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Abstract. In a capacitated network design game, each of n players se-
lects a path from her source to her sink. The cost of each edge is shared
equally among the players using the edge. Every edge has a finite ca-
pacity that limits the number of players using the edge. We study the
price of stability for such games with respect to the max-cost objective,
i.e., the maximum cost paid by any player. We show that the price of
stability is O(n) for symmetric games, and this bound is tight. Further-
more, we show that the price of stability for asymmetric games can be
Ω(n logn), matching the previously known upper bound. We also prove
that the convergence time of best response dynamics cannot be bounded
by any function of n.

1 Introduction

The quantification of the inefficiency of Nash equilibria has received considerable
attention in recent years. The concept of the price of anarchy, measuring the
inefficiency of the worst Nash equilibrium (NE) of a given game compared to
a social optimum, was introduced by Koutsoupias and Papadimitriou [5], who
called it the coordination ratio. The price of stability, measuring the inefficiency
of the best NE of a given game, was first studied by Schulz et al. [9], under
the name optimistic price of anarchy. Games for which these measures have
been studied include scheduling games [5], routing games [8], network design
games [2], and capacitated network design games [4]. Apart from the study
of the inefficiency of NE, one is also interested in the convergence time of best
response dynamics (BRD), i.e., the process that starts with an arbitrary strategy
profile and iteratively allows one of the players to update her strategy to one
that optimises her cost given the current strategies of all the other players.

In a capacitated network design game, we are given an undirected graph with
edge costs and edge capacities, and each of the n players selects a path from
her source to her destination. The cost of an edge is shared equally among the
players using the edge. Each player aims to minimise her own cost. A capacitated
network design game is symmetric if all players share the same source and the
same destination, and asymmetric otherwise. As the social optimum, one usually
considers the best strategy profile with respect to sum-cost (total cost of all
players) or max-cost (maximum cost of any player).
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Feldman and Ron [4] studied symmetric capacitated network design games
and considered instances where the underlying graph is a set of parallel links,
a series-parallel graph, or an arbitrary graph. They gave tight bounds on the
maximum price of stability and the maximum price of anarchy for all cases for
both the max-cost objective and the sum-cost objective, except for the price
of stability with respect to max-cost for arbitrary graphs. For the latter case,
they showed an upper bound of O(n log n) and a lower bound of Ω(n), and they
posed closing this gap as an open problem. They also analysed BRD and showed
that there are symmetric capacitated network design games where convergence
requires Ω(n3/2) steps, contrary to the uncapacitated version of symmetric net-
work design games where BRD always converge in at most n steps.

Our contribution. For symmetric games with n players, we show that the price
of stability with respect to max-cost is O(n). This bound is tight, as implied by
the matching lower bound from [4], and hence resolves the open problem posed
by Feldman and Ron. A standard proof technique for bounding the price of
stability is to bound the increase in social cost during best response dynamics
starting from the optimal strategy profile. We show that this technique does not
work in our case, as best response dynamics starting from the optimal strategy
profile can actually increase the max-cost by a factor of Θ(n log n). Therefore,
we use a different approach to bound the price of stability, which may be of
independent interest. For asymmetric games with n players, we show that the
price of stability can be Ω(n log n), matching the previously known upper bound.
We also analyse BRD and show that the number of update steps required to
converge to a NE cannot be bounded by any function of n, even for symmetric
games. Our construction does not depend on the order in which players are
allowed to update their strategies. Furthermore, we observe that the cost of a
player can grow by an arbitrary factor (not bounded by any function of n) during
BRD.

Outline. The remainder of the paper is structured as follows. Section 2 dis-
cusses related work. Section 3 gives formal definitions and other preliminaries.
Our results on BRD and on the price of stability with respect to max-cost are
presented in Sections 4 and 5, respectively. Section 6 suggests possible directions
for future research.

2 Related Work

We discuss only related work on network design games and refer to [7] for general
background on algorithmic game theory and the inefficiency of equilibria for
different types of games. Network design games with fair cost sharing, where the
cost of an edge is distributed to all players using the edge in equal shares, were
first studied by Anshelevich et al. [2]. They observe that these games are potential
games [6] and therefore always have a NE in pure strategies, and BRD converge
to such a NE. For asymmetric, uncapacitated network design games on directed
graphs, they show that the price of stability with respect to sum-cost is at most
H(n) = Θ(log n), where H(n) =

∑n
i=1 1/i denotes the n-th harmonic number.
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They prove this result by considering a potential function that decreases with
every improving move of a player and using it to show that BRD from an optimal
strategy profile must lead to a NE whose sum-cost is at most H(n) times the
sum-cost of the starting profile. We will use the same potential function several
times in this paper. They also show that the upper bound of H(n) on the price
of stability for sum-cost holds for several generalisations, including capacitated
network design games. Regarding BRD, they construct a network design game
with n players where the convergence to a NE may take a number of steps that
is exponential in n (if players make their improving moves in a certain order).
It is also known that in symmetric uncapacitated network design games, BRD
converge to a NE in at most n steps, as the best response for the first update
will also be the best response for all other players [4].

The price of stability of uncapacitated network design games with respect to
sum-cost for undirected networks is still open. The best known lower bounds are
constant and the best known upper bound is (1 − Θ(1/n4))H(n), showing that
the maximum price of stability for undirected networks is smaller than it is for
directed networks, see [3] and the references given there.

As already noted in [4], it is easy to see that the price of stability is 1 for both
sum-cost and max-cost for symmetric network design games without capacities,
since the strategy profile where all players choose the same minimum-cost path
from the common source to the common destination is a NE and also the social
optimum.

Feldman and Ron [4] present a comprehensive study of symmetric capaci-
tated network design games in undirected networks. They show that the price
of anarchy is unbounded for both sum-cost and max-cost in general networks,
but is bounded by O(n) for parallel links and series-parallel networks. For the
price of stability with respect to sum-cost, they show a bound of O(log n) that is
tight even for parallel links. For the price of stability with respect to max-cost,
they give tight bounds of O(n) for parallel links and series-parallel networks, but
for arbitrary networks their upper bound of O(n log n) leaves a gap to the lower
bound of Ω(n).

3 Model and Definitions

Capacitated Network Design Games. We consider capacitated network de-
sign games, also known as capacitated cost sharing (CCS) games and referred to
as CCS games in the following. These games are discrete. All players (or agents)
have perfect knowledge of their strategy space and the cost, ceterus paribus, as-
sociated with each strategy. For some directed or undirected graph G = (V,E),
each player in a set of n must establish a connection between their source and
sink nodes. Every edge e ∈ E has cost p(e) ∈ R≥0 and capacity c(e) ∈ N. We
also write pe for p(e) and ce for c(e). Let [n] denote the set {1, 2, . . . , n}. The
game can be represented as the tuple

∆ = 〈n,G = (V,E), {si}i∈[n], {ti}i∈[n], {pe}e∈E , {ce}e∈E〉 .
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The set of agent i’s strategies is the set of si-ti paths in G. We usually denote
the strategy of agent i by Si and the strategy profile of all n players as S. By
S−i we denote the joint action of all agents except i in some profile S. As we
are considering capacitated networks, a feasibility issue arises. A strategy profile
S = (S1, . . . , Sn) is feasible if xe(S) ≤ ce for all e ∈ E, where xe(S) = |{i :
e ∈ Si}| denotes the number of agents that use e in their path. Throughout this
paper we will only consider feasible games, i.e., games for which there is at least
one feasible strategy profile. We do not impose any restrictions on the network
topology, i.e., we allow arbitrary graphs. If we require that all n players have
the same source and the same destination, we call the game symmetric, and
asymmetric otherwise.

The price of an edge to an individual player using the edge is an equal slice
of its cost which is shared among all the players using the edge. This fair cost
division scheme is derived from the Shapley value, and is one of the most widely
studied protocols [6]. The price of an individual’s strategy Si, with respect to
the strategy profile S, is defined as pi(S) =

∑
e∈Si

pe
xe(S)

.

A profile S is said to be a Nash equilibrium (NE) if no agent can improve their
cost by a unilateral deviation from the profile, that is, for every player i we have
that for all si-ti paths S′i, it holds that pi(S) ≤ pi(S′i, S−i). We consider two social
cost functions: the sum-cost of a profile S, denoted by sc∆(S) =

∑
i∈[n] pi(S),

is the total cost to all agents in S, while the max-cost of a profile S, denoted by
mc∆(S) = maxi∈[n] pi(S), is the maximum cost of any agent in S. We omit the
subscript ∆ if the game is clear from the context.

Note that a game ∆ with undirected graph G can be transformed into an
equivalent game in directed graph G′ using the following construction: Every
undirected edge {u, v} of G is replaced by the directed edges (u, x1), (v, x1),
(x1, x2),(x2, u), and (x2, v), where x1 and x2 are two new nodes created for
the transformation of {u, v}. The capacity and cost of (x1, x2) are set equal
to those of {u, v}, the remaining edges have infinite capacity and cost 0. As a
consequence of this transformation, any construction of undirected CCS games
establishing a lower bound on the price of stability (or on the convergence time of
BRD) automatically yields an equivalent construction of directed CCS games.
Similarly, any upper bound on the price of stability proved for directed CCS
games automatically yields the same upper bound for undirected CCS games.
When it is clear from the context that we are considering undirected graphs, we
also write undirected edges in the form (u, v) instead of {u, v}.

Best Response Dynamics. If a strategy profile S is not a NE, there will be a
cheaper alternative to some player’s path. We assume agents have full knowledge
of the paths available to them, as well as their opponents’ strategies, so they know
the cost of all alternatives with respect to S−i. Being self-motivated, players will
update their strategies to the cheapest path available at any given point in what
is known as best response dynamics (BRD). We do not specify the order in which
updates are made, only that they are sequential and that the choice of strategy
of the player making the update must be the best response to her opponents’
current strategies.
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Existence of Nash Equilibria. The CCS games we consider fall into the class
of congestion games studied by Monderer and Shapley [6], who show that all
such games have pure Nash equilibria. They do this by defining a potential
function Φ, which in the context of our model is

Φ(S) =
∑
e∈E

xe(S)∑
i=1

pe
i
. (1)

Note that Φ(S) is bounded by H(n) times the sum-cost of S. As players only make
improving moves, best response dynamics will strictly reduce the potential of the
solution with each step, meaning a profile cannot be revisited. As the strategy
space of a game is finite, any sequence of updates will terminate at a profile
where no player can make a unilateral improvement, which must be a NE.

Quality of Nash Equilibria. When measuring the quality of a NE we will
compare its cost, by either the sum-cost or max-cost objective, to that of the
optimal solution. The ratio between the objective value of the worst NE and the
optimal objective value is called the price of anarchy, while the ratio between
the objective value of the cheapest NE and the optimal objective value is called
the price of stability, abbreviated to PoA and PoS, respectively. We refer to
the optimal objective value with respect to max-cost as OPTmc, and that with
respect to sum-cost as OPTsc. Furthermore, we write PoSmc(∆) for the price
of stability with respect to max-cost, and similarly for the other cases. For a
particular CCS game ∆ whose set of Nash equilibria is denoted by NE (∆), the
prices of anarchy and stability with respect to max-cost are defined as

PoAmc(∆) =
maxS∈NE(∆)mc∆(S)

OPTmc(∆)
PoSmc(∆) =

minS∈NE(∆)mc∆(S)

OPTmc(∆)

with analogous calculations for sum-cost.

4 Cost Increase and Convergence Time of BRD

Best response dynamics are of interest both as a method to discover equilibria
and for the effect they can have on an individual’s cost. In potential games, the
number of updates required to reach a stable solution is bounded by the cardi-
nality of the strategy set, which is the set of all possible strategy combinations
for all players. The size of the strategy set for a game depends on the size and
topology of the underlying graph, the number of players, and the distribution of
their source and sink nodes.

Examining the effect of BRD on a single player’s cost, we now show that,
with an arbitrary number of updates, an arbitrary increase in cost for that player
is possible, within the limits of a factor H(n) increase in sum-cost. This result is
of particular interest as it illustrates that within a game, a start profile which is
cheap for a particular player is no guarantee of a good NE for that individual.
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Theorem 1. There exists a symmetric CCS game ∆ with 2 players and a start
profile for ∆ such that BRD increase the cost of a player to an arbitrary factor
times the player’s cost in the start profile.

Proof. For m ∈ N with m ≥ 3, consider the CCS game ∆ with n = 2 players
and underlying undirected graph G = (V,E), defined as follows (see Figure 1 for
an illustration for m = 3):

V = {xi, zi | 0 ≤ i ≤ m} ∪ {yi | 1 ≤ i ≤ m}

E = {(xi, xi−1), (zi, zi−1), (xi, yi), (yi, zi−1), (yi, zi) | 1 ≤ i ≤ m}

We denote the two players by a and b. Their source and sink nodes are sa = z0,
ta = xm, sb = x0, and tb = zm. We will discuss in the end how to make the
game symmetric. A horizontal path from xi to xj for some j ≥ i is denoted by
xi → xj , and similarly for zi → zj . (We will use this convention for denoting
horizontal paths throughout the remainder of the paper.)

All edges have capacity 1, except those connecting an x node and a y node,
which have capacity 2. Only edges incident with y nodes have non-zero cost. For
any node yi, the costs of the connections to zi−1, zi, xi are denoted by ai, bi,
abi, respectively. These costs are defined as follows (where ε > 0 is a positive
constant satisfying ε < 1/m2):

a1 = 2m ai = 2m − 2i + 2i−2 + 1− iε for i > 1
b1 = 1 + ε bi = 0 for i > 1
ab1 = 0 abi = 2i−1 + ε for i > 1

Let the start profile be S = ((z0, y1, x1 → xm), (x0, x1, y1, z1 → zm)). Our
aim is to enable a sequence of 2m − 2 best response moves such that the cost
of player b increases by an arbitrary factor (depending on m). In the start pro-
file S, players a and b share the edge (x1, y1) and their costs are 2m and 1 + ε,
respectively. Player a’s best response to player b’s strategy is now the path
z0, z1, y2, x2 → xm with cost a2 + ab2 = 2m − 2− 2ε+ 2 + ε = 2m − ε, so player
a will update to that path. Player b’s best response to a’s new path is now the
path x0 → x2, y2, z2 → zm with cost ab2/2 + b2 = 1 + ε

2 , so player b will update
to that path. As the edge (x2, y2) is now shared, this reduces the cost of player
a to 2m − 1− 2ε+ ε/2.
Claim. In the profile reached after 2(i − 1) best response moves, for 2 ≤ i ≤
m, player a uses path z0 → zi−1, yi, xi → xm and player b uses path x0 →

x0 x1 x2 x3

y1 y2 y3

z0 z1 z2 z3

a1 b1

ab1

a2 b2

ab2

a3 b3

ab3

Fig. 1. Underlying graph of game in proof of Theorem 1
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xi, yi, zi → zm. Player a’s cost is ai+abi/2 = 2m−2i+2i−2+1−iε+2i−2+ε/2 =
2m + 2i−1 + 1− 2i − iε+ ε/2, and player b’s cost is 2i−2 + ε/2.

After 2(m− 1) best response moves, player a’s path is (z0 → zm−1, ym, xm)
with cost 2m−1 + 1 −mε + ε/2 and player b’s path is (x0 → xm, ym, zm) with
cost 2m−2 + ε/2. Denote this strategy profile by S∗. We claim that S∗ is a
NE. First, note that player a does not have an improving move: As the edges
(xm−1, xm) and (zm, ym) have capacity 1 and are used by player b, player a
can reach xm only via the edges (zm−1, ym) and (ym, xm), and the path that a
uses in S∗ contains only zero-cost edges in addition to these two edges. Player
b’s only alternative paths that are potential improving moves are of the form
(x0 → xi, yi, zi, yi+1, zi+1, . . . , ym−1, zm−1, zm) for some i < m − 1. Any such
path would contain the edge (zm−2, ym−1) with cost am−1 = 2m − 2m−1 +
2m−3 + 1− (m− 1)ε = 2m−1 + 2m−3 + 1− (m− 1)ε > 2m−2 + ε/2, so it would
not be an improving move for b. Therefore, S∗ is a NE.

The cost of player b is 1 + ε in the start profile S and 2m−2 + ε/2 in the NE
S∗ that is reached by BRD from S. Hence, the cost of player b has increased by
a factor arbitrarily close to 2m−2. As m can be chosen arbitrarily large, we have
shown that the cost of a player can increase by an arbitrary factor during BRD.

Finally, we observe that the game can be made symmetric by adding edges
(s, z0), (s, x0), (xm, t) and (zm, t) with cost 0 and capacity 1, where s and t are
two new nodes that represent the common source and destination, respectively.
If player a uses edges (s, z0) and (xm, t) and player b uses edges (s, x0) and (zm, t)
in the initial profile, this property must be maintained in every improving move,
and BRD in this symmetric game behave in the same way as in the asymmetric
game discussed above. ut

The symmetric CCS game defined in the proof of Theorem 1 has n = 2
players and the convergence time of BRD is 2(m − 1), where m can be chosen
arbitrarily large. This gives the following corollary, which is in contrast to the
uncapacitated symmetric case where BRD converge in at most n steps.

Corollary 1. There exists a symmetric CCS game and a strategy profile S where
BRD converge to NE in an arbitrarily high number of steps, with respect to n.

5 Price of Stability for Max-Cost

In Section 5.1 we show that the PoS is Θ(n log n) in the worst case for asymmetric
CCS games. In Section 5.2 we show that the PoS is bounded by n for symmetric
CCS games.

5.1 Asymmetric Games

Theorem 2. There exists an asymmetric CCS game ∆ with n players and

PoSmc(∆) = Θ(n log n) .
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Using the potential function Φ defined in (1) in Section 3, it can be shown
that the price of stability for max-cost is upper bounded by O(n log n) for any
CCS game: Consider a strategy profile S′ that minimises the max-cost. Let C ′

denote the sum-cost of S′, and let M ′ denote the max-cost of S′. It follows that
the optimal max-cost M ′ satisfies M ′ ≥ C ′/n. Furthermore, the potential of S′

is at most Φ(S′) ≤ C ′ ·H(n) = C ′/n · nH(n) ≤M ′nH(n). BRD starting with S′

converge to a NE S∗ without increasing the potential. Hence, the sum-cost of
S∗, and therefore also the max-cost of S∗, is at most M ′nH(n) [4].

In the following, we will construct a game ∆ with an odd number n ≥ 3 of
players where

min
S∗∈NE(∆)

max
i∈[n]

pi(S
∗) ≈ n

2
H(bn/2c) ·OPTmc(∆) .

The construction uses parameters m ∈ N and ε > 0, where ε is sufficiently
small, e.g., ε < 0.1, and m is sufficiently large. It is useful to think of m as
approaching infinity. Furthermore, for 2 ≤ i ≤ n, let k(i) denote the value
b(i+ 2)/2c. Let ∆ be the CCS game with underlying graph G = (V,E) defined
as follows (see Figure 2 for an illustration of the structure of G):

V =

{s1, t1, x[1,m], z[1,m]} ∪
{si, ti, z[i,0] | 1 < i ≤ n} ∪
{x[i,j], y[i,j], z[i,j] | 1 < i ≤ n, 1 ≤ j ≤ m}

E =

{
(s1, x[1,m]), (t1, z[n,m]), (x[1,m], z[1,m])

}
∪{

(x[i,j], x[i,j−1]), (x[i,j], y[i,j]),
(y[i,j], z[i,j]), (y[i,j], z[i,j−1]), (z[i,j], z[i,j−1])

| 1 < i ≤ n, 1 < j ≤ m
}
∪{

(z[i,0], z[i−1,m]), (z[i,0], z[i,1]), (z[i,0], y[i,1]), (x[i,1], y[i,1]),
(z[i,1], y[i,1]), (x[1,m], x[i,1]), (z[i,0], si), (si, z[1,m]), (ti, x[i,m])

| 1 < i ≤ n
}

c(e) =

n if e = (x[1,m], z[1,m])
2 if e = (x[i,j], y[i,j]) : 1 < i ≤ n, 1 ≤ j ≤ m
1 otherwise

p(e) =


2 + 2ε if e = (x[1,m], z[1,m])

1
k(i)2j−1 if e = (x[i,j], y[i,j]) : 1 < i ≤ n, 1 ≤ j ≤ m
H(k(i))− 3

k(i)2j + ε
k(i)m+j if e = (y[i,j], z[i,j]) : 1 < i ≤ n, 1 ≤ j ≤ m

ε
k(i)+j if e = (y[i,j], z[i,j−1]) : 1 < i ≤ n, 1 ≤ j ≤ m
0 otherwise

The source and sink of player i, for 1 ≤ i ≤ n, are si and ti, respectively.
We refer to the nodes of the form x[i,j] as the x-row, to the nodes of the form
y[i,j] as the y-row, and to the nodes of the form z[i,j] as the z-row. We divide
the main part of the graph into grids as follows: For any i ≥ 2, the i-th grid
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x :

y :

z : [2,0]

s2

[1,m]

[1,m]

s1

[2,1]

[2,1]

[2,1]

[2,2]

[2,2]

[2,2]

[2,m]

[2,m]

[2,m] [n,0]

[n,1]

[n,1]

[n,1]

t2

sn

[n,2]

[n,2]

[n,2]

[n,m]

[n,m]

[n,m] t1

tn

Fig. 2. Game ∆ with PoSmc(∆) = Θ(n logn) for m = 3

is the induced subgraph of all x, y, z nodes with subscript [i, j] for any j. Note
that the edge costs in pairs of consecutive grids, namely the (2k − 2)-th and
(2k − 1)-th grid, are the same for 2 ≤ k ≤ dn/2e. For fixed i and j, we refer
to the subgraph induced by x[i,j], y[i,j], z[i,j] and z[i,j−1] as column j of the i-th
grid. For simplicity we will refer to the costs of the connections from y[i,j] to
x[i,j], z[i,j], z[i,j−1] as ab[k(i),j], a[k(i),j], b[k(i),j], respectively.

Lemma 1. OPTmc(∆) ≤ 2+2ε
n

Proof. Consider the profile S′ where player 1 uses the path (s1, x[1,m], z[1,m] →
z[n,m], t1) and player i, for 2 ≤ i ≤ n, uses the path (si, z[1,m], x[1,m], x[i,1] →
x[i,m], ti). All n players share the edge (x[1,m], z[1,m]) and use no other edge with
non-zero cost. Each player has cost (2+2ε)/n. The optimal max-cost is therefore
at most (2 + 2ε)/n. ut

Lemma 2. minS∈NE(∆)mc∆(S) ≥ a[k(n),m] ≥ H(bn/2c)− 3
k(n)2m + ε

(k(n)+1)m

Proof (Sketch).
We claim that player 1 must pass through x[n,m] or x[n−1,m] and hence use

edges (x[i,m], y[i,m]) and (y[i,m], z[i,m]) for i = n− 1 or for i = n in any NE (note
that using edges (y[i,m], z[i,m−1]) and (z[i,m−1], z[i,m]) would block player i from
reaching ti), thus paying at least a[k(n−1),m] = a[k(n),m]. To establish that player
1 must pass through x[n,m] or x[n−1,m] in any NE, we show that in all other
cases some player has an improving move.

Let S be a NE. Assume that the path S1 of player 1 does not pass through
x[n,m] or x[n−1,m]. Consider the last x node (i.e., node in the x-row) that the
path S1 of player 1 visits. Let x[i,j] be that node. Note that i < n−1 or j < m. If
i ≥ 2, note that x[i,j] must be followed directly by y[i,j] and z[i,j] on S1 because
using the subpath (y[i,j], z[i,j−1], z[i,j]) would block player i from reaching her
destination ti. If i = 1, the path S1 must use the edge (x[1,m], z[1,m]). There are
three possible cases for the location of the last x node on S1, and it can be shown
that some player has an improving move in each case.
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Case 1: The last x node on S1 is x[1,m]. S1 must travel from x[1,m] to z[1,m]

and then reach t1 by visiting all nodes z[i,j] from left to right, possibly visiting
some y nodes in between adjacent z nodes. One can show that no other player i
can share the edge e1 = (x[1,m], z[1,m]) with player 1, as player i would have an

improving move via z[i,0] in that case due to 2+2ε
i > ab[k(i),1] + b[k(i),1]. Hence,

player 1 pays the full price 2 + 2ε for e1 and one can show that she has an
improving move via x[2,1].
Case 2: The last x node on S1 is x[i,j] for some i ≥ 2, j < m. One can
use b[k(i),j] + ab[k(i),j]/2 > b[k(i),j+1] + ab[k(i),j+1] to show that player i passes
through (x[i,j+1], y[i,j+1]) (except in one case that can be handled differently)
and a[k(i),j] +ab[k(i),j] > a[k(i),j+1] +ab[k(i),j+1]/2 to show that player 1 then has
an improving move to column j + 1 of the i-th grid.
Case 3: The last x node on S1 is x[i,m] for 2 ≤ i < n−1. Player 1 must continue
from x[i,m] via (x[i,m], y[i,m], z[i,m], z[i+1,0]) and pass through the i′-th grid for
all i ≤ i′ ≤ n to reach t1. Edges in any such grid can therefore only be used
by player 1 and player i′. Let i′ ∈ {i + 1, i + 2} be such that player i′ reaches
the i′-th grid via the edge (si′ , z[i′,0]). One can show that such an i′ exists.
Player 1 must visit z[i′,0]. Using a[k(i),m] + ab[k(i),m]/2 > a[k(i′),1] + ab[k(i′),1]/2
for i′ ∈ {i+1, i+2}, player 1 has an improving move by choosing a path starting
with (s1, x[1,m], x[i′,1], y[i′,1]). ut

Proof (of Theorem 2). We have constructed a CCS game ∆ with an optimal
strategy profile with a max-cost of at most 2+2ε

n by Lemma 1, while the max-cost
of the best NE is arbitrarily close to H(bn/2c) by Lemma 2. Hence, PoSmc(∆)
approaches nH(bn/2c)/(2 + ε) = Θ(n log n) arbitrarily closely. ut

5.2 Symmetric Games

We now consider the case where all players have the same source and sink, and
find that the upper bound of O(n log n) on the price of stability is not tight.
First, we note that BRD starting with a strategy profile with optimal max-cost
can increase the max-cost by a factor of Ω(n log n) even in the symmetric case.
The game constructed for the proof of Theorem 2 in Section 5.1 can be made
symmetric by attaching a common source s that is made adjacent to {s1, . . . , sn}
and a common destination t that is made adjacent to {t1, . . . , tn}. Starting with
the strategy profile where player i visits si, the edge (x[1,m], z[1,m]), and ti, BRD
will converge to a NE that corresponds to a NE for the asymmetric game and
has max-cost Ω(n log n) times the optimal max-cost. Hence, in order to bound
the price of stability in the symmetric case, we cannot use the standard proof
technique of analysing BRD starting with the optimal strategy profile. Instead,
we use a different approach that may be of independent interest. We iteratively
discard a single expensive path from the NE reached by BRD and recombine the
remaining n − 1 paths with the optimal strategy profile, until a NE with small
max-cost is obtained. In this way we are able to show that for every symmetric
CCS game ∆ there is always a NE where no player pays more than n times
OPTmc(∆).
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Theorem 3. For any symmetric CCS game ∆ in directed or undirected net-
works, PoSmc(∆) ≤ n.

Proof. We present the proof for directed networks. The result for undirected
networks follows using the standard transformation of an undirected network
into an equivalent directed network discussed in Section 3.

Let ∆ be a symmetric CCS game with directed graph G = (V,E), n players,
common source s and common destination t. Let S be the optimal strategy
profile with respect to max-cost. Without loss of generality, we can scale the
edge costs so that the sum-cost of S is n. This implies mc(S) ≥ 1.

Consider the NE S∗ that is obtained from S using BRD. If mc(S∗) ≤ n,
then PoS(∆) ≤ n and we are done. Otherwise, we have n < mc(S∗) ≤ sc(S∗) ≤
Φ(S∗) < Φ(S). Let Φ(S) = n + α and mc(S∗) = n + β for some α, β > 0, and
let Φ(S∗) = Φ(S) − δ for some δ > 0. Note that 0 < β ≤ α − δ. The following
table illustrates these quantities:

mc Φ
S ≥ 1 n+ α
S∗ n+ β n+ α− δ

Now consider the (n−1)-player profile S∗−1 that consists of the n−1 cheapest (in
terms of cost to the respective player) strategies in S∗. As the change in potential
function equals the cost to an individual player when making some change in
strategy, we have that Φ(S∗−1) = Φ(S∗)−mc(S∗) = n+α−δ−(n+β) = α−β−δ.

We construct a new n-player strategy profile S′ by combining S and S∗−1 using
an augmentation step in a suitably defined flow network. (We refer the reader to
[1] for background on network flow, residual networks, and augmenting paths.)
First, define the capacitated network Ḡ = (V, Ē) from G = (V,E) by letting
Ē = {e ∈ E | xe(S) > 0 or xe(S

∗
−1) > 0} and setting the capacity c̄(e) for each

e ∈ Ē to c̄(e) = max{xe(S), xe(S
∗
−1)}. The strategy profile S∗−1 induces a flow

f of value n− 1 from s to t in Ḡ. The network Ḡ admits a flow of value n from
s to t as the profile S induces such a flow. Hence, the residual network Ḡf of Ḡ
with respect to flow f admits an augmenting path P from s to t. Let f ′ be the
flow of value n obtained by augmenting f with P . Decompose the flow f ′ into
n paths from s to t, and let S′ be the strategy profile corresponding to these n
paths.

In going from f to f ′, the flow on any edge increases by at most 1, and
every edge on which the flow increases satisfies xe(S) > 0. Let X be the set
of edges on which the flow increases. Observe that Φ(S′) ≤ Φ(S∗−1) + p(X),
because increasing the number of players on an edge e by 1 adds at most p(e)
to the potential. As X ⊆ {e ∈ E | xe(S) > 0}, we have p(X) ≤ sc(S) = n and
hence Φ(S′) ≤ α− β − δ + n < Φ(S∗).

Let S∗∗ be the NE obtained from S′ via BRD. Note that Φ(S∗∗) ≤ Φ(S′) <
Φ(S∗). If mc(S∗∗) ≤ n, we have found a NE with max-cost at most n times the
optimal max-cost and we are done. Otherwise, we can repeat the construction
that we used to create S∗∗ from S∗, but starting with S∗∗ in place of S∗. Each
time we repeat the construction and obtain a NE with max-cost greater than n,
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that NE has strictly smaller potential than the previous NE. As the number of
strategy profiles is finite, we must eventually obtain a NE whose max-cost is at
most n. This shows PoSmc(∆) ≤ n. ut

6 Further Research

As we have shown in Corollary 1 that the convergence time of BRD cannot be
bounded by any function of n for symmetric CCS games, an interesting question
is in what other settings it is possible for BRD convergence to be unbounded in n.
In our setting the effect of capacitated edges is to allow the reachable strategy
space of an individual player to be limited by their opponent’s choice of path,
thus increasing the number of states which can be passed before a stable solution
is reached. It may be interesting to identify other games where this behaviour
could be observed.

To prove that the price of stability with respect to max-cost is bounded by
n for symmetric CCS games, we iteratively combined a NE with large max-cost
with the optimal strategy profile. It would be interesting to explore whether this
method could be turned into an efficient procedure for constructively finding a
good NE. As the approach mainly relies on arguments about the reduction in
potential of the strategy profiles constructed, it may be possible to apply it to
other potential games.
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