular, if M is a faithful R—module then R = A(R).

1.2 Examples of bimodules

(a) Let M be a left R—module where R is any ring with 1 (not necessarily
commutative) and let S = End RM' Then M is an R—S—bimodule. Any module can
be considered as a bimodule in this way.

(b) Let R be a commutative ring with 1 and let M be a left R—module. Then M
has an R—R—bimodule structure. This is-given by defining a right R—module
structure on M by mr := rm for allm € M and r € R.

(c) As an illustration of (b) let M be an abelian group. It is well-known that M
can be considered as a Z—module. Thus M can be given the structure of a

Z—-Z—-bimodule.

Throughout this thesis, where M is any module over a commutative ring R, the

bimodule structure of M is always the R—R—bimodule structure defined in 1.2(b).

Before proving the first decomposition theorem, the next few sections give
some background information about direct and inverse limits from category theory.
The definitions and notation used here follow the approach of Rowen ([21]). The
motivation for the decomposition of alglat is the known result that an
R—S—bimodule M is the direct limit, over a directed index set, of its finitely
generated R—S—sub-bimodules. The only direct limits that are needed in the proof
of Theorem 1.9 are those over a directed index set and this is taken into account

in the definition of a direct limit given in 1.4.

13



1.3 Definition of a directed set

A directed set is a partially ordered set K, with partial order <, such that for

any i, j € K there exists kK € K withi < k and j < k.

1.4 Definition of a direct limit over a directed index set.

Let {A; | k € K} be a set of R-S—bimodules indexed by a directed set K (with
partial order <) and suppose that there are R—S—homomorphisms Gji : AJ- — A
whenever j < i, satisfying

(i) for all k €K, 6,y : Ay = A is id,, and

(ii) fork < j < i(so 9 ij and 6,; are defined) 6, ;, = ejiekj.

Jir
Then the direct limit li',“Ak is an R—S—bimodule together with a set of
R-—-S—homomorphisms oy ¢ Ak — l'ix’nAk satisfying a, = ajekj whenever k < j,
such that, given any R—S—bimodule X and R—S—homomorphisms Bk : Ak — X
satisfying Bk = Bjekj whenever k < j, there is a unique R—S—homomorphism

B : 1_1_'r’nAk — X with 6ak = Bk for each k.

Thus 11_'_r’nAk is a quotient of the direct sum of the Ak' namely (EBAk)/N
where N is the sub-bimodule of @ Ay generated by all the elements ek,jak — 8y,
(ay € Ay) whenever k < j. The maps oy : A, — l_i_t’nAk are just a; ~ a; + N.
Whenever K is a directed set and {Ak I k € K} is a family of R—S—bimodules, then

the direct limit always exists ([21; Theorem 1.8.7 p113)).

The following result which shows that any module can be expressed as a direct

limit is included, without proof, for completeness (see [21; Example 1.8.9 p114]).

1.5 Proposition

Every R—module is the direct limit (over a directed index set) of its finitely

generated R—submodules.
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For R—S—bimodules M and N, the map ¢ : M — N is an R—S—-homomorphism if,
for all elements m;, my, min M, r in R and s in S, (i) ¢(m; + m,) = ¢m, + ¢m,,
(ii) ¢(rm) = r(¢m) and (iii) ¢(ms) = (¢m)s. The class of all R—S—bimodules
together with R—S—homomorphisms is a category. There is a category equivalence
between the category of R—S—bimodules with R—S—homomorphisms and the
category R®S®—mod (of left R®S®—modules with R ®S’°~homomorphisms). The

following result is an immediate consequence of Proposition 1.5.

1.6 Theorem
Every R—S—bimodule is the direct limit (over a directed index set) of its

finitely generated R—S—sub-bimodules.

Two further properties of a direct limit over a directed index set are required

before looking at inverse limits. The proofs follow Rotman in [20; pp31-32].

1.7 Proposition

Let K be a directed set, with partial order <, and let {Ak | k¥ € K} be a family
of R-S—bimodules. Write &nAk = (GBAk)/N with the notation of 1.4. Then
(i) for any x € li_r'nAk there is an index i and some a; in A; with x = a; + N, and

1

(ii) for ay € Ak with ay 4+ N = 0in llTAk there is some index t with k < t and

thak = 0.

Proof

(i) Let x € l_i_rbnAk. Then x = y + N wherey € DAL Write y = ak.;‘ Since

=
K is a directed set there is an index i with kj <iforall j(j =1, .. n) Let
z = J-E1 ekjiakj so that z is en element of A;. Then ijiakj — akJ € N and it
follows that z — y isin N. Thus x = z + N with z € Ai for some index i.

(ii) Suppose that a € Ak with a, + N = 0 in li_r.nAk. The elements of N are the

finite sums Y (Gjia,j — aJ-) with a; in Ay so let ay = > (ejiaj — aj). The set K
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is directed so there is an index t with k < tand j < i < t for each i, j occurring
in thlS sum. Then thak = (Bktak —_ ak) + ak == (thak — ak) + z (leaJ — aj).
Each term (ejiaj — aJ-) can be rewritten, with the second index as t, in the form

Combining all terms with the same first index 1 gives sktak =y (gltbl — bl) with
|

6

bl in Al' Since the sum @Ak is direct, if 1 = t then bl = (. But also ettbt — bt
= 0 and so every term in the summation over | is 0. Hence thak = 0 as

required. O
The dual notion to a direct limit of an inverse limit is now introduced. The
definition given is for the category of rings with ring homomorphisms. It is in

this form that it will be used in Theorem 1.9.

1.8 Definition of an inverse limit

Let {Lk I k € K} be a set of rings indexed by a partially ordered set K (with
partial order <) and suppose that there are ring homomorphisms ¢ij : Ly — Lj
whenever j < i, satisfying

(i) for all k € K, Prk ¢ Lk - Lk is id,_k, and

(ii) for k < j <i (so ¢ij' ¢jk and ¢, are defined) bix = ¢’jk¢ij'

Then the inverse limit l‘i_n_1Lk is a ring together with a set of ring homomorphisms
My ¢ l,ilnLk — Lk satisfying T]j = ¢kj77k whenever j < k, such that, given any ring
X and ring homomorphisms Ek : X > Lk satisfying EJ- = d’kjsk whenever j < k,

there is a unique ring homomorphism ¢ : X — l*i_t_nLk with nkE = Ek for each k.

Thus l‘llnLk is the subring of HLk consisting of all (lk) for which ¢’k,jlk = lJ-

whenever j < k. The maps M)y are just the projections.
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The next result is the first decomposition theorem for alglat. Theorem 1.9
characterises alglatRMS using inverse limits where M is expressed as a direct limit
over a directed index set. Theorem 1.6 may be used to write M as a direct limit
of its finitely generated R—S—sub-bimodules. In this way, Theorem 1.9 gives a

decomposition for alglatRMS for all R—-S—bimodules M.

1.9 Theorem

Let K be a directed index set, with partial order <, and let {Ak |k € K} be a
set of R—S-bimodules where R and S are arbitrary rings with unity. Let
eji : Aj — Ai be monic R—S—homomorphisms whenever j < i, with Bﬁ satisfying
the following two conditions:

(i) for all k € K, 8, : AL — Ay isid,, and

(ii) if k € j < i then eki = ejiekj.

Then alglat R(li!’n Ak)S = l‘lln (alglat p A, o).

Proof

Let Ly = alglatp(A)g for k € K so that {Ly | k € K} is a family of rings
indexed by the directed set K. The maps eji are monic so there are inverse
R—S—homomorphisms (Gji)'l :im (eji) — AJ-. Then there is a set of ring

homomorphisms ¢ij :L; — LJ- defined by ¢iJ' Y - (eﬁ)“w(eﬁ) whenever j < i.

Let ¥ € Li‘ Since P preserves the lattice of R—S—sub-bimodules of Ai’

w :im 9J1 —im GJi. Thus ¢1Jw is well-defined.

¢ij : Li — LJ- is a ring homomorphism

Each of the maps (Gji)", ¥ and eji is a right S—homomorphism so that ¢i,jw €
End(Aj)S. Let a; € Aj. There is an element r in R with zb(GJ-iaJ-) = r(9jiaj). Then
— -1 _ .

Let ¥, ¥’ be elements of L;. Then ¢U(w + ¥) = (Gji)'l(lb + w')(eﬁ) =
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0,0 + ¥0;) = (B;)'0(0;) + (6,)"W0;) = ¢; ¥ + ¢, Also ¢; ¥ =
(eji)"(ww')(eﬁ) = (eji)"wlceﬁ)(eﬁ)“]w'(eﬁ) = (¢;#)8;;¥"). (The introduction of
(eﬁ)(eﬁ)", the identity on im Gﬁ, is valid since ¥’ preserves the lattice of R—S—sub-
bimodules of A, and thus, in particular, ¥’ : im Bji — imOJ-i.) Let 1, be the identity
element in the ring Ly for all k € K. Then ¢iJ'(1L') = (Gji)"lL‘(OJ-i) = lLJ. Thus ¢’ij

is a well-defined ring homomorphism.

Moreover, these ring homomorphisms satisfy ¢kk = id,, for all k and ¢jk¢ij =

bik whenever k < j < i.

S = id,, for all k and ¢jk¢ij = ¢ik whenever k < j < i.

Let ¥ € L,. Then ¢, : L, — L, and ¢,, ¥ = (6,,)'0(0, ;) = (ida)'¥(ida) =
w. Thus ¢kk = ide.

Suppose that k < j < i. Then the ring homomorphisms ¢jk’ ¢ij’ bik all exist
and ¢jk¢ij o Lk' Let ¥ € L;. Then (¢jk¢ij)(w) = ¢J.k[(9ji)'1w(9ji)] =

(ekj)“(eji)"w(eﬁ)(ek P =058 J.)'1w(e i) = 8,90, ;) = ¢, ¥. Thus b i =

®ix

The direct limit of the R—S—bimodules Ay exists since K is a directed index
set. Let D = lﬂ,"Ak’ so that D is a quotient of @ A;, namely D = (6 A,)/N
where N is the sub-bimodule of @Ak generated by all the elements ijak — 8y
(ak € Ak) whenever k < j. Then the R—S—homomorphisms ay Ak — D
satisfying oy = ajekj whenever k < j are given by Qy 8y a8y + N (1.4).

For each k € K, the R—-S—homomorphism ay Ak — D is monic. So there are

inverse R—S—homomorphisms (onk)'x : im(ock) — Ak for each k.

oy is monic
Let a, € kerak so that ay + N = 0 in D. Then there is an index t in K with

k < tand thak = 0 (Proposition 1.7). But th is monic and so ay = 0. Hence
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Qe is monic.

For each k € K, define M * alglat pDg — L by ¥ ~ (ock)'llb(onk). Then each

My is a ring homomorphism.

Let ¥ € alglatRDS. Since ¥ preserves the lattice of R—S—sub-bimodules of D,

/3 imak — imak. Thus nklb is well-defined.

My ¢ alglat RDS — Lk is & ring homomorphism

Each of the maps (onk)'l, ¥ and oy is a right S—homomorphism so that T)kw €
End (Ak)s. Let a, € Ap. There is an element r in R with w(akak) = r(ockak).
Then (nkw)(ak) = (onk)'l(ock(rak)) = ray € Ray. Thus Mm% €L, and so im7, C
Lk'

Let ¥, ¥’ be elements of alglatDg. Then 7, (¥ + ¥) = (ock)'l(?.b + ¥)Ney) =
() ) oy, + Woy) = (o) 'Play) + (o ) 'Wloy) = My + My'. Also 0, (¥9) =
(ak)'l(wwl)(ak) = ((xk)-lw[(ak)(ak)-llw,(ak) = (nkw)(nkwl)- (The introduction of
(ak)(ak)'l, the identity on im oy, is valid since ¥’ preserves the lattice of
R—S—sub-bimodules of D and thus, in particular, ¥’ : im oy — im ak.) Let 1, be
the identity element in the ring alglatDg. Then le(lg) = (ak)'llo(ak) = 1., the

identity element in the ring Lk' Thus Mk is a well-defined ring homomorphism.

Moreover these ring homomorphisms satisfy ¢ij7k = 77j whenever j < k.

d’kjnk =1; whenever j < k

Suppose that j < k. The ring homomorphism ¢kj exists and ¢kjnk :
alglatpDg — LJ~. Let ¥ € alglatpDg. Then (¢kj77k)(1.0) = ¢kj[(ak)"w(0tk)] =
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Let X be a ring with ring homomorphisms Ek : X — Lk satisfying ¢kj£k = sj
whenever j < k. Then there is a unique ring homomorphism ¢ : X — alglatRDS
such that T]kE = Ek for each k in K. Moreover ¢ is defined by ¢ : x — ¥y where

x € X and ¥y € alglatpDg is given by ¥y : 3, + N ~ (€,x)(ay) + N for gy in A,.
Note that for j < k, it follows that GJ-x = (¢kj£k)(") = (¢kj)(EkX) =
(Bjk)'l(Ekx)(Ojk). Then (gjk)(ej)() = (Ekx)(ejk). This will be used in the following

proofs.

¥y is well-defined

Suppose that an element in D has two representations a; + N and a; + N with
i, i € K (Proposition 1.7). Then a; — 8 + N = 0 in D. The index set K is

directed so there is an index k with i < k and j < k. Then both ejkaj — 2 and

6,,8; — @a; are in N (1.4), and so (ejkaj — eikai) + N = 0 in D. From Proposition
1.7, there is an index t with k < t and th(ejka‘j — eikai) = 0. But 6, is monic
and so (ijaj — 6;,8;) = 0. Thus 02 = ;18-

Write a; = (§;x)(a;) and Q:j = (ij)(aj) so that a; € A; and 33- € AJ-. The
elements eik?i — 3 and e_jk?j - E:j are both in N so that &; — :?'J- + N = Gikﬁ“i -
Bjk§3 4+ N. Using the above results, Oiké‘; = (8, )(&;x)Na;) = (&, )0, )a;) =
(€ x)0 5y )ay) = (B, )€ xNay) = B‘jkE}.
é‘; 4+ N = é‘:i + N so that (§;x)a;) + N = ($J~x)(aj) + N. Hence ¥y(a; + N) =

HenceE;—E:j+N=0inD. Thus

wx(aj + N) and so ¥y is well-defined.

im¢ C alglat RDS

Let x € X with image ¥y under €. The map ¥y : D — D is given by ap + N ~
(€ x)ay) + N for a) in A} end is well-defined.

Let a; + N, 8 + N be elements of D. Since K is a directed index set, there is
an index k in K with i < k and j < k. Thenai +aj + N = 8 -}—Nwhereak =
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(&, x)0, Ma) + (EkX)(ejk)(a,j) + N = (6, )€;x)ay) + (Ojk)(£jx)(aj) + N. The
elements (0, )(¢;x)(a;) — (£;x)(a;) and (6;,)(¢;x)a;) — (£;x)(a;) are in N. Thus
¥x(a; + N + a; + N) = (§;x)e)) + (ij)(aj) + N = ¥x(a; + N) + wx(aj + N).
Let a, + N be an element of D and let & be an element of S. Then (¥x(a, + N)Js
= (px)ap) + N]s = (g, x)a)s + N = (€, x)ays) + N = pxlays + N) =
wx((ak + N)s). Thus ¥x € EndDqg.

Let a, + N be an element of D. Since Ekx € Lk’ there is an element r in R
with (EkX)(ak) = ray. Thus Yx(a; + N) =ra, + N = r(ak + N) € R(ak + N).

Hence ¥y € alglatRDS. Thus im¢ C alglatRDS.

£ is a ring homomorphism

The map ¢, defined by ¢ : X — alglatRDS, X — Yy, is clearly well-defined.
Recall that for each k, Ek : X — Lk is a ring homomorphism.

Let %, x’ be elements of X. Let 8 + N be an element of D. Lety = x 4+ x’
so that Py = €(x + x). Then byla, + N) = (,¥)a) + N = [§,&x + x0)e)) +
N = (%) + (x))a) + N = (,x)a) + €x)Nay) + N = ¥xla, + N) +
¥ lay + N). Thus £€(x + %) = ¥y = ¥x + ¥y = €(x) + €(x'). Let z = xx’ so
that $, = €(xx). Then Pyla, + N) = (§,2)a,) + N = [g,(xx)(a) + N =
(e x) @) + N = (6,0, x o)) + N = pyfg,xNap) + NJ =
pu(xley, + N)) = Wx¥yda, + N). Thus §xx) = ¥, = Pxdby = EIEG).

Let 1y be the identity element in the ring X. Then ¥,, = €(1x). Leta, + N
be an element of D. Then ¥, (ay + N) = (. 1)a) + N = ey + N =28 + N.
Thus £(14) = ¥;, = lo, the identity element in the ring alglatpDg. Thus ¢ is a

well-defined ring homomorphism.

77k€ = Ek for each k

Let x be an element of X and let k € K. Then (7, 6)(x) = N ¥x = (ak)-xwx(ak)-
For any element ay of Ak’ [(ak)'lwx(ak)](ak) = [(ak)'lwx](ak + N) =

(o )Y€, ®)ay) + N) = (6, x)ay). Thus () 'Pxlay) = €x. So (7, x) = ¢, x
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for all x in X. Hence nkE = Gk.

¢ is unique

Suppose that ¥ : X — alglat RDS is a ring homomorphism with Ek = nk‘Y for all
k € K. Then 7,7 = 7,£ so that 7, (Y — €) = 0 for all k € K. Let x be an
slement of X and let a; + N be an element of D. Then 0 = (v — 9 =
N¥x — €x) = (@)’ (Yx — €x)aj). Since (a )" is monic, (Yx — €x)a ) = 0.
Thus (Yx)a; + N) = [(Yx)a p)(a;) = (tex)ap)a) = (€x)a; + N). Hence Yx =
£x for all x € X. Thus Y = ¢ and ¢ is unique.

Hence lé_r_n Ly = elglatpDg. Thus alglat R(l_i_r’n Ayg = l‘llﬂ (alglatp(Ay)g). O

Throughout the rest of this thesis, R is a commutative ring with 1 and M is an
R—module. Then M is given the R—R—bimodule structure from Example 1.2(b).
From 1.1, algletpMp = {¢ € EndMg | ¢ém € Rm for all m € M} and M is reflexive

when MR) = alglat yMp,.

The second decomposition of alglat RMR arises when R is decomposable into a
direct sum of finitely many commutative rings R;, i = 1, ..., n. The following
results about R are well-known and the approach taken here is that of Lambek

({13; ppl17-19D).

R;.

-

[
fon

Let the commutative ring R have a finite direct sum decomposition R =
Then there are idempotent elements e, in Ri with 1 = e, +e + - + €, fori =
1, ..., n. Then for any i, e; = e;e, + --- + ei2 + -+ + eje,. The sum is direct

_Joif i o= —_
so that gje; = {ei i Let TS be an element of RJ- C R. Then rj =er; +
0 ifi =<}

rs ifi—=j So any element r; in Ri can

e A4 ent; The sum is direct so er; = {

be written ri = er; and thus Ri - eiR for each i. To show the reverse inclusion

let r be an element of R so that e;r € eiR C R. From the decomposition of R, e;r

can be expressed as er = s, + - 4+ Sp with Sj in RJ. Then er = eizr =
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e;s, + -+ + e, =§; 50 that e;r € R; and thus eiR - Ri' Hence Ri == eiR.
Let M be an R—~module. Then, for any element m in M, m = em + - + e,m

n
so that M = > eiM. Moreover the sum is direct. For suppose that there is
i=1
n
some m € elM N ( § eiM). Thenm =ex = e, X, + ' + e x, with x; in M for
2

all i. Multiplying through by e gives eex, + - + ee X = e’x = ex and
thus m = 0. Hence M = Gn} eiM. Thus M has a decomposition into a finite direct
i=1

sum of R—modules. Let Mi = eiM. Then each Mj can be considered as an

Ri—module and hence as an Ri——Ri—bimodule.

These finite direct sum decompositions of R and M are used in the following

theorem to give the second decomposition of alglat RMR‘

1.10 Theorem
Let R be a commutative ring with 1 with a decomposition into a finite direct

sum of rings, R = énB Ri’ and let M be any R—module. There exist elements e, in
iel

R such that Ri = eiR fori =1, ..., n. Let Mi == eiM so that M = é Mi' Then

i=1

alglatM = '6291 aIglatMi where each M, is considered as an Ri—Ri—bimodule.
Proof

Let N\, : M = M be the R—endomorphism )\(ei) (left scalar multiplication by e;)
for i =1, .., n. Then \; = \;® since e; = ¢;,°. Let ¢ be any element of
alglatRMR. Then ¢ is in End MR and so both ¢\, and \;¢ are in End MR' So, given
any element m of M, (g\;)m = ¢gle;m) = ¢(me;) = (gmle; = e;(¢m) = (\;¢)m. Thus
¢)\i = >\i¢ fori =1, ..., n.

Define o : alglatRMR — é alglatM; by ¢ ~ (¢4)\1, ey ¢)\n) where each M; is

considered as an Ri—Ri—bimodule.

imo C Qn} alglatMi

i=1

Let ¢ be an element of alglat RMR‘ Then ¢)\i € EndMi since Ri C R and Mi -
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M. Let e;m be an element of Mi' Then there is some r in R with dz(eim) = r(eim)
and so (¢)\i)(eim) = ¢(ei2m) = ¢(eim) = r(eim) = (rei)(eim) € R,(e;m). Thus g\ €

alglatM; for all i = I, ..., n. Hence imo C & alglatM;.
i=1

o is a ring homomorphism

For each i, ¢)\i is well-defined and so o is well-defined.

Let ¢, 6 be in alglatpMp. Then 0¢ + 06 = (B, eus ¢)\n) + (0N, ..y 9>\n) =
(@ + N, ooy (@ + ON) = ol + 6). Also (0¢)c8) = (BN, ..., &X )N, ...y 6N )
= (#0N7, ...y #ONP) = ((BON,, ..., (800N} = o(¢6). Let 1 be the identity element in
alglatRMR and let 1, be the identity element in alglat M; fori =1, ... ,n. For
each i and each element e;m in M;, (I\)e;m) = 1(\;(e;m)) = eizm = e;m and so 1\

is the identity element in alglatM;. Thus I\, = 1;,. Sool =(, .., 1 ), the

identity element in 69 alglatM Thus o is a well-defined ring homomorphism.
iel

o is a monomorphism

Suppose that ¢ € kero. Then (g\, ..., #A) = (0, ..., 0) so that ¢\, = 0 for
i =1, .., n Letmbe any element of M. Then ¢m = ¢lem + --- + enm) =

(A Jm + - + (¢)\n)m = 0. Thus ¢ = 0 and so o is a monomorphism.

o is an epimorphism

Let (8, ..., 8 ) be in @ alglatM;. Define a map 8 : M =+ M by m ~ E 8;(A\;m).

For each i, N;(M) = eM = Mi and so Bi()\im) is well-defined. Thus 6 is well-
defined.
Let m and m’ be elements of M and r an element of R. Then 9-()\-(m + m’)) =

,(\;m) + 6,(\;m’) and so 8(m + m’) —Ee(k(m + m’) =E[9(>\m) +9()\m’)]

=] i=l
n

= 2 0. O\ m) + E 9,(\ m’) ém + 6m’. Also 6;,(\(mr)) = Gi(eimr) = Bi(eimeir) =

=1
[9 (e, m)](e r) = [[9 (e, m)] 1] [9-(e-me-)]r = [Bi(eim)]r = (Qi(}\im))r. Then 8(mr) =
P ,0y(mr) = 3 O,0um)r = [z; 0,0 m)] — (@m)r. Thus 6 € EndMp.

=] =] =]

Let m be any element of M. There is some s; in R; with 6,(e;m) = s;e;m for
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n n n n
each i = 1, ..., n. Then ém = 2> 6,(\m) = 2~ 6,(e;m) = 3 (s;e;m) = [E siei]m €
i=] 1=1 1=1 el

Rm. Thus @ € alglatRMR.

il =]

1

Oj(ejm) and thus 9)\J- = BJ- on Mj. Hence o8 = (A, ..., 6)\“) =, .. Gn) and so o

is an epimorphism.

Thus o is a ring isomorphism and a]gla\'cRMR = énB alglatMi where each Mi is
i=]

considered as an Ri—Ri—bimodule. 0

The third decomposition of alglat applies to torsion modules over h-local
domains. Matlis gave the definition of an h-local domain in [15; §8] and then
showed that any torsion module over an h-local domain has a decomposition as the
direct sum of the localised modules T,, where M ranges over all maximal ideals of
R. In order to use this to give a decomposition of alglat, several results

concerning h-local domains are required.

1.11 Definition of an h-local domain (Matlis)

An h-local domain is an integral domain which satisfies the following two
conditions:
(i) each non-zero prime ideal is contained in a unique maximal ideal, and

(ii) each non-zero element is contained in only finitely many maximal ideals.

Thus an integral domain is h-local if and only if modulo any non-zero prime
ideal it is a local ring and modulo any non-zero ideal at all it is a semilocal ring.

Local domains and Dedekind domains are examples of h-local domains.

The following theorem of Matlis is from [15; Corollary 8.6] and gives a
decomposition for any torsion module over an h-local domain. In fact Matlis

proved in [16; Theorem 3.1] that for an integral domain R, the statement that R is
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an h-local domain is equivalent to the condition that T = @ T, for all torsion
M

R—modules T, where M ranges over all maximal ideals of R.

1.12 Theorem (Matlis)
Let R be an h-local domain and let T be a torsion R—module. Then the
localisation T\, is a torsion Ry—module and T = @ T where M ranges over all
™M

maximal ideals of R.

The isomorphism in Theorem 1.12 is given by 7 : t — (t] For each non-zero

1
element t of T, Ann(t) is a non-zero ideal and is thus contained in only finitely
many maximal ideals of R. If M is a maximal ideal of R not containing Ann(t) then
%’ = (I) in Ty, So only finitely many entries in the image [%] of t are non-zero.
Thus the image of T under T does indeed lie in the direct sum GETM.

The definition of a colocal ideal is given next (from [16]). This is followed by
a characterisation by Matlis ({16; Theorem 2.3]) of h-local domains using colocal

ideals.

1.13 Definition of a colocal ideal (Matlis)

An ideal of an integral domain R is said to be colocal if it is contained in only

one maximal ideal of R.

1.14 Proposition (Matlis)

Let R be an integral domain. Then R is an h-local domain if and only if every

non-zero ideal of R is a finite intersection of colocal ideals.

Matlis gives various elementary properties of colocal ideals in [16; pl48], some
of which appear in Proposition 1.16. These use the following definition of his, of

a normal decomposition of an ideal into a finite intersection of colocal ideals.
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1.15 Definition of a normal decomposition (Matlis)

Let I = () I; be a finite intersection of ideals, where I, is a colocal ideal
i=1
belonging to a maximal ideal Mi' This decomposition is said to be normal if

Mj;éMkforj;ék.

1.16 Proposition (Matlis)

Let R be an h-local domain with I, J, I, non-zero ideals of R and M, M, maximal
ideals of R (i = 1, ..., n). Then
(i) if I and J are colocal in M then I N J is colocal in M,
(ii) if I is colocal in M and v € M then I + Rv = R,
(iii) if ilf]l Ii is a normal decomposition with Ii colocal in Mi then I, + ’lfl Ii = R,
(iv) if J = fn] I; is a normal decomposition with I, colocal in M; and if J C M then

i=1

M € {Mj, +.y Mp}.

Proof

(i) It is clear that I N J C M. Suppose for contradiction that I N J is not colocal
in M. Then there is a maximal ideal N of R, distinct from M, with I N J C N.
Since ]l € Nand J € N there are elements i € [, i € Nand j € J, j € N. But then
ij € N which contradicts I N J C N. Thus I N J is colocal in M.

(ii) Suppose for contradiction that I + Rv C R. Then there is a maximal ideal N
of Rwithl + Rv C Nand sol C N. But I is colocal in M and thus N = M.
This gives v € M which is the required contradiction.

(iii) From property (ii), I; + I, = R. For the induction hypothesis assume that
L+ f15 = R Agsin from G, 1, + Iy = R. Then R =, + 1] 1), + 1) =

=2
n

n-1 n
* + LT, + L) + (T €L+ J] G ThusR =1L + JI L. This

n
=2 i=2

completes the proof by induction.

n
(iv) Since J = [) Ii C M, a maximal ideal, there is some j with Ij C M. The ideal

i=l

IJ- is colocal in MJ and so M = MJ-. Thus M € My, ..., Mp}. O
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Remarks

(a) It is clear from property (i) that every finite intersection of colocal ideals can
be normalised.

(b) It follows immediately from property (ii) that if I and J are colocal ideals
belonging to different maximal ideals then I + J = R. This is used in the proof

of (iii).

The next lemma, which does not appear to be in the literature, gives a form of
“Chinese Remainder Theorem” for h-local domains and uses these properties of
colocal ideals. This will enable the decomposition for alglat of Theorem 1.18 to be

proved.

1.17 Lemma
Let R be an h-local domain and let T be a torsion R—module. Let t be a non-

zero element of T with M,, ..., M the distinct maximal ideals of R containing

Ann(t). Let :—Lf be any elements of RMi (i = 1, ..., n). Then there is an element r of
1

R with th = a?i't in TMa fori =1, .., n.

Proof

Since T is a torsion module, Ann(t) ¢ 0. From Proposition 1.14, there is a
n
normal decomposition Ann(t) = [) I; with I; colocal in M; for i = 1, ..., n.
i=1
Consider the maximal ideal M,. Since I, is colocal in M, and s, € M,,

Proposition 1.16 gives I; + Rs, = R. Then there are elements u;, € [, and v, € R

n
with u, + v;5, = 1. Again from Proposition 1.16, I, + [] I; = R. This gives
i=2

n

elements b, € I, and ¢, € [] I, with b, + ¢, = 1. Let r; = ac;v,. Then in T
i=2

nt  acvit _ acqvisit gl —ut . nt _ act

T = 1 = 5, = 5 . Since c;u; € Ann(t), T = s - So

r[t al(l —bl)t alt alblclt alt .

T = _51— = S_l - T = s—l', noting that Cy & Ml and b,c1 € Ann(t). For

. . nt  acvt  abe,vit

i=2, wyn b & Mi and so in TMs’ T = 1 = b =1

By considering each maximal ideal Mi’ i =1, .., n, there are elements r; in R
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n
such thath = g—tm TM and rt _ (—)m TMJ for j £ i. Letr = Eri. Then r is

1 Si 1 1 1=1
the required element, since it now follows that, in Ty, th = (ry + 1 t rolt = rT.t

=§S‘—:£fori=1,...,n. a
The next result is the decomposition theorem anticipated from Theorem 1.12.

1.18 Theorem
Let R be an h-local domain and let T be a torsion R—module so that T = T,
M

where M ranges over all maximal ideals of R. Then alglat RTR = [Talglat Ty
M

where M ranges over all maximal ideals of R and each Ty is an Ry—Ry—bimodule.

Proof
Let N = [Jalglat T, where each Ty is an Ru—Ru—bimodule. Let T be the
M
R—isomorphism introduced in Theorem 1.12, 7 : t —~ [%] from T into @ Tn.
™M

Define oo : N — alglat RTR by (8.) — 8 where 0, € alglatT,, and 6t = T'I[BM%].

Let t;, tp, t € T and r € R. Then 6t, + 6t, — [GMtT] + 770y 1]
o + ) = (ot

(@ HE) = 7 (8ubr) = [ '(0u)]r = @01, Hence 6 € Ena Ty

tz)] = 0(t; + tz), and O(tr) = T [eMtTr] =

Let t be a non-zero element of the torsion module T. Then Ann(t) is non-zero
and is thus contained in only finitely many maximal ideals of R, M,, ..., M. If
M ¢ {M,, ..., My} then Ann(t) € M and so % - (T) in Ry Fori =1, .., n, BMi is in

alglatTMi (where TMi is an RMi—module) and so there are elements g-f in RM with
]

GMi(%) = -a-S%. Then, from Lemma 1.17, there is an element r in R with ait = t for
i=1,.. n Hence 8t = [GMI) = T [rlt] = rt. Thus 6§ € alglatRTR. Hence

ima C alglat RTR'
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o is a ring homomorphism

Let (8,) and (¢y,) be in N with images 0 and ¢ under o respectively. Let ¥ be
the image of (8., 4 én) under a. Then Pt = ‘r'l[(BM + ¢M)%] = T'I[OM% + ¢M%]
- v'l[em'i‘] + 7"[4«%] — 0t - ¢t = (0 + ¢)tforalltinT. Sopp =0 + ¢ and
thus a(8.) + aléy) = o6y + énm). Let € be the image of (Bu¢n) under a. For t

tT‘ in Ty, for all maximal ideals M. Then £t

= 7_1((9M¢M)%] [OM(¢M1)] [9M 1] = 0t, = 6(¢t) = (6¢4)t for all t in T and

in T, write ¢t = t, in T so that ¢y} =

so £ = 0¢. Hence a(f)alpn) = o(0dm).
Let 1, be the unit element in alglat T, for all maximal ideals M and let 1 be the
unit element in alglatpTp. Then (1y) is the unit element in N. If o(ly) = 6 then
[IMI] [ ] = tand so 8 = 1. Thus a(ly) = 1. Hence o is a well-

defined ring homomorphism.

o is a monomorphism

Suppose (0) € kero with image 0 under o so that § = 0.

Let M’ be any maximal ideal of R and consider an element é in T« There is an

: . — [0 0t0 tl_t. - W L_o
element t, in T with 7¢;, = [—, o PSP ] so that 1 =8 if M = M’ and 11
otherwise. Then GM,( 1) = GM,( 3) and, for all M % M/, 9M1 = % So 0 =0t =
7'1[9,4311] = T [%, s OM,(t), 1 ] Thus GM,(t) 0 for all t in T, so 6, = 0.

Thus 6, = 0 for all maximal ideals M of R. Hence kera = 0 and « is a

monomorphism.

o is an epimorphism

For each maximal ideal M of R, let 7y : & Ty — Ty be the canonical projection
™M
map and Uy : Ty = P Ty be the canonical injection map. Then 7 and uy are
™M
R—homomorphisms and *uuy is the identity map on Ty, for all maximal ideals of R.

Define B : alglat T, — N by 6 ~ (6.) where 6y = ToaTOT i,
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img C N

Lot

Let M be any maximal ideal of R. Let 55, and é be elements of Ty, and 1%

an element of Ry. Then 8 is an R—endomorphism of Ty, being a product of
. t t t t
R—homomorphisms. So GM(S_: + é—z) = GM(S—i) + GM(S_?’ and [GM(ts-ﬁ)]u = BM(%) =
1] try _ 1]:
[GM(S) r so that BM(su) [GM(S) I Thus 6, € End TMRM'
t

For 3 in Ty, there is some element a in R with OT"uM(é) = a'r"uM(é). Then

Bt = (Tm0T )b = (rrat )G = T @l = & = %-é- So 8.t €
RME. Hence 8, € alglatT,, (where T, is an Ry~module). Thus im8 C N.

B is a ring homomorphism

Let 8 and ¢ belong to alglatpTp. Then BO + @) = (TuT(0 + )T 1) -
(TTOT s + TuTOT i) = (X707 ' 1n) + (KTOT ') = B8O + Bé. Also
(80X B¢) = (RpTOT X TéT  Upy) = (K787 U Té7  1iny). Let é be in T, for
some maximal ideal M. Then there is an element a in R with ¢'r'1um(é) =
a’;"lum(é). So (WMTOT"quMT¢T'1ﬂM)(§) = (X707 T T NaT 'lﬂm)(é) =
(T TOT T &Y = (07 ) T (@) = (rMTB'r"ﬂM)(%'E) =
(x0T ) = (ruTONeT ) = (7087 u)(E). Thus
KaTOT UMK TOT M hpy = KuTOST '1ny. Hence (BO)NBS) = (xnT08T ' un) = B(O8).

Using the notation for unit elements as above, let (0.) is the image of 1
under B. Then 6y = TuT17 Uy = TuT7T U = 1u. So B1 = (1), the unit

element in N. Thus B is a well-defined ring homomorphism.

afB acts as the identity on alglatRTR

Let 8 be an element of alglatRTR and let ¢ be the image of 8 under a.8.
Then ¢ — a(B8) = o(f,) where 8,, = 7787 y,. Thus ¢t — ‘T'![QM-lt-] for all t
in T.

Let t be a non-zero element of T so that Ann(t) is contained in only finitely
many maximal ideals of R, M;, ..., My. If M is a maximal ideal of R which does

t 0 0 t

. . . t Y _
not contain Ann(t) then i=1in Twm and so BMl- =1 Then 7t = [1] =
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n n
; ,uMi% and [GM%] = Zl: ,uMiGMi%. There are elements o, in R, for i = 1, ..., n,

n n
with QT-I“M% = ai'r"uMi%. Then 6t = Y 97’"uMi% =3 aiT",uMiiE =

n =1 =1 n
P = 2 e T )] = T i) =
i=1

=1

n
E 8i7'-lﬂMi (TMETT-I/‘M‘)

=1

7! [BM %] = ¢t.

p—

Thus 0 = ¢ and so oo8(8) = 0 and o8 acts as the identity element on

alglat RTR‘
So, given 8 in alglatRTR, B8 is in N and o(808) = 6. Hence o is onto.

Thus « is a ring isomorphism and alglat RTR = galglat Ty where each Ty, is an
Ryn—module and M ranges over all maximal ideals of R. 0

The third decomposition theorem for alglat, Theorem 1.21, is an extension of
this result. Theorem 1.21 deals with the case where R is a commutative ring with
a prime ideal P such that R/P is an h-local domain and T is a torsion R/P—module.
Theorem 1.18 is used in the proof. The following two propositions are also
required, the first of which relates alglat RTR to both alglat ATA where A = R/P
and alglat BTB where B = R. The second proposition is well-known and can be

found in [19; p23].

1.19 Proposition

Let R be a commutative ring and let T be an R—module.
(i) If I C AnnT for some ideal I of R, then T has an R/I-module structure given
by (r + Dt =rtforallr € R, t € T. Then alglat rTRp = elglat , T where A =
R/I.
(ii) If ¥ : B =& R is a ring isomorphism then T has a B—module structure given by

bt = (Pb)t for all b € B, t € T. Then alglat RTR = alglatBTB.
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Proof

Let t,, t,, t be elements of T and let r be an element of R.
(i) Let T be the cosetr + I in A.

Let ¢ € alglatpTp. Then ¢, + to) = ¢t; + oty S(tT) = ¢ltr) = (¢t)r =
(¢t)T, and for each t € T there is some s € R with ¢t = st, so that ¢t = St with
s € A. Thus ¢ € alglatA’I‘A.

Let ¢ € alglat , T,. Then ¢(t; + t)) = ¢t, + ot;, d(tr) = ¢(tT) = ()T =
(¢t)r, and for each t € T there is some § € A with ¢t = St, so that ¢t = st with
s € R. Thus ¢ € alglatRTR.

Hence alglatRTR = alglat ATA'

(ii) Let b be the element of B with ¥b = r.

Let ¢ € alglatpTp. Then oty + t) = ot + oty o(tb) = ¢(t(¥b)) = (#t)(Pb)
= {¢t)b, and for each t € T there is some u € R with ¢t = ut and u = Pv, so
that ¢t = (Yv)t = vt, v € B. Thus ¢ € alglat g Ty

Let ¢ € alglatpTy. Then o(t, + t)) = oty + oty ¢(tr) = ¢(t(¥b)) = ¢(tb) =
(pt)b = (pt)(¥b) = (¢t)r, and for each t € T there is some v € B with ¢t = vt, so
that ¢t = (PYvit, ¥v € R. Thus ¢ € alglat rRTR.

Hence alglat RTR = alglatBTB. 8]

1.20 Proposition

Let R be a commutative ring with P a prime ideal of R and N a maximal ideal of

R containing P. Then (R/P)y,r, = R/Py .

The ring isomorphism in Proposition 1.20 is given by ¥ : (R/P)y,, — Ry/Pus

r + P
s + P

'_’£+PN.

The next result is the third decomposition theorem of Chapter 1. This will be
used in Chapter 7 in determining the structure of alglat for modules over an FSI

domain.
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1.21 Theorem

Let R be a commutative ring with a prime ideal P such that R/P is an h-local
domain. Let T be an R—module with P C AnnT and such that T is a torsion
R/P—module. Then alglat RTR = I;Ialglat’l‘N where Ty is an Ry—module and N

ranges over all maximal ideals of R containing P.

Proof

Write S = R/P. There is a 1-1 correspondence between the maximal ideals of
R containing P and the maximal ideals of S.

Let N be any maximal ideal of R containing P and let M = N/P so that M is a

maximal ideal of S. Then Py C AnnTy (Ty is an Ry—module) so T, can be

considered as an R /Py—module via [g + PN]% = ;—-ﬁ From Proposition 1.19,

alglat RNTN R, = alglat(RN/PN)TN(RN/PN)‘ Using the ring isomorphism 7 in

r+ Pt
s + PJu

r+ Pyt _ (o t _ :
[’Y[S T P]]ﬁ = [§ + PN]ﬁ. Then alglatSMTNSM = alglat(RN/PN)TN(RN/PN)’ again

from Proposition 1.19. The map between Ty and Ty given by 6y : Ty — T

Proposition 1.20, Ty has an S,,—module structure defined by [

é =3 :_ B is well-defined and is an S, —module isomorphism. This gives rise to a

ring isomorphism €y : alglat SMTNSM — alglatSMTMSM, Sn — OnoOnOn'. Combining

these results gives a ring isomorphism ¢y : alglat RNTN Ry — alglat SMTM S\t

#n — 6udn0n'. Then there is a ring isomorphism defined by € : [Jalglat RNTNRN —
N

HalglatSMTMSM, (¢n) — (endn) = (Bndndn)), where N ranges over all maximal ideals

™M

of R containing P and M ranges over all maximal ideals of S.

By hypothesis S is an h-local domain and T is a torsion S—module. So
alglatsTS = a[I;[ alglatSMTMSM] where o is the ring isomorphism in Theorem 1.18
and M ranges over all maximal ideals of S. Using Proposition 1.19 again, alglat RTR
= alglatSTS since P C AnnT.

Thus alglatRTR = alglatSTS = a[I;IalglatSMTMSM] = cte[I;_[alglat RNTNRN]'
Hence alglat RTR = [Jalglat T, where Ty is an Ry—module and N ranges over all

N

maximal ideals of R containing P. a
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Remark

If P = 0 then R is an h-local domain, M = N and S = R and so S, = R,.
Thus Ty = Ty so 6y is the identity on Ty and ¢y is the identity on alglat RNTNRN'
The map € acts on INTalglatRNTNRN as the identity and so alglatRTR =

a[l—NI alglat RNTN RN] as given in Theorem 1.18.

A discussion of the structure of alglat for all modules over particular classes
of rings will be given in the later chapters, when these decomposition theorems will
be used. The next two chapters are concerned with reflexive modules and rings

over which every finitely generated module is reflexive.
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Chapter 2 Non-torsion modules, scalar-reflexive and locally scalar-reflexive rings

For a ring R, the characterisation of alglatRMR for all R—modules M falls
broadly into the discussion of two cases, where M is torsion and where M is non-
torsion. This chapter looks at results for non-torsion modules and gives
conditions on a ring for all non-torsion modules to be reflexive. These results are
used in later chapters to reduce the study of alglat for all modules over particular
classes of rings to the consideration of torsion modules.

The main result of this chapter is Theorem 2.2 which gives a condition on a
ring R that is equivalent to every non-torsion R—module being reflexive. It is
shown that it is sufficient to have all 2—generated non-torsion modules reflexive.
Hadwin and Kerr have proved in [9; Proposition 7] that every non-torsion module
over a domain. is reflexive. This result can now be derived from Theorem 2.2 and
is given in Corollary 2.3.

In [9] Hadwin and Kerr defined a ring to be scalar-reflexive if every finitely
generated module is reflexive (2.4). Another corollary of Theorem 2.2 (which is
not proven by Hadwin and Kerr) shows that every non-torsion module over a
scalar-reflexive ring is reflexive. The work of Hadwin and Kerr on finitely
generated modules and reflexivity in (8] and [9] means that the property that every
2—generated non-torsion module is reflexive is a useful equivalent to the condition
that every non-torsion module be reflexive.

The results proved in this chapter concerning non-torsion modules have a
greater degree of generality than any results as yet obtained for torsion modules.
In particular the corresponding result to Theorem 2.2 does not hold for torsion
modules. An example of a local scalar-reflexive ring illustrating this is discussed
following Theorem 2.11.

Theorem 2.11 is a result of Hadwin and Kerr and gives equivalent conditions,
for a local ring, to the ring being scalar-reflexive. In particular a local ring is

scalar-reflexive if and only if it is an almost maximal valuation ring. This
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motivates the definition in 2.12 where a ring is defined to be locally scalar-
reflexive if every localisation at a maximal ideal is scalar-reflexive. Hadwin and
Kerr ask in [8] whether the property of being scalar-reflexive is closed under
localisations. This is an open question. However a converse is proved in Theorem
2.17 which shows that any locally scalar-reflexive ring is scalar-reflexive.

The final result of the chapter returns to non-torsion modules. This is a
further corollary to Theorem 2.2 and shows that every non-torsion module over a

locally scalar-reflexive ring is reflexive.

The first result, which was noted by Hadwin and Kerr in [8; p3], is well-known

and will be frequently used.

2.1 Proposition

Let R be a commutative ring. Then every finite direct sum of cyclic

R—-modules is reflexive.

Proof

Let M = en}Rmi, a finite direct sum of cyclic R—modules, and let ¢ be in
i=1
alglatRMR. Then there are elements r; and r in R with ¢m; = r;m, i=1,..,n
and ¢(my + m, + - + mp) = r(m; + my, + -~ + mp). So r(m, + my, + -+ + mp)

= rm, + rpm; + --- + rpmp. The sum is direct and so rm; = r;m, for all i. It

follows that ¢ = A(r). Hence alglat RMR = AR) and M is reflexive. 0

The next theorem is the main result of the chapter. It limits the study of
non-torsion modules not only to the finitely generated case but to the
consideration of 2—generated modules. This helps in the construc;tion of examples
when looking at non-torsion modules. Both finitely generated and 2—generated
conditions play an important part in this thesis, especially in this chapter and in

Chapter 3.
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2.2 Theorem
Let R be a commutative ring. Then the following are equivalent:
(i) every non-torsion R—module is reflexive,

(ii) every 2-—generated non-torsion R—module is reflexive.

Proof

The implication (i) = (ii) is trivial.
(ii) = (1)

Let M be a non-torsion R—module and let ¢ be any element of alglai RMR' Then
there is an element m in M with Ann(m) = 0. The R—module R.m is reflexive and
¢ is in alglat RRmR' Thus there is some r in R with ¢ = A(r) on Rm.

Let x be any element of the module M and consider N = Rm 4+ Rx. Then ¢ is
in alglatRNR. The R—module N is non-torsion and 2—generated and so, by
hypothesis, is reflexive. So there is an element s in R with ¢ = A(s) on N. Since
misin N, ¢m = rm = smand sor = s. Then ¢ = Mr) on N and so ¢x = rx.

Thus ¢ = M) and alglat ;M = AMR). Hence M is reflexive as required. O
R™R

The following corollary to this theorem, which was mentioned above and is
proved by Hadwin and Kerr in [9; Proposition 7], can now be derived from this

theorem.

2.3 Corollary (Hadwin and Kerr)

Let R be a commutative domain. Then every non-torsion R—module is

reflexive.

Proof
Let M = Rx + Ry be a non-torsion 2—generated R—module. If Rx N Ry =0

then M = Rx @ Ry which is reflexive (Proposition 2.1). So suppose Rx N Ry
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0. Then there are elements a, b in R with 0 % ax = by. Let ¢ be an element of
alglatRMR. There are elements r, s in R with ¢x = rx and ¢y = sy. Then rby
= rax = ¢(ax) = ¢(by) = sby = sax. So b(r — s) € Ann(Ry) and a(r— s) €
Ann(Rx). Since the module M is faithful, ab(r —s) € Ann(Rx) N Ann(Ry) = 0.
The elements a, b are non-zero and R is a domain sor — s = 0. Then ¢x = rx
and ¢y = ry and so ¢ = Nr). Hence alglatpMp = AR).

Thus every non-torsion 2—generated R—module is reflexive. The result follows

from Theorem 2.2. 0
In [8] and [9], Hadwin and Kerr studied rings in which every finitely generated
module is reflexive, making the following definition in [9] (see comments in the

Introduction).

2.4 Definition of a scalar-reflexive ring (Hadwin and Kerr)

A ring R is said to be scalar-reflexive if every finitely generated R—module is

reflexive.

The ring of integers, Z, is an exampvle of a scalar-reflexive ring. For it is
known from abelian group theory that every finitely generated Z—module can be
expressed as finite direct sum of cyclic modules. From Proposition 2.1, every
finite direct sum of cyclic Z—modules is reflexive. Thus every finitely generated

Z—-module is reflexive and so Z is scalar-reflexive.
From the definition of a scalar-reflexive ring it is clear that every 2—generated

module over a scalar-reflexive ring is reflexive. This gives the following

corollary to Theorem 2.2.
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2.5 Corollary
Let R be a scalar-reflexive ring. Then every non-torsion R—module is

reflexive.

The definition of an FGC ring, made in [23], is given next and provides a class
of rings that are scalar-reflexive. This was noted in [8; Proposition 4] and is

immediate from Proposition 2.1.

2.6 Definition of an FGC ring (Shores and R. Wiegand)

A ring is an FGC ring if every finitely generated module over the ring is a

direct sum of cyclic submodules.

These rings have been studied and characterised by Brandal, Shores, Vamos,
R. Wiegand and S. Wiegand in [2], [3], [23], [25], [26]. The structure theorems for
FGC rings are given in Chapter 5. Examples of FGC rings are provided by the
principal ideal domains. Moreover the local FGC rings are precisely the almost

maximal valuation rings ([6; Main Theorem]).

The following definitions made in [6] are generalisations of those of maximal and

almost maximal valuation domains made by Kaplansky in [12; p336].

2.7 Definitions of a maximal and an almost maximal valuation ring

A valuation ring R is maximal if every system of pairwise soluble congruences
of the form {x = x4 mod Iy} has a simultaneous solution in R, where x5 € R, Iy
is an ideal of R and o is in some index set J.

A valuation ring R is almost maximal if the above congruences have a

simultaneous solution whenever [| Iy # 0.
[ 3 AN
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Thus every maximal valuation ring is almost maximal. An equivalent definition

of an almost maximal valuation ring (AMVR), given in (23], is that R is an AMVR if

R/l is maximal for every non-zero ideal I of R.

The following sections give some examples of these types of rings.

2.8 Examples of almost maximal valuation rings

(a) Every discrete (noetherian) valuation domain is an almost maximal valuation
ring ([12; p336)).

(b) The power series ring in one indeterminate over a field is a discrete valuation
domain and hence is almost maximal. In addition it is complete and so is a maximal
valuation domain ([12; p336], [16; p160])). As an example, Cl[x]] is a maximal
valuation domain. (A discussion of maximal valuation domains and completions will
be in section 4.4 and following.) Then the quotient CI[x]lI/(x?) is also a maximal
valuation ring, but is not a domain since the ideal (x?) is not prime in CI[x]].

(c) The localisation of Z at a non-zero prime ideal P = (p), denoted Z;, is a
discrete valuation domain. Its proper non-zero ideals are precisely those generated

n
by pT for n > 1. Then Z; is an almost maximal valuation ring but is not maximal.

2.9 Examples of valuation rings that are not almost maximal

(a) This first example looks at subvaluation domains of “long power series” rings
and was communicated to me by Vamos. More details and proofs are given in [3],
[22] and [24].

Let T (< Z) be a totally ordered abelian group and let F be a field. Then rt
denotes the positive cone of T, It = {g €T lg >0} Forafunctionf :T = F
define the support of f by supf = {a € T | f(a) < 0}. Let F(ID) = {f € Fly supf
is well-ordered}. Addition and multiplication are defined in F{I)) by

f + i) = fla) + glov),

feXa) = X f(B)g(Y) where f, g € F(M) and o, B, ¥ € T.
BtI=ca ‘
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These operations are well-defined and give F(I)) the structure of a field. There is
a maximal valuation v on F(D)) given by v : F(IM) = I' U {oo}, v(f) = minsupf.
The valuation ring of v is F[[T]}, the “long power series” ring relative to F and T.
Thus F[[I‘]] = {f € F(D) | supf C T*). The residue field of the valuation ring is
F. Hence F[[T]] is a maximal valuation domain.

Now suppose I' C R (T s Z). Call a subset S of T almost finite if the set
foo € Sl a < v} is finite for all ¥ € T*. It is clear that an almost finite set is
partially well-ordered. Let R = {f € F[[I‘]] | supf is almost finite}, Then R is a
valuation domain under the valuation v above (with v restricted to the field of
fractions of R). Thus R is a sub-valuation domain of F[[T]]. Moreover R has the
same value group T and residue field F as F[[T]].

Let A and A’ be valuation domains and let A — A’ be an embedding. Then A’ is
an immediate extension of A if the value groups and residue fields of A and A’ are
isomorphic via this embedding. Thus F[[T]] is an immediate extension of R. A
valuation domain is said to be maximally complete if it has no proper immediate
extensions. Thus R is not maximally complete. Moreover a valuation domain is
maximally complete if and only if it is a maximal valuation domain. Hence R is not
a maximal valuation domain.

A valuation domain A is complete in the A—topology if the embedding
¢ :A— 1*131 A/Ar, a — (@ 4+ Ar) (indexed by 0 £ r € A) is an isomorphism (see
Definition 4.4). To show that R is complete in the R—topology it is thus sufficient

to show that ¢ is onto. Let (f; + Rr) € 1}_21 R/Rr. Definea map f : T — F by

0 fg(a) if there is some s (0 = s € R) with a € supfg, a < v(s), a 5 v(s),
e 0 otherwise.

Then f is indeed an element of R and ¢f = (f; + Rr). Thus ¢ is onto and so the
ring R is indeed complete in the R—topology. Hence R is not an almost maximal
valuation domain ([16; pl160]).

Then the sub-valuation ring R of F[[T]] is a valuation ring which is not almost

maximal.
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(b) Let S be the ring C[Xq, X;, X5 ... ] and I the ideal of S generated by all the
elements an — X,y for n > 1. Let A be the quotient ring S/, so that A =
Clxg, X1y X2 ... ] where x; = X; + I, and let M be the maximal ideal (Xgy X1y Xpp oo0)
of A. Let R = A,. Then R is a valuation domain. For ease of notation write r
for the element % in R since A embeds in R (via a ~ %). (Further information on
the ring A may be found in (11; 39].)

However R is not an almost maximal valuation domain. Take I = (xnzn_‘) as
the family of ideals in R (n > 1) and consider the system of congruences

n+1
2 -3
¢ ' for n > 2. Thena — a,,

{a, mod I} wherea, = 1 and a, = a,_; + X,
€L_,\I forn >2and 0 £ (x¢) C (1I,. This system of congruences is pairwise
soluble but there is no simultaneous solution in R.

Hence R is a valuation ring that is not almost maximal.

2.10 Examples of local rings that are not valuation rings

The following two examples are of power series rings which are local rings but
not valuation rings.
(a) The ring Kl[x% x®1] where K is a field is a 1-dimensional local domain which is
not integrally closed ([11; 11]). But valuation domains are integrally closed (see
[1; Proposition 5.18D). Thus Klix?, x°1] is a local domain which is not a valuation
ring.
(b) The ring Cllx,, X5, ... ]] with infinitely many indeterminates has a unique
maximal ideal (x,, X5, ...) so is a local ring, but is not a valuation ring since the

indeterminates are not comparable.

It has been seen that all FGC rings are scalar-reflexive and that the local FGC
rings are just the almost maximal vealuation rings. The next theorem is a result of
Hadwin and Kerr ([9; Theorem 6]) which shows that these three conditions are

equivalent for local rings.
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2.11 Theorem (Hadwin and Kerr)

Let R be a local ring. Then the following are equivalent:
(i) R is scalar-reflexive,
(ii) R is an FGC ring,

(iii) R is an almost maximal valuation ring.

This theorem can be used to give an example of a ring R which shows that
Theorem 2.2 cannot be generalised to apply to torsion modules. Let R = Z.,
where P = (p) is any non-zero prime ideal of Z. Then, from Example 2.8(c), R is
an almost maximal valuation domain which is not maximal. From Theorem 2.11, R is
scalar-reflexive. Hence all 2—generated modules and all non-torsion modules over
R are reflexive (Corollary 2.5).

¢, € (P& 0 PCn _ Snaiy Then T is a

™11 ' 1 1
faithful torsion R—module. The results in Chapter 4 show that T is not reflexive.

Let T be the R—module <

Thus it is not the case that every torsion R—module is reflexive. (For the above,
Theorem 4.9 shows that alglat RTR is isomorphic to li, the completion of R in the
R-topology. Since R is a domain and is not maximal, R is not complete in the
R-topology (see after 4.4). Thus R is strictly embedded in R and hence T is not
reflexive. Note that T is the localisation of the Z—module ZP» at the prime P.
[t can be shown that the ring homomorphism in Lemma 2.16 is an isomorphism in
this case. Then alglat Z(ZP”)Z = alglat RTR' Indeed, alglatZ .. is precisely the

ring of left scalar multiplications by elements of the p-adic completion of Z.)

Hadwin and Kerr remark in [9; p8] that their proof of Theorem 2.11 shows that
these three conditions are equivalent, for a local ring R, to a fourth condition:
(iv) every 2—generated R—module is reflexive.

It will be shown later in Chapter 5 (following Theorem 5.17) that, although
conditions (i) and (ii) are equivalent for a local ring, they are not equivalent in

general. Theorem 2.11 characterises local rings that are scalar-reflexive. Thus it
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can be used to provide information on rings whose localisations are scalar-

reflexive. This motivates the following definition.

2.12 Definition of a locally scalar-reflexive ring

A ring is locally scalar-reflexive if every localisation at a maximal ideal is

scalar-reflexive.

Any FGC ring R is a locally scalar-reflexive ring. For every localisation of R
at a maximal ideal is a local FGC ring and hence, from Theorem 2.11, is scalar-
reflexive. Thus R is locally scalar-reflexive. From Theorem 2.11, every almost
maximal valuation ring is an FGC ring and is thus locally scalar-reflexive. Hence

every local ring which is scalar-reflexive is also locally scalar-reflexive.

The last result of this chapter is a corollary to Theorem 2.2 for locally scalar-
reflexive rings. Before giving Corollary 2.19, locally scalar-reflexive rings
together with some of their properties are discussed. In particular Theorem 2.17
shows that every locally scalar-reflexive ring is scalar-reflexive.

First an equivalent definition of a locally scalar-reflexive ring is given. This

makes use of the following well-known definition.

2.13 Definition of an arithmetical ring

A ring is arithmetical if every localisation at a maximal ideal is a valuation

ring.

An alternative definition is that a ring is arithmetical if every localisation at a
prime ideal is a valuation ring. Thus the arithmetical domains are just the Prufer

domains.
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In [25]), Vamos introduced the terminology of a locally almost maximal
arithmetical ring. This is a ring in which every localisation at a prime ideal is an
almost maximal valuation ring. From Theorem 2.11 these are the rings in which
every localisation at a prime ideal is scalar-reflexive. Proposition 2.15 shows that
the locally almost maximal arithmetical rings (those satisfying (i) in 2.15) are
precisely the locally scalar-reflexive rings (those satisfying (iv) in 2.15). The

following lemma was proved by Gill in [6; Lemma 2] and is used in Proposition 2.15.
2.14 Lemma (Gill)
Let R be a valuation ring and let P be a prime ideal of R. Then R is maximal

(almost maximal) = R, is maximal (almost maximal).

2.15 Proposition

Let R be a commutative ring. Then the following are equivalent:
(i) Rp is scalar-reflexive for all prime ideals P of R,
(ii) Every 2-generated Rr—module is reflexive for all prime ideals P of R,
(iii} Every 2—generated Ry—module is reflexive for all maximal ideals M of R,

(iv) Ry is scalar-reflexive for all maximal ideals M of R.

Proof
The implications (i) = (ii) and (ii) = (iii) are trivial and (iii) = (iv) follows from

the remark after Theorem 2.11.

(iv) = ()

Let P be a prime ideal of R and let M be a maximal ideal of R containing P.
Then Rp = (Ry)p,, (see {19; p24]). By hypothesis R, is scalar-reflexive, and so
from Theorem 2.11, Ry, is an almost maximal valuation ring. The ideal P, is prime

in Ry and thus the localised ring (Ry)e,, is also an almost maximal valuation ring

(Lemma 2.14). Hence Ry is an almost maximal valuation ring and thus R, is scalar-
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reflexive (Theorem 2.11). 0O

Hadwin and Kerr asked in [8; p7] whether the class of scalar-reflexive rings is
closed under localisations. A particular case of this, when the localisations are at
the maximal ideals, asks whether every scalar-reflexive ring is locally scalar-
reflexive. These remain open questions, with the only known examples of locally
scalar-reflexive rings being provided by the scalar-reflexive rings, and vice versa.
There is nevertheless a connection between scalar-reflexive rings and locally
scalar-reflexive rings. In Theorem 2.17 it will be proved that every locally scalar-
reflexive ring is scalar-reflexive. Then a local ring is scalar-reflexive if and only
if it is locally scalar-reflexive. The following lemma is used in the proof of

Theorem 2.17.

2.16 Lemma
Let M be a maximal ideal of a ring R and let T be an R—module with
localisation Ty.. Then there is a ring homomorphism from alglat RTR to alglat Ty,

where T\, is an Ry—module.

Proof

Define a map o : alglat RTR — alglat Ty, by ¢ ~ ¢, where ¢, : é — %ﬁ

ima C alglat Ty

Let ¢ € alglat, Ty so that ¢y € ima and ¢ : Ty = Tae
R'R

t

Suppose that ;—‘l - 5, in Ty so that there is some u € M with (t;5, — t;s))u =

0. Then [(¢t))s; — (Btr)s;lu = [p(t;s,) — o(tsPlu = @((tys, — trs)u) = 0 and so

%—El = %2 Thus ¢, is well-defined.
t tz t r t t2 _ t So + tzs __
Let S_i’ 5—2, s € TM and u € RM. Then ¢M[S_);. + §; = ¢M[I—-W1] =
otis, + tos) _ (Btds, + (pt)s, ot t t tr
! S5, L = . 25152 ! = s_ll + S ¢M[§i] + ¢M['S_Z]- Also ¢M[§'E]

_ ¢tr) _ (pt)r _ ¢tr _ [ M[é]]% Hence ¢y € EndTMRM.
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Let é € Twn. There is some element a of R with ¢t = at. Then ¢M[é] = %E =

%t = %é € RMé. Hence ¢ € alglat T, (where T, is an Ry—module).

Thus ima C alglat Ty,.

o. is a ring homomorphism

Let ¢ and 0 be elements of alglat RTR' Let x = ¢ + 0 so that X\, is the image

of ¢+ 0 undor . Thon xoff) = Xt = EDE _ L 8o (4 1 0,(0) an

SO Xm = 6 + 0. Thus al(p + 0) = ¢ + ab. Let ¥ = ¢0 so that P is the

image of ¢8 under a. Then wM[é] = ?s} = (_"g_)t = @ = ¢M[Qsl] = ¢M[9Mé] and
S0 ¥p = émdu. Thus o(¢) = (op)ab). Let 1 be the identity in alglat g Tp so
that 1., is the image of 1 under a. For é in T, lM[é] = 1§t - é Hence ofl) is

indeed the identity element in alglatT,. Thus o is a well-defined ring

homomorphism. a

2.17 Theorem

Every locally scalar-reflexive ring is scalar-reflexive.

Proof

Let R be a locally scalar-reflexive ring and let {Mi I'i € I} be the set of all
maximal ideals of R. Let T = Rx, + Rx, + -+ 4+ Rxp be a finitely generated
R—module and let ¢ € alglat RTR‘

Let Mi be any maximal ideal of R. Then there is a map ¢, in alglat Ty, given

by g — %E (Lemma 2.16). The Ry~—module Ty, is finitely generated and is therefore

reflexive (by hypothesis). So there is an element %‘. in Ry, with ¢y, = )\(aﬁi_). Then
1 t

¢Mi[}~;—j] = a—l'l—'}fl = ?%CJ for each j = 1, ..., n, so there are elements Sij € R\Mi with

n

(8in - ui(¢Xj))slj - O. Let Si = FI_{SiJ' SO then Si e Ml‘ Then (aiXJ - ui(¢Xj))sl

=0foreall j=1,..,n Sou,s; €M, and, for j=1,..,n, “isi(¢xj) = 8;5{X;.

The sum Z‘Ruisi = R, for otherwise there is some maximal ideal N with
ted

ERuisi C N. But N = Mk for some k € | and u Sy & Mk giving the required

iel
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contradiction. So there is a finite subset K of [ with 1 = ryuysy, and rp, € R.
kek

2 rpaspx;. Letr = 3riaps,

kekK ke K

J
so that ¢xj = rX; for j=1,..,nandr € R. Then¢ = Nr) and so T is

Then, for j =1, ..., n, ¢x; = r U5, (0x;) =
) J ¢ k% kY& Sk j
reflexive. Hence R is scalar-reflexive. ]

The next few comments relate Theorem 2.17 to another result in the literature.

In [9; Theorem 12], Hadwin and Kerr proved the following theorem.

2.18 Theorem (Hadwin and Kerr)

Let R be an h-local domain with Ry an almost maximal valuation ring for all

maximal ideals M of R. Then R is scalar-reflexive.
The hypotheses of this theorem may be rewritten, requiring R to be an h-local
domain which is locally scalar-reflexive. From Theorem 2.17 it is clear that the

condition that R be an h-local domain is redundant.

The third and final corollary to Theorem 2.2 now follows. The proof is

immediate from Corollary 2.5 and Theorem 2.17.

2.19 Corollary

Let R be a locally scalar-reflexive ring. Then every non-torsion R—module is

reflexive.

Scalar-reflexive rings, locally scalar-reflexive rings and 2—generator conditions

will be studied further in Chapter 3.
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Chapter 3 Reflexivity and local properties

This chapter builds on the work done in Chapters 1 and 2 on h-local domains,
scalar-reflexive rings and locally scalar-reflexive rings and looks at some local
properties for an h-local domain. Recall from 2.4 and 2.12 that a ring R is scalar-
reflexive if every finitely generated R—module is reflexive and that R is locally
scalar-reflexive if every localisation Ry at a maximal ideal M of R is scalar-
reflexive. In addition every locally scalar-reflexive ring is scalar-reflexive
(Theorem 2.17).

The main result of the chapter is Theorem 3.4 which gives eight properties of
an h-local domain which are equivalent to the condition that the ring is locally
scalar-reflexive. The principal component of Theorem 3.4 is the proof that, for an
h-local domain R with every 2—generated R—module being reflexive, then R is
locally scalar-reflexive. This result may be of independent interest and as such it
appears in Theorem 3.1. In addition Theorem 3.1 provides a partial converse to
Theorem 2.17, showing for an h-local domain, that being scalar-reflexive is
equivalent to being locally scalar-reflexive.

Theorem 3.4 links the structure and decomposition of modules with the study
of reflexivity. In particular it is shown that an h-local domain is locally scalar-
reflexive if and only if every 2—generated torsion module is a direct sum of cyclic
modules. The corresponding statement for finitely generated torsion modules also

appears as one of the nine equivalent properties of Theorem 3.4.

3.1 Theorem

Let R be an h-local domain. Then the following are equivalent:
(i) R is locally scalar-reflexive,
(ii) R is scalar-reflexive,

(iii) Every 2—generated R—module is reflexive.
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Proof

The implication (i) = (ii) is given in Theorem 2.17 and (ii) = (iii) is trivial.

@iii) = (i)

It is sufficient to show, for all maximal ideals M of R, that every 2—generated
Ry—module is reflexive. For then Ry is scalar-reflexive for all maximal ideals M
(Theorem 2.11) and so R is locally scalar-reflexive.

Let M be a maximal ideal of R and let T = Ryx + Rnqy be a 2—generated
Ry—module. Suppose that both Rx and R,y are non-zero. For if not then T is

cyclic and thus reflexive (Proposition 2.1). Note that the ring R is a domain and

so R C Ry via the embedding r ~ Ii‘ Then, for any element t of T, there is a
well-defined R—module structure on t given by rt := ‘i‘t.

There are two cases to consider.

Case i) T non-torsion

The local ring Ry is a domain. It then follows from Corollary 2.3 that T is

reflexive.

Case ii) T torsion

The first step is to find new generators x’ and y’ for T so that the ideal
Ann(Rx’ + Ry’) is colocal in M. The construction begins by showing that the
ideal AnnRx is non-zero and is contained in M. The module T is torsion so let %

be a non-zero element of Ann(Rux). Then r = 0,

—1

€ Ann(Rux) and rx = Ii'x = 0.
Thus AnnRx ¢ 0. Suppose AnnRx € M and let s be an element in AnnRx with
s ¢ M. Then, since Ry, = Ry é, it follows that Ryx = Ruysx = 0, a contradiction.
Thus AnnRx C M.

So AnnRx has a normal decomposition AnnRx = [Q]l Ii with Ii colocal in Mi‘
From Proposition 1.16, M € {M,, ..., Mp}. To ease notation suppose M = M,.

n

Then, also from Proposition 1.16, () Ii + I; = R. This gives elements a in ﬂ Ii

=2 =2
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and bin I, with 1 = a 4+ b, Then AnnRax = I,. For if r € AnnRax, then rax =
0 and so ra € AnnRx C I,. Thusr = ra + rb € I,. For the reverse inclusion
let r € I, so that ra € ﬁl Ii = AnnRx. Then rax = 0 and so r € AnnRax. Thus
AnnRax = I, which is colocal in M; = M. It is also clear that a is not an element
of M and so Ryax = Rux.

In the same way there is an element ¢ in R and a colocal ideal J of M with
Rucy = Rny and AnnRey = J. Let X' = axand y’ = cy. Then T = Ruyx’ +
Rnmy’ and Ann(Rx’ + Ry’) = AnnRx’ N AnnRy’ = [; N J which is colocal in M
(Proposition 1.16). Thus x’/ and y’ are the new generators.

The next step is to prove that Rt = Ryt for alltin T. Lett € T. Then
clearly Rt C Rut. For the reverse inclusion let % € Ry so that ﬁt € Rut. Then,
since Ann(Rx’ + Ry’) is colocal in M and u € M, it follows from Proposition 1.16

that Ru + Ann(Rx’ + Ry’) = R. Thus there are elements f in R and g in

Ann(Rx’ + Ry”) with 1 = fu + g. Then L =§ + & giving Lt — fot + Lgt.
- ite t — G104 d2 o 1 (diS2, | doSy, _ By _
But gt = 0. (Write t =5 +52y _‘s,sg[l x' + 1 y]. Thus gt —lt =

% (d;s,x’ + dss,y’) = 0.) So %t = %t = frt € Rt. Thus Ryt C Rt. Hence
Ryt = Rt for all t in T. In particular T = RyX’ + Rny’ = Rx’ 4+ Ry’ since x’
and y’ are in T.

The final step is to show that T is a reflexive Ry—module. Considering T as
an R—module, T = Rx’ 4+ Ry’ is 2—generated and so is reflexive by hypothesis.
Thus alglat,Tp = MR) C MRyw) C alglatRMTRM. But R C Ry and so End TRM C
EndTR. Then alglatR TR = {¢ € EndTR | ¢t € Ryt forallt € T} C

™M ™M ™M
{¢ €EEndTp I ¢t € Ryt forallt € T} = {¢ € EndTp I ¢t E Rt forallt € T) =

alglat RTR‘ Thus alglatRM’I‘RM = MRy) and hence T is a reflexive Ry—module. 0O
The next two sections concern local properties and will be used in Theorem 3.4.

The following definition of a local property may be found with examples in

[1; ppd0-41].
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3.2 Definition of a local property

A property Q of a ring R is a local property if the following are equivalent:
(i) R has property Q,
(ii) Ry has property Q for all maximal ideals M of R,

(iii) Rp has property Q for all prime ideals P of R.

3.3 Proposition

Suppose that, for h-local domains, property Q is equivalent to property Q' and
that property Q is a local property. Then property Q’ is also a local property for

h-local domains.

Proof
The proof is an easy consequence of the fact that, for any prime ideal P of an

h-local domain R, Ry is a local domain and hence an h-local domain. ]

The next theorem is the main result of the chapter.

3.4 Theorem

Let R be an h-local domain. Then the following are equivalent local properties:
(1) R is scalar-reflexive,
(2) every finitely generated torsion R—module is reflexive,
(3) every finitely generated torsion R—module is a direct sum of cyclic modules,
(4) every 2—generated R—module is reflexive,
(5) every 2—generated torsion R—module is reflexive,
(6) every 2—generated torsion R—module is a direct sum of cyclic modules,
(7) R is a Prufer domain and Q/R is injective, where Q is the quotient field of R,
(8) Ry is an almost maximal valuation ring for every maximal ideal M of R,

(9) R is locally scalar-reflexive.
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Note

The quotient Q/R is always considered as an R—module. An R—module M is
injective if, for any injéctive map f : N — N and any map g : N’ — M, there is a
map h ¢: N =& M with g = hf (where N, N’ are R—modules and all the maps are

R—homomorphisms).

Proof

It follows from Proposition 2.15 and Theorem 3.1 that (1) is a local property. It
is thus sufficient to prove that these nine properties are equivalent, since it is
then immediate from Proposition 3.3 that all nine properties are local.

The proof of (1) « (4) « (9) has already been given in Theorem 3.1, and the
results (3) o (7) o (8) are proved by Matlis in [16; Theorem 5.7). It follows from
the definition of a locally scalar-reflexive ring and from Theorem 2.11 that
(8) < (9). The implications (3) = (2) = (5) and (3) = (6) = (5) are trivial
consequences of Proposition 2.1. Finally the implication (5) = (4) follows from
Corollary 2.3 since R is a domain. Thus all nine properties are equivalent. This

completes the proof of the theorem. a

The next part of this chapter uses this theorem to answer a question raised by
Hadwin and Kerr in [9; pl2]. Hadwin and Kerr ask whether every scalar-reflexive
domain is h-local. An example is given in 3.6 which answers this question in the
negative. This example uses rings of type I, which were first defined by Matlis in

{17]. The definition is given below.

3.5 Definition of a ring of type I (Matlis)

A ring R is of type I if R is an integral domain with exactly two maximal ideals
M, and M, such that Ry, and Ry, are maximal valuation rings and there is no non-

zero prime ideal contained in M; N M,.
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An example of a ring of type | is given by Osofsky in [17]. Brandal includes
this same ring in his paper [3; Example 14.1] with more accompanying detail. The
following example (3.6) was given by Matlis in [18; Example 2] to show that there is
a ring which is the intersection of two dependent maximal valuation rings, but is
not a ring of type I. This latter ring is now shown to be a locally scalar-reflexive

(and hence scalar-reflexive) domain which is not an h-local domain.

3.6 Example of a scalar-reflexive domain which is not h-local

Let A be a ring of type I with two maximal ideals M, and M,. Let B be the
field of fractions of A. Let R be the ring of formal power series in an
indeterminate X with coefficients in B but with constant term in A so that R =
{g bi}(i I b€ A, b; € B fori> 0}, Then R is a domain. Let P be the prime ideal
of R consisting of power series with constant term b, = 0. Then R has precisely
two maximal ideals N; = M, + P and N, = M, + P. The prime ideal P satisfies
0 ¢ P C N, M N,. Thus R is not an h-local domain.

The power series in the domain Ry, have constant term in Ay,. Then Ry, is a
valuation ring since Ay, is a valuation ring. It is known that (Ry,)r = Re (see
(19; p24]). Since Rp = B[[X]], a maximal valuation ring, the ring (Ry,)r is also a
maximal valuation ring (see Example 2.8(b)). The quotient ring Ry /P is a maximal
valuation ring too, being isomorphic to Ay,. For a valuation domain S and prime
ideal Q of S, S is a maximal valuation ring if and only if both Sy and S/Q are
maximal valuation rings (a proof can be found in [18; Corollary 2]). Thus Ry, is a
maximal valuation ring. Similarly RN2 is a maximal valuation ring. Thus R is
locally scalar-reflexive.

Hence R is a scalar-reflexive domain which is not an h-local domain.

A second related question posed by Hadwin and Kerr in [9; pl2] asks what are
the scalar-reflexive domains. This question remains open in view of Example 3.6.

However, Theorem 3.4 has classified all the scalar-reflexive h-local domains.
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Finally recall the result of Hadwin and Kerr given in Theorem 2.18 which
proves, for an h-local domain R with Ry an almost maximal valuation ring for all
maximal ideals M of R, that R is scalar-reflexive. The equivalence of properties
(1) and (8) of Theorem 3.4 for h-local domains provides a converse to this result.
This gives a second generalisation of Theorem 2.18 (see comments following

Theorem 2.18).

The next chapters work towards a characterisation in Chapter 7 of alglatRMR
for all modules M over fractionally self-injective (FSI) rings. In discussing these
FSI rings in Chapter 5 another characterisation of scalar-reflexive h-local domains
will be given with Theorem 5.19 proving that the scalar-reflexive h-local domains
are precisely the FSI domains. First Chapter 4 looks at the local case and

determines alglat for all modules over an almost maximal valuation ring.
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Chapter 4 Modules over almost maximal valuation rings

The rest of this thesis builds towards the results in Chapter 7 which
characterise alglat for all modules over fractionally self-injective rings. Chapter 5
looks at the structure of FSI rings, with Chapters 6 and 7 providing a
characterisation of alglat for modules over an FSI ring. The aim of this chapter is
to determine alglat for all modules over the local FSI rings. As well as being of
independent interest, these results will be used in Chapter 7.

It is known that an FGC ring is fractionally self-injective and this result will
be found in Theorem 5.12. Theorem 2.11 showed that a local FGC ring is an almost
maximal valuation ring. It will be seen in Proposition 5.16 that the local FSI rings
are also precisely the almost maximal valuation rings. Thus this chapter aims to
characterise alglat for all modules over an almost maximal valuation ring. Recall
from 2.7 the definitions of a maximal and an almost maximal valuation ring. If R is
an almost maximal valuation ring then R is scalar-reflexive (Theorem 2.11). Thus

all finitely generated and all non-torsion R—modules are reflexive (Corollary 2.5).

The first two results concern maximal valuation rings. The first theorem, by
Hadwin and Kerr, is part of [9; Theorem 5] and shows that all modules over a
maximal valuation ring are reflexive. The subsequent proposition was proved by
Gill in [6; Proposition 1] and gives a condition for an almost maximal valuation ring

to be maximal.

4.1 Theorem (Hadwin and Kerr)

Let R be a maximal valuation ring. Then every R—module is reflexive.

4.2 Proposition (Gill)

Let R be a valuation ring which is not a domain. Then R is almost maximal if

and only if R is maximal.
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Let R be an almost maximal valuation ring and T any R—module. If R is
maximal then T is reflexive by Theorem 4.1. If R is not maximal then from
Proposition 4.2, R is a domain. So to find alglatRTR, R may be taken to be an
almost maximal valuation domain. Since all non-torsion modules over an almost
maximal valuation ring are reflexive, it is sufficient to consider torsion modules
over almost maximal valuation domains. The study of alglat RTR then splits into
two sections according as to whether the torsion R—module T is faithful or not.
The next theorem concerns modules which are not faithful and two alternative
proofs are given. The first proof uses Theorem 4.1, whereas the second proof is

more direct.

4.3 Theorem
Let R be an almost maximal valuation ring and let T be an R—module which is

not faithful. Then T is reflexive.

Proof 1
Let I = AnnT so that I is a non-zero ideal of R. Let A = R/I so then A is a
maximal valuation ring. From Theorem 4.1, T is reflexive as an A—module and

hence (from Proposition 1.19) T is reflexive as an R—module. 8]

Proof 2

Let ¢ € alglatRTR. For each t in T there is an element ry of R with ¢t = rit.
Let Iy = Anmn (t) so that 0 ¢ AnmnT = ﬂlt. Then {It It € T} is a family of ideals
of R with non-zero intersection.

Consider the system of congruences {r = r, mod 1)

Let %, y be any elements of T and let N = Rx 4+ Ry. From Theorem 2.11, R is
scalar-reflexive and so N is reflexive. Thus there is an element a in R with
¢ = Ma) on N. Then ax = ¢x = ryx and ay = ¢y = ryy. Soa — rx € Ix and

a —ry €ly. Thusa = ry mod Iy and @ = ry mod Iy. Hence the system of
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congruences is pairwise soluble.
The ring R is an almost maximal valuation ring so there is a solution r in R to
the system of congruences. Then, for any tin T, r — ry € It and so ¢t = it =

rt. Thus ¢ = Nr). Hence alglat rRTR = MR) and so T is reflexive. 0O

Before determining alglat RTR for faithful torsion R—modules T over an almost
maximal valuation domain R, it is necessary to look at the completion of a ring R
in the R-topology. The definition of the R-topology was given by Matlis in [15; §6]

and more details can be found there.

4.4 Definition of the R-topology

Let R be an integral domain (not a field). A topology, called the R-topology, is
defined on R by letting the non-zero ideals of R form a sub-base for the open
neighbourhoods of 0 in R. The same topology is given to R by letting the non-
zero principal ideals of R form a sub-base for the open neighbourhoods of 0 in R.
The R-topology on R makes R into a topological ring. The intersection ové[l RRr is
the closure of 0 in R, and R is Hausdorff if and only if the closure of 0 in R is
zero.

The ring R is Hausdorff in this topology. To prove this, let A = O#Oe RRr and
suppose for contradiction that there is an element 0 = a € A. Then a® = 0 (R is
a domain) and a € A C Ra®. So there is some b in R with a = ba?. Thus ab = 1
and hence A = R. Then for any non-zero element r of R, Rr = Randsorisa
unit in R. Thus R is a field, giving the required contradiction. Hence A = 0.
Thus R is Hausdorff in the R-topology.

The inverse limit l‘i_r_n R/I exists and is isomorphic to l‘lln R/Rr (0 =1 4R, 0 £
r €ER). Let R = 1:31 R/Rr (0 £ r € R), so that R is the completion of R in the
R-topology ([15; Proposition 6.1]). Then (a; + Rr) is an element of R if and only if

for any non-zero elements u, v in R, ay, — ayy € Ru (if and only if for any non-

zero elements ¢, d in R with Re C Rd, a, —ay € Rd). There is a canonical ring
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homomorphism ¢ : R — R given by ¢ : a — (@ 4+ Rr) for a in R. This gives ker¢
= ﬂ Rr. Since R is Hausdorff, ker¢ = 0 and so ¢ embeds R in R. The domain
O#reR

R is complete in the R-topology if and only if the homomorphism ¢ : R — R is an

isomorphism.

There are alternative definitions of maximal and almost maximal valuation
domains to those given in 2.7 which include this idea of completeness in the
R-topology (see Example 2.8(b)). These were given by Matlis in {16; ppl159-160].
These definitions are a result of proving, for a valuation domain R with quotient
field Q, that R is almost maximal if and only if the R—module Q/R is injective, and
that R is maximal if and only if it is both almost maximal and complete in the

R-topology (see [14; Theorems 4, 9]).

The next result was proved by Matlis as part of [15; Theorem 8.5] and will be
used in Corollary 7.2. It is included here with the discussion of the R-topology

for convenience.

4.5 Lemma (Matlis)
Let R be an h-local domain. Let R be the R-completion of R and let R~M be the
Ry-completion of R, where M is a maximal ideal of R. Then R = g 1’2\:,, where M
M

ranges over all maximal ideals of R.

The isomorphism in Lemma 4.5 is given by 7Y : (ay + Rr) — [giﬁ + Ry %)]

Suppose that (a; 4+ Rr) € R and let M be any maximal ideal of R. For an element

s € M, RMé = R, and so any principal ideal of R, can be expressed in the form
RM%' Suppose %, ‘1—’ are non-zero elements of Ry. Then u, v are non-zero elements
of R and so there is some b in R with ay — ayy = bu € Ru. Thus %’ - %’ =

l—’ll—'l € RM‘TJ. Hence the element (% + RM? is indeed in R~M and so the image of R

under 7Y does lie in I'IRN,:,
M
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In order to characterise alglat for a faithful torsion R—module T over an
almost maximal valuation domain R, it has to be shown that T has an R—module
structure. The following proposition is more general than is required, showing
that any torsion R—module over a domain R has an R—module structure {see
[4; Exercise 6 pl01]). Note that if R is a domain and T is a torsion R—module then
R cannot be a field. For if 0 £ t € T then Ann(t) is a non-zero ideal of R which

is strictly contained in R.

4.6 Proposition

Let R be a domain with R-completion R. Let T be a torsion R—module. Then T
has an R—module structure given by (ap 4+ Rr)t = agt where (ay 4+ Rr) € R,

R Ann(t). Iglat = alglat ~T-.
t € Tand 0 ¢ Rs C Ann(t). Moreover algla RTR agaR &

Proof

For any element t of T, Ann(t) > 0 since T is torsion.

Suppose Ru C Ann(t) and Rv C Ann(t) for 0 £ u, v € R. Then ay, — ayy €
Ru C Ann(t) and a,, — ayy € Rv C Ann(t) so that ay, — ay € Ann(t). Thus
ayt = ayt.

Suppose (ay + Rr) = (by + Rr) and that Rs C Ann(t). Then ay — by € Rr
for all 0 ¥ r € R. In particular ag — bg € Rs and so agt = bgt.

Let 8 = (a; + Rr), b = (by + Rr) be elements of R and let t, t,, t, be elements
of T. Then Ann(Rt; 4+ Rt,) ¢ 0 so there is a non-zero element u in R with Ru C
Ann(ty), Ru C Ann(t,) and Ru C Ann(t, + t,). So a(t, + t;) = ay(t; + t;) =
ayt; + ayt, = dt; + at,. Let 0 2 Rv C Ann(t). Now d + b = (ar + by + Rr)
and b = (a;by + Rr). So (@ + b}t = (ay + by)t = ayt + byt = at + bt.
Since Ann(t) C Ann(byt), Rv C Ann(byt). Thus &(bt) = a(byt) = ay(byt) =
(ayby)t = (&b)t. The identity element of R is (1 + Rr), and (1 + Rr)t = 1t = t.

Thus T is an R—module under this product.

From 44, R C R so that EndTﬁ C EndTR. Let ¢ € alglatﬁTﬁ. Lett € T.
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There is an element 3 € R with ¢t = at. Then, from the R—module structure of
T, ¢t € Rt. Hence ¢ € alglat RTR and so alglat fiTﬁ C alglat RTR'

Let ¢ € alglatRTR. Then ¢(t, + t,) = ¢t, + @t, for t,, t, in T. Let & =
(ar + Rr) € Randlet t € T with 0 ¢ Rs C Ann(t). Then there is some b in R
with ¢t = bt and so Rs C Ann(t) C Ann(bt). Thus ¢(t8d) = ¢(tag) = (¢t)ag =
(bt)ag = (bt)a = (¢t)a. So ¢ € EndTﬁ. Let t be any element of T. Then, since
¢ € alglai:R’l"R and R C I~2, ot € Rt. Hence ¢ € alglat ﬁTﬁ and so alglatRTR C

alglatﬁTﬁ. Thus alglatRTR = alglatéTﬁ. O

In the light of this result AMR) can be considered as a subring of alglat RTR
whenever T is a torsion module over a domain R. This will be used without

further comment.

The two subsequent results are used in Theorem 4.9 to prove, for a faithful
torsion module T over an almost maximal valuation domain R, that alglat RTR is
isomorphic to R. Theorem 4.7 uses the R—module structure on T from Proposition
4.6, and shows that, for a valuation domain R and faithful torsion R—module T, it
is always the case that R = }\(ﬁ) C alglat RTR' The proof depends on showing
that T is a faithful R—module. Thus if R is not complete in the R-topology then
R £ R and so AMR) is strictly contained in AMR). In this case T will not be
reflexive. A general characterisation of alglat with the hypotheses of Theorem
4.7 is not known. However the additional requirement in Theorem 4.9 that R be

almost maximal enables alglat RTR to be determined.

4.7 Theorem

Let R be a valuation domain with R-completion R. Let T be a faithful torsion

i

R-module. Then T is a faithful R—module and R AMR) C alglat RTR'
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Proof

From Proposition 4.6, MR) C alglat o Tp. The main part of the proof is to
show that T is faithful as an R—module. It then follows from the discussion in 1.1
that MR) = R. The first step is to show that there is a sequence of elements (te)
in T with Ann(t.) C Rc for each 0 = ¢ € R. Suppose for contradiction that
there is a non-zero element s of R with Ann(t) Z Rs for all t in T. Then, since R
is a valuation ring, Rs C Ann(t) for all t in T. So 0 ¢ Rs C tDT Ann(t) = AnnT.
This contradicts the statement that T is a faithful R—module. So for each 0 < ¢
€ R there is an element t; in T with Ann(te) C Rc. For each te (0 ¢ € R)
there is an element d. in R with 0 = Rd. C Ann(t.).

Let 8 = (ar + Rr) be an element of Ann ﬁT and let 0 > ¢ € R, Then 0 = &t,
= a4 tc and so a4, € Ann(t;) C Rc. However Rd. C Rc so a4, — 8 € Re.
Thus ao € Rc and so ac + Rc = 0 + Rc. Hence 8 = (0 + Rr), the zero element

of R. Thus T is a faithful R—module and R = MR), completing the proof. a
This next result, proved by Matlis in [16; Proposition 4.7], is used with
Theorem 4.7 to determine alglat T for a faithful torsion module T over an almost

maximal valuation domain.

4.8 Proposition (Matlis)

Let R be an integral domain and R its completion in the R-topology. Then R is

an almost maximal valuation ring if and only if R is a maximal valuation ring.

4.9 Theorem

Let R be an almost maximal valuation domain with R-completion R. Let T be a

faithful torsion R—module. Then R = \MR) = alglatRTR.

Proof

From Proposition 4.6 and Theorem 4.7, R = A(R) and AMR) C alglat RTR =

63



alglat féTﬁ’ The valuation domain R is almost maximal so, from Proposition 4.8, the
completion R is a maximal valuation ring. Then T is a reflexive R-module
(Theorem 4.1) and so algla’c}.i’]‘l.i = MR). Hence there is equality and so MR) =

alglat RTR' a

Remark

This theorem holds irrespective of whether or not the domain R is complete.
For, if R is complete then R = R and R is maximal (see comments following 4.4), so
T is reflexive as already shown by Theorem 4.1. However if R is not complete
then, since T is a faithful R—module, A(R) is strictly contained in MR) and so T is

not a reflexive R—module (see discussion before Theorem 4.7).

The results of this chapter are summarised in Theorem 4.10. This gives the
structure of alglat for any module over an almost maximal valuation ring. An

illustration of the nature of alglat completes the chapter.

4.10 Theorem
Let R be an almost maximal valuation ring and let T be an R—module. If R is
not maximal and if T is faithful and torsion, then alglatRTR = MR) = li, and T is

not reflexive. In all other cases T is reflexive.
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4.11 Illustration of the nature of alglat

R is an almost maximal valuation ring

T is an R—module

T is non-torsion T is torsion

Then T is reflexive

(2.5, 2.11)

|

T is not faithful T is faithful

Then T is reflexive (4.3)

R is maximal R is not maximal

Then T is reflexive (4.1) Then R is a domain (4.2) and

R is not complete (after 4.4)

n

So R MR) = alglatR’I‘R

and T is not reflexive (4.9)
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Chapter 5 The structure of FGC, FSI and CF rings

Vamos defined a ring to be fractionally self-injective or FSI if for each ideal |
of R the classical ring of quotients of R/l is self-injective (see Definition 5.1).
This chapter is concerned with the structure of FSI rings. There are also results
on FGC and CF rings, both classes having similar properties to FSI rings. No
results are given here for alglat for modules over FSI rings. Instead, this chapter
includes all the information on FSI rings which is needed to determine alglat and
thus provides the necessary background to the study of alglat for modules over
FSI rings in the next two chapters.

In [25], Vamos studied FGC rings as well as FSI rings. (The definition of an
FGC ring was given in 2.6.) Brandal, Shores, R. Wiegand and S. Wiegand also
studied FGC rings in [2], [23] and [26). In [23] Shores and R. Wiegand introduced
and studied CF rings (see Definition 5.3). All three types of rings have been
characterised in terms of their indecomposable rings and the structure theorems
are given in this chapter. Vamos proved (Theorem 5.12) that every FGC ring is an
FSI ring and Theorem 5.15 shows that every FSI ring is a CF ring. A description
of local FSI rings and FSI domains is also included. Specific examples are then
given to illustrate all these relationships and to show that the classes of rings are
distinct.

It has already been seen that every FGC ring is scalar-reflexive (see note prior
to 2.6) and it will be seen in Theorem 5.17 that every FSI ring is locally scalar-
reflexive and hence also scalar-reflexive (Theorem 2.17). This chapter ends with a
discussion of alglat for a specific module over a valuation ring which is not almost
maximal, recalling from Theorem 2.11 the fact that arbitrary valuation rings are
not scalar-reflexive. It is remarked (before Proposition 5.5) that every valuation
ring is a CF ring, and thus not every CF ring is scalar-reflexive. The study in
Chapters 6 and 7 of alglat for modules over FSI rings also determines alglat for

modules over FGC rings. The next obvious generalisation of these results is to
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CF rings. The nature of the work in Chapters 6 and 7 together with Example 5.22,
indicates that any characterisation of alglat for modules over the more general CF

rings will not be a simple extension of the results for modules over FSI rings.

The chapter begins with the definitions of FSI, CF and FGCF rings. (Recall

that a ring R is self-injective if R is an injective R—module.)

5.1 Definition of an FSI ring (Vamos [25])

A ring R is a fractionally self-injective ring or an FSI ring if for each ideal |

of R the classical ring of quotients of R/l is self-injective.

The concept of a canonical form or canonical decomposition for a module was
defined by Shores and R. Wiegand in [23] and was used there to make the definition
of a CF ring. The two definitions of FGC and CF rings were then combined in [23]

to form a class of rings called FGCF rings and this definition is given in 5.4.

5.2 Definition of a canonical form

A canonical form for an R—module M is a decomposition M = R/[; ¢ R/, @ ---

@® R/l where, C 1, C .- C I, CR.

5.3 Definition of a CF ring

A ring R is said to be a CF ring if every direct sum of finitely many cyclic

R—modules has a canonical form.

5.4 Definition of an FGCF ring

A ring is an FGCF ring if it is both an FGC ring and a CF ring.

Shores and R. Wiegand characterised all CF rings and all FGCF rings in [23]). In

[25], Vamos gives a complete description of all FSI rings and, independent of [23], of
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all FGCF rings. Vamos indicated in [25; Remark p217] that a proof that every FGC
ring has only finitely many minimal prime ideals is sufficient to show that every
FGC ring is an FGCF ring. This proof (that an FGC ring has only finitely many
minimal primes) was given by Brandal and R. Wiegand in [2; Lemma 3]. These
results then show that the definitions of FGC and FGCF rings are equivalent and
hence determine the structure of all FGC rings. A detailed account of these
proofs and the structure of FGC rings was given by R. Wiegand and S. Wiegand in

the expository article [26] and later by Brandal in [3].

The next part of this chapter is concerned with the structure theorems. The
first type of rings to be studied are the CF rings, and three decomposition
theorems for a CF ring will be given. Proposition 5.5 was proved by Shores and
R. Wiegand in [23; Corollary 1.7] and provides examples of CF rings. It was noted

in [23], in the proof of this result, that a valuation ring is a CF ring.

5.5 Proposition ([23])

Every h-local Prufer domain is a CF ring.
The study of CF rings introduces another class of rings which were called
?-rings in {23] by Shores and R. Wiegand. The definition follows in 5.6. Shores

and R. Wiegand gave an example of a ?-ring in [23; Example 3.13].

5.6 Definition of a ?-ring ([23])

A ring is a ?-ring if it is an indecomposable CF ring that is neither a valuation

ring nor an h-local domain.

There is now sufficient information to present the structure theorems for CF
rings. The following three theorems of Shores and R. Wiegand are from

[23; Theorems 3.10, 3.11 and 3.12] and characterise CF rings and ?-rings.
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5.7 Theorem ([23])

Every CF ring is a finite direct sum of indecomposable CF rings. The
indecomposable CF rings are precisely the rings R such that (i) R is arithmetical,
(ii) R has a unique minimal prime P, (iii) R/P is an h-local domain, and (iv) every

ideal contained in P is comparable with every ideal of R.

5.8 Theorem ([23])

Every ?-ring R has the following properties (in addition to (i) - (iv) of
Theorem 5.7): (v) P s P2 = 0, (vi) R has at least two maximal ideals, (vii) P is an
indecomposable, torsion, divisible R/P—module, (viii) P = P, for a unique maximal
ideal M, (ix) Py = O for every maximal ideal N ¢ M. Conversely every ideal

satisfying (i) - (vi) is a ?-ring.

5.9 Theorem ([23])
A ring is a CF ring if and only if it is a finite direct sum of valuation rings,

h-local Priifer domains, and ?-rings.

Thus the indecomposable CF rings are precisely the valuation rings, the h-local
Priifer domains and the ?-rings. Note that every CF ring is arithmetical; it is not
only the indecomposable CF rings that are arithmetical ([23; Proposition 1.10]). In
[25], Vamos gave the ?-rings the name of torch rings, this name being suggested by
the shape of the ideal lattice of these rings. His definition of a torch ring follows

in 5.10. (Note that a module is uniserial if all its submodules are totally ordered.)

5.10 Definition of a torch ring ([25])

A ring R is a torch ring if the following conditions are satisfied:
(1) R is an arithmetical ring with at least two maximal ideals, and
(2) R has a unique minimal prime ideal P such that R/P is an h-local domain, P is

uniserial and P = 0.
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Note that a definition of a torch ring is given in [26] which does not require
R/P to be an h-local domain. However if R is a torch ring in the sense of [25]
(5.10) then it is clear that R is a torch ring in the sense of [26]. In particular
results from [26] on torch rings may be used.

Vamos stated in [25] that the definitions of a torch ring and a ?-ring are indeed

equivalent. A proof is included in Lemma 5.11 for completeness.

5.11 Lemma

The definitions of a torch ring and a ?-ring are equivalent.

Proof

Let R be a ?7-ring. Properties (i) and (vi) from Theorem 5.8 give condition (1)
for a torch ring. From (iv) it can be seen that the ideals of R contained in P form
a chain, and so P is uniserial. Then conditions (ii), (iii), (iv) and (v) ensure that R
satisfies condition (2). Thus R is a torch ring.

Let R be a torch ring with unique minimal prime ideal P. It is clear from the
definition that R satisfies (i), (ii), (iii) and (vi). From [23; Lemma 3.1] P is
comparable to every ideal of R. Then, since P is uniserial, condition (iv) holds.
From [26; Lemma 18], P? = 0. But P s 0 and so condition (v) is satisfied. Thus R

is a ?-ring. 0]

The name torch ring will be used from now on for this class of rings.

Now that CF rings have been characterised, the next part of the chapter is
concerned with the decomposition of FSI and FGC rings. Results are also given
which show that every FGC ring is FSI and every FSI ring is CF. The next
theorem begins this classification by relating the structure of an FGC ring to that

of an FSI ring. This was proved by Vamos in [25; Theorem Al.
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5.12 Theorem ([25])
For a ring R the following are equivalent:
(i) R is an FGC ring,

(ii) R is an FSI Bezout ring.

Hence every FGC ring is an FSI ring. So this theorem provides examples of
FSI rings. Moreover the class of FGC rings is strictly contained in the class of
FSI rings. This will be shown in Example 5.14 by using the structure theorem for
FSI rings to give an FSI ring which is not an FGC ring. The next result,
Theorem 5.13, is the structure theorem for FSI rings and was proved by Vamos in

[25; Theorem Bl.

5.13 Theorem ([25])
Every FSI ring is the finite direct sum of indecomposable FSI rings. The
indecomposable FSI rings are precisely the almost maximal valuation rings, the

locally almost maximal h-local domains and the locally almost maximal torch rings.

From [25; Lemma 6], every FSI ring is arithmetical. So, in particular, these
locally almost maximal h-local domains, being FSI rings, are arithmetical. From
Theorem 5.13, any indecomposable FSI ring R has a unique minimal prime ideal P
which is uniserial, that is the ideals of R contained in P form a chain (see also
[25; Lemmas 5 and 8]), and the ideal P is comparable to every ideal of R

([23; Lemma 3.1]).

5.14 Example of an FSI ring that is not an FGC ring

Let R be a Dedekind domain which is not a PID. Then R is an h-local domain
and every localisation of R at a maximal ideal is an almost maximal valuation
domain. Thus R is a locally almost maximal h-local domain and so, from Theorem

5.13, R is an FSI ring. However, since R is not a PID, there are ideals which are
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finitely generated but not principal. Thus R is not a Bezout ring. Hence, from
Theorem 5.12, R is not an FGC ring. So every Dedekind domain is an FSI ring, and
those Dedekind domains which are not PIDs are FSI rings but not FGC rings.

Hence the class of FGC rings is strictly contained in the class of FSI rings.

Theorems 5.12 and 5.13 together characterise all FGC rings in terms of the
indecomposable FGC rings. This same characterisation was proved independently
by Shores and R. Wiegand in [23; Corollary 4.2]. Another decomposition theorem
for FGC rings was proved by R. Wiegand and S. Wiegand in [26; Theorem 5) which
classifies the FGC rings in terms of the properties of the indecomposable FGC

rings.

So FSI and FGC rings have all been characterised, and it has been shown that
all FGC rings are FSI. Theorem 5.15, which does not appear to be in the
literature, follows from the structure theorems for CF and FSI rings and shows

that every FSI ring is a CF ring.

5.15 Theorem
For a ring R the following are equivalent:
(i) R is an FSI ring,

(ii) R is a locally almost maximal CF ring.

Proof
(i) = (i)

Let R be an FSI ring. Then R is a finite direct sum of indecomposable FSI rings
(Theorem 5.13). Each indecomposable FSI ring is an indecomposable CF ring
(Theorem 5.13 and comments after Theorem 5.9). Thus R is a finite direct sum of

valuation rings, h-local Prifer domains and torch rings. Hence R is a CF ring

(Theorem 5.9). From [25; Lemma 6], R is a locally almost maximal arithmetical ring.
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Thus R is a locally almost maximal CF ring.

(ii) = (i)

Let R be a locally almost maximal CF ring. Then R is a finite direct sum of
indecomposable CF rings (Theorem 5.7), R == ‘Qnal Ri' Then, since R is a locally
almost maximal arithmetical ring, it can be seen that each of the rings R; is also a
locally almost maximal arithmetical ring. Thus each R; is an indecomposable
locally almost maximal CF ring. From Theorems 5.9 and 5.13 each Ri is an

indecomposable FSI ring, and so R is a finite direct sum of FSI rings. Thus R is an

FSI ring ([25; Lemma 1]). O

Thus every FSI ring is a CF ring. Proposition 5.16 and the ensuing comments
will show that these classes of rings are distinct, completing the presentation of
the structure theorems for CF, FSI and FGC rings. The next results of this
chapter determine the local FSI rings and the FSI domains. In Proposition 5.16, the
equivalence of conditions (i), (ii) and (iii) was proved by Vamos in [25; Lemma 5] and

condition (iv) follows immediately from Theorem 2.11.

5.16 Proposition

Let R be a local ring. Then the following are equivalent:
(i) R is an almost maximal valuation ring,
(ii) R is an FGC ring,
(iii) R is an FSI ring, and

(iv) R is scalar-reflexive.

Examples were given in 2.9 of valuation rings which are not almost maximal.
These rings are local CF rings but are not FSI rings (see note before 5.5 and
Proposition 5.16). So the class of FSI rings is strictly contained in the class of CF

rings.

73



An easy consequence of Proposition 5.16 was given by Vamos in [25; Lemma 6]
and states that if R is an FSI ring, then R is a locally almost maximal arithmetical
ring. Recall that the locally almost maximal arithmetical rings are precisely the
locally scalar-reflexive rings (discussion after 2.13). From these remarks it is
clear that every FSI ring is locally scalar-reflexive and this result is given in
Theorem 5.17. Theorem 5.17 will be used at the beginning of Chapter 6 to

determine alglat for non-torsion modules over FSI rings.

5.17 Theorem

Let R be an FSI ring. Then R is locally scalar-reflexive.

It was remarked in Chapter 2 following Theorem 2.11 that, for a local ring, the
conditions of being scalar-reflexive and of being an FGC ring are equivalent, but
that these conditions are not equivalent in general. [t has also been noted that
every FGC ring is scalar-reflexive. Example 5.14 provides a ring R which is an
FSI ring but not an FGC ring. From Theorems 2.17 and 5.17, R is scalar-reflexive.

Thus not every scalar-reflexive ring is an FGC ring.

Theorem 5.18, which does not appear to be in the literature, characterises all

FSI domains and follows from Theorem 5.13.

5.18 Theorem

A ring is an FSI domain if and only if it is a locally almost maximal h-local

domain.

Proof
Suppose that R is an FSI domain. Then R is an indecomposable FSI ring. From
the definition in 5.10, it is clear that R is not a torch ring. Moreover an almost

maximal valuation domain is a locally almost maximal h-local domain. Thus R is a
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locally almost maximal h-local domain (Theorem 5.13).

The converse is immediate from Theorem 5.13. a

Thus all local FSI rings and all FSI domains are characterised. The next
theorem gives an alternative description of FSI domains. This result was stated at
the end of Chapter 3 and provides another classification of all scalar-reflexive

h-local domains.

5.19 Theorem
Let R be a commutative ring. Then the following are equivalent:
(i) R is a scalar-reflexive h-local domain, and

(ii) R is an FSI domain.

Proof

From Theorem 3.1, condition (i) is equivalent to the assertion that R is a
locally scalar-reflexive h-local domain. But the locally scalar-reflexive h-local
domains are precisely the locally almost maximal h-local domains (see after 2.13).

The result then follows from Theorem 5.18. a

The next part of the chapter summarises the relationships between the classes
of rings discussed in this chapter. The example in 5.20 of an h-local Priifer
domain that is not a Dedekind domain will be required. The examples of these

rings are illustrated below.

5.20 Example of an h-local Priifer domain that is not Dedekind

Note that all Dedekind domains and all valuation domains are h-local Priifer
domains. From Example 2.9 there is a valuation domain R which is not almost
maximal. Then R is an h-local Prifer domain which is not noetherian (see Example

2.8(a)). Since every Dedekind domain is noetherian, R is not a Dedekind domain.
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5.21 Illustration of FGC, FSI and CF rings

Almost maximal valuation domain

|
]
(2.8(b)) PID
| I
AMVR

I

l— (5.16) ————

FGC torch ring

(following 2.6)

(2.9

valuation ring

torch ring

(5.9) |
(5.6)

FGC ring

(5.12, 5.14)

Dedekind domain

L

(5.14)

FSI ring

(5.15)

(5.20)

h-local Prufer domain

(5.5

|

CF rings

All the classes of rings shown here are distinct.
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The final part of this chapter looks at alglat for a specific 2—generated module
M over the valuation ring R in 2.9(b). It will be helpful for the study of
arbitrary modules over valuation rings to obtain some information from examples.
This particular construction of a module M over a valuation ring which is not
almost maximal was used by Hadwin and Kerr in the proof of Theorem 2.11
([9; Theorem 6]).

Theorem 2.11 states that, for a local ring, being scalar-reflexive is equivalent
to being an almost maximal valuation ring. Thus any wvaluation ring R which is not
almost maximal has finitely generated R—modules which are not reflexive. In order
to prove that a local scalar-reflexive ring is an almost maximal valuation ring,
Hadwin and Kerr used (9; Lemma 4] which shows that a local scalar-reflexive ring is
a valuation ring. They then assumed for contradiction that R was a scalar-
reflexive valuation ring but not almost maximal. A 2—generated R—module M was
constructed which was not reflexive, thus contradicting the assertion that R is
scalar-reflexive. Their proof did not determine alglatM, but provided a single map
in alglatM which is not in MR).

Example 5.22 concludes this chapter by using this construction to give a
2—generated module M over the valuation ring in 2.9(b) which is not reflexive.
The ring alglatM is then fully determined. The module M can also be considered
as an S—module where S = R/AnnM and then alglat RMR = alglat SMS (Proposition
1.19). Then M is not reflexive as an S—module. [t will be shown that M is a non-
torsion module over the valuation ring S and thus it is not even the case that
every non-torsion module over an arbitrary valuation ring is reflexive.

The proofs within Example 5.22 are outlined with some of the details being
omitted. The reader is also referred to the proof of Theorem 2.11 in
[8; Theorem 6]. It is hoped that this will open up the discussion and solution

of similar problems.
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5.22 Example of a 2—generated module over a valuation ring which is not reflexive

Let R be the valuation ring of Example 2.9(b). Then R is a domain and R = A,
where A = Clxo, X1 X2 oo b xn2 = X,_, and M is the maximal ideal (xo, X;, X2y ... ).
For ease of notation write r for the element £ in R. Let a, = 1 and, for n > 2,

1
n+41 N
@ =% pe elements of R and let I = (x.?7") be a family of ideals

8, = 8np-1 T K41
in R (n > 1). Then the system of congruences {a, mod I} is pairwise soluble but
has no simultaneous solution in R. Let b, = a, — a,_; so thatb € I,_,\ I and
b, J(R) C I, C b J(R) (note that R is local so J(R) is the unique maximal ideal MR
of R). Then the system of congruences {a, mod b_J(R)} is also pairwise soluble
with no simultaneous solution in R. The intersection of these ideals {|b J(R) =
NI, = Rx,.

Let M = (R ®@R)/K where K is the R—submodule generated by x,J(R) & x,J(R)

and {(x° — xnaan_,): n > 2}. Then it can be shown that an arbitrary element of K

has the form s(xna, — xnaan_l) + (%og, Xoh) where s € R and g, h € J(R). (Note

n+1 n+1
2 -3 . . .
that xn+13bn = xn+13xn+1( ) = Xnp1? = Xo. So comparing with the notation

of the proof of Theorem 2.11, ¢ = X, and for each b, Wy = xn+13. Thus b,,w.,n =
c.) Defineamap¢ : M = M by (u, v) + K ~ (xou, 0) + K. Then ¢ € alglat aMp
and ¢ & AMR) (the proof is identical to that of Theorem 2.11). Note that
_ ¢%((u, v) + K) = (x0°u, 0) + K = (0, 0) + K and so ¢°> = 0. Then M is not
reflexive and MR) + AR)¢ C alglat rMp-

To prove the reverse inclusion let 8 € alglatRMR. Then there are elements
r, s, t in R with 6((1, 0) 4+ K) = r((1, 0) + K), 6((0, 1) + K) = s((0, 1) + K) and
8((1, 1) + K) = t((1, 1) + K). So(r — t,s — t) € K and thus there are elements
f € Rand g € JRR) withr — s = fx (1 + a,_,) + x0g. Then 8((u, v) + K) =
s{(u, v + K) + (r — s)u, 0) + K = s{(u, v) + K) + (fxn3(1 + a,_Ju, 0) 4+ K
since xog € xJ(R).

The next step is to show that fxna(l + 8,_;) € Rxo. For any m > 2,
8((0, 0) + K) = 0((x,.°, — x.%am_y) + K) = s((x.°, — x.%an_)) + K) +

(fx,2(1 + a,_)x.% 00 + K. Thus (fx.°(1 + a,_;)x.°% 0) € K. It follows that
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fxn3(1 + a,,_l)xm3 € xoJ(R) and so fxna(l + a,-,) € b _J(R) for all m > 2. Hence
fx*(1 + a,_,) € ()b J(R) = Rxo.

So there is some element d of R with fx,f(l + a,_;) = dx,. Then 8((u, v) + K)
= s((u, v) + K) + (dxou, 0) + K = s((u, v) + K) + de¢((u, v) + K). Hence 6 =
A(s) + Md)¢ and so alglatpMp C MR) + MR)¢. Thus alglatpMp = MR) + MR)¢.

It is clear that xoJ(R) C AnnM. Letr € Ann((1, 0) + K) so then (r, 0) € K.
Noting that each a_ is a unit in R, it follows that r € x,J(R). So xyJ(R) =
Ann((1, 0) + K) = AnnM. Then M is a 2—generated torsion module over a
valuation domain which is not reflexive.

Let S = R/AnnM so that S is a valuation ring (not a domain). Consider M as
an S—module in the natural way. Then alglat RMR = alglatSMS and M is not
reflexive as an S—module. However Ann S((l, 0) + K) = 0 and so M is a non-
torsion S—module. Thus there are 2--generated non-torsion modules over valuation

rings that are not reflexive.

The next two chapters will use the results about FSI rings given in this

chapter to characterise alglat for all modules over an FSI ring.
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Chapter 6 Study of alglat for modules over FSI rings - part 1

The study of alglat for a module over an FSI ring divides into the two cases of
considering non-torsion modules and then torsion modules. The first result of the
chapter deals with the non-torsion case and proves that every non-torsion module
over an FSI ring is reflexive. This follows from the structure of an FSI ring, in
that every FSI ring is locally scalar-reflexive, and from the work in Chapter 2 on
non-torsion modules over locally scalar-reflexive rings.

Having dealt with the non-torsion case, the remainder of the chapter begins the
characterisation of alglat for torsion modules. First it is seen that the torsion
case can be reduced to the study of a torsion module over an indecomposable FSI
ring. This uses the decomposition for alglat in Theorem 1.10.

There are three types of indecomposable FSI rings, namely almost maximal
valuation rings, locally almost maximal h-local domains and locally almost maximal
torch rings (Theorem 5.13). Any indecomposable FSI ring R has a unique minimal
prime ideal P which is comparable to every ideal of R (see after Theorem 5.13).
Then for a torsion R—module T, either P C AnnT or AnnT C P. This chapter
looks at the case where AnnT C P. Then P < 0 and thus R is not a domain.
Modules over almost maximal valuation rings were studied in Chapter 4. So this
chapter is concerned only with locally almost maximal torch rings.

In order to study and characterise alglat for torsion modules over locally
almost maximal torch rings, a completion will be introduced in 6.4. This completion
is defined for any ring R with a non-zero ideal | such that the ideals of R
contained in I form a chain and | is comparable to every ideal of R. The unique
minimal prime ideal P of a locally almost maximal torch ring satisfies these
conditions with P = [. In this topology (of 6.4) the non-zero principal ideals of R
contained in I form a sub-base for the open neighbourhoods of 0 in R. This is
called the [-topology of R.

The main theorem in this section is Theorem 6.7 which uses the completion of
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6.4. Let R be a scalar-reflexive ring with a non-zero ideal [ such that the ideals
of R contained in [ form a chain and I is comparable to every ideal of R; then
Theorem 6.7 proves that for a faithful torsion R—module T, alglat T is isomorphic
to the I-completion of R. Corollary 6.8 follows easily from this more general
theorem and determines alglat for a faithful torsion module over a locally almost
maximal torch ring.

Chapter 7 begins by studying the case where P C AnnT. The results of these
two chapters are then brought together to give a complete characterisation of

alglat for modules over FSI rings.

Theorem 6.1 determines alglat for non-torsion modules over FSI rings. The
proof is immediate from Theorem 5.17 which shows that an FSI ring is locally

scalar-reflexive, and from Corollary 2.19 which deals with non-torsion modules.

6.1 Theorem

Let R be an FSI ring. Then every non-torsion R—module is reflexive.

The rest of this chapter looks at the torsion case and begins by reducing this
to the study of alglat for a torsion module over an indecomposable FSI ring. This
is done by observing that there is a decomposition for alglat using Theorem 1.10
from Chapter 1.

Let T be any torsion module over an FSI ring R. The structure theorem for

FSI rings (Theorem 5.13) shows that R is a finite direct sum of indecomposable FSI

rings Ri fori =1, ..., n. From the discussion in Chapter 1 prior to Theorem 1.10,
T can also be decomposed as a direct sum with T = é Ti where each Ti is an
i=1

Ri—Ri—bimodule. Then, from Theorem 1.10, alglatT = Gn} alglatTi and the Ti are
i=1

modules over the indecomposable FSI rings R, i=1,..,n) Since T is a torsion

R—module, at least one of the T, is a torsion R;—module. For otherwise, each

module T; has a non-torsion element t, (i = 1, ..., n). Then the sum of these
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elements t = t, + t, + - 4+ t, is a non-torsion element of T, contradicting T
torsion. From Theorem 6.1 every non-torsion module over an FSI ring is reflexive.
Thus it is sufficient to determine alglat for torsion modules over indecomposable

FSI rings.

Let R be an indecomposable FSI ring and let T be a torsion R—module. Then R
has a unique minimal prime ideal P which is comparable to every ideal of R. So
either P C AnnT or AnnT C P. This chapter looks at the second case and
determines alglat T where AnnT C P. Since P = 0, R must be either an almost
maximal valuation ring or a locally almost maximal torch ring. As recalled above,
alglat was determined for modules over almost maximal valuation rings in Chapter
4. Thus it is sufficient to consider R as a locally almost maximal torch ring.

So let R be a locally almost maximal torch ring and let T be a torsion R—module
with AnnT C P. Let S = R/AnnT so that S is an FSI ring ((25; Lemma 1]). Then
T is a faithful S—module and, from Proposition 1.19, alglat RTR = alglat STS' If T
is & non-torsion S—module then T is reflexive as an S—module (Theorem 6.1) and
hence reflexive as an R—module. Thus the only case to consider is where T is a
faithful torsion S—module. Vamos states in the proof of [25; Theorem B] that a
factor ring of a locally almost maximal torch ring is either a ring of the same type
or a locally almost maximal h-local domain or factor rings of this latter ring. The
next proposition is part of the preceeding statement and shows that, for
S = R/AnnT with AnnT C P, the factor ring S is a locally almost maximal torch

ring. A proof is included here for completeness.

6.2 Proposition

Let R be a locally almost maximal torch ring with unique minimal prime ideal P.

Let I C P and write S = R/I. Then S is a locally almost maximal torch ring.
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Proof

The ring R is an FSI ring and so from [25; Lemma 1] the factor ring S is also an
FSI ring. The first step is to show that the prime ideal Q = P/I is the unique
minimal prime ideal of S. Suppose Q, is a prime ideal of S contained in Q. Then Q,
= P,/] where P, is a prime ideal of R contained in P. So by minimality of P, P, =
P and thus Q, = Q. Hence Q is a minimal prime ideal of S. Suppose Q, is a
minimal prime ideal of S. Then Q, = P,/I where P, is a prime ideal of R. Now P
is comparable to every ideal of R and so either P, C Por P C P,. If P C P,
then Q C Q, which contradicts the minimality of Q,. So P, C P. Then by
minimality of P, P, = P and so Q, = Q. Hence Q is unique and is therefore the
unique minimal prime ideal of S.

It now follows from [25; Lemma 8] that S is an indecomposable FSI ring. The
ideal I is strictly contained in P and so is not a prime ideal of R. Thus S is not a
domain. Moreover R has at least two maximal ideals M and N. Then M/I and N/I
are distinct maximal ideals of S and so S is not & local FSI ring. Hence, from

Theorem 5.13, S is a locally almost maximal torch ring. O

Thus to characterise alglatT for a torsion R—module T where R is an
indecomposable FSI ring and AnnT C P, it is enough to determine alglat for a
faithful torsion module over a locally almost maximal torch ring. The rest of this
chapter works towards the structure theorem for alglat in this case which is given
in Corollary 6.8. Then Theorem 6.10 summarises the information in this chapter to
give a concise characterisation of alglat T where T is an R—module over an

indecomposable FSI ring R with AnnT C P.

As already discussed in Chapters 1 and 4, the structure of alglat is closely
associated with inverse limits and topological completions. The R-topology of a
domain R was defined in 4.4, and this topology takes the non-zero principal ideals

of R as a sub-base for the open neighbourhoods of 0 in R. A completion will be
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introduced in 6.4 to study faithful torsion modules over locally almost maximal
torch rings.

In order to describe alglat in terms of a completion, the ring must be Hausdorff
in this new topology. This ensures that there is an embedding of the ring in its
completion. The unique minimal prime ideal P of a locally almost maximal torch
ring R is comparable to every ideal of R and the ideals of R contained in P form a
chain. The next lemma shows that OJ’] PRp C AnnT for all torsion R—modules T

pe
(note that P =< 0). So if R has a faithful torsion module T then AnnT = 0 and
hence O#ﬂ PRp = 0. Thus if the non-zero principal ideals of R contained in P are
pe
taken to form a sub-base for the open neighbourhoods of 0 in R and if R has a

faithful torsion module then R is Hausdorff in this topology. This motivates the

definition of the I-topology given in 6.4.

6.3 Lemma

Let R be a commutative ring with a non-zero ideal I such that I is comparable
to every ideal of R. Let T be any torsion R—module. Then O;EQeQRX C AmnT.
Proof

Let a € O¢Q€!Rx so thena € I and let t € T. [ is comparable to every ideal of
R so either I C Ann(t) or Ann(t) C I. If I € Ann(t) then clearly a € Ann(T).
Now suppose Ann(t) C I. Then since T is torsion there is some non-zero element r
of R withr € Ann(t) and so 0 =2 r € I. Then a € Rr and so a € Ann(t). So for
all t G T, a € Ann(t) and thus a € AnnT. Hence o;eQqu C AmnT. 0O

Thus any indecomposable FSI ring R with unique minimal prime ideal P =< 0
satisfies the hypotheses of Lemma 6.3 (with [ = P). It is also the case that the

ideals of R contained in P form a chain. Although these rings were the motivation

for the I-topology, the definition in 6.4 is valid for a larger class of rings.
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6.4 Definition of the I-topology

Let R be a commutative ring with a non-zero ideal [ such that the ideals of R
contained in I form a chain and [ is comparable to every ideal of R. Define a
topology on R called the I-topology by letting the non-zero ideals of R contained in
I form a sub-base for the open neighbourhoods of 0 in R. The same topology is
given to R by letting the non-zero principal ideals of R contained in [ form a sub-
base for the open neighbourhoods of 0 in R. This topology on R makes R into a
topological ring and R is Hausdorff if and only if D;&ﬂqu = 0. From the
preceeding lemma and comments it can be seen that if R has a faithful torsion
module then R is Hausdorff in the I-topology.

Suppose that R is Hausdorff in the I-topology. Then the inverse limit 1231 R/J
exists and is isomorphic to 1‘1_n_1 R/Rx (where the index sets are, respectively, the
family of non-zero ideals of R contained in [ and the family of non-zero principal
ideals of R contained in | and both index sets are ordered by inclusion). Let R’ =
l‘iln R/Rx (0 % x € 1) so then R’ is the completion of R in the I-topology. Then
(ax + Rx) is an element of R’ if and only if for any non-zero elements y, z in |
with Ry C Rz then ay — a; € Rz (recall that the ideals of R contained in I form
a chain). There is a canonical ring homomorphism ¢ : R =& R’ given by ¢ : 2 ~
(@ + Rx) fora € Rand 0 ¢ x € I. Then ker¢ = l)?&Q‘;‘Rx. Since R is Hausdorff,

ker¢ = 0 and so ¢ embeds R in R’. The ring R is complete in the I-topology if

and only if ¢ is an isomorphism.

From 4.4, the R-topology is defined for a domain R. The R-completion of a
domain R is R = l‘gx R/Rr for 0 ¢ r € R. Let R be a valuation domain. Then the
completion of R in the I-topology with I = R is R’ = l*n_n R/Rx for 0 =< x € R.
Thus R’ = R where R is the completion of R in the R-topology. So these
topologies coincide and there is no ambiguity in referring to the “R-topology” and
the “R-completion”.

More generally, let R be a domain with a non-zero ideal I such that the ideals
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of R contained in [ form a chain and I is comparable to every ideal of R. For
example R could be a valuation domain with | as any non-zero ideal of R. Then
I‘i_r_n R/Rr is isomorphic to l‘lln R/Rx where 0 ¢ r € Rand 0 ¢ x € I. That is, R

has both the R- and the I[-topologies and these topologies coincide.

Let R be a locally almost maximal torch ring with unique minimal prime ideal P
(P =% 0) and let T be a faithful torsion R—module. Let R’ be the completion of R
in the P-topology. Then R is Hausdorff in the P-topology (see before Lemma 6.3)
and so the homomorphism ¢ : R =& R’ given by ¢ : a — (a + Rp) for a € R and
0 == p € P embeds R in R’. In order to determine alglatT it has to be shown that
T has an R’—module structure and this is the next result (cf Proposition 4.6). As
with Proposition 4.6 the result proved here is more general than needed.
Proposition 6.5 is then used in Theorem 6.7 to characterise alglat for faithful
torsion modules over a class of rings which includes locally almost maximal torch
rings. Corollary 6.8 then shows for a faithful torsion module T over a locally
almost maximal torch ring R, that alglatT is isomorphic to R’, the completion of R
in the P-topology.

Proposition 6.5 shows, for any ring R with the I[-topology, that every faithful

torsion R—module has an R’—module structure.

6.5 Proposition

Let R be a commutative ring with a non-zero ideal I such that the ideals of R
contained in I form a chain and I is comparable to every ideal of R, Let T be a
faithful torsion R—module and let R’ be the completion of R in the [-topology.
Then T has an R’—module structure given by (ay + Rx)t = ayt where (ay + Rx)

€ Rt €Tand 0 =% Ry C Ann(t). Moreover alglatp Tp = alglatp, Tp..

Proof

Let t € T. Then Ann(t) £ 0 since T is a torsion module. The ideal I is
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comparable to every ideal of R so either I C Ann(t) or Ann(t) C I. In both cases
there is an element 0 = y € I with Ry C Ann(t).

Suppose that Rx C Ann(t) and Ry C Ann(t) for 0 = x, y € I. The ideals of
R contained in [ form a chain so suppose Rx C Ry. Then ay — ay € Ry C
Ann(t). Thus ayt = ayt.

Suppose (axy + Rx) = (by + Rx) and that Ry C Ann(t). Then ay — by € Rx
for all 0 #£ x € I. In particular ay — by € Ry and so ayt = byt.

Let 2’ = (ax + Rx) be an element of R’ and let t,, t, be elements of T. From
the hypotheses it is clear that any ideal of R which is contained in I is comparable
to every ideal of R, If at least one of Ann(t;) and Ann(t,) is contained in [ then
the ideals are comparable so suppose Ann(t,) C Ann(t,). Then there is an element
0 = y €1 with Ry C Ann(t;) C Ann(t,) and then also Ry C Ann(t, + t;). On
the other hand if neither Ann(t;) nor Ann(t,) are contained in I then, since I is
comparable to every ideal, I C Ann(t,) N Ann(t,). Thus again there is an element
0 =% y €I with Ry C Ann(t,), Ry C Ann(t,) and Ry C Ann(t, + t;). Then in
both cases, a’'(t; + t;) = ay(t; + t;)) = ayt; + ayt, = a’t; + a’t,.

Let a’ = (ax + Rx), b’ = (by + Rx) be elements of R’ and let t be an element
of T with 0 % Ry C Ann(t). Then a’ + b = (ayxy + by + Rx) and a’b’ =
(axby + Rx). So (a’ + b)t = (ay + by)t = ayt + byt = a’t 4+ b’t. Since
Ann(t) C Ann(byt), Ry C Ann(byt). Thus a’(b’t) = a/(byt) = ay(byt) = (ayby)t
= (a’b’)t. The identity element of R’ is (1 + Rx), and (I + Rx)t = 1t = t.

Thus T is an R’—module under this product.

From 6.4, R is Hausdorff in the I-topology and so R C R’. Thus End TR' -
End TR. Let ¢ € alglatR,TR,. Let t € T. There is an element a’ € R’ with ¢t =
a’t. Then, from the R’—module structure of T, ¢t € Rt. Hence ¢ € alglat RTR
and so alglat R’TR' - alglatRTR.

Let ¢ € alglatpTp. Then ¢(t; + t;) = ¢t + ¢t; for t,, t, in T. Let a’ =
(axy + Rx) € R” and let t € T with 0 ¢ Ry C Ann(t). Then there is some b in R

with ¢t = bt and so Ry C Ann(t) C Ann(bt). Thus ¢(ta’) = ¢(tay) = (dt)ay =
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(bt)ay, = (bt)a’ = (¢t)a’. So ¢ € End Tg,. Let t be any element of T. Then, since
¢ € alglatRTR and R C R/, ¢t € R‘t. Hence ¢ € alglatR,TR, and so alglatRTR C

alglatR,TR,. Thus alglatRTR = alglatR,TR,. O

From this result, A\(R’) may be considered as a subring of alglat RTR whenever R
and T are as given in Proposition 6.5 (compare with the remark following

Proposition 4.6). This will be used without further comment.

The next result retains this degree of generality proving, for a faithful torsion
R—module T where R satisfies the hypotheses of Proposition 6.5, that it is always
the case that R’ = AMR’) C alglat rTR- As with Theorem 4.7, part of the proof
consists of showing that T is a faithful R’~module. If R is not complete in the

I-topology, MR) is strictly contained in A(R’) and so T is not reflexive.

6.6 Theorem

Let R be a commutative ring with a non-zero ideal I such that the ideals of R
contained in I form a chain and | is comparable to every ideal of R. Let T be a
faithful torsion R—module and let R’ be the completion of R in the [-topology.

Then T is a faithful R’—module and R’ = MR’) C alglat rTR-

Proof

From Proposition 6.5, N(R’) C alglat RTR' The main part of the proof is to
show that T is faithful as an R’~module. It then follows from the discussion in
1.1 that MR’) = R’. The first step is to show that there is a sequence of
elements (ty) in T with Ann(ty) C Ru for each 0 £ u € I. Suppose for
contradiction that there is a non-zero element y of | with Ann(t) € Ry for all t in
T. Then, since the ideals of R contained in | are comparable with every ideal of
R, Ry C Ann(t) forall tin T. So 0 ¥ Ry C [} Ann(t) = AnnT. This

teT
contradicts the statement that T is a faithful R—module. So for each 0 =< u € [
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there is an element ty in T with Ann(ty) C Ru. For each ty (0 # u € I) there is
an element vy in [ with 0 = Rvy C Ann(ty).

Let a’ = (axy + Rx) be an element of Ann R’T and let 0 =2 u € I. Then 0 =
a’ty = ay,ty and so ay, € Ann(ty) C Ru. However Rvy C Rusoay, —ay €
Ru. Thus ay € Ru and so ay + Ru = 0 + Ru. Hence a’ = (0 4+ Rx), the zero
element of R’. Thus T is a faithful R’—module and so R’ = A(R’). This completes

the proof. a

Theorem 6.7 imposes the additional condition on the hypotheses of Theorem 6.6
that R be a scalar-reflexive ring. Then it is shown that for a faithful torsion
R—module T, alglatT is isomorphic to R’, the I-completion of R. So this extra

condition is sufficient to give equality and thus R’ = MR’) = alglat RTR‘

6.7 Theorem

Let R be a scalar-reflexive ring with a non-zero ideal [ such that the ideals of
R contained in I form a chain and I is comparable to every ideal of R. Let T be a
faithful torsion R~module and let R’ be the completion of R in the I-topology.

Then R’ = NR’) = alglatpTp.

Proof

From Theorem 6.6, R’ = AMR’) and MR’} C alglat RTR‘ Let ¢ € alglatpTp. To
complete the proof it is sufficient to show that ¢ € AMR’). From Proposition 6.5, T
has an R’—module structure given by (ay + Rx)t = ayt where t € T and 0 £ Ry
C Ann(t). From the proof of Theorem 6.6, there is a sequence of elements (ty) in
T with Ann(ty) € Ru for each 0 % u € [. Since ¢ € alglatRTR, there is an
element b, of R with ¢t = byty for each 0 ¢ u € I. Let r’ = (by + Rx) for
0=xel

The first step is to show that r’ € R’. Let y and z be non-zero elements of I

with Ry C Rz. Then Ann(ty) C Ry and Ann(tz) C Rz. The ideals of R
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contained in I form a chain so Ann(ty) and Ann(t;) are comparable. Suppose that
Ann(ty) C Ann(tz). The R—module N = Rty + Rt is reflexive since R is scalar-
reflexive. So there is an element b in R with ¢ = Mb) on N. Then byty, = ¢ty
= bty and byt; = ¢t; = bt. Thus by — b € Ann(ty) C Ann(t;) and b, — b €
Ann(tz). So by — bz € Ann(tz) C Rz. Thusr’ € R’.

The next step is to show that ¢ = Nr’). Let t € T. Then there is an element
0 > y €1 with Ry C Ann(t) and so r't = byt. The R—module N’ = Rt + Rty is
reflexive since R is scalar-reflexive. So there is an element ¢ in R with ¢ = Nc)
on N’. Then ¢t = ct and byty = ¢ty = cty. Thus by — ¢ € Ann(ty). But
Ann(ty) C Ry and so by — ¢ € Ry C Ann(t). So byt = ct and thus ¢t = byt
= r’t. Hence ¢ = Nr’) on T.

Thus ¢ € MR’) and so alglatp Tp C MR’). Hence alglat p Tp = A(R’) and the

proof is complete. a

Compare Theorems 6.6 and 6.7 and the corresponding change in hypotheses with
Theorems 4.7 and 4.9 on valuation domains. In these latter results, the change
from R being a valuation domain to R being an almost maximal valuation domain was
sufficient to give equality in Theorem 4.9. Recall that Theorem 4.9 proved, for a
faithful torsion module T over an almost maximal valuation domain R, that alglatT
is isomorphic to the completion of R in the R-topology. From Theorem 2.11, a
local ring is scalar-reflexive if and only if it is an almost maximal valuation ring.
Thus to give the equality of Theorem 4.9, the additional condition that R be
scalar-reflexive was imposed on the hypotheses of Theorem 4.7. So the similarity
in the construction and results of Chapters 4 and 6 is evident throughout. In both
cases, the addition of R being scalar-reflexive is sufficient to characterise alglat

for faithful torsion modules over the respective types of rings R.

The next result is a corollary of Theorem 6.7 and determines alglat for a

faithful torsion module over a locally almost maximal torch ring.
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6.8 Corollary
Let R be a locally almost maximal torch ring with unique minimal prime ideal P.
Let R’ be the completion of R in the P-topology and let T be a faithful torsion

R—module. Then R’ = A(R’) = alglat rRTR"

Proof
From Theorems 2.17, 5.13 and 5.17, the ring R is scalar-reflexive. The ideal P
is non-zero, the ideals of R contained in P form a chain and P is comparable to

every ideal of R. The result is then immediate from Theorem 6.7. a

Theorem 6.7 can be applied to almost maximal valuation domains as well as to
locally almost maximal torch rings. Suppose that T is a faithful torsion module
over an almost maximal valuation domain R. Then R and T satisfy the hypotheses
of Theorem 6.7 with I as any non-zero ideal of R. Let R’ be the completion of R
in the I-topology. Then (from Theorem 6.7) R’ = NR’) = alglatTp. This is the
same result as Theorem 4.9, since it was noted following the definition of the
I-topology in 6.4 that R/ = R in this particular case, where R is the completion of
R in the R-topology. Thus Theorem 4.9 is shown to be a corollary of Theorem
6.7. Although the result given in Theorem 4.9 could have been omitted from
Chapter 4 and introduced for the first time here, Theorem 4.9 motivated the
enquiry which led to Theorem 6.7. The direct proof of Theorem 4.9 may also be
of independent interest, being of a different nature to that of Theorem 6.7, and
using the relationship between a domain R and its R-completion given in Proposition
4.8. Furthermore, the result of Theorem 4.9 was used in Chapter 4 to complete
the characterisation of alglat for modules over an almost maximal valuation ring.

Theorem 4.9 will be used in Chapter 7 in the proof of Theorem 7.1.

There is now sufficient information to characterise alglat for an R—module T

where R is an indecomposable FSI ring and AnnT C P. Before giving this full
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characterisation, Proposition 6.9 determines alglat for any module T over a locally
almost maximal torch ring R with unique minimal prime ideal P where AnnT C P.
The proof of this result follows from Proposition 1.19, Theorem 6.1,

Proposition 6.2 and Corollary 6.8.

6.9 Proposition

Let R be a locally almost maximal torch ring with unique minimal prime ideal P.
Let T be an R—module with AnnT C P. Let S = R/AnnT and Q = P/AnnT. If T
is torsion as an S—module then alglat RTR = NS’) = S’ where S’ is the completion
of S in the Q-topology. Thus if S is not complete in the Q-topology then T is not

reflexive. In all other cases T is reflexive.

The final theorem of this chapter brings all the results together and
characterises alglat for a module T over an indecomposable FSI ring R with unique
minimal prime ideal P where AnnT C P. If R is such a ring and if T is an
R—module with AnnT C P then P ¢ 0. Thus R is either an almost maximal
valuation ring (not a domain) or a locally almost maximal torch ring. But an almost
maximal valuation ring which is not a domain is maximal (Proposition 4.2) and every
module over a maximal valuation ring is reflexive (Theorem 4.1). The proof of

Theorem 6.10 is now immediate from Proposition 6.9 and these remarks.

6.10 Theorem

Let R be an indecomposable FSI ring with unique minimal prime ideal P. Let T
be an R—module with AnnT C P. Let S = R/AnnT and Q = P/AnnT. If Sis a
locally almost maximal torch ring and if T is torsion as an S—module then
alglat RTR = MS’) = S’ where S’ is the completion of S in the Q-topology. Thus
if S is not complete in the Q-topology then T is not reflexive. In all other cases

T is reflexive.
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Chapter 7 discusses the case where R is an indecomposable FSI ring with unique
minimal prime ideal P and T is a torsion R—module with P C AnnT. Using the
results of this present chapter, Chapter 7 gives a full characterisation of alglat

for a module over an FSI ring. An illustration of all these results is also included.
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Chapter 7 Study of alglat for modules over FSI rings - part 2

In Chapter 6 it was shown that every non-torsion module over an FSI ring is
reflexive (Theorem 6.1). This reduced the study of alglat to the torsion case.
The discussion after Theorem 6.1 then showed that the characterisation of alglat
could be reduced to the consideration of alglat for torsion modules over
indecomposable FSI rings. Any indecomposable FSI ring R has a unique minimal
prime ideal P which is comparable to every ideal of R. Thus for a torsion
R-module T, either P C AnnT or AnnT C P. Chapter 6 dealt with the case
where AnnT C P.

Theorem 7.1 is the main result of the chapter and characterises alglat for
torsion R—modules T such that P C AnnT. Since R is an FSI ring, the factor ring
R/P is an FSI domain ([25; Lemma 1]). Theorem 7.1 uses this property of FSI rings
to apply the decomposition for alglat of Theorem 1.21. This completes the
individual results needed to describe alglat for modules over FSI rings.

Theorem 7.3 combines the results of Chapter 6 with Theorem 7.1 to give a full
characterisation of alglat for all modules over an FSI ring. An illustration

indicating the structure of alglat for any module over an FSI ring follows in 7.4.

Let R be an indecomposable FSI ring with unique minimal prime ideal P. Let T
be a torsion R—module such that P C AnnT. Then T can be considered as an
R/P—module. If T is a non-torsion R/P—module then T is reflexive as an
R/P—module and also as an R—-module (Proposition 1.19 and Theorem 6.1). This
leaves the case where T is torsion as an R/P—module.

Suppose that T is a torsion R/P—module. The ring R/P is an FSI domain and
hence an h-local domain (Theorem 5.18). In order to characterise alglat the
decomposition of Theorem 1.21 is used. From this theorem, alglat RTR =
I;Ialglat Tw under the ring isomorphism ae of 1.21, where Ty, is an Ry—module and

M ranges over all maximal ideals of R containing P. Given that P is the unique
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minimal prime ideal of R this means that M ranges over all maximal ideals of R.
Thus alglatpTp = [Talglat T\, where M ranges over all maximal ideals of R.

M
Recall from Proposition 5.16 that each of the localised rings Ry is an almost

maximal valuation ring.

Theorem 7.1 combines the results of Chapter 4 on alglat for modules over an
almost maximal valuation ring with the above remarks. This characterises alglat
for a torsion module T over an indecomposable FSI ring with unique minimal prime

ideal P where P C AnnT.

7.1 Theorem

Let R be an indecomposable FSI ring with unique minimal prime ideal P. Let T
be a torsion R—module with P C AnnT. Let fi,; be the Ry-completion of R,
whenever M is a maximal ideal of R such that Ry is a domain. Let X = (M I M is
a maximal ideal of R, R, is not Ry-complete, AnnTyy = 0land Y = {MIMis a
maximal ideal of R, M & X} where T, is an Ry—module. If T is a torsion
R/P—module then alglat p Tp = ( I MRY) @ ( IT MRW). Otherwise T is

Me X MeY

reflexive.

Note

Suppose that Ty, is a faithful Ry~module so that AnnTy = 0. Since P C
AnnT it follows that P,y C AnnTy and so Py = 0. Thus Ry, is an almost maximal
valuation domain. Hence the Ry-completion of R, exists. In particular, if M € X
then ﬁ; always exists. Note also that, from Proposition 4.6, alglat RMT"" Ry =
alglat ~ Ty ~ .

B R ME,

Proof

The module T has an R/P-~module structure. If T is a non-torsion R/P—module

then T is reflexive as an R/P—module and thus as an R—module.
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Suppose T is a torsion R/P—module. For each maximal ideal M, T, is an

Ru—module. For any z € Ty, there is some non-zero (r + P) € R/P with rt =

— D

é = % in T,. Since P is a prime ideal of R, % > (1-2 in Ry

and so each T, is a torsion Ry—module. From Theorem 1.21 and the above

(r + P)t = 0. Thus

discussion, alglat TR = []alglat T\, where M ranges over all maximal ideals of R.
M

~

Thus alglatp Tp = ( [1 alglatTy) @ (][] alglatTy).
Me X MeY

Let M € X so that AnnT, = 0. Then T, is a faithful torsion Ry,—module and
R, is an almost maximal valuation domain (see note). So from Theorem 4.9
alglat Ty = )\(15:;4) = ﬁ:,, The ring Ry is not complete in the Ry-topology (since M
€ X) and thus T, is not reflexive.

Let M € Y. If Ty is faithful then Ry is an almost maximal valuation domain
(see note) and Ry, is R-complete. So (using Theorem 4.9 again) alglatT,, = )\(1’2\,:1)

= MR.). If Ty is not faithful then from Theorem 4.3, Ty, is reflexive and thus

alglat Ty, = MRy). The result now follows. 0O

Suppose, with the notation of Theorem 7.1, that alglat RTR = (MI})< )\(1’2:,)) &
(M1:IY MRu)). This description of alglat does not exclude the possibility that T may
nevertheless be reflexive.

In particular suppose that T is non-torsion as an R/AnnT—module with
P C AnnT (the case P = AnnT is dealt with in Theorem 7.1). Then T is

reflexive (Theorem 6.1). In this case AnnTy % 0 where M ranges over all maximal

ideals of R. For if r is a non-zero element of AnnT with r € P and M is any

r
1

and thus AnnTy % 0. Then M € Y for all maximal ideals M of R and hence, in

maximal ideal of R then = is in AnnTy. Since P is a prime ideal of R, II- < (T) € Ry

this case, X = .

The next result is a special case of Theorem 7.1. This corollary deals with the
situation when each localised module T, is a faithful Ry—module. A description of

alglat when Y = & follows Corollary 7.2.
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7.2 Corollary

Let R be an FSI domain and let T be a torsion R—module with T, faithful as an
Ry—module for all maximal ideals M of R. Then T is a faithful R—module and
alglat RTR = MR). In particular if R is complete in the R-topology then T is

reflexive.

Proof

The first step is to show that T is a faithful R-module. Suppose for
contradiction that T is not faithful so that there is a non-zero element a in AnnT.
Let M be a maximal ideal of R. Then 2 is a non-zero element of Ry, and, for any

1
element é in T, 8 € Ann(é). Thus & € AnnT., and so Ty, is not a faithful

1

Ru—module. This gives the required contradiction.

From Theorem 7.1 alglat g Tp = (MIZIX MR @ (MI:IY MR,,)) where X = (M | M is
a maximal ideal of R, Ry is not Ry-complete, AnnT, = 0}and Y = {M I Misa
maximal ideal of R, M € X}. (Note that P = 0 and thus each R, is a domain with
corresponding completion 1’2:,.) If M € Y then, since Ty is faithful, Ry is complete
in the Ry-topology. Thus MRu) = MR.). So salglat RTR = 1;:[)\(15;,) where M
ranges over all maximal ideals of R. From Theorem 1.18 and using the notation
from there, the ring isomorphism is given by a with a : I;Ik(ﬁ,;) — alglat RTR’
(6n) — 86 where 8t = T'l[GM {-;] The ring R is an h-local domain so from Lemma 4.5
and the remarks following, R = I;]li; with the isomorphism given by ¥ : (a; + Rr)
— (-8}1—c + Ry %”' Thus MR) = 1:41)\(}5,4\45 under the isomorphism & : N(ar + Rr)) —
(M"Tf + Rub). So S(NR) = I;IA(&). Thus elglatpTp = a(l;lx(é})) = as (\R)).

The final step of the proof shows that ad(MR)) = MR). Let ¥ = (ap + Rr) €
R and let t be a non-zero element of T. Then there is some non-zero element s of
R with Rs C Ann(t). Using the R—module structure of T, M)t = Tt = agt
(from Proposition 4.6). Then [acé (MTF))]t = [on(}\(al—r + RMg))]t = 7"‘[)\(8—;I + R,fi)%]

= an + RM%]. Since 0 » Rs C Ann(t), it follows that 0 = R.§ C Ann(i—‘)

agt

1 ] = agt. So

for all maximal ideals M of R. Thus [ad (AN(E))]t = ‘r'l[%.% = ‘r'l[
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[ MENIt = (M)t for all t in T. Thus a§(MF)) = MF) for all ¥ in R and so
ad (MR)) = MR) as required. Hence alglatRTR = MR).
If the ring R is complete in the R-topology then R = R and so alglatRTR =

MR). Thus T is & reflexive R—module. O

With the notation of Theorem 7.1, suppose that T is a torsion R/P—module and
that ¥ = &. Then T, is faithful where M ranges over all maximal ideals of R.
Since P C AnnT, it follows that Py, C AnnTy for all M. Thus each P, = 0 and
hence P = 0. The ring R is therefore an FSI domain. From Corollary 7.2, T is a

faithful R—module and alglat Ty = MR).

Theorem 7.3 summarises all the results on alglat for modules over an FSI ring.
Thus alglat for any module over an FSI ring is completely characterised.
Although this theorem provides a full description of alglat, recall in particular
(from Theorems 5.17 and 6.1) that all finitely generated and all non-torsion modules
over an FSI ring are reflexive. The proof of Theorem 7.3 is immediate from

Theorems 6.1, 6.10 and 7.1 and the discussion after Theorem 6.1.

7.3 Theorem

(a) Arbitrary FSI rings

Let R be an FSI ring and let T be an R—module.

If T is non-torsion then T is reflexive.

If T is torsion then alglatT = .6:9‘ alglat 'I‘i where R = IG:BI Ri’ each Ri is an
indecomposable FSI ring, T = EnB Ti and each Ti is an Ri—module.

i=1

(b) Indecomposable FSI rings

Let R be an indecomposable FSI ring with unique minimal prime ideal P. Let T
be an R—module.

If AonT C P, S = R/AnnT is a locally almost maximal torch ring and T is a
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torsion S—module then aiglat RTR = MS’) = S’ where S’ is the completion of S in
the Q-topology, Q being P/AnnT.

If PC AnnT and T is a torsion R/P—module then alglatRTR = (MI:I)< )\(}’2\;)) D
(MI:IY MRL)) where ﬁ; is the completion of Ry, in the R.-topology and X, Y are as

defined in Theorem 7.1.

In all other cases T is reflexive.

The chapter ends with an illustration which indicates the nature of alglat for

any module over an FSI ring.

7.4 Illustration of the nature of alglat

R is an FSI ring

T is an R—module

T is non-torsion T is torsion
Then T is reflexive R = Gn}Ri where each Ri is an
1=1
(6.1) indecomposable FSI ring

T = éTi where each T, is an
R;—module (at least one T; torsion)
Then alglatT = ié_nBlalglat’I‘i

(1.10, following 6.1)

(continued ...)
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R is an indecomposable FSI ring with unique minimal prime ideal P

T is an R—module

T is non-torsion T is torsion

T is reflexive

(6.1
P C AnnT AnnT CP
T non-torsion R AMVR not domain R locally almost maximal
R/P—module Then R maximal torch ring
T is reflexive T is reflexive S = R/AnnT is a locally
(6.1) 4.1, 4.2) almost maximal torch ring
with unique minimal prime

T torsion R/P-module ideal Q = P/AmnT
alglat p T = ([T MRY) @ ([T MRw) (6.2)
Me X MeY

(with notation of 7.1)

T non-torsion T torsion S—module
S—module alglat p Tp = M&) = 8,
T is reflexive the completion of S in
6.1) the Q-topology

(6.9)
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