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Joint modelling of longitudinal and
survival data: incorporating delayed
entry and an assessment of
model misspecification
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Paul C. Lambert,a,b Keith R. Abramsa and Keith Humphreysb

A now common goal in medical research is to investigate the inter-relationships between a repeatedly measured
biomarker, measured with error, and the time to an event of interest. This form of question can be tackled with a
joint longitudinal-survival model, with the most common approach combining a longitudinal mixed effects model
with a proportional hazards survival model, where the models are linked through shared random effects. In this
article, we look at incorporating delayed entry (left truncation), which has received relatively little attention. The
extension to delayed entry requires a second set of numerical integration, beyond that required in a standard
joint model. We therefore implement two sets of fully adaptive Gauss–Hermite quadrature with nested Gauss–
Kronrod quadrature (to allow time-dependent association structures), conducted simultaneously, to evaluate the
likelihood. We evaluate fully adaptive quadrature compared with previously proposed non-adaptive quadrature
through a simulation study, showing substantial improvements, both in terms of minimising bias and reducing
computation time. We further investigate, through simulation, the consequences of misspecifying the longitudi-
nal trajectory and its impact on estimates of association. Our scenarios showed the current value association
structure to be very robust, compared with the rate of change that we found to be highly sensitive showing that
assuming a simpler trend when the truth is more complex can lead to substantial bias. With emphasis on flexible
parametric approaches, we generalise previous models by proposing the use of polynomials or splines to capture
the longitudinal trend and restricted cubic splines to model the baseline log hazard function. The methods are
illustrated on a dataset of breast cancer patients, modelling mammographic density jointly with survival, where
we show how to incorporate density measurements prior to the at-risk period, to make use of all the available
information. User-friendly Stata software is provided. © 2015 The Authors. Statistics in Medicine Published by
John Wiley & Sons Ltd.
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1. Introduction

Joint modelling of longitudinal and survival data has been extensively studied in the methodological
literature, as it provides an efficient method to not only account for measurement error in a longitu-
dinal biomarker included in a survival analysis but also alternatively account for informative dropout
when the longitudinal process is of primary interest [1, 2]. It has been shown through simulation
that simply including the observed longitudinal outcome as a time-varying covariate in a survival
analysis can severely underestimate the true association [3]. The most common form of joint model uses
shared parameters, which links the longitudinal and survival components through random effects. With
the increasing availability of user-friendly software [4–7], this form of joint model is beginning to find
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its place in applied clinical research [2,8,9]. However, there is a multitude of further research needed, in
particular, to utilise joint models fully in application to registry-based datasets.

In this article, we incorporate delayed entry (left truncation) into the standard joint model framework,
an aspect that has received relatively limited attention. Delayed entry occurs when a patient is not at
risk of the event of interest until a time t > 0. Within a survival analysis setting, this occurs, for example,
when using age as the timescale, which can be an improved way of controlling for the effect of age [10].
Here, we can draw parallels with the challenges that arise when incorporating random effects into a
delayed entry survival model [11, 12]. Not only do we have the ‘weeding out’ process induced by the
frailties, where patients with smaller frailties are more likely to have longer survival times, but the delayed
entry causes a second selection issue, where patients with smaller frailties are more likely to reach the
threshold set by an entry time.

Standard shared frailty survival models allowing delayed entry have received limited attention, which
is particularly highlighted by the limited availability of software. The extensive frailtypack [13]
in R allows left truncation with clustered survival times, in particular, a shared frailty model [14], an
additive frailty model with two correlated random effects (intercept and slope) [15] and a nested frailty
model with two levels of clustering allowing for independent gamma distributed random effects [16].

Incorporating delayed entry into the framework of joint longitudinal-survival models has also received
limited attention. Dantan et al. developed a joint model for longitudinal data and an illness–death
process in cognitive ageing [17]. They also allowed for an intermediate pre-diagnosis state through
a random change point. Estimation was conducted through maximum likelihood, using non-adaptive
Gauss–Hermite quadrature to evaluate analytically intractable integrals, using 20-point quadrature in
their simulation study, and state that use of fewer points leads to bias. Piccorelli and Schluchter [18]
developed an expectation–maximization algorithm to jointly model repeatedly measured pulmonary
function (FEV1% predicted) and survival in cystic fibrosis patients using registry data. Not all patients
were followed from birth, which subsequently results in left truncation when using age as the timescale.
They assumed a linear mixed effects model for the longitudinal outcome, with random intercept and
slope, which, along with a transformation of age at death, were assumed to follow a trivariate normal
distribution. Van den Hout and Muniz-Terrera [19] developed a joint model for repeatedly measured
discrete data, arising from tests of cognitive function, and survival in the analysis of an older population.
They allowed for a random intercept and linear slope in the longitudinal submodel, assessing a binomial
or beta-binomial formulation, and a Weibull or Gompertz survival model. As interest was in prediction,
they emphasised the benefits of adopting a parametric survival submodel. They looked at specific
association structures to ensure that the cumulative hazard function could be calculated analytically and
used 13-point non-adaptive Gauss–Hermite quadrature to integrate out the random effects. Within the
alternative joint latent class modelling framework, Proust-Lima et al. incorporated delayed entry into a
joint model of multivariate longitudinal outcomes and a time to event [20].

The previous approaches described earlier can be considered limited to a random intercept and single
random linear slope in the longitudinal submodel and standard parametric choices such as the Weibull
or Gompertz for the survival submodel. Limited association structures, describing how the longitudinal
and survival components are linked, were also implemented. Furthermore, the choice of non-adaptive
quadrature can be highly computationally intensive, particularly as a large number of quadrature points
have been shown to be required to obtain appropriate standard errors [21]. In this article, we emphasise
the use of flexible parametric approaches, where in particular, we propose to incorporate fixed and
random effect polynomials of time into the longitudinal submodel. This generalises previous approaches,
allowing a highly flexible way of capturing nonlinear trajectories of the longitudinal outcome over
time. Furthermore, to allow flexibility in parametric survival submodel formulations, we propose to
model the baseline log hazard function using restricted cubic splines, which can capture multiple turning
points/more complex shapes in the underlying event rate [22,23]. The extension to delayed entry requires
a second set of numerical integration, beyond that required in a standard joint model, to evaluate the
likelihood, which we propose to evaluate using fully adaptive Gauss–Hermite quadrature.

The clinical example that we use to illustrate this work comes from a study in breast cancer [24],
where interest is in investigating the association between changes in mammographic density after diag-
nosis, and the time to death due to breast cancer. Mammographic density, which reflects the amount of
fibroglandular tissue in the breast, is one of the strongest risk factors for breast cancer [25]. It has also
been suggested that, in women diagnosed with breast cancer, change in mammography density over time
may be associated with prognosis/response to treatment [24,26]. The original study of Li et al. considered
only the first two measurements/mammograms (diagnosis and follow-up) to focus on the relationship
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between early response to treatment (in terms of mammography density change) and survival. We now
re-analyse the data and include information on all available measurements during follow-up. Given that
all patients have at least two measurements, by definition they cannot experience the event of interest
until after the time of second measurement. Therefore, analysis requires delayed entry to be accounted
for; however, we can still incorporate the baseline mammographic density measurement prior to entry
within the longitudinal submodel.

In Section 2, we derive a joint model, incorporating delayed entry and flexible parametric formulations
for the longitudinal trajectory, and baseline hazard function. In Section 3, we describe the estimation
approach using adaptive Gauss–Hermite quadrature. In Section 4, we conduct a simulation study to
(i) evaluate the performance of fully adaptive Gauss–Hermite quadrature, comparing with previously
proposed non-adaptive quadrature, and (ii) investigate the impact of misspecification of the longitudinal
trajectory on estimates of association. In Section 5, we illustrate the methods in application to the breast
cancer dataset, investigating the association between change in mammographic density over time and
breast cancer survival. We describe user-friendly Stata software, written by the first author, which was
used to fit all the models in this paper, and describe a variety of other models available in the Supporting
Information. We conclude the paper in Section 6 with a discussion.

2. Model framework and likelihood

We begin with some notation. Let Ti be the observed survival time of the ith patient, where i = 1,… , n,
with Ti = min(Si,Ci), the minimum of the true survival time, Si, and Ci the censoring time. We define an
event indicator di, which takes the value of 1 if Si ⩽ Ci and 0 otherwise. We also have T0i, the time at which
a patient becomes at risk of the event, with T0i < Ti. Let yij = {yi(tij), j = 1,… , ni} denote the observed
longitudinal responses, with yi(tij) the jth observed longitudinal response of a continuous biomarker
for the ith patient taken at time tij. Each patient has ni repeated measures. We further define a vector of
time-independent baseline covariates, Ui. To maintain flexibility, different subsets of Ui can be included
in either the longitudinal or survival submodels. We define a vector of patient-specific random effects,
bi, which serve to capture the correlation between measurements of the same patient and the association
between the longitudinal and survival outcomes.

2.1. Model framework

2.1.1. Longitudinal submodel. We assume a linear mixed effects model for the continuous longitudinal
outcome, with

yi(tij) = mi(tij) + 𝜖ij, 𝜖ij ∼ N
(
0, 𝜎2

e

)
(1)

mi(tij) = XT
i (tij)𝜷 + ZT

i (tij)bi + uT
i 𝜹 (2)

where Xi and Zi are design matrices for the fixed (𝜷) and random effects (bi), respectively. Baseline
covariates can be included, represented by ui, with a vector of corresponding regression coefficients, 𝜹.
Measurement error is incorporated through 𝜖ij, which we assume is independent to the random effects.
We also assume that cov(𝜖ij, 𝜖ik) = 0 (where j ≠ k).

Previously joint models with delayed entry have assumed a linear growth curve (random intercept
and random linear slope); however, here, we wish to generalise to allow for the possibility of nonlinear
trajectories by allowing both Xi and Zi to contain (fractional) polynomial functions of time [27].
Alternatively, we could use restricted cubic splines; however, in this article, we concentrate on the use of
polynomials, but splines may be used in the associated Stata software (Supporting Information).

2.1.2. Survival submodel. We define the proportional hazards survival submodel

hi(t) = exp
[
s(log(t)|𝜸, k0) + 𝝍Tvi + 𝛼1mi(t)

]
(3)

where s(log(t)|𝜸, k0) is a restricted cubic spline function of log(t), that is, the log baseline hazard function
with knot vector k0 and coefficient vector 𝜸. Using splines to model the baseline log hazard function can
provide a very flexible framework to capture turning points in the underlying hazard function, while the
restricted nature ensures a sensible form in the tails, that is, linearity is imposed beyond the boundary
knots that are placed at the minimum and maximum event times. Further details on this form of survival
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model can be found elsewhere [22, 23]. A recent extensive simulation study showed that the AIC and
BIC can be used to guide knot selection effectively [28]. We also have vi ∈ Ui, which is a set of baseline
covariates with associated vector of log hazard ratios, 𝝍 , and 𝛼1 is termed the association parameter, rep-
resenting a log hazard ratio for a one-unit increase in the longitudinal outcome at time t. This association
is termed the current value association structure, which is one of the many ways to link the longitudi-
nal and survival components. In the illustrative breast cancer example, we study how the rate of change
of mammographic density is associated with survival, which can be investigated using the following
association structure:

hi(t) = exp
[
s(log(t)|𝜸, k0) + 𝝍Tvi + 𝛼2m′

i(t)
]

(4)

where

m′
i(t) =

d
dt

mi(t)

The interpretation of 𝛼2 under the slope association is the log hazard ratio for a one-unit increase in the
rate of change of the longitudinal outcome at time t. Both the current value and slope associations can
be considered time-dependent association structures, and therefore, it is of direct interest to investigate
the impact of model misspecification in terms of capturing the longitudinal trajectory and how it impacts
on the estimates of association, our 𝛼 parameters. Other association structures have been studied, for
example, time-independent structures, linking say the random intercept; however, we refer the reader
elsewhere for further details [29, 30].

2.2. Likelihood

We define the parameter vector to be 𝜽 = {𝜽t,𝜽y,𝜽b}. The likelihood for the ith patient, Li, conditional
on entry time T0i, can be written as

Li =
∫ p(Ti, di|bi,𝜽t)

[
ni∏

j=1

p(yij|bi,𝜽y)

]
p(bi|𝜽b)dbi

S(T0i|𝜽) (5)

where

S(T0i|𝜽t) = ∫ S(T0i|bi,𝜽t)p(bi|𝜽b)dbi (6)

The numerator in Equation (5) is the likelihood under a standard joint model, with the addition being the
denominator due to the delayed entry aspect.

Assuming a continuous normally distributed longitudinal outcome, we have

p(yij|bi,𝜽y) = (2𝜋𝜎2
e )

−1∕2 exp

[
−
[yi(tij) − mi(tij)]2

2𝜎2
e

]
(7)

and assuming normally distributed random effects gives

p(bi|𝜽b) = (2𝜋|𝚺|)−Q∕2 exp

[
−

bT
i 𝚺

−1bi

2

]
(8)

with variance–covariance matrix,𝚺, where Q is the dimension of the random effects. Under a proportional
hazards survival model, we have

p(Ti, di|bi,𝜽t) = h(Ti|bi,𝜽t)di × S(Ti|bi,𝜽t)

= h(Ti|bi,𝜽t)di × exp

(
−∫

Ti

0
h(u|bi,𝜽t)du

)
(9)

with h() defined in Equation (3) or (4). Maximising the likelihood in Equation (5) is a computation-
ally challenging task, as integrating out the random effects, in both the numerator and denominator,
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requires separate numerical integration. Furthermore, each set of numerical integration has a nested inte-
gral required to calculate the cumulative hazard function and subsequently the survival function, because
of the use of splines to model the log baseline hazard function. However, this is also often required when
using time-dependent association structures combined with standard parametric choices for the baseline
hazard, such as the Weibull [6].

3. Estimation

The overall log likelihood, L, is given by

log L =
n∑

i=1

log Li (10)

and can be maximised using the Newton–Raphson technique in the ml engine in Stata, with derivatives
calculated using finite differences. However, we must employ numerical integration techniques to calcu-
late the joint likelihood. The implementation of adaptive quadrature has been shown to be far superior
to non-adaptive within a standard joint model context [21]. With the extension to delayed entry, this
requires a second set of numerical integration, to be conducted simultaneously, in order to calculate the
denominator in Equation (5).

We briefly describe our implementation of adaptive quadrature to evaluate the joint likelihood [31–33].
Beginning with the numerator in Equation (5), which is equivalent to the joint likelihood when delayed
entry is not present, the integrals can be evaluated employing adaptive Gauss–Hermite quadrature.
Following [32], consider the kernel normal distribution of 𝜙(bi|b̂i, �̂�i), multiplying and dividing the
numerator of Equation (5) by the kernel give

p(Ti, di, yi;𝜽) = ∫ p(Ti, di|bi;𝜽t)

[
ni∏

j=1

p{yi(tij)|bi;𝜽y}

]
p(bi;𝜽b)dbi

= ∫
p(Ti, di|bi;𝜽t)

[∏ni

j=1 p{yi(tij)|bi;𝜽y}
]

p(bi;𝜽b)

𝜙

(
bi|b̂1i, �̂�1i

) 𝜙

(
bi|b̂1i, �̂�1i

)
dbi

(11)

with subject-specific random effect posterior means and variance–covariance matrices, b̂1i and �̂�1i.
Equation (11) can then be evaluated using Gauss–Hermite quadrature using this alternative normal kernel
density, with the nodes appropriately transformed using r̂1i = b̂1i + �̂�1∕2

1i db1,…,bQ
, where db1,…,bQ

are the
vector of nodes based on the multivariate standard normal kernel, which is pre-multiplied by the Cholesky
decomposition of the estimated subject-specific variance–covariance matrix of the random effects, �̂�1∕2

1i .
This gives

p(Ti, di, yi;𝜽) ≈ (2𝜋)Q∕2|�̂�1i|1∕2
m∑

b1=1

· · ·
m∑

bQ=1

p(Ti, di|r̂1i;𝜽t)

[
ni∏

j=1

p
{

yi(tij)|r̂1i;𝜽y

}]

× 𝜙(r̂1i|0,𝚺) exp
(1

2
dT

b1,…,bQ
db1,…,bQ

) Q∏
q=1

vbq

(12)

where vbq
are the quadrature weights from the standard normal kernel. Similarly, the denominator in

Equation (5) can be evaluated using a separate set of adaptive Gauss–Hermite quadrature as follows,
where

S(T0i|𝜽) = ∫ S(T0i|bi,𝜽)p(bi|𝜽t)dbi

= ∫
S(T0i|bi,𝜽)p(bi|𝜽t)

𝜙

(
bi|b̂2i, �̂�2i

) 𝜙

(
bi|b̂2i, �̂�2i

)
dbi

≈ (2𝜋)Q∕2|�̂�2i|1∕2
m∑

b1=1

· · ·
m∑

bQ=1

S
(
T0i|r̂2i;𝜽t

)
𝜙(r̂2i|0,𝚺) exp

(1
2

dT
b1,…,bQ

db1,…,bQ

) Q∏
q=1

vbq

(13)
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where r̂2i = b̂2i + �̂�1∕2

2i db1,…,bQ
.

We implement the following algorithm:

• Obtain starting values for 𝜽0. These are obtained by fitting a separate linear mixed effects model,
obtaining patient-specific predictions from the mixed effects model and including them as a
time-varying covariate within a standard survival model (this assumes the current value association
but is appropriately altered under different association structures). This is a computationally efficient
way of obtaining excellent starting values for the full joint model. We also obtain initial values for
the quadrature node locations, b̂

0

1i and Ω̂0
1i using empirical Bayes predictions of the random effects

from the same separate linear mixed effects model, and use a default of 0 and 1 for b̂
0

2i and Ω̂0
2i.

• Repeat for k = 1, 2,… until Newton–Raphson iterations have converged.

– Predict the subject-specific posterior means and standard deviations, {b̂
k

1i, b̂
k

2i} and {�̂�k

1i, �̂�
k

2i}:

∗ Predict the subject-specific posterior means and standard deviations, {b̂
k0

1i , b̂
k0

2i } and

{�̂�k0

1i , �̂�
k0

2i } using adaptive quadrature based on previous estimates, {b̂
k−1

1i , b̂
k−1

2i } and

{�̂�k−1

1i , �̂�k−1

2i }.
∗ Repeat for j = 1, 2,… until convergence:

· Predict the subject-specific posterior means and standard deviations, {b̂
kj

1i, b̂
kj

2i}
and {�̂�kj

1i, �̂�
kj

2i} using adaptive quadrature based on previous estimates,

{b̂
k(j−1)
1i , b̂

k(j−1)
2i } and {�̂�k(j−1)

1i , �̂�k(j−1)
2i }.

– Update the parameter estimates to 𝜽k using adaptive quadrature using {b̂
k

1i, b̂
k

2i} and {�̂�k

1i, �̂�
k

2i}.

We use a tolerance of 1.0E − 08 for the convergence of the quadrature node locations in the j iterations
and standard convergence criteria for the k iterations, that is, the full Newton–Raphson iterations.

4. Simulation study

In this section, we conduct a simulation study with two primary aims: (i) to investigate the performance of
fully adaptive Gauss–Hermite quadrature in calculating the joint likelihood with delayed entry, comparing
with previously proposed non-adaptive quadrature, and (ii) to investigate the impact of misspecification
of the longitudinal trajectory on estimates of association.

We assume the following longitudinal trajectory:

mi(t) = (𝛽0 + b0i) + (𝛽1 + b1i)t + 𝛽2t2 + 𝛽3t3 (14)

where (
b0i
b1i

)
= N

([
0
0

]
,

[
𝜎2

0 𝜌𝜎0𝜎1
𝜌𝜎0𝜎1 𝜎2

1

])
(15)

that is, a random intercept and random linear slope with fixed squared and cubic powers of time. To
investigate the impact of misspecifying the longitudinal submodel on estimates of association, we sim-
ulate scenarios using either the current value structure shown in Equation (3) or the rate of change
structure shown in Equation (4). This allows us to directly compare their robustness. Therefore, we
simulate under the following survival submodel, with a Weibull baseline hazard function and current
value structure,

hi(t) = 𝜆𝛾t𝛾−1 exp
[
𝛼1

(
𝛽0 + b0i + (𝛽1 + b1i)t + 𝛽2t2 + 𝛽3t3

)]
(16)

or the rate of change structure,

hi(t) = 𝜆𝛾t𝛾−1 exp
[
𝛼2

(
𝛽1 + b1i + 2𝛽2t + 3𝛽3t2

)]
(17)

Parameter values are given as follows: 𝛽0 = 4.348, 𝛽1 = −0.239, 𝛽2 = 0.0264, 𝛽3 = −0.00108,
𝜎0 = 1.143, 𝜎1 = 0.0704, 𝜌 = −0.0923, 𝜆 = 0.00574 and 𝛾 = 1.197. These were based on fitting
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separate survival and longitudinal models to the breast cancer dataset to provide plausible functions from
which to simulate. The assumed true underlying baseline hazard function, longitudinal trajectory and rate
of change of the longitudinal trajectory are shown in Figure 1.

In scenarios that assume the current value structure, we vary 𝛼1 = {0.1, 0.25, 0.5}, and in scenarios
that assume the rate of change structure, we vary 𝛼2 = {1, 2, 3}. Survival times are simulated using the
general survival simulation algorithm of Crowther and Lambert [34]. In each simulation, 1000 patient
survival times are generated using Equation (16) or (17), with accompanying entry times generated from
a uniform distribution U(0, 3). Any patients whose survival time is less than their entry time are deleted.
Observed longitudinal measurements are then simulated at a patient’s entry time and annually thereafter,
with up to 10 measurements per patient, from N(mi(t), 𝜎2

e ), where 𝜎e = 0.591. Finally, administrative
censoring is applied at 15 years. Any measurements simulated after the patients survival/censoring time
are deleted.

To each simulated dataset under each set of parameter values, we apply both the joint model defined
by Equations (14)–(16) or (17), that is, the true model (either current value or rate of change structure,
as appropriate) and a joint model assuming just a random intercept and random linear slope in the longi-
tudinal submodel, with no squared or cubic fixed effect time terms to assess the impact of misspecifying
the trajectory. Each model is applied using 5-point adaptive Gauss–Hermite and 5-point and 15-point
non-adaptive quadrature. We conduct 200 repetitions of each simulation scenario and present results in
Tables I and II. Bias, percentage bias and coverage are calculated on the parametrised scales, for example,
standard deviations and the shape and scale parameters are on the log scale, and the correlation between
the random intercept and slope is parametrised using the inverse hyperbolic tangent transformation
(this is the standard parametrisation used in Stata for correlation parameters [35]).

4.1. Results – current value

Results for the current value simulation scenarios are presented in Table I. When fitting the true model,
we generally find unbiased results and coverage probabilities around the optimum 95% from 5-point
adaptive quadrature across all scenarios, compared with substantial bias in estimates of variance and
correlation parameters in the longitudinal submodel from 5-point and 15-point non-adaptive quadrature,
in particular, underestimating random effect standard deviations. For example, in scenario 1 under
5-point adaptive quadrature, we observe 0.08% bias and 94% coverage probability in estimates of the log
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standard deviation of the random intercept, compared with 13.96% bias and 0.0% coverage probability
from 5-point non-adaptive quadrature. All numerical integration techniques provide generally unbiased
estimates of the association parameter, with coverage probabilities close to 95%.

Looking specifically at the 5-point adaptive quadrature results, comparing the true model with the linear
misspecified joint model, survival parameters appear to be minimally effected by the misspecification.
Estimates of the association parameter appear to be generally unbiased in both the true and misspecified
models. All simulations for each scenario converged except one iteration in scenario 3, with 5-point
adaptive quadrature when fitting the true model.

4.2. Results – rate of change

Results from the rate of change simulation scenarios are presented in Table II. When fitting the true
model, 5-point adaptive quadrature produces results with minimal bias and with coverage probabilities
broadly close to the optimum 95%. Comparing this with moderate to high levels of bias under 5-point non-
adaptive quadrature and sub-optimum coverage probabilities, which are slightly alleviated by 15-point
non-adaptive quadrature, both, however, do not approach the performance of adaptive quadrature.

Looking at estimates under 5-point adaptive quadrature and comparing between the simpler linear
model and the true polynomial model, we observe substantial bias in the estimates of the associa-
tion parameter (𝛼) in the linear model compared with the true model. For example, in scenario 2, we
observe percentage biases in estimate of −95.80% and 1.90% under the linear and polynomial models,
respectively. This is consistent across all three scenarios.

Finally, comparing computation time under scenario 3, when 𝛼 = 3, the median computation time to
convergence on a standard laptop with 4 GB of RAM and i5 processor, with 5-point adaptive quadrature,
was 30 s (range 26, 57), compared with 114 s (range 85, 205) with 15-point non-adaptive. Full compu-
tation times for each scenario are not shown as the simulations were not all run on the same computer.
All simulations for each scenario with the linear model converged; however, one out of 200 simulations
failed to converge in each of the true model fits, across numerical integration types. Results are presented
for simulations that converged.

5. Joint modelling of repeatedly measured mammographic density and breast
cancer survival

The clinical example that we use to illustrate this work comes from a population-based, case–control
study conducted in Sweden between 1993 and 1995 of patients diagnosed with breast cancer [24]. The
original study by Li et al. looked at change in mammographic density between baseline mammographic
density measurement and first follow-up measurement, as a prognostic marker. No modelling of mam-
mographic density was carried out. Mammographic density, which reflects the amount of fibroglandular
tissue in the breast, is one of the strongest risk factors for breast cancer [25]. It has also been suggested
that, in women diagnosed with breast cancer, change in mammography density over time may be asso-
ciated with prognosis/response to treatment [24, 26]. Joint modelling provides the possibility to use all
available measurements during follow-up and to learn about how mammography density changes through
time as a function of treatment, accounting for dropout and measurement error, as well as providing a
framework for formulating hypotheses relating to density change (as a marker of response to treatment)
to survival. Because of patients having at least two measurements, they are not at risk of the event of inter-
est until time of their second mammographic screening, and therefore, delayed entry is required. Primary
interest is therefore in the rate of change association structure, shown in Equation (4); however, we also
investigate the current value formulation shown in Equation (3), as it is the most commonly used asso-
ciation structure, and we can investigate whether the results shown in the simulation study are echoed
in the applied analyses.

The dataset consists of 974 patients, of which 121 (12.4%) died during follow-up. Maximum follow-
up is 15.45 years. A total of 6158 measurements of percentage mammographic density are available.
The median number of mammograms per patient was 6, with a range of (2, 13). This dataset was used to
inform the simulation study in the previous section. The following covariates were used in our analysis:
age at diagnosis (years), body mass index (BMI) (kg/m2, measured at interview), tamoxifen treatment
(yes/no), oestrogen receptor status (negative/positive/missing), tumour size (mm, range 1–80), num-
ber of metastatic nodes (range 0–38), grade (1 = well differentiated, 2 = moderately differentiated,
3 = poorly differentiated and 4 = missing), chemotherapy (yes/no), ever used hormone replacement

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015
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therapy (yes/no) and radiotherapy (yes/no). Some missing data were present in oestrogen receptor status
(27.4% missing) and grade (30.1% missing), which are included by using missing categories. In all
analyses, we use the square root of percentage mammographic density to account for some right
skewness, and consequently now all subsequent references to percentage mammographic density mean
the square root of it. The Kaplan–Meier curve is shown in Figure 2.

We begin with preliminary modelling of the survival data only, investigating the shape of the baseline
hazard function using restricted cubic splines on the log hazard scale [22, 23]. We use the AIC and BIC
to guide the selection of the number of spline terms to capture the baseline hazard function [28]. Results
are presented in Table III, with up to 5 degrees of freedom (6 knots), plus an intercept for each baseline
hazard function.

Table III indicates that both the AIC and BIC select 2 degrees of freedom (3 knots). We illustrate the
fitted baseline hazard functions in Figure 3.
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Figure 2. Kaplan–Meier survival curve of the breast cancer dataset, with 95% confidence interval.

Table III. AIC and BIC for spline hazard mod-
els with varying degrees of freedom (d.f.).

d.f. AIC BIC

1 935.764 941.356
2 922.638 931.025
3 924.126 935.309
4 925.828 939.807
5 925.926 942.700
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Figure 3. Predicted baseline hazard functions across differing degrees of freedom.
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When d.f. = 2, we can see from Figure 3 the presence of a turning point in the baseline hazard function,
which would be missed if a simpler Weibull model would have been used.

We can also conduct preliminary separate modelling of the percentage mammographic density
measurements to obtain an idea of the trend over time, to inform the full joint model. Beginning with
a random intercept and random linear trend to allow for patient-to-patient variability, we can also
investigate a more flexible trend by adding fixed polynomials of time. Results from adding a squared,
cubic and quartic powers of time are shown in Table IV.

Now moving to the joint modelling framework, we apply the following joint model, based on the
aforementioned separate modelling, and therefore assume that

mi(t) =
(
𝛽0 + b0i

)
+
(
𝛽1 + b1i

)
t + 𝛽2t2 + 𝛽3t3 + 𝛽4t4 (18)

modelling percentage density over time with a random intercept, random linear slope and fixed effects
of time squared, cubed and to the fourth power. In the survival submodel, we use 2 degrees of freedom
to model the baseline hazard function, and the rate of change (slope) association structure, as follows:

hi(t) = h0(t) exp
[
𝛼
(
𝛽1 + b1i + 2𝛽2t + 3𝛽3t2 + 4𝛽4t3

)]
(19)

with h0(t) the baseline spline function. We also fit a simpler joint model,

hi(t) = h0(t) exp
[
𝛼
(
𝛽1 + b1i

)]
(20)

assuming a random intercept and random linear trend, and compare estimates of association. However,
we have a variety of important covariates that could impact on the longitudinal and survival estimates.
In the longitudinal submodel, we adjust for age at diagnosis (years), BMI (kg/m2), ever used hormone
replacement therapy (yes/no) and tumour size (mm, range 1–80), and in the survival submodel, we
also adjust for age, BMI, tamoxifen treatment, oestrogen receptor status (negative/positive/missing),
tumour size, number of metastatic nodes (range 0–38), grade (1 = well differentiated, 2 =
moderately differentiated, 3 = poorly differentiated and 4 = missing) and chemotherapy (yes/no).
Results are presented in Table V, comparing the linear and polynomial models.

From Table V, looking at the polynomial-based model, we observe no statistically significant asso-
ciation between the rate of change of percentage mammographic density over time and breast cancer
survival, with an association estimate of 0.192 (95% CI: −0.998, 1.382). We find a marked difference in
the estimates of association when assuming a simpler longitudinal trajectory, with an estimated associa-
tion of 4.756 (95% CI: −4.100, 13.612). We also note that as the association estimate is non-statistically
significant, we obtain identical estimates of the random effects, to 3 decimal places, to those from the
separate longitudinal model shown in Table IV.

We now fit joint models with the current value association structure, comparing the polynomial
longitudinal trajectory model,

hi(t) = h0(t) exp
[
𝛼
(
𝛽0 + b0i + (𝛽1 + b1i)t + 𝛽2t2 + 𝛽3t3 + 𝛽4t4

)]
(21)

Table IV. Longitudinal mixed effects model results for percentage mammographic
density over time.

Parameter Estimate Standard error p-value 95% CI

Time −0.3513 0.0292 <0.001 −0.4086 −0.2940
Time2 0.0840 0.0128 <0.001 0.0589 0.1091
Time3 −0.0103 0.0019 <0.001 −0.0141 −0.0065
Time4 0.0004 0.0001 <0.001 0.0002 0.0006
Intercept 4.3744 0.0409 <0.001 4.2942 4.4546

Random effects

sd(Time) 0.0703 0.0042 0.0626 0.0789
sd(Intercept) 1.1428 0.0290 1.0874 1.2009
corr(Time,Intercept) −0.0918 0.0556 −0.1993 0.0179

sd(Residual) 0.5895 0.0063 0.5773 0.6020
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with the simpler linear trajectory model,

hi(t) = h0(t) exp
[
𝛼(𝛽0 + b0i + (𝛽1 + b1i)t)

]
(22)

and compare estimates of association. Results are presented in Table VI
From Table VI, under the full joint model with polynomial trajectory, we find a non-statistically sig-

nificant association of 0.106 (95% CI: −0.057, 0.268). We observe a very similar association estimate
from the simpler linear model, 0.105 (95% CI: −0.065, 0.275), in agreement with the findings of the
simulation study, showing the robustness of the current value association.

All Stata do files used in the simulation study, and applied joint model analyses of the breast cancer
data are included in the Supporting Information.

6. Discussion

In this article, we proposed a flexible joint model incorporating delayed entry (left truncation), using
restricted cubic splines to model the baseline hazard function, and (fractional) polynomials in the longi-
tudinal submodel to capture complex trajectories of biomarkers over time. The addition of delayed entry
required a second set of numerical integration beyond that of the standard joint model. We proposed to use
fully adaptive quadrature to evaluate the likelihood, as an alternative to previously proposed non-adaptive
quadrature.

Through simulation, we investigated the performance of fully adaptive Gauss–Hermite quadrature in
calculating the joint likelihood, comparing it with non-adaptive quadrature. Our results showed substan-
tial improvement in terms of bias and coverage under the adaptive routines, particularly in estimates
of longitudinal submodel parameters. In order to achieve similar performance as the adaptive routines,
it is expected that a minimum of 30 quadrature points would be required, as has been found in stan-
dard joint models [21]. In terms of computation time, this is an important issue. For example, comparing
computation time under scenario 3 with the rate of change association structure, when 𝛼 = 3, the median
computation time to convergence on a standard laptop with 4 GB of RAM and an i5 processor, with
5-point adaptive quadrature, was 30 s (range 26, 57), compared with 114 s (range 85, 205) with 15-point
non-adaptive. If 30-point non-adaptive quadrature is required, then this difference will clearly grow fur-
ther. This is an important consideration as joint models begin to be used on larger registry-based datasets
where the number of patients may be in the tens of thousands, not hundreds.

We also investigated the impact of misspecifying the longitudinal trajectory through simulation, an
issue that we believe has not been investigated before. We used scenarios that were based on a cubic
polynomial trajectory longitudinal submodel fitted to the breast cancer data, and subsequently fitted the
true joint model, and a more simplistic random intercept and random linear slope longitudinal submodel.
We assessed the impact of misspecifying the trajectory under both the current value association and the
rate of change association structures. In our scenarios, we found the current value association structure to
be quite robust to the misspecification. Conversely, we found the rate of change association structure to
be very sensitive, with substantial bias present in estimates of the association parameter when the simpler
linear trajectory was fitted. Given the assumed trajectory, shown in Figure 1b, it appears that under the
current value association structure, the linear approximation to the more complex true cubic shape did not
impact greatly. Conversely, assuming a constant rate of change when the truth is a more complex squared
function impacted greatly. If a more complex shape had been chosen for the trajectory, for example,
incorporating a turning point within the range of the data, we expect the current value to be as sensitive
to misspecification. Another aspect of the longitudinal trajectory that we could have investigated is the
assumption of normally distributed random effects; however, multiple authors have found joint models
quite robust to deviations from this assumption [36, 37].

We illustrated the methodology with an example in breast cancer, where primary interest was in the
association between change in mammographic density over time and breast cancer survival. It built on
previous work that looked at change in mammographic density between the scan at diagnosis and the
first follow-up scan. In the joint model analysis, we were mainly interested in the current slope or current
value association structures (Equation (4)) to link density change to survival. In a future study, we will use
the joint modelling framework to explore other, perhaps more clinically relevant, association structures.
Discrepancy between our results and those in Li et al. may be due to the fact that they focus on the impact
of density change close to diagnosis. We have here focused on developing the joint modelling framework
for this dataset with delayed entry that can incorporate all follow-up density measurements/model density
as a longitudinal outcome. In line with the simulation study, we also compared the robustness of the rate
of change, and current value association structures to using a simpler longitudinal trajectory compared

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015
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with the separate modelling-informed polynomial trajectory. Results from the applied analyses indicated
complete agreement to those found in the simulation study, showing robustness of the association param-
eter, compared with a substantial lack of robustness in the rate of change specification. An important
limitation to note is that in our model framework, we do not consider time-dependent feedback. This may
occur, for example, if tamoxifen therapy affected mammographic density, which, subsequently, affected
whether a patient was then asked to take or discontinue tamoxifen. However, we only had information
on whether a patient was taking tamoxifen or not, at baseline, and had no information on adherence.

In our application, we used preliminary separate modelling, utilising the AIC and BIC to guide the
selection of the functional form of both the longitudinal trajectory and the baseline hazard function. We
did not include this approach within the simulation study where we fitted the true and a misspecified
model, which is a limitation. In applied studies, we do not know the truth, and therefore, some form of
model selection must be used. The optimal method to select both these functional forms is an area of
further research [38].

For the time-to-event outcome, we used restricted cubic splines on the log hazard scale to model the
baseline hazard function, with knot selection guided by the AIC and BIC, which has been shown to be
an effective model-building strategy [28]. It must be noted that sensitivity analyses should be conducted
to assess the impact of the number of degrees of freedom used to model both the baseline and indeed the
longitudinal trajectory. Alternative flexible formulations could have been explored, for example, Proust-
Lima et al. used penalised cubic M-splines on the hazard scale [20]. We could have used age as the
timescale in our illustrative example but in this case time because diagnosis can be considered the more
appropriate timescale to use; however, in many examples, a delayed entry joint model will be required
when using age as the timescale.

In our analyses, we used missing indicator variables for covariates with any missing data present,
allowing us to use the full dataset. This is clearly not ideal, and therefore, incorporating a multiple impu-
tation approach suitable for use in a joint modelling framework would be a very useful area of future
research. A Bayesian approach may also be of use in this context. Extensions to the modelling framework
also include incorporating multiple longitudinal outcomes, within a generalised linear mixed longitudinal
submodel that would allow also binary and Poisson outcomes. Furthermore, the extension to a multi-
state survival submodel would allow event-specific associations between complex longitudinal profiles
and multiple events. Alternatives to the joint modelling framework could be investigated and compared,
such as the use of inverse probability weights to account for dropout or regression calibration approaches;
however, they give focus to either the longitudinal or survival components, whereas a joint model allows
the elucidation of inferences to be drawn about both processes simultaneously.
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