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Alglat for Modules over FSI Rings and Reflexivity Nicole Jane Snashall

ABSTRACT

For a bimodule where R and A are rings with unity, alglat is the ring 
of all A-endomorphisms of M leaving invariant every R-submodule of M. The 
bimodule is said to be reflexive if the elements of alglat are precisely the left 
scalar multiplications by elements of R.

For most of the thesis A =  R, a commutative ring with unity. However, in the 
early work, some results on the general structure of alglat are obtained, and in 
particular. Theorem 1.9 shows that it is an inverse limit.

The next section of the thesis is concerned with reflexivity, and considers 
rings R for which all non-torsion or all finitely generated R-modules are reflexive. 
Theorem 3.4 gives eight equivalent conditions on an h-local domain R to the 
assertion that every finitely generated R-module is reflexive, that is R is scalar- 
reflexive. A local version of this property is introduced, and it is shown in 
Theorem 2.17 that a locally scalar-reflexive ring is scalar-reflexive.

The remainder of this thesis considers alglat for all modules over an FSI ring. 
The local FSI rings are precisely the almost maximal valuation rings, and this is 
the first case to be settled. More details are then given of the structure of FSI 
rings and related rings. A completion is introduced in 6.4 to enable alglat to be 
determined for certain torsion modules over an indecomposable FSI ring. Theorem 
7.3, in summarising the work of the last two chapters of the thesis, gives a 
complete characterisation of alglat for all modules over an FSI ring.
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Introduction

This thesis looks at alglat given rings R and A with unity and an 

R -A —bimodule M. The definition of alglat for a bimodule was made by Fuller, 

Nicholson and Watters in [5], where alglat is defined to be the ring of all 

endomorphisms of leaving invariant every R-submodule of M ^ . The bimodule 

is said to be reflexive if  the elements of alglat are precisely the le ft scalar 

multiplications by elements of R. In the majority of the work A == R with R being 

a commutative ring with unity.

There are three distinct but related parts to this thesis. The firs t chapter 

looks at decomposition theorems which help to determine the structure of alglat. 

After this the ring R is always commutative and any R-module M may then be 

considered as an R—R—bimodule. Chapters 2 and 3 look at the idea of reflex iv ity  

and in particular the case when all fin itely generated modules over a given ring are 

reflexive. Chapter 4 looks at local rings and characterises alglat for all modules 

over an almost maximal valuation ring. The final three chapters extend Chapter 4 

and determine alglat for all modules over an FSI ring.

Before describing this work in more detail some background information on 

re flex iv ity  and alglat is given.

Halmos, in his paper [10], considered a complex Hilbert space %. To each set 

of (bounded) operators .X on 36 he defined Lat^A to be the set of all (closed) 

subspaces of 36 invariant under every operator in J i .  Dually to each set L  of 

(closed) subspaces there corresponds the set Alg t  of those (bounded) operators 

that leave invariant each element of L ,  Thus LatwA =  {X I X subspace of 36,

AX Ç  X for all A G -A} and AlgJL =  (A I A operator on 36, AL Ç  L for all L G Jt}. 

Then it is clear that A  Ç  A lgLat^  and t  Ç  LatA lg l. Halmos defines a lattice L  

to be reflexive if  =  L a tA lg l. Similarly, an algebra A  is said to be reflexive if  

-A =  A lgLat^ .



Following on from this definition Hadwin, in his paper [7] considered a vector 

space X over a field F and a single linear transformation T . He defined the notion 

of algebraic re flex iv ity . In Halmos’ terminology this amounts to: a linear 

transformation T  is algebraically reflexive if and only if  the algebra generated by 

1 and T  is reflexive.

This notion of re flex iv ity  is extended to bimodules in the paper by

Fuller, Nicholson and Watters ([5]). They observe that if  V is a finite-dimensional 

vector space over a field K and R is a subalgebra of EndV^, then V is an 

R—K—bimodule. Moreover AlgLatR consists of those endomorphisms in End 

which leave invariant every R-submodule of ^V . Thus AlgLatR is determined by 

the R-K-bimodule For a bimodule where R and A are rings with unity,

they define alglat to be the ring of all endomorphisms of leaving 

invariant every R-submodule of M ^ . Defining the map X : R —► alglat ̂ M ^  by X(r) 

acts on M as le ft multiplication by r, X(R) is always contained in alglat 

When equality holds, that is alglat =  X(R), the bimodule is said to be

reflexive. Much of their work considers the case where M is a le ft R-module and 

A =  Endj^M; for then M has the structure of an R -A —bimodule.

Hadwin and Kerr studied reflexive modules in [8] and [9] where all rings are 

commutative with unity. Their work centred on whether or not a module is 

reflexive, and has not discussed alglat M when the module M is not reflexive. In 

[8], Hadwin and Kerr defined a ring R to be strongly scalar-reflexive if every 

R-module is reflexive and strictly scalar-reflexive if  every fin itely generated 

R-module is reflexive. They omitted the word “s tric tly” in [9], calling a ring R 

scalar-reflexive if  every fin itely generated R-module is reflexive. Hadwin and 

Kerr considered this change in terminology to be appropriate since they completely 

characterised all strongly scalar-reflexive rings in [9]. Throughout this thesis a 

ring in which every fin itely generated module is reflexive will be called scalar- 

reflexive, following [9]. Properties of these rings taken from [8] will also be used.



Chapter 1 looks at the general structure of alglat. The firs t decomposition 

result involves inverse limits and may be applied to any R-S-bimodule where R 

and S are rings with unity (not necessarily commutative). It is known that any 

module is the direct limit of its fin itely generated submodules and that the index 

set is directed. Using the category equivalence of R -S —bimodules and left 

R 0S°'’—modules, any R—S—bimodule M is the direct limit of its fin itely generated 

R—S—sub-bimodules I k G K) and again the index set K is directed. Both

direct and inverse limits are used in Theorem 1.9 to prove that, in this case, 

alglat ̂ ( ^  M^)g =  1^  (alglatj^Mj^ g). Thus given any R-S-bimodule M, 

alglat j^Mg is always expressible as an inverse limit. This result is not used 

directly later in the thesis but motivated the theorems involving completions, as 

every topological completion is an inverse limit.

Two more specific decompositions are also given in Chapter 1, which are used in 

later work in determining alglat for modules over an FSI ring. The firs t of these
n

is applicable when the ring R is a finite direct sum of rings, R — 0 R :. Then any
i = l  ^

n
R-module T  may also be expressed as a direct sum with T  — 0 T .  and each T: is

i = l  ^ ^

an Rj-module. The result given in Theorem 1.10 uses this known decomposition of
n

T  to prove that alglat T  =• 0  alglat T :. This theorem is useful when a ring is a
i = l  ^

finite direct sum of indecomposable rings, the structures of which are known.

The third decomposition applies to h-local domains. In [15] (1.11) Matlis defined 

an h-local domain to be an integral domain such that (i) each non-zero prime ideal 

is contained in a unique maximal ideal, and (ii) each non-zero element is contained 

in only fin itely many maximal ideals. Matlis showed in [15] (1.12) that any torsion 

module T  over an h-local domain R may be written as a direct sum T  =  0 T m
M

where M ranges over all maximal ideals of R and T^ is the corresponding 

localisation. Theorem 1.18 uses this decomposition to show, for any torsion module 

T  over an h-local domain R, that alglat T  =  alglat Tn where M ranges over all
M

maximal ideals of R. This result is extended in Theorem 1.21 to the case where P 

is a prime ideal of R such that R/P is an h-local domain and T  is a torsion



R—module with P Ç  AnnT such that T  is also a torsion R/P—module. It is in this 

form that the decomposition is used in Chapter 7.

Chapters 2 and 3 are concerned with reflexive modules, leaving a discussion of 

alglat in non-reflexive cases until the later chapters. Chapter 2 is particularly 

concerned with reflexive non-torsion modules. In [9; Proposition 7], Hadwin and 

Kerr proved that for a commutative domain R every non-torsion R-module is 

reflexive. This chapter looks at classes of rings for which it is true that every 

non-torsion module is reflexive. The main result of this chapter shows that it is 

sufficient to have this condition for 2-generated non-torsion modules. This 

result, given in Theorem 2.2, states that for a commutative ring R, the condition 

that every non-torsion R-module is reflexive, is equivalent to every 2-generated 

non-torsion R-module being reflexive. The result of Hadwin and Kerr concerning 

domains can be derived from this result and is given as Corollary 2.3. In [9]

Hadwin and Kerr defined a ring R to be scalar-reflexive if every fin ite ly  generated 

R-module is reflexive. Another corollary (which appears as Corollary 2.5 and is 

not proven by Hadwin and Kerr) shows that every non-torsion module over a 

scalar-reflexive ring is reflexive.

Hadwin and Kerr raise various questions about the property of scalar- 

re flex iv ity  in [81. In particular, having stated that scalar-reflexive rings are 

closed under direct sums and under quotients, they ask what happens under 

localisations. In their second paper [9], Hadwin and Kerr gave equivalent conditions 

for a local ring to the ring being scalar-reflexive (see Theorem 2.11). In particular 

a local ring is scalar-reflexive if and only if it is an almost maximal valuation ring. 

This motivates the definition in 2.12 where a ring is defined to be locally scalar- 

reflexive if  every localisation at a maximal ideal is scalar-reflexive. Thus a ring 

is locally scalar-reflexive if  each localisation at a maximal ideal is an almost 

maximal valuation ring. Theorem 2.17 provides a link between the two concepts of 

being scalar-reflexive and locally scalar-reflexive, proving that every locally



scalar-reflexive ring is scalar-reflexive. Thus if  every localisation of a ring R is 

scalar-reflexive then every localisation at a maximal ideal is scalar-reflexive and 

so R is scalar-reflexive. It  is still an open question as to whether or not the 

converse is true.

A theorem of Hadwin and Kerr concerning scalar-reflexivity is given in 

Theorem 2.18. This result shows that if  R is an h-local domain with Rm an almost 

maximal valuation ring for all maximal ideals M then R is scalar-reflexive. Thus 

the hypotheses require R to be locally scalar-reflexive and an h-local domain.

Thus using Theorem 2.17, the condition that R be an h-local domain is redundant, 

and Theorem 2.17 is seen to be an extension of this theorem of Hadwin and Kerr.

Returning to non-torsion modules at the end of the chapter. Corollary 2.19 

shows that every non-torsion module over a locally scalar-reflexive ring is 

reflexive. This plays an important part in the discussion of alglat for non-torsion 

modules in the later chapters.

Chapter 3 continues the theme of scalar-reflexive and locally scalar-reflexive 

rings. The main result is Theorem 3.4, which gives eight properties of an h-local 

domain which are equivalent to the condition that the ring is locally scalar- 

reflexive. One of these equivalent properties is that every 2-generated torsion 

module is a direct sum of cyclic modules. This links the study of alglat and 

re flex iv ity  with the structure and decomposition of modules. Conditions on 

fin itely generated modules also appear in Theorem 3.4.

The main part of the proof of Theorem 3.4 is to show that, for an h-local 

domain R with every 2-generated R—module reflexive, then R is locally scalar- 

reflexive. This result appears in Theorem 3.1. It is worth remarking that 

Theorem 3.1 shows that an h-local domain is scalar-reflexive if  and only i f  it is 

locally scalar-reflexive. This provides a partial converse to the result that every 

locally scalar-reflexive ring is scalar-reflexive.

Chapter 3 finishes with an example of a domain which is locally scalar-reflexive



and thus scalar-reflexive but is not an h-local domain. This answers a question of 

Hadwin and Kerr posed in [9; p i2] in the negative and leaves the scalar-reflexive 

domains as yet unclassified. The scalar-reflexive h-local domains are classified 

here in a variety of ways.

The remaining chapters are concerned with determining alglat for all modules 

over particular classes of rings. Chapter 4 looks at alglat for all modules over an 

almost maximal valuation ring. These rings are scalar-reflexive and so all fin itely  

generated and all non-torsion modules over an almost maximal valuation ring are 

reflexive. The study of torsion modules divides into two cases, considering 

fa ith fu l and non-faithful modules. Theorem 4.3 shows that, for any almost 

maximal valuation ring R and R-module T  which is not fa ith fu l, T  is reflexive.

Results of Gill and of Hadwin and Kerr reduce the study to the case of a 

fa ith fu l torsion module over an almost maximal valuation domain. This is where 

the non-reflexive cases arise. In view of the decomposition of Theorem 1.9 a 

completion is an obvious choice of candidate for alglat in these cases, and it is the 

R-completion which is used. This is defined for an integral domain which is not a 

field and is discussed by Matlis in [15; §6] (4.4). This topology takes the non-zero 

principal ideals of R to form a subbase for the open neighbourhoods of 0 in R. A 

domain R is Hausdorff in this topology so R embeds in its completion. Theorem 4.9 

shows that, for a fa ith fu l torsion R-module T  over an almost maximal valuation 

domain R, alglatT is isomorphic to the R-completion of R. The results of Chapter 

4 are summarised in Theorem 4.10 which shows that the only modules which are 

not reflexive over an almost maximal valuation ring R are those which are fa ith fu l 

and torsion when R is not maximal.

The aim of Chapter 5 is to provide information on FSI rings and on related 

rings. Much of this will be used in Chapters 6 and 7 to determine alglat for all 

modules over an FSI ring. A large part of this material is in the literature. In



[25], Vâmos defined a ring to be fractionally self-injective (FSI) if  for each ideal I 

of R the classical ring of quotients of R /I is self-injective. As well as studying 

FSI rings, Vamos also studied FGC rings. Other work on FGC rings by Shores and 

R. Wiegand includes a study of CF rings.

Structure theorems are given for all three types of ring. These three classes 

of rings are related in that all FGC rings are FSI rings and all FSI rings are CF 

rings. Examples are also given in this chapter to show that the classes of rings 

are distinct.

It is known that the local FGC rings are the almost maximal valuation rings and 

as such are scalar-reflexive. Vamos proved that the local FSI rings are also 

precisely the almost maximal valuation rings. Thus every FSI ring is locally 

scalar-reflexive. Every FSI ring is a finite direct sum of indecomposable FSI 

rings. The indecomposable FSI rings are the almost maximal valuation rings, the 

locally almost maximal h-local domains and a third type, the locally almost maximal 

torch rings. (Torch rings are not domains and are discussed in Chapter 5.) Note 

that a ring is locally almost maximal if  each localisation at a maximal ideal is an 

almost maximal valuation ring.

The obvious generalisation of alglat for modules over an FSI ring is to 

determine alglat for all modules over a CF ring. Every valuation ring is a CF ring, 

and in view of Theorem 2.11, arbitrary valuation rings are not reflexive. Thus 

not every CF ring is scalar-reflexive. An example is given at the end of Chapter 

5 which determines alglat for a specific 2-generated module over a valuation ring 

which is not almost maximal. The nature of the work in Chapters 6 and 7 together 

with this example indicates that any characterisation of alglat for modules over CF 

rings will not be a simple extension of the results for modules over FSI rings. 

However it is hoped that a study of examples such as this will help determine the 

structure of alglat for a larger class of rings than FSI rings.



Chapter 6 outlines the strategy to characterise alglat for modules over FSI 

rings and does most of the work to reach this end. It was remarked in the 

comments about Chapter 5 that every FSI ring is locally scalar-reflexive. Thus all 

non-torsion modules over an FSI ring are reflexive. This leaves the study of 

torsion modules. Every FSI ring is a finite direct sum of indecomposable FSI rings. 

Using the second decomposition theorem of Chapter 1, this may be reduced to the 

study of torsion modules over an indecomposable FSI ring.

Any indecomposable FSI ring R has a unique minimal prime ideal P which is 

comparable to every ideal of R and such that the ideals of R contained in P form a 

chain. For a torsion module over an indecomposable FSI ring R either AnnT C  P 

or P Ç  AnnT. Chapter 6 studies the case where AnnT C  P. Then P 0 and so 

R is not a domain. From the work in Chapter 4 on almost maximal valuation rings, 

this reduces the case AnnT C  P to the study of alglat where R is a locally almost 

maximal torch ring. This is further reduced to the study of alglat for a fa ith fu l 

torsion module over a locally almost maximal torch ring.

To characterise alglat in this case a completion is introduced in 6.4. In order 

to describe alglat in terms of a completion, the ring must be Hausdorff in the 

topology. This ensures that there is an embedding of the ring in its completion. 

The unique minimal prime ideal P of a locally almost maximal torch ring R is 

comparable to every ideal of R and the ideals of R contained in P form a chain. It 

is shown that Q Rp ÇZ AnnT for all torsion R—modules T . So if  T  is a fa ith fu l
0 # p t P

torsion R—module, then Ann T  =  0 and hence f] Rp =  0. The P-topology
0 #  p £ P

(defined in 6.4) takes the non-zero principal ideals of R contained in P to form a 

sub-base for the open neighbourhoods of 0 in R. Thus if R has a fa ith fu l torsion 

module then R is Hausdorff in this topology. In determining alglat, the results 

proved are more general than those required for this particular case, but they are 

included as they may be of independent interest. Corollary 6.8 states that, for a 

locally almost maximal torch ring with unique minimal prime ideal P and fa ith fu l 

torsion R—module T, alglat T  is isomorphic to the completion of R in the

8



P-topology. This completes the case where AnnT C  P. A summary of these 

results is given in Theorem 6.10 to bring all the results of Chapter 6 together.

Chapter 7 discusses the case where P Ç  AnnT and T  is a torsion R/P-module. 

(The non-torsion case has been dealt with in Chapter 6.) Since R is an 

indecomposable FSI ring the factor ring R/P is an h-local domain. Theorem 7.1 

uses the decomposition result of Theorem 1.21 to write alglat pTp =  alg latTm
^  ^  M

where M ranges over all maximal ideals of R and T m is an R^-module. Each 

localised ring Rf̂  is an almost maximal valuation ring, and has R^-completion R^ 

whenever Rm is in addition a domain. The results of Chapter 4 are used to show 

that alglat pTp =  ( H  ^(Rm)) 0  ( 11 where X — {M I M is a maximal ideal
^  ^  M e X  M c Y

of R, Rm is not RM-complete, AnnTM =  0} and Y =  {M I M is a maximal ideal of R, 

M g X). (It is noted in Theorem 7.1 that if  M G X then Rm is indeed a domain and 

so the completion Rm exists.)

The final theorem of Chapter 7 combines this result with those of Chapter 6 to 

give a complete characterisation of alglat for all modules over an FSI ring. The 

chapter ends with an illustration indicating the nature of alglat for any module 

over an FSI ring.

This thesis discusses the general structure of alglat, showing it to be an 

inverse limit, as well as the more specific case of determining alglat for all modules 

over an FSI ring. The work on re flex iv ity  and on scalar-reflexive rings extends 

that known previously from the literature.



Notation

All the rings considered are rings with unity.

Let R be a commutative ring with unity and let T  be an R-module. Then the 

bimodule structure of T  is always that of an R-R-bimodule with rm =  mr for all 

r in R and m in M. Where it will not cause confusion alglat T  is written for 

alglat j^Tj^.

For a ring R with maximal ideal M and R-module T, Rm is the ring localised at 

M and T m is the module localised at M. Then T m is an RM-module with the 

obvious product.

The notation “Ann” is used to indicate the annihilator of a module. For any 

S—module M, AnnM is taken to be the annihilator of M in the ring S. In 

particular, for fin itely generated modules, AnnRx denotes the annihilator of the 

R-module Rx in R whereas AnnR^y is used for the annihilator of the RM-module 

RmY in Rm*

The notation C  is always used to denote a strict inclusion. The symbol Q  is 

used to indicate an inclusion which is not necessarily strict.

All maps are written on the le ft of the elements upon which they act.

Acknowledgements
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and encouragement and to SERC for their financial support.

10



Chapter 1 Decomposition theorems for alglat

This chapter examines the structure of alglat and gives three decomposition 

theorems for alglat. The definitions of alglat and reflex iv ity  for an 

R—A—bimodule M are given in 1.1. (Recall that all the rings considered in this 

thesis have a 1.) The firs t decomposition theorem of alglat applies in the 

general case where R and A are any rings with unity and M is any R—A —bimodule. 

The remaining two decompositions concern alglat where R is a commutative 

ring with unity and M is an R-R-bimodule. These results will be used in later 

chapters to characterise alglat for all modules over particular classes of rings.

Theorem 1.9 gives the firs t decomposition and uses direct and inverse limits to 

describe the structure of alglat. It is known that any R-S-bimodule M can be 

expressed as the direct limit of its fin itely generated R—S-sub-bimodules 

{Mj  ̂ I k G K} where R and S are any rings with 1, not necessarily commutative.

For reference this result is included as Theorem 1.6. Theorem 1.9 uses this 

description of M to give a characterisation of alglat M in terms of the inverse limit 

of the family of rings {alglat I k  G K). This decomposition of alglat M in terms 

of an inverse limit may be applied to any R-S-bimodule M.

Theorem 1.9 is not used directly in any later results but has motivated the 

theorems which involve completions, since every completion is an inverse limit. 

Topological completions play an important role in determining alglat where R 

is a commutative ring and M is not reflexive.

The other two decompositions given in the chapter are not so general but do 

provide useful information in determining the structure of alglat. For these two 

results, and indeed for the remainder of the thesis after Theorem 1.9, it will be 

assumed that R is a commutative ring with 1 and that M is an R-module with the 

bimodule structure as described in 1.2(b).

The second decomposition result of this chapter can be used when the ring R 

(commutative with 1) is a finite direct sum of rings Rp, i =  1, ..., n. Then there

11



are idempotent elements ep in Rp with 1 = ê  4- ... 4- and Rp =  epR. In this
n

case an R—module M has a decomposition as the direct sum 0  e:M. Writing M:
i=i  ̂ ^

epM, each Mp can be considered as an Rp-Rp-bimodule. Theorem 1.10 shows that in
n

this case alglat M =  0  alglat M .. This theorem is used in Chapter 6 to determine
1=1 ^

the structure of alglat for all modules over FSI rings, since every FSI ring is a 

finite direct sum of indecomposable FSI rings, the structure of which are known.

The third decomposition applies to torsion modules over h-local domains. Again 

the decomposition of alglat T  is motivated by a known decomposition for the 

module T . Matlis defined an h-local domain in [15] and showed in the same paper 

that any torsion module T  over an h-local domain R may be expressed as a direct 

sum T  =  0 T m where M ranges over all maximal ideals of R and T m is the
M

corresponding localisation. Theorem 1.18 gives a decomposition for alglat in this 

case, showing that alglat T  =  alglat TM where M ranges over all maximal ideals
M

of R and T m is considered as an RM-RM~bimodule. This result is extended in 

Theorem 1.21 to the situation where P is a prime ideal of R such that R/P is an 

h-local domain and T  is a torsion R-module with P Ç  AnnT such that T  is also a 

torsion R/P—module. Theorem 1.21 is the third decomposition theorem of this 

chapter and is used in Chapter 7.

The firs t section gives the definitions of alglat p^M^ and re flex iv ity  as made in 

[5] by Fuller, Nicholson and Watters.

1.1 Definitions of alglat j^M^ and re flex iv ity  ([5])

Let M be an R—A—bimodule where R and A are rings with unity. The ring 

alglat p^M^ is the ring of all endomorphisms of M ^  which leave invariant every 

R-submodule of M. Thus alglatj^M^ =  (0 G EndM ^ I 0N Ç  N for all j^N ^  j^M} 

=  {0 G EndM ^ I 0m G Rm for all m G M).

Let X be the map defined by X : R —» alglatp^M^, X(r) : M —► M, m •- rm. Then 

it is always the case that X(R) Ç  alglat j^M^. The bimodule is said to be reflexive

12



if there is equality, that is if  X(R) =  alglat Thus the module is reflexive if

the elements of the ring alglat are precisely the le ft scalar multiplications by 

elements of R.

The map X gives rise to a map from R to X(R) defined b y  r  X(r). This is 

always a surjective ring homomorphism and has kernel AnnM. Thus X(R) =  

R/AnnM. In particular, if  M is a fa ith fu l R—module then R =  X(R).

1.2 Examples of bimodules

(a) Let M be a le ft R—module where R is any ring with 1 (not necessarily 

commutative) and let S =  Endj^M. Then M is an R -S —bimodule. Any module can 

be considered as a bimodule in this way.

(b) Let R be a commutative ring with 1 and let M be a le ft R-module. Then M

has an R-R-bimodule structure. This is given by defining a right R-module

structure on M by mr ; =  rm for all m G M and r G R.

(c) As an illustration of (b) let M be an abelian group. It is well-known that M

can be considered as a Z —module. Thus M can be given the structure of a

Z —Z —bimodule.

Throughout this thesis, where M is any module over a commutative ring R, the 

bimodule structure of M is always the R-R-bimodule structure defined in 1.2(b).

Before proving the firs t decomposition theorem, the next few sections give 

some background information about direct and inverse limits from category theory. 

The definitions and notation used here follow the approach of Rowen ([21]). The 

motivation for the decomposition of alglat is the known result that an 

R-S-bimodule M is the direct limit, over a directed index set, of its fin ite ly  

generated R—S—sub-bimodules. The only direct limits that are needed in the proof 

of Theorem 1.9 are those over a directed index set and this is taken into account 

in the definition of a direct limit given in 1.4.
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1.3 Definition of a directed set

A directed set is a partially ordered set K, with partial order such that for 

any i, j  G K there exists k G K with i ^  k and j  k.

1.4 Definition of a direct limit over a directed index set.

Let {Aj  ̂ I k  G K} be a set of R—S-bimodules indexed by a directed set K (with 

partial order and suppose that there are R -S —homomorphisms 0jp : A j —» Ap 

whenever j ^  i, satisfying

(i) for all k G K, : Ap̂  —» Ap̂  is id^ ,̂ and

(ii) for k ^  j  ^  i (so 0jp, 6p̂ j and 6p̂p are defined) 0ĵ p =  GjpGp̂ j.

Then the direct limit limAi, is an R-S-bimodule together with a set of
—► ^

R-S-homomorphisms limAp  ̂ satisfying ap̂  =  a.j0p ĵ whenever k ^  j,

such that, given any R-S-bimodule X and R-S-homomorphisms ‘ ^

satisfying /3ĵ  =  /3j0p ĵ whenever k ^  j, there is a unique R-S-homomorphism 

/3 : limAp  ̂ —► X with =  0 ^  for each k.

Thus IjmAp  ̂ is a quotient of the direct sum of the Ap̂ , namely (0Ap^)/N

where N is the sub-bimodule of 0Ap^ generated by all the elements 0^^a^ — â ,,

(ap̂  G Ap̂ ) whenever k ^  j. The maps ^  Ap̂  are just -|- N.

Whenever K is a directed set and {Ap, I k  G K} is a family of R-S-bimodules, then 

the direct limit always exists ([21; Theorem 1.8.7 pi 13]).

The following result which shows that any module can be expressed as a direct 

limit is included, without proof, fo r completeness (see [21; Example 1.8.9 pi 14]).

1.5 Proposition

Every R-module is the direct limit (over a directed index set) of its fin itely  

generated R-submodules.

14



For R—S—bimodules M and N, the map 0 : M —► N is an R-S-homomorphism if, 

for all elements m̂ , m2 , m in M, r in R and s in S, (i) 0(mi +  m2 ) =  0m  ̂ +  0m2,

(ii) 0(rm) =  r(0m) and (iii) 0(ms) =  (0m)s. The class of all R-S-bimodules 

together with R-S-homomorphisms is a category. There is a category equivalence 

between the category of R-S-bimodules with R-S-homomorphisms and the 

category R0S°'^-mod (of le ft R0S°'^-modules with R0S°'^—homomorphisms). The 

following result is an immediate consequence of Proposition 1.5.

1.6 Theorem

Every R-S-bimodule is the direct limit (over a directed index set) of its 

fin ite ly  generated R-S-sub-bimodules.

Two fu rther properties of a direct limit over a directed index set are required 

before looking at inverse limits. The proofs follow Rotman in [20; pp31-32].

1.7 Proposition

Let K be a directed set, with partial order and let {Aj  ̂ I k  G K) be a family 

of R-S-bimodules. W rite ^  Ap̂  =  (0Ap^)/N with the notation of 1.4. Then

(i) for any x G ^  Ap̂  there is an index i and some â  in Ap with x = â  +  N, and

(ii) for aĵ  G Aj  ̂ with aĵ  +  N =  0 in ^  Ap̂  there is some index t with k ^  t and

®kt®k =

Proof

(i) Let x G lim A, . Then x =  y -|- N where y G 0  Â .̂ W rite y =  2  • Since
^  *■ j = l

K is a directed set there is an index i with k j ^  i for all j  (j =  1, ..., n). Let 

z =  V  0. -a. so that z is an element of A-. Then 0,. -a. — a, G N and it
j-i ^j ^

follows that z — y is in N. Thus x =  z -f  N with z G Ap for some index i.

(ii) Suppose that ap̂  G Ap̂  with p̂̂  +  N =  0 in limAp^. The elements of N are the

finite sums 2  — aj) with aj in Aj, so let ap̂  =  22 ~  &j)* The set K
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is directed so there is an index t with k ^  t and j ^  i ^  t for each i, j  occurring 

in this sum. Then G^^a  ̂ =  ~  ^k  ̂ ^k ^  ^®kt^k ~  k̂  ̂ +  ^  ""

Each term (Gj^aj — aj) can be rewritten, with the second index as t, in the form

®ji*j “  * j  “

Thus ekt»k =  (8 kt»k -  V  +  2  [( 8 jt» j -  »j> +  -  ( -

Combining all terms with the same firs t index 1 gives Gp̂ â̂  ̂ =  Ç  ~  with

bp in Ap. Since the sum 0Ap^ is direct, if 1 7  ̂ t  then bp =  0. But also ô^t^t ~  ^t 

=  0 and so every term in the summation over 1 is 0. Hence =  0 as

required. □

The dual notion to a direct limit of an inverse limit is now introduced. The 

definition given is for the category of rings with ring homomorphisms. It is in 

this form that it will be used in Theorem 1.9.

1.8 Definition of an inverse limit

Let {Lp̂  I k  G K} be a set of rings indexed by a partially ordered set K (with

partial order and suppose that there are ring homomorphisms 0 pj : Lp —» Lj

whenever j  ^  i, satisfying

(i) for all k G K, 0ĵ ĵ  : Lp̂  —► Lp̂  is id̂ ^̂ , and

(ii) for k j  ^ i  (so 0 pj, 0 jp̂  and 0 pĵ  are defined) 0 pp̂ =  0 jp̂ 0 pj.

Then the inverse limit lim Lp̂  is a ring together with a set of ring homomorphisms 

^k • l^Lp^ “ ► Lp̂  satisfying ?7 j  =  whenever j  ^  k, such that, given any ring

X and ring homomorphisms Çp̂ : X —► Lp̂  satisfying ( j  =  0 p̂ j(p̂  whenever j  ^  k, 

there is a unique ring homomorphism ( : X —► HmLp  ̂ with for each k.

Thus l^ L j ,  is the subring of 11 Lp̂  consisting of all (Ip̂ ) for which 0p̂ jlp̂  =  Ij 

whenever j  ^  k. The maps 7?p̂ are just the projections.
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The next result is the firs t decomposition theorem for alglat. Theorem 1.9 

characterises alglat using inverse limits where M is expressed as a direct limit 

over a directed index set. Theorem 1.6 may be used to write M as a direct limit 

of its fin ite ly  generated R-S-sub-bimodules. In this way, Theorem 1.9 gives a 

decomposition for a l g l a t f o r  all R-S-bimodules M.

1.9 Theorem

Let K be a directed index set, with partial order and let { A ^  I k  G K) be a 

set of R-S-bimodules where R and S are arbitrary rings with unity. Let 

GjP ; A j —> Ap be monic R-S-homomorphisms whenever j  ^  i, with Gjp satisfying 

the following two conditions:

(i) for all k G K, ‘ ^k ^k

(ii) i f  k ^  j  ^  i then Gĵ p =

Then alglat j^(lim Aj^)g =  lim (alglat j^Aj^g).

Proof

Let Lĵ  =  alglat j^(Aj^)g for k G K so that {Lĵ  I k  G K} is a family of rings 

indexed by the directed set K. The maps Gjp are monic so there are inverse 

R-S-homomorphisms (Gjp)'̂  : im(Gjp) —» Aj, Then there is a set of ring 

homomorphisms 0pj : Lp —► Lj defined by 0pj : 0 *- jp) whenever j ^  i.

Let 0 G Lp. Since ip preserves the lattice of R -S —sub-bimodules of Ap,

0 : imGjp —+ imGjp. Thus 0pj0 is well-defined.

0pj : Lp —► Lj is a ring homomorphism

Each of the maps (Gjp)'\ ip and Gjp is a right S-homomorphism so that <p^lp G

End(A-)ç. Let a : G A:. There is an element r in R with 0(G--a-) =  r(G^a.). Then
J O J J J i  J J

(0pj0)(aj) =  (Gjp)'^(Gjp(raj)) =  raj G Raj. Thus <p^lp G Lj and so im0pj Ç  Lj.

Let ipy lp ' be elements of Lp. Then 0pj(0 4- 00 =  (Gjp)*H0 -f  0O(Gjp) =
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(0jp)''(00jP 4  rGjp) =  (ôji)''0(Gjp) 4  (0jp)''r(Gji) =  0pj0 4  0pj0\ Also 0pj(00O =  

(0jp)'H00O(0jp) =  (0jp)'^0[(0jp)(0jp)'O0'(0jp) =  (0pj0)(0pj0O. (The introduction of 

(0jp)(0ji)'\ the identity on imGjp, is valid since 0' preserves the lattice of R -S -sub- 

bimodules of Ap and thus, in particular, lp' : imGjp —» imGjp.) Let be the identity 

element in the ring Lĵ  for all k G K. Then 0pj(lL,) =  (Gjp)'OL,(Gjp) =  Ilj*  Thus 0pj 

is a well-defined ring homomorphism.

Moreover, these ring homomorphisms satisfy =  id̂  ̂ for all k and ^ jk^ij =  

0ik whenever k ^  j  ^  i.

0kk == for all k and ^j^^pj =  0p  ̂ whenever k ^  j  ^  i.

Let 0 G L^. Then ^  ^k <^kk  ̂ =  ^^kk^^^^^kk  ̂ =  (id*^)'^0(idA^) =

0. Thus 0kk =  î Lk-

Suppose that k ^  j  ^  i. Then the ring homomorphisms 0^^, 0pj, 0p  ̂ exist 

and 0jk0pj : Lp —► L^. Let 0 G Lp. Then =

(^kj^ (^ji^kj^ ^  ®̂kî  ^̂ ^®kî  < îk *̂ ^jk^^ij

^ik*

The direct limit of the R-S-bimodules A^ exists since K is a directed index 

set. Let D =  l^ A ^ , so that D is a quotient of 0  A^, namely D =  (0 A k ) /N  

where N is the sub-bimodule of 0 A ^  generated by all the elements G^ja^ — a^ 

(a^ G A^) whenever k j .  Then the R-S-homomorphisms : A^ —♦ D 

satisfying =  ocjG ĵ whenever k ^  j  are given by oĉ  : a^ •-- a^ 4  N (1.4).

For each k G K, the R-S-homomorphism : A^ —♦ D is monic. So there are 

inverse R-S-homomorphisms (0 :^)^ : im(a^) —» A^ for each k.

o-k IS monic

Let ak G keroCk so that ak 4  N =  0 in D. Then there is an index t in K with 

k t and k̂t^̂ k ^   ̂ (Proposition 1.7). But Gkp. is monic and so ak =  0. Hence
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(%k IS  m o n ic .

For each k G K, define 77̂  : alglat j^Dg —► by 0 (0 1 ^)' 0 (0 1 ^)* Then each

77k is a ring homomorphism.

Let 0 G alglatp^Dg. Since 0 preserves the lattice of R-S-sub-bimodules of D, 

0 : im(%k —» imttk* Thus is well-defined.

?7k : alglat j^Dg —> Lk is a ring homomorphism

Each of the maps (oik) \  0 and ô k is a right S-homomorphism so that 77k0 G 

End(Ak)g. Let ak G Ak* There is an element r in R with 0(ctk^k^ =

Then (77k0)(ak) =  (otk)’Hak(rak)) =  rak G Rak* Thus 77k0 G Lk and so im77k Ç

Lk-

Let 0, 0' be elements of alglatj^Dg. Then 77k(0 - f  00 =  (oik)'^(0 4* 0O(ak) =  

(oik)'\0(Xk +  0'o^k  ̂ =  (oik)'^0((Xk) 4- (ak)'^0'(ak) =  Vy.Tp 4- T7k0O Also 77k(00O =  

(ak)'^(00O(cXk) =  (ak)'^0[(ak)(ak)'^]0Tak) =  (77k0)(7?k0')* (The introduction of 

(a k )(< X k )th e  identity on imoik, is valid since 0' preserves the lattice of 

R-S-sub-bimodules of D and thus, in particular, 0' : imoik —+ imoik*) Let !□ be 

the identity element in the ring alglat j^Dg. Then 77k(lo) =  (ak)'^lD(«-k) =  the 

identity element in the ring Lk* Thus 77k is a well-defined ring homomorphism.

Moreover these ring homomorphisms satisfy ^kj^k ~  whenever j  ^  k.

0kj^k whenever j  ^  k

Suppose that j  ^  k. The ring homomorphism 0kj exists and ^kj^k * 

alglatj^Dg —► L j. Let 0 G alglatj^Dg. Then (^kj^k^^^^ =  =

(Gjk)^(oik)^0(^k^^^jk^ =  ^®'k®jk^^^^°^k ĵk  ̂ “  (a j) ’^0(aj) =  77j0. Thus ^kj^k ~
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Let X be a ring with ring homomorphisms ^ satisfying ^ ^ /k  ^  f j

whenever j ^  k. Then there is a unique ring homomorphism ( : X —f alglatp^Dg 

such that 7?k̂  =  (k tor each k in K. Moreover ( is defined by ( : x 0x where 

X G X and 0x ^ alglatj^Dg is given by 0x : ak 4  N ((k^Xak) 4  N for ak in Ak*

Note that for j  k, it follows that (jX =  (0k/k^^^^ =  =

(6jk)'^(SkX)(Gjk)' Then (GjkX^jX) =  This will be used in the following

proofs.

0x is well-defined

Suppose that an element in D has two representations ap 4  N and aj 4  N with 

i, j G K (Proposition 1.7). Then ap — aj 4  N =  0 in D. The index set K is

directed so there is an index k with i ^  k and j  ^  k. Then both 0jk^j ~

Gpkap — ap are in N (1.4), and so (0jk® ĵ “  îk®̂ î  4  N =  0 in D. From Proposition

1.7, there is an index t with k ^  t and ^kt^^jk^j ~  =  0. But ^kt is monic

and so (GjkAj — Gpk&p) =  0. Thus Gjk^j =  ®pk®i*

W rite aJ =  ((px)(ap) and aj =  (Çjx)(aj) so that aj G Ap and â  G Aj. The 

elements 0pk^ — Sp and 6 jk ^  — are both in N so that aj — 4  N =  0pk^ —

Gjk^j 4  N. Using the above results, 0pk^ =  (0pkX^px)(ap) =  (£k^XGpk)(ap) =  

(^k^XGjkXaj) =  (GjkX^jX)(aj) =  Gjkâj. Hence a j j 4 N = 0 i n D .  Thus

âj 4  N =  ajj 4  N so that ((px)(ap) 4  N =  (^jX)(aj) 4  N. Hence 0x(ap 4  N) =

0x(8ij 4  N) and so 0x is well-defined.

imS Ç  alglat p̂ Dg

Let X  G X with image 0x under (. The map 0x : D —► D is given by ak 4  N •-

(^k^)(ak) 4  N for ak in Ak and is well-defined.

Let ap 4  N, aj 4  N be elements of D. Since K is a directed index set, there is 

an index k in K with i ^  k and j  ^  k. Then ap 4  aj 4  N =  8k 4  N where 8k =  

Gpk̂ i 4  Gjk^j in Ak* So 0x(^i 4  N 4  aj 4  N) =  0x(®̂ k 4  N) =  (^k^^^^k  ̂ 4  N =
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+  N =  (e.kX^jXXa^) +  “*"

elements ~  (ÇjxXa-) and ~  ((jXXaj) are in N. Thus

+  N +  aj -j- N) =  (ÇjX)(aj) +  (ÇjxXaj) +  N =  T  N) 4" V̂ xCaj +  N).

Let ak 4- N be an element of D and let s be an element of S. Then [v*x(^k N)js 

=  ( ( ^ k ’^ X a k )  +  n ) s  =  (^kxXak)s +  N =  +  N =  - f -  N) =

^x((&k N)s). Thus G EndDg.

Let ak +  N be an element of D. Since ^k^ G Lk» there is an element r in R 

with (&k*^^k) ^  r&k' Thus {Ox(&k +  N) =  rak +  N =  r(ak -f  N) E R(ak 4- N). 

Hence ^x G alglat^Dg. Thus imÇ Ç  alglat^Dg.

( i s  a ring homomorphism

The map (, defined by ( : X -+  alglat^Dg, x ►- ^x* is clearly well-defined.

Recall that for each k, (k • ^ i k̂ ® ring homomorphism.

Let X, x' be elements of X. Let ak 4- N be an element of D. Let y =  x -|- x'

so that 0y =  ((x 4- x'). Then V>y(ak 4- N) =  (^k^^^^k  ̂ +  N =  [^k^^ +  xO](ak) 4-

N =  4" -|- N =  (^k^^^k^ 4" 4- H =  ^x(^k T  H) -)-

^j^/(ak 4- N). Thus ((x  4- xO =  ^y =  ^x 4- ^x' =  ((x) 4- ((xO. Let z =  xx' so 

that V>z =  S(xxO. Then ^^(^k +  N) =  (fk^M^k^ 4- N =  (^k^xx')](ak) 4- N =  

[((k^)(^k^'^]^^k^ 4- N =  (Skx)[(Sk)(')(^k^) 4- N =  4- n) =

#x(#x^^k T  N)) =  (î̂ xV̂ x'̂ ^̂ k "T Thus ((xxO =  V>z =  P x '^ x ' =  ((x)((x').

Let Ix  be the identity element in the ring X. Then =  ((ly ). Let ak 4- N

be an element of D. Then ^i^(ak 4- N) =  ((k^xK^k) 4" N =  iL^^k +  N =  ak 4- N. 

Thus (dy) =  01  ̂ =  lo> the identity element in the ring alglatj^Dg. Thus ( i s  a 

well-defined ring homomorphism.

^k^ =  (k ^ur each k

Let X  be an element of X and let k E K. Then (7?k()(x) =  T}^rl)^ =

For any element ak of Ak» +  N) =

(ak)' (̂C^k^^^^k  ̂ 4- n ] =  ((kxKak). Thus ((%k)^Wo(^k^ =  ^k^* (^k^Kx) =  (kX
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for all X in X. Hence 77̂ ( =

( is unique

Suppose that 7 : X —► alglat^Dg is a ring homomorphism with all

k E K. Then T ] ^  =  so that — 0 = 0  for all k E K. Let x be an 

element of X and let aj N be an element of D. Then 0 =  [7 j(7  — 0](x ) =

7?j(7x — (x) =  (aj)'^(7x — (xXocj). Since (aj)'^ is monic, (7x — (xK aj) =  0.

Thus (7x)(aj +  N) =  [(7x)(a j)](a j) =  [((x)(aj)](aj) =  ((x)(aj +  N). Hence 7x =

(x for all X  E X. Thus 7 = 6  and ( is unique.

Hence Im  Lk =  alglatj^Dg. Thus alglatj^Chm Ak)g =  1^  (alglatj^(Ak)g). □

Throughout the rest of this thesis, R is a commutative ring with 1 and M is an

R—module. Then M is given the R—R—bimodule structure from Example 1.2(b). 

From 1.1, alglatj^Mj^ =  {0 E EndMj^ I 0m E Rm for all m E M} and M is reflexive  

when X(R) =  alglat^Mp^.

The second decomposition of alglat^M ^ arises when R is decomposable into a 

direct sum of fin itely many commutative rings R-, i =  1, ..., n. The following 

results about R are well-known and the approach taken here is that of Lambek 

([13; PP17-191).
n

Let the commutative ring R have a fin ite direct sum decomposition R =  0  R:.
i=l 1

Then there are idempotent elements e- in R̂  with 1 =  - f  4- •• -}- e^ for i =

1, ..., n. Then for any i, e* =  e-e  ̂ 4- ••• -f- e-  ̂ 4- ••• 4- e-e^. The sum is direct

so that e-Cj =  ̂ ^  Let Tj be an element of R- C  R. Then r- =  e 4~e- i f i = j  J J — J i J '
 ̂ 0̂ if* i /

4- e_r;. The sum is direct so ejr.- =  < . *!. So any element r,- in R,n J 1 J î Tj i f  1 =  J can

be written r- =  e-r- and thus R- Ç  ê R for each i. To show the reverse inclusion 

let r be an element of R so that e-r E e-R Ç  R. From the decomposition of R, e-r 

can be expressed as e-r =  ŝ  +  - - 4- with Sj in Rj. Then e-r =  e-^r =
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4" ■■■ 4" ®î n that e-r E Rj and thus ê R Ç Rj. Hence Rj =  CjR.

Let M be an R—module. Then, for any element m in M, m =  ê m 4~ •• 4- e^m 

so that M — 2  6 jM . Moreover the sum is direct. For suppose that there is
i - l

n
some m E e^M 0  ( ^  CjM). Then m =  ê x̂  =  e^x  ̂ 4- 4- e^x^ with Xj in M for

i - 2

all i. Multiplying through by ê  gives e^e^x  ̂ 4- ••• 4- e^e^x^ =  ê x̂̂  =  ê x̂  and
n

thus m =  0. Hence M =  0  e=M. Thus M has a decomposition into a finite direct
i=l  1

sum of R-modules. Let Mj =  ejM. Then each Mj can be considered as an 

Rj-module and hence as an Rj—Rj—bimodule.

These finite direct sum decompositions of R and M are used in the following 

theorem to give the second decomposition of alglat^M ^.

1.10 Theorem

Let R be a commutative ring with 1 with a decomposition into a finite direct
n

sum of rings, R =  0  R:, and let M be any R—module. There exist elements ê  in
i =l  1 1

R such that R: =  e.R for i =  1, ..., n. Let M: =  e.M so that M =  0  M:. Then
1 1  1 1  j ^ i  1

n
alglatM  =  0  alglatM: where each M: is considered as an R.—R-—bimodule.

j=i  1 1

Proof

Let Xj : M —» M be the R—endomorphism X(ej) (left scalar multiplication by Cj)

for i =  1, ..., n. Then Xj =  Xj  ̂ since Oj =  Cj .̂ Let <f> be any element of

alglatj^Mj^. Then 0  is in End M̂  ̂ and so both 0 Xj and Xj0  are in EndMj^. So, given

any element m of M, (0 Xj)m =  0 (ejm) =  0 (mej) =  (0 m)Oj =  6 j(0 m) =  (Xj0 )m. Thus

0 Xj =  Xj0  for i — 1 , ..., n.
n

Define cr : alglatj^Mj^ —> 0  alglatMj by 0  •- (0X ,̂ ..., 0 X )̂ where each Mj is 

considered as an Rj—Rj-bimodule.

imcr Ç  0  alglatM-
i=l  1

Let 0 be an element of alglatj^Mj^. Then 0Xj E EndM j since Rj Ç  R and M j Ç
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M. Let ê m be an element of M j. Then there is some r in R with 0 (ejm) =  r(ejm) 

and so (0 \j)(ejm) =  0 (Oj^m) =  0 (Cjm) — r(ejm) =  (rOjKejm) 6  Rj(ejm). Thus 0 Xj E
n

alglatM. for all i =  1, ..., n. Hence imcr Ç  0  alglatM ..
1 i=l  1

( 7  is a ring homomorphism

For each i, 0 Xj is well-defined and so cr is well-defined.

Let 0 , 0 be in alglatj^Mj^. Then ct0  -f  crO =  (0 X̂ , ..., 0 X )̂ +  (0X̂ , ..., 0X^) =

((0 +  0)Xj, ..., ( 0  -F 0)X^) =  cr(0 4 - 0). Also (cr0)((j0) =  (0 Xj, ..., ^X^)(0X ,̂ ..., 0X^)

=  (00Xj^, ..., 00X^^) =  ((00)X ,̂ ..., (00)X^) =  cr(00). Let 1 be the identity element in 

alglatj^Mj^ and let I j  be the identity element in alglatMj for i =  1, ... ,n. For 

each i and each element ejm in Mj, (IXjKejm) =  KXj(ejm)) =  ej^m =  Cjm and so IXj 

is the identity element in alglatM j. Thus IXj =  I j .  So crl =  (1̂ , ..., 1^), the
n

identity element in 0  alglatM .. Thus cr is a well-defined ring homomorphism.
i=l  1

Œ is a monomorphism

Suppose that 0 E k era . Then (0 X̂ , ..., 0 X^) =  (0, ..., 0) so that 0Xj — 0 for 

i =  1, ..., n. Let m be any element of M . Then 0 m =  0 (ê m 4- ••• 4- e^m) =  

(0 Xj)m 4" •” 4" (0 X )̂m =  0. Thus 0 = 0  and so cr is a monomorphism,

g is an epimorphism
n n

Let (0 , ..., 0 ) be in 0  alglatM .. Define a map 0 : M —► M b y m  0j(X.m).

For each i, Xj(M) =  OjM =  M j and so 0j(Xjm) is well-defined. Thus 0 is well- 

defined.

Let m and m' be elements of M and r an element of R. Then 0j(Xj(m -f- mO) =  

0 j(Xjm) +  0 j(XjmO and so 0 (m 4- niO =  ^  4 " m')) =  2  pj(Xjm) -f- 0 j(Xjm')J

=  2  0:(X.m) 4 - 2 ] 0;(X.mO =  0m -f- 0m\ Also 0 (X (mr)) =  0.(e mr) =  0.(e.me.r) =
j=i   ̂ j^j  1 1 1 1  1 1  1 1 1

|^0j(ejm)J(ejr) =  r =  |^0j(ejmej)jr =  [^0j(ejm)jr =  (0j(Xjm))r. Then 0(mr) =

2
Z  0:(X.(mr)) =  (0.(X.m))r
j-i 1 - 1

r =  (0m)r. Thus 0 E EndMj^.
1 - 1

Let m be any element of M . There is some Sj in Rj with 0j(Ojm) =  SjCjm for
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g ' A
m eeach i =  1, n. Then 0m =  ^  0j(X:m) =  0î(e.m) =  ^  (s.e.m) =

i=i  1=1 1=1

Rm. Thus 0 E alglatj^Mj^.

For any j, (0X.)(e.m) =  0(e.^m) =  0(e.m) =  ^  0.(X.(e.m)) =  %) 0.(e.e.m) =
J J J J 1-1 j - i

0j(ejm) and thus 0Xj =  0j on M j. Hence g0 =  (0X ,̂ ..., 0X^) =  (0 ,̂ ..., 0^) and so a

is an epimorphism.

T h u s  g  is a ring  isom orphism  and a lg la tj^M j^  — 0  a lg la tM j w here  each M j IS

considered as an Rj-Rj-bim odule. □

The third decomposition of alglat applies to torsion modules over h-local 

domains. Matlis gave the definition of an h-local domain in [15; §8 ] and then 

showed that any torsion module over an h-local domain has a decomposition as the 

direct sum of the localised modules Tm where M ranges over all maximal ideals of 

R. In order to use this to give a decomposition of alglat, several results 

concerning h-local domains are required.

1.11 Definition of an h-local domain (Matlis)

An h-local domain is an integral domain which satisfies the following two 

conditions;

(i) each non-zero prime ideal is contained in a unique maximal ideal, and

(ii) each non-zero element is contained in only fin itely many maximal ideals.

Thus an integral domain is h-local if  and only if  modulo any non-zero prime 

ideal it is a local ring and modulo any non-zero ideal at all it is a semilocal ring. 

Local domains and Dedekind domains are examples of h-local domains.

The following theorem of Matlis is from [15; Corollary 8 .6 ] and gives a 

decomposition for any torsion module over an h-local domain. In fact Matlis 

proved in [16; Theorem 3.1] that for an integral domain R, the statement that R is
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an h-local domain is equivalent to the condition that T  =  0 T m for all torsion
M

R—modules T, where M ranges over all maximal ideals of R.

1.12 Theorem (Matlis)

Let R be an h-local domain and let T  be a torsion R—module. Then the 

localisation T m is a torsion RM-module and T  =  0 T m where M ranges over all
M

maximal ideals of R.

The isomorphism in Theorem 1.12 is given by r  : t -* [ j j .  For each non-zero 

element t of T , Ann(t) is a non-zero ideal and is thus contained in only fin itely  

many maximal ideals of R. I f  M is a maximal ideal of R not containing Ann(t) then 

I  =  J in T m‘ So only fin ite ly  many entries in the image of t are non-zero. 

Thus the image of T  under r  does indeed lie in the direct sum 0 T m*
M

The definition of a colocal ideal is given next (from [16]). This is followed by 

a characterisation by Matlis ([16; Theorem 2.3]) of h-local domains using colocal 

ideals.

1.13 Definition of a colocal ideal (Matlis)

An ideal of an integral domain R is said to be colocal if  it  is contained in only 

one maximal ideal of R.

1.14 Proposition (Matlis)

Let R be an integral domain. Then R is an h-local domain if  and only if  every 

non-zero ideal of R is a fin ite intersection of colocal ideals.

Matlis gives various elementary properties of colocal ideals in [16; p i48], some 

of which appear in Proposition 1.16. These use the following definition of his, of 

a normal decomposition of an ideal into a finite intersection of colocal ideals.
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1.15 Definition of a normal decomposition (Matlis)

Let I =  f | I- be a finite intersection of ideals, where L is a colocal ideal
i = i  ^

belonging to a maximal ideal M j. This decomposition is said to be normal if

M j ^  j  7̂  k.

1.16 Proposition (Matlis)

Let R be an h-local domain with I, J, Ij non-zero ideals of R and M, Mj maximal

ideals of R (i =  1, ..., n). Then

(i) i f  I and J are colocal in M then I fl J is colocal in M,

(ii) i f  I is colocal in M and v ^ M then I - f  Rv =  R,
n n

(iii) i f  Pi L is a normal decomposition with L colocal in M. then Ii PI L =  R,
i = l   ̂  ̂  ̂ i = 2  '■

n
(iv) if  J =  Pi L is a normal decomposition with I- colocal in M- and if  J C  M then

i = i  ^

M E {M j, ..., M^}.

Proof

(i) It  is clear that I D J Ç  M . Suppose for contradiction that I fl J is not colocal 

in M . Then there is a maximal ideal N of R, distinct from M, with I Pi J Ç  N. 

Since I g  N and J £  N there are elements i E I, i 0 N and j  E J, j  ^ N. But then 

ij 0 N which contradicts I A J Ç  N. Thus I fl J is colocal in M.

(ii) Suppose for contradiction that I -p Rv C  R. Then there is a maximal ideal N

of R with I +  Rv Ç  N and so I Ç  N. But I is colocal in M and thus N =  M.

This gives v E M which is the required contradiction.

(iii) From property (ii), P +  I 2  =  R* For the induction hypothesis assume that

P -p n  P ~  R* Again from (ii), p +  I^ =  R. Then R =  (p -p P% P)(P -p In) =
1=2 i= 2

(Ip "P P n  p “h pin) 4“ ( n  p) C  P r i  P* Thus R =  p 4~ FI P* This
i= 2  i= 2  i= 2  i= 2

completes the proof by induction.
n

(iv) Since J =  F| p G M, a maximal ideal, there is some j  with I .  Ç  M . The ideal
i = i  *  J

I j is colocal in M j and so M =  M j. Thus M E {Mi, ..., Mn). □
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Remarks

(a) It is clear from property (i) that every finite intersection of colocal ideals can 

be normalised.

(b) It follows immediately from property (ii) that if  I and J are colocal ideals 

belonging to different maximal ideals then I -p J =  R. This is used in the proof 

of (iii).

The next lemma, which does not appear to be in the literature, gives a form of 

“Chinese Remainder Theorem” for h-local domains and uses these properties of 

colocal ideals. This will enable the decomposition for alglat of Theorem 1.18 to be 

proved.

1.17 Lemma

Let R be an h-local domain and let T  be a torsion R—module. Let t be a non

zero element of T  with M ,̂ ..., the distinct maximal ideals of R containing 

Ann(t). Let be any elements of R^. (i =  1, ..., n). Then there is an element r of»i 1

R with Y  =  ^  in T m  ̂ for i =  1, ..., n.

Proof

Since T  is a torsion module, Ann(t) 7  ̂ 0. From Proposition 1.14, there is a
n

normal decomposition Ann(t) =  f] p with L colocal in M. for i =  1, ..., n.
i=i ^

Consider the maximal ideal M^. Since P is colocal in Mi and Si 0 Mi,

Proposition 1.16 gives P -P Rsi =  R. Then there are elements Ui 6  P and Vi E R
n

with Ui -p ViSi =  1 . Again from Proposition 1.16, P +  f l  P =  R* This gives
i= 2

n
elements bi E P and Cj E Fl P with bj +  Ci =  1 . Let r% =  ajCjVi. Then in Tm ,̂

i= 2

r it aiCiVit aiCiViSjt aiCid —Ui)t
1 1 Si Si

r it a id  —bi)t a it BibiCit ait
1 Si Si SiCi Si ’

i = 2, ..., n, bi g M j and so in T mjj
n t
1

. Since CiUi E Ann(t), ^  So

0
1  bi r

By considering each maximal ideal Mj, i =  1, ..., n, there are elements rj in R
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such that Y  — Tmj and ^  ^  j Tm̂  for j  7  ̂ i. Let r =  ^  r^. Then r is

the required element, since it now follows that, in T m,, y  “  " j ^
â t

I=  for i =  1 , ..., n. □

The next result is the decomposition theorem anticipated from Theorem 1.12.

1.18 Theorem

Let R be an h-local domain and let T  be a torsion R-module so that T  =  0 T m
M

where M ranges over all maximal ideals of R. Then alglat pTp =  Hs^lÊlatTM
^  ^  M

where M ranges over all maximal ideals of R and each T m is an RM-RM-bimodule.

Proof

Let N =  ri& IslatTM  where each T m is an Rm—Rm—himodule. Let r  be the
M

R—isomorphism introduced in Theorem 1.12, r  ; t jr | from T  into 0 T m*
M

Define a  : N —> alglat j^Tj^ by (0m) 0 where 0m G alglat T m and 0t =  t *̂ [̂ 0mj).

im a Ç  alglat j^Tj^

Let ti, t 2 , t E T  and r E R. Then 0tj +  0 t 2  =  4- =

T +  ^ )] =  j  H ) =  w t, +  tz), and 6 (tr) =  =

T ’ ((eM |)f) =  T-‘ ((0 „ |)r )  =  [T '‘ (0Mf)]r =  (0t)r. Hence 0 6 EndT^.

Let t be a non-zero element of the torsion module T . Then Ann(t) is non-zero 

and is thus contained in only fin itely many maximal ideals of R, Mj, ..., Mr,. If  

M 0 {Ml, ..., Mr,} then Ann(t) £  M and so |  j  in Rm. For i =— 1, ..., n, 0m. is in 

alglat T m, (where T m, is an Rm,—module) and so there are elements in Rm, with 

0m,(j) =  Then, from Lemma 1.17, there is an element r in R with ^  =  y  for 

i =  1, ..., n. Hence 0t =  t ‘^[0mj] =  =  r t. Thus 0 E alglatpT^^. Hence

im a Ç  alglat
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g is a ring homomorphism

Let (0m) and (0m) be in N with images 0 and 0  under a  respectively. Let 0 be 

the image of (0m +  0m) under a . Then 0 t =  t'^[(0m +  0m)j) =  +  0mj)

=  T  =  0 t -f  0 t =  ( 0  4 - 0 )t for all t in T . So 0 =  0 4- 0 and

thus g(0M) 4* oc(0m) =  a(0M 4- 0m)* Let ( be the image of (0m0m) under a . For t

in T , write 0 t =  t, in T  so that 0mj =  y  in Tm for all maximal ideals M . Then (t  

=  "7" ^[(0m0m)j] =  T ^(0m(0m|)] =  T ^[^My] =  0ti =  0(0t) =  (00)t for all t in  T and 

so ( =  00. Hence a(0M)<x(0M) =  g(0M0M).

Let 1m be the unit element in alglat T m for all maximal ideals M and let 1 be the 

unit element in alglat j^Tj^. Then (1m) is the unit element in N. If  a(lM) =  0 then 

0t =  t '̂ (̂ 1m |)  =  t and so 0 =  1. Thus a(lM) =  1. Hence a  is a well-

defined ring homomorphism.

g is a monomorphism

Suppose (0m) E kerg  with image 0 under g  so that 0 = 0 .

Let M ' be any maximal ideal of R and consider an element |  in T,^,. There is an 

element t, in T  with r t ,  =  [ y  ..., y  y  ••*) so that y  =  |  if  M =  M' and y  =   ̂

otherwise. Then 0m'(y) =  ®m'(§) &nd, for all M 7  ̂ 0my  =  y  So 0 =  0t, =

.... Q Q ...]. Thus =  9 for all I  in T„, so 0„, =  0.

Thus 0M =  0 for all maximal ideals M of R. Hence kerg  =  0 and g is a

monomorphism.

g is an epimorphism

For each maximal ideal M of R, let tTm : 0 Tm —> Tm be the canonical projection
M

map and : T m —» 0 T m be the canonical injection map. Then %M and are
M

R-homomorphisms and XmAm is the identity map on Tm for all maximal ideals of R. 

Define /3 ; alglat j^Tj^ —> N by 0 •-» (0m) where 0m =  T r ^ r d r '^ p ^ .
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im/3 ç  N

Let M be any maximal ideal of R. Let ^  and |  be elements of and L 

an element of Rm* Then 6 m is an R-endomorphism of Tm, being a product of 

R-homomorphisms. So 6 m - p  ^ ) =  6 m(^) +  and [6m(§5)]u =  6 m(^) =

[sM(|)]r so that 0m ( |q) =  [®m (§)]5- Thus 0m € EndTMj^^*

For I  in Tm, there is some element a in R with 0t'^//m(§) =  ar'^/ZM(§)* Then 

0M§ =  (7rMT0T’*/2M)(§) =  (TTMTaT'^MKl) =  P r^ X ^ )  =  ÿ  =  |-§- So 0m |  G

Rm | .  Hence 0m E alglat TM (where T m is an Rm—module). Thus im/3 Ç  N.

0  is a ring homomorphism

Let 0 and 0  belong to alglat j^Tj^. Then f3 i9 4- 0) =  (7TmT(0 4- 0)t' /̂L£m) =  

(%MT0T' /̂ZM 4- 7TmT0t‘ /̂/m) =  ('7TmT0t'Vm) 4" (7rMT0T‘ ÂiM) =  0Q 0<f>, Also 

(^0)(/30) =  ('7rMT0T' /̂iM)('7'’M'7'07’' /̂iM) =  (,T:f^TBT''^Pf^'Kf^T<f>T''^p^). Let I  be in Tm for 

some maximal ideal M . Then there is an element a in R with 0 t'V m (|) =  

aT'VM(§)* So ('7rMT0T*VM'7rM'7'0T'VM)(§) =  ('7rMT0T‘ ;̂UM7rMT)(aT* /̂iM)(§) =  

(X M T 0T ‘ VM'7rM'7’) ( '7 " V M ) (ÿ )  =  (Xm T0T'Vm )('7Tm '7'T 'Vm )(|^) =  (7Tm T0T 'Vm )(|^ ) =  

(xMT0)(aT'^/iM)(|) =  (7rM'7'0)(0T’VM)(|) =  ('7rMT00T'VM)(§)‘ Thus 

7rMT0T'^/2M7rMT0T'VM =  %MT00T'^//M* Hence (/30)(/30) =  (7TmT00t’Vm) =  /3(00).

Using the notation for unit elements as above, let (0m) is the image of 1 

under (5. Then 0m =  tTmtIt'Vm =  'Km T t '^P m =  1m* So /31 =  (1m), the unit 

element in N. Thus /3 is a well-defined ring homomorphism.

OL0 acts as the identity on alglat ̂ T̂̂ ^

Let 0 be an element of alglat j^Tj^ and let 0 be the image of 0 under <x0. 

Then 0  =  g(/90) =  a(0M) where 0m =  'K f^ rB r '^ P f^ . Thus 0 t =  for all t

in T .

Let t be a non-zero element of T  so that Ann(t) is contained in only fin itely  

many maximal ideals of R, M „ ..., Mf,* If  M is a maximal ideal of R which does 

not contain Ann(t) then |  j  in T m and so 0mj =  y  Then r t  =  =
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2  /^Mj| and [ômj) =  2  There are elements in R, for i =  1, ..., n,

with ar'^AiMy =  a^T'^Mif- Then 0t =  ^  =  Z  a^y '/^My =
■*• ■*• 1= 1  ̂ 1 = 1 •*■

Z  ajT'VM,(7rMTT-VMj)r =  Z  r ' ' ^ =
1=1 •*■ i = l  ^ i = l  ■*•

Thus 0 = 0  and so a/3(0) =  0 and a/3 acts as the identity element on 

alglat j^Tj^.

So, given 0 in alglat j^Tj^, /30 is in N and a(/90) =  0. Hence a  is onto.

Thus a  is a ring isomorphism and alglat pTp =  H  alglat T m where each T m is an
M

Rm—module and M ranges over all maximal ideals of R. □

The third decomposition theorem for alglat. Theorem 1.21, is an extension of 

this result. Theorem 1.21 deals with the case where R is a commutative ring with 

a prime ideal P such that R/P is an h-local domain and T  is a torsion R /P—module. 

Theorem 1.18 is used in the proof. The following two propositions are also 

required, the firs t of which relates alglat j^Tj^ to both alglat ^ T ^  where A =  R/P  

and alglat gTg  where B =  R. The second proposition is well-known and can be 

found in [19; p23],

1.19 Proposition

Let R be a commutative ring and let T  be an R—module.

(i) If  I Ç  AnnT for some ideal I of R, then T  has an R /I—module structure given 

by (r +  I)t =  r t  for all r G R, t E T . Then alglat j^Tj^ =  a lg la t^T ^  where A =  

R/I.

(ii) If  0 : B —► R is a ring isomorphism then T  has a B—module structure given by 

bt =  (0b)t for all b E B, t E T . Then alglat j^Tj^ =  alglat gTg.
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Proof

Let tj, t 2 , t be elements of T  and let r be an element of R.

(i) Let f  be the coset r +  I in A.

Let <f> E alglat Then 0 (t, +  t 2 ) =  0 t, - f  ^tg, 0 (tT) =  0 (tr) =  (0 t)r =

(0 t ) r ,  and for each t E T  there is some s E R with 0 t =  st, so that 0 t =  st with

¥ E A. Thus 0 E alglat ^ T ^

Let 0 E alglat ^ T ^ . Then 0 (t, +  tg) =  0 t, +  0 t 2 , 0(tr) =  0(tT) =  (0t)7  =

(0t)r, and for each t E T  there is some s E A with 0t =  st, so that 0t =  st with

s E R. Thus 0  E alglat j^Tj^

Hence alglat j^Tj^ =  alglat ^ T ^ .

(ii) Let b be the element of B with 0b =  r.

Let 0  E alglatj^Tj^. Then 0 (t, +  tg) =  0 t, +  0 tg, 0 (tb) =  0(t(0b)) =  (0t)(0b)

=  (0 t)b, and for each t E T  there is some u E R with 0 t =  ut and u =  0v, so

that 0t =  (0v)t =  vt, V  E B. Thus 0 E alglat gTg

Let 0  E alglat gTg . Then 0 (t, - f  tg) =  0t, +  0 tg, 0 (tr) =  0(t(0b)) =  0 (tb) =

(0 t)b =  (0t)(0b) =  (0t)r, and for each t E T  there is some v E B with 0 t =  vt, so

that 0 t =  (0v)t, 0v E R. Thus 0  E alglat j^Tj^

Hence alglat j^Tj^ =  a lg latgTg. □

1.20 Proposition

Let R be a commutative ring with P a prime ideal of R and N a maximal ideal of 

R containing P. Then (R/P)^/? =  Pn/P n •

The ring isomorphism in Proposition 1 . 2 0  is given by 7 : (R/P)n/p —̂  Rn/P N>

r +  P i  +  Pn*s +  P s

The next result is the third decomposition theorem of Chapter 1. This will be 

used in Chapter 7 in determining the structure of alglat for modules over an FSI 

domain.
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1.21 Theorem

Let R be a commutative ring with a prime ideal P such that R/P is an h-local 

domain. Let T  be an R-module with P Ç  AnnT and such that T  is a torsion 

R/P-module. Then alglat pTp  =  F[alglat T^ where T^ is an R^-module and N
N

ranges over all maximal ideals of R containing P.

Proof

W rite S =  R/P. There is a 1-1 correspondence between the maximal ideals of 

R containing P and the maximal ideals of S.

Let N be any maximal ideal of R containing P and let M =  N/P so that M is a 

maximal ideal of S. Then P  ̂ Ç  AnnT^ (T^ is an R^—module) so T^ can be 

considered as an R^/Pn—module via -}- Pn]^ ~  §n* P 7*om Proposition 1.19, 

alglat =  alglat N Using the ring isomorphism 7 in

Proposition 1.20, T^ has an S^—module structure defined by ~y '~p)ü  “  

T{“ ^ y ) j ï ï  =  (I +  Then alglatg^T^g^ =  a l g l a t a g a i n

from Proposition 1.19. The map between T^ and T m given by : T^ —► T m,

I  •— g- y ' p is well-defined and is an Sm~ module isomorphism. This gives rise to a 

ring isomorphism €n : alglat^ T^c —► alglat^ T mo , 0n ^n0n^n' -̂ Combining 

these results gives a ring isomorphism : alglatr, T np  —» alglat^ T mc ,

0 N Then there is a ring isomorphism defined by e : FlGiIgi&tp T^p —f

n  alglat Q T mc , (0n) (€n0n) =  (^n0n^n' )̂, where N ranges over all maximal idealsM M
of R containing P and M ranges over all maximal ideals of S.

By hypothesis S is an h-local domain and T  is a torsion S—module. So 

alglatgTg =  a  [ n  alglat g T m ^ ] where a  is the ring isomorphism in Theorem 1.18 

and M ranges over all maximal ideals of S. Using Proposition 1.19 again, alglat p T p  

=  alglatgTg since P Ç  AnnT.

Thus alg latpTp =  alglatgTg =  a [n a lg la tg ^ T M s J  =  a e (n a lg la t p ^T ^p J . 

Hence alg latpTp =  H ^ lg l^ fT ^  where T m is an Rn-module and N ranges over all
^  ^  N

maximal ideals of R containing P. □
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Remark

If P =  0 then R is an h-local domain, M =  N and S =  R and so Sm =  Rn*

Thus Tm =  Tn so is the identity on T^ and is the identity on alglat p^T^p^. 

The map e acts on FJalglatp T^p as the identity and so alglatpTp =  

a  I FI alglat p  T^p 1 as given in Theorem 1.18.

A discussion of the structure of alglat for all modules over particular classes 

of rings will be given in the later chapters, when these decomposition theorems will 

be used. The next two chapters are concerned with reflexive modules and rings 

over which every fin ite ly  generated module is reflexive.
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Chapter 2 Non-torsion modules, scalar-reflexive and locally scalar-reflexive rings

For a ring R, the characterisation of alglat pM p for all R-modules M falls 

broadly into the discussion of two cases, where M is torsion and where M is non

torsion. This chapter looks at results for non-torsion modules and gives 

conditions on a ring for all non-torsion modules to be reflexive. These results are 

used in later chapters to reduce the study of alglat for all modules over particular 

classes of rings to the consideration of torsion modules.

The main result of this chapter is Theorem 2.2 which gives a condition on a 

ring R that is equivalent to every non-torsion R-module being reflexive. It is 

shown that it is sufficient to have all 2 -generated non-torsion modules reflexive. 

Hadwin and Kerr have proved in [9; Proposition 7] that every non-torsion module 

over a domain is reflexive. This result can now be derived from Theorem 2.2 and 

is given in Corollary 2.3.

In [9] Hadwin and Kerr defined a ring to be scalar-reflexive if  every fin ite ly  

generated module is reflexive (2.4). Another corollary of Theorem 2.2 (which is 

not proven by Hadwin and Kerr) shows that every non-torsion module over a 

scalar-reflexive ring is reflexive. The work of Hadwin and Kerr on fin ite ly  

generated modules and re flex iv ity  in [8 ] and [9] means that the property that every 

2 —generated non-torsion module is reflexive is a useful equivalent to the condition 

that every non-torsion module be reflexive.

The results proved in this chapter concerning non-torsion modules have a 

greater degree of generality than any results as yet obtained for torsion modules.

In particular the corresponding result to Theorem 2.2 does not hold for torsion 

modules. An example of a local scalar-reflexive ring illustrating this is discussed 

following Theorem 2.11.

Theorem 2.11 is a result of Hadwin and Kerr and gives equivalent conditions, 

for a local ring, to the ring being scalar-reflexive. In particular a local ring is 

scalar-reflexive if  and only if  it is an almost maximal valuation ring. This
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motivates the definition in 2 . 1 2  where a ring is defined to be locally scalar- 

reflexive if  every localisation at a maximal ideal is scalar-reflexive. Hadwin and 

Kerr ask in [8 ] whether the property of being scalar-reflexive is closed under 

localisations. This is an open question. However a converse is proved in Theorem 

2.17 which shows that any locally scalar-reflexive ring is scalar-reflexive.

The final result of the chapter returns to non-torsion modules. This is a 

further corollary to Theorem 2.2 and shows that every non-torsion module over a 

locally scalar-reflexive ring is reflexive.

The firs t result, which was noted by Hadwin and Kerr in [8 ; p3], is well-known 

and will be frequently used.

2.1 Proposition

Let R be a commutative ring. Then every finite direct sum of cyclic 

R-modules is reflexive.

Proof
n

Let M =  0R m ,, a finite direct sum of cyclic R-modules, and let 4> be in
i = l  ^

alglatpM p. Then there are elements r̂  and r in R with 0 m̂  =  r̂ m̂  (i =  1 , ..., n)

and 0 (m, -T mg •’ * 4- m„) =  r(m, 4" mg 4“ ■■■ 4" m„). So r(m, 4" mg 4" ■■■ 4" m,,)

=  r,m, 4- Tgmg 4- ••• 4- r^m^. The sum is direct and so rm  ̂ =  r̂ m̂  for all i. It 

follows that 0  =  X(r). Hence alglat pM p =  X(R) and M is reflexive. □

The next theorem is the main result of the chapter. It limits the study of

non-torsion modules not only to the fin itely generated case but to the

consideration of 2—generated modules. This helps in the construction of examples 

when looking at non-torsion modules. Both fin ite ly  generated and 2—generated 

conditions play an important part in this thesis, especially in this chapter and in 

Chapter 3.
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2.2 Theorem

Let R be a commutative ring. Then the following are equivalent:

(i) every non-torsion R-module is reflexive,

(ii) every 2-generated non-torsion R-module is reflexive.

Proof

The implication (i) =» (ii) is triv ia l.

(ii) =» (i)

Let M be a non-torsion R-module and let 0 be any element of alglat pM p. Then 

there is an element m in M with Ann (m) =  0. The R-module Rm is reflexive and 

0  is in alglatpRmp. Thus there is some r in R with 0  =  \(r )  on Rm.

Let X be any element of the module M and consider N =  Rm -f  Rx. Then 0  is 

in alglatpNp. The R-module N is non-torsion and 2-generated and so, by 

hypothesis, is reflexive. So there is an element s in R with 0  =  X(s) on N. Since 

m is in N, 0 m =  rm == sm and so r =  s. Then 0  =  X(r) on N and so 0 x =  rx. 

Thus 0  =  X(r) and alglatpM p =  X(R). Hence M is reflexive as required. □

The following corollary to this theorem, which was mentioned above and is 

proved by Hadwin and Kerr in [9; Proposition 7], can now be derived from this 

theorem.

2.3 Corollary (Hadwin and Kerr)

Let R be a commutative domain. Then every non-torsion R-module is 

reflexive.

Proof

Let M =  Rx - f  Ry be a non-torsion 2-generated R-module. If  Rx f l  Ry =  0 

then M =  Rx 0  Ry which is reflexive (Proposition 2.1). So suppose Rx 0  Ry
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0. Then there are elements a, b in R with 0 7  ̂ ax =  by. Let 0  be an element of 

alglatpM p. There are elements r, s in R with 0 x =  rx and 0 y =  sy. Then rby 

=  rax =  0(ax) =  0 (by) == sby =  sax. So b(r — s) E Ann(Ry) and a (r— s) E 

Ann(Rx). Since the module M is fa ith fu l, ab(r —s) E Ann (Rx) f l  Ann(Ry) =  0. 

The elements a, b are non-zero and R is a domain so r — s =  0. Then 0 x =  rx 

and 0 y =  ry  and so 0  =  X(r). Hence alglat pM p =  X(R).

Thus every non-torsion 2—generated R-module is reflexive. The result follows 

from Theorem 2.2. □

In [8 ] and [91, Hadwin and Kerr studied rings in which every fin ite ly  generated 

module is reflexive, making the following definition in [9] (see comments in the 

Introduction).

2.4 Definition of a scalar-reflexive ring (Hadwin and Kerr)

A ring R is said to be scalar-reflexive if every fin ite ly  generated R-module is 

reflexive.

The ring of integers, Z ,  is an example of a scalar-reflexive ring. For it is 

known from abelian group theory that every fin ite ly  generated Z —module can be 

expressed as finite direct sum of cyclic modules. From Proposition 2.1, every 

finite direct sum of cyclic Z —modules is reflexive. Thus every fin ite ly  generated 

Z-m odule is reflexive and so Z  is scalar-reflexive.

From the definition of a scalar-reflexive ring it is clear that every 2-generated 

module over a scalar-reflexive ring is reflexive. This gives the following 

corollary to Theorem 2.2.
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2.5 Corollary

Let R be a scalar-reflexive ring. Then every non-torsion R—module is 

reflexive.

The definition of an FGC ring, made in [23], is given next and provides a class 

of rings that are scalar-reflexive. This was noted in [8 ; Proposition 4] and is 

immediate from Proposition 2.1.

2.6 Definition of an FGC ring (Shores and R. Wiegand)

A ring is an FGC ring if  every fin ite ly  generated module over the ring is a 

direct sum of cyclic submodules.

These rings have been studied and characterised by Brandal, Shores, Vamos,

R. Wiegand and S. Wiegand in [2], [3], [23], [25], [26]. The structure theorems for 

FGC rings are given in Chapter 5. Examples of FGC rings are provided by the 

principal ideal domains. Moreover the local FGC rings are precisely the almost 

maximal valuation rings ([6 ; Main Theorem]).

The following definitions made in [6 ] are generalisations of those of maximal and 

almost maximal valuation domains made by Kaplansky in [12; p336].

2.7 Definitions of a maximal and an almost maximal valuation ring

A valuation ring R is maximal if every system of pairwise soluble congruences

of the form {x =  Xq. mod Iq.} has a simultaneous solution in R, where Xq̂  6  R, la  

is an ideal of R and a  is in some index set J.

A valuation ring R is almost maximal if  the above congruences have a

simultaneous solution whenever f] la  0 *
a  e J
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Thus every maximal valuation ring is almost maximal. An equivalent definition 

of an almost maximal valuation ring (AMVR), given in [23], is that R is an AMVR if  

R /I is maximal for every non-zero ideal I of R.

The following sections give some examples of these types of rings.

2.8 Examples of almost maximal valuation rings

(a) Every discrete (noetherian) valuation domain is an almost maximal valuation 

ring ([12; p336]).

(b) The power series ring in one indeterminate over a field is a discrete valuation 

domain and hence is almost maximal. In addition it is complete and so is a maximal 

valuation domain ([12; p336], [16; pl60]). As an example, C[[x]] is a maximal 

valuation domain. (A discussion of maximal valuation domains and completions will 

be in section 4.4 and following.) Then the quotient C[[x]]/(x^) is also a maximal 

valuation ring, but is not a domain since the ideal (x^) is not prime in C[[x]].

(c) The localisation of Z  at a non-zero prime ideal P =  (p), denoted Zp, is a

discrete valuation domain. Its proper non-zero ideals are precisely those generated 

p"by Y  for n 1. Then Zp is an almost maximal valuation ring but is not maximal.

2.9 Examples of valuation rings that are not almost maximal

(a) This firs t example looks at subvaluation domains of “long power series” rings 

and was communicated to me by Vamos. More details and proofs are given in [3], 

[22] and [24].

Let r  (t^ Z )  be a totally ordered abelian group and let F be a field. Then 

denotes the positive cone of F, F"̂  =  {g E F I g ^  0}. For a function f  : F F 

define the support of f  by supf =  (a E F I f(a) 0). Let F((F)) =  {f E F^l supf 

is well-ordered). Addition and multiplication are defined in F((F)) by 

(f +  g)(a) =  f(a ) 4 - g(a),

(fg)(a) =  f(/3)g(7) where f, g E F((F)) and a, /3, 7 E F.
/? + 7 = a
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These operations are well-defined and give F((F)) the structure of a field. There is 

a maximal valuation v on F((F)) given by v : F((F)) - 4  F U {0 0 }, v(f) =  minsupf.

The valuation ring of v is F[[F1], the “long power series” ring relative to F and F. 

Thus F[[F1] =  {f G F((F)) I supf Ç  F" }̂. The residue field of the valuation ring is 

F. Hence F[[F1] is a maximal valuation domain.

Now suppose F Ç  R (F 7  ̂ Z ) .  Call a subset S of F"*" almost finite if  the set 

{a € S I a  ^  7 } is finite for all 7 E F^. It is clear that an almost fin ite set is 

partially well-ordered. Let R =  (f 6  F[[FI] I supf is almost finite). Then R is a 

valuation domain under the valuation v above (with v restricted to the field of

fractions of R). Thus R is a sub-valuation domain of F[IF]]. Moreover R has the

same value group F and residue field F as F[[F]].

Let A and A' be valuation domains and let A —4 A' be an embedding. Then A' is

an immediate extension of A if  the value groups and residue fields of A and A' are 

isomorphic via this embedding. Thus F[[FJ] is an immediate extension of R. A 

valuation domain is said to be maximally complete if  it has no proper immediate 

extensions. Thus R is not maximally complete. Moreover a valuation domain is 

maximally complete if  and only if  it is a maximal valuation domain. Hence R is not 

a maximal valuation domain.

A valuation domain A is complete in the A-topology if the embedding 

0  : A —4 1^  A /Ar, a (a Ar) (indexed by 0 7  ̂ r E A) is an isomorphism (see 

Definition 4.4). To show that R is complete in the R—topology it is thus sufficient

to show that 0  is onto. Let (fr  +  Rr) E 1^  R /Rr. Define a map f  : F —4 F by

J *'s(si) if  there is some s (0 7  ̂ s E R) with a E supfg, a ^  v(s), a 7  ̂ v(s),
*  ̂ '' otherwise.I?

Then f is indeed an element of R and 0 f  =  (fp +  Rr). Thus 0  is onto and so the 

ring R is indeed complete in the R-topology. Hence R is not an almost maximal 

valuation domain ([16; pl60]).

Then the sub-valuation ring R of F[[F1] is a valuation ring which is not almost 

maximal.
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(b) Let S be the ring C[Xq, X„ Xg, ... ] and I the ideal of S generated by all the 

elements X^^ — X^_j for n 1. Let A be the quotient ring S/I, so that A =

C[xq, x „ Xg, ... ] where Xj =  Xj +  I, and let M be the maximal ideal (xq, x „ Xg, ...)

of A. Let R =  Am* Then R is a valuation domain. For ease of notation write r 

for the element j  in R since A embeds in R (via a •-* |) .  (Further information on 

the ring A may be found in [11; 39].)

However R is not an almost maximal valuation domain. Take Î  =  (x^  ̂ “ ') as 

the family of ideals in R (n ^ 1 )  and consider the system of congruences
n + 1

{â  mod 1̂ 1 where a, =  1 and â  =  a^-i 4- x^+Z  ̂ for n ^  2. Then â  — a^-i 

E In_]\ 1̂  for n ^  2 and 0 7  ̂ (xo) C  fjln- This system of congruences is pairwise 

soluble but there is no simultaneous solution in R.

Hence R is a valuation ring that is not almost maximal.

2.10 Examples of local rings that are not valuation rings

The following two examples are of power series rings which are local rings but

not valuation rings.

(a) The ring K[[x^, x ]̂] where K is a field is a 1-dimensional local domain which is 

not integrally closed ([11; 11]). But valuation domains are integrally closed (see 

[1; Proposition 5.18]). Thus K[[x^, x ]̂] is a local domain which is not a valuation 

ring.

(b) The ring C[[x„ Xg, ... ]] with infinitely many indeterminates has a unique 

maximal ideal (x„ Xg, ...) so is a local ring, but is not a valuation ring since the 

indeterminates are not comparable.

It has been seen that all FGC rings are scalar-reflexive and that the local FGC 

rings are just the almost maximal valuation rings. The next theorem is a result of 

Hadwin and Kerr ([9; Theorem 6 ]) which shows that these three conditions are 

equivalent for local rings.

43



2.11 Theorem (Hadwin and Kerr)

Let R be a local ring. Then the following are equivalent:

(i) R is scalar-reflexive,

(ii) R is an FGC ring,

(iii) R is an almost maximal valuation ring.

This theorem can be used to give an example of a ring R which shows that 

Theorem 2.2 cannot be generalised to apply to torsion modules. Let R =  Zp, 

where P =  (p) is any non-zero prime ideal of Z .  Then, from Example 2.8(c), R is 

an almost maximal valuation domain which is not maximal. From Theorem 2.11, R is 

scalar-reflexive. Hence all 2—generated modules and all non-torsion modules over 

R are reflexive (Corollary 2.5).

Let T  be the R—module < y ,  y ,  ... I — p  Then T  is a

fa ith fu l torsion R—module. The results in Chapter 4 show that T  is not reflexive. 

Thus it is not the case that every torsion R—module is reflexive. (For the above. 

Theorem 4.9 shows that alglatj^Tj^ is isomorphic to R, the completion of R in the 

R-topology. Since R is a domain and is not maximal, R is not complete in the 

R-topology (see after 4.4). Thus R is strictly  embedded in R and hence T  is not 

reflexive. Note that T  is the localisation of the Z —module Zp« at the prime P.

It can be shown that the ring homomorphism in Lemma 2.16 is an isomorphism in 

this case. Then alglat^(Zpo»)^ =  alglat j^Tj^. Indeed, alglatZp<« is precisely the 

ring of le ft scalar multiplications by elements of the p-adic completion of Z .)

Hadwin and Kerr remark in [9; p8] that their proof of Theorem 2.11 shows that 

these three conditions are equivalent, for a local ring R, to a fourth condition:

(iv) every 2—generated R—module is reflexive.

It  will be shown later in Chapter 5 (following Theorem 5.17) that, although 

conditions (i) and (ii) are equivalent for a local ring, they are not equivalent in 

general. Theorem 2.11 characterises local rings that are scalar-reflexive. Thus it
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can be used to provide information on rings whose localisations are scalar- 

reflexive. This motivates the following definition.

2.12 Definition of a locally scalar-reflexive ring

A ring is locally scalar-reflexive if  every localisation at a maximal ideal is 

scalar-reflexive.

Any FGC ring R is a locally scalar-reflexive ring. For every localisation of R 

at a maximal ideal is a local FGC ring and hence, from Theorem 2.11, is scalar- 

reflexive. Thus R is locally scalar-reflexive. From Theorem 2.11, every almost 

maximal valuation ring is an FGC ring and is thus locally scalar-reflexive. Hence 

every local ring which is scalar-reflexive is also locally scalar-reflexive.

The last result of this chapter is a corollary to Theorem 2.2 for locally scalar- 

reflexive rings. Before giving Corollary 2.19, locally scalar-reflexive rings 

together with some of their properties are discussed. In particular Theorem 2.17 

shows that every locally scalar-reflexive ring is scalar-reflexive.

First an equivalent definition of a locally scalar-reflexive ring is given. This 

makes use of the following well-known definition.

2.13 Definition of an arithmetical ring

A ring is arithmetical if  every localisation at a maximal ideal is a valuation 

ring.

An alternative definition is that a ring is arithmetical if  every localisation at a 

prime ideal is a valuation ring. Thus the arithmetical domains are just the Priifer 

domains.
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In [25], Vâmos introduced the terminology of a locally almost maximal 

arithmetical ring. This is a ring in which every localisation at a prime ideal is an 

almost maximal valuation ring. From Theorem 2.11 these are the rings in which 

every localisation at a prime ideal is scalar-reflexive. Proposition 2.15 shows that 

the locally almost maximal arithmetical rings (those satisfying (i) in 2.15) are 

precisely the locally scalar-reflexive rings (those satisfying (iv) in 2.15). The  

following lemma was proved by Gill in [6; Lemma 2] and is used in Proposition 2.15.

2.14 Lemma (Gill)

Let R be a valuation ring and let P be a prime ideal of R. Then R is maximal 

(almost maximal) => Rp is maximal (almost maximal).

2.15 Proposition

Let R be a commutative ring. Then the following are equivalent:

(i) Rp is scalar-reflexive for all prime ideals P of R,

(ii) Every 2-generated Rp—module is reflexive for all prime ideals P of R,

(iii) Every 2—generated R^—module is reflexive for all maximal ideals M of R,

(iv) Rm is scalar-reflexive for all maximal ideals M of R.

Proof

The implications (i) => (ii) and (ii) => (iii) are triv ia l and (iii) => (iv) follows from 

the remark after Theorem 2.11.

(iv) =» (i)

Let P be a prime ideal of R and let M be a maximal ideal of R containing P.

Then Rp =  (Rm)pm (see [19; p24j). By hypothesis R^ is scalar-reflexive, and so 

from Theorem 2.11, R^ is an almost maximal valuation ring. The ideal Pm is prime 

in Rm and thus the localised ring (Rm)pm is also an almost maximal valuation ring 

(Lemma 2.14). Hence Rp is an almost maximal valuation ring and thus Rp is scalar-
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reflexive (Theorem 2.11). □

Hadwin and Kerr asked in [8 ; p7] whether the class of scalar-reflexive rings is 

closed under localisations. A particular case of this, when the localisations are at 

the maximal ideals, asks whether every scalar-reflexive ring is locally scalar- 

reflexive. These remain open questions, with the only known examples of locally 

scalar-reflexive rings being provided by the scalar-reflexive rings, and vice versa. 

There is nevertheless a connection between scalar-reflexive rings and locally 

scalar-reflexive rings. In Theorem 2.17 it will be proved that every locally scalar- 

reflexive ring is scalar-reflexive. Then a local ring is scalar-reflexive if  and only 

if it is locally scalar-reflexive. The following lemma is used in the proof of 

Theorem 2.17.

2.16 Lemma

Let M be a maximal ideal of a ring R and let T  be an R-module with 

localisation T^. Then there is a ring homomorphism from alglat^T^^ to alglatT^  

where T^  is an R^—module.

Proof

Define a map a  : alglat ^ T ^  —► alglatTfv, by ^  0m where 0M : §

img Ç  alglatTM

Let 0  e  alglatj^Tj^ so that 0m E im a and 0m : Tm —► Tm.

Suppose that ^  ^  in Tm s o  that there is some u ^ M with (tiS2  — t 2 Si)u =

0. Then [(0 t^)s2  — (0 t 2 )s,]u =  l0 (tiS2 ) — 0 (t 2 Si)]u =  0 ((tiS2  — tgSjlu) =  0 and so

^  Thus 0M is well-defined.

§{» ^» s ^ and g e Rm- Then 0m =

0 ( t , s y ^  =  ^  -P ^  -P Also 0MB-S]

=  Hence 0m 6 EndTMR^-
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Let I  G T m- There is some element a of R with 0t =  at. Then 0m [§] =  ^  =

^  G Rm §- Hence 0m G alglatTM (where T m is an RM-module).

Thus im a Ç  alglatTM.

a  is a ring homomorphism

Let 0 and 6 be elements of alglat ̂ T ^ . Let x =  0 +   ̂ so that Xm is the image 

of 0 - f  0 under a . Then Xm(|) =  ^  —  ̂ ^  ^  =  ^m[|) +  6m(|) and

so Xm =  0M +  ^M* Thus a(0 -h 0) =  a0  +  a0. Let ^ =  00 so that 0m is the

image of 00 under a . Then 0m (§) =  =  0M[%) =  and

so 0M =  0M^M. Thus a(00) =  (a0)(a0). Let 1 be the identity in alglat j^Tj^ so

that 1m is the image of 1 under a . For |  in T mj 1m [§] “  T  ““ §* Hence a ( l)  is 

indeed the identity element in alglatTM- Thus a  is a well-defined ring 

homomorphism. □

2.17 Theorem

Every locally scalar-reflexive ring is scalar-reflexive.

Proof

Let R be a locally scalar-reflexive ring and let {M- I i G 1} be the set of all 

maximal ideals of R. Let T  =  Rxi -f- Rx2  +  ••• +  Rx^ be a fin itely generated 

R-module and let 0 G alglat ̂ T ^ .

Let M- be any maximal ideal of R. Then there is a map 0m, in alglatTM, given 

by I  ^  (Lemma 2.16). The Rm,—module T m, is fin itely generated and is therefore 

reflexive (by hypothesis). So there is an element ^  in Rm, with 0m, =  X(^). Then

for each j  =  1, ..., n, so there are elements s— G R\M- with
n

(a^Xj — u-(0Xj))sy =  0. Let s- =  so then s- g M-. Then (a-Xj — u-(0Xj))s^

=  0 for all j =  1, ..., n. So u-, s- g M- and, for j =  1, ..., n, u-s^(0Xj) =  a^s-Xj.

The sum ]^Ru^s- =  R, for otherwise there is some maximal ideal N with
I e I

%]Ru-Sj Ç  N. But N =  for some k G I and u^s^ g giving the required
i d
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contradiction. So there is a finite subset K of I with 1 =  22 •’k ^

Then, for j  =  1, n, j> =  2 /k ^ k ^ k ’ ĵ- '' =  2 /k® k ® k

SO that 0Xj =  rXj for j  == 1, ..., n and r G R. Then 0 =  X(r) and so T  is 

reflexive. Hence R is scalar-reflexive. □

The next few comments relate Theorem 2.17 to another result in the literature. 

In [9; Theorem 12], Hadwin and Kerr proved the following theorem.

2.18 Theorem (Hadwin and Kerr)

Let R be an h-local domain with Rm an almost maximal valuation ring for all 

maximal ideals M of R. Then R is scalar-reflexive.

The hypotheses of this theorem may be rewritten, requiring R to be an h-local 

domain which is locally scalar-reflexive. From Theorem 2.17 it is clear that the 

condition that R be an h-local domain is redundant.

The third and final corollary to Theorem 2.2 now follows. The proof is 

immediate from Corollary 2.5 and Theorem 2.17.

2.19 Corollary

Let R be a locally scalar-reflexive ring. Then every non-torsion R-module is 

reflexive.

Scalar-reflexive rings, locally scalar-reflexive rings and 2—generator conditions 

will be studied further in Chapter 3.
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Chapter 3 Reflexivity and local properties

This chapter builds on the work done in Chapters 1 and 2 on h-local domains, 

scalar-reflexive rings and locally scalar-reflexive rings and looks at some local 

properties for an h-local domain. Recall from 2.4 and 2.12 that a ring R is scalar- 

reflexive if every fin ite ly  generated R-module is reflexive and that R is locally 

scalar-reflexive if  every localisation Rm at a maximal ideal M of R is scalar- 

reflexive. In addition every locally scalar-reflexive ring is scalar-reflexive 

(Theorem 2.17).

The main result of the chapter is Theorem 3.4 which gives eight properties of 

an h-local domain which are equivalent to the condition that the ring is locally 

scalar-reflexive. The principal component of Theorem 3.4 is the proof that, for an 

h-local domain R with every 2—generated R—module being reflexive, then R is 

locally scalar-reflexive. This result may be of independent interest and as such it 

appears in Theorem 3.1. In addition Theorem 3.1 provides a partial converse to 

Theorem 2.17, showing for an h-local domain, that being scalar-reflexive is 

equivalent to being locally scalar-reflexive.

Theorem 3.4 links the structure and decomposition of modules with the study 

of re flex iv ity . In particular it is shown that an h-local domain is locally scalar- 

reflexive if  and only if  every 2 -generated torsion module is a direct sum of cyclic 

modules. The corresponding statement for fin itely generated torsion modules also 

appears as one of the nine equivalent properties of Theorem 3.4.

3.1 Theorem

Let R be an h-local domain. Then the following are equivalent:

(i) R is locally scalar-reflexive,

(ii) R is scalar-reflexive,

(iii) Every 2—generated R-module is reflexive.
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Proof

The implication (i) => (ii) is given in Theorem 2.17 and (ii) => (iii) is triv ia l.

(iii) => (i)

It is sufficient to show, for all maximal ideals M of R, that every 2—generated 

RM-module is reflexive. For then Rm is scalar-reflexive for all maximal ideals M 

(Theorem 2.11) and so R is locally scalar-reflexive.

Let M be a maximal ideal of R and let T  =  RmX +  RmY be a 2-generated 

RM-module. Suppose that both RmX and RMy are non-zero. For if not then T  is 

cyclic and thus reflexive (Proposition 2.1). Note that the ring R is a domain and 

so R C  Rm via the embedding r j .  Then, for any element t of T , there is a 

well-defined R-module structure on t given by rt : =  j t .

There are two cases to consider.

Case i) T  non-torsion

The local ring Rm is a domain. It then follows from Corollary 2.3 that T  is 

reflexive.

Case ii) T  torsion

The firs t step is to find new generators x' and y ' for T  so that the ideal 

Ann(Rx' +  RyO is colocal in M. The construction begins by showing that the 

ideal AnnRx is non-zero and is contained in M. The module T  is torsion so let ^ 

be a non-zero element of Ann(RMx). Then r 7  ̂ 0, j  G Ann(RMx) and rx =  jX  =  0. 

Thus AnnRx 7  ̂ 0. Suppose AnnRx g  M and let s be an element in AnnRx with 

s ^ M . Then, since Rm =  Rm§» it follows that RmX =  RmSX =  0, a contradiction. 

Thus AnnRx Ç  M.
n

So AnnRx has a normal decomposition AnnRx =  Q L with L colocal in M ,.

From Proposition 1.16, M G {Mi, ..., Mn). To ease notation suppose M =  M i.

Then, also from Proposition 1.16, Q L -p li =  R. This gives elements a in Q L
i - 2  i - 2
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and b in Ii with 1 =  a 4- b. Then Ann Rax =  For if  r € Ann Rax, then rax =  

0 and so ra 6 AnnRx Ç  Thus r =  ra -f  rb € For the reverse inclusion
n

let r E l l  so that ra E Q I; =  AnnRx. Then rax =  0 and so r E Ann Rax. Thus
i = l

Ann Rax =  Ii which is colocal in Mi =  M. It is also clear that a is not an element 

of M and so R^ax =  R^x.

In the same way there is an element c in R and a colocal ideal J of M with 

R^cy =  R^y and AnnRcy =  J. Let x' =  ax and y ' =  cy. Then T  =  R^x' -f  

R^y' and Ann(Rx' +  RyO =  AnnRx' Pi AnnRy' =  Ii O J which is colocal in M 

(Proposition 1.16). Thus x' and y' are the new generators.

The next step is to prove that Rt =  R^t for all t in T . Let t € T . Then

clearly Rt Ç  Rrv,t. For the reverse inclusion let ^ E Rm so that ^ t  E RmI- Then,

since Ann (Rx' -P RyO is colocal in M and u g M, it follows from Proposition 1.16 

that Ru -p Ann(Rx' -p Ry') =  R. Thus there are elements f  in R and g in

Ann(Rx' +  RyO with 1 =  fu +  g. Then ^ =  y -P § giving ^ t  == y t  +  ^gt.

But gt =  0. (W rite t =  ^ x '  -P ^ y '  =  [ ^ ^ x '  -p ^y^y']. Thus gt =  | t  =

(diSgx' -P dgSiy') = 0 . )  So ^ t  =  y t  =  f r t  E Rt. Thus RMt Ç  Rt. Hence 

RMt =  Rt for all t in T . In particular T  =  R^x' -P R^y' =  Rx' +  Ry' since x' 

and y ' are in T .

The final step is to show that T  is a reflexive RM-module. Considering T  as 

an R-module, T  =  Rx' +  Ry' is 2-generated and so is reflexive by hypothesis.

Thus alglatj^Tj^ =  X(R) Ç  X(Rm) Q  a l g l a t B u t  R Ç  Rm and so EndT^^ Ç

EndT^. Then alglat ̂ ^T^^ =  (0 E EndT^^ I 0t E RmI for all t E T} Ç

(0 E EndT^ I 0t E RmI for all t E T} =  (0 E EndTj^ I 0t E Rt for all t E T} =

alglatj^Tj^. Thus a l g l a t =  X(Rm ) and hence T  is a reflexive RM-module. □

The next two sections concern local properties and will be used in Theorem 3.4. 

The following definition of a local property may be found with examples in 

[1; pp40-41].
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3.2 Definition of a local property

A property Q of a ring R is a local property if  the following are equivalent:

(i) R has property Q,

(ii) Rm has property Q for all maximal ideals M of R,

(iii) Rp has property Q for all prime ideals P of R.

3.3 Proposition

Suppose that, for h-local domains, property Q is equivalent to property Q' and 

that property Q is a local property. Then property Q" is also a local property for 

h-local domains.

Proof

The proof is an easy consequence of the fact that, for any prime ideal P of an 

h-local domain R, Rp is a local domain and hence an h-local domain. □

The next theorem is the main result of the chapter.

3.4 Theorem

Let R be an h-local domain. Then the following are equivalent local properties:

(1) R is scalar-reflexive,

(2) every fin ite ly  generated torsion R—module is reflexive,

(3) every fin itely generated torsion R-module is a direct sum of cyclic modules,

(4) every 2—generated R-module is reflexive,

(5) every 2-generated torsion R—module is reflexive,

(6) every 2-generated torsion R-module is a direct sum of cyclic modules,

(7) R is a Priifer domain and Q/R is injective, where Q is the quotient field of R,

(8) Rm is an almost maximal valuation ring for every maximal ideal M of R,

(9) R is locally scalar-reflexive.
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Note

The quotient Q/R is always considered as an R—module. An R—module M is 

injective if, for any injective map f  : N' —► N and any map g : N' —► M, there is a 

map h : N —» M with g =  hf (where N, N' are R—modules and all the maps are 

R—homomorphisms).

Proof

It follows from Proposition 2.15 and Theorem 3.1 that (1) is a local property. It 

is thus sufficient to prove that these nine properties are equivalent, since it is 

then immediate from Proposition 3.3 that all nine properties are local.

The proof of (1) (4) »  (9) has already been given in Theorem 3.1, and the

results (3) «  (7) «  (8) are proved by Matlis in [16; Theorem 5.7]. It follows from 

the definition of a locally scalar-reflexive ring and from Theorem 2.11 that

(8) o  (9). The implications (3) => (2) => (5) and (3) =» (6) =» (5) are triv ia l 

consequences of Proposition 2.1. Finally the implication (5) => (4) follows from 

Corollary 2.3 since R is a domain. Thus all nine properties are equivalent. This 

completes the proof of the theorem. □

The next part of this chapter uses this theorem to answer a question raised by 

Hadwin and Kerr in [9; pl2], Hadwin and Kerr ask whether every scalar-reflexive 

domain is h-local. An example is given in 3.6 which answers this question in the 

negative. This example uses rings of type I, which were firs t defined by Matlis in 

[17]. The definition is given below.

3.5 Definition of a ring of type 1 (Matlis)

A ring R is of type 1 if  R is an integral domain with exactly two maximal ideals 

Ml and M 2  such that R^  ̂ and R^  ̂ are maximal valuation rings and there is no non

zero prime ideal contained in M i  f l  M 2 .
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An example of a ring of type I is given by Osofsky in [17]. Brandal includes 

this same ring in his paper [3; Example 14.1] with more accompanying detail. The 

following example (3.6) was given by Matlis in [18; Example 2] to show that there is 

a ring which is the intersection of two dependent maximal valuation rings, but is 

not a ring of type I. This latter ring is now shown to be a locally scalar-reflexive 

(and hence scalar-reflexive) domain which is not an h-local domain.

3.6 Example of a scalar-reflexive domain which is not h-local

Let A be a ring of type I with two maximal ideals M, and M 2 . Let B be the 

field of fractions of A. Let R be the ring of formal power series in an

indeterminate X with coefficients in B but with constant term in A so that R =
00 ■

b^X I boE A, bj E B fo r  i >  0}. T h e n  R is a dom ain. L e t P be th e  prim e ideal 

of R consisting of power series with constant term bo =  0 . Then R has precisely 

two maximal ideals N , =  M i -f  P and N 2  =  M 2  +  P. The prime ideal P satisfies 

0 7  ̂ P Ç  N i n  N 2 . Thus R is not an h-local domain.

The power series in the domain R̂  ̂ have constant term in A^^. Then R̂  ̂ is a 

valuation ring since A^  ̂ is a valuation ring. It is known that (R^Jp =  Rp (see 

[19; p24]). Since Rp =  B[[X]], a maximal valuation ring, the ring (R^Jp is also a 

maximal valuation ring (see Example 2.8(b)). The quotient ring Rn/ P  is a maximal 

valuation ring too, being isomorphic to A^^. For a valuation domain S and prime 

ideal Q of S, S is a maximal valuation ring if and only if  both Sq and S/Q are 

maximal valuation rings (a proof can be found in [18; Corollary 2]). Thus R̂  ̂ is a 

maximal valuation ring. Similarly R^  ̂ is a maximal valuation ring. Thus R is 

locally scalar-reflexive.

Hence R is a scalar-reflexive domain which is not an h-local domain.

A second related question posed by Hadwin and Kerr in [9; pl2] asks what are 

the scalar-reflexive domains. This question remains open in view of Example 3.6. 

However, Theorem 3.4 has classified all the scalar-reflexive h-local domains.
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Finally recall the result of Hadwin and Kerr given in Theorem 2.18 which 

proves, for an h-local domain R with R^ an almost maximal valuation ring for all 

maximal ideals M of R, that R is scalar-reflexive. The equivalence of properties

(1) and (8) of Theorem 3.4 for h-local domains provides a converse to this result. 

This gives a second generalisation of Theorem 2.18 (see comments following 

Theorem 2.18).

The next chapters work towards a characterisation in Chapter 7 of alglat 

for all modules M over fractionally self-injective (FSl) rings. In discussing these 

FSl rings in Chapter 5 another characterisation of scalar-reflexive h-local domains 

will be given with Theorem 5.19 proving that the scalar-reflexive h-local domains 

are precisely the FSl domains. First Chapter 4 looks at the local case and 

determines alglat for all modules over an almost maximal valuation ring.
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Chapter 4 Modules over almost maximal valuation rings

The rest of this thesis builds towards the results in Chapter 7 which 

characterise alglat for all modules over fractionally self-injective rings. Chapter 5 

looks at the structure of FSl rings, with Chapters 6 and 7 providing a 

characterisation of alglat for modules over an FSl ring. The aim of this chapter is 

to determine alglat for all modules over the local FSl rings. As well as being of 

independent interest, these results will be used in Chapter 7.

It is known that an FGC ring is fractionally self-injective and this result will 

be found in Theorem 5.12. Theorem 2.11 showed that a local FGC ring is an almost 

maximal valuation ring. It will be seen in Proposition 5.16 that the local FSl rings 

are also precisely the almost maximal valuation rings. Thus this chapter aims to 

characterise alglat for all modules over an almost maximal valuation ring. Recall 

from 2.7 the definitions of a maximal and an almost maximal valuation ring. If  R is 

an almost maximal valuation ring then R is scalar-reflexive (Theorem 2.11). Thus 

all fin ite ly  generated and all non-torsion R—modules are reflexive (Corollary 2.5).

The firs t two results concern maximal valuation rings. The firs t theorem, by 

Hadwin and Kerr, is part of [9; Theorem 5] and shows that all modules over a 

maximal valuation ring are reflexive. The subsequent proposition was proved by 

Gill in [6; Proposition 1] and gives a condition for an almost maximal valuation ring 

to be maximal.

4.1 Theorem (Hadwin and Kerr)

Let R be a maximal valuation ring. Then every R—module is reflexive.

4.2 Proposition (Gill)

Let R be a valuation ring which is not a domain. Then R is almost maximal if 

and only if R is maximal.
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Let R be an almost maximal valuation ring and T  any R—module. If  R is 

maximal then T  is reflexive by Theorem 4.1. If  R is not maximal then from 

Proposition 4.2, R is a domain. So to find alg lat^T^, R may be taken to be an 

almost maximal valuation domain. Since all non-torsion modules over an almost 

maximal valuation ring are reflexive, it is sufficient to consider torsion modules 

over almost maximal valuation domains. The study of alglat ̂ Tp^ then splits into 

two sections according as to whether the torsion R-module T  is fa ith fu l or not. 

The next theorem concerns modules which are not fa ith fu l and two alternative  

proofs are given. The firs t proof uses Theorem 4.1, whereas the second proof is 

more direct.

4.3 Theorem

Let R be an almost maximal valuation ring and let T  be an R-module which is 

not fa ith fu l. Then T  is reflexive.

Proof 1

Let I =  AnnT so that I is a non-zero ideal of R. Let A =  R /I so then A is a 

maximal valuation ring. From Theorem 4.1, T  is reflexive as an A—module and 

hence (from Proposition 1.19) T  is reflexive as an R-module. □

Proof 2

Let <f> 6  alglat p T p . For each t i n  T  there is an element r^ of R with 0 t =  r^t. 

Let I  ̂ =  Ann(t) so that 0 7  ̂ AnnT =  f ) I f  T^^en {I  ̂ I t G T} is a family of ideals 

of R with non-zero intersection.

Consider the system of congruences {r =  r^ mod I^}.

Let X, y be any elements of T  and let N =  Rx -f Ry. From Theorem 2.11, R is 

scalar-reflexive and so N is reflexive. Thus there is an element a in R with 

0  =  X(a) on N. Then ax =  0 x =  r^x and ay =  0 y — ryy . So a — r *  E 1% and 

a — ry 6  l y .  Thus a 5= r% mod Ix and a =  ry mod l y .  Hence the system of

58



congruences is pairwise soluble.

The ring R is an almost maximal valuation ring so there is a solution r in R to 

the system of congruences. Then, for any t in T, r — r^ G and so 0 t =  r^t =  

rt. Thus 0  =  X(r). Hence alglat pTp  =  X(R) and so T  is reflexive. □

Before determining alglat p T p  for fa ith fu l torsion R-modules T  over an almost 

maximal valuation domain R, it is necessary to look at the completion of a ring R 

in the R-topology. The definition of the R-topology was given by Matlis in [15; §6 ] 

and more details can be found there.

4.4 Definition of the R-topology

Let R be an integral domain (not a field). A topology, called the R-topology, is 

defined on R by letting the non-zero ideals of R form a sub-base for the open 

neighbourhoods of 0 in R. The same topology is given to R by letting the non

zero principal ideals of R form a sub-base for the open neighbourhoods of 0 in R. 

The R-topology on R makes R into a topological ring. The intersection f] Rr is
0 # r  t R

the closure of 0 in R, and R is Hausdorff if  and only if the closure of 0 in R is 

zero.

The ring R is Hausdorff in this topology. To prove this, let A =  Q Rr and
0 : ? t r t R

suppose for contradiction that there is an element 0 7  ̂ a G A. Then â  7  ̂ 0 (R is 

a domain) and a G A C  Ra^. So there is some b in R with a — ba^. Thus ab =  1 

and hence A == R. Then for any non-zero element r of R, Rr =  R and so r is a 

unit in R. Thus R is a field, giving the required contradiction. Hence A =  0. 

Thus R is Hausdorff in the R-topology.

The inverse limit Im  R /I exists and is isomorphic to 1^  R /Rr (0 7  ̂ I <] R, 0 7  ̂

r G R). Let R =  1 ^  R/Rr (0 7  ̂ r G R), so that R is the completion of R in the 

R-topology ([15; Proposition 6.1]). Then (aj. -f- Rr) is an element of R if  and only if  

for any non-zero elements u, v in R, a^ — a^v E Ru (if and only if  for any non

zero elements c, d in R with Rc Q  Rd, a^ — a^ G Rd). There is a canonical ring
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homomorphism 0 : R —► R given by 0 : a -* (a 4- Rr) for a in R. This gives ker0  

=  f) Rr. Since R is Hausdorff, ker0 =  0 and so 0 embeds R in R. The domain
O ^ r s R

R is complete in the R-topology if  and only if the homomorphism 0 : R —► R is an 

isomorphism.

There are alternative definitions of maximal and almost maximal valuation 

domains to those given in 2.7 which include this idea of completeness in the 

R-topology (see Example 2.8(b)). These were given by Matlis in [16; ppl59-160]. 

These definitions are a result of proving, for a valuation domain R with quotient 

field Q, that R is almost maximal if and only if  the R—module Q/R is injective, and 

that R is maximal if  and only if  it is both almost maximal and complete in the 

R-topology (see [14; Theorems 4, 9]).

The next result was proved by Matlis as part of [15; Theorem 8.5] and will be 

used in Corollary 7.2. It is included here with the discussion of the R-topology 

for convenience.

4.5 Lemma (Matlis)

L e t R be an h -lo c a l dom ain. L e t R be th e  R -com pletion  o f R and le t  R m be th e  

R M -com pletion o f R m w here  M  is a m axim al ideal o f  R . T h e n  R =  f l  w h ere  M
M

ranges over all maximal ideals of R.

The isomorphism in Lemma 4.5 is given by 7 • (&r 4- Rr) ►-* | (̂y -f- Rmj)]. 

Suppose that (a  ̂ 4- Rr) 6 R and let M be any maximal ideal of R. For an element 

s g M, Rm| =  Rm> and so any principal ideal of Rm can be expressed in the form

Rm j . Suppose y  J are non-zero elements of Rm. Then u, v are non-zero elements

of R and so there is some b in  R with a^ — =  bu G Ru. Thus ̂  ^  =

y  G Rm j. Hence the element ( y  4- Rm^ is indeed in Rm and so the image of R

under 7 does lie in O R m-
M
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In order to characterise alglat for a faith fu l torsion R—module T  over an 

almost maximal valuation domain R, it has to be shown that T  has an R—module 

structure. The following proposition is more general than is required, showing 

that any torsion R—module over a domain R has an R—module structure (see 

[4; Exercise 6  p i01]). Note that if  R is a domain and T  is a torsion R—module then 

R cannot be a field. For if  0 7  ̂ t G T  then Ann(t) is a non-zero ideal of R which 

is strictly contained in R.

4.6 Proposition

Let R be a domain with R-completion R. Let T  be a torsion R—module. Then T  

has an R—module structure given by (a^ -(- Rr)t =  agt where (a^ -h Rr) G R, 

t G T  and 0 7  ̂ Rs Ç  Ann(t). Moreover alglat pTp  =  alglat ^ T ^ .

Proof

For any element t of T , Ann(t) 7  ̂ 0 since T  is torsion.

Suppose Ru Ç  Ann(t) and Rv Q  Ann(t) for 0 7  ̂ u, v G R. Then a^ — a^v E 

Ru Ç  Ann(t) and ay — ayy G Rv Ç  Ann(t) so that au — &v E Ann(t). Thus

a ^ t  =  a y t .

Suppose (ar +  Rr) =  (bp - f  Rr) and that Rs Q  Ann(t). Then ap — bp G Rr 

for all 0 7  ̂ r G R. In particular &s — bg G Rs and so agt =  bgt.

L et â =  (aj- 4 - R r), b =  (bj. 4- R r) be elem ents o f R and le t  t, t^, t 2  be elem ents  

o f  T .  T h e n  A n n (R t, 4~ R t 2 ) 7  ̂ 0 so th e re  is a n o n -ze ro  elem ent u in R w ith  Ru Ç  

A n n (t j) ,  Ru Q  A n n (t 2 ) and Ru Ç  A n n (t j 4 -  tg). So a (t j 4 - tg) =  au(t% 4- tg) =  

a ^ ti 4- aytg =  a t i 4- Stg. L e t 0 7  ̂ R v  Ç  A n n (t ) .  Now â F  b = = (a p  +  b^ +  R r)  

and âb =  (a^br 4- R r) . So (â 4- b )t =  (a y  -|- b y ) t  =  a y t  4- b y t  =  a t 4- b t.

Since Ann(t) Ç  Ann (byt), Rv Ç  Ann (byt). Thus a(bt) =  a(byt) =  ay(byt) =  

(ayby)t =  (ab)t. The identity element of R is (1 4~ Rr), and (1 4- Rr)t =  I t  =  t. 

Thus T  is an R—module under this product.

From 4.4, R Ç  R so that EndT^ Ç  EndTp. Let 0  G a l g l a t L e t  t G T.
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There is an element â G R with 0 t =  at. Then, from the R—module structure of 

T, 0 t G Rt. Hence 0  G alglat p T p  and so alglat ̂ T -  Ç  alglat p T p .

Let 0  G alg latpTp. Then 0 (t% -f  tg) =  0 t̂  +  0 tg for t ,̂ tg in T . Let â =

(aj. -j- Rr) G R and let t G T  with 0 7  ̂ Rs Ç  Ann(t). Then there is some b in  R 

with 0 t =  bt and so Rs Ç  Ann(t) Q  Ann(bt). Thus 0 (ta) =  0 (tag) =  (0 t)ag =  

(bt)ag =  (bt)a =  (0 t)a. So 0 G E n d T -. Let t be any element of T . Then, since 

0  G alglatpTp and R Ç  R, 0t G Rt. Hence 0  G a lg la t^T^  and so alg latpTp Ç  

alg la t^T^ . Thus alg latpTp =  a lg la t-T ^ . □

In the light of this result X(R) can be considered as a subring of alglat pTp  

whenever T  is a torsion module over a domain R. This will be used without 

further comment.

The two subsequent results are used in Theorem 4.9 to prove, for a fa ith fu l 

torsion module T  over an almost maximal valuation domain R, that alglat p T p  is 

isomorphic to R. Theorem 4.7 uses the R—module structure on T  from Proposition 

4.6, and shows that, for a valuation domain R and fa ith fu l torsion R-module T, it 

is always the case that R =  X(R) Ç  alglat p T p . The proof depends on showing 

that T  is a fa ith fu l R-module. Thus if  R is not complete in the R-topology then 

R 7  ̂ R and so X(R) is strictly  contained in X(R). In this case T  will not be 

reflexive. A general characterisation of alglat with the hypotheses of Theorem

4.7 is not known. However the additional requirement in Theorem 4.9 that R be 

almost maximal enables alg latpTp to be determined.

4.7 Theorem

Let R be a valuation domain with R-completion R. Let T  be a fa ith fu l torsion 

R—module. Then T  is a fa ith fu l R—module and R =  X(R) Ç  alglatpTp.
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Proof

From Proposition 4.6, X(R) Ç  alg latpTp. The main part of the proof is to 

show that T  is fa ith fu l as an R—module. It then follows from the discussion in 1.1 

that X(R) =  R. The firs t step is to show that there is a sequence of elements (t^)

in T  with Ann(tc) Ç  Rc for each 0 7  ̂ c G R. Suppose for contradiction that

there is a non-zero element s of R with Ann(t) £  Rs for all t in T . Then, since R 

is a valuation ring, Rs Q  Ann(t) for all t in T . So 0 7  ̂ Rs C  f] Ann(t) =  AnnT.
t e  T

This contradicts the statement that T  is a fa ith fu l R—module. So for each 0 7  ̂ c 

G R there is an element t^ in T  with Ann(tc) Ç  Rc. For each Lc (0 7  ̂ c G R) 

there is an element d  ̂ in R with 0  7  ̂ Rd^ Q  Ann(tc).

Let â =  (ar +  Rr) be an element of A n n - T  and let 0 7  ̂ c G R. Then 0 =  ate

=  a^ te and so a^  ̂ G Ann (te) Q  Rc. However Rde Ç  Rc so â  ̂ — ae G Rc.

Thus ae G Rc and so ae 4- Rc == 0 +  Rc. Hence â =  (0 4- Rr), the zero element 

of R. Thus T  is a fa ith fu l R—module and R =  X(R), completing the proof. □

This next result, proved by Matlis in [16; Proposition 4.7], is used with 

Theorem 4.7 to determine alglat T  for a fa ith fu l torsion module T  over an almost 

maximal valuation domain.

4.8 Proposition (Matlis)

Let R be an integral domain and R its completion in the R-topology. Then R is 

an almost maximal valuation ring if  and only if  R is a maximal valuation ring.

4.9 Theorem

Let R be an almost maximal valuation domain with R-completion R. Let T  be a 

fa ith fu l torsion R—module. Then R =  X(R) =  a lg latpTp.

Proof

From Proposition 4.6 and Theorem 4.7, R =  X(R) and X(R) Ç  alglatpTp =
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a l g l a t The valuation domain R is almost maximal so, from Proposition 4.8, the 

completion R is a maximal valuation ring. Then T  is a reflexive R—module 

(Theorem 4.1) and so a lg la t-T -  =  X(R). Hence there is equality and so X(R) =  

alglat p T  p. D

Remark

This theorem holds irrespective of whether or not the domain R is complete. 

For, i f  R is complete then R =  R and R is maximal (see comments following 4.4), so 

T is reflexive as already shown by Theorem 4.1. However if R is not complete 

then, since T  is a fa ith fu l R—module, X(R) is strictly  contained in X(R) and so T  is 

not a reflexive R—module (see discussion before Theorem 4.7).

The results of this chapter are summarised in Theorem 4.10. This gives the 

structure of alglat for any module over an almost maximal valuation ring. An 

illustration of the nature of alglat completes the chapter.

4.10 Theorem

Let R be an almost maximal valuation ring and let T  be an R-module. If R is 

not maximal and if  T  is fa ith fu l and torsion, then alglat p T p  =  X(R) =  R, and T  is 

not reflexive. In all other cases T  is reflexive.
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4.11 Illustration of the nature of alglat

R is an almost maximal valuation ring 

T  is an R-module

T  is non-torsion 

Then T  is reflexive  

(2.5, 2.11)

T  is torsion

T  is not fa ith fu l T  is fa ith fu l

Then T  is reflexive (4.3)

R is maximal

Then T  is reflexive (4.1)

R is not maximal 

Then R is a domain (4.2) and 

R is not complete (after 4.4) 

So R =  X(R) =  alglat pTp  

and T  is not reflexive (4.9)
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Chapter S The structure of FGC, FSl and CF rings

Vamos defined a ring to be fractionally self-injective or FSl if  for each ideal I 

of R the classical ring of quotients of R /I is self-injective (see Definition 5.1).

This chapter is concerned with the structure of FSl rings. There are also results 

on FGC and CF rings, both classes having similar properties to FSl rings. No 

results are given here for alglat for modules over FSl rings. Instead, this chapter 

includes all the information on FSl rings which is needed to determine alglat and 

thus provides the necessary background to the study of alglat for modules over 

FSl rings in the next two chapters.

In [25], Vamos studied FGC rings as well as FSl rings. (The definition of an 

FGC ring was given in 2.6.) Brandal, Shores, R. Wiegand and S. Wiegand also 

studied FGC rings in [2], [23] and [26]. In [23] Shores and R. Wiegand introduced 

and studied CF rings (see Definition 5.3). All three types of rings have been 

characterised in terms of their indecomposable rings and the structure theorems 

are given in this chapter. Vamos proved (Theorem 5.12) that every FGC ring is an 

FSl ring and Theorem 5.15 shows that every FSl ring is a CF ring. A description 

of local FSl rings and FSl domains is also included. Specific examples are then 

given to illustrate all these relationships and to show that the classes of rings are 

distinct.

It has already been seen that every FGC ring is scalar-reflexive (see note prior 

to 2.6) and it will be seen in Theorem 5.17 that every FSl ring is locally scalar- 

reflexive and hence also scalar-reflexive (Theorem 2.17). This chapter ends with a 

discussion of alglat for a specific module over a valuation ring which is not almost 

maximal, recalling from Theorem 2.11 the fact that arbitrary valuation rings are 

not scalar-reflexive. It is remarked (before Proposition 5.5) that every valuation 

ring is a CF ring, and thus not every CF ring is scalar-reflexive. The study in 

Chapters 6 and 7 of alglat for modules over FSl rings also determines alglat for 

modules over FGC rings. The next obvious generalisation of these results is to
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CF rings. The nature of the work in Chapters 6 and 7 together with Example 5.22, 

indicates that any characterisation of alglat for modules over the more general CF 

rings will not be a simple extension of the results for modules over FSl rings.

The chapter begins with the definitions of FSl, CF and FGCF rings. (Recall 

that a ring R is self-injective if  R is an injective R-module.)

5.1 Definition of an FSl ring (Vamos [25])

A ring R is a fractionally self-injective ring or an FSl ring if  for each ideal I 

of R the classical ring of quotients of R /I is self-injective.

The concept of a canonical form or canonical decomposition for a module was 

defined by Shores and R. Wiegand in [23] and was used there to make the definition 

of a CF ring. The two definitions of FGC and CF rings were then combined in [23] 

to form a class of rings called FGCF rings and this definition is given in 5.4.

5.2 Definition of a canonical form

A canonical form for an R—module M is a decomposition M =  R/I^ 0  R /I 2  0  ••• 

0  R/In where Î  Ç  I 2  Ç  ••• Ç  I^ C  R.

5.3 Definition of a CF ring

A ring R is said to be a CF ring if  every direct sum of fin itely many cyclic 

R-modules has a canonical form.

5.4 Definition of an FGCF ring

A ring is an FGCF ring if  it is both an FGC ring and a CF ring.

Shores and R. Wiegand characterised all CF rings and all FGCF rings in [23]. In

[25], Vamos gives a complete description of all FSl rings and, independent of [23], of
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all FGCF rings. Vamos indicated in [25; Remark p217] that a proof that every FGC 

ring has only fin itely many minimal prime ideals is sufficient to show that every 

FGC ring is an FGCF ring. This proof (that an FGC ring has only fin ite ly  many 

minimal primes) was given by Brandal and R. Wiegand in [2; Lemma 3]. These 

results then show that the definitions of FGC and FGCF rings are equivalent and 

hence determine the structure of all FGC rings. A detailed account of these 

proofs and the structure of FGC rings was given by R. Wiegand and S. Wiegand in 

the expository article [26] and later by Brandal in [3].

The next part of this chapter is concerned with the structure theorems. The 

firs t type of rings to be studied are the CF rings, and three decomposition 

theorems for a CF ring will be given. Proposition 5.5 was proved by Shores and 

R. Wiegand in [23; Corollary 1.7] and provides examples of CF rings. It was noted 

in [23], in the proof of this result, that a valuation ring is a CF ring.

5.5 Proposition ([23])

Every h-local Prüfer domain is a CF ring.

The study of CF rings introduces another class of rings which were called 

?-rings in [23] by Shores and R. Wiegand. The definition follows in 5.6. Shores 

and R. Wiegand gave an example of a ?-ring in [23; Example 3.13].

5.6 Definition of a ?-ring ([23])

A ring is a ?-ring if  it is an indecomposable CF ring that is neither a valuation 

ring nor an h-local domain.

There is now sufficient information to present the structure theorems for CF 

rings. The following three theorems of Shores and R. Wiegand are from 

[23; Theorems 3.10, 3.11 and 3.12] and characterise CF rings and ?-rings.
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5.7 Theorem ([23])

Every CF ring is a finite direct sum of indecomposable CF rings. The 

indecomposable CF rings are precisely the rings R such that (i) R is arithmetical,

(ii) R has a unique minimal prime P, (iii) R/P is an h-local domain, and (iv) every 

ideal contained in P is comparable with every ideal of R.

5.8 Theorem ([23])

Every ?-ring R has the following properties (in addition to (i) - (iv) of 

Theorem 5.7): (v) P 7  ̂ P̂  =  0, (vi) R has at least two maximal ideals, (vii) P is an 

indecomposable, torsion, divisible R/P—module, (v iii) P =  Pm for a unique maximal 

ideal M, (ix) P  ̂ =  0 for every maximal ideal N 7  ̂ M . Conversely every ideal 

satisfying (i) - (vi) is a ?-ring.

5.9 Theorem ([23])

A ring is a CF ring if and only if  it is a finite direct sum of valuation rings, 

h-local Prüfer domains, and ?-rings.

Thus the indecomposable CF rings are precisely the valuation rings, the h-local 

Prüfer domains and the ?-rings. Note that every CF ring is arithmetical; it is not 

only the indecomposable CF rings that are arithmetical ([23; Proposition 1.10]). In 

[25], Vamos gave the ?-rings the name of torch rings, this name being suggested by 

the shape of the ideal lattice of these rings. His definition of a torch ring follows 

in 5.10. (Note that a module is uniserial if  all its submodules are totally ordered.)

5.10 Definition of a torch ring ([25])

A ring R is a torch ring if  the following conditions are satisfied:

(1) R is an arithmetical ring with at least two maximal ideals, and

(2) R has a unique minimal prime ideal P such that R/P is an h-local domain, P is 

uniserial and P 7  ̂ 0.
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Note that a definition of a torch ring is given in [26] which does not require 

R/P to be an h-local domain. However if  R is a torch ring in the sense of [25] 

(5.10) then it is clear that R is a torch ring in the sense of [26]. In particular 

results from [26] on torch rings may be used.

Vamos stated in [25] that the definitions of a torch ring and a ?-ring are indeed 

equivalent. A proof is included in Lemma 5.11 for completeness.

5.11 Lemma

The definitions of a torch ring and a ?-ring are equivalent.

Proof

Let R be a ?-ring. Properties (i) and (vi) from Theorem 5.8 give condition (1) 

for a torch ring. From (iv) it can be seen that the ideals of R contained in P form 

a chain, and so P is uniserial. Then conditions (ii), (iii), (iv) and (v) ensure that R 

satisfies condition (2). Thus R is a torch ring.

Let R be a torch ring with unique minimal prime ideal P. It is clear from the 

definition that R satisfies (i), (ii), (iii) and (vi). From [23; Lemma 3.1] P is 

comparable to every ideal of R. Then, since P is uniserial, condition (iv) holds. 

From [26; Lemma 18], P̂  =  0. But P 7  ̂ 0 and so condition (v) is satisfied. Thus R 

is a ?-ring. □

The name torch ring will be used from now on for this class of rings.

Now that CF rings have been characterised, the next part of the chapter is 

concerned with the decomposition of FSl and FGC rings. Results are also given 

which show that every FGC ring is FSl and every FSl ring is CF. The next 

theorem begins this classification by relating the structure of an FGC ring to that 

of an FSl ring. This was proved by Vamos in [25; Theorem A].
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5.12 Theorem ([25])

For a ring R the following are equivalent:

(i) R is an FGC ring,

(ii) R is an FSI Bezout ring.

Hence every FGC ring is an FSI ring. So this theorem provides examples of 

FSI rings. Moreover the class of FGC rings is strictly contained in the class of 

FSI rings. This will be shown in Example 5.14 by using the structure theorem for 

FSI rings to give an FSI ring which is not an FGC ring. The next result,

Theorem 5.13, is the structure theorem for FSI rings and was proved by Vamos in 

[25; Theorem Bj.

5.13 Theorem ([25])

Every FSI ring is the finite direct sum of indecomposable FSI rings. The 

indecomposable FSI rings are precisely the almost maximal valuation rings, the 

locally almost maximal h-local domains and the locally almost maximal torch rings.

From [25; Lemma 6], every FSI ring is arithmetical. So, in particular, these 

locally almost maximal h-local domains, being FSI rings, are arithmetical. From 

Theorem 5.13, any indecomposable FSI ring R has a unique minimal prime ideal P 

which is uniserial, that is the ideals of R contained in P form a chain (see also 

[25; Lemmas 5 and 8]), and the ideal P is comparable to every ideal of R 

([23; Lemma 3.1]).

5.14 Example of an FSI ring that is not an FGC ring

Let R be a Dedekind domain which is not a PID. Then R is an h-local domain 

and every localisation of R at a maximal ideal is an almost maximal valuation 

domain. Thus R is a locally almost maximal h-local domain and so, from Theorem 

5.13, R is an FSI ring. However, since R is not a PID, there are ideals which are
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fin itely generated but not principal. Thus R is not a Bezout ring. Hence, from 

Theorem 5.12, R is not an FGC ring. So every Dedekind domain is an FSI ring, and 

those Dedekind domains which are not PIDs are FSI rings but not FGC rings.

Hence the class of FGC rings is strictly contained in the class of FSI rings.

Theorems 5.12 and 5.13 together characterise all FGC rings in terms of the 

indecomposable FGC rings. This same characterisation was proved independently 

by Shores and R. Wiegand in [23; Corollary 4.2]. Another decomposition theorem 

for FGC rings was proved by R. Wiegand and S. Wiegand in [26; Theorem 5] which 

classifies the FGC rings in terms of the properties of the indecomposable FGC 

rings.

So FSI and FGC rings have all been characterised, and it has been shown that 

all FGC rings are FSI. Theorem 5.15, which does not appear to be in the 

literature, follows from the structure theorems for CF and FSI rings and shows 

that every FSI ring is a CF ring.

5.15 Theorem

For a ring R the following are equivalent;

(i) R is an FSI ring,

(ii) R is a locally almost maximal CF ring.

Proof

(i) (ii)

Let R be an FSI ring. Then R is a finite direct sum of indecomposable FSI rings 

(Theorem 5.13). Each indecomposable FSI ring is an indecomposable CF ring 

(Theorem 5.13 and comments after Theorem 5.9). Thus R is a finite direct sum of 

valuation rings, h-local Priifer domains and torch rings. Hence R is a CF ring 

(Theorem 5.9). From [25; Lemma 6], R is a locally almost maximal arithmetical ring.
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Thus R is a locally almost maximal CF ring.

( i i)  => (i)

Let R be a locally almost maximal CF ring. Then R is a finite direct sum of
n

indecom posable C F  rings (T h eo rem  5.7), R — 0  R ;. T h e n , since R is a lo c a lly
i = i  *

almost maximal arithmetical ring, it can be seen that each of the rings R̂  is also a 

locally almost maximal arithmetical ring. Thus each R- is an indecomposable 

locally almost maximal CF ring. From Theorems 5.9 and 5.13 each R- is an

indecomposable FSI ring, and so R is a finite direct sum of FSI rings. Thus R is an

FSI ring ([25; Lemma 1]). □

Thus every FSI ring is a CF ring. Proposition 5.16 and the ensuing comments 

will show that these classes of rings are distinct, completing the presentation of 

the structure theorems for CF, FSI and FGC rings. The next results of this

chapter determine the local FSI rings and the FSI domains. In Proposition 5.16, the

equivalence of conditions (i), (ii) and (iii) was proved by Vamos in [25; Lemma 5] and 

condition (iv) follows immediately from Theorem 2.11.

5.16 Proposition

Let R be a local ring. Then the following are equivalent:

(i) R is an almost maximal valuation ring,

(ii) R is an FGC ring,

(iii) R is an FSI ring, and

(iv) R is scalar-reflexive.

Examples were given in 2.9 of valuation rings which are not almost maximal. 

These rings are local CF rings but are not FSI rings (see note before 5.5 and 

Proposition 5.16). So the class of FSI rings is strictly  contained in the class of CF 

rings.
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An easy consequence of Proposition 5.16 was given by Vamos in (25; Lemma 6] 

and states that if  R is an FSI ring, then R is a locally almost maximal arithmetical 

ring. Recall that the locally almost maximal arithmetical rings are precisely the 

locally scalar-reflexive rings (discussion after 2.13). From these remarks it is 

clear that every FSI ring is locally scalar-reflexive and this result is given in 

Theorem 5.17. Theorem 5.17 will be used at the beginning of Chapter 6 to 

determine alglat for non-torsion modules over FSI rings.

5.17 Theorem

Let R be an FSI ring. Then R is locally scalar-reflexive.

It was remarked in Chapter 2 following Theorem 2.11 that, for a local ring, the 

conditions of being scalar-reflexive and of being an FGC ring are equivalent, but 

that these conditions are not equivalent in general. It has also been noted that 

every FGC ring is scalar-reflexive. Example 5.14 provides a ring R which is an 

FSI ring but not an FGC ring. From Theorems 2.17 and 5.17, R is scalar-reflexive. 

Thus not every scalar-reflexive ring is an FGC ring.

Theorem 5.18, which does not appear to be in the literature, characterises all 

FSI domains and follows from Theorem 5.13.

5.18 Theorem

A ring is an FSI domain if  and only if  it is a locally almost maximal h-local 

domain.

Proof

Suppose that R is an FSI domain. Then R is an indecomposable FSI ring. From 

the definition in 5.10, it is clear that R is not a torch ring. Moreover an almost 

maximal valuation domain is a locally almost maximal h-local domain. Thus R is a
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locally almost maximal h-local domain (Theorem 5.13).

The converse is immediate from Theorem 5.13. □

Thus all local FSI rings and all FSI domains are characterised. The next 

theorem gives an alternative description of FSI domains. This result was stated at 

the end of Chapter 3 and provides another classification of all scalar-reflexive 

h-local domains.

5.19 Theorem

Let R be a commutative ring. Then the following are equivalent:

(i) R is a scalar-reflexive h-local domain, and

(ii) R is an FSI domain.

Proof

From Theorem 3.1, condition (i) is equivalent to the assertion that R is a 

locally scalar-reflexive h-local domain. But the locally scalar-reflexive h-local 

domains are precisely the locally almost maximal h-local domains (see after 2.13). 

The result then follows from Theorem 5.18. □

The next part of the chapter summarises the relationships between the classes 

of rings discussed in this chapter. The example in 5.20 of an h-local Priifer 

domain that is not a Dedekind domain will be required. The examples of these 

rings are illustrated below.

5.20 Example of an h-local Priifer domain that is not Dedekind

Note that all Dedekind domains and all valuation domains are h-local Priifer 

domains. From Example 2.9 there is a valuation domain R which is not almost 

maximal. Then R is an h-local Prüfer domain which is not noetherian (see Example 

2.8(a)). Since every Dedekind domain is noetherian, R is not a Dedekind domain.
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5.21 Illustration of FGC, FSI and CF rings

Almost maximal valuation domain

(2.8(b)) PID

AMVR
(following 2.6)

(5.16)

FGC torch ring

FGC ring

(2.9) Dedekind domain

(5.12, 5.14)

(5.14)

(5.20)

FSI ring

valuation ring h-local Prüfer domain

(5.15)

(5.5)torch ring

(5.9)
(5.6)

CF rings

All the classes of rings shown here are distinct.
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The final part of this chapter looks at alglat for a specific 2-generated module 

M over the valuation ring R in 2.9(b). It will be helpful for the study of 

arbitrary modules over valuation rings to obtain some information from examples. 

This particular construction of a module M over a valuation ring which is not 

almost maximal was used by Hadwin and Kerr in the proof of Theorem 2.11 

([9; Theorem 61).

Theorem 2.11 states that, for a local ring, being scalar-reflexive is equivalent 

to being an almost maximal valuation ring. Thus any valuation ring R which is not 

almost maximal has fin itely generated R-modules which are not reflexive. In order 

to prove that a local scalar-reflexive ring is an almost maximal valuation ring, 

Hadwin and Kerr used [9; Lemma 4] which shows that a local scalar-reflexive ring is 

a valuation ring. They then assumed for contradiction that R was a scalar- 

reflexive valuation ring but not almost maximal. A 2—generated R—module M was 

constructed which was not reflexive, thus contradicting the assertion that R is 

scalar-reflexive. Their proof did not determine alglat M, but provided a single map 

in alglat M which is not in X(R).

Example 5.22 concludes this chapter by using this construction to give a 

2—generated module M over the valuation ring in 2.9(b) which is not reflexive.

The ring alglatM is then fu lly  determined. The module M can also be considered 

as an S—module where S =  R/AnnM and then alglat =  alglat gMg (Proposition 

1.19). Then M is not reflexive as an S—module. It  will be shown that M is a non

torsion module over the valuation ring S and thus it is not even the case that 

every non-torsion module over an arbitrary valuation ring is reflexive.

The proofs within Example 5.22 are outlined with some of the details being 

omitted. The reader is also referred to the proof of Theorem 2.11 in 

[8 ; Theorem 6 ]. It is hoped that this will open up the discussion and solution 

of similar problems.
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5.22 Example of a 2—generated module over a valuation ring which is not reflexive

Let R be the valuation ring of Example 2.9(b). Then R is a domain and R == 

where A =  Clxo, Xi, Xz, ... 1, x„̂  =  Xn_i and M is the maximal ideal (xq, Xi, Xg, ... ). 

For ease of notation write r for the element j  in R. Let ai == 1 and, for n 2,
n+l  ̂n

=  an_i -j- Xn+/ ~  ̂ be elements of R and let =  (x^  ̂ ~ )̂ be a family of ideals 

in R (n ^  1). Then the system of congruences {â  mod is pairwise soluble but

has no simultaneous solution in R. Let b„ =  a„ — a^-i so that b̂  G Ip-A and 

bn4 -iJ(R) ÇZ In G b^J(R) (note that R is local so J(R) is the unique maximal ideal MR 

of R). Then the system of congruences {â  mod b„J(R)) is also pairwise soluble 

with no simultaneous solution in R. The intersection of these ideals nb^J(R) =  

n^n “  Rxq.

Let M =  (R 0 R )/K  where K is the R-submodule generated by XqJ(R) 0  XqJ(R) 

and {(x^ ,̂ — x„^an_i): n 2}. Then it can be shown that an arbitrary element of K 

has the form s(x„ ,̂ — x„^an_i) +  (xoE, Xoh) where s € R and g, h G J(R). (Note
n+l_ n+ 1

that Xn+i^b  ̂ =  Xp+i^Xn+i =  Xn+i  ̂ =  Xq. So Comparing with the notation

of the proof of Theorem 2.11, c == Xo and for each b„, ŵ  ̂ =  x^+i^. Thus b̂ Wt,̂  =  

c.) Define a map 0  : M —► M by (u, v) 0  K ^  (xqU, 0) 0  K. Then <p G alglatj^Mj^ 

and 0  0 X(R) (the proof is identical to that of Theorem 2.11). Note that

0 ^ ( ( u , v ) 0  K) =  (xo^u, 0) 0  K =  (0, 0) 0  K and so 0  ̂ =  0. Then M is not

reflexive and X(R) 0  X(R) 0  Ç  alglat

To prove the reverse inclusion let $ G alglat^M ^. Then there are elements 

r, s, t in R with 0((1, 0) 0  K) =  r((l, 0) 0  K), 0((O, 1) 0  K) =  s((0, 1) 0  K) and 

0((1, 1) 0  K) =  t((l, 1) 0  K). So (r — t, s — t) G K and thus there are elements 

f G R and g G J(R) with r — s =  fx„^(l 0  an_i) 0  Xog. Then 0((u, v) 0  K) =  

s((u, v) 0  K) 0  ((r — s)u, 0) 0  K =  s((u, v) 0  K) 0  (fx^^(l 0  an_i)u, 0) 0  K 

since Xgg G XqJ(R).

The next step is to show that fx^^(l 0  an_i) G Rxq. For any m ̂  2,

0((O, 0) 0  K) =  0((x„", -  x^"am_i) 0  K) =  s((x^", -  x^"a^_,) 0  K) 0

(fx^^d 0  an_i)x^^, 0) 0  K. Thus ( f x / ( l  0  an_i)x^^ 0) G K. It follows that
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fx^^Cl 0  an_i)x^^ G XoJ(R) and so fx^^d 0  a^-i) G b^J(R) for all tn ^  2. Hence 

fx^^d 0  a^-i) G flbmJ(R) =  Rxq.

So there is some element d of R with fx^^d 0  an_i) =  dxg. Then 0((u, v) 0  K)

=  s((u, v) 0  K) 0  (dxoU, 0) 0  K =  s((u, v) 0  K) 0  d0 ((u, v) 0  K). Hence 6 =  

\(s) 0  \(d ) 0  and so a l g l a t Ç  X(R) 0  X(R)0 . Thus a l g l a t =  X(R) 0  X(R)0 .

It is clear that XqJCR) Ç  AnnM. Let r G Ann(d, 0) 0  K) so then (r, 0) G K. 

Noting that each â  is a unit in R, it follows that r G XqJ(R). So XqJ(R) =

Ann((l, 0) 0  K) =  AnnM. Then M is a 2—generated torsion module over a 

valuation domain which is not reflexive.

Let S =  R/AnnM so that S is  a valuation ring (not a domain). Consider M as 

an S—module in the natural way. Then alglat^M ^ =  alglatgMg and M is not

reflexive as an S-module. However Anng((l, 0) 0  K) =  0 and so M is a non

torsion S—module. Thus there are 2-generated non-torsion modules over valuation 

rings that are not reflexive.

The next two chapters will use the results about FSI rings given in this 

chapter to characterise alglat for all modules over an FSI ring.
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Chapter 6 Study of alglat for modules over FSI rings - part 1

The study of alglat for a module over an FSI ring divides into the two cases of 

considering non-torsion modules and then torsion modules. The firs t result of the 

chapter deals with the non-torsion case and proves that every non-torsion module 

over an FSI ring is reflexive. This follows from the structure of an FSI ring, in 

that every FSI ring is locally scalar-reflexive, and from the work in Chapter 2 on 

non-torsion modules over locally scalar-reflexive rings.

Having dealt with the non-torsion case, the remainder of the chapter begins the 

characterisation of alglat for torsion modules. First it is seen that the torsion 

case can be reduced to the study of a torsion module over an indecomposable FSI 

ring. This uses the decomposition for alglat in Theorem 1.10.

There are three types of indecomposable FSI rings, namely almost maximal 

valuation rings, locally almost maximal h-local domains and locally almost maximal 

torch rings (Theorem 5.13). Any indecomposable FSI ring R has a unique minimal 

prime ideal P which is comparable to every ideal of R (see after Theorem 5.13). 

Then for a torsion R—module T, either P Ç  AnnT or AnnT C  P. This chapter 

looks at the case where AnnT C  P. Then P 0 and thus R is not a domain. 

Modules over almost maximal valuation rings were studied in Chapter 4. So this 

chapter is concerned only with locally almost maximal torch rings.

In order to study and characterise alglat for torsion modules over locally 

almost maximal torch rings, a completion will be introduced in 6.4. This completion 

is defined for any ring R with a non-zero ideal I such that the ideals of R 

contained in I form a chain and I is comparable to every ideal of R. The unique 

minimal prime ideal P of a locally almost maximal torch ring satisfies these 

conditions with P =  I. In this topology (of 6.4) the non-zero principal ideals of R 

contained in I form a sub-base for the open neighbourhoods of 0 in R. This is 

called the l-topology of R.

The main theorem in this section is Theorem 6.7 which uses the completion of
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6.4. Let R be a scalar-reflexive ring with a non-zero ideal I such that the ideals 

of R contained in I form a chain and I is comparable to every ideal of R; then 

Theorem 6.7 proves that for a fa ith fu l torsion R-module T, alg latT  is isomorphic 

to the I-completion of R. Corollary 6 . 8  follows easily from this more general 

theorem and determines alglat for a fa ith fu l torsion module over a locally almost 

maximal torch ring.

Chapter 7 begins by studying the case where P Ç  AnnT. The results of these 

two chapters are then brought together to give a complete characterisation of 

alglat for modules over FSI rings.

Theorem 6.1 determines alglat for non-torsion modules over FSI rings. The 

proof is immediate from Theorem 5.17 which shows that an FSI ring is locally 

scalar-reflexive, and from Corollary 2.19 which deals with non-torsion modules.

6.1 Theorem

Let R be an FSI ring. Then every non-torsion R—module is reflexive.

The rest of this chapter looks at the torsion case and begins by reducing this 

to the study of alglat for a torsion module over an indecomposable FSI ring. This 

is done by observing that there is a decomposition for alglat using Theorem 1.10 

from Chapter 1.

Let T  be any torsion module over an FSI ring R. The structure theorem for 

FSI rings (Theorem 5.13) shows that R is a finite direct sum of indecomposable FSI

rings R- for i =  1, ..., n. From the discussion in Chapter 1 prior to Theorem 1.10,
n

T  can also be decomposed as a direct sum with T  =  0  T  ̂ where each T; is an
i= l  ̂ ^

R:—R,—bimodule. Then, from Theorem 1.10, alglat T  =  0  alglatT: and the T: are
 ̂  ̂ i= l  ̂ ^

modules over the indecomposable FSI rings Rĵ  (i =  1, ..., n). Since T  is a torsion 

R—module, at least one of the T  ̂ is a torsion R--module. For otherwise, each 

module T  ̂ has a non-torsion element t- (i =  1, ..., n). Then the sum of these

81



elements t =  tj 0  tg 0  ••• 0  t^ is a non-torsion element of T, contradicting T  

torsion. From Theorem 6.1 every non-torsion module over an FSI ring is reflexive. 

Thus it  is sufficient to determine alglat for torsion modules over indecomposable 

FSI rings.

Let R be an indecomposable FSI ring and let T  be a torsion R—module. Then R 

has a unique minimal prime ideal P which is comparable to every ideal of R. So 

either P Ç  AnnT or AnnT C  P. This chapter looks at the second case and 

determines alglatT where AnnT C  P. Since P 7  ̂ 0, R must be either an almost 

maximal valuation ring or a locally almost maximal torch ring. As recalled above, 

alglat was determined for modules over almost maximal valuation rings in Chapter 

4. Thus it is sufficient to consider R as a locally almost maximal torch ring.

So let R be a locally almost maximal torch ring and let T  be a torsion R-module 

with AnnT C  P. Let S =  R /AnnT so that S is an FSI ring ([25; Lemma 1]). Then 

T  is a fa ith fu l S—module and, from Proposition 1.19, alglat p̂ Tp̂  =  alglat gTg. If  T  

is a non-torsion S—module then T  is reflexive as an S—module (Theorem 6.1) and 

hence reflexive as an R-module. Thus the only case to consider is where T  is a 

fa ith fu l torsion S—module. Vamos states in the proof of [25; Theorem B] that a 

factor ring of a locally almost maximal torch ring is either a ring of the same type 

or a locally almost maximal h-local domain or factor rings of this latter ring. The 

next proposition is part of the preceeding statement and shows that, for 

S =  R /A nnT with AnnT C  P, the factor ring S is a locally almost maximal torch 

ring. A proof is included here for completeness.

6.2 Proposition

Let R be a locally almost maximal torch ring with unique minimal prime ideal P. 

Let I C  P and write S =  R /I. Then S is a locally almost maximal torch ring.
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Proof

The ring R is an FSI ring and so from [25; Lemma 1] the factor ring S is also an 

FSI ring. The firs t step is to show that the prime ideal Q =  P /I is the unique 

minimal prime ideal of S. Suppose Qi is a prime ideal of S contained in Q. Then Qi

=  P y i where P% is a prime ideal of R contained in P. So by minimality of P, Pi =

P and thus Qi =  Q. Hence Q is a minimal prime ideal of S. Suppose Q2  is a 

minimal prime ideal of S. Then Q2  =  P2 / I  where P2  is a prime ideal of R. Now P

is comparable to every ideal of R and so either P2  Ç  P or P C  P2 . If  P C  P2

then Q C  Q2  which contradicts the minimality of Q2 . So P2  Q  P. Then by 

minimality of P, P2  =  P and so Q2  =  Q. Hence Q is unique and is therefore the 

unique minimal prime ideal of S.

It now follows from [25; Lemma 8] that S is an indecomposable FSI ring. The 

ideal I is strictly contained in P and so is not a prime ideal of R. Thus S is not a 

domain. Moreover R has at least two maximal ideals M and N. Then M /I and N /I 

are distinct maximal ideals of S and so S is not a local FSI ring. Hence, from 

Theorem 5.13, S is  a locally almost maximal torch ring. □

Thus to characterise alglat T  for a torsion R-module T  where R is an 

indecomposable FSI ring and AnnT C  P, it is enough to determine alglat for a 

fa ith fu l torsion module over a locally almost maximal torch ring. The rest of this 

chapter works towards the structure theorem for alglat in this case which is given 

in Corollary 6.8. Then Theorem 6.10 summarises the information in this chapter to 

give a concise characterisation of alglat T  where T  is an R-module over an 

indecomposable FSI ring R with AnnT C  P.

As already discussed in Chapters 1 and 4, the structure of alglat is closely 

associated with inverse limits and topological completions. The R-topology of a 

domain R was defined in 4.4, and this topology takes the non-zero principal ideals 

of R as a sub-base for the open neighbourhoods of 0 in R. A completion will be
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introduced in 6.4 to study fa ith fu l torsion modules over locally almost maximal 

torch rings.

In order to describe alglat in terms of a completion, the ring must be Hausdorff 

in this new topology. This ensures that there is an embedding of the ring in its 

completion. The unique minimal prime ideal P of a locally almost maximal torch 

ring R is comparable to every ideal of R and the ideals of R contained in P form a 

chain. The next lemma shows that Q Rp ÇZ AnnT for all torsion R—modules T
0 # p e P

(note that P 0). So if  R has a fa ith fu l torsion module T  then AnnT =  0 and 

hence f) Rp =  0. Thus if  the non-zero principal ideals of R contained in P are
O f p & P

taken to form a sub-base for the open neighbourhoods of 0 in R and if  R has a 

fa ith fu l torsion module then R is Hausdorff in this topology. This motivates the 

definition of the I-topology given in 6.4.

6.3 Lemma

Let R be a commutative ring with a non-zero ideal I such that I is comparable 

to every ideal of R. Let T  be any torsion R—module. Then Q Rx Cl Ann T .
0 #  X 11

Proof

Let a G Q Rx so then a G I and let t G T . I is comparable to every ideal of
0 #  X 11

R so either I Ç  Ann(t) or Ann(t) Ç  I. If  I Ç  Ann(t) then clearly a G Ann(T).

Now suppose Ann(t) Ç  I. Then since T  is torsion there is some non-zero element r

of R with r G Ann(t) and so 0 7  ̂ r G I. Then a G Rr and so a G Ann (t). So for

all t G T, a G Ann(t) and thus a G AnnT. Hence Q Cl AnnT. □
0 # x e l

Thus any indecomposable FSI ring R with unique minimal prime ideal P 7  ̂ 0 

satisfies the hypotheses of Lemma 6.3 (with I =  P). It is also the case that the 

ideals of R contained in P form a chain. Although these rings were the motivation 

for the I-topology, the definition in 6,4 is valid for a larger class of rings.
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6.4 Definition of the I-topology

Let R be a commutative ring with a non-zero ideal I such that the ideals of R 

contained in I form a chain and I is comparable to every ideal of R. Define a 

topology on R called the I-topology by letting the non-zero ideals of R contained in 

I form a sub-base for the open neighbourhoods of 0 in R. The same topology is 

given to R by letting the non-zero principal ideals of R contained in I form a sub

base for the open neighbourhoods of 0 in R. This topology on R makes R into a 

topological ring and R is Hausdorff if  and only if  Q == 0. From the
0  X 11

preceeding lemma and comments it can be seen that if  R has a fa ith fu l torsion 

module then R is Hausdorff in the I-topology.

Suppose that R is Hausdorff in the I-topology. Then the inverse limit 1^  R/J 

exists and is isomorphic to IM  R/Rx (where the index sets are, respectively, the 

family of non-zero ideals of R contained in I and the family of non-zero principal 

ideals of R contained in I and both index sets are ordered by inclusion). Let R' =  

lim R/Rx (0 7  ̂ X  G I) so then R' is the completion of R in the I-topology. Then 

(ax +  Rx) is an element of R' if  and only if  for any non-zero elements y, z in I 

with Ry Ç  Rz then ay — a^ G Rz (recall that the ideals of R contained in I form 

a chain). There is a canonical ring homomorphism 0  : R —► R' given by 0  : a •- 

(a 0  Rx) for a G R and 0 7  ̂ x G I. Then ker# =  f] Rx. Since R is Hausdorff,
0#X£l

ker# =  0 and so 4> embeds R in R \ The ring R is complete in the I-topology if  

and only if  0  is an isomorphism.

From 4.4, the R-topology is defined for a domain R. The R-completion of a 

domain R is R =  1^  R /Rr for 0 7  ̂ r G R. Let R be a valuation domain. Then the 

completion of R in the I-topology with I == R i s R '  =  1^  R/Rx for 0 7  ̂ x G R. 

Thus R' == R where R is the completion of R in the R-topology. So these 

topologies coincide and there is no ambiguity in referring to the “R-topology” and 

the “R-completion”.

More generally, let R be a domain with a non-zero ideal I such that the ideals
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of R contained in I form a chain and I is comparable to every ideal of R. For 

example R could be a valuation domain with I as any non-zero ideal of R. Then 

lim R /Rr is isomorphic to lim R/Rx where 0 7  ̂ r G R and 0 7  ̂ x G I. That is, R
i— i —

has both the R- and the 1-topologies and these topologies coincide.

Let R be a locally almost maximal torch ring with unique minimal prime ideal P 

(P 7  ̂ 0) and let T  be a fa ith fu l torsion R—module. Let R' be the completion of R 

in the P-topology. Then R is Hausdorff in the P-topology (see before Lemma 6.3) 

and so the homomorphism 0  : R —♦ R' given by 0  ; a  ^  (a +  Rp) for a G R and 

0 7  ̂ p G P embeds R in R'. In order to determine alglatT it has to be shown that 

T  has an R'—module structure and this is the next result (cf Proposition 4.6). As 

with Proposition 4.6 the result proved here is more general than needed. 

Proposition 6.5 is then used in Theorem 6.7 to characterise alglat for fa ith fu l 

torsion modules over a class of rings which includes locally almost maximal torch 

rings. Corollary 6 . 8  then shows for a fa ith fu l torsion module T  over a locally 

almost maximal torch ring R, that alglat T  is isomorphic to R', the completion of R 

in the P-topology.

Proposition 6.5 shows, for any ring R with the I-topology, that every fa ith fu l 

torsion R—module has an R'—module structure.

6.5 Proposition

Let R be a commutative ring with a non-zero ideal I such that the ideals of R 

contained in I form a chain and I is comparable to every ideal of R. Let T  be a 

fa ith fu l torsion R—module and let R' be the completion of R in the I-topology. 

Then T  has an R''-module structure given by (a^ +  Rx)t =  ayt where (a^ +  Rx) 

G R', t G T  and 0 7  ̂ Ry Ç  Ann(t). Moreover alglat p̂ Tĵ  =  alglat p>/Tj ,̂.

Proof

Let t G T . Then Ann(t) 7  ̂ 0 since T  is a torsion module. The ideal I is
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comparable to every ideal of R so either I Q  Ann(t) or Ann(t) Ç  I. In both cases

there is an element 0 7  ̂ y G I with Ry Q  Ann(t).

Suppose that Rx Q  Ann(t) and Ry Q  Ann(t) for 0 7  ̂ x, y G I. The ideals of

R contained in I form a chain so suppose Rx Ç  Ry. Then — ay G Ry Ç

Ann(t). Thus a^t =  ayt.

Suppose (ax 0  Rx) =  (bx 0  Rx) and that Ry Q  Ann(t). Then ax — bx G Rx

for all 0 7  ̂ X G I. In particular ay — b y  G Ry and so ayt =  b y t .

Let a" =  (ax 0  Rx) be an element of R̂  and let tj, t 2  be elements of T . From

the hypotheses it is clear that any ideal of R which is contained in I is comparable

to every ideal of R. If  at least one of Ann(tj) and Ann(t2 ) is contained in I then 

the ideals are comparable so suppose Ann(tJ Ç  Ann(t2 ). Then there is an element 

0 7  ̂ y G I with Ry Ç  Ann(tj) Ç  Ann(tg) and then also Ry Ç  Ann(tj 0  t 2 ). On 

the other hand if  neither Ann(tj) nor Ann(t2 ) are contained in I then, since I is 

comparable to every ideal, I Ç  Ann(tj) H Ann(t2 ). Thus again there is an element 

0 7  ̂ y G I with Ry Ç  Ann(tj), Ry Ç  Ann(tz) and Ry Ç  Ann(t% 0  tg). Then in 

both cases, a"(ti 0  tg) =  ay(ti 0  tg) =  ayt^ 0  ayt? =  a'ti 0  a'tg.

Let a' =  (ax 0  Rx), b' =  (bx 0  Rx) be elements of R' and let t be an element

of T  with 0 7  ̂ Ry Ç  Ann(t). Then a' -F b' == (ax 0  bx 0  Rx) and a'b' =

(axbx 0  Rx). So (a' 0  b')t =  (ay 0  by)t =  ayt 0  byt =  a't 0  b't. Since

Ann(t) Ç  Ann (byt), Ry Q  Ann (byt). Thus a'(b't) =  a'(byt) =  ay(byt) =  (ayby)t

=  (a'bOt. The identity element of R' is (1 0  Rx), and (1 0  Rx)t =  I t  =  t.

Thus T  is an R'-module under this product.

From 6.4, R is Hausdorff in the I-topology and so R Ç  R'. Thus End T ^ , Ç  

End T ^ . Let 0 G a lg lat^ /T^ /. Let t G T . There is an element a' G R' with 0t =  

a't. Then, from the R'-module structure of T, 0 t  G Rt. Hence 0  G alglat^Tp^ 

and so alglat Ç  alglat p̂ T̂ .̂

Let 0  G alglatj^Tj^. Then 0 (tj 0  tg) =  0 tj 0  0 tg for t̂ , tg in T . Let a' =

(ax 0  Rx) G R' and let t G T  with 0 7  ̂ Ry Ç  Ann(t). Then there is some b in R 

with 0 t =  bt and so Ry Ç  Ann(t) Ç  Ann(bt). Thus 0(taO =  0 (tay) =  (0 t)ay =
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(bt)ay =  (bt)a' =  (0 t)aL So 0 G EndTj^z. Let t be any element of T . Then, since 

0 G alg lat^T^ and R Ç  R% 0 t G R't. Hence 0  G alglat^zT^z and so alglatj^Tj^ Ç  

alglat j^zTj^z. Thus alglat j^Tj^ =  alglat j^zTj^z. □

From this result, X(R') may be considered as a subring of alglat j^Tj^ whenever R 

and T  are as given in Proposition 6.5 (compare with the remark following 

Proposition 4.6). This will be used without further comment.

The next result retains this degree of generality proving, for a fa ith fu l torsion 

R—module T  where R satisfies the hypotheses of Proposition 6.5, that it is always 

the case that R' =  X(RO Ç  alglat p^T^. As with Theorem 4.7, part of the proof 

consists of showing that T  is a fa ith fu l R'-module. If R is not complete in the 

I-topology, X(R) is strictly  contained in X(R') and so T  is not reflexive.

6 . 6  Theorem

Let R be a commutative ring with a non-zero ideal I such that the ideals of R 

contained in I form a chain and I is comparable to every ideal of R. Let T  be a 

fa ith fu l torsion R—module and let R' be the completion of R in the I-topology.

Then T  is a fa ith fu l R'—module and R' =  X(RO Ç  alglat ^ T ^ .

Proof

From Proposition 6.5, X(R') Ç  alglat ^ T ^ . The main part of the proof is to 

show that T  is fa ith fu l as an R'—module. It then follows from the discussion in

1 . 1  that X(RO =  R'. The firs t step is to show that there is a sequence of 

elements (tu) in T  with Ann (tu) Ç  Ru for each 0 7  ̂ u G I. Suppose for 

contradiction that there is a non-zero element y of I with Ann(t) £  Ry for all t in 

T . Then, since the ideals of R contained in I are comparable with every ideal of 

R, Ry C  Ann(t) for all t in T . So 0 7  ̂ Ry Ç  f| Ann(t) =  AnnT. This
t £  T

contradicts the statement that T  is a fa ith fu l R—module. So for each 0 7  ̂ u G I



there is an element t^ in T  with Ann (tu) Q  Ru. For each tu (0 0  u G I) there is

an element Vu in I with 0 7  ̂ Rvu G Ann (tu).

Let a' =  (ax 0  Rx) be an element of Ann^/T and let 0 0  u G I. Then 0 =

a'tu =  ay^tu and so av^ G Ann (tu) Ç  Ru. However Rvu Ç  Ru so av„ — au G

Ru. Thus au G Ru and so au 0  Ru =  0 0  Ru. Hence a' =  (0 0  Rx), the zero

element of RL Thus T  is a fa ith fu l R'—module and so R' =  X(RO. This completes

the proof. □

Theorem 6.7 imposes the additional condition on the hypotheses of Theorem 6 . 6  

that R be a scalar-reflexive ring. Then it is shown that for a fa ith fu l torsion 

R-module T, alglat T  is isomorphic to R \ the I-completion of R. So this extra 

condition is sufficient to give equality and thus R' =  X(R') =  alglatj^Tj^.

6.7 Theorem

Let R be a scalar-reflexive ring with a non-zero ideal I such that the ideals of

R contained in I form a chain and I is comparable to every ideal of R. Let T  be a

fa ith fu l torsion R-module and let R' be the completion of R in the I-topology.

Then R' =  X(R') =  alglat j^Tj^.

Proof

From Theorem 6 .6 , R' =  X(RO and X(RO G alglat ^ T ^ . Let 0  G alglat ^Tp^. To 

complete the proof it is sufficient to show that 0  G X(R'). From Proposition 6.5, T  

has an R'—module structure given by (ax 0  Rx)t =  ayt where t G T  and 0 7  ̂ Ry 

G Ann(t). From the proof of Theorem 6 .6 , there is a sequence of elements (tu) in 

T with Ann (tu) G Ru for each 0 7  ̂ u G I. Since 0  G alglat j^Tp ,̂ there is an 

element bu of R with 0tu =  butu for each 0 7  ̂ u G I. Let t '  =  (bx 0  Rx) for 

0 7  ̂ X  G I.

The firs t step is to show that r '  G RL Let y and z be non-zero elements of I 

with Ry G  Rz. Then Ann(ty) G Ry and Ann(tz) G Rz. The ideals of R
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contained in I form a chain so Ann(ty) and Ann (t^) are comparable. Suppose that 

Ann(ty) Ç  Ann(tz). The R-module N =  Rty 0  Rt% is reflexive since R is scalar- 

reflexive. So there is an element b in  R with <p =  X(b) on N. Then byty =  0ty  

=  bty and b^tz =  0tz  =  btz« Thus by — b G Ann(ty) Ç  Ann(tz) and bz — b G 

Ann(tz). So by — bz G Ann(tz) Ç  Rz. Thus r' G R \

The next step is to show that <p =  Mr'). Let t G T . Then there is an element 

0 7  ̂ y G I with Ry G Ann(t) and so r 't  =  byt. The R-module N' == Rt 0  Rty is 

reflexive since R is scalar-reflexive. So there is an element c in R with 0 =  X(c) 

on N'. Then 0t == ct and byty =  0ty  =  cty. Thus by — c G Ann(ty). But 

Ann(ty) G Ry and so by — c G Ry G Ann(t). So byt =  ct and thus 0t =  byt 

=  r 't . Hence 0 =  X(r') on T .

Thus 0 G X(R') and so alglat ^Tp^ G X(R'). Hence alglat p^T^ =  X(R') and the 

proof is complete. □

Compare Theorems 6.6 and 6.7 and the corresponding change in hypotheses with 

Theorems 4.7 and 4.9 on valuation domains. In these latter results, the change 

from R being a valuation domain to R being an almost maximal valuation domain was 

sufficient to give equality in Theorem 4.9. Recall that Theorem 4.9 proved, for a 

fa ith fu l torsion module T  over an almost maximal valuation domain R, that alglat T  

is isomorphic to the completion of R in the R-topology. From Theorem 2.11, a 

local ring is scalar-reflexive if and only if  it is an almost maximal valuation ring. 

Thus to give the equality of Theorem 4.9, the additional condition that R be 

scalar-reflexive was imposed on the hypotheses of Theorem 4.7. So the similarity 

in the construction and results of Chapters 4 and 6 is evident throughout. In both 

cases, the addition of R being scalar-reflexive is sufficient to characterise alglat 

for fa ith fu l torsion modules over the respective types of rings R.

The next result is a corollary of Theorem 6.7 and determines alglat for a 

fa ith fu l torsion module over a locally almost maximal torch ring.
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6.8 Corollary

Let R be a locally almost maximal torch ring with unique minimal prime ideal P. 

Let R' be the completion of R in the P-topology and let T  be a fa ith fu l torsion 

R-module. Then R' =  X(RO =  alglatj^Tj^.

Proof

From Theorems 2.17, 5.13 and 5.17, the ring R is scalar-reflexive. The ideal P 

is non-zero, the ideals of R contained in P form a chain and P is comparable to 

every ideal of R. The result is then immediate from Theorem 6.7. □

Theorem 6.7 can be applied to almost maximal valuation domains as well as to 

locally almost maximal torch rings. Suppose that T  is a fa ith fu l torsion module 

over an almost maximal valuation domain R. Then R and T  satisfy the hypotheses 

of Theorem 6.7 with I as any non-zero ideal of R. Let R' be the completion of R 

in the I-topology. Then (from Theorem 6.7) R' =  X(R') =  alglat j^Tj^. This is the 

same result as Theorem 4.9, since it was noted following the definition of the 

I-topology in 6.4 that R' =  R in this particular case, where R is the completion of 

R in the R-topology. Thus Theorem 4.9 is shown to be a corollary of Theorem

6.7. Although the result given in Theorem 4.9 could have been omitted from 

Chapter 4 and introduced for the firs t time here. Theorem 4.9 motivated the 

enquiry which led to Theorem 6.7. The direct proof of Theorem 4.9 may also be 

of independent interest, being of a different nature to that of Theorem 6.7, and 

using the relationship between a domain R and its R-completion given in Proposition

4.8. Furthermore, the result of Theorem 4.9 was used in Chapter 4 to complete 

the characterisation of alglat for modules over an almost maximal valuation ring. 

Theorem 4.9 will be used in Chapter 7 in the proof of Theorem 7.1.

There is now sufficient information to characterise alglat for an R-module T  

where R is an indecomposable FSI ring and AnnT C  P. Before giving this fu ll
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characterisation, Proposition 6.9 determines alglat for any module T  over a locally 

almost maximal torch ring R with unique minimal prime ideal P where AnnT C  P. 

The proof of this result follows from Proposition 1.19, Theorem 6.1,

Proposition 6.2 and Corollary 6 .8 .

6.9 Proposition

Let R be a locally almost maximal torch ring with unique minimal prime ideal P. 

Let T  be an R—module with AnnT C  P. Let S =  R /AnnT and Q =  P/AnnT. If  T  

is torsion as an S—module then alglat j^Tj^ =  MS') =  S' where S' is the completion 

of S in the Q-topology. Thus if  S is not complete in the Q-topology then T  is not 

reflexive. In all other cases T  is reflexive.

The final theorem of this chapter brings all the results together and 

characterises alglat for a module T  over an indecomposable FSI ring R with unique 

minimal prime ideal P where AnnT C P .  If R is such a ring and if  T  is an 

R—module with AnnT C  P then P 7  ̂ 0. Thus R is either an almost maximal 

valuation ring (not a domain) or a locally almost maximal torch ring. But an almost 

maximal valuation ring which is not a domain is maximal (Proposition 4.2) and every  

module over a maximal valuation ring is reflexive (Theorem 4.1). The proof of 

Theorem 6.10 is now immediate from Proposition 6.9 and these remarks.

6.10 Theorem

Let R be an indecomposable FSI ring with unique minimal prime ideal P. Let T  

be an R—module with AnnT C  P. Let S =  R /AnnT and Q =  P/AnnT. If  S is a 

locally almost maximal torch ring and if  T  is torsion as an S—module then 

alglatj^Tj^ =  X(S') =  S' where S' is the completion of S in the Q-topology. Thus 

if  S is not complete in the Q-topology then T  is not reflexive. In all other cases 

T  is reflexive.
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Chapter 7 discusses the case where R is an indecomposable FSI ring with unique 

minimal prime ideal P and T  is a torsion R-module with P Ç  AnnT. Using the 

results of this present chapter, Chapter 7 gives a fu ll characterisation of alglat 

for a module over an FSI ring. An illustration of all these results is also included.
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Chapter 7 Study of alglat for modules over FSI rings - part 2

In Chapter 6 it was shown that every non-torsion module over an FSI ring is 

reflexive (Theorem 6.1). This reduced the study of alglat to the torsion case.

The discussion after Theorem 6.1 then showed that the characterisation of alglat 

could be reduced to the consideration of alglat for torsion modules over 

indecomposable FSI rings. Any indecomposable FSI ring R has a unique minimal 

prime ideal P which is comparable to every ideal of R. Thus for a torsion 

R—module T, either P G  AnnT or AnnT C  P. Chapter 6 dealt with the case 

where AnnT C  P.

Theorem 7.1 is the main result of the chapter and characterises alglat for 

torsion R—modules T  such that P G AnnT. Since R is an FSI ring, the factor ring 

R/P is an FSI domain (125; Lemma 1]). Theorem 7.1 uses this property of FSI rings 

to apply the decomposition for alglat of Theorem 1.21. This completes the 

individual results needed to describe alglat for modules over FSI rings.

Theorem 7.3 combines the results of Chapter 6 with Theorem 7.1 to give a fu ll 

characterisation of alglat for all modules over an FSI ring. An illustration 

indicating the structure of alglat for any module over an FSI ring follows in 7.4.

Let R be an indecomposable FSI ring with unique minimal prime ideal P. Let T  

be a torsion R—module such that P G AnnT. Then T  can be considered as an 

R/P—module. If  T  is a non-torsion R /P—module then T  is reflexive as an 

R/P—module and also as an R—module (Proposition 1.19 and Theorem 6.1). This 

leaves the case where T  is torsion as an R/P—module.

Suppose that T  is a torsion R/P—module. The ring R/P is an FSI domain and 

hence an h-local domain (Theorem 5.18). In order to characterise alglat the 

decomposition of Theorem 1.21 is used. From this theorem, a lg la t^T^  =  

n  alglat T m under the ring isomorphism ac of 1.21, where T m is an R^—module and
M

M ranges over all maximal ideals of R containing P. Given that P is the unique
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minimal prime ideal of R this means that M ranges over all maximal ideals of R. 

Thus alglat pTp =  PI alglat T^ where M ranges over all maximal ideals of R.
^  ^  M

Recall from Proposition 5.16 that each of the localised rings R^ is an almost 

maximal valuation ring.

Theorem 7.1 combines the results of Chapter 4 on alglat for modules over an 

almost maximal valuation ring with the above remarks. This characterises alglat 

for a torsion module T  over an indecomposable FSI ring with unique minimal prime 

ideal P where P Ç  AnnT.

7.1 Theorem

Let R be an indecomposable FSI ring with unique minimal prime ideal P. Let T  

be a torsion R—module with P Ç  AnnT. Let R^ be the R^v,-completion of R^, 

whenever M is a maximal ideal of R such that R^ is a domain. Let X =  (M I M is 

a maximal ideal of R, R^ is not R^-complete, AnnT^ =  0} and Y =  {M I M is a 

maximal ideal of R, M ^ X} where T m is an Rm~ module. If  T  is a torsion 

R/P-module then alglat pTp  =  ( H  X(Rm)) 0  ( FI X(Rm)). Otherwise T  is
^  ^  M e X  M c Y

reflexive.

Note

Suppose that T m is a fa ith fu l RM-module so that AuuT m =  0. Since P Ç  

AnnT it follows that Pm Ç  AnnTM and so Pm =  0. Thus Rm is an almost maximal 

valuation domain. Hence the RM-completion of Rm exists. In particular, if  M E X 

then Rm always exists. Note also that, from Proposition 4.6, alglatp T md  =IS.M

alglat ~ T m ~ .
Km Km

Proof

The module T  has an R/P—module structure. If  T  is a non-torsion R/P—module 

then T  is reflexive as an R/P—module and thus as an R-module.
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Suppose T  is a torsion R/P—module. For each maximal ideal M, Tm is an 

R^—module. For any |  E there is some non-zero (r -j- P) E R/P with rt =

(r P)t =  0. Thus j . |  =   ̂ in T^. Since P is a prime ideal of R,  ̂ j  in R^ 

and so each is a torsion Rn-module. From Theorem 1.21 and the above 

discussion, alglatpTp =  PJalglatTM where M ranges over all maximal ideals of R.
^  M

Thus alglatpTp =  ( H  alglatTn) 0  ( H  alglatT^).
M t X  M t Y

Let M E X so that AnnT^ =  0. Then Tm is a fa ith fu l torsion RM-module and 

Rm is an almost maximal valuation domain (see note). So from Theorem 4.9 

alglatTM =  X(Rm) =  The ring Rm is not complete in the RM-topology (since M 

E X) and thus Tm is not reflexive.

Let M E Y. If T m is fa ith fu l then Rm is an almost maximal valuation domain 

(see note) and Rm is RM-complete. So (using Theorem 4.9 again) alglatTM =  X(Rm)

=  X(Rm). If T m is not fa ith fu l then from Theorem 4.3, T m is reflexive and thus 

alglatTM =  X(Rm). The result now follows. □

Suppose, with the notation of Theorem 7.1, that alglatpTp =  ( X(Rm)) 0
^  ^  M e X

( n  X(Rm)). This description of alglat does not exclude the possibility that T  may
M e  Y

nevertheless be reflexive.

In particular suppose that T  is non-torsion as an R/Ann T —module with 

P C  Ann T  (the case P =  Ann T  is dealt with in Theorem 7.1). Then T  is 

reflexive (Theorem 6.1). In this case AnnTM 7  ̂ 0 where M ranges over all maximal 

ideals of R. For if  r is a non-zero element of AnnT with r ^ P and M is any 

maximal ideal of R then j  is in AnnTM* Since P is a prime ideal of R, j   ̂ E Rm

and thus AnnTM 7^  0* Then M E Y for all maximal ideals M of R and hence, in 

this case, X =  0 .

The next result is a special case of Theorem 7.1. This corollary deals with the 

situation when each localised module T m is a fa ith fu l RM-module. A description of 

alglat when Y =  0  follows Corollary 7.2.
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7.2 Corollary

Let R be an FSI domain and let T  be a torsion R-module with fa ith fu l as an 

Rm—module for all maximal ideals M of R. Then T  is a fa ith fu l R-module and 

alglat ^ T ^  =  X(R). In particular i f  R is complete in the R-topology then T  is 

reflexive.

Proof

The firs t step is to show that T  is a fa ith fu l R-module. Suppose for 

contradiction that T  is not fa ith fu l so that there is a non-zero element a in AnnT. 

Let M be a maximal ideal of R. Then |  is a non-zero element of Rm and, for any 

element |  in T m, |  E Ann(|). Thus |  E AnnTM and so T m is not a fa ith fu l 

RM-module. This gives the required contradiction.

From Theorem 7.1 alglatpTp =  ( J~[ X(Rm)) 0  ( f l  X(Rm)) where X =  {M I M is
^  ^  M e X  M e Y

a maximal ideal of R, Rm is not RM-complete, AnnTM =  0) and Y =  {M I M is a 

maximal ideal of R, M 0 X}. (Note that P =  0 and thus each Rm is a domain with 

corresponding completion Rm-) I f  M E Y then, since T m is fa ith fu l, Rm is complete 

in the RM-topology. Thus X(Rm) =  X(Rm). So alglatpTp =  FI^^I^m) where M
^  M

ranges over all maximal ideals of R. From Theorem 1.18 and using the notation 

from there, the ring isomorphism is given by a  with a  : FI^^I^m) —+ alglatpTp,

(0m) -* G where 0t =  t '^^0m j]. The ring R is an h-local domain so from Lemma 4.5 

and the remarks following, R =  FII^m with the isomorphism given by 7 : (a  ̂ +  Rr)
M

— ( (^  -h Rmt))- Thus X(R) =  FI X(RM) under the isomorphism 6 : X((ap -f- Rr)) •-*
1 1  M

(X (^ +  Rmt)). So S { M R ) )  =  H M W .  Thus alglatpTp =  a ( H M W )  =  aff(X(R)).
1 1  M  ^  ^  MM M

The final step of the proof shows that a5(X(R)) =  X(R). Let r =  (a^ +  Rr) E

R and let t be a non-zero element of T . Then there is some non-zero element s of 

R with Rs Ç  Ann(t). Using the R-module structure of T, (X(r))t =  r t  =  agt 

(from Proposition 4.6). Then [a5(X(r))]t =  [oi(X(y 0  RMp)]t =  T‘ ‘ j^X(y 0  R m ^j) 

=  T'^^(ÿ 0  R m Pj). Since 0 7 -̂  Rs Ç  Ann(t), it follows that 0 7  ̂ Rm| Ç  Ann(j) 

for all maximal ideals M of R. Thus [ad(X(r))]t =  ^ ~  agt. So
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[aff(X(f))]t =  (X(r))t for all t in T . Thus (X(r)) =  X(r) for all r in R and so 

a5(X(R)) =  X(R) as required. Hence alglatj^Tj^ =  X(R).

If the ring R is complete in the R-topology then R =  R and so alglat ̂ T ^  =

X(R). Thus T  is a reflexive R—module. □

W ith the notation of Theorem 7.1, suppose that T  is a torsion R /P—module and 

that Y =  0 .  Then T^ is fa ith fu l where M ranges over all maximal ideals of R. 

Since P Ç  Ann T, it follows that P^ Ç  AnnT^ for all M. Thus each Pm =  0 and

hence P =  0. The ring R is therefore an FSI domain. From Corollary 7.2, T  is a

fa ith fu l R-module and alglat ̂ T ^  =  X(R).

Theorem 7.3 summarises all the results on alglat for modules over an FSI ring. 

Thus alglat for any module over an FSI ring is completely characterised.

Although this theorem provides a fu ll description of alglat, recall in particular 

(from Theorems 5.17 and 6.1) that all fin itely generated and all non-torsion modules 

over an FSI ring are reflexive. The proof of Theorem 7.3 is immediate from 

Theorems 6.1, 6.10 and 7.1 and the discussion after Theorem 6.1.

7.3 Theorem

(a) Arbitrary FSI rings

Let R be an FSI ring and let T  be an R-module.

If T  is non-torsion then T  is reflexive.

If  T  is torsion then alglat T  =  0  alglat T- where R =  0  R., each R- is an
i=l   ̂ i=l  1 ^

n
indecomposable FSI ring, T  =  0  T; and each T; is an R —module.

i=l 1  ̂ ^

(b) Indecomposable FSI rings

Let R be an indecomposable FSI ring with unique minimal prime ideal P. Let T  

be an R-module.

If  AnnT C  P, S =  R /AnnT is a locally almost maximal torch ring and T  is a
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torsion S—module then alglat =  X(SO =  S'  where S' is the completion of S in 

the Q-topology, Q being P/Ann T .

If  P Ç  AnnT and T  is a torsion R/P-module then alglatpTp =  ( FI XCR )̂) 0
M t X

( FI X(Rm)) where R^ is the completion of R^ in the RM-topology and X, Y are as
MeY

defined in Theorem 7.1.

In all other cases T  is reflexive.

The chapter ends with an illustration which indicates the nature of alglat for 

any module over an FSI ring.

7.4 Illustration of the nature of alglat

R is an FSI ring 

T  is an R—module

T  is non-torsion 

Then T  is reflexive  

(6.1)

T  is torsion
n

R == 0 R ; where each R; is an
1=1  ̂ ‘

indecomposable FSI ring 

T  =  0 T :  where each T- is an
i = i   ̂ ^

R^-module (at least one T- torsion) 

Then alglat T  =  0  alglat T^

(1.10, following 6.1)

(continued ...)
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R is an indecomposable FSI ring with unique minimal prime ideal P 

T is an R—module

T is non-torsion 

T  is reflexive  

(6 .1)

T  is torsion

P C  AnnT AnnT C  P

T  non-torsion 

R/P—module 

T  is reflexive  

(6 .1)

T  torsion R/P—module 

alglat j^Tj^ =  ( n  X (^ ))  ©  ( n  MRm))

R AMVR not domain R locally almost maximal 

Then R maximal torch ring

S =  R/Ann T  is a locally 

almost maximal torch ring 

with unique minimal prime 

ideal Q =  P/Ann T  

(6.2)

T  is reflexive  

(4.1, 4.2)

M t X  M t Y

(with notation of 7.1)

T  non-torsion 

S—module 

T  is reflexive  

(6.1)

T  torsion S—module 

alglat j^Tj^ =  X(S') =  S', 

the completion of S in 

the Q-topology 

(6.9)
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