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Abstract 

 
The kite family and other animals: Does a dragging utilisation scheme 

generate only shapes or can it also generate mathematical meanings? 

 
 By Susan Kathleen Forsythe 

 
This thesis is about development of students‟ geometrical reasoning, in particular of 

inclusive relations between 2 dimensional shapes, e.g. the rhombus as a special case of 

the kite. Students in the study worked with a dynamic figure constructed using 

Dynamic Geometry Software. The figure is a quadrilateral whose diagonals are 

constructed so that they are of fixed length and perpendicular.  

 

All students in the study were observed to use a strategy of „dragging‟ to keep one 

diagonal as the perpendicular bisector of the other. This generated a „family of shapes‟ 

which was comprised of an infinite number of kites, arrowheads (i.e. concave kites), 

one rhombus and two isosceles triangles. I have called this strategy „Dragging 

Maintaining Symmetry‟ (DMS) and I claim it has the potential to mediate the 

understanding of the rhombus as a special case of the kites (and the isosceles triangle in 

the context of dynamic geometry). 

 

However students in the study typically perceived the shapes, generated using DMS, 

according to a partitional view i.e. as different shapes, albeit with common properties 

such as line symmetry. When asked how many kites it would be possible to make by 

dragging the figure some students reported that there were four kites (one typical kite in 

each of four relative positions). It appears that they perceived the dragging activity as a 

journey to a discrete end position rather than as an action that resulted in a continuously 

changing figure. To address this problem I showed the students an animation of the 

figure under DMS. This proved to be the catalyst which moved their reasoning towards 

perceiving inclusive relations between the rhombus and kite.     
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1 Introduction 
 

This thesis is about students learning geometry with specialised computer software. In 

particular it is concerned with students‟ understanding of shapes and their properties 

and the development of analytical reasoning where they begin to consider that some 

shapes are special cases of other shapes. As an example, kites are quadrilaterals with 

two pairs of adjacent congruent sides. Other shapes such as the squares and rhombuses 

are considered by mathematicians to be special cases of the kites because the definition 

still holds true but with additional properties. Another way of explaining this is to say 

that the set of rhombuses (or squares) is included in the set of kites. The value of 

including squares and rhombuses as special cases of the kites is that if a geometric 

theorem can be proved for kites then it has automatically been proved to be true for 

squares and rhombuses. Furthermore, the ability to reason analytically is an important 

foundation stage for students who later go on to use deduction and proof in geometry. 

 

This thesis is also concerned with how students learn using Dynamic Geometry 

Software (DGS) and in particular the Geometers Sketchpad™ version 4.05 (Jackiw, 

2001) which is the specific commercial version of DGS used in the study. DGS 

programs are designed to be dynamic versions of Euclidean Geometry in that figures 

are constructed from basic points, lines and circles. The dynamic nature of the figures 

constructed using DGS has implications for the way students think and reason about the 

figures which is qualitatively different from the way they think and reason about static 

figures constructed on paper. Researchers often talk about these two different situations 

as the Dynamic Geometry Environment and the pencil and paper environment. More 

will be said about DGS programs and the Dynamic Geometry Environment in section 

1.3 and in chapter three. 

 

When I began the work in preparation for this thesis I wanted to explore how students 

learn within a Dynamic Geometry Environment. How do students develop 

mathematical concepts in this environment and how is this mediated through the 

dynamic aspect of the software? As a consequence there are two aspects to the work in 

this thesis which are intertwined: how students used the dynamic nature of the software 

to carry out a task involving a geometric figure, and how students reasoned about the 

properties of the geometric figure which was displayed on the computer screen. This 
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thesis is therefore written in the interpretative paradigm using qualitative methods as 

the best way to answer such questions as „how‟. 

 

I came to this study with twenty one years‟ experience as a secondary classroom 

teacher and I wanted to develop an intervention which could be used as a pedagogical 

tool in the classroom and which would be effective in helping children learn about an 

aspect of geometry. I have used a Design Based Research approach to develop and trial 

an intervention with pairs of students over several iterations of evaluation and 

improvement. 

 

There is no perfect intervention for developing students‟ geometrical reasoning. 

Learners construct their own meanings (in mathematics and in all other aspects of their 

lives) and it is important to give them the opportunity to engage with the mathematical 

topic and with educational resources. Concepts need to be developed carefully if they 

are to become internalised and this process does not happen overnight. What I hope is 

that I have developed an intervention which will be a useful tool in developing 

students‟ conceptual understanding about the inclusive classification of triangles and 

quadrilaterals, a subject about which a great deal has been written. 

 

Students also learn in a social context and construct meaning as a result of social 

interactions with their peers and their teacher. In the final iteration I was able to use the 

intervention, the task and computer files which were developed over the course of the 

study, to deliver a series of lessons to a class of 12-13 year old students and to observe 

how their discussion about 2-dimensional shapes developed in the light of the 

intervention.  

 

1.1The value of learning geometry 

 

Sir Michael Attiyah stated : 

 

“Our brains have been constructed in such a way that they are extremely 

concerned with vision. Vision, I understand from friends who work in 

neurophysiology, uses up something like 80 or 90 percent of the cortex of 
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the brain... 

Understanding, and making sense of, the world that we see is a very 

important part of our evolution. Therefore spatial intuition or spatial 

perception is an enormously powerful tool and that is why geometry is 

actually such a powerful part of mathematics - not only for things that are 

obviously geometrical, but even for things that are not. We try to put them 

into geometrical form because that enables us to use our intuition. Our 

intuition is our most powerful tool... 

I think it is very fundamental that the human mind has evolved with this 

enormous capacity to absorb a vast amount of information, by instantaneous 

visual action, and mathematics takes that and perfects it”. 

Attiyah (2001) 

 

Attiyah has made the point that geometry is a valuable part of mathematics because it 

allows us to use our spatial intelligence, gleaned from our visual experience of the 

world, to make connections with mathematical concepts. Geometry affords students the 

opportunity to form reasoned arguments based on geometrical figures that they can see 

(and perhaps touch in the case of 3D figures) to convince themselves and others. This 

can eventually lead to the skills of conjecture and deductive reasoning. 

Geometry is increasingly useful as visual information becomes more ubiquitous, 

through  digital technologies in robotics, computer generated imagery, mapping the 

human genome and much more (Royal Society, 2001, Watson, Jones and Pratt, 2013). 

Given the importance of geometry as a discipline and as a tool in the every-day world, 

it is perhaps surprising that, in the UK at least, geometry has a low profile compared to 

other aspects of the mathematics curriculum (Royal Society, 2001). 

 

1.2 The curriculum for geometry in England 

 

Before 1970 the geometry curriculum in the UK was based on Euclidean geometry 

(Jones 2002). School students of secondary school age (11-16 years) were expected to 

learn deductive proofs and many did this by learning the proofs by rote which 

eventually became to be seen as inappropriate (Kuchemann, 1981).  After 1970 

Euclidean geometry was replaced by transformation geometry (which in the school 
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curriculum deals with transforming shapes using reflections, rotations, translations and 

shears) and analytical geometry (where, in the school curriculum, geometric shapes 

plotted on a Cartesian frame are analysed algebraically) although some aspects of 

Euclidean geometry remained in the curriculum (Jones, 2002). Transformation and 

analytic geometry can both be aligned with algebraic methods and this may be why 

geometry has since lost much of its status as a topic in its own right. 

 

1.2.1 Geometry in the National Curriculum 

 

In 1988 a National Curriculum for England, Wales and Northern Ireland was 

introduced and then revised in 1995 and 1999. Whilst „Shape, Space and Measures‟ 

was one of four attainment targets set down in the National Curriculum, it has never 

been allocated 25% of the teaching time in mathematics (Royal Society, 2001). 

Geometry appears to be the poor relation in the UK National Curriculum with little 

space allocated to the explicit development of spatial awareness and visualisation skills 

(Jones, 2002). The situation for mathematics of 16-19 year olds is even more serious 

with a minimal amount of geometry covered in the Advanced level mathematics 

curriculum (Royal Society, 2001, Jones, 2002). The situation has not changed in the 

interim period since those reports were written.  

 

At the time of writing (December 2013) the incumbent coalition government have 

prepared to introduce a new English National Curriculum for ages 5-14 (published in 

July 2013) to be implemented in September 2014. The National Curriculum for ages 

14-16 will be implemented from September 2015. An important difference between the 

new National Curriculum and the one it will replace is that a number of topics which 

used to be covered at Key Stage Three will now be covered in primary school. On 

reading the new programme of study in geometry for students from ages 5 to 14 (DfE, 

2013) the learning objectives are articulated as „recognise‟, „identify and describe‟, 

„classify‟, „know and use‟ , „apply‟, „derive and illustrate‟. The learning objectives do 

not appear to encourage the development of visualisation skills to support geometrical 

reasoning but skilled and creative teachers will have scope to develop these skills 

within the framework of the new National Curriculum, as indeed they had in previous 

National Curricula. 
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Both the 2007 and the 2014/15 versions of the National Curriculum for Mathematics 

include some element of constructing formal geometric proofs using deductive 

reasoning for the highest attaining students by the age of sixteen. However, a trawl of 

the most recent examination papers for the General Certificate in Secondary Education 

in Mathematics (taken by all students at age sixteen) reveals that deductive reasoning is 

allocated very few marks and is usually tested in the topic of Circle Theorems. The 

implication is that classroom teachers are unlikely to spend much classroom time on 

developing geometrical reasoning in their students. 

 

The next sections describe two reports, published in 2001 and 2004, on the status of 

geometry teaching and learning in the UK. Section 1.2.4 presents student answers to 

geometry questions taken as part of national tests at age 14 years. 

 

1.2.2 Teaching and Learning Geometry 11-19 

 

Following concern regarding the standards of attainment in geometry, the UK 

government of the time commissioned a report into the teaching and learning of 

geometry from ages 11 to 19 (Royal Society, 2001). The working group that produced 

the report concluded that the current National Curriculum and Framework for Teaching 

Mathematics had sufficient geometrical content but they identified a need for geometry 

to be taught in a more engaging way, including approaches using ICT. In particular the 

working group recommended that geometry should be “taught in such a way as to 

achieve the following objectives: 

 

a) Develop spatial awareness, geometrical intuition and the ability to visualise 

b) Provide a breadth of geometrical experiences in 2- and 3-dimensions 

c) Develop knowledge and understanding of and the ability to use geometrical 

properties and theorems 

d) Encourage the development and use of conjecture, deductive reasoning and 

proof 

e) Develop skills of applying geometry through problem solving and modelling in 

real world contexts 

f) Develop useful ICT skills in specifically geometrical contexts 
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g) Engender a positive attitude to mathematics 

h) Develop an awareness of the historical and cultural heritage of geometry in 

society, and the contemporary applications of geometry. 

(Royal Society 2001, p. xii) 

 

Among the several key principles listed in the report, the committee argued that 

geometry needs to be given a higher status within the UK mathematics curriculum and 

that it be allocated more teaching time (25-30%) than was presently the case. The report 

also recommended that the assessment weighting for geometry in examinations such as 

the SATs and GCSEs reflects this. The working group noted that the difficulty of 

assessing work done in 3D geometry and using ICT in geometry has resulted in a low 

profile in the teaching of geometry. Within a climate of targets it is only natural that 

teachers focus on what will be tested. If geometrical reasoning is to be developed then 

appropriate questions which test for reasoning need to appear in national tests. 

 

1.2.3 Developing reasoning through algebra and geometry 

 

In 2004 the then Qualifications and Curriculum Authority (QCA) published the result 

of a project on the development of geometrical reasoning undertaken by six working 

groups made up of teachers, academics and education consultants (QCA, 2004). The 

report was written for mathematics teachers in schools with the intention of helping 

them implement the new approaches to geometry (and algebra) in the revised National 

Curriculum. The reporting group made a number of observations and 

recommendations.  

 

 Geometry gives the opportunity to develop skills in mathematical reasoning 

which can be built up by working on mental imagery and visualisation. 

 Students often have problems associated with failing to appreciate that 

geometrical statements do not only refer to the particular diagram on the page. 

They can also frequently suffer from misconceptions that arise because they see 

figures drawn in specific orientations and decide that the orientation is a feature 

of the shape (eg not recognising squares when they are drawn at 45 degrees).  
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 Dynamic Geometry Software (DGS) is a helpful tool for observing which 

properties of a shape remain constant as it is changed by dragging. DGS can 

also allow students to switch between using measurements in their observations 

and explanations to a more formal geometrical line of reasoning.  

 Geometry affords students the opportunity to develop informal reasoning 

through giving verbal explanations. It is important to develop students‟ 

mathematical explanations from spoken explanations to written and symbolic 

forms. 

 

These two reports make the case for the study of geometry in school and the rich 

experience which it offers students. The tone of the reports is optimistic and hopeful 

yet, since they were published, (from my own observation) there is little evidence of 

change or improvement in the teaching and learning of geometry. 

 

1.2.4 English 14 year olds’ attempts at geometry questions in the Key Stage 3 SATs  

 

This resource is based on analysis, carried out by the then Qualifications and 

Curriculum Development Authority (QCDA), of the way 14 year old students answered 

questions which required them to articulate the definition of 2D shapes. The questions 

appeared on the Key stage 3 Standard Assessment Tests (SATs) papers for 14 year olds 

in 2004 (QCDA, 2004). An account of the responses of students who achieved National 

Curriculum levels 5 and 6 (the expected levels of attainment for students aged 14) are 

described below in figure 1.1 to show the range of understanding in relation to the 

necessary properties needed to define a kite. 
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Example 1

 

 

8 % of level 5 students, 18% 

of level 6 students and only 

30% of level 7 (high attainers) 

achieved marks for a correct 

answer to this question. Over 

half the students recognised 

the shape as a kite but did not 

give a complete explanation.  

 

This response was a correct 

one since the annotations on 

the diagram showed exactly 

which sides were the matching 

pairs. Many students find it 

hard to articulate the 

properties of a kite yet if 

allowed to demonstrate on the 

diagram can indicate which 

sides are equal. 

Example 2 

 

 

This definition describes a kite 

although the properties of the 

angles are extra to the minimal 

conditions needed for the 

definition. 

Example 3 

 

 

 

The student who gave this 

response may not have 

understood what was expected 

of them in terms of precisely 

defining a kite. 

Example 4 

 

 

 

Unfortunately this definition is 

not sufficiently precise to gain 

the mark for the question 

although they may actually 

understand that the two longer 

lengths are equal but have not 

specifically stated this. 

 

Figure 1.1 Examples of student solutions to a geometry question 

Contains public sector information licensed under the Open Government Licence v2.0. 
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The low percentage of students who answered these in sufficient detail indicate that 

most had a poor understanding of what is required to define the shape correctly. This 

may arise from the lack of class time given to the topic of shape properties. A 

contributing factor could be that the students have learned lists of properties but have 

not had experience of developing the concept of shape properties for themselves and 

consequently have no deep understanding of the necessary properties needed in a 

definition of a specific shape such as a kite (Freudenthal, 1971, De Villiers, 1998, 

Battista, 2002). 

 

Students of around 13 years of age are commonly expected to know and use properties 

of 2 dimensional shapes, in particular triangles and quadrilaterals. This topic appeared 

in the list of test items in the Trends in International Mathematics and Science Study 

(TIMSS, 2007, 2011) and most participating countries reported that the topic is a 

regular part of their school curriculum for this age group. My experience of school text 

books and test questions in the UK is that these require simple recall of facts rather than 

deeper learning.   

 

1.3 Dynamic Geometry Software (DGS) 

 

The QCA report described in 1.2.3 (QCA, 2004) stated the effectiveness of DGS in 

developing students‟ ability to observe and measure towards geometrical reasoning.  

My study focuses on developing an intervention using DGS, in particular the 

Geometers Sketchpad version 4 (Jackiw, 2001). Like other DGS programs it has been 

designed to embody Euclidean geometry and as such it is based on primitive objects 

such as points, lines and circles and constructions performed on these objects (such as 

mid-point, perpendicular through a point to a line, etc). 

 

1.3.1 A DGS figure as a prototype 

 

Figures in dynamic geometry are made by connecting components, for example, a 

triangle is made by connecting three line segments as displayed in figure 1.2. The tools 

are displayed on the left hand side of the screen and menus across the top. The triangle 

was drawn using the line segment tool. The corner labels were added using the text 
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tool, A. The measurements of the angles and the angle sum have been displayed. 

Interestingly, the sum of angles in figure 1.2, measured to 2 decimal places, give 180.01 

due to a rounding error. This occurrence needs to be taken into account when using 

DGS and can provide an opportunity to talk to students about the effects of rounding to 

specific degrees of accuracy. 

 

The Arrow tool is used to select objects and also to drag them across the screen. In 

figure 1.2, if the corner marked A were to be picked up and dragged, then the lengths of 

the lines AC and AB would change and the measurements shown on the screen would 

continuously update to take account of this (Olivero and Robutti, 2007, Hollebrands, 

2007). The Measure menu and the Dragging mode are important affordances of DGS 

for the purposes of this study. More will be said about the affordances of dragging and 

measuring in chapter three. Using the drag mode allows the user to transform the 

triangle on the screen to demonstrate a possibly infinite number of triangles. The 

dynamic triangle is a prototype for all possible triangles, not one static example as 

would be the case for a triangle drawn on paper (Olive, 2000). 

 

 

 

Figure 1.2 Screen shot displaying a triangle constructed by joining three line segments  
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1.3.2 Dragging in DGS and functional dependency 

 

The drag mode allows students to manipulate primitive objects (lines, points, circles) 

which are part of a figure or sketch, whilst keeping constructed properties constant and 

thus make the link between the conceptual properties of a figure and  the geometric 

construction itself (Laborde, 1993). The dragging mode thus acts to mediate the 

concept of geometrical relationships and helps students to see the relationships between 

objects rather than focusing on the objects themselves (Holzl et al, 1994). Dragging is 

the affordance which gives DGS its power and enhances the complexity of the learning 

situation (Holzl, 1996). To illustrate this point, consider the screen shot in figure 1.3 

which shows one method of constructing an isosceles triangle in the Geometers 

Sketchpad. 

 

 

 

Figure 1.3 Screen shot which demonstrates a construction method for an isosceles 

triangle 

 

In this construction the original line segment is a primitive object, all other points and 

lines have been constructed. The first construction is the mid-point of the primitive line. 
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Next a perpendicular to the primitive line segment through the mid-point is constructed. 

Then a point is placed on the perpendicular line (which is an infinite line rather than a 

line segment). The line segments are drawn from the placed point to the ends of the 

original primitive line segment. When this resulting figure is dragged the constructions 

will be maintained. So that if one end of the primitive line segment were dragged (eg. 

shortened, lengthened or rotated) the mid-point would adjust itself to keep being the 

mid-point, the perpendicular would adjust its position in response, the point on the 

perpendicular would maintain its relationship to it and so would the two line segments 

which comprise the other two sides of the equilateral triangle. Thus each constructed 

object is dependent on the previous constructions, forming a hierarchy of dependency. 

When the figure is dragged, its behaviour will be influenced by the functional 

dependencies of the primitive line segment and subsequent constructed objects which 

comprise the isosceles triangle (Holzl, 1996). It is in observing this behaviour that 

students can learn more about the relationships between objects within the figure and 

connect it to properties of the figure. In this way DGS has accomplished the link 

between the experimental field of geometric constructions and theoretical geometry 

(Laborde, 1993). As will be noted in chapter two the ability to move between 

experimental and theoretical geometry is important for students‟ development of 

theoretical understanding of geometry. 

 

1.3.3 A new pedagogical environment 

 

DGS has opened up a new pedagogical environment for teachers and students to 

explore geometry across both the experimental and theoretical fields. In particular the 

drag mode allows students to explore and experiment with dynamic figures which can 

lead to the generation of conjectures (Leung, 2011). The drag mode has even made 

possible new ways of thinking and learning about geometry, including a new discourse, 

which provides an alternative to the traditional Euclidean way of deductive reasoning 

(ibid).  
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1.4 Aims of the research and my position on the learning of mathematics 

 

The aims of this research are to explore how students work on a task that requires them 

to interact with a figure constructed in a Dynamic Geometry Environment, and asks 

how their conceptual understanding of the properties of 2D shapes might develop as a 

result. At this point it is necessary to describe the research method I have used since it 

has implications for how I have structured the thesis. I have chosen to use the Design 

Based Research method which is based on a design experiment (the task) and uses an 

iterative process. Each iteration can be considered to be a small piece of research which 

builds on the findings which have emerged from the previous iteration. The DBR 

methodology is described in detail in chapter four: each iteration will be dealt with in a 

separate chapter with a retrospective analysis conducted at the end, after the final 

iteration, which will draw together the findings from the whole study.   

 

In devising the research study I have naturally drawn on my own philosophy about how 

we learn which is based on the theory of constructivism originally developed by Jean 

Piaget (Wood, 1998). Human beings construct interior models of how the world works, 

and of how mathematics works, adjusting their mental models as they learn. Advocates 

of constructivism, in particular Papert (1980), developed the theory of constructionism 

whereby learning opportunities are set up for students to construct their own 

mathematical understandings by interacting with artifacts such as computers. 

 

Human beings also learn in a social context as described by the theory of Socio-

Constructivism (Vygotsky, 1978). Vygotsky considered that humans actively construct 

their own knowledge of the world but that this is done, not just through one‟s own 

exploration of the physical world, but also in interaction with other human beings 

which may be parents, teachers or more knowledgeable peers. Vygotsky identified the 

zone of proximal development (ZPD) as the difference between what one can achieve 

alone and what can be achieved with the guidance of others (e.g. more able peers). 

Vygotsky claimed that it is within the ZPD that developmental learning occurs. 

 

Most learning of mathematics takes place in the classroom. Brousseau (1997) described 

the didactic contract whereby the teacher‟s role is to design a learning situation for their 

students so that they are allowed to experience discovering mathematics themselves. 
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Freudenthal (1971) also held the view that we should allow students to make their own 

journey of discovery and that we do students a disservice if we simply transmit 

information to them. This does not mean that students are expected to discover all of 

mathematics from first principles, which has taken centuries to develop. Rather the 

teacher should guide the students by choice of tasks and activities so that they are able 

to experience the joy of discovery. Another model to describe the classroom contract is 

to view it as an expert – apprentice model whereby the teacher apprentices the students 

into school mathematics (Lave and Wenger, 1991), working with them so that they 

learn how to become mathematicians by observing and working with the expert. I can 

testify to the power of this as someone who experienced as a sixth form pupil, with my 

Applied Mathematics A level teacher, the value of working with a more experienced 

adult to differentiate from first principles and to derive all the equations we needed for 

Mechanics problems. 

 

It is of the utmost importance that learners develop a deep conceptual understanding of 

mathematics as a foundation on which to build future learning. Skemp (1973) described 

deep understanding of mathematical concepts which he named relational understanding 

in opposition to instrumental understanding, where students view mathematics as a 

series of procedures that are learned without understanding how and why they work. 

My aim, therefore, in any task which I give to students is that it should facilitate them 

in constructing their own mathematical meanings by investigating and discovering 

mathematics for themselves but in a social context with peers and teacher expert  and 

with the intention that deep relational learning should result. However, before arriving 

at this juncture it was necessary to design a task and to test it. 

 

1.5 The dynamic figure 

 

The idea for the figure on which the task is based comes from a simple toy kite (which 

could be flown on a windy day). The rigidity of the kite rests on the two bars which 

cross each other so that one is the perpendicular bisector of the other. The bars are 

covered in a fabric which is stretched over the bars and forms the shape of a 

mathematical kite as shown in figure 1.4. 
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Figure 1.4 A typical kite shape 

 

Suppose that the bars which give the toy kite its structure can be moved and suppose 

the covering fabric is sufficiently elastic then many different shapes are possible. This 

would be difficult to achieve in a practical sense but it could be done in the imagination 

and by using dynamic geometry software. The dynamic figure in the task, constructed 

using the Geometers Sketchpad version 4.05 (Jackiw, 2001), has been based around 

two fixed length perpendicular bars. The bars are constructed separately by placing a 

point on the screen, translating that point using a vector and using a line segment to join 

the points. This method ensures that the bars are unchangeable in length and 

orientation. One bar is moved over to cross the other and the ends are joined using line 

segments to create a perpendicular quadrilateral (a four sided shape whose diagonals 

are perpendicular). The interior is constructed which fills the shape with colour. 

 

The difference in how I use the words „figure‟ and „shape‟ should be explained. Most 

of the time I have endeavoured to use the term „figure‟ to describe a general 

geometrical object which possesses a minimum number of properties. The figure may 

be a representative of a set of geometrical objects which contains subsets of specific 

shapes that are particular members of the larger set. In the Dynamic Geometry 

Environment the dynamic figure is the perpendicular quadrilateral which can be 

dragged to generate specific shapes (such as kites and isosceles triangles). 

 

If the bars are moved inside the dynamic figure (dynamic perpendicular quadrilateral) 

then shapes can be generated such as those shown in figure 1.5. (I hope the reader does 

not become confused between the use of the word „figure‟ as a mathematical object and 

figure denoting an illustration included in the thesis.) 
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Right angled 

triangle 

rhombus Perpendicular 

quadrilateral 

Concave kite 

 

Figure 1.5 Shapes which can be generated by moving the bars inside the dynamic 

figure. 

 

All the shapes in figure 1.5 are particular cases of a perpendicular quadrilateral since 

they were generated by moving (dragging) the bars inside a perpendicular quadrilateral. 

This raises questions about the right angled triangle which only has three sides and no 

diagonals. It could be argued that it is a perpendicular quadrilateral in the context of 

dynamic geometry but this will be addressed later. 

 

The dynamic figure could have been modified so that the bars could be rotated as well 

as moved around inside the shape. Indeed I have created files where the bars do this and 

have recorded students working with them. However, for two reasons I have chosen to 

focus on perpendicular bars: first the methods of constructing rotating bars can result in 

problematic figures which cannot be dragged as easily. Secondly most of the interesting 

shapes can be generated using perpendicular bars. Most quadrilaterals that we name 

have perpendicular diagonals (kite, rhombus, square, concave kite) and the others 

(rectangle, parallelogram) have diagonals which are not perpendicular but they do 

intersect at their mid points. The following table illustrates this: 
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Table 1.1 Shapes which can be constructed using two bars 

 

 Perpendicular diagonals Non-perpendicular diagonals 

One diagonal 

bisects the 

other 

Both diagonals 

bisect each 

other 

One diagonal 

bisects the 

other 

Both 

diagonals 

bisect each 

other 

Equal length 

diagonals 

Kite 

Concave kite 

(isosceles 

triangle) 

square  rectangle 

Non-equal 

length 

diagonals 

Kite 

Concave kite 

(isosceles 

triangle) 

rhombus  parallelogram 

 

Each empty cell has an irregular quadrilateral in it. The interesting thing (to someone 

such as myself who had never thought about this despite studying degree level 

mathematics) is that all the named shapes have symmetry; either line symmetry or 

rotational symmetry or both. From their symmetry the properties of the shapes such as 

equal sides and angles, perpendicular sides and parallel sides can be deduced. However, 

in school, in England, children are most often taught about the properties of shapes and 

about their symmetries as if they were two unconnected aspects. 

 

The dynamic perpendicular quadrilateral forms the basis of a task using the Geometers 

Sketchpad, where students are asked to investigate what shapes they can make by 

dragging the bars. When they claim to have made a specific shape, such as a kite, they 

are asked to identify the properties of the shape and to use the measurements menu to 

check if they can make the shape accurate as indicated by the necessary equal sides and 

angles within the figure. Using this task the students can demonstrate the knowledge 

they already have regarding the properties of the shape, review their knowledge of 

shape properties and sometimes identify properties they did not previously know (for 

example the properties of the diagonals). However the main focus of this study is to 

ascertain whether the task could be instrumental in encouraging the development of 

students‟ conceptual understanding of shapes and their properties and in particular if 

the students can develop inclusive relations between shapes. The dynamic 

perpendicular quadrilateral can act as a microworld (Papert, 1980) which allows 
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students to explore and investigate mathematical principles in a specific situation. The 

term microworld will discussed in chapter three. 

 

1.5.1 Constructive classification of shapes generated from the dynamic figure. 

 

The dynamic figure is a perpendicular quadrilateral which is the general form of a set of 

shapes with four sides whose diagonals are perpendicular. If the figure is dragged such 

that extra properties are added to the figure, for example if one bar is dragged so that it 

bisects the other bar, then a subset of the original perpendicular quadrilaterals is 

generated. De Villiers (1994) refered to this as constructive classification. 

In the constructive definition, generalisations or specialisations are used to produce a 

new shape either by relaxing properties to move to the more general shape, or by 

adding extra properties to move to the more specific shape. For example a square can 

generate a rectangle if we relax the requirement for equal sides but keep the 

requirement for equal angles. A parallelogram can generate a rhombus if we add the 

requirement that all sides must be equal. 

 

Figure 1.6 illustrates the sets and subsets of shapes which can be generated by the 

gradual adding of constraints to the perpendicular quadrilateral. Adding the constraint 

that one diagonal must be the bisector of the other generates the kites. Adding another 

constraint that both diagonals must bisect each other generates the rhombus. Adding yet 

a further constraint that both diagonals must be equal length generates the squares. The 

diagram illustrates the meaning of the term inclusive when applied to these subsets of 

the perpendicular quadrilaterals. It can be seen how each subset of shapes is included in 

the sets that surround it.  
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Figure 1.6 Venn diagram showing inclusive relationships between quadrilaterals which 

can be generated from a dynamic perpendicular quadrilateral 

 

1.6 A synopsis of what follows in the thesis 

 

Chapters 2 and 3 contain the review of the literature which I originally carried out 

before starting the research and which is pertinent for the whole study. This has been 

updated as the study progressed but in order not to spoil the anticipation of the findings 

which emerged as the research went through the various iterations I will add further 

sections of literature review at later parts of the thesis. 

  

 Chapter 2 addresses geometrical reasoning 

 

 Chapter 3 addresses issues of learning geometry through Dynamic Geometry 

Software. 

 

 Chapter 4 - I describe the design based research methodology and relate it to my 

own work. This is followed by the iterations in the research process: 

 

 Chapter 5: Iteration 0 – the pilot study, pairs of students worked with the 

dynamic figure and then went on to construct geometric figures starting with a 

blank screen, 

  

 Chapter 6: Iteration 1- students worked with the dynamic figure. 

Perpendicular quadrilaterals 

kites 
rhombuses 

squares

e 
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 Chapter 7: Iteration 2 - Students worked with the dynamic figure in a whole 

class context, followed by pairs of students working with the dynamic figure 

constructed so that it was oriented at an angle.  

 

 Chapter 8: Iteration 3 - Pairs of students worked with the dynamic figure 

oriented at an angle, followed by the introduction of the animated dynamic 

figure 

 

 Chapter 9: Iteration 4 – A class of students undertook three lessons working 

with the concept of constructive classification, pairs working with the dynamic 

figure, whole class discussion with the dynamic figure projected for the whole 

class. 

 

 Chapter 10 – A retrospective analysis of all the data using Duval‟s theory of 

Cognitive Apprehensions (Duval, 1995) which is described in chapter three.  

 

 Chapter 11 - The discussion chapter where I have considered the efficacy of the 

task acting as a microworld and address the learning made by the students 

participating in the study. 

 

 Chapter 12 - The conclusions chapter includes a consideration of how the 

design based research method facilitated the development of the task using the 

dynamic figure as a research tool and intervention for the teaching and learning 

of shapes and inclusive relations between them. 

 

Appendices for iterations one to four contain tables of episodes from the recordings as 

well as other examples of students‟ work. 

Appendix five includes sample letters to parents / carers, etc. 
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2 The development of geometrical reasoning 
 

In this chapter I present literature which describes how humans perceive shapes within 

a horizontal and vertical frame and the importance of symmetry. I also address three 

important models of how humans conceptualise geometrical figures and consider the 

practical experimental and the theoretical aspects of geometry.  

 

2.1 Perception of shape from birth 

 

The study of geometry has its foundation in the student‟s experience of the environment 

in which they live. More than any other area of mathematics we learn about shape and 

space in an intuitive way through our experience. By the time children go to school 

they have already learned much about shapes and have developed spatial perception in 

a natural way by interacting with their environment. They are able to recognise 

geometric shapes such as square, triangles and circles and can distinguish between them 

in an implicit way (Bryant, 2009). It would seem appropriate that any approach to 

learning about the geometry of shape must build on the intuitive understanding which is 

gleaned from our lived experience and Vygotsky (1978) emphasised the importance of 

the child‟s pre-school learning as forming the basis on which school learning should 

build. Nevertheless, even though children come to school with an impressive 

understanding of shape and space pertaining to their environment, most encounter 

difficulties when learning about geometry (Bryant, 2009). 

 

2.1.1 Frames of reference and orientation 

 

Children first meet geometrical shapes as young babies exploring the world about them 

in 3 dimensions. Experience of 2 dimensional shapes will be encountered as the 

surfaces of 3D solids. Doors and windows (rectangle shapes) are orientated in the 

vertical / horizontal frame. Perceptions of the material world are affected by gravity and 

privilege upright shapes with their base on a level with the horizontal (Piaget and 

Inhelder, 1956).  
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When we look at an object or a shape we view it within an environment which may be 

the world about us or it may be on paper or on the computer screen. We view what we 

see in terms of a frame of reference. This frame of reference can be described as a 

container which is independent of the objects inside it. The most natural frame of 

reference is to use the vertical and horizontal axes as they are derived from the physical 

world (Piaget and Inhelder, 1956). The paradox is that, due to the curvature of the 

planet earth‟s surface, verticals are not all parallel and surfaces of liquids are actually 

curved. However humans behave as if we live within a vertical and horizontal 

framework.  

 

2.1.2 Symmetry as part of the intuitive way that humans perceive shape. 

 

In his famous book „The Descent of Man‟ and as part of a discussion on the sense of 

beauty Charles Darwin commented: 

 

“The eye prefers symmetry or figures with some regular occurrence”.  

(Darwin, 1887, p. 93). 

 

Our preference for symmetry seems to develop early in life. Bornstein et al (1981) used 

experimental methods to demonstrate that babies of four months habituated most easily 

to patterns with vertical symmetry (whilst not showing a preference between vertical 

and horizontal symmetry) and that by the age of twelve months babies actually showed 

a preference for patterns with vertical symmetry. It is thought that the preference for 

vertical symmetry arises from the experience of living in an environment where objects 

possessing vertical symmetry are more common or by an appreciation that it is more 

efficient to process information by considering vertical symmetry (Bornstein et al, 

1978, cited in Bornstein et al 1981).  It seems that humans focus on one line of 

symmetry at a time (Attneave, 1968). This is demonstrated by the way that equilateral 

triangles may be perceived as isosceles triangles in one of three different orientations.  
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Figure 2.1 Equilateral triangles in different orientations may be perceived as isosceles 

 

Attneave also noted that isosceles triangles are only perceived as such if their line of 

symmetry is at or close to the horizontal or vertical. Otherwise they may be perceived 

as scalene triangles (see figure 2.2). 

 

   

 

Figure 2.2 Isosceles triangles may be perceived as scalene if line symmetry is not close 

to the vertical or horizontal 

 

In mathematics the definition for symmetry is precise, eg a 2 dimensional object is 

symmetrical if it is invariant under a reflection about a line, named the axis or line of 

symmetry. Although the material world hosts a great number of examples of symmetry, 

the exact mathematical definition of symmetry is not adequate to describe most of them 

because the symmetry is not usually exact (Zabrodsky et al, 1992). Humans are 

sensitive to approximate symmetry an example of which is the human face or body 

(Palmer, 1985). It appears that humans perceive objects as having degrees of 

approximation to symmetry. However in mathematics an object either has true 

symmetry or not (Shepard, 1994). 

 

2.1.3 A connection between a vertical axis of symmetry and orientation 

 

Vertical symmetry and a sense of orientation are closely connected. We can talk of a 

global or field axis of symmetry (in the environment) and a local or figural axis of 

symmetry (of a specific figure). This can affect how we perceive shapes. 
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Figure 2.3a           Figure 2.3b 

 

Although figure 2.3a and figure 2.3b are congruent squares they are commonly 

perceived to be different. Figure „a‟ is usually thought of as being a square whilst figure 

„b‟ is perceived as a „diamond‟. This is because we tend to use the vertical axis, of the 

page, as our frame of reference so that the sides of the upright square in figure 2.3a 

would be described as being parallel and perpendicular to the reference orientation 

whereas the sides of the tilted square in figure 2.3b would be described as being at a 

slant. However if we used another local frame of reference for example by planting the 

shapes inside an oblique rectangle at 45 degrees to the vertical, we may see figure 

„2.4a‟ as being the diamond and figure „2.4b‟ as being the square (Palmer, 1985).  

 

 

 

 

 

 

 

 Figure 2.4a  Figure 2.4b 

 

Hence shapes are perceived within a perceptual reference frame. There is a strong 

tendency to choose a reference frame orientated along an axis of reflection symmetry 

and overall there is a preference towards vertical and horizontal reference frames 

(Palmer, 1985). How the local reference frame sits in the larger environmental frame 

(perhaps of the paper or computer screen or the world about us) leads to the concept of 

orientation. Or, to explain this in another way, the relationship between the figural 

vertical axis and the field vertical axis constitutes the concept of orientation (Attneave, 

1968).  

 

Since there appears to be an innate human tendency to prefer shapes which sit within a 

vertical and horizontal framework, it is perhaps natural that we should present shapes 
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(square, rectangles, triangles, etc) to children in this way. It is common for children in 

early years schooling to be presented with shapes which are upright, in the case of 

squares and rectangles, and triangles with a horizontal base, etc (Kerslake, 1979). 

However even children who have been given „slanted‟ shapes to work with have still 

shown a preference for upright figures (Fisher, 1978) which suggests this may be due to 

the human tendency to prefer the vertical / horizontal framework. Given these 

considerations perhaps it is not surprising that learners include the orientation of a 

shape among its properties, even if this is in an informal unstated way. 

 

2.1.4 Line symmetry as a rotation in the plane 

 

It is thought, by some cognitive psychologists, that transformations of one shape into 

another are conceptualised as rotations and that a reflection in the plane is 

conceptualised as a 180 degree rotation out of the plane with the line of symmetry 

being the axis of rotation (Shepard, 1994). Translations are conceptualised as a rotation 

where the centre is at infinity. 

In this way a simple 2 dimensional rectangle is mapped onto itself by 180 degree 

rotation about its centre and also by 180 degree rotations perpendicular to the plane 

along the vertical and horizontal axes through its centre.  

 

2.2 Models of geometrical reasoning 

 

At first glance geometry appears to be a practical area of mathematics but it is actually 

very abstract. Consider a 2D shape such as a kite like the one in the SATs question in 

figure 1.1. Researchers have suggested that problems in geometry arise because 

students find it hard to appreciate the difference between the actual figure (of say, a 

kite) on paper and the theoretical object that it represents (Battista, 2007). Three 

important models which can provide theoretical frameworks to describe students‟ 

geometrical reasoning (Jones, 1998) are described below. Fischbein (1993) described 

how, in geometry, we work with a mental picture of a figure which is determined by 

both its figural and conceptual nature. Van Hiele (1986) provided a hierarchical 

structure to analyse the development of students‟ geometrical thinking. Duval (1995, 

1998) described the complexity of geometrical representations (usually on paper) and 
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deconstructed the ways in which we understand and use them to develop geometrical 

concepts. 

 

2.3 Fischbein‟s theory of the „figural concept‟ 

 

Fischbein (1993) said that figures in geometry are made from points, line segments, 

angles, plane shapes, solid shapes, etc and these have conceptual aspects; humans have 

a mental idea of what these objects are. Drawings or models of geometrical objects can 

only be considered as representations of the theoretical objects since they can never be 

constructed to perfection. In order to be able to work with a drawing of a geometrical 

figure humans have to deal with a representation of it which exists in the three 

dimensional world. For example a point, which in its abstract form has no dimensions 

only position, is usually represented as a little circle in order that it can be seen. 

Similarly a line segment is theoretically one–dimensional but in a drawing a line has 

width as dictated by the drawing instrument. Even three-dimensional models of shapes 

can never be perfect. Only in a theoretical conceptual manner can perfect geometrical 

entities be operated on.  

 

When mathematicians work on problems in geometry their mental construct of a 

geometrical figure is of a generalised figure and even its material representation 

(perhaps a pencil and paper drawing) is taken to be an example of a class of figures. For 

example a drawing of a kite represents the class of all kites not just the particular 

example on paper. A class of figures is defined according to geometrical axioms and 

this gives rise to their properties. The definitions may be inclusive and hierarchical. For 

example Fischbein (1993) gave the example of a square being a rectangle with equal 

sides from which other properties could be deduced (equal angles, equal length 

diagonals). 

 

Fischbein described a geometrical figure as having conceptual properties which is the 

definition that generates the properties of the figure, along with its figural nature which 

is the visual image of its spatial qualities (the square-ness of a square, the circular 

nature of a circle). The fusion of these two is what Fischbein called the figural concept. 

When we investigate or solve problems in geometry we work with the figural concept. 
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As Fischbein stated we need to distinguish between the theoretical domain where we 

work with a figure by referring to its definitions based on axioms, and the empirical 

domain where we may investigate particular examples of the figure. According to 

Fischbein it takes an intellectual effort to understand that we are working with abstract 

theoretical figures when we solve problems in geometry.  

 

The figural concept is a mathematical meaning (in the way that words in speech convey 

meaning) which includes the spatial aspects of the figure as an intrinsic property and 

whose behaviour is controlled by its conceptual aspects (its definition). Fischbein said 

that the problem many children have with accepting the figural concept is that they are 

influenced by their experiences of working with particular representations (which 

sometimes include properties such as colour and orientation). In other words the figural 

aspect dominates over the conceptual definition. One example of this is when having 

proved a theorem for a class of figures, the result is also true for any subclass of those 

figures. However students for whom the figural aspect of a figure dominates over its 

conceptual definition may insist on reproving the theorem for every one of the 

subclasses.  

 

“This difficulty in manipulating figural concepts, that is the tendency to 

neglect the definition under the pressure of figural constraints, represents a 

major obstacle in geometrical reasoning”  

(Fischbein, 1993, p. 155). 

 

Thus Fischbein recommended that the figural concept should be specifically addressed 

in the teaching and learning of geometry rather than expecting students to 

spontaneously develop it. 

 

2.3.1 Concept image and concept definition 

 

Children come to the study of geometry with prior experience of shape and space, so 

they tend to have developed concepts for shapes which may include other aspects (such 

as orientation or preferred proportions for shapes) which may arise from prototypes 

they have previously met. The figural features of a shape may thus interfere with the 

mathematical definition and cause problems with the fusion of the figural and 
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conceptual features of the figural concept. Fischbein noted that Tall and Vinner (1981) 

had expressed this issue when they described the „concept image‟ and „concept 

definition‟. As Tall and Vinner (1981) stated, we all have experience of mathematical 

concepts (such as shape and space) before we formally learn about them in mathematics 

and so have already developed a mental structure of these concepts. Each concept is 

built upon and develops as the individual gains further experience of it. Tall and Vinner 

referred to this as the „concept image,‟ which includes all aspects of the individual‟s 

mental picture. In the case of geometric shapes this may include prototypical 

representations and common orientations.  On the other hand, the „concept definition‟ is 

a description of the concept in words. Students might hold a personal concept definition 

using their own words to describe it or they might use a formal concept definition 

which is the official definition used by the mathematics community.  In the case of 

shapes and their definitions, Fujita and Jones (2007) referred to the „personal figural 

concepts‟ and „formal figural concepts‟. If, for example, we hold a personal figural 

concept of a rhombus as „a squashed square which consequently has four equal sides‟, 

and a kite as „a shape which must have two smaller sides at the top and two longer sides 

at the bottom‟ then we may have difficulty accepting that a rhombus could be a special 

case of a kite. 

 

2.3.2 The Dynamic Geometry Software figure as a mediator for the figural concept 

 

Laborde (1993) explained that Dynamic Geometry Software enables us to redefine the 

distinction between the theoretical object and its material representation. There is now a 

figure on the screen which is a new kind of mediator for the theoretical object: it is 

different from a paper drawing in that it is dynamic and can be dragged on the screen 

and additionally its behaviour when dragged is determined by the method used to 

construct it (that is the geometrical properties designed into its construction).  

 

Mariotti (1995) extended this point by claiming that drawings act as mediators between 

concrete and theoretical objects: screen images represent the external version of the 

figural concept. The conceptual and figural aspects must be made explicit in the process 

of constructing an object in a dynamic geometry environment and develops the correct 

interaction between the figural and conceptual aspects of geometrical reasoning. The 
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internal logic of the geometrical figure becomes apparent when it is dragged since the 

geometrical relationships by which it has been defined remain constant under dragging. 

2.4 The Van Hiele model of development in geometrical reasoning. 

 

Pierre Van Hiele and Dinah Geldof, (1955 cited in Van Hiele, 1986) studied the 

development of mathematical reasoning in the students they taught and devised a set of 

levels to describe this development which are known as the Van Hiele levels. One of 

the examples given was the structure of reasoning about two dimensional shapes in 

geometry. Van Hiele (1986) described how learners progress through levels of thinking 

and how at each level they build a mental structure of the concept (for example of two 

dimensional shapes). In order to progress to the next level it is necessary to learn how 

to use symbols, usually word symbols, associated with the current level. When learners 

have attained the language associated with that level they can then go through a period 

of development which culminates in their reaching the next level. A learner‟s level is 

related to their ability for discursive argument at that level. Van Hiele believed that 

being able to use language to describe a mathematical situation is the key to further 

development.  

 

The first three levels related to two dimensional shapes are described below. I will only 

concern myself with these since the students participating in my study will be shown to 

be working just within these three levels. When the levels were first devised in the 

fifties they were labelled from zero. Later Van Hiele labelled them from one in the 

1986 publication. In subsequent literature concerning the Van Hiele theory some 

researchers label the levels zero to four and others from one to five. I will use the 

convention of labelling the levels from one to five. 

Level one 

This is the visual level at which learners recognise shapes in an intuitive fashion. They 

may not use any language to explain why they recognise a shape. They may just say 

“this is a square because it looks like it”. 

 

Developing the language to describe what is seen at level one leads to level two. 
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Level two 

Level two is the descriptive analytic level. Level two thinking allows learners to think 

about the shapes whose structure they observed in level one thinking. Learners are able 

to describe a shape as having a collection of properties. For example they understand 

that the diagonals of a square are equal and bisect each other at right angles and are able 

to describe this in words. 

 

Once a thorough understanding of level two has been achieved learners begin to 

develop a network of relations and this leads them to level three. 

Level three 

Level three is the abstract / relational level. Reasoning in the third level deals with the 

structure of the second level. Learners understand how one property follows from 

another. For example, knowing that a rhombus is a quadrilateral whose diagonals bisect 

each other at right angles, implies four equal sides which in turn implies that the square 

is a special case of a rhombus (when the diagonals are equal). Thus inclusive 

classification of shapes is also part of level three reasoning. 

 

Level four is the formal deduction level where students can use an axiomatic system 

and use this to develop proofs. 

 

Level five is the level of rigour where students can reason formally within and between 

different systems in geometry. 

 

2.4.1 Progress through the levels 

 

Van Hiele viewed the levels as being hierarchical with each level built on the 

foundations of the previous one. He maintained that the levels are discrete and that the 

associated discursive reasoning employed at one level is different to that employed at 

another level. At level one a learner might say „that is a rhombus‟ or „that is a square‟ 

based on their holistic perception of the shape. In the period leading to level two a 

learner might argue „that is not a rhombus because it is a square‟. Learners at level two 

are able to provide a reason why a particular shape is a member of a class due to its 

properties, eg „that is a rhombus because it has four equal sides‟. In moving to level 
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three learners begin to make connections between the network of relations at level two. 

At level three they are able to perceive that a square belongs to the class of rhombuses 

because it has all the properties of a rhombus plus a few more.  

 

Van Hiele was absolutely clear that progress from one level to the next develops in the 

periods between levels, not as a natural process, but as a result of a teaching / learning 

programme which facilitates the development of understanding (as opposed to learners 

being told about the structures of each level which is not in the least effective). He 

differed in his view from Piaget who considered that children move through 

developmental stages as they mature. Van Hiele said that learners simply need time to 

work through the necessary learning processes and that their development is dependent 

on experience of learning of the concepts in an educational context (Van Hiele, 1999). 

 

Development is important in terms of the learning and can be divided into periods. Van 

Hiele described how, in period one (between levels one and two), symbols (perhaps the 

material representation of a shape such as a square or the label „square‟) begin to act as 

signals by which they become imbued with properties of the shape. As the shapes 

become associated with their properties then the images of the shapes fall into the 

background and the properties become foremost. 

 

In the second period (between levels two and three) the properties begin to be ordered, 

the learner develops an understanding of how properties are related to each other and 

the concept of implication develops. For example a geometric shape can be defined by 

a smaller set of properties than the list of properties which learners identify at level two. 

The understanding that a shape can be defined using a minimal set of properties 

(necessary and sufficient) and that those properties can be used to imply the other 

properties is characteristic of level three reasoning. Again Van Hiele stressed the 

importance of learners developing reasoning at level three as the result of a carefully 

designed pedagogical experience. He advised that to foster development towards the 

next level learning activities need to be devised which gradually build concepts and the 

related language and encourage students to integrate what they have learned into their 

existing knowledge and understanding (Van Hiele, 1999).  
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Since my research study is concerned with the inclusive relations between 2-

dimensional shapes which involves development of reasoning from level two to level 

three, this second period will be the focus of the rest of the thesis. In particular I 

propose a learning task which has been designed to encourage such development 

towards van Hiele level three reasoning. 

 

2.4.2 Other interpretations of how the levels can be used 

 

The Van Hiele model has been the basis of much research, either to test the theory as an 

accurate description of learners‟ development in geometrical reasoning or to use the 

Van Hiele levels to assess geometrical reasoning which has been observed in research 

studies (Battista, 2007). However it has been noted that, rather than progressing from 

one level to the next, learners appear to use different Van Hiele levels in different 

situations, oscillating from one level to another during the same task and even to 

regress to earlier levels (Burger and Shaughnessy, 1986). Guttierez et al (1991) tried to 

address this by devising a method of assessing degrees of acquisition of several levels 

for individual learners working on one task. This indicates that to some degree they 

accepted that the levels are not discrete and that students can reason at more than one 

level simultaneously. In another attempt to improve the Van Hiele levels towards a 

working model for assessing students‟ geometrical reasoning, Battista (2007) has 

elaborated the original levels by giving a full description of each level using sublevels 

where learners‟ geometrical reasoning is defined using incremental steps rather than big 

jumps from one level to the next. 

 

There is a question over whether the Van Hiele levels should be considered to be levels 

or stages (Battista, 2007). A level is a period of time where qualitatively different 

reasoning is demonstrated within a specific domain. A stage is a longer period of time 

characterised by qualitatively different reasoning over several domains. However there 

is another point of view elaborated by Papademetri-Kachrimani (2012) which is that it 

is more helpful to view the Van Hiele model as describing modes of thinking rather 

than hierarchical levels. Papademetri-Kachrani argued that the tendency to talk about 

levels has led to putting young children‟s thinking into boxes. She claimed that, whilst 

young children may not have the language skills to describe shapes (level two 
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reasoning), they can understand and reason about shape properties. She also took Van 

Hiele researchers to task over their failure to pay enough attention to what Van Hiele 

said about intuition, an important form of (often non-verbal) reasoning and to the 

importance he gave to the learning periods. I have found Papademetri-Kachrani‟s 

suggestion that we consider the Van Hiele model as modes of thinking to be most 

helpful when analysing the data from my study and so propose to use the levels in this 

way. I will later show that the students participating in my research have used all of the 

first three levels of thinking while they worked on the task and that each level of 

thinking has been valuable to the students when working with the dynamic figure.  At 

the same time, through the iterations in the study, I have modified the task to ascertain 

whether it could encourage development of analytic thinking at the third level.  

 

I hold the view that a learner operates up to and including the level at which they would 

be assessed. So a learner who would be assessed as being at the analytical stage will 

also use the visual and descriptive modes of thinking depending on what suits them best 

in any particular context. If I consider how I (as an adult who has studied mathematics 

at university level) would analyse a geometric figure from its material representation, I 

would first use visual reasoning to recognise the shape. Then I would use descriptive 

reasoning to assess my decision. Finally I would only use analytical reasoning if this 

were helpful in solving a specific problem.  

 

2.4.3 Understanding shape properties and styles of classification 

 

This section addresses the way that shapes can be classified according to their 

properties, because this forms the basis for deductive reasoning in geometry, whether 

formally or informally. Shapes and their properties are a focus of the task in my study. 

Children learn about shapes as the surfaces of objects in our three dimensional world 

and so they develop an intuitive knowledge of shapes through their lived experience. 

Children learn to recognise classes of shapes (such as squares, rectangles and circles), 

and eventually they learn the language to describe the properties of these shapes. 

Learning to describe shapes, places children into period one of the development 

between the visual stage and the descriptive stage of reasoning (Van Hiele, 1986). It is 

common for students at this level to classify shapes into discrete classes as opposed to 
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developing inclusive relations between sets (De Villiers, 1994). For example, squares 

and rectangles are considered to be two different shapes and this is known as 

partitional classification. The move from level two to level three (period two) will 

entail students in moving from a partitional classification to an inclusive hierarchical 

classification (De Villiers, 1994), from descriptive to informal deductive reasoning 

(Van Hiele, 1999), from empirical to logical reasoning (Okazaki, 2013). By the end of 

period two, on reaching level three, students have developed a more sophisticated level 

of geometrical reasoning and are ready to learn how to use deductive reasoning and 

proof in geometry. 

 

2.4.4 Development during period two; moving from partitional to hierarchical 

classification. 

 

A common aspect of learning about shapes in early childhood is the partitioning of 

shapes into discrete classes. For example, a square may be defined as a figure with 4 

right angles and 4 equal sides whereas a rectangle may be defined as a figure with 4 

right angles and 2 different pairs of equal sides. A partitional classification view can be 

held very strongly since the child has developed it from an early age, possibly as a 

result of having been presented with exclusive definitions in early schooling (De 

Villiers et al, 2009, Okazaki, 2009). So when in early secondary school children are 

presented with the idea of including some classes of shapes within others (eg squares as 

a special case of rectangles) they often find this difficult to accept.  

 

It is perhaps more natural to use a partitional classification of shapes for example to 

differentiate a square from a rectangle or to partition convex (kites) from concave 

(arrowhead kites). Even Euclid partitioned quadrilaterals into five mutually exclusive 

categories (De Villiers, et al 2009). Partitional classifications are not incorrect, and are 

sometimes more convenient, but there are reasons why mathematicians use a 

hierarchical classification.  

 

The way a shape is defined will depend on whether the student is using a hierarchical or 

partitional classification system. A hierarchical classification allows us to see that 

certain shapes are included as subsets of a more general shape. In a hierarchical system 

the definitions will be more inclusive whereas in a partitional system the definitions 
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have to exclude other shapes. De Villiers (1994) listed a number of reasons why 

hierarchical classifications are more useful than partitional classifications, most of 

which refer to the ease of use when proving or solving problems in geometry. If this 

can be done in the general case then it will also be true for specific cases. In this way a 

hierarchical classification results in an economical deductive system.  

 

Van Hiele (1999) referred to level three reasoning as the informal deductive stage. 

Indeed if students are to progress to formal deduction and proof then it is necessary that 

they are able to use hierarchical classification and this is why it is important to develop 

level three reasoning (Fujita and Jones, 2007, Okazaki, 2013). 

 

2.4.5 Difficulties are experienced in progressing between levels two and three 

 

The progression from level two to three is difficult (Fujita and Jones, 2007), and it is 

thought that students‟ personal figural concepts, particularly when they are based on 

definitions which use a partitional classification, can be a strong confounding factor. In 

order to move from classifying shapes in a partitional manner to a hierarchical one 

students need to re-construct how they categorise shapes (Tall et al, 2001). This 

requires students to work on the conceptual nature of the shapes and to allow the figural 

aspect less importance but students‟ personal figural concepts are so influential that 

they dominate the way the student defines the properties of shapes (Jones and Fujita, 

2007, Okazaki, 2009).  

 

Students find it easier to accept some inclusions than others. Fujita and Jones (2007) 

suggested that there could be a hierarchy of difficulties among the acceptance of 

inclusive relations. They observed that students in their study, who were student 

teachers of about 18 years of age, found it easier to accept the inclusion of rhombuses 

in parallelograms than the inclusion of squares in rectangles. Okazaki (2009) observed 

that fifth grade students (9-10 years) agreed with rhombuses being included in 

parallelograms whilst they disagreed that rectangles are included in parallelograms. 

Okazaki found that students recognised tacit properties of rectangles and squares which 

included the 90 degree angles and that this property was held so strongly that it 
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precluded the inclusion properties of rectangles and squares in any shape where the 

angles were not right angles. 

 

In a study by Haj Yahya and Hershkowitz (2013) tenth grade students (14-15 years old) 

were shown different numbered shapes on a worksheet which included a right square, a 

tilted square, a rectangle, a tilted rectangle, kites and parallelograms. The students were 

asked to list by number all the shapes which were parallelograms, rectangles, 

rhombuses, squares and kites. On analysing the student responses the tilted square was 

found to be 50% more likely to be included in the set of rhombuses than was the 

upright square. It seems that how the shape looked, its figural attributes, had an 

influence on the inclusion of the square into the set of rhombuses. A tilted square, 

rather than an upright square, looks more like a rhombus and perhaps that is why more 

students included the tilted square as a rhombus. In the same study very few students 

listed the square as belonging to the set of kites. If one thinks of the transformations 

needed to turn a square into a kite (rotate onto its vertex, shear into a rhombus, stretch 

two adjacent sides) then it does seem to be the shape which is least like a square.  

 

As De Villiers (1998) commented, if we wish to increase students‟ understanding of 

geometric properties and concepts then it is necessary for the students to be involved in 

the process of defining properties. De Villiers (1994) makes the point that students are 

unlikely to see the need to use the more sophisticated hierarchical classification 

(indicating reasoning at Van Hiele level 3) unless they can appreciate its functionality. 

This requires the teacher to devise tasks where using a hierarchical classification would 

be more efficient and helpful than using a partitional classification. He suggests that the 

use of computer programs such as DGS offer the potential for students to accept 

hierarchical systems when they experience dragging of a general shape into a specific 

shape. 

 

Finally Van Hiele maintained that, as students‟ geometrical reasoning matured, the 

figural aspects of shape move to the background and the definition becomes uppermost 

in the student‟s understanding. However, Mariotti and Fischbein (1997) argued that the 

relationship between the figural and conceptual aspects of shape will change as the 

student develops more sophisticated reasoning but figures will always have an 

important role to play in the student‟s understanding of shape. They asserted that there 
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may be conflicting relationships between the figural and conceptual constraints 

whenever an individual‟s conceptual understanding does not match the formal 

definition and it is the role of the teacher to stimulate thinking which will produce 

cognitive conflict aimed at getting the student to revise their definition of the shape. 

 

It is interesting to note the range of ages of students, in the studies quoted in this 

section, who have been confronted with the concept of inclusive relations. From 9-18 

years of age similar concepts have been introduced to the students. As Van Hiele 

thought, this does suggest that progress in geometric reasoning depends on the learning 

experiences of the students and may not develop independently. Certainly it may not be 

age dependent apart from the consideration of the length of time needed to develop 

progressively more sophisticated levels of reasoning. As a summary for future 

reference, table 2.1 indicates how students whose reasoning is at level two and three 

may describe the rhombuses and kites. 

 

Table 2.1 Common descriptions at levels two and three of the rhombuses and kites 

 

level two level three 

Only uses a partitional 

classification 

Can also use a hierarchical classification and 

include rhombuses in the kites 

Describes a rhombus as a 

quadrilateral with 4 equal 

sides, 2 lines of symmetry, 2 

pairs of opposite equal angles 

Defines a rhombus as a quadrilateral which has 4 

equal sides or 

whose diagonals are both lines of symmetry or 

which has 2 pairs of opposite equal angles and a 

line of symmetry 

Describes a kite as a 

quadrilateral with 2 pairs of 

adjacent equal sides, 1 pair of 

opposite angles, 1 line of 

symmetry 

Defines a kite as a quadrilateral which has 2 pairs 

of adjacent equal sides or 

which has a diagonal as a line of symmetry or 

which has a line of symmetry and a pair of 

opposite equal angles 
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2.5 How students use diagrams as representations of geometric figures 

 

Laborde  (1995) wrote of space and geometry as being two separate domains. The 

spatial domain is that which humans experience in the real world whereas geometry is a 

theoretical domain which models space. 

 

2.5.1 The spatio- graphical field and the theoretical field 

 

Diagrams in mathematics have a theoretical meaning and their constructions are 

connected to theory (Mariotti, 2000).  In geometry, diagrams have a particular 

importance for when we look at a geometrical object, it may look as if it is a particular 

instance of the object but it represents a class of figures which share certain properties 

(Skemp, 1971, Laborde, 2004). The advantage of the diagram is that it embodies the 

properties of the object (or class of objects) such as its regularity or symmetry. Laborde 

(2004) referred to these aspects of the diagram as its spatio-graphical properties which 

students can investigate empirically, for example by measuring sides and angles. 

 

 

 

Figure 2.5 Circle and two of its tangents which meet at a common point 

 

This is especially useful when we represent several objects in a sketch, for example if 

we have a circle showing two tangents drawn from one point and the radii drawn from 

the intersections of the circle with its tangents as shown in figure 2.5. 

 

When investigating this diagram students may observe that the angle between the 

tangent and the radius is a right angle and that the length of the tangents between the 

point and the intersections of the circle is equal. In this way students can learn about the 

theoretical figure by investigating in the spatio-graphical field hence moving between 
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the spatio-graphical field and the theoretical field. Laborde (2004) maintained that 

students move between the spatio-graphical and theoretical fields a number of times 

when solving any problem in geometry using the spatio-graphical realm to help them 

access geometrical theory.  

 

A figure constructed using Dynamic Geometry Software embodies the properties which 

were used to construct it and when the DGS figure is dragged it behaves according to 

those properties. Laborde (2004) showed how grade 7 students (11-12 years) in her 

study used a DGS figure to support them in moving back and forth between the socio 

graphical aspects of the figure and the class of theoretical figures of which the screen 

figure was a representative.  

 

Laborde showed that students working with a dynamic figure were able to use its spatio 

graphical aspects to help them learn about its theoretical aspects. When working with 

DGS figures students sought reasons for what they observed when the figure was 

dragged and this seemed to lead to their development of theoretical understanding. If 

students in Laborde‟s study made a prediction of a property of the figure they were able 

to test the property by dragging and measuring in the figure. In contrast, students 

working in the pencil and paper environment often tended to become stuck in the spatio 

graphical realm. 

 

Laborde (2004) claimed that DGS helps to mediate students‟ development between 

empirical and theoretical geometry. Logical deductive reasoning may evolve out of 

empirical investigation in the spatio-graphical field. 

 

2.5.2 Duval’s framework of perceptual apprehensions and cognitive processes. 

 

Duval (1995) described a geometric object as a theoretical object which embodies 

specific properties (so agreeing with Fischbein). A figure is a representation of the 

geometric object constructed so that it has the properties of the geometric object. Here 

the way Duval used the word „figure‟ appears to mean the physical representation and 

the words „geometrical object‟ to be the abstract, possibly the figural concept. Duval 

argued that geometric figures have a heuristic role, i.e. they are used by students to 
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discover geometrical theorems and to solve problems. To understand how a figure 

functions heuristically we need to consider its underlying cognitive complexity. Duval 

described four aspects of a figure which he named cognitive apprehensions. An 

apprehension is a way of looking at and understanding a figure. 

 

2.5.2.1 Conceptual apprehensions 

 

First of all a drawing evokes perceptual apprehension. This is the recognition of the 

shape of the figure whether it represents an object in 2 dimensions or in 3 dimensions. 

It may also involve recognition of sub figures within the figure. To function as a 

geometrical figure a drawing must first evoke perceptual apprehension and at least one 

of the other three. 

 

Sequential apprehension is an understanding of how the figure is constructed. This is 

dependent on the tools used in its construction. Duval suggested that computer software 

supports the development of sequential apprehension. The commands in the 

construction menu act simultaneously as instrumental constraints thus embodying the 

properties of the figure and in providing a narrative of the construction process which is 

related to discursive apprehension.  

 

Gomes and Vergnaud (2004) showed that students who constructed a geometrical 

object on paper with ruler and compasses used a different set of geometric properties 

than when they constructed it using Dynamic Geometry Software (DGS). They 

concluded that the learning and conceptualisation of shapes is enhanced by students 

experiencing use of different tools and methods for construction to develop a broader 

understanding.  

 

Discursive apprehension involves verbalising and reasoning about the figure and its 

properties. It can also be said that the definition of a geometrical object and a 

description of its construction are part of discursive apprehension. Discursive 

apprehension is important for mental organisation of understandings of the geometric 

object. 
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Operative apprehension relates to physically or mentally operating on the figure in 

order to learn more about it. This could be splitting the figure into subfigures, changing 

its position or orientation or performing a transformation. Operative apprehension does 

not work independently of the others. It especially requires the use of discursive 

apprehension. Duval argued that students specifically need to learn how to use 

operative apprehension and that this is very useful training in helping them solve 

geometric problems. In particular it is useful to teach students how to split figures into 

subfigures including the use of overlapping subfigures. However operative 

apprehension is sometimes confused with pictorial support of discursive apprehension. 

Duval considered that computers might foster the development of operative 

apprehension were the software to be designed to allow this to happen. 

 

2.5.2.2 Cognitive processes 

 

Duval (1998) described three kinds of cognitive processes in geometry which fulfil 

practical functions.  

 

Visualisation helps the student to form an overall impression of the shape of a figure 

and to explore visually how it is made up. A figure is a configuration of several 

constituent gestalts such as line segments and angles and which have been put together 

according to geometrical relationships. Hence there is a discursive element to 

visualisation as a description of the figure and its properties. Visualisation also helps 

students to solve problems geometrically using some of the gestalts to operate on the 

figure, e.g. to split it into sub-figures, change the position of some of the sub-figures or 

transform the figure in some way. This is use of operative apprehension which Duval 

described as figural change and which is used to reorganise how the figure is viewed in 

order to solve a problem. Visualisation thus requires perceptual, discursive and 

operative apprehensions, but not necessarily sequential. Visualisation plays a basic 

heuristic role, through operative apprehension, and can provide a basis for making a 

convincing argument in a problem solving process. 
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Construction is the use of tools in the process of constructing the diagram 

(representation) of the figure which works like a model of the object. The student learns 

about the figure through constructing it. 

 

Reasoning uses the discursive process (including the verbalisation of shape properties, 

geometrical theorems, etc) to extend student knowledge and understanding. In 

geometry information is often provided through a diagram and the student organises 

their mental picture of this diagram at a representative and at a symbolic level.  

We may use a natural discursive process which entails using natural (not specifically 

mathematical) speech to describe the shape and explain reasons for identifying 

particular aspects of it. Also there is a theoretical discursive process which entails 

formal deductive reasoning. 

 

In reasoning about a geometrical figure we may use a purely configural process, which 

is operative apprehension. Duval stated that operative apprehension is a visual process 

and is independent of discursive processes. Visualisation can be embedded in a natural 

discursive process (using everyday natural language) when a student describes what 

they are seeing and uses this as part of their reasoning process. However a purely 

configural process cannot be embedded in theoretical discourse (formal deductive 

reasoning). Duval warned that it is important for teachers to realise that there is a gap 

between the natural discursive process and the theoretical discursive process, resulting 

in a didactical problem of encouraging students to move from one to the other.  

 

Duval stated that proficiency in geometry requires an understanding of how the three 

cognitive processes work together. However he also said that each process should be 

developed separately and only then will students be able to co-ordinate all of the three 

processes. He was clear that there is no developmental hierarchy between different 

cognitive activities which goes from concrete to most abstract. Duval also argued that 

there is no point in expecting most students to learn formal geometry and that doing so 

forces them to give up their natural ability to use reasoning and justification. It is 

beneficial for most students to experience shape and space in a less formal way and 

only to teach formal geometry to those students with a particular interest in it. Duval 

was writing in the context of French education where geometry is more formally taught 

than in the UK. The UK student‟s experience will be mainly developing reasoning and 
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justification to form convincing arguments to solve problems with shape and space 

whilst in compulsory and post 16 schooling. More formal geometry generally is 

covered at undergraduate level. 

 

2.5.2.3 Using computer geometry 

 

Finally Duval talked of how computer geometry can help students to explore geometric 

situations by manipulating figures on the screen. He stated that much of the work 

undertaken using Dynamic Geometry Software focuses on construction which 

privileges discursive and sequential apprehension and does not develop operative 

apprehension. Later on I will show that with the right kind of task, operative 

apprehension does come into play in a DGS environment. 

 

2.6 Conclusion 

 

This chapter has addressed the importance of symmetry and orientation as factors in the 

way students perceive 2 dimensional shapes. Later, in the account of the iterations, I 

show how symmetry and orientation were significant factors in the way that students 

participating in the study perceived the dynamic figure on the computer screen. 

 

I have described three important models of geometrical reasoning. The figural concept 

(Fischbein, 1993) is an important idea, in that the dynamic figure is itself a mediator 

between the shape which the students view on the screen and the theoretical object 

represented by that shape. As has already been noted Mariotti (1995) claimed that the 

screen image represents the external version of the figural concept.  

 

The Van Hiele model of development in geometrical reasoning (Van Hiele, 1986) is 

used throughout the study to analyse the levels of reasoning demonstrated by the 

participating students as indicated by the dialogue and on-screen activity. Table 2.1 

illustrates the types of descriptions of kites and rhombuses common at levels two and 

three. During the study I will ascertain whether working on the task using the dynamic 

figure supported students in developing higher level reasoning, in particular whether 

they perceived the inclusive relationship between the rhombus and kites. 
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Duval‟s framework of perceptual apprehensions (Duval, 1995, 1998) is used, with 

reference to the cognitive processes, to analyse the data overall in the retrospective 

analysis, chapter ten. As a comprehensive framework describing how students interact 

with figures when reasoning and problem solving it should cast light onto how students 

perceive the figure and the shapes generated from it.  
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3 Working with figures in Dynamic geometry Software 

 

In this chapter I describe two important affordances of Dynamic Geometry Software 

(DGS), task design within DGS and how DGS acts as a microworld (Papert, 1993) and 

as a tool for semiotic mediation. 

 

3.1 The affordances of dragging and measuring 

 

Affordance is an important idea. It refers to those qualities of the learning situation and 

context that allow students to develop knowledge and understanding (Leung, 2011). 

Dragging and measuring are two important affordances of DGS (Hollebrands, 2007).  

The use of dragging with measuring is powerful because it allows students to 

investigate empirically in the spatio-graphical domain and to use measurements to 

support them in moving towards theoretical reasoning. For example Hollebrands (2007) 

observed that 15 year old students used evidence from measuring and reasoning 

together in their explanations of why their constructions worked. It will be seen later in 

this thesis, in the description of the iterations, that dragging and measuring are both 

important aspects of the participating students‟ work with the dynamic figure. 

 

3.1.1 Dragging strategies and how they are aligned to cognitive behaviour 

 

The drag mode is a powerful affordance which is responsible for the visual dynamic 

nature of DGS figures and effectively provides the main vehicle for students to interact 

with the figures on the screen (Leung and Lopez-Real, 2002). It would therefore be 

very useful to consider some of the different ways the drag mode can be used. 

 

Arzarello et al (2002) writing of how they had observed different dragging strategies or 

„modalities‟ being used by students of about 15 years of age (in a number of their 

earlier studies from 1998 to 2001) described a hierarchy of dragging strategies which 

they classified according to whether these strategies allow students to move from the 

practical geometry of the figure on the computer screen to theoretical geometry (which 

they called an ascending process) or from the theoretical to the practical domain of 

geometry (which they called a descending process). In other words Arzarello et al 
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claimed that dragging in DGS helps students to move between the spatio graphical and 

theoretical fields of geometry (Laborde 2004)). Arzarello et al worked with Cabri 

Geometry™ which is another DGS program, similar to the Geometers Sketchpad but 

with a slightly different functionality. As such some of the dragging modes that were 

described in their paper refer to styles of dragging that would not work in the 

Geometers Sketchpad. I will therefore only describe the dragging modes which are 

pertinent to the Geometers Sketchpad.  

 

 Wandering dragging is used by students to explore a figure in order to discover 

its properties and so allows students to move towards theoretical geometry.  

 Guided dragging is used by students to drag the figure into a particular 

configuration and is an example of moving from theoretical to practical 

geometry.  

 Dragging test, which is used to drag objects and check that the figure maintains 

its constructed properties. 

 Dummy locus dragging (moving an object on a figure so that the figure keeps a 

specific property, the movement of the object traces an invisible path, hence 

„dummy locus; but this behaviour is not intentional).  

 

Further work on dragging strategies has produced an extrapolation of the dummy locus 

dragging mode. When the student intentionally drags an object to keep a certain 

property constant, Baccaglini-Frank and Mariotti (2010) refer to it as maintaining 

dragging which they describe as dragging (a base point) so that the (DGS) figure 

maintains a certain property. (They observed 16-17 year old students in Italian High 

Schools who were specifically taught the maintaining dragging strategy as a tool they 

could use to solve problems in geometry. The students‟ work was analysed to ascertain 

whether use of maintaining dragging described the students‟ problem solving activity). 

 

“Maintaining dragging involves the recognition of a particular configuration as 

interesting, and the user‟s attempt to induce the particular property to become an 

invariant under dragging.” (ibid, p. 230).  
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The maintaining dragging strategy is used when a conjecture is formed that connects 

the path travelled by the object to the property the student is trying to keep invariant.  

Both dummy locus dragging and maintaining dragging are examples of when the 

student moves from the spatio-graphical field to the theoretical field. 

3.1.1.1 Three functions of dragging 

Other researchers have described dragging strategies in broader terms. Lopez-Real and 

Leung (2006) classified dragging strategies into three functions: confirmatory (eg the 

drag test which confirms that the figure has been constructed to keep certain properties 

constant) and exploratory (students drag objects on a constructed figure to investigate 

invariant properties of the figure, which appears to be similar to wandering dragging). 

A third function arose from their observation of students solving a geometric problem 

using dragging by trial and improvement which they called drag to fit.  This function 

seems to include guided dragging, dummy locus dragging and maintaining dragging as 

in each case an object on a figure is being dragged in order to give the figure a 

particular configuration or property. Lopez-Real and Leung commented that the 

function is related to the problem task and how students choose to solve the problem.  

3.1.1.2 Robust and soft constructions 

The dragging modalities and functions described above can be seen to refer to two 

categories of dynamic figure; robust constructions and soft constructions. Healy (2000) 

made the distinction between these two types of constructions in the following way. A 

robust construction will maintain its constructed properties, no matter how it is dragged 

on the computer screen. In other words it cannot be „messed up‟. A robust construction 

affords the use of the confirmatory and exploratory functions, which appear to fit with 

the dragging test. On the other hand a soft construction is a figure such that one of the 

desired properties must be carefully maintained through the student dragging an object 

„by eye‟. This allows students to explore the desired property particularly to investigate 

all the cases where the property holds true (which may be a locus of points, hence 

bringing into play dummy locus dragging or maintaining dragging). Soft constructions 

afford the use of the drag to fit strategy.
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3.1.2 Measuring whilst dragging. 

 

The measurement tool in DGS allows for lengths, angles, areas, etc to be measured and 

displayed on the computer screen. As the figure is dragged the measurements 

continuously update. Olivero and Robutti (2007) conducted a study of three pairs of 15-

16 year old students from two different High Schools in Italy and observed that they 

used the Drag mode and the Measuring facility to move between the spatio-graphical 

field, where they felt most comfortable, and the theoretical field where they needed to 

develop more sophisticated levels of geometrical reasoning.  

 

Olivero and Robutti (2007) described different strategies of using dragging and 

measuring and how they enable students to move between the spatio-graphical field of 

geometry and the theoretical field. As part of the team working with Arzarello it is not 

surprising that Olivero and Robutti connect dragging and measuring modalities to the 

dragging modalities identified by Arzarello et al (2002). They identified three 

modalities for measuring for discovery and conjecturing: 

 Wandering measuring –students drag figures and watch the measures change. 

They do this randomly and to see what they can notice, which may be 

developed into a conjecture. 

 Guided measuring – students drag generic figures into particular figures by 

reference to the changing measurements. 

 Perceptual measuring – students use the measures to test a perceived 

relationship. This may result in the students forming a conjecture in which case 

the students may be able to move from the spatio-graphical field to the 

theoretical field. 

 

They identified two modalities for measuring for validating a conjecture: 

 Validation measuring – students use measures to check a conjecture they have 

made works for a figure on the screen. This may allow the students to link the 

theoretical field with the spatio-graphical field. 

 Proof measuring – after constructing a figure, students may test it in DGS in 

order to understand its properties by measuring sides and angles in the figure. 

 



49 

 

Hollebrands (2007) conducted a study with a whole class, of 15 and 16 year old 

students in the USA, working with transformations in geometry using the Geometers 

Sketchpad. She observed how the students used dragging and measuring to explore 

relationships, create and verify conjectures and check the correctness of constructions. 

She described two ways that students use the two affordances of dragging and 

measuring together in order to do this. When students drag in a fairly random fashion in 

order to see what happens and when their decision of what to do next is based on the 

results of the previous action then the students are using reactive strategies. When the 

students develop their understanding of both the mathematical concepts and how the 

technology works then they are able to predict the outcome of their actions and become 

proactive in their strategies. An example here would be if the students predicted that 

placing the diagonals so that they bisected at right angles would result in the 

quadrilateral being a rhombus. Encouraging students to use strategies that are more 

proactive may be achieved by asking students to explain and justify what happens on 

the computer screen in terms of geometrical properties. However Hollebrands found 

that the dragging mode is only useful for learning if students know and understand how 

to use it to investigate the variance and invariance in geometrical objects constructed in 

DGS. Hollebrands‟ findings provide further evidence that working in DGS allows 

students to move back and forth between experimental and theoretical geometry which 

Laborde (1993) maintained is needed for students to progress towards theoretical 

geometry (see chapter one, section 1.3.1). 

 

3.1.3 An important consideration of the accuracy of measurements in DGS 

 

Measuring with dragging can be seen to be important in helping students, who are 

working at Van Hiele levels 2 and 3 (see chapter two, section 2.4) to work between the 

spatio-graphical field of geometry, where they feel secure, and the theoretical field of 

geometry entailing higher order geometrical reasoning. However it is important to be 

aware of the constraints of using measuring in DGS programs. It is easy to imagine that 

the computer measures line segments, angles, etc with absolute accuracy but this is not 

the case. Despite the software simulating a geometrical environment the accuracy of 

measurements are dependent on pixel size, the algorithm designed to carry out 

measurements and the degree of accuracy chosen for the computer file. This can result 
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in measurements which should be equal being displayed as unequal measurements and 

vice versa. These contradictions are a consequence of the software acting as a mediator 

between a quantity and the result of its measurement displayed on the computer screen 

(Olivero and Robutti 2007).  

 

3.2 Considerations when designing a pedagogical task using Dynamic geometry 

Software 

 

The computer offers ways of working that help students to access approaches and 

solutions which would not be available to them using pencil and paper (Hoyles and 

Noss, 1992). However students will not necessarily appreciate the intended 

mathematical ideas just because they are interacting in a particular computer 

environment. Tasks need to be designed with the pedagogical principles built into them. 

As Hoyles and Noss point out, carefully constructed activities reveal and develop 

students‟ intuitive ideas and develop the use of language to represent these ideas.  

 

A pedagogical task is based on activity in context designed to help students form 

generalised abstract concepts. It is designed to be a tool which brings about learning 

and should be situated in the setting in which it will be carried out taking into account 

the teachers, students, classroom environment, tools used for teaching and learning and 

pedagogical approaches (Leung, 2011).  

 

A pedagogical task is most effective if it provides students with a sense of purpose and 

an appreciation of the utility of the mathematical concepts being used. Technology 

allows us to create purposeful tasks where the pupils work with mathematical concepts 

thus developing an understanding of these concepts through use (Ainley et al, 2006). 

Technology allows students to do and see what they could not without the technology 

and can amplify the ability of students to explore, reconstruct and explain mathematical 

concepts using embedded tools (Leung, 2011).  

 

However it is important that the teacher carefully designs the learning situation and the 

task for the students when working with computers in classroom situations (Sutherland, 

2004). How the computer software is incorporated into the learning activities is crucial 
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to students‟ potential learning. The concept of the microworld will now be described as 

a means to address the issues listed in this section. 

  

3.3 Microworlds 

 

A microworld can be described as a computer environment which embodies an area of 

mathematics or science (Edwards, 1995) where students can explore objects and 

discover the relationships between them (Ainley et al, 2006) and which has been 

designed from a pedagogical perspective (Noss and Hoyles, 1996). The term 

microworld is attributed to Seymour Papert who was the developer of LOGO, a system 

using a mechanical „turtle‟ which moved on the floor in response to programming 

commands or its on-screen version. Papert observed children working and solving 

problems in LOGO using intuitive ways of thinking and problem solving that often 

involved finding approximate solutions and then refining these to get to the optimal 

solution. It was a different way to do and learn mathematics which appeared to give 

children access to more sophisticated mathematical ideas (Papert, 1993).  Noss and 

Hoyles (1996) found that students can learn fairly sophisticated and abstract 

mathematical ideas if they are given the opportunity to explore in a microworld 

environment.  

 

We usually refer to computer based microworlds although a microworld is not 

necessarily „virtual‟ as with the mechanical „turtle‟ in LOGO. When working in a 

microworld, students manipulate objects on the computer screen in order to explore 

how these objects behave and discover the underlying rules for their behaviour. Thus 

students receive instant feedback and are able to use this to correct wrong assumptions 

they may have made and effectively „de-bug‟ their understanding of the domain 

(Edwards, 1995). Learning results from adapting to the microworld and making sense 

of the feedback. Microworlds can help students access sophisticated mathematical 

concepts via the concrete nature and manipulability of computer representations 

(Balacheff and Kaput, 1997, Ainley et al, 2006).  

 

However working in a microworld does not guarantee that specific learning will occur 

or that students will focus on the desired aspects of mathematics which the software 



52 

 

designer or teacher intended (Balacheff and Kaput, 1997, Pratt and Ainley, 1997, De 

Villiers, 2007). Tasks which are given to students working in a microworld need to be 

carefully designed but when this is effective it is possible that students create their own 

mathematics and discover their own theorems (Olive, 2000). 

 

Dynamic Geometry Software is an example of a microworld which embodies the 

attributes of Euclidean Geometry (Balacheff and Kaput, 1997, Mariotti, 2000, Lopez-

Real and Leung, 2006). DGS provides interactive ways for exploring geometrical 

concepts in visual and dynamic ways and has the potential for allowing students to 

develop mathematical meanings (Leung, 2008). An important aspect of DGS is how it 

allows students the opportunity to investigate and conceptualise the invariant properties 

of figures, which is a powerful way to learn in mathematics (ibid). 

 

 “What makes a dynamic geometry environment a powerful mathematical knowledge 

acquisition microworld is its ability to make visually explicit the implicit dynamism of 

thinking about mathematical geometrical concepts.” (Leung 2008, p.1) 

 

Whilst working in DGS is considered a useful support to learning Euclidean geometry 

some researchers are beginning to suggest that DGS is a new field of geometry that 

belongs to the computer environment. This offers the exciting possibility that the 

experience of Euclidean geometry on paper can be fused with the experience of 

geometry in a DGE to form a more rounded network of geometrical concepts (Lopez 

Real and Leung, 2006). 

 

“In a dynamic geometry environment traditional Euclidean geometry may be 

transformed into a new situated geometry that might not just change the rules of the 

game, but the game itself.” (Lopez Real and Leung 2006, p.667). 

 

3.3.1 Webs of meaning 

 

Webbing is an important idea in the context of the microworld. A web of meaning is a 

structure which supports the learner whilst giving them the autonomy to construct new 

knowledge and understanding (Noss and Hoyles, 1996). The web itself is situated in the 
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domain of knowledge, in the setting within which the learner is working, resources, the 

symbol systems used to express the ideas and access to the help of the teacher. Learners 

may construct explanations and /or proofs entirely within the context of a microworld 

but it is not always certain that they can transfer these to another context, e.g. the paper 

and pencil environment. This is where the role of the teacher is important to promote 

shared meanings and to guide the students in abstracting the mathematics from 

meanings which have been developed within the computer environment (Mariotti, 

2009). 

 

3.4 Situated abstractions and situated proofs in Dynamic Geometry 

 

When working in a microworld students need to be given the opportunity to discover 

mathematics which is new to them and to develop their own concepts of how that 

mathematics works within the context of the microworld. When people make 

(mathematical) sense of the results of their actions in specific environments then they 

are forming situated abstractions (Hoyles and Noss, 1992). An important point about 

situated abstractions is that they are developed by students and their meaning is 

controlled by the students (Noss and Hoyles, 1995). This is why the objects in the 

microworld need to represent powerful mathematical ideas. That is to say when 

designing a microworld it is necessary to create a domain where students can learn 

about mathematics through forming situated abstractions (ibid). 

 

Explorations made in the medium of the computer are situated in that medium and so 

are the corresponding theorems and proofs. For example students may be able to 

construct hypotheses which are understood specifically in the context of the Dynamic 

geometry environment and use dragging to test them. This can lead to situated proofs 

when the students are able to show that the theorem holds in this environment (Armell 

and Sriraman, 2005). This type of proof tends to be inductive rather than a formalised 

deductive proof. 

 

As an example of this, Leung (2008) described an activity he undertook where he 

attempted to make one angle in a figure to be twice the magnitude of the other by 

dragging points so that the angle measurements indicated a ratio of 2:1. He did this by 
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first dragging to get the ratio close to 2:1 and observing the area of dragging where this 

happened. He used his observations to try and get the ratio closer to 2:1 by what he 

called „refining wandering dragging‟. Next, he went into more detail and developed a 

colour coded map of areas where each point on the figure could be dragged to maintain 

the ratio between the angles close to 2:1. When this ratio was 2:1 within one degree he 

had a ring of colour which led Leung to conjecture that the locus of points he was 

seeking was in fact a circle. This work could not easily have been carried out in 

anything other than a DGS environment and this demonstrates a situated conjecture and 

proof in the context of dynamic geometry. 

 

Leung, as an expert mathematician, was able to transfer the situated proof from the 

domain of the DGS microworld into the domain of formal mathematics. However, as 

was stated in section 3.3.1. for school students who are not so expert, the role of the 

teacher is very important in guiding them to make the necessary links between what 

they have discovered while working with a task in DGS and what this implies for 

formal mathematics using pencil and paper. 

 

3.5 DGS as a tool of semiotic mediation 

 

3.5.1 Signs and semiotic systems 

 

Vygotsky (1978) showed that when artifacts are used in social contexts then shared, 

signs are generated which may be word or symbols. Signs are psychological tools 

(ibid). The term „semiotic system‟ refers to the signs and the logical structures which 

govern their use. Duval (2006) wrote that mathematics as an intellectual domain has a 

large number of semiotic systems (more than any other school subject) which are 

specific to mathematics. In geometry at least two semiotic systems are needed to 

represent geometrical figures; one for the verbal expression of properties or magnitude, 

and the other for visualisation (ibid). A geometric figure always associates discursive 

and visual representations and students are expected to move between the two, which is 

cognitively complex since it goes against the common association between words and 

shapes (ibid).  
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3.5.2 Tools and utilisation schemes 

 

All human action is mediated by tools (Vygotsky, 1978). In schools this may include a 

wide range of artifacts (including pencil and paper, text books and computers) and 

semiotic systems which together make up tools of which the most important is language 

(Drijvers et al, 2010). The drag mode in DGS can also be considered to be a tool 

because it arises from the DGS environment (the artifact) and it has its own grammar of 

use linked to students‟ mathematical meanings (Lopez-Real and Leung, 2006). When a 

particular dragging strategy is intentionally used by a student according to an 

underlying mathematical logic in order to construct new mathematical meanings then 

the strategy becomes a utilisation scheme (Verillon and Rabardel, 1995). Baccaglini-

Frank and Mariotti (2010) claimed the maintaining dragging strategy to be an example 

of a „dragging utilisation‟ scheme, because it is connected to a mental construct (the 

intention to keep a geometric property constant) concerning the figure under dragging 

using this strategy. 

 

3.5.3 Tools of semiotic mediation 

 

Bartolini Bussi and Mariotti (2008) described how artifacts which have been designed 

to support the learning of mathematical structures, such as the abacus and DGS, act to 

mediate the learning of mathematics and the related semiotic systems. As such they are 

known as tools of semiotic mediation (ibid). In particular and pertinent to this thesis, 

the affordance of dragging can be considered as a process of making new mathematical 

meanings about geometry and geometric figures; a kind of temporal-dynamic semiotic 

mediation instrument (Mariotti, 2000, Lopez Real and Leung, 2006). It may be that the 

kinaesthetic aspect of dragging, whilst observing visual changes to the dynamic figure, 

facilitates the use of perceptual apprehension and operative apprehension and when 

students verbally describe these changes, giving reasons for what they have observed, 

they are using discursive apprehension (Duval, 1995, Leung, 2011).  

 

We have already seen how a number of dragging styles have been described and related 

to cognitive activity (Arzarello et al, 2002, Baccaglini Frank and Mariotti, 2010). 

Dragging takes on the meaning of a check of the invariant properties in the construction 

and thus has become a „sign‟ in the Vygotskyan sense (Mariotti, 2000, Drijvers et al, 
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2010). Dragging is a tool which enables students to create new mathematical meanings 

in geometry as they use the information they absorb from the computer screen (Lopez-

Real and Leung, 2006, Bartolini Bussi and Mariotti, 2008).  Drijvers et al (2010) stress 

the importance of the role of the teacher in making the artefact (such as DGS) function 

as a tool for semiotic mediation in helping the students to become aware of the 

mathematical meanings which can be drawn from it. In mathematical activity there 

exists a link between the artefact being used (in this case, dragging in a DGS 

environment), the task which students work on and the mathematical meanings which 

they develop (Bartolini Bussi and Mariotti, 2008). 

 

3.6 The development of discourse whilst working in a DGS environment 

 

The development of the ability to use mathematical language is important in the 

development of students‟ mathematical reasoning and certain words or expressions in 

mathematics convey a complex web of ideas which form a mathematical concept and 

help to support students‟ formation of concepts in mathematics (Lee, 2006). As 

students discuss geometrical principles using geometrical vocabulary this supports them 

in developing their skills of explanation and justification. 

Working in DGS can support the development of geometrical language as Jones (2000) 

observed in a study with thirteen year old students in England. In the earlier part of the 

study the students were able to describe what was happening on the computer screen 

but without the use of precise mathematical language. As the study progressed they 

became more able to give mathematically precise explanations although these tended to 

be mediated by the nature of the language used by the DGS program. By the end of the 

study students had started to give explanations relating to the mathematical content 

using more mathematical terminology. 

 

Working with computer software can thus mediate learning through the language and 

notational system that is designed into the program (Hollebrands, 2007). When the 

teacher and student interact while using DGS they both adopt the language of the 

software, a language they then use to communicate with each other. They can also 

communicate mathematical ideas through discussing the visual images on the screen. 
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DGS uses geometrical vocabulary and thus can help to develop students‟ use of this 

important part of the mathematics register. 

 

Students‟ use of language about their mathematical experience in DGS reflects the 

dynamics of the drag mode. Situated descriptions, abstractions or theorems tend to be 

expressed with active verbs especially those of movement (Holzl, 1996). 

 

3.6.1 Reasoning and discourse specifically aligned to the dynamic nature of DGS 

 

When mathematicians work with geometrical objects in a static environment, they may 

mentally animate the figures in order to perceive the variants and invariants (Leung, 

2008, Sinclair et al, 2009). A simple example could be thinking about the similarities 

and differences between arrowheads and kites by mentally moving the shorter 

congruent sides as indicated in figure 3.1. 

 

   
 

Figure 3.1 From arrowhead to kite by moving the shorter congruent sides 

 

In DGS this mental animation can be actualised on the computer screen in a highly 

visual manner. This means that the computer makes visible a mental activity which is 

intuitive to expert mathematicians making it accessible even for students who may find 

this kind of imagery difficult to imagine. It seems obvious that reasoning about a static 

geometric figure is different to reasoning about a dynamic figure although they may be 

representations of the same theoretical object.  

 

Two important contributions that the dynamic nature of DGS makes to students‟ 

learning and reasoning about geometric figures are: 
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“the powerful, temporalised representation of continuity and continuous 

change (dynamism‟s mathematical aspect), and the sensory immediacy of 

direct interaction with mathematical representations (dynamism‟s 

pedagogic aspect)”. 

(Jackiw and Sinclair, 2009, p. 413) 

 

When students engage with a DGS figure by dragging they observe it morphing 

through a possibly infinite number of versions of itself and this experience has an effect 

on how they perceive the figure and thus how they reason and talk about it (Jackiw and 

Sinclair, 2009, Sinclair et al, 2009). An important aspect of the discourse, when 

students work with dynamic figures, is the forming of a narrative to describe the 

sequence of events unfolding on the computer screen and to interpret these events 

(Sinclair et al, 2009). When working with DGS figures students observe what happens 

under dragging, noting variant and invariant aspects of the figure. Constructing a 

narrative of what they have observed can help students to use reasoning about the 

mathematical relationships which are evident amongst the objects in the DGS figure 

(ibid). 

 

3.7 The research questions arising from the review of the literature 

 

I postulate that there may be other important factors at work, alongside the 

development of a narrative way of reasoning, when students work with dynamic figures 

which are connected to their perceptual apprehension (Duval, 1995) of the figure while 

it is being dragged. The work undertaken for this thesis will attempt to address this and 

to ascertain those aspects of the dynamic nature of DGS which impact on students‟ 

reasoning about geometrical figures in 2 dimensions.  

 

In addition, another research question developed during the progress of the research: of 

several dragging strategies which participating students were observed to use, one has 

been studied in greater depth to ascertain whether it acts as a dragging utilisation 

scheme to mediate the meaning of inclusive relations between shapes generated 

from the dynamic perpendicular quadrilateral, in particular between the rhombus 

and kites.  
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4 Methodology and Methods 
 

At the end of chapter three I stated two research questions concerning the task using the 

dynamic figure in the context of the DGS environment. These concerned how students 

worked on the task and interacted with the dynamic figure and whether this had an 

impact on their ability to reason about 2 dimensional shapes in geometry, in particular 

whether they could start to appreciate inclusive relations between the rhombus and 

kites. I expected that the task would need to be modified through a number of iterative 

changes by the time the research was completed. For this reason I have taken a Design 

Based approach in how I conduct the research. The task using the dynamic 

perpendicular quadrilateral constitutes the design experiment.  

 

My study focuses on how 12-13 year old students‟ geometrical reasoning developed as 

they work on this task. I chose this age group because the task fitted well with the 

learning objectives for Geometry and Measures in the English National curriculum for 

Mathematics 2007. These learning objectives are given in chapter five, section 5.3.2 as 

the instructional starting points for the pilot study. The research has developed through 

several iterations as I have used my observations and conclusions from each stage of 

the study to modify the task to improve it and to test mini theory which has emerged.  

 

4.1 What is Design Based research? 

 

Design Based Research (DBR) as a methodology emerged at the beginning of the 

1990s, with the work of Brown (1992) and Collins (1992), as an approach to the study 

of learning through the design of teaching and learning interventions (Swan, 2006). It 

was developed due to a realisation that laboratory-type experiments which seek to 

control for variables were not suitable for describing the complexity of the classroom 

context where there are myriad variables (Brown, 1992) and that there was a need for 

research which would be relevant for the classroom, teachers and students (Swan, 

2006). The typical classroom is a complex environment and it is not possible to isolate 

one factor in this situation without it affecting all the other factors (Brown, 1992). DBR 

works with this complexity leading to a greater understanding of the complex learning 

environment (Cobb et al, 2003).  
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DBR has two important goals; to advance new theory of how students learn and to use 

this theory to develop educational interventions which can be used in the classroom to 

facilitate that learning (Lamberg and Middleton, 2009). A distinctive feature of DBR 

methodology is that it enables the researcher to deepen their understanding of learning 

in the context of the experiment while it is in progress (Cobb et al, 2003, Design Based 

Research Collective, 2003).  It also facilitates innovation, as the Design Experiment can 

be used to design new learning activities and resources which can be tested and revised 

thus leading to improvements in teaching and learning (Design Based Collective, 

2003). DBR allows emerging theory to shed light on learning in a specific educational 

setting and this can be applied and have relevance to other contexts outside of the 

intended original (Design Based Collective, 2003, Barab and Squire, 2004). 

 

DBR develops theory of learning in a specific educational setting and works with all 

the factors which will affect learning, for example, resources, artifacts, teaching 

practices, classroom culture, etc (Cobb et al, 2003). The research uses an iterative cycle 

of designing the intervention, implementing the intervention, analysing the learning that 

took place developing the theory of this learning, and then modifying the design to test 

an emergent theory (Design Based Research Collective, 2003). This modification of the 

intervention during the research study has led some to question the rigour of DBR 

(Hoadley, 2004). However the strength of DBR is in how interventions are connected 

directly to outcomes leading to better alignment of intervention and theory in a complex 

setting (ibid).  

 

4.1.1 The process of Design Based Research and how this is addressed in my own 

study 
 

In Table 4.1 I have listed the processes involved in design Based Research and indicated how 

they worked in this particular study. 
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Table 4.1 The process of DBR and how this is addressed in this study 

 

What the literature says 

 

How this worked in my study 

 

Middleton et al (2008) state that, 

in a DBR experiment the specific 

pedagogic issue must be 

established, providing the rationale 

for the research and leading to the 

development of a hypothesis. The 

intervention (task or tool) which 

will address this issue becomes the 

focus of the design experiment. 

 

The pedagogic issue lies with students‟ 

geometrical reasoning and in their engagement 

with knowledge and understanding of shapes 

and their properties. A higher level of 

sophisticated reasoning is evidenced when 

students are able to use an inclusive 

classification of shapes according to their 

properties and the design experiment has been 

designed to test whether using the dynamic 

perpendicular quadrilateral can be effective in 

developing such an understanding. 

 

 

When preparing to undertake a 

Design Experiment the researcher 

needs to ascertain the students‟ 

prior learning and to form a 

conjecture about the outcome of 

the experiment in terms of learning 

gains (Brown, 1992, Cobb and 

Gravemeijer, 2008). The 

experiment should then serve to 

test these conjectures and study 

how students‟ reasoning develops 

over the intervention (Cobb et al, 

2003). 

 

 

 

The students in the study showed through 

questioning that they were able to recognise 

shapes and list their properties indicating 

reasoning at van Hiele level two. My 

conjecture was that, working through the task 

using the dynamic perpendicular quadrilateral, 

students could begin to develop a more in 

depth understanding of shape properties and an 

inclusive classification of shapes according to 

their properties. 
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Questions should be designed to 

probe students‟ understanding and 

provide insight into students 

developing understanding 

throughout the intervention 

(Brown, 1992). 

 

 

Designing questions which probed 

understanding and also prompted reasoning 

has been important to this study. I aimed to use 

questions to guide the students towards 

considering a family of shapes without 

blatantly suggesting the idea to them before 

they were ready. As Ribbins (2007. P. 208) 

articulates “the purpose of interviewing is to 

find out what is in somebody else‟s mind but 

not to put things there”. 

 

 

Finally the intervention should be 

capable of being transported into 

other educational settings and of 

contributing to the original 

educational theory on which the 

design experiment is based 

(Middleton et al, 2008). 

 

I have used the task in whole class situations at 

two stages in the research. The task has had to 

be modified in order to be used by whole 

classes instead of pairs but the evidence has 

shown that it was successful. An important 

addition to working at the computer task has 

been class discussion of what students 

observed. 

 

Many DBR studies described in the literature (e.g. Brown and Campione, 1994, 

Middleton et al, 2008) are large studies involving multiple researchers and practitioners 

with multiple classes of students. However large studies often begin as a series of 

clinical interviews with small numbers of students in order to ascertain their knowledge 

and understanding of an aspect of mathematics and a potential learning trajectory. This 

is considered important to give a solid empirical basis to any developing theory and 

other findings of the research which will eventually underpin the development of the 

intervention on a larger scale in the classroom (Cobb and Gravemeijer, 2008, Lamberg 

and Middleton, 2009). However my study is a small one and as such it takes the form of 

a series of clinical interviews (the clinical interview is described in section 4.3.1) to 

ascertain the knowledge and understanding of small numbers of students and a potential 
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learning trajectory. This small DBR study constitutes the first part of the sequence of a 

larger study.  

 

In the case of research with a small grain size, such as this study, the goal is to “develop 

a psychological model of the process by which students develop a deeper understanding 

of  particular mathematical ideas, together with the types of tasks and teacher practices 

that can support that learning” (Cobb et al, 2003). This statement provides the aim for 

my research in ascertaining whether the task involving the dynamic figure can support 

the development of students‟ geometrical reasoning. 

 

4.1.2 The stages in the process 

 

Using the recommendations of Cobb and Gravemeijer (2008) a three- stage process is 

applied to a design experiment: 

 Decide on and make clear the instructional goals (what I intend the students will 

learn) 

 Document the instructional starting points (prior knowledge of students and 

theories of learning) 

 Propose a learning trajectory which will describe how and what I hope the 

students will learn (involving instructional sequences and resources) 

At this point a series of iterative design cycles take place. In this study there are five 

iterations (including the pilot study) and for each iteration, the experimental design is 

revised in the light of emerging theory, further trials are conducted, data is analysed and 

adds to or revises theory on students‟ learning. 

 

Finally a retrospective analysis is carried out which looks over all the data collected 

across the design cycles and puts it in a broad theoretical context. A domain specific 

theory is developed which provides a rationale for the outcome of the research in terms 

of instructional sequences and resources designed to enhance student learning (Cobb 

and Gravemeijer, 2008). It is also important to keep a log of ongoing analyses and 

design decisions to help when conducting the retrospective analysis (ibid).  
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4.2 Issues of validity and reliability in Design Based research 
 

In DBR interventions need to be correctly aligned with theory in order for the research 

to have validity. Emerging theories should provide impact in the specific context and 

also have relevance in the larger educational context, adding to what we know of 

teaching and learning (Barab and Squire, 2004). This is important in order to provide 

evidence for the validity of the theory (ibid). Validity is important if research is to have 

any worth as a body of work (Cohen et al, 2003). In qualitative research such as DBR, 

validity is approached through the objectiveness of the researcher, and the care taken 

with the design of the study (ibid). There are a number of types of validity which we 

must strive to achieve, in particular: 

 

4.2.1 Construct validity 

 

Construct validity is concerned with how the experiments are designed to be suitable 

for the study, careful storage and use of data, and the use of the evidence the data 

provides in establishing a chain of evidence. Does my research instrument (the design 

experiment) do a good job of testing the theory or hypothesis I wish to test? To 

establish construct validity I need to know that my understanding of the theory is 

grounded in the supporting literature. In this case I have studied the literature on 

geometrical reasoning, and the cognitive aspects of using the drag mode in dynamic 

geometry environments. This provides the foundation for the explanation of the results 

and development of theory which arises from my research. 

 

In DBR the theoretical underpinnings of the design experiment are paramount. 

Middleton et al (2008) make it clear that the design experiment and the theory which 

underpins it are intimately connected. It is important that emerging theory is tested in 

subsequent iterations of the study, in order that the theory should be rigorous (Cobb et 

al, 2003). For this process to be rigorous I need to research the structure and theoretical 

underpinning of the educational intervention and to present these very clearly and 

explicitly (Middleton et al, 2008). I have attempted to do this in the chapters which 

describe the iterations and by maintaining a common structure in the reports. 
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4.2.2 Internal validity 

 

Internal validity is concerned with using the results from the data to make a case for the 

findings which emerge from the study. If internal validity is present then the data 

supports any findings or explanations being made by the researcher (Cohen et al, 2003). 

For an explanatory or causal study, such as this one, this involves seeking to establish 

causal relationships, for example; how does dragging and measuring support students‟ 

reasoning? 

 

As the researcher I was involved with the intervention and am one of the many factors 

in the experiment. Since I am involved in the undertaking of the intervention I need to 

try to minimise subjectivity and to recognise if I have a bias towards any particular 

interpretation of the findings from the study. For example it would be tempting to select 

samples of data which support the researcher‟s theory or hypothesis (Brown 1992). 

Cobb and Gravemeijer (2008) argue that, when the data in a design experiment is used 

to make claims and inferences that these claims must be clearly articulated and 

documented.  This meant I needed to check emerging findings against earlier analyses 

and test them in later iterations.  

 

4.2.3 External validity 

 

External validity refers to how well the findings of the study could be replicated and 

observed in other situations than this study (Cohen et al, 2003). If another researcher 

were to carry out the experiment using the same task with the same computer files and 

with student participants of the same age then external validity would be indicated if 

they were to find the same results. This means that it is important that I describe how I 

carried out the experiment so that someone else could attempt to replicate this study. In 

each chapter describing the iterations, I have therefore included a section entitled 

process for iteration ... which sets out the rationale and design decisions, and describes 

the task and the computer file and the context in which the iteration took place. 

External validity can be problematic for DBR studies.  DBR takes place in complex 

learning situations such as the classroom and it is impossible to control one factor 

without affecting the others (Barab and Squire, 2004). Thus it is generally not possible 

for a Design Experiment to be exactly replicated and it is vital that the researcher 
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provides a complete description of the context of the intervention and a rational for the 

modifications (Barab and Squire, 2004, Hoadley, 2004). However Cobb and 

Gravemeijer (2008) argue that other researchers should be able to use the findings of a 

design experiment and to adjust it for use in other contexts as long as the domain 

specific theory and learning trajectories can be used. 

 

4.2.4 Reliability 

 

Reliability relates to consistency. If I repeated the study using the same experimental 

design would this produce the same results? This may be addressed by undertaking the 

research sessions with several pairs of students. In this study I worked with twelve pairs 

of students (either boys or girls) in two different schools and a whole class. I have 

included an overview of the iterations at the end of this chapter with a description of the 

schools which the students attended. 

 

Triangulation can provide for a greater degree of reliability. One form of triangulation 

relates to the use of more than one method or source of data collection in order to 

provide evidence for emerging findings (Thomas, 2009). In this study there is mainly 

one source of data gathering which is the dialogue and on screen recording from the 

sessions with pairs of students but there is also data from a series of lessons with one 

mathematics class working with the task, which includes, written work, dialogue, on-

screen recording and posters made by the students of what they had learned in the 

lessons.  

 

Another form of triangulation involves the use of more than one theoretical framework 

when analysing the data. In this study I will use two theoretical frameworks: Van Hiele 

(1986) and Duval‟s theory of cognitive apprehensions (Duval, 1995) which will give 

me two different viewpoints on the data.  A further method of triangulation involves 

having more than one person involved in interpretation and analysis of the data 

(Thomas, 2009) and whilst I have been the main analyst, the work has also been 

discussed with my main supervisor and second supervisor. My work has also been 

presented at national and international conferences and I have taken account of the 

feedback.  For example, the idea of modifying the figure so that the bars were oriented 
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at an angle came after a discussion with an experienced researcher regarding students 

dragging the vertical and horizontal bars whilst maintaining symmetry.  

 

4.3 The Practicalities 

 

The research took place in two different schools. School A, whose students I worked 

with from June 2009 until June 2011 is situated in a large village ten miles outside a 

city in the English East Midlands. Its intake is mainly white British from skilled 

working class / lower middle class backgrounds. I approached this school because I had 

a contact in the mathematics department and we had both been members of a local 

authority working group on ICT in mathematics teaching and learning. This contact 

agreed to organise for me to work with pairs of students. The students were chosen by 

the contact teacher who told me that he asked students who had worked really well in 

mathematics lessons during the year. Apparently working with me was seen as a treat! I 

asked him to choose students who would be of average attainment and who would be 

happy to work with an adult they did not know.  

 

School B, whose students I worked with from June 2011 to June 2013 is situated in a 

suburb of the same city in the East Midlands. Its intake is a mixture of children from 

White British and British Asian (mostly second or third generation) families in a 60% 

to 40% ratio and from skilled working class / lower middle class backgrounds. I 

approached this school because I used to work there as the Head of Mathematics and I 

continue to be on good terms with the present Head of Mathematics who was my 

contact. The students were chosen by the contact teacher as being of average attainment 

and who would happily work with an adult they had not met before. 

 

Ethical considerations, including how I obtained consent to work with these students is 

included in section 4.4. I worked with equal numbers of boys and girls. In school B I 

worked with an equal number of students from White British background and British 

Asian background. There was no intention to compare groups, simply to show that the 

findings were consistent for all students. 
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4.3.1 Working with pairs of students 

 

The sessions could be described as semi structured clinical interviews which were 

originally developed by Piaget in the 1920s (Ginsburg, 1997). Clinical interviews 

generally begin by the researcher giving the student subjects an open ended task to 

work with. Further questioning of students is contingent on their responses to the task 

and later questions.  

 

“Researchers in mathematics education ask questions, get answers and then 

engage in attempts to analyse these answers”  

(Zazkis and Hazzan, 1999. p. 429).  

 

The aim is to encourage the students to reflect on their thoughts and to explain how 

they worked something out and why they may have used a particular process. Since the 

clinical interview relies on discussion to shed light on students‟ conceptualisation (in 

mathematics) it does rely on students being able to describe their thought processes 

which some may find difficult. Hence the researcher must choose questions carefully to 

be able to probe students‟ understanding in a way that helps them to be able to 

articulate this. The clinical interview technique is defined by flexibility and the asking 

of questions contingent on student subject responses but even so some variables can be 

kept constant and a degree of standardisation is possible (Ginsburg, 1997). The 

beginning task and the focus on certain aspects of the task and the mathematical content 

can provide some consistency in each experimental session. 

The sessions took the form of task-based interviews, between pairs of students (two 

girls or two boys) and myself. Task-based interviews entail two or more students 

working together on a mathematical task with the possibility that they may discuss the 

problem together and make further progress than each might have made on their own 

(Evens and Houssart, 2007). However this method ascertains the knowledge and 

understanding of the pair or group rather than that of individuals. 

 

The sessions took place in a small quiet room in the school and lasted about forty 

minutes. The students sat in front of the computer and one of them had control of the 

mouse. Halfway through the session the students swapped positions. I sat on a chair 

behind them. I chose to work with pairs of students for several reasons. The students 
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had not met me previously and it seemed kinder to let them work with a friend rather 

than being on their own with a strange adult. I could also encourage them to discuss 

with each other what they were observing on the screen and why this might be. Some 

pairs of students were good at this and bounced ideas off each other. There were other 

pairs of students when the student in charge of the computer mouse would respond to 

my questions and the other just seemed to listen. However the main value of working 

with pairs of students is that I was able to study in depth their responses to the dynamic 

figure and the questions I asked them. The recordings of the on-screen activity were 

vital to ascertain exactly what the students were doing, which was sometimes only 

observed when I later played back the recordings. 

 

Whilst trying not to impose on the way the students worked on the task, I nevertheless 

will have influenced the course of the sessions. This is inevitable because the students 

had to be introduced to the software in order to carry out the task and there was also a 

need to ensure they reflected and focused on the desired mathematical learning as 

Hoyles and Noss (1992) discuss. The fact that I as the researcher was very involved in 

the implementation of the task will obviously impact on the validity (Barab and Squire, 

2004).  However I could not remain aloof to the teaching experiment and my 

interventions can be useful to develop further ideas and to spot small scale theory 

emerging from the findings if done carefully. An objective look at the transcriptions of 

the audio data may provide a check as to whether the interventions were leading the 

students down a particular track rather than allowing them to investigate freely. 

 

In the final iteration of the study I was able to work on the task with a full class of 13 

year old students and to record some of the dialogue and photograph examples of 

students‟ work. 

 

4.3.2 Data collection and analysis 

 

A video of the on screen activity and dialogue between the students and myself was 

recorded using image capture software (Camtasia ™). After the session this was 

imported into Transana ™ software, (Faasnacht and Woods, 2010) which is a 

transcription and video tool (see figure 4.1 for a screen shot of the Transana window). 
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Transana allowed me to play the video (with sound) and to type the transcript of the 

video straight into the text box. I could then add time codes throughout the text which 

linked it to the video so that the transcription of the dialogue rolled through 

concurrently with the video and sound recording. Another facility of Transana is that 

video clips can be saved and coded under themes which are displayed in the 

visualisation box.  

 

 

 

Figure 4.1 The Transana screen shows video, transcript, data and visualisation windows  

 

Once I had completed the transcription in the Transana window, I copied it into a word 

processing document. I then played the video clip over and over with the aim of 

describing the on-screen activity concurrent with the dialogue. The on-screen activity 

generally consisted of students dragging figures on the screen, pointing to objects with 

the cursor, or clicking on tools and menus in the software. After this I wrote a narrative 

to combine the dialogue and the on-screen activity. The three different accounts of the 

sessions were written into three columns of the document so that they describe the same 

event as can be seen in figure 4.2. 
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Figure 4.2 An excerpt from a description of a recording from one of the sessions which 

includes dialogue, on screen activity and narrative. 

 

This whole process entailed listening to and watching the session recordings several 

times. It was an important but difficult decision to make regarding how and what I 

would code from the recordings. After discussion with my supervisor I decided to code 

episodes where the on-screen activity and dialogue appeared to address some aspect or 

aspects of students‟ understanding about the geometric properties of the figure, known 

as a natural unit of meaning (Cohen et al, 2003). It became clear from repeatedly re-

playing the recordings that the on-screen activity was as important as the dialogue for 

shedding light on students‟ conceptions of geometrical figures, particularly the 

dragging strategies which the students were observed to use.  

 

Data from interviews, including clinical interviews, is mainly qualitative and as such 

the analysis of the data is based on interpretation and reflection. Cohen et al (2003, p. 

282) give four generalised stages of analysis: 

 Generating natural units of meaning (the episodes in my study) 

 Classifying, categorising and ordering those units of meaning (deciding on sub -

themes which describe the episodes, grouping these sub-themes into larger 

themes) 

 Structuring narratives to describe the interview contents (a description of the 

on-screen activity, students‟ conceptualisation of the dynamic figure under 

dragging) 
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 Interpreting the interview data (attempting to see the overall picture of how the 

students conceptualise shapes and their properties in the DGS environment). 

Analyses of qualitative data often begin with coding units of data. However, the units 

of analysis in my study are often short rich sections of on-screen activity and dialogue 

which indicate a theme or aspect of „seeing‟ mathematical concepts. As such I believe 

that breaking them down into smaller units which can be coded would render them 

more opaque for the purposes of analysis rather than shedding light into students‟ 

mathematical understandings which can be ascertained from the episodes. Hence I have 

stayed with coding episodes according to themes. As these emerged during the 

iterations, I will describe the themes as they developed in the chapters on each iteration. 

 

Finally, it is important to keep in mind that carrying out the data analysis in a design 

based experiment has to be done carefully as Brown (1992) noted. There are so many 

different ways that the data could be read. It is necessary to do this objectively and the 

researcher must ensure that all data is examined with equal weighting. It would be 

detrimental to the study if only the data which supports my preconceived ideas and 

hopes were to be presented and analysed. All the data is safely stored and it is available 

for future analysis after the end of the study. 

 

4.4 Ethical considerations 

 

When undertaking research it is necessary to consider the ethical implications and 

especially in educational research where the participants are often children, to whom 

adults (including researchers) have a duty of care and responsibility. The British 

Educational Research Association (BERA) set out guidelines with the aim: 

 

 “to enable educational researchers to weigh up all aspects of the process of 

conducting educational research within any given context”  and “to reach an 

ethically acceptable position in which their actions are considered 

justifiable and sound” . 

 

(BERA, 2011, p.4) 
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Sitting within the BERA guidelines (2011) my own university has developed a set of 

principles for undertaking research which are listed in their Research Ethics booklet. In 

undertaking this research I have worked within these guidelines. I sought and was 

granted ethical approval, to carry out the research. In synthesising these two sets of 

guidelines I refer to the methodology for ethical analysis proposed by Stutchbury and 

Fox (2009) which provides a list of considerations under four main headings (external, 

consequential / utilitarian, deontological and relational / individual). The authors claim 

that the framework allows the researcher to consider the ethical implications of their 

research in a logical structured manner. 

 

4.4.1 External issues 

 

The first considerations within this section refer to the awareness by the researcher of 

the norms and expectations of the institution where the research is carried out (the 

school in this case). Further considerations in this section address legal requirements of 

adults working with children and a consideration of risk. 

 

Before undertaking my current role as lecturer and researcher at a university I had been 

a classroom teacher. As a previous head of a mathematics department I was considerate 

of the needs of the mathematics departments where I was undertaking the research, to 

treat the personnel respectfully and to ensure that my activity did not add significantly 

to their workload.  

 

UK schools are cautious when allowing adults to have access to students and most 

insist on such persons holding a Criminal Records Bureau (CRB) disclosure form 

which I already hold as part of the requirements for my role in Initial Teacher 

Education. Before I began working with students in School A I was asked to attend a 

meeting with the school‟s safety officer to show them my enhanced CRB disclosure 

form and to talk with the safety officer about safeguarding matters. School B did not 

request such explicit detail but they knew me as someone who had taught there for 

several years previously, and has been head of the mathematics department.  
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4.4.2 Consequential / utilitarian issues 
 

This section addresses potential benefits for the participants, the mathematics department and 

the school, benefits for society and for me as the researcher and considers the need to avoid 

causing harm. 

 

The benefits to the individual participants (the students who worked with the dynamic figure), 

was to experience a novel way of working with geometric shapes in a computer based 

environment. The pairs of students had the attention of one teacher to two students and the 

chance to work with me was a treat the contact teacher offered to students who had worked 

hard during the year! The students in both schools seemed to enjoy working on the task as 

evidenced by their engagement with the tasks. On the other hand the rest of the students in their 

mathematics class did not this opportunity, thus privileging the participating students. However, 

if the research can be shown to have a positive impact on how geometric shapes are taught in 

school then more students could potentially gain from the results of the research in the future. 

 

In iteration two I worked with four whole classes of students prior to recording pairs working 

with the dynamic figure; two classes in school A and two classes in school B. Part of the reason 

for working with whole classes was to ascertain whether the task could be modified so that it 

could be used in the classroom, where most teaching happens. I did not record data from the 

class lessons but used the opportunity for the pairs of students to work with the upright figure 

before meeting the figure in different orientations when I recorded them. 

 

In iteration four I collected data from a class of thirty-one students in school B while they 

worked for three lessons on the modified task.  Again, it could be argued that some classes have 

been privileged over others but the response has to be that if the research is valuable then it will 

ultimately benefit many more students. Since the whole class lessons were also attended by the 

regular class teachers (and in one case by a student teacher) there is benefit in that these 

teachers have observed the use of the task, in the computer environment and can elect to use or 

modify it themselves. In most cases the teachers had not used DGS in lessons before and so 

were interested to observe it being used. 

 

As the researcher, benefits include the collection of data from which I hope to produce 

academic papers and a thesis. I have learned about how students reason geometrically.  

The study does not include sensitive issues in the personal sense but I was aware of the need to 

develop students‟ confidence when working with mathematics and not to undermine it. For 

each iteration, I took the role of a teacher / researcher. As an adult this put me in a 
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position of authority over the students and it was important that I not abuse this 

position. The students clearly cast me in the role of a teacher and I was aware that they 

might give me the answers they thought I wanted, so created an environment where 

they would feel comfortable to say what they thought. 

 

4.4.3 Deontological issues (e.g. truth, honesty, fairness) 

 

This section is concerned with how the research is conducted while ensuring that the 

researcher is open and honest about the ways in which the research will impact on the 

participants and then on how the findings will be used to benefit the participants and 

wider society. Partly, these issues overlap with the next section on relational issues 

where I have indicated how I informed the students about the research process as it 

affected them and how I sought their permission and that of their parents / carers. 

 

In the sessions I always worked with pairs of students, or whole classes because I did 

not want the students to be put in a situation where they might feel uncomfortable in the 

presence of an unknown adult without the reassurance of having at least one of their 

peers with them. The contact teachers always made sure that they chose pairs of 

students who knew each other well and were used to working together. Working with 

two students, I ensured they each had equal time on the computer. It was also useful to 

the study when they discussed the task together as I could find out more about their 

reasoning. 

 

In the sessions I recorded the dialogue and the on-screen activity only and so there was 

no video data of the students. This may have meant that parents / carers worried less 

about the data since their son / daughter could not easily be identified as participants. I 

have stored the data on a computer which needs code access, and the students‟ names 

have been changed so that the data is anonymised. The data has been backed up to 

avoid the risk of losing it. 

 

In order to disseminate the results of my findings, alongside writing my thesis based on 

the findings I intend to write two articles for academic journals with an international 



76 

 

reputation. This was made clear to the school and to the student participants at the time 

when I sought permission to work with students and to record their work. 

 

4.4.4 Relational / individual issues 
 

This section addresses collaborating with key people in the research, respecting all persons 

involved and earning their trust, and ensuring validity and reliability in the research  

 

When I planned this study I approached two schools to ask if they would let me work 

with their students. I was fortunate in having a key contact in each school which made 

it easier as a level of trust was already established. Having ascertained that these key 

persons would be happy for me to come into their departments and work with students I 

then gained the permission of the head teachers of the schools by writing to them and 

explaining the goals of the research (letter included in appendix 5).  

 

I gained informed consent from potential participants. Informed consent relates to the 

study participants knowing what is involved in the research such that they can make an 

informed choice over whether or not to take part in the study. In language they can 

understand participants need to know the reason for the study and how it will be carried 

out, information about confidentiality of data and that their contribution will be 

anonymous, (Thomas, 2009). As my research was carried out with children aged 12-13 

years I also obtained the consent of their parents. The students participated with the 

understanding that they could withdraw this permission at any time. The letters to the 

children and their parents/carers are included in appendix 5 

 

Confidentiality was ensured by changing the names of the students and omitting the 

names of the schools. Validity and reliability have been addressed in section 4.2. 

 

4.5 Overview of iterations 0 to 4 

 

In this chapter I have addressed the Design Based research methodology and how this 

informed my research. I have considered issues of validity and reliability and ethical 

concerns. Table 4.2 provides an overview of the next section of the thesis.  
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Table 4.2 An overview of the iterations 

 

  Participating 

students 

(pseudonyms) 

Tasks based on 

the dynamic 

perpendicular 

quadrilateral 

Themes which emerged 

from analysis of the 

recordings 

Conclusions and forward 

plans 
It

er
at

io
n
 0

 

 
Ju

n
e 

2
0

0
9
 Mike and 

Luke 

Ruth and 

Rita 

Vertical and 

horizontal bars, 

Construct drag 

proof shapes 

Dragging strategies Drop the plan for 

students to make drag 

proof shapes. 

Concentrate on 

dragging strategies. 

It
er

at
io

n
 1

 

Ju
n

e 
2

0
1
0

 –
 J

an
 2

0
1
1
 

Tilly and 

Alice 

Adam and 

Jack 

Colin and 

Terry 

Gill and Sara 

Vertical and 

horizontal bars. 

Students asked 

to describe 

relative position 

of bars inside 

the shape. 

Dragging strategies 

formally described, 

symmetry, reviewing of 

shape properties, rhombus 

and square. 

Students do not classify 

shapes hierarchically. 

 

Change settings on the 

computer files so that 

measurements given to 

nearest tenth of cm and 

whole degree. 

Check whether dragging 

for symmetry is used 

when the axis of 

symmetry is not 

vertical. 

It
er

at
io

n
 2

 

Ju
n

e 
2

0
1
1
 

Dave and 

Evan 

Tara and 

Ruth 

Kate and 

Jane 

Aftab and 

Rupen 

Whole class 

lesson with 

vertical and 

horizontal bars 

followed by 

recorded 

sessions of pairs 

working with 

bars in different 

orientations 

Same dragging strategies 

used when the bars are 

oriented at an angle to the 

vertical. Students appear to 

turn their head or mentally 

rotate the figure. 

In next iteration give the 

perpendicular bars 

oriented away from the 

vertical straight away. 

Students identify a 

discrete number of kites 

rather than the 

potentially infinite 

number. This may 

explain why they do not 

perceive the rhombus as 

a special kite. 

It
er

at
io

n
 3

 

Ju
n

e 
2

0
1
2
 

Stan and Eric 

Hemma and 

Seema 

Perpendicular 

bars oriented at 

an angle, 

Introduced to 

the animated 

dynamic 

quadrilateral 

In the first session students 

only meet the 

perpendicular bars oriented 

at an angle. They use the 

same dragging strategies as 

other students. 

In the second session 

students are shown the 

animation of the dragging 

maintaining symmetry 

strategy. 

Some complaints about 

the bars not being the 

„right way up‟.  

After being shown the 

animation students talk 

about many kites 

belonging to the same 

family. 

It
er

at
io

n
 4

 

Ju
n

e 
2

0
1
3

 

Year 8 class 3 class lessons 

working on 

adding 

constraints and 

finishing with 

the animated 

dynamic 

quadrilateral 

Practical session where 

students move plastic bars 

and imagine shapes which 

could be made after 

constraints are added to the 

bar properties. 

Students work with 

dynamic quadrilateral. 

Class watches animation 

together and discuss. 

Students make posters of 

what they have learnt in 

previous two lessons. 

Student talk and 

discussion proves to be 

a valuable factor in 

developing awareness 

of shapes and inclusive 

relations. 

Animation has an effect 

on some students‟ 

perception of an infinite 

number of kites with the 

rhombus and isosceles 

triangles as special 

cases. 
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5 Iteration zero; the pilot study 
 

At the beginning of the research I planned to use the dynamic figure only for the 

purpose of students observing how dragging the bars into different positions would 

generate specific triangles and quadrilaterals. My intention was that they would use 

what they had learned to create efficient drag-proof constructions of specific triangles 

and quadrilaterals. (A drag–proof construction maintains its intended properties no 

matter how it is dragged on the screen). For example, an efficient way to construct a 

square in DGS is by rotating a line segment ninety degrees about its mid-point, and 

then joining the ends of the line segment and its image under rotation. This method 

used the property that a square‟s diagonals are of equal length and bisect at ninety 

degrees. 

 

This pilot study took place in school A with Mike and Luke, and Ruth and Rita. 

5.1 Objectives for the pilot study 

 

In the pilot study the main objective was for the participating students to construct 

„drag-proof‟ figures using the Geometers Sketchpad (GSP). In the first session the 

students would be given the dynamic figure to explore with the expectation that they 

would notice the position of the diagonals in quadrilaterals and base and height in 

triangles. In the second session the students would be encouraged to use what they had 

noticed to construct drag-proof figures starting with a blank screen. The intention was 

that students would learn about the necessary and sufficient conditions required to 

construct a specific shape and that by dragging and observing variance and invariance 

they would learn about inclusive relations between triangles and quadrilaterals. As an 

example I hoped the students would observe that the rhombus is a special case of the 

kite through dragging a kite into a rhombus. This would indicate evidence of 

developing geometrical reasoning at Van Hiele level three since this level includes an 

appreciation of inclusivity of certain sets of shapes as subsets of others. 

5.2 Theoretical Underpinning 

 

This section explores some of the literature on which I based the work in the pilot 

study. 
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5.2.1 Previous research into drag-proof constructions 

 

A number of researchers have described studies where students have attempted to 

construct drag-proof figures and have moved closer to understanding the conceptual 

aspects of the figures which they have constructed. Some examples are given below. 

 

Healy et al (1994) designed a task using DGS as a vehicle for introducing geometrical 

constructions. The students, who were 13 years old, were allowed to create a picture of 

their choice on the screen but this had to be resistant to dragging or „messing up.‟ In 

later sessions the students were asked to draw two dimensional shapes such as 

rectangles which were resistant to „messing up‟. The students found the concept of 

„messing up‟ to be a meaningful idea and it gave an acceptable form of validation for 

constructions.  

 

Pratt and Ainley (1997) undertook a study with primary school children in the UK with 

a particular emphasis on the nature of the task which was given to the children. It is 

important that a task be carefully designed for it carries the potential for the student to 

explore and discover mathematical structures and concepts (ibid). The task is 

accompanied by internal and external resources, which may include a student‟s 

understandings and mental picture of (in this case) geometrical shapes and their 

properties, other people such as peers and teachers and practical resources such as a 

computer uploaded with DGS. Together this forms a webbing process which can 

support students in developing mathematical meaning (Noss and Hoyles, 1996, Pratt 

and Ainley, 1997). 

 

Pratt and Ainley (1997) found that giving students a task to create a drawing kit of 

shapes for younger children provided a sense of purpose for the students undertaking 

the task and an appreciation of the utility of the concepts of geometrical construction of 

the properties of the shapes in the drawing kit. 

 

Jones (2000) studied 12 year old students constructing quadrilaterals with the aim of 

developing a task which would encourage the students to form a hierarchical 

classification of quadrilaterals. The tasks were sequenced so as to allow the students to 

build on their knowledge as they progressed from one task to another and the drag test 
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was introduced as a way for the students to check the geometrical properties of their 

constructions. Jones noted the importance of socio cultural aspects of the classroom 

environment to the students‟ learning such as the careful design of the tasks, teacher 

input and supportive classroom environment in encouraging the making of conjectures 

and the development of mathematical explanations. 

 

Gomes and Vergnaud (2004) observed 12 year old students using DGS to construct 

figures such as the isosceles triangle, particularly noticing the specific geometric 

relations which were used in the construction of the figure and comparing this to the 

pencil and paper method of construction. The authors expected that the pencil and 

paper method which the students learnt was likely to have affected the strategies the 

students used in DGS. However, they observed that different properties of similar 

mathematical concepts were used in the DGS constructions than in the pencil and paper 

constructions. Gomes and Vergnaud (2004) concluded that learning is most effective if 

students experience learning in a number of different environments. 

 

In summary the studies described above indicate the need for students to be given a 

reason or purpose to construct drag-proof shapes using DGS and that the property of 

being drag-proof itself provided a rationale for students to be careful about designing 

their constructions. Constructing figures in DGS uses a different set of properties of the 

shapes than those used in paper and pencil constructions. 

 

5.2.2 Construction of drag proof figures 

 

Creating drag proof figures in DGS appears to provide a meaningful task for students 

working in a Dynamic Geometry environment and can lead to effective learning of 

geometry and development of mathematical language, both of which are precursors to 

learning more formal deductive geometry. Even so it is important to be aware of issues 

which are specific to students working in DGS environments. One issue is the necessity 

of students appreciating the value to them of constructing drag proof shapes (Pratt and 

Ainley, 1997). It is important for students to appreciate that dragging is a test of the 

robustness or validity of a constructed figure in that it allows us to check whether we 

have programmed the required geometrical properties into the figure (Jones 2000).  
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5.2.3 Familiarity with the software 

 

Another important issue is how the students become familiar with operating the 

software and using the commands in the menus. DGS deals with objects differently 

depending on how they have been constructed. For example objects such as points 

behave differently depending on their status as basic points, points on objects or 

constructed points such as intersections or mid-points (Holzl et al, 1994). If a point has 

been constructed as the mid-point of the line and that line is dragged, the mid-point 

moves with it (Pratt and Ainley, 1997). Constructed figures in DGS behave according 

to the hierarchies of dependence of objects which are nested in the sequence of 

constructions which made them (Holzl et al, 1994, Pratt and Ainley, 1997). Thus the 

process of learning how to use the software as a tool for learning mathematics (Guin 

and Trouche, 1999) may be quite complicated in DGS. 

 

5.3 Process for iteration zero 

 

5.3.1 Instructional goals 

 

I wanted to encourage the students in my study to think about constructing the shapes in 

a different way than had been suggested in previous studies by considering the interior 

structure of the shape, such as diagonals of a quadrilateral or base and height of a 

triangle. That gave students a different method of constructing shapes which might 

allow them more success than other accounts in the literature where students attempted 

to construct shapes using congruent and perpendicular sides (for example, Straesser 

(2001). First the students were asked to consider the positions of the diagonals (or base 

and height) and to do this I alighted on the idea of a toy kite in its typical form and then 

imagined what would happen if we could move the diagonals (or wooden poles in the 

toy version of a flying kite). I modelled this situation in a Sketchpad file where I 

constructed the diagonals (or „bars‟ as I named them to the students) so that they would 

be rigid 8 cm vertical and 6 cm horizontal line segments. In the first session I gave the 

students the file containing the bars, asked them to drag one bar over the other and 

complete the shape, then drag the bars to investigate the shapes they could make 

thereby learning about the properties of the diagonals of quadrilaterals and the base and 

height of triangles. I did not give the students the completed figure because I wanted 
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them to learn how to use the drawing tools to make shapes. In the second session the 

students were asked to use what they had observed about the properties of the bars in 

the first session and start with a blank screen to construct drag proof shapes from the 

„inside out‟.  

 

5.3.2 Instructional starting points 

 

The students in the study were in year eight (12-13 years of age) in the English system 

and were assessed by their mathematics teachers as achieving at level six of the 

National Curriculum for England and Wales ( QCA, 2007 ) which was current at the 

time when I undertook the research. Their school worked from the Framework for 

Teaching Mathematics at Key Stage 3 which states that in year eight students should be 

able to: 

 

“Solve geometrical problems using side and angle properties of equilateral, 

isosceles and right angled triangles and special quadrilaterals, explaining 

reasoning with diagrams and text and classify quadrilaterals by their 

geometrical properties.”  

(DCSF, 2007) 

 

Having recently taught students of that age and having worked within the National 

Curriculum and Framework I knew the prior knowledge the students would have. 

Furthermore I was able to informally assess the students‟ knowledge and skills in 

geometrical reasoning whilst observing them working on the tasks. I am therefore 

confident that the students could recognise shapes and identify their properties but that 

they were not able to give a necessary and sufficient definition or to feel completely 

comfortable with a hierarchical classification of shapes. This indicates reasoning at 

level two with a readiness to begin to move up to level three with the appropriate 

learning activity. Van Hiele (1986) considered that students moved up the levels as a 

result of a learning experience rather than as a natural process of maturation. Therefore 

it is necessary to design an appropriate task to encourage development of geometrical 

reasoning. 
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5.3.3 Learning trajectory 

 

In the first of two sessions the students were presented with a Sketchpad file designed 

to model the situation of the kite with movable bars. It contained a vertical 8 cm bar 

(BD) and a horizontal 6 cm bar (AC). The students were asked to place one bar over the 

other (as shown in figure 5.1), to use the line tool to join the ends of the bars and then 

to use the Construct menu to fill the resulting shape (ABCD) with colour.  

 

 

 

Figure 5.1 Screen shot showing the completed figure 

 

Constructing the interior of the shape made it more visible especially when it was 

dragged into a concave quadrilateral, which otherwise might have been seen as a 

triangle with the diagonal providing the base line.  

The task had been designed so that the students, who had not used the software before, 

did not need to learn many of its features. This was important because of the time 

constraints and the relatively little use of DGS in the UK curriculum. The students were 

asked to “drag the bars and investigate what shapes you can make”. When the 

students made a particular shape, they were asked to give its properties and then to use 

the Measure menu to check side and angle properties as shown in figure 5.2. They were 

also asked “how are the bars positioned with each other?” to encourage them to 

observe the properties of the diagonals (in a quadrilateral) and the base and height (for a 

triangle). I also hoped that the students might link the properties of equal sides and 

angles with the properties of the diagonals and thus develop their geometrical reasoning 

towards Van hiele level three. Carefully constructed activities reveal and develop 

students‟ intuitive ideas and develop their use of language to represent these ideas 

(Hoyles and Noss, 1992). 
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Figure 5.2 Screenshot showing measurements of sides 

  

This task is an example of an open problem which may encourage students to develop 

meaningful concepts in geometry. Mogetta et al (1999 a) described an open problem as 

a short statement where students are asked to explore connections between elements of 

a figure (in this case: “what shapes can you make by dragging the bars to different 

positions?”). Open problems do not lend themselves to learned procedures; students 

have to decide for themselves how to explore the problem.  

In the second session the students were encouraged to remember the  positions of the 

bars needed to generate any particular shape in order, given a blank screen, to construct 

bars in those positions and thus build up a shape around them which was „drag proof‟. 

 

5.4 Results and analysis of session one: working with the dynamic figure 

 

I worked with two pairs of students; Mike and Luke, and Ruth and Rita, in Summer 

2009. After constructing the sides and interior of the shape the students would typically 

drag the figure into a number of different shapes. Usually these were shapes with 

recognisable names (eg kite, isosceles triangle, rhombus, arrowhead) but some (though 

not many) irregular shapes were also generated. 
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Next I suggested that they choose a shape and follow this by asking about the properties 

of the shape in general and properties of the bars needed to generate the shape. When 

the students identified side and angle properties, either they asked if there was a way to 

measure and check or I suggested they find the measurements. (There is a Measures 

menu in the Geometers Sketchpad and I showed the students how to use it).  Having 

generated a specific shape the expected equal sides and angles would not be exactly 

equal. In this case the students used very small adjustments of the bars to make those 

measurements of sides and angles equal. This action was sometimes carried out on the 

students‟ initiative and sometimes I suggested they try to get the measurements exact.  

 

When asked how the bars were positioned relative to each other the students were able 

to give explanations in everyday language eg “in the middle of each other”, cutting the 

other one in half”, etc. After they had spent time generating shapes using the 8 cm and 

6 cm bars the students spent some time working with equal length bars, with which it is 

possible to generate a square. Several themes emerged from the recordings of the 

students‟ work which are illustrated below. 

 

5.4.1 Initial placing of the bars in an almost symmetrical configuration 

 

When, at the beginning of the session, the students were asked to place one bar over the 

other, they tended to place the bars in a near symmetrical position as shown in figure 

5.3. The cursor can be seen in the screenshot on the left hand side. 

 

 

Mike and Luke 

 

Ruth and Rita 

 

Figure 5.3 The initial positions in which the students positioned the bars 
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5.4.2 Exploratory dragging to investigate the shapes which can be generated from the 

dynamic figure 

 

At first the students dragged in a random fashion to see what shapes they could 

generate as shown in figure 5.4. 

 

On screen activity Screenshots 

 

They dragged the bars to make a kite with 

horizontal symmetry, an arrowhead kite, an 

isosceles triangle and a rhombus. 

 

This activity usually took place at the 

beginning of the session when the students 

were unfamiliar with the dynamic figure. 

 

  

 

 

Figure 5.4 Mike and Luke generated a number of different shapes 

 

5.4.3 Moving the bars straight into position to generate a desired shape 

 

Once they became familiar with dragging the dynamic figure, which usually took less 

than five minutes, the students dragged the bars straight away into the position which 

would generate a desired shape as shown in figure 5.5. The students chose which shape 

they would make. 

 

On screen activity Screenshot 

They dragged the bars straight into position 

to make four different orientations of a right 

angled triangle. Only one of these right 

angled triangles is shown in the screenshot. 

 
 

 

Figure 5.5 Mike and Luke dragged the bars to make four right angled triangles. 
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5.4.4 Fine adjustments to the position of the bars in order to get expected equal 

measurements to be equal. 

 

After they had made a shape the students checked the measurements of sides and 

angles. Typically the properties of expected equal sides and angles would not be 

indicated in the measurements and so the students made fine adjustments to the 

positions of the bars in order to make the shape more accurately mirror its properties. 

Two such episodes are shown in figures 5.6 and 5.7. 
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Dialogue Screenshots Narrative 

Mike : It‟s really quite hard to get 

them 

Luke : No because you need these 

sides to be the same. That‟s 

why it‟s quite hard to get 

them? 

Susan: OK 

Luke : Is there a measuring tool? 

Susan:   There is a measuring tool. 

Mike : There you go there‟s 

Measure. 

Susan: OK we‟re going to use 

Measure to see if you‟re 

right. 

 

 

Then they make an 

isosceles triangle 

with horizontal 

symmetry 

 

Mike : This one is slightly longer. I 

think you have to move one 

of those. Now try it again. 

Susan:   Close 

Mike :  What you could do is move 

this one slightly that way. 

Susan: Yes but look. That bit is AC 

and that‟s CB so you‟re 

actually measuring two 

things which aren‟t a 

straight line together. 

Luke : Ah like that 

Susan: And you‟ve got a gap 

actually. You might want to 

move it totally out of the 

way. Ah, that‟s better isn‟t 

it. 

Luke : And they‟re actually the 

same. 

Susan: They are.  

 

 

 

 

 

Mike tells Luke 

to make slight 

adjustments to 

the positions of 

the bars. 

At first the figure 

is a quadrilateral 

rather than a 

triangle. 

 

The measures 

indicate an 

accurate isosceles 

triangle. 

 

Episodes of this 

kind of activity 

lasted up to one 

minute. 

 

Figure 5.6 Mike and Luke make fine adjustments of the bars to make the shape an 

accurate isosceles triangle. 
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Dialogue Screenshots Narrative 

Susan: They‟re quite close 

aren‟t they. Cause 

after all, you‟ve 

done that by eye, So 

do you think you 

could make it so 

that they were the 

same? 

Ruth : Could you just 

move that one? 

Susan: You could try 

couldn‟t you till 

you get them as 

close as possible. It 

might not be 

absolutely easy to. 

We‟re so close 

there aren‟t we. 

There‟s not much in 

between them. 

Susan: Once you move 

one thing the other 

goes off doesn‟t it. 

We might just have 

to say that that‟s as 

near as we can get 

it. It‟s close. 

Ruth: It‟s about there. 

Susan: It‟s about there 

isn‟t it. I mean, 

there‟s not much 

difference between 

those two angles, is 

there really.  

 

 

 

 

 

 

 

 

 

The girls had generated a 

shape which was fairly 

close to being 

symmetrical. They 

identified that the kite has 

a line of symmetry and 

measured the two angles 

either side of the vertical 

bar at the bottom corner 

of the shape. 

 

 

 

 

 

 

 

 

 

The girl with the mouse 

made tiny adjustments to 

the position of the bars 

over a 33 second period 

and got the angles within 

0.18 degrees of each 

other. 

 

Figure 5.7 Ruth and Rita make tiny adjustments to make an accurate kite. 

 

5.4.5 Dragging one bar intentionally through the middle of the other bar 

 

When moving between shapes such as the kite, rhombus and isosceles triangle the 

students would drag one bar through the centre of the shape as shown in figure 5.8 and 

5.9. 
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Description of the measurements 

under dragging 

Screenshots 

They dragged the bar AC up keeping 

the bar BD as the line of symmetry. 

 

 

Episodes of this kind of activity 

usually lasted just a few seconds. 

This particular episode was 7 

seconds long. 

 

If we look at the measurements of 

pairs such as AB and BC, they 

never differ by more than 0.07 

cm. 

 

AD and DC never differ by more 

than 0.14 cm. 

Angles BAD and BCD never 

differ by more than 2.01 degrees. 
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Figure 5.8 Mike and Luke drag the vertical bar through the middle of the figure keeping 

the shape close to symmetrical.  
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Description of the measurements 

under dragging 

Screenshots 

This episode took 7 seconds. 

 

If we look at the measurements of 

pairs such as AB and BC we can 

see that they never differ by more 

than 0.09 cm. 

AD and DC never differ by more 

than 0.2 cm. 

Angles BAD and BCD never 

differ by more than 4 degrees 

 

 

 

 

 

 

Figure 5.9 Ruth and Rita drag the vertical bar through the middle of the figure keeping 

close symmetry 
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5.4.6 Splitting the figure into sub figures 

 

Mike and Luke talked about sub figures within the figure as shown in figure 5.10 

 

Dialogue Screenshots Narrative 

Susan: Oh well, that‟s really 

close isn‟t it. So what‟s 

special about a kite 

then? So you‟ve got 

those two sides the 

same. 

Luke : It‟s got four right angles 

(he is looking at the 

intersection of the 

diagonals). 

Susan: You have? 

Luke : Cause you‟ve got one 

there, one there, one 

there and one there. 

Susan: That‟s true isn‟t it? 

Mike : But if you take these 

away (pointing to the 

diagonals) 

Susan: He‟s right though isn‟t 

he. It looks like a kite is 

made up of.., 

Mike : Four sectors 

Susan: Yes, and those four 

sectors are made up 

of… 

Mike : Four right angles 

Luke : And it‟s got an isosceles 

if you put these two 

together  (pointing at 2 

congruent sectors). 

Susan: Oh yes. Is that borne out 

by the measurements? 

Have you got the 

measurement for AD? 

You‟ve got AD haven‟t 

you? 

Mike : A to D equals 6.2 

Luke : C to D, A to C 6.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

He pointed to 

each right 

angle in turn. 

 

 

 

 

 

 

 

 

 

He used the 

cursor to point 

to the bottom 

two triangles 

 

 

 

Figure 5.10 Splitting the figure into four right angled triangles or two isosceles triangles 
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5.4.7 Making connections between the rhombus and the square 

 

Mike and Luke made a shape which was very close to a rhombus. When I pointed out 

that the sides were very close „just a little tiny bit either side of five‟ and asked what 

shape they had, they replied „square‟ and „parallelogram‟ respectively. The boy who 

suggested the square then said that it could not really be the square because „that isn‟t 

the same as that one‟ (pointing to the bars). The other boy said you could make it into a 

square by lengthening one bar so that it was the same size as the other bar. These 

comments suggest that the boys were reasoning geometrically but there was no 

evidence that they understood why the bars needed to be equal to generate a square. 

 

5.4.8 Discussion of the first sessions  

 

There appeared to be four distinct dragging strategies: 

 Exploratory dragging to investigate the shapes which can be generated from the 

dynamic figure. 

 Moving the bars straight into position to generate a desired shape (including the 

initial dragging of one bar over the other). 

 Fine adjustments to the position of the bars in order to get expected equal 

measurements to be equal. 

 Dragging one bar intentionally through the middle of the other bar. 

 

By dragging the bars inside the dynamic figure the students generated isosceles 

triangles, right angled triangles, kites, squares and rhombuses and some irregular 

shapes. After having generated a specific shape they would measure sides and angles 

and drag one of the bars to adjust their shape so that the measurements indicated it to be 

accurate (or very close to being accurate).  Olivero and Robutti (2007) have described 

guided measuring where children use measurements to obtain a particular figure from a 

generic one. However the evidence from my recordings suggests that the participating 

students dragged to generate the shape first and then adjusted to make measurements 

accurate which is slightly different to what Olivero and Robutti described. 
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The students also mentally split the figure into subfigures and  recognised that to 

generate a square the bars needed to be of equal length. The students knew the common 

properties of sides and angles for any given shape but they had no understanding of the 

minimum required properties in order to prove they had the shape. I hoped that the 

activity of the second session would help the students to develop an understanding of 

minimum requirements to construct a shape. 

 

5.5. Results and analysis of session 2: constructing drag-proof shapes 

 

In the second session I hoped that the students would be able to use the positions of the 

diagonals of quadrilaterals or base and height of triangles to construct drag-proof 

shapes. In this my intention was that they would remember what they had learned about 

the positions of the bars in each shape they generated in the previous session.  

 

The students were presented with a Geometers Sketchpad file which had nothing on the 

screen except for the menus and tools. I told the students that I would like them to 

construct shapes like an isosceles triangle or a square which would remain an isosceles 

triangle or square even when it was dragged. I encouraged them to remember the 

positions of the bars for each shape in the first session and this did seem to help them in 

starting to construct their shapes. I realised before the session that they would need to 

construct perpendiculars, parallel lines, rotations etc so I made some „help‟ cards which 

explained how to use the Construct and Transform menus to make various 

constructions.  

 

There now follows a description of the constructions which the students made. 

However, first I need to clarify some of the terms which are used in the description. In 

this account of the student‟s work using the Geometers Sketchpad if they used the 

Construct or Transform menus to create part of a sketch I write that they constructed it. 

If they used one of the tools: point, line or circle tool, then I write that they drew that 

part of the sketch. Laborde (1993) refers to these two ways of creating features on the 

sketch respectively as a primitive based on geometrical properties and a primitive based 

on pure drawing. The sketch refers to what they created on the screen and is usually a 

polygon of some description for the purposes of this project. I have not referred to any 
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difference between the geometrical object being created (such as an isosceles triangle) 

and its Dynamic Geometry version. Nor did I make any difference between these two 

when talking with the students participating in the project. However the sketches did 

behave as DGS sketches do in that they could be changed and manipulated using the 

dragging mode. They were not single static examples of a type such as sketches created 

on paper (Olive, 2000). 

 

5.5.1 Ruth and Rita construct an isosceles triangle 

 

The first shape I asked the students to make was the isosceles triangle because I thought 

it would be the easiest for them to construct. There are a number of ways to construct 

the isosceles triangle in DGS using its symmetry and the fact that the top corner lies on 

the perpendicular bisector of the base. I started by asking each pair of students how 

they would draw an isosceles triangle on paper and then suggested that they try to do 

something similar on the computer. Both pairs drew the base on paper and then placed 

the top corner by eye so that it was opposite the mid-point of the base, then they joined 

up the sides. This seemed like a good method to adapt for use on the computer and 

mirrored the position of the bars needed to generate the isosceles triangle in the first 

session. 

 

Ruth and Rita drew a horizontal line segment, highlighted it and constructed the mid-

point. (I will refer to line segments as lines from here on and emphasise the occasions 

when a complete infinite line has been constructed). They drew a vertical line up from 

the mid-point, using their judgment to keep the line going straight up from the mid-

point and then drew the sides of the triangle from the top of the vertical line to the ends 

of the horizontal line as shown in Figure 5.11. 

 

 

Figure 5.11 Screenshot of Ruth and Rita‟s first attempt to construct an isosceles triangle 

by placing the top corner „by eye‟. 
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The shape looked like an isosceles triangle. The girls measured the base angles and 

found they were equal. When they dragged the top point upwards the lengths of the 

sides changed. Then they positioned the top point so that the lengths were the same. 

After this I told them that I wanted them to make an isosceles triangle that could not be 

dragged out of one. The girls then tried to add things to their sketch which would hold 

the top point in place. They tried a number of ways to do this but were unable to make 

the top point stay where they wanted it to. Their attempts are shown in figures 5.12 and 

5.13. 

 

First they tried to hold the top vertex down by constructing a perpendicular line through 

the mid-point of the base over the top of it. 

 

Figure 5.12 Ruth and Rita try to hold the top vertex in place by constructing a 

perpendicular line over the top of the vertical line they had placed „by eye‟. 

 

That did not work so they tried to hold the triangle between two parallel lines which 

were perpendiculars through the ends of the base. 

 

 

 

Figure 5.13 Rita and Ruth tried to encase the triangle between 3 lines which they 

constructed perpendicular to the base through the mid point of the base and the ends of 

the base. 
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Eventually the girls gave up trying to hold their triangle in the isosceles position and 

tried a completely different approach. They drew a vertical line and an oblique line 

which were joined at their top ends. This is shown in figure 5.14 

 

 

Figure 5.14 A new method to construct an isosceles triangle, part one 

 

After some thought, they marked the vertical line as a mirror. They highlighted the 

oblique line and reflected it in the vertical line. Then they joined up the ends to make a 

triangle. The vertical line hung down a little bit below the base of the triangle and this 

bothered the girls. However they decided to ignore this and checked the base angles by 

measuring them. They found these were equal. The girls dragged the sketch around and 

the angles stayed equal. Success! 

 

 

Figure 5.15 Part two, the successful construction of an isosceles triangle 
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Ruth and Rita tried to make an isosceles triangle by drawing a horizontal line and a 

vertical line going up from halfway along it, using what they had learned about the 

position of the base and height from the previous session. They were not successful 

when using this method in making a drag-proof isosceles triangle because they placed 

the apex of the triangle on a line which they had drawn from the mid-point of the base 

rather than on the constructed perpendicular from the mid-point of the base. The drag 

mode by its nature disqualifies creating a geometric object by just using the line, point 

and circle tools (Laborde, 1993). Eventually their successful construction used the 

symmetry of the isosceles triangle. However I am not convinced that Ruth and Rita 

understood why this was a successful method. 

 

5.5.2 Mike and Luke construct a square 

 

I suggested to the students that they construct a square by starting with the diagonals in 

the position as the bars had been put in for the previous session. This is actually an 

easier method than creating a square from its outer edges. For example, Straesser 

(2001) described the attempts of some students who were asked to construct a square 

using Dynamic Geometry. When asked the properties of a square, they responded with 

congruent sides before right angles. Most of them went on to construct perpendicular 

lines as part of their attempts at a square and only half of them were able to secure 

congruent sides in their sketches. I would suggest that this is because the initial 

questioning had focused their minds on congruent sides and right angles and so they 

tried to construct squares by starting with those properties. It is more efficient to 

construct squares using their diagonals (which bisect at right angles and are congruent) 

when using DGS. Since my students had been encouraged to consider diagonals from 

their first session that was the method they used when starting with a blank screen. 

Figure 5.16 shows the steps the boys took. 
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Description of construction Screenshot 

The boys drew a horizontal line and 

constructed the mid-point. They drew a 

line underneath the horizontal line 

going up to the mid-point. They judged 

how to make it vertical. They tested it 

by dragging and it did not stay vertical. 

They measured both lines. Then they 

copied both lines and deleted the 

vertical line leaving them with two 

congruent horizontal lines. They 

rotated one line and placed it half way 

along the other to make a T shape. 

Then they deleted everything. 

 

 

 

 

Next the boys drew a slanting line and 

a point not on the line. They 

constructed a perpendicular to the line 

from the point. They tried to join up 

the ends of the line to the perpendicular 

to make a square, realised this was not 

successful then deleted everything but 

the original oblique line. They 

constructed the mid point of the 

oblique line and then constructed its 

perpendicular through the mid point. 

They tried to join the ends of the 

oblique line to the perpendicular line 

by eye. 

 

 

 

 

Next, Mike and Luke drew an oblique 

line, constructed its mid-point and a 

perpendicular line through the mid-

point. The boys now had a problem 

because the perpendicular was an 

infinite line and they did not know the 

accurate positions for the vertices of 

the square. 

 

Susan: What would you really like to 

do if you wanted to finish off 

that square? 

Mike :  Make the points on there so it‟s 
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the same length. 

Susan: Right, so any ideas how you 

might actually get that in the 

right place? 

Luke :  Measure that line and then put 

the measurement on. 

Mike :  No but then we‟re still doing 

the eye aren‟t we. 

Susan: If you can do things by eye you 

can drag it off, you see. So 

think of another way that you 

would be able to get that 

exactly … get these distances 

exactly the same. There‟s all 

sorts of things you could do. 

 

 

Then Mike had a brainwave when he 

realised that they could find out where 

the ends of the line segment should be 

 

Mike :  Rotate it 

Susan: You could try and rotate it. Now 

if you did that … 

Mike :  Rotate it round the point 

Susan: OK 

Mike :  So let‟s just .. Click on that 

then Transform 

Luke :  Rotate 

 

 

 

 

Figure 5.16 Mike and Luke attempt to construct a square and are finally successful by 

rotating one bar ninety degrees about the mid-point of the other bar 

 

Unfortunately Mike and Luke had highlighted and rotated the lines but not the points 

on the ends. This meant that there were no points at the ends of the rotated lines which 

the boys could snap the sides onto. The finished shape was not exactly accurate as a 

result and the angles were slightly off ninety degrees. The lengths of the sides were 

equal so the boys had a rhombus. However, on my advice, the boys remade the square 

in the same way as before but making sure they highlighted and rotated the end points 
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of the lines. This model worked and they were convinced by measuring sides and 

angles and dragging the shape round to make sure it stayed a square (figure 5.17). 

 

 

Figure 5.17 The completed square 

 

5.5.3 Discussion of the constructions 

 

The feature of DGS programs is that figures are drawn by a construction process using 

the primitives (line, point and circle tools) along with the operations (tools in the 

menus). So the figure behaves according to the way it was constructed and the 

geometric properties used to define it (Laborde, 1993). The value of using the Dynamic 

Geometry Software lay in the students having to formalise their methods of 

construction with regards to the properties of the desired shape.  

 

When I asked the students to prove to me that they really did have a specific shape on 

the screen they used measuring to validate the properties of their shape, dragging the 

shape round the screen to look at the object in different orientations (Laborde, 1993) 

This is an example of „validation measuring‟ where the students checked that they had 

indeed produced the shape they were intending to make (Olivero and Robutti, 2007). 

For the students this seemed to provide sufficient evidence that they had created a 

specific shape but it is not a formal deductive proof. Using measures in DGS is akin to 
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experimental measuring of a paper object to check its properties. In this way the spatio-

graphical way of thinking meets the theoretical considerations of geometry (Olivero 

and Robutti, 2007). 

 

Although the students had experienced success in constructing some drag-proof shapes 

I was concerned about the value of this part of the activity because of the necessary 

investment of time to enable the students to learn how to use the software sufficiently 

well to learn from it. The problem Mike and Luke had with the square construction due 

to their not having highlighted the points on the ends of a line segment exemplifies the 

general difficulties in using DGS when there is not time to become sufficiently familiar 

with the software. In English classrooms my experience tells me that DGS is likely to 

be used fairly infrequently and hence students are unlikely to have the time to learn 

how to use the software well enough to experience real learning gains.  

 

5.6 Conclusion 

 

When working with the dynamic figure the students quickly became familiar with the 

drag mode and used it to position the bars inside the figure in order to generate different 

shapes. They were able to generate specific shapes such as the rhombus and isosceles 

triangle whose name and properties the students clearly already knew from what they 

had learned in mathematics classes. The students all clearly showed reasoning at Van 

Hiele level two which requires recognition of shapes as being defined by their 

conceptual properties (four pairs of equal sides in a rhombus, a line of symmetry in an 

isosceles triangle, etc). 

 

On analysing the data from session one I had identified several themes which may 

provide insight into the way the students conceptualised the shapes generated by 

dragging the dynamic figure. The dragging strategies used were connected to the 

intentions of the students, e.g. dragging bars straight into position to make a desired 

shapes and then making fine adjustments so that expected equal side and angle 

measurements indicated the properties of the shape. The students also talked of the 

shape as made of smaller triangles. They understood that to make a rhombus into a 

square they needed equal length bars.  
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When I reflected on the data from session one I realised that studying how the students 

dragged the dynamic figure into different shapes could provide some rich data to 

analyse. Furthermore, my objective of providing support for the students to develop 

inclusive relations between the rhombus and kite could be achieved through the task 

using the dynamic figure. I decided to ascertain whether the students would be able to 

classify the shapes by the relative positions of the two bars leading to a kind of 

hierarchical classification of the shapes which would suggest a development in their 

reasoning according to the Van Hiele levels. For example, when one bar in the figure 

bisects the other the shape generated is a kite. If the bisecting bar is moved so that it is 

bisected by the other bar then the figure changes into a rhombus. 

 

In summary, I decided to focus on the task using the dynamic figure in subsequent 

iterations of the study.  
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6 Iteration one: vertical and horizontal bars 

 

Iteration one took place in June 2010 with Tilly and Alice, and Adam and Jack, and in 

January 2011 with Colin and Terry and Gill and Sara. The students worked with the 

dynamic perpendicular quadrilateral which was based on 8cm vertical and 6 cm 

horizontal bars. In this iteration I focussed on the dragging strategies which the students 

used when generating different shapes. Emerging themes were: 

 

 The four dragging strategies observed in the pilot study and which will be 

formally described (and labelled) in this chapter 

 The connection between the dragging strategies and cognitive activity in the 

students, particularly perceptual properties of shape and intuitive use of 

symmetry 

 Preference for a vertical axis of symmetry. 

 

6.1 Objectives for iteration one 

 

By the end of the pilot study I had decided that my research would focus on students 

working with the task using the dynamic perpendicular quadrilateral as shown in figure 

6.1. The figure is based on an 8 cm vertical bar and a 6 cm horizontal bar which can be 

dragged inside the figure to generate different triangles and quadrilaterals. 

 

 

 

Figure 6.1 the perpendicular quadrilateral 

 

In the pilot study the students had been observed to use four distinct dragging strategies 

when they worked with the dynamic figure. The objective for this iteration was to 

ascertain whether different pairs of students would also use these strategies and whether 

these strategies were the only ones which were observed or whether other strategies 

might also be used.  
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 Exploratory dragging to find out which shapes can be made by dragging the 

dynamic figure. 

 Moving the bars straight into position to generate a desired shape. 

 Fine adjustments to the position of the bars in order to get expected equal 

measurements to be equal. 

 Dragging one bar intentionally through the middle of the other bar. 

 

 

6.2 Theoretical background: Drag mode and dragging strategies 

 

The drag mode acts as a mediator between the perceptual aspects (how students 

visualise a drawing and also how they perceive it through discussion and through use of 

artifacts) and theoretical aspects of geometrical figures (Arzarello et al, 2002). Thus 

dragging supports the movement between thinking at the perceptual level and the 

theoretical level. There are two main types of cognitive activity supported by dragging; 

ascending processes describe the movement from the spatio-graphical domain to the 

theoretical domain while descending processes describe the movement from the 

theoretical to the spatio-graphical domains (Laborde, 1999, Arzarello et al, 2002, 

Olivero and Robutti, 2007). Perceptual aspects have a connection with the spatio-

graphical domain in that a drawing of a figure (representing the theoretical object) may 

be perceived by a student who also operates on the drawing using measuring 

instruments or dynamic computer software. 

 

In chapter three, section 3.1.1, I described dragging modalities identified by Arzarello 

et al (2002). Here I make connections between some of those dragging modalities 

(wandering dragging, guided dragging, dummy locus dragging) and the four distinct 

dragging strategies which the students in this study have been observed to use. 

 

 Exploratory dragging to see what shapes can be generated from the dynamic 

figure is akin to wandering dragging (WD) and I will refer to it as that from now 

on. 

 Moving the bars straight into position to generate a desired shape is akin to 

guided dragging and it will henceforth be referred to as guided dragging (GD). 
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 Making fine adjustments to the position of the bars does not have a connection 

to the strategies listed by Arzarello et al. However, this dragging strategy is 

usually carried out with reference to the measures of sides and angles which are 

displayed on the screen. In this case it is necessary to refer to the work of 

Olivero and Robutti (2007) which describes strategies which students use when 

measuring whilst dragging. They described an example of guided measuring as 

dragging a generic quadrilateral into a parallelogram by looking at the 

measurements of lines or angles which ought to be equal. However, guided 

measuring is not exactly the same as making fine adjustments to the bars in the 

dynamic figure. In this case the students have generated a shape which is 

already very close to being accurate. They have dragged the bars to refine their 

positions so that the measurements indicate that the properties of the shape are 

upheld (or are so close that we might agree to ignore the difference). I have 

named the strategy where students make fine adjustments to the bars as 

refinement dragging (RD). 

 The fourth strategy maintains the property of symmetry of the dynamic figure. 

Later I will demonstrate from analysis of the recordings how students appeared 

to use a sense of symmetry when keeping one bar in the middle of the figure. 

Hence I have named this strategy dragging maintaining symmetry (DMS). 

When using this strategy the students were observed to drag the vertical bar 

through the middle of the shape so that it was the perpendicular bisector of the 

other bar. This strategy could be seen to be an example of dummy locus 

dragging because an object (a bar) is being dragged along a path or locus. 

However, Arzarello et al (2002) maintain that students do not usually realise 

that they are dragging along a locus and this is usually because the locus and the 

property are not obviously connected. In the dynamic figure dragging one bar 

along the perpendicular bisector of the other bar, results in the locus and the 

property being almost the same. 

 

Baccaglini-Frank and Mariotti (2010) provided a description of maintaining dragging 

see chapter three, section 3.1.1) which seems to be a closer fit to the fourth category 

observed with the dynamic figure. Maintaining dragging is the dragging of an object so 

that the DGS figure maintains a certain property and is undertaken by the student with a 
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specific intention to maintain that property. Hence there is more of the student‟s 

intention in maintaining dragging. It seems therefore that the fourth category has more 

in common with maintaining dragging but there are differences too. In maintaining 

dragging the property and the locus of dragging are not necessarily the same whereas 

they are in DMS.  

 

6.3 Process for iteration one 
 

6.3.1 Instructional goals 

 

As in iteration zero the students were given the GSP file containing the 8 cm vertical 

bar and the 6 cm horizontal bar and were asked to drag one bar over the other. I then 

instructed the students on how to join the ends of the bars and construct the interior of 

the shape thus filling it with colour. The task was to drag the bars to see what shapes 

they could make, identify the properties of the shape and then use the Measure menu to 

check side and angle properties. Another file contained equal length vertical and 

horizontal bars which the students used at the end of the session. With this file it is 

possible to make the same kinds of shapes as with unequal length bars, but the shape 

generated when the bars bisect each other is a square rather than a rhombus. 

 

6.3.2 Instructional starting points. 

 

The first two pairs of students who participated in iteration one were in year eight in the 

English school system and were assessed by their mathematics teachers to be of 

average attainment and achieving at five/ six of the National Curriculum for England 

and Wales (QCA, 2007 ). These students took part in the study in June 2010 and were 

consequently at the same point of their education as the students in the pilot study. The 

second two pairs of students, also in year eight and of similar attainment, took part in 

January 2011 and hence were five months behind in schooling compared to the others. 

The task had been designed so that the students, who had not used the software before, 

did not need to learn many of its features. They were asked to drag the bars and 

investigate what shapes they could make. When the students made a particular shape, 

they were asked to give their properties and then to check these using measurements of 
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sides and angles. In effect the task which the students undertook in iteration one was 

the same as that in the first session of the pilot study. 

 

6.3.3 Learning trajectory 

 

In this iteration I set up the task with the objectives that students would:  

 Drag the bars to generate different shapes.  

 Test the shape properties using the measurements of sides and angles.  

 Describe the relative positions of the bars in order to generate the shapes.  

 Suggest different sets of bars (lengths and angle between them) required to 

generate other shapes. 

I hoped to observe the students achieve the following: 

 Identify the properties of the diagonals needed to generate each shape which 

would correspond to reasoning at Van Hiele level two. 

 Recognise similarities within these properties and use these to devise 

classifications for groups of shapes, thus developing their reasoning towards 

Van Hiele level three. An example of this, given that the bars are already 

perpendicular, is that if one bar is the bisector of the other bar (in student speak 

this would be „if one bar cuts the other in half‟) then the generated figure is a 

kite. If both bars bisect each other then the generated figure is a rhombus and 

hence the rhombus is a special case of the kite family. 

 

6.4 Results and analysis of the sessions in iteration one 
 

Four pairs of students have undertaken this work. There were common themes throughout each 

of the sessions although the recordings from June 2010 were more helpful because there was a 

good dialogue between students and between students and researcher. The students from 

January 2011 were much quieter and the girls were so quiet that I was unable to transcribe their 

dialogue, although I was able to observe the episodes of dragging. 
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6.4.1 Coding the sessions using Transana 
 

After the pilot study I became more systematic in the way in which I coded and analysed the 

data. After each session the recording was imported into the Transana transcript and analysis 

software. I transcribed the dialogue and the on-screen activity to create a narrative of the 

session in a word processed document. I then created clips in Transana of every dragging 

episode. The clips were coded in Transana according to the dragging strategy employed, and 

each episode was represented in the visualisation window which can be used to give an overall 

picture of which strategies are used, when and for how long (see figure 6.3). The original 

narratives of each recording can be found on the included disk but the dragging episodes for 

Tilly and Alice‟s session are included below as an example. 

 

Table 6.2 indicates the use of dragging during the session with timings and a description of the 

girls‟ onscreen activity. 

 

Key (using the descriptions of dragging strategies given in section 6.2) 

WD Wandering dragging 

GD Guided dragging 

RD Refinement dragging 

DMS Dragging to maintain symmetry 

 

Table 6.1 Dragging strategies used by Tilly and Alice during their session June 2010.  

 

section time 

interval 

time dragging 

strategy 

narrative description 

General 

0.00-4.16 

00.42-00.48 6 seconds GD Drags BD over AC and achieves 

near symmetry 
3.15-4.10 55 seconds WD Students investigated what 

happened when they dragged the 

bars 

Arrowhead 

kite 

4.16-15.50 

4.18-4.22 6 seconds RD The students made an arrowhead 

 

The students attended to the 

measurements of the sides which 

changed as they dragged the bars 

around. They eventually realised 

that they needed to drag the 

vertical bar up through the middle 

of the shape. They dragged the 

vertical bar down to an isosceles 

triangle position then dragged 

10.04-10.27 23 seconds RD 

10.34-10.42 8 seconds RD 

11.01-12.41 100 seconds RD 

12.45-12.47  2 seconds   DMS 

12.50-12.58 8 seconds RD 

13.10-13.20 10 seconds RD 

13.20-13.24 4 seconds DMS 
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13.24-13.45 21 seconds RD down and then up, maintaining 

symmetry. 13.45-13.50 5 seconds DMS 

13.50-13.52 2 seconds RD 

15.14-15.17 3 seconds GD 

15.28-15.37 9 seconds GD   

Isosceles 

triangle 

15.50-20.48 

15.58-16.01 3 seconds DMS They dragged the bars into 

isosceles triangle position 

They dragged to adjust the side 

measurements 

16.41-16.47 6 seconds RD 

Right angled 

triangle 

20.48-26.11 

21.00-21.04 4 seconds GD They dragged to make a right 

angled triangle. 

They dragged the vertical bar to 

position the bars more accurately. 

Then later they dragged to get the 

angle to be closer to 90 degrees. 

21.17-21.20 3 seconds RD 

22.04-22.37 33 seconds RD 

Rhombus 

26.11-37.30 

26.30-26.34 4 seconds WD The students said “that‟s a 

diamond and that‟s a kite” as the 

vertical bar was moved up and 

down. 

First the students got the sides as 

close to being equal as they could. 

Later they would try to get all four 

angles equal but found that it 

could not be done. However they 

discovered that they could get two 

pairs of angles where each pair 

was close to being equal sizes. 

26.34-26.37 3 seconds DMS 

26.37-26.41 4 seconds GD 

26.46-26.56 10 seconds  RD 

26.59-27.09 10 seconds RD 

28.07-28.11 4 seconds RD 

28.17-28.20 3 seconds RD 

28.41-28.54 13 seconds RD 

29.00-29.11 11 seconds RD 

29.30-29.56 26 seconds RD 

32.41-32.48 7 seconds RD 

32.53-33.16 23 seconds RD 

33.52-33.59 7 seconds RD 

34.08-34.35 27 seconds RD 

Kite 

37.30-42.41 

37.41-37.47 6 seconds DMS They were asked to make a kite 

and dragged the vertical bar 

straight down in order to do this. 

They followed it by refinement 

dragging to get the required 

measurements equal. 

37.47-37.50 3 seconds RD 

40.02-40.18 16 seconds RD 

41.15-41.23 8 seconds DMS 

41.23-41.32 9 seconds RD 

 

Alongside dragging activity other on screen activities included the cursor pointing to 

the object that the student was talking about. For example, if the student was talking 

about equal lengths the cursor would often hover over the two line segments in 
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question. Another screen activity was clicking on points to highlight them so that the 

Measures tool could be used to generate the measurement. 

 

6.4.2 Visualisation window 

 

Figure 6.3 shows the visualisation window in the Transana file for the Tilly and Alice 

2010 recording.  

 

 

WD 

GD 
RD 

DMS 

 

Figure 6.2 The visualisation window showing the dragging episodes for the recording 

of the session with Tilly and Alice 

 

The top line indicates wandering dragging which occurred twice, at the beginning of 

the session for 55 seconds when Tilly and Alice were investigating which shapes they 

could make, and again for 4 seconds when they were investigating the rhombus.  

 

The next line down indicates the episodes of guided dragging which occurred five times 

throughout the session and lasted from 3 to 9 seconds. Tilly and Alice were deemed to 

have used guided dragging when they moved the bars into place straightaway in order 

to generate a specific shape. 

 

The third line shows the episodes of refinement dragging. This was the most common 

type of dragging activity and individual episodes of refinement dragging lasted for 

longer than any other type of dragging, from 2 to 99 seconds. However the shorter 

episodes of refinement dragging usually occurred within a time interval of bursts of 

refinement dragging so the student with the mouse was likely to be resting between 

short intervals in a longer session of refinement dragging. Since the students were 

trying to make the shapes they had generated to be close to accurate it is not surprising 

that they would spend time using this strategy. Often the student who had control of the 

mouse would use refinement dragging whilst we were in conversation and I only 
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noticed the use of guided dragging during these conversations when I played back the 

recording. 

 

The fourth line shows the episodes of dragging maintaining symmetry. There were 

seven such episodes and they lasted from 2 to 8 seconds. At the beginning I coded most 

of these episodes as guided dragging and only used the DMS code when the dialogue 

suggested that the students were deliberately trying to keep one bar in the middle of the 

other bar. On reflection I decided that the movement itself indicated a desire to keep 

symmetry a constant. Later in the project I observed the degree of accuracy which was 

maintained during the dragging maintaining symmetry episodes by looking at the 

displayed measurements on the screen at intervals during the dragging. They often 

indicated very fine levels of accuracy (e.g. expected equal measurements being within 

0.2 centimetres of each other) and all of the students participating in the study showed 

at least two episodes of very accurate DMS.  

 

The tables of dragging episodes and visualisation windows for the recordings from Jack 

and Adam (June 2010) and Colin and Terry (Jan 2011) have been included in appendix 

1.1 and 1.2. No patterns were observed in the tables of dragging strategies or the 

visualisation windows and for this reason I did not produce visualisation windows in 

later iterations. The use of dragging strategies clearly depends on the nature of the task 

which in this case is concerned with dragging the bars inside the dynamic figure. 

However it can be noted that students spend more time using refinement dragging, 

which they undertake whilst attending to the measurements of sides and angles 

displayed on the screen. Episodes of guided dragging and dragging maintaining 

symmetry occur in short bursts and are usually followed by episodes of RD. It seems 

that students attend to the positions of the bars or the holistic shape of the figure during 

GD and DMS. Wandering dragging has a different role as it is an exploratory activity 

which takes place at the beginning of the session or if a new file has been introduced. 
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6.5 Themes which emerged from the data. 

 

A number of themes emerged from the data. These have been described below and 

illustrated with examples from the data. Appendices 1.5-1.7 list some interesting 

episodes from the recordings which can be accessed from the session narratives and 

recordings included on the accompanying disk. 

 

6.5.1 The use of RD and DMS to generate a specific shape. 
 

There is a particularly interesting episode from 11.01-13.52 where Tilly and Alice made an 

arrowhead. The section from the visualisation window from this section has been enlarged and 

it can be seen that there were two short bursts of refinement dragging followed by a long 

interval of refinement dragging. Next, episodes of dragging maintaining symmetry were 

interspersed by refinement dragging. 

 

 

 

RD 

DMS 

 

Figure 6.3 A section from the visualisation window from figure 6.3 showing an episode 

between 11.01-13.52 indicating DMS interspersed with GD 

 

The first excerpt from the narrative (see figure 6.5) is taken from the hundred second 

time interval of refinement dragging illustrated by the longest purple bar in the 

visualisation window (figure 6.4). At first Alice, who had control of the mouse, lost 

sight of symmetry while attending to the Measures of the sides. Tilly gave her 

instructions to try and get the arrowhead to be more symmetrical. 
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Dialogue Screenshots 

Alice:  I don't think it's, Cos the line is 

like on a slant .... do you get what 

I mean. It's a bit... 

Tilly:  Oh that was right a minute ago. 

 Cause you've gone to that side 

more. You need to be in the 

middle and then move up. That's 

still a bit that side I think 

Alice:  It still looks wonky to me 

Tilly:  So move that way a bit, no the 

other way. Nearly got them two. 

We're try and aim for D and A 

first then B and A and BC. If you 

move that a tiny bit, the other way 

Susan:  So what are you trying to do, how 

are you trying to position BD? 

Tilly: Yeah we're trying to get BD in the 

middle of the shape 

Alice: A and  D and then D and C, more 

and like the same measurement. 

 

 

Figure 6. Tilly and Alice use refinement dragging to make an arrowhead 

 

The girls appeared to be using symmetry in order to make the shape more accurate. 

Tilly‟s comment about getting BD (the vertical bar) in the middle of the shape is 

followed by Alice‟s comment that the measurements of AD and DC will be more equal. 

Following this discussion, the girls decided to drag the vertical bar BD so that its end, 

point D, touched the mid-point of the horizontal bar. Then they dragged the vertical bar 

up and down from that position. So they used DMS in short spurts to move the vertical 

bar down to sit on the horizontal bar, followed by RD to get the bar in the exact middle, 

then more DMS to move the vertical bar down and then up to the arrowhead position 

with more RD afterwards. The on screen activity during this episode has been captured 

in figure 6.6.  
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Description of activity Screenshots 

They drag the vertical line so that its 

bottom point sits on the middle of the 

horizontal bar. 

 

They then adjust by fine dragging 

movements to get DA and DC as close 

as possible. In other words they are 

trying to put D in the middle of the 

horizontal bar AC. 

 

 

They drag the vertical bar down and 

adjust while attending to the measures of 

DA and DC 

 

 

They drag the vertical bar up 

 

 

 

Figure 6.5 Tilly and Alice drag the vertical bar up and down, dragging maintaining 

symmetry to move from an isosceles triangle, through a kite, to an arrowhead. 

 

Moving from isosceles triangle to arrowhead, back to isosceles triangle to kite took 9 

seconds. It seems from the dialogue that the focus of their attention was first on the 

figure and then on the measurements. This episode was the one which first alerted me 

to the possibility that the girls were using symmetry to guide them in positioning the 

bars. They have positioned the vertical bar with its end on the centre of the horizontal 

bar and moved it up, trying the keep it central. The focus is on the relative positions of 

the bars at this point, rather than on the measurements displayed on the screen. 
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6.5.2 The use of displayed measurements and refinement dragging 
 

With the measurements displayed on the screen, continually updating while the figure 

was dragged, the students modified or refined the figure so that the expected equal sides 

and angles were achieved (or very close). When the students corrected the figure in this 

way they typically used small movements so as to make the displayed measurements 

indicate, for example, the perfect kite. Hence the students appeared to be refining the 

particular shape they had generated and so I have called this strategy refinement 

dragging. Refinement dragging is an activity which bridges the gap between 

experimental geometry and theoretical geometry allowing students to check and review 

their knowledge of shape properties and is connected to reasoning at Van Hiele level 

two. Refinement dragging often occurred after students had used GD or DMS so that 

the bars were already in an approximate position needed to generate the shape. For this 

reason refinement dragging is different from guided measuring described by Olivero 

and Robutti (2007) which is the attention to displayed measurements in order to guide 

the students in dragging a generic quadrilateral into a specific shape. 

 

When using RD the students were not always able to make expected equal sides and 

angles to display exact equal measurements. However the measurements tended to be 

close; within a 0.1 cm difference for expected lengths or within 2 degrees difference for 

expected equal angles. The students appeared to be happy that they had created a shape 

which was close to the one they were trying to make. It is important to note that I 

encouraged the students to accept close measurements as indicating that it should be 

possible to generate the perfect shape. It is quite difficult to use the computer mouse to 

adjust the position of the bars in the figure in order to get the measurements exact. In 

iteration one the computer files were set up so that measurements were given to 2 

decimal places. This degree of accuracy proved too much for the students whose 

understanding of place value was not sufficiently developed for them to understand that 

a difference of, say, 0.08 cm is negligible. In the example below which is taken from 

the recording of Tilly and Alice, Tilly read 8.60 and 8.52 as having a difference of 8, 

(rather than 0.08) as it would be a difference of 8 pence if it were money instead of 

length. We had previously had a discussion of how to work out the differences after the 

decimal point which us why Tilly said „keep on doing that‟ when I pointed out that a 

difference of 0.08 cm is tiny. 
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Susan: So which sides should be the same? 

 

Tilly: Erm BA and BC 

 

Susan: Are they the same? 

 

Tilly: Yeah only eight out 

 

Susan: ... is that 8.60 and 8.52 so it's actually 

 

Tilly: eight 

 

Susan: point 08 so that's even better 

 

Tilly: yeah keep on doing that 

 

In later iterations I changed the degrees of accuracy in the computer files to 0.1 cm for 

length and 1 degree for angles in order to address this difficulty. 

 

6.5.3 Refinement dragging sometimes helped students to review their knowledge and 

understanding of shape properties 
 

In the following excerpt Adam and Jack generated a rhombus and then tested their 

understanding of its properties. It appeared that when they were in primary school they 

had been taught that the rhombus is a „squashed square‟. The result of this analogy was 

that students commonly thought that all the properties of a square would be maintained 

in the rhombus including the property of equal angles. Here Adam and Jack confirmed 

that they could generate a rhombus which has equal sides (or at least sides of 5 ± 0.03 

cm which I encouraged them to consider as close as makes no matter). Next they tried 

to get four equal angles but readjusted their perceptual understanding of rhombus 

properties when they found they could make two pairs of opposite equal angles. 
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Dialogue Narrative and screenshots 

 

Susan: Can you move the bars so 

that you can make a 

rhombus.  

Jack: Just move the AC bar into 

the middle 

Adam: OK 

Susan: The middle of what? 

Jack: The middle of the er the B 

and D bar 

Susan: So you've made a rhombus 

how will you check that 

you've actually made one? 

Jack: All the lines around the 

outside are the same 

Susan: So have we actually got 

four lines the same 

length? 

Adam: No, they're slightly off 

cause I'm looking at them 

four and  

Jack: I think the line of AC needs 

to be moved further up the 

line BD.  Keep it a bit, 

erm, go further. As when 

the er AB erm 

measurement goes down 

the CB measurement goes 

down as well. 

Adam: I think I've got it closer 

Jack: Yeah 

Susan: They‟re very close to five  

 

Jack: When you look at the 

measurements of the AD 

and the CD they‟re 

exactly point zero one 

away. The same as the AB 

and CB are; point zero 

one 

Susan: Yeah that's really good OK 

so you've got four sides 

which we'll call the same 

because they're extremely 

close aren't they.  

Susan: Anything else about a 

 

 

Adam dragged the bar AC up to the middle of the bar 

BD. He paused and then dragged to adjust the position to 

get it more accurate. I cannot be sure but he may have 

attended to the measures while doing this. 

 

 

 
 

 

 

 

In between these two screen shots there were four bursts 

of refinement dragging activity lasting a total of 58 

seconds as Jack gave Adam instructions on how to move 

the bars! 

 

 

 
 

 

 

 

 

The boys had to measure one more angle to complete the 

four, which was angle DAB and they put the 

measurement next to that of angle DCB which they had 

identified as being equal. 
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rhombus that's true that 

we can check? 

Adam: All angles are the same 

Susan: Have you got some angles 

you've already measured 

on there?  

Adam: Yeah 

Susan: What about the angle at the 

top, the angle at B. What's 

the three letters that 

would give the angle?  

Adam: ABC  

Susan: What does that measure? 

Adam and J: 74.17 

Susan: What would be the angle 

that should be the same as 

ABC? 

Jack: Be CDA  

Adam: Yeah that's right. It's close 

Susan: It's close. Right so you've 

said they should all be the 

same so are the other two 

seventy something as 

well? 

Jack: No the other one would be 

the C measurement which 

is DCB is one hundred 

and six 

Adam: It would be about the same 

as angle A 

Jack: Quite close, both those are  

Adam: Opposite angles need to be 

the same  

 

 

 
m<COA=73.31 

m<ABC=74.17 

m<DCB=106.07    m<DAB=106.45 

 

The screen shot of the angle measurements are rather 

fuzzy so I have copied it above.  It can be seen that the 

two opposite obtuse angles DCB and DAB are within 

one degree of difference and the two opposite acute 

angles CDA and ABC are within one degree of 

difference. 

 

 

 
m<COA=73.31 

m<ABC=74.17 

m<DCB=106.07 

 

 

Figure 6.6 Adam and Jack review the side and angle properties of a rhombus 

 

Adam and Jack were able to get the sides of the rhombus to be very close, within 0.03 

cm of the 5 cm which would indicate an accurate rhombus. It can be seen that I 

encouraged them to accept this as being close enough and the boys did not appear to 

worry about not being spot on with the measurements of the sides. It is as if they were 
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prepared to accept that being close indicated it would be possible to make an accurate 

rhombus in a perfect world. 

 

When the boys considered the angles, they at first expected all four of them to be equal. 

However when they tried to make the angle measures equal they were unable to do so. 

This caused them to rethink their assumptions and they were able to make opposite 

pairs of angles (close to) equal and to revise their understanding of the properties of the 

angles in a rhombus. Hence the use of refinement dragging in this case confirmed the 

property of equal sides but caused Adam and Jack to revise their perceptual 

understanding of the angle properties of a rhombus. Refinement dragging thus appears 

to support and strengthen reasoning at Van Hiele level two which deals with the 

understanding of shape as having a collection of properties. 

 

6.5.4 An episode of guided measuring 

 

Whilst I have asserted that the students participating in iteration one used the four 

dragging strategies described there was an episode where Adam and Jack appeared to 

be using guided dragging in the way in which Olivero and Robutti (2007) describe it, 

i.e. dragging an object whilst attending to the measurements. Adam and Jack decided 

they would try to make an equilateral triangle which is impossible using the 

perpendicular 8 cm and 6 cm bars. The excerpt from the recording with commentary 

shows what they tried to do. The screen shots indicate how the boys used guided measuring 

to move bar AC down bar BD maintaining a triangle shape in their quest to find the equilateral 

triangle position. 
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Dialogue Screenshots 

 

Jack: Yeah, maybe if you move the middle line a bit further 

down 

 

Adam: I think a bit further up would do it. 

 

Jack: Change the angle. 

 

Adam: Where, you need to go down. We need em to all be the 

same, all need to be sixty. I don't think that's gonna 

happen because they're gonna get to sixty before the 

other one. 

 

Adam: Keep dragging that down until it gets to D  

 

Jack: If you drag that one down the ABC one is going down, 

because the angle on that, and then CDA is going up 

 

Adam: Every time you drag that down that gets smaller but 

that gets smaller faster 

 

Susan: Which one's getting smaller faster then? 

 

Adam: The ABC 

 

Susan: Mmm, 41 now isn't it  

 

Adam: How about, Jack, try and move it up, see if you can 

get them all the same angle. See if that will work. 

Don't think it will 

 

Jack: No because the DCB is going up as well as the ABC 

 

Adam: Oh yeah. I don't think we can make a equilateral. 

 

 
 

 

 
 

 
 

(These screenshots are not the 

originals, which were too fuzzy to 

be presented clearly). 

 

 

Figure 6.7 An example of guided measuring and situated proof that an equilateral 

triangle could not be made from the figure 

 

In lines 6 to 13 Adam and Jack were reasoning about the possibility of generating an 

equilateral triangle whilst attending to the measurements of the angles. They realised 

that when angle B increases, angle D decreases and vice versa. This was noted by Jack 

mADC = 57

mBCD = 67

mABC = 55

D

CA

B

mADC = 77

mBCD = 60

mABC = 41

D

CA

B

mADC = 90

mBCD = 53

mABC = 37

D
CA

B

mADC = 55

mBCD = 67

mABC = 57

D

CA

B



123 

 

in line 6 when he said that dragging the bar down meant angle ABC decreased as angle 

CDA increased. Angles B and C increase or decrease together when bar AC is below 

the mid-point of BD with angle B changing at a faster rate. (Angles D and C increase or 

decrease together when bar AC is above the mid-point of BD). This is what Adam 

referred to in line 7 when he said “every time you drag that down that gets smaller but 

that gets smaller faster”. Reasoning about the figure while dragging, and focusing on 

the displayed measurements, the boys had devised an informal situated proof of why an 

equilateral triangle cannot be made using the 8 centimetre and 6 centimetre 

perpendicular bars. By looking at the measurements of the angles they could see that 

there would never be a situation when all three angle measurements would be 60 

degrees simultaneously. In this way the task and the software have allowed them to use 

practical experimental geometry to devise some theory, albeit situated in the task. 

 

6.5.5 The evidence for Dragging maintaining symmetry 

 

When, at first the students dragged the dynamic figure between shapes it appeared that 

they were simply using an efficient form of guided dragging (eg to turn a kite into a 

rhombus) by dragging one bar through the middle of the other. Sometimes this 

dragging strategy was accompanied by the students explaining what they were trying to 

do, eg “we're trying to keep BD in the middle of the shape” (see Tilly‟s comment in 

figure 6.5). This kind of dialogue suggests that the students were dragging with the 

purpose of keeping one bar as the bisector of the other and also that they were aware 

that symmetry was being maintained.  

 

A close look at the measurements which were displayed on the screen during these 

particular dragging episodes revealed further evidence which supports the hypothesis 

that the students were purposefully maintaining symmetry while dragging. Stopping the 

on-screen recording at intervals and checking measurements of sides and angles which 

could be expected to be equal (if the dynamic figure maintained its symmetry) revealed 

a high degree of accuracy which indicates that the dragging action was keeping (near) 

symmetry constant. In the first iteration of the study four pairs of students worked with 

vertical and horizontal bars. Each pair were observed to use DMS during their recorded 

sessions and in each session there were at least two episodes where there is sufficient 
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evidence to make a case that DMS was indeed occurring. These episodes are listed in 

appendix 1.4 and can be accessed from the original transcripts included on the 

accompanying disk. What becomes apparent from these data excerpts is that the 

students developed the symmetrical dragging as they gained experience working with 

the figure. The best examples are usually towards the end of the sessions. An example 

is given below (figure 6.7). 

 

Gill and Sara were the students who I interviewed in January 2011 and who were so 

quiet that I gave up trying to transcribe their session. However, the recording showed 

their dragging activity and this good example of DMS. Gill and Sara had a kite on the 

screen (see Figure 6.7 for a series of screenshots taken during a six second episode of 

DMS). They changed the figure from a kite through a rhombus and an inverted kite to 

an arrowhead. The congruent sides were with 0.2 cm of each other and the congruent 

angles (A and C) were almost always within 2 degrees of each other. These 

measurements show a strong indication that these students were demonstrating DMS.  
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Figure 6.8: Gill and Sara use DMS with high levels of accuracy 

 

A further DMS episode taken from the recording of Adam and Jack has been included 

in appendix 6.3. 
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A combination of student comments about keeping one bar in the middle of the shape 

and the accuracy with which students drag one bar through the path of the 

perpendicular bisector of the other bar (when moving between kites, rhombus, isosceles 

triangles and arrowheads) has led me to hypothesise that students use their holistic 

understanding of the general shape and its symmetry when using this dragging strategy. 

Another (rather subjective) source of evidence comes from my own perception of 

shapes and the way in which I see the symmetry of the whole shape. Although it is 

possible that I am untypical of the human race in this respect, I suspect that humans do 

have an instinctive perception of symmetry and this appears to be confirmed by the 

literature (Darwin, 1887, Bornstein et al, 1981, Palmer, 1985). 

 

6.5.6 Symmetry 

 

The students had a working concept of symmetry as a visualisation of folding one half 

of the shape over the other half. In the excerpt below Alice and Tilly explain how they 

understand symmetry, 

 

Alice: I've done it before but, I'm trying to think. Did we trace it and then checked if it there 

were lines of symmetry? 

 

Susan: When you traced it and you were checking lines of symmetry what did you do? 

 

Tilly: Traced half of it and folded it over. 

 

Susan: Oh 

 

Alice: And then the lines were like you could see whether the lines were the same 

 

Susan: Mmm. So what did that prove then when you folded it in half? 

 

Tilly:  That it had a line of symmetry because it was the same. 

 

 

In the following excerpt from the dialogue Jack and Adam discuss the symmetry of the 

rhombus. 
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Susan: So how many lines of symmetry does that shape have? 

 

Jack: Is it just two 

 

Adam: No it aint .... None 

 

Jack:  It has two if you split it down from BD line left and right 

 

Adam: But if you look at it the other way, so if you like switch the shape round and you try and 

turn it that  way then it won't work. That that way I don't think it'd work.  

 

Jack: But if you folded B down to D, that would have a line of symmetry. If you fold it C to A it 

would be the other line of symmetry  

 

Adam: Oh yeah 

 

The students appeared to use symmetry to decide which side lengths and angles in the 

figure were equal. Although they have been taught side and angle properties of 

quadrilaterals and triangles, they often picked out some angles inside the shape as being 

equal, which would not have been taught to them. This suggests they have used 

symmetry to identify them as being equal. 

 

In the dialogue below Jack was able to say which angles should be equal if the two 

triangles either side of the line were equal and the cursor pointed to both of the angles 

at point C (i.e. angles BCA and DCA). An understanding that AC needed to be the line 

of symmetry must have underpinned this. Although he would have been taught that 

isosceles triangles have two equal sides and two equal angles,  it is unusual (from my 

own experience in the classroom) to hear year 8 students engage in reasoning about any 

other congruent sides or angles inside an isosceles triangle. 

 

 

 

 

 



128 

 

Dialogue Screenshot 

 

Susan: Is it possible to, to make that into a 

symmetrical triangle so that the 

two triangles either side of the line 

are the same? What would have to 

be true for that to happen? 

 

Jack: These two angles, the angle on the 

opposite side of the line C, would 

have to be the same 

 

 

Figure 6.19 Jack uses symmetry to identify two equal angles 

 

6.5.7 A preference for a vertical axis of symmetry 

 

Another observation was that the students seemed to have a preference for the 

orientation of the shapes which privileged vertical symmetry above other 

considerations. This may have been because, from primary school, they had been 

introduced to shapes drawn in a common orientation (ie squares sitting on one side, 

triangles sitting on the base, etc). On the other hand it may be (as Pinker, 1997 

suggests) that a preference for vertical symmetry is a human trait and therefore we 

prefer to orient shapes so that they have vertical symmetry. We do, after all, live in a 

world where vertical symmetry is dominant in objects such as door frames, windows, 

arches, etc. It cannot be discounted that the vertical bar was also the longer of the two 

which may be a reason why it was more dominant. This would be tested in iteration two 

by giving the students a longer horizontal bar and a shorter vertical bar. 

It could be argued that the students were able to use symmetry to position the bars 

because the figure contained vertical and horizontal bars and it may be natural to drag 

vertically and horizontally. In iteration two I decided to test the notion of symmetry and 

frame of reference by designing files containing bars which remain perpendicular but at 

an angle to the vertical. 
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6.5.8 Properties of shapes and inclusive classifications 

 

During the sessions it was clear that the students had a secure knowledge of the 

properties of 2D shapes although they did not demonstrate an understanding of the 

minimum properties required to define any shape. There was no evidence that the 

students were able to describe an inclusive classification of the shapes. This indicates 

that they were able to reason at Van Hiele level two but not yet at level three.  

However there was some evidence that they could see a connection between a rhombus 

and a square. As in iteration zero they were able to suggest that to make a square they 

needed equal length bars which crossed at their mid-points. This might indicate that the 

students had the potential to move towards level three reasoning (Van Hiele, 1986). 

 

6.6 Conclusions 

 

6.6.1 Connecting the observed dragging strategies to students’ geometrical reasoning. 

 

By the end of the analysis for iteration one I felt confident that I had observed four 

dragging strategies which were consistently used by all the students who had so far 

worked on the task. These dragging strategies also appeared to be aligned to the way 

students reasoned about the shapes they generated from the dynamic figure. 

 

WD is an exploratory activity when students use random dragging to see what happens. 

This was an infrequently used strategy and I have not studied it in any depth. 

 

GD tended to be used to put the bars straight into a specific orientation and required a 

holistic perception of the shape in order to do this. Some students dragged the separate 

bars into a symmetrical position at the beginning of the session when there was no 

„covering‟ on the shape. This would seem to indicate a preference for symmetrical 

arrangements. At this stage in the research I began to consider that GD uses reasoning 

at Van Hiele level one. This is not to suggest that GD is a less sophisticated dragging 

strategy than the others. Rather GD appears to use a holistic perception of the shape of 

the figure and the position of the bars needed to generate the shape. 
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RD was the strategy which was used more than the others and for longer periods. 

Clearly this strategy arises from the nature of the task but it was surprising how good 

the students were at using RD and how patient. They were also happy to accept a shape 

whose expected equal side and angle measurements were close enough even if not 

exact. It has to be said that I encouraged them to be happy with a close enough shape 

(albeit very close since the human eye could not have appreciated the difference). RD 

activity helps students to revise and review their knowledge of shape properties and so 

is connected to Van Hiele level two reasoning. 

 

DMS was the strategy which I found most intriguing and, at first, I was cautious about 

my interpretation of the intuitive use of symmetry when dragging. The best way to 

appreciate this strategy is to view the recordings and some useful episodes are indicated 

in appendix 1.3. For the reasons given earlier in this chapter I am convinced that 

students do use a sense of symmetry whilst using this dragging strategy.  

 

6.6.2  Could the use of DMS lead to the concept of the ‘dragging family’? 

 

As the students appeared to use DMS to purposefully drag one bar so that “it crossed 

the other one in the middle” the figure moved between kites, rhombus, isosceles 

triangles and concave kites (which the students knew as arrowheads). These shapes 

could be said to form a „dragging family‟ whose common property is that one diagonal 

is the perpendicular bisector of the other (the isosceles triangle can only be said to be a 

member of this family in the context of Dynamic Geometry, not in a static geometry 

environment). I wondered if the use of DMS could facilitate a development in students‟ 

understanding of inclusive relations based on the dynamic figure (an example of 

situated abstraction (Noss and Hoyles, 1996)) given the right task and the right 

questions. If so then this could be the trigger to move students‟ reasoning towards Van 

Hiele level three. In the next iteration I explore whether the task could be modified to 

encourage the students to develop inclusive classifications thus indicating development 

towards Van Hiele level three. I also test the questions regarding a preference for 

vertical symmetry and whether working with a figure in a different orientation would 

affect the outcomes. 
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7 Iteration two: perpendicular bars at a different orientation 
 

In iteration one I confirmed the observation of the four distinct dragging strategies 

which participating students used when working with the dynamic figure and connected 

these to the first three Van Hiele levels. I postulated that use of DMS has the potential 

to develop students‟ reasoning at Van Hiele level three and in particular the 

development of inclusive relations between the rhombus and the kites which can be 

generated from the dynamic figure. However I had seen no evidence that students were 

developing the concept of inclusive relations. Since the aim of the research study was to 

identify an educational intervention which can encourage the development of a 

hierarchical classification of 2D shapes, the remainder of the study focused on the use 

of DMS. However I also looked for other themes observed from the data in iteration 

one, in particular the way in which students in the study described and used symmetry 

and whether the students would notice similarities in the positions of the bars needed to 

generate the shapes with special properties. 

 

7.1 Objectives for iteration two. 

 

Iteration two specifically addresses the issue of whether students would continue to use 

all four dragging strategies, but especially DMS, when the bars were in a different 

orientation on the computer screen, i.e. a longer horizontal bar and shorter vertical bar, 

and perpendicular bars oriented at an angle to the vertical. 

 

In iteration two I also tested whether the task using the dynamic figure could be used 

with a whole class. I took the opportunity to use the computer files containing the 

original vertical and horizontal bars with four different classes; two from School A and 

two from School B (a brief account is included in appendix 2.1) and then worked with a 

pair of students from each class with the bars oriented at an angle. However I did not 

make any recordings from the whole class lessons in iteration two. In hindsight this 

may have been a missed opportunity but at the time I was keen to interview pairs of 

students from these classes who had experience with the vertical and horizontal bars 

before they worked with the bars in a different orientation. 
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7.2 Theoretical background: Symmetry and frames of reference 

 

The computer screen has its own frame of reference: vertical and horizontal axes 

parallel to the edges of the screen. Within this frame of reference the students had 

hitherto appeared to prefer shapes with vertical symmetry and to a lesser degree shapes 

with horizontal symmetry. In iteration two this would be tested by giving the student 

subjects a file where the horizontal bar is longer than the vertical bar (see figure 7.1). 

This would test whether the preference was for the vertical axis or the axis with the 

longer length bar.  

 

Figure 7.1 The figure with an 8 cm horizontal bar and 6 cm vertical bar 

 

The second task file had oblique perpendicular bars to test whether the students used 

symmetry to help them position the bars when they could not use the vertical to guide 

them (see figure 7.2). My hypothesis was that the students would continue to use the 

concept of symmetry to help them position the bars inside the shape. 

 

 

Figure 7.2 The figure with perpendicular 8 cm and 6 cm bars at an angle to the vertical. 

 

Pinker (1997) suggests that when humans look at objects which are orientated away 

from the vertical axis then they use a frame of reference which is local to the object. 

This is actually very helpful to us in recognising a multitude of objects. If we had to 

memorise each object in all possible orientations it would require a large memory store. 

Instead we store a memory of each object in a typical orientation and when we 

encounter that object we are able to recognise it by mentally rotating the object into its 

typical orientation (Pinker, 1997). This is only a simplification of what humans do 

when we encounter and recognise objects which may occur in different sizes and 
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proportions (Pinker gave the example of a suitcase which could have different lengths, 

widths and heights, rounded ends or square ends etc). 

 

Cooper and Shepard (1986, cited in Pinker, 1997) showed that when subjects were 

shown letters from the alphabet, which had been rotated from their typical orientation, 

they took longer to recognise letters which were rotated furthest from the upright 

position. It could be surmised from this that humans do rotate mentally until they 

perceive the object in the typical orientation and that this may be adding to the 

cognitive load (accounting for the longer time taken to recognise the letters in Cooper 

and Shepard‟s experiment). 

 

If students in my study did use DMS when the bars were oriented at an angle I was 

interested to see whether this dragging would be as accurate as it had been with the 

vertical and horizontal bars given that they may experience a greater cognitive load 

with the task. 

 

7.3 Process for iteration two 

7.3.1 Instructional goals 

 

The students worked with two Geometers Sketchpad files. One file contained the 6 cm 

vertical bar and the 8 cm horizontal bar, so the figure would be at a ninety degree 

rotation from the figure which the students had worked with in the whole class lesson. 

Figure 7.3 shows a rhombus using this file. 

 

Figure 7.3 A rhombus generated from the horizontal bar and the vertical bar 

 

The second file contained the 8 cm bar oriented at 60 degrees to the vertical and the 6 

cm bar oriented at 30 degrees to the vertical. Figure 7.4 shows a kite using this file. 
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Figure 7.4 A kite generated from perpendicular bars oriented at an angle to the vertical 

 

As in iterations zero and one the students were given the computer file with the bars 

separately and were asked to drag one bar over the other. I then instructed the students 

on how to join the ends of the bars and construct the interior of the shape thus filling it 

with colour. The task was to drag the bars to see what shapes they could make, identify 

the properties of the shape and then use the Measure menu to check side and angle 

properties. I also asked the students to describe how the bars were positioned in the 

shape. I anticipated that the students might begin to develop their reasoning towards 

Van Hiele level three in particular developing an understanding of inclusive relations 

between kites and rhombus and being able to deduce some properties from others. 

 

7.3.1.1 Developing inclusive relations 

 

 I hoped that the students would notice that there was a common property of the bars in 

the kite, isosceles triangle and arrowhead in that one bar always crossed the other at its 

mid-point and that the bars in the rhombus crossed at both their mid-points. Making 

these observations might lead the students to notice the family of shapes where one bar 

crosses the other at its mid-point and that the rhombus is a special member of this 

family. 

 

Another question I asked was “how many kites is it possible to make?” I wanted to 

know whether students could identify that there should be an infinite number of kites in 

which case I expected that the suggestion that the one position within the kites, which 

generates a rhombus, would lead them to consider the rhombus as a special kite. 

7.3.1.1 Deducing some shape properties from others. 

 

When students generated shapes which had symmetry I asked questions such as “if you 

imagine folding the shape along the line of symmetry, which side would fold onto 
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(AD)?” In asking this type of question I was trying to ascertain whether the students 

would connect line symmetry with properties of equal sides and angles.  

 

7.3.2 Instructional starting points. 

 

The four pairs of students who participated in iteration two of the study in June 2011 

were assessed by their mathematics teachers as achieving at levels five/ six of the 

National Curriculum for England and Wales (QCA, 2007 ). Two pairs from School A, 

Tara and Ruth, and Dave and Evan, were in a class for high attaining students in year 

seven and two pairs from School B, Kate and Jane, and Aftab and Rupen, were in a 

class for middle attaining students in year eight. The year seven students clearly had 

one less year of schooling than their year eight counterparts which may have meant that 

they had learned less about shapes and their properties. However they were in a class 

which had been identified as one where the students would be challenged to make 

faster progress than their peers. I had not chosen to work with year 7 students since it 

would have been more consistent to work with students from year eight whose teachers 

identified them as having average attainment. However, this was a case of taking 

whichever opportunity was offered as the mathematics department in the School A was 

keen for me to work with their year seven „top sets‟. 

 

Each pair of students had already worked with the dynamic figure in a whole class 

setting using the 8 cm vertical and 6 cm horizontal bars. This meant that they were 

already familiar with the task and the shapes which could be generated using the 

dynamic figure. In this iteration they would work with bars oriented differently so that I 

could test whether the orientation of the figure had any effect on the students‟ activity 

during the time they worked on the task. In the whole class lessons I had observed that 

students were able to name triangles and quadrilaterals and list their properties and I 

felt confident that they would be able to manage the task in pairs. 
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7.3.3 Learning trajectory 

 

In this iteration I set up the task with the objectives that students would:  

 Drag the bars to generate different shapes.  

 Test the shape properties using the measurements of sides and angles.  

 Describe the relative positions of the bars in order to generate the shapes.  

 Observe that when if one bar is dragged so that it always crosses the mid-point 

of the other bar the default shape is a kite and that there are special positions 

along this dragging journey which generate the rhombus and isosceles triangles. 

I hoped to observe the students achieve the following: 

 Identify the properties of the diagonals needed to generate each shape which 

would correspond to reasoning at Van Hiele level two.. 

 Recognise that it is possible to generate an infinite number of kites, that the 

arrowheads are kites, and that the rhombus is a special version of a kite made 

when both bars cross at their mid-points. These last two points would indicate 

development towards reasoning at Van Hiele level three. 

 

7.4 Results and analysis of the sessions in iteration two 

 

Each of the four sessions was recorded and imported into Transana. The sessions were 

transcribed into a word processing document containing three columns: the dialogue 

between the students and myself, a description of the on-screen activity and thirdly a 

narrative account giving an overview of the sessions. The original 

transcription/descriptions can be accessed from the accompanying disk. A table of 

dragging activity and a table of episodes for each recording are included in appendix 2. 

A number of themes emerged from the data. These have been described below and 

illustrated with examples from the data.  

 

7.4.1 The use of Guided Dragging, Refinement Dragging and Dragging Maintaining 

Symmetry to generate a specific shape. 

 

As can be seen from the tables of dragging activities in appendix 7.2, the students in 

iteration two used the same dragging strategies that the students in earlier iterations had 
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used. This was as true for the perpendicular bars oriented at an angle as it was for the 

horizontal and vertical bars.  

As in previous iterations students dragged the bars using GD or DMS to make a 

specific shape such as a rhombus or kite and then used RD to adjust the bars whilst 

focusing on the displayed measurements of sides and angles. 

 

7.4.2 The evidence for Dragging maintaining symmetry 

 

Appendix 2.6 shows a table of DMS episodes in both computer files and the degrees of 

accuracy within which it was used. Some students, Tara and Ruth, and Aftab and 

Rupen were less accurate in their use of DMS when the bars were at an angle. Dave and 

Evan, and Kate and Jane achieved better accuracy as they became more familiar with 

the bars at an angle. 

 

7.4.3 Symmetry when placing the bars together 

 

At the beginning of their work with each computer file the students were presented with 

2 bars which were separate from each other and were asked to drag one bar over the 

other. In each of the four pairs the student with the mouse dragged the bars so that the 

arrangement was reasonably symmetrical. By using the term „reasonably symmetrical‟ I 

wish to imply that the bars looked as if they had been arranged symmetrically but they 

were not exactly accurate in this regard (if sides and angles were to be measured). The 

students arranged the bars as for two kites (year 8 boys and girls) and two rhombuses 

(year 7 boys and girls). (The year 7 girls even used refinement dragging to make their 

bars spot on by reference to the angle measurements which were displayed on the 

screen, see figure 7.5). Of course, it could be argued that they had learned to expect 

symmetrical shapes from their work in the previous sessions. However, all students 

were observed to place the bars reasonably symmetrically in the other iterations. 
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Figure 7.5 Kate and Jane dragged one bar over the other and referred to displayed angle 

measurements to make the bars symmetrical. (The arrow indicated the cursor on the 

screen). 

 

7.4.4 A preference for shapes with a vertical axis of symmetry 

 

The students generated more shapes with vertical symmetry than horizontal symmetry 

in the file with the 8 cm horizontal and 6 cm vertical bars (see transcripts for iteration 

two on the accompanying disk). An example is shown in figure 7.6. This would 

indicate that the vertical axis is preferred even when it is shorter than the horizontal axis 

and resulted in squat shapes such as the kite below. 

 

 

Figure 7.6 A kite with vertical symmetry. 

 

7.4.5 Using symmetry to deduce other properties of the shape. 

 

When trying to make a symmetrical shape students often talked about symmetry as a 

folding action and cutting a shape in half (e.g. section 6.5.6). I tried to use this to see if 

Tara and Ruth would deduce equal sides and angles by imagining the effects of folding 

a shape in half. In the following excerpt Tara was able to identify which side-lengths 
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and angles in the rhombus would sit together if the rhombus were folded along a line of 

symmetry, although she needed a lot of input from me. 

 

Dialogue On-screen activity 

 

 

Susan: Can you tell me anything about 

symmetry of a rhombus? 

Tara: It's got two lines of symmetry. 

Susan: So which are they, can you label 

the lines of symmetry? 

 

 

 
The girls see that the bars are the lines of 

symmetry. I try and work with this to see if they 

can use reasoning about symmetry to identify 

equal sides and angles.  

 

Tara: This one  

Susan: That's AC isn't it. 

Tara: Yeah and BD 

 

 

She clicks on and off the bar AC 

She clicks on and off the bar BD 

Susan: So if AC's the line of symmetry 

which line would sit on AD if 

we folded it? 

Tara: If we folded AC? 

Susan: If you fold it over AC what line 

would sit on AD? 

Tara: Erm, AB 

 

 

I used the analogy of folding because other 

students at this school have thought of line 

symmetry through folding one half of a shape on 

the other. 

Here I try to get the girls to think why symmetry 

of a rhombus leads to equal sides. 

 

Susan: So, they'd have to be the same 

size wouldn't they. 

Tara: Oh yeah 

Susan: And what, can you tell me two 

other sides which sit on each 

other? 

 

Tara: BC and CD 

Susan: And if the line AC was the fold 

line which angles have to be 

equal? 

Tara: Er, B and D 

Susan: OK, and are B and D equal? 

Tara: It looks like it, yes. 

Susan: What are they? 

Tara: Seventy four, seventy four 

 

 

 

The girls can clearly visualise the results of a 

folding. 

 

Figure 7.7 I encourage Tara to use symmetry to identify equal sides and angles 
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It can be seen from the aforementioned excerpt that Tara had not previously linked 

symmetry to the properties of equal sides and angles although, when prompted, she 

could identify sides and angles which would sit together when folded. 

 

7.4.6 Deducing that a square needs equal length bars 

 

As in other iterations the students in iteration two realised that they would need equal 

length perpendicular bars in order to make a square. However there was no evidence 

that they could explain why this was. Kate and Jane told me that they could not make a 

square with the 8 cm and 6 cm perpendicular bars because the bars were not the same 

length (lines 113-117 in the transcription). Later, when Kate and Jane worked with the 

unequal bars at an adjustable angle they reported that they could not make a rectangle 

because they would need equal length bars (lines 273-274 in the transcription). 

 

7.4.7 Properties of shapes and inclusive classifications 

 

The kite is the default shape which is generated when one bar is the perpendicular 

bisector of the other bar. I wanted to ascertain whether the students could appreciate 

that most of the time they were generating kites, with the rhombus and isosceles 

triangles as special cases, and hence develop an inclusive classification where the 

rhombus (and isosceles triangle!) is seen as a special kite. Of course arrowheads are 

concave kites but the students tended to see arrowheads and kites as two different 

shapes because they looked different (suggesting that a holistic visual perception 

overruled a consideration of the shape as given by its properties). I also decided that it 

would be interesting to see whether the students could draw the conclusion that 

arrowheads are special types of kites. 

 

The kite proved to be an interesting example. Despite the infinite number of possible 

kites the students generally made what I have called the „three quarter‟ kite because the 

cross bar is approximately three quarters of the way up the bar acting as an axis of 

symmetry. This seemed to be the preferred version of a kite. The year 7 students in 

particular had a preference for kites in this proportion with the result that when I asked 

them how many different kites they could make they answered four (shown below). 
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Figure 7.8 kites in the four main orientations generated with vertical and horizontal bars 

 

If I suggested that they move the cross bar a little bit to make different kites the year 

seven students revised their estimation of the possible number of kites to eight or 

twelve. They seemed to not perceive that the cross bar could be moved in very small 

amounts which would produce an infinite number of kites and arrowheads. 

However the year 8 students told me that they could make millions of kites by sliding 

the bar a little bit and a little bit. This kind of reasoning may be the beginning of the 

realisation that there is a family of kites which have in common that one bar crosses the 

other bar in the middle and is at right angles to it (perpendicular bisector).  

 

In the bars at a slant file the students tended to generate the „three quarter kites‟ as 

before but when generating an arrowhead they were more likely to make these with the 

cross bar in different positions. This may be because they had less experience of seeing 

these shapes on paper so were more open to different versions of the arrowhead. 

 

7.4.8 Orientation and its effect on how students perceive shapes 
 

 

Figure 7.9 An „angled kite‟ 
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When working with the perpendicular bars oriented an angle the students talked about 

tilting their head, or they physically tilted their head. An example of this is seen in lines 

265-271 appendix 2.5b when Aftab and Rupen turned their heads to look at the figure. 

Aftab said of the shape “you can tell it‟s like a kite this way”.  This would indicate that 

there is a preferred orientation which relates to the frame of reference of our physical 

environment. If something appears to us to be at an angle to the vertical axis we try to 

mentally turn it back the right way up (Pinker, 1997). Ruth bemoaned the orientation of 

the kite which caused her to feel less capable of doing the task. “Erm, it's a bit of an 

angled kite. I'm rubbish at this.”  She would prefer the vertical orientation, and may have 

been experiencing a greater cognitive load due to having to mentally rotate the kite to 

the preferred orientation. 

 

7.4.9 The effect of orientation on holistic perception 

 

Tara and Ruth had generated the rhombus using the bars oriented at an angle to the 

vertical as shown in figure 7.9. 

 

Figure 7.10 Rhombus with bars oriented at an angle to the vertical 

 

The following dialogue (Figure 7.10) indicates that Ruth perceived the rhombus to be a 

parallelogram (which of course it is if one accepts inclusive relations) and this may 

have been because it was oriented as the typical parallelogram. 

 

Dialogue Screen shot 

Susan: Have you made the rhombus you thought you'd 

made? 

Ruth: It looks like a parallelogram actually 

Tara: It‟s definitely a rhombus 

Susan: So why is it definitely a rhombus? 

Tara: Because, erm, I don't really know yet because we 

haven't really measured it. 

 

 

Figure 7.11 Ruth perceives a rhombus oriented at an angle to be a parallelogram 
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Even though Tara thought the shape was a rhombus she still wanted to measure sides 

and angles to make sure. In this way she needed the reassurance of displayed 

measurements when she asserted the shape was a rhombus. This is an example of 

spatio-graphical geometry supporting the move to theoretical geometry. 

 

7.4.10 Dragging maintaining symmetry with the bars oriented at an angle to the 

vertical 

 

Dragging deliberately to maintain symmetry when they moved between kites, rhombus, 

isosceles triangles and arrowheads may have been an expected result in the first 

computer files when dragging to maintain symmetry meant dragging up and down the 

computer screen. However when the bars were in a different orientation, dragging to 

maintain symmetry was not achieved by dragging up or down the computer screen. The 

students had to drag one bar along the path of the perpendicular bisector of the other 

bar and this was at 30 degrees or 60 degrees to the vertical depending on which bar was 

being bisected. 

 

When dragging the bars to generate shapes in the file with the bars oriented at an angle 

to the vertical the students often talked about dragging „up‟ or „down‟ when this 

actually referred to dragging obliquely towards the top right hand corner of the screen 

for example. It may be that the students were mentally rotating the figure or screen so 

that they were dragging up in their own minds. Some students may have found it 

slightly harder to use dragging to maintain symmetry when they were dragging at an 

angle to the vertical which is indicated by the measures on the screen during the 

recording and the longer episodes of dragging due to the students going more slowly, 

although later episodes of DMS tended to be shorter and more accurate as the students 

got used to dragging at an angle. However it was clear from my observations of these 

dragging episodes that the intention of the students was to drag maintaining symmetry 

as the most efficient way to go from kite to rhombus, for example. An excerpt from the 

recording of Kate and Jane serves to illustrate these points (Figure 7.11). 
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Dialogue On-screen activity 

Susan: OK so what shapes do you think we're 

going to be able to make in this file? 

Jane: Kite, triangle, arrowhead 

Susan: OK, do you think you could do that 

then? That's an arrowhead there, OK 

Jane: It's close. 

Susan: It's close isn't it. It's only point one out. 

(Here we are referring to the closeness 

of the measurements). 

Jane: Triangle 

Susan: When you made the triangle, you 

moved the bars in a particular way. 

What were you trying to do with that 

bar? 

Kate: That I kept it in the middle (cursor 

moves along bar BD) so it wouldn't 

mess around with them (cursor points 

to the measurements of equal sides 

lengths). 

Susan: So the bar was kept in the middle of 

what? 

Kate: In the middle of A and C. 

She realises that this file will generate the 

same figures as the first file. 

She drags bar BD. 

5 seconds of  DMS 

14 seconds of  RD to get it perfect 

 

3 seconds of  DMS 

She drags the figure into an isosceles triangle 

(perfect specimen) 

She must have dragged really carefully to get 

it perfect without needing any refinement. 

The cursor traces down bar BD then traces 

down the measurements of the sides of the 

triangle. 

She describes DMS as being careful to keep 

BD in the middle of AC (ie bisecting AC). 

 

Figure 7.12 Kate and Jane drag one bar through the other to maintain the near 

symmetry of the shape. 

 

In the following screen shots it can be seen from the position of the cursor at point D 

how Kate dragged bar BD through the middle of the shape to generate the arrowhead, 

isosceles triangle and kite. 

 

 

 
 

 

Figure 7.13 Kate and Jane use dragging maintaining symmetry when the bars are at an 

angle 
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When Kate said that she kept bar BD in the middle of bar AC during dragging so that 

“it wouldn‟t mess around with them” it suggests that she was relating the symmetry of 

the bars with the properties of equal sides. It seems that she has attended to both the 

holistic shape and the displayed measurements in order to keep symmetry constant. 

7.5 Discussion 

 

In iteration two my observation of the four dragging strategies was confirmed and the 

students used these strategies when the bars were vertical and horizontal (with a 

preference for a vertical axis of symmetry) as well as when they were oriented at an 

angle to the vertical. It appeared that the students could separate the orientation of the 

figure from the recognition of the figure when they considered the shape properties, i.e. 

when they used reasoning at Van Hiele level two. However if they used holistic 

reasoning, which is categorised at Van Hiele level one, then they sometimes failed to 

recognise the figure, e.g. when naming the rhombus a parallelogram when it appeared 

with one of its sides near to the horizontal. It must be said that the same students were 

capable of both types of reasoning and usually did employ both during the sessions. 

 

The year seven students identified a discrete number of kites which could be generated 

whereas the year eight students told me that it would be possible to make many kites by 

moving the bar by a small amount each time. The two groups of students differed by 

school as well as age so it would not be sensible to say definitively that age was a factor 

in this. 

 

7.5.1 Could DMS mediate reasoning at Van Hiele level three? 

 

It was clear from the recordings that all students were confident in their knowledge of 

shapes and their properties, being able to recognise shapes and identify their side and 

angle properties, parallel lines and axes of symmetry. In this they displayed reasoning 

at Van Hiele level two. 

 

When employing DMS the students generated shapes whose default shape is the kite. 

The rhombus, isosceles triangles and arrowheads could be considered to be special 

cases of the kites leading to an inclusive classification. However, whilst the students 

were able to list the shapes which can be made while dragging the bars using DMS, and 
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have identified that there is a common property (“one bar crosses the other bar in the 

middle”) they did not show an appreciation that this property means the shapes belong 

to a specific family (or  dragging family). Furthermore some students working with the 

figure have typically identified that four kites can be made rather than an infinite 

number of kites. One explanation may be that they held a concept image of the kite 

(Tall and Vinner, 1981) in which the cross bar is approximately three quarters along the 

length of the axis of symmetry which would lead to a rejection of kites in less 

stereotypical proportions. Another explanation could be that the students viewed the 

dragging process as a journey to a discrete end point (so that they would accept kites in 

different proportions) rather than a continuous changing of the figure through an 

infinite number of possible shapes (in this case an infinite number of kites). In both 

cases, if the students identified a discrete number of kites which could be generated 

then other shapes such as the rhombus, isosceles triangle and discrete arrowheads 

would be likely to be seen as being different shapes albeit with some common 

properties. 

 

It is possible that the students in my study had visualised the figure under dragging as 

changing from one discrete shape to another. I decided that if I could find a way to help 

them perceive the figure as continuously changing they might be able to revise their 

thinking towards a more inclusive classification of the shapes generated by the dynamic 

figure. 

 

While reflecting on the results from the analysis of iteration two I realised that the 

students were likely focusing on their own activity of dragging a bar along the 

computer screen. I wondered whether if the students were able to sit back and observe 

the changes in the figure during DMS activity they might be able  to visualise the figure 

as continuously changing through kites, with isosceles triangles and rhombus at specific 

points during the process. I decided therefore to create an animation of the figure under 

DMS which I would show to the students in later iterations, after they had worked 

manually to generate different shapes from the figure. 
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7.6 Conclusion 

 

By the end of iteration two I concluded that the students engaged in the same dragging 

and measuring activities which had been used in the previous iterations, whatever the 

orientation of the perpendicular bars. Working with bars oriented at an angle to the 

vertical may have caused a greater cognitive load as the students often referred to the 

shapes as being at an angle (an angled kite) and the DMS strategy took longer and was 

less accurate in some cases.  

 

The part of the study undertaken during iteration two involved trying a few different 

ideas to see which way the research should proceed. I discovered that the task could be 

modified for whole classes but I did not feel that I had yet got the task to the point 

where it effectively mediated the understanding of inclusivity of shape properties The 

file with perpendicular bars oriented at an angle to the vertical had been used to 

demonstrate that the dragging activity observed in iterations zero and one was not 

dependent on the figure being „upright‟. In the next two iterations the focus would be 

on modifying the task to see whether students‟ understanding of shapes might be 

moved towards inclusive relations of the arrowheads and the rhombus as kites. 
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8 Iteration three: Perpendicular bars oriented at an angle to the 

vertical and the animation of DMS 
 

So far in the study I had ascertained that when the students dragged the bars inside the 

dynamic figure they were able to move the bars into place intentionally, indicating that 

they had an intuitive feel for the bar positions needed to generate each shape. Most of 

the shapes which have special properties and are given names aside from „triangle‟ and 

„quadrilateral‟ are those shapes which have an axis of symmetry. When the students 

moved between the shapes with symmetry they often used an efficient dragging 

strategy which I have named dragging maintaining symmetry (DMS) which appears to 

be a specialised form of maintaining dragging described by Baccaglini Frank and 

Mariotti (2010). 

 

The shapes formed during DMS could be considered to be a „dragging family‟ of 

shapes whose common property is that one bar is the perpendicular bisector of the other 

bar. Most of the time during DMS the figure takes the shape of a kite, including the 

concave kites which the participating students knew as arrowheads and which they did 

not in general include as kites. At special points along the dragging journey the figure 

passes through the rhombus (when both bars are the perpendicular bisector of each 

other) and the isosceles triangles (when the end of one bar sits on the mid-point of the 

other bar). The rhombus being a special case of a kite is mirrored in static geometry but 

the isosceles triangle is only considered to be a special kite in dynamic geometry. 

The participating students had not shown any signs of developing reasoning towards 

this concept of the dragging family and I wondered whether it was because they viewed 

the dragging action as resulting in a discrete shape, not as a possible continuous action 

leading to a continually morphing figure.  

 

An important point to note here is that, so far, I had not specifically talked to the 

students about „families of shapes‟ or about inclusive relations such as a rhombus being 

a special case of a kite. I had tried to ascertain whether working on the task might 

encourage these concepts but realistically the students had no reason to think in terms 

of certain shapes being special cases of other shapes as there was no advantage to them 

in doing so. 
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8.1 Objectives for iteration three. 

 

Iteration three had three objectives.  

a)  In session one the students (who had no previous experience of working with 

the dynamic figure in an „upright position‟) would work with the bars (oriented 

at an angle) to ascertain whether they would use the same dragging strategies as 

students in iteration two.  

b) I would introduce the concept of the rhombus being a special kind of kite to the 

students and gauge their reaction 

c) Then in session two I would show them the animated figure to see whether it 

could be the catalyst for the development of the concept of the dragging family. 

 

8.2 Theoretical background: Discrete shapes versus a continuously changing 

figure 

 

What could have hindered the students from visualising the dynamic figure as 

continuously changing through an infinite number of kites? Work carried out by 

Mamon Erez and Yerushalmy (2007) may shed some light on this question. They 

conducted clinical interviews with 11-12 year old students in an Israeli school working 

at a task in a DGE designed to mediate the understanding of inclusive relations between 

quadrilaterals. Participating students dragged properly constructed figures e.g. a 

parallelogram, and were asked to give reasons why it could be dragged into other 

specific shapes (such as a rhombus). An ability to do this, referring to a hierarchical 

classification of shapes, was taken as demonstrating reasoning at Van Hiele level three. 

Other students were deemed to display Van Hiele level two reasoning which was 

demonstrated by their use of partitional classification e.g. saying that a rhombus cannot 

be a parallelogram because it has all four sides equal whereas a parallelogram has two 

long sides and two short sides, even though the constructed parallelogram on the 

computer screen could be dragged into a rhombus.  

 

Mamon Erez and Yerushalmy (2007) observed that students who conceptualised 2D 

shapes according to a hierarchical classification tended to visualise the figure under 

dragging as moving continuously through different cases of the same figure and 

continuing to embody the invariant properties. Hence when the figure is at a stage 
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where it displays a particular shape these students viewed it as being a special instance 

of the general figure. Students who conceptualised 2D shapes according to a partitional 

classification tended to visualise the figure under dragging as changing from one 

discrete shape to another. These students had difficulty appreciating the geometric logic 

underpinning the dragging mode (ibid).  

 

This work seemed to explain why I did not observe the students in my study develop 

inclusive relations between the kites and the other figures (arrowheads, rhombus, 

isosceles triangles) which could lead to a hierarchical classification. In iteration three I 

would test an intervention (the animation of DMS) to ascertain whether the students 

would develop Van Hiele level three reasoning if they could be encouraged to observe 

the figure as continuously changing between the shapes. Mamon Erez and Yerushalmy 

(2007) suggested that if students could appreciate the logic behind the dragging of a 

figure then they could progress to level three reasoning. In the dynamic figure in the 

present study this would mean an appreciation that when one bar is dragged along the 

perpendicular bisector of the other bar then a family of shapes is generated with the 

default shape being a kite. 

 

8.3 Process for iteration three 

 

8.3.1 Instructional goals 

 

Stan and Eric, and Hemma and Seema, from School B participated in iteration three for 

two sessions. In session one they worked with a file containing the 8 cm bar oriented at 

60 degrees to the vertical and the 6 cm bar oriented at 30 degrees to the vertical. Figure 

8.1 shows a kite using this file. 

 

 

Figure 8.1 A kite generated from perpendicular bars oriented at an angle to the vertical 
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As before the students were given the computer file with the tilted bars separate and 

were asked to drag one bar over the other and I instructed the students on how to join 

the ends of the bars and construct the interior of the shape thus filling it with colour. 

The first part of the task was to drag the bars to see what shapes they could make, 

identify the properties of the shape and then use the Measure menu to check side and 

angle properties. In this iteration I made a point of asking the students to generate 

shapes which had a line of symmetry, to drag from one of these shapes to another and 

to describe their dragging activity. In this way I hoped the students would observe the 

invariant aspects in their dragging activity, the properties of the bars and the shapes 

themselves.  

 

In the second session the students were shown the animation of the figure as if it were 

being dragged using the DMS strategy, i.e. so that one bar was always the 

perpendicular bisector of the other bar. I allowed them to talk about what they were 

seeing and then used questioning to guide them to consider common properties. For 

example, I asked them to give the properties of kites and arrowheads and when the 

students related the same properties I asked them whether the kites and arrowheads 

might actually be the same shape. I asked the students to tell me how many rhombuses 

could be made and how many kites and suggested that the rhombus might be a special 

kite because it was made at one position in between many kites. In this way I was 

trying to encourage the students to think about inclusive relations and whether the 

shapes created during the animation show were all members of one family of shapes. 

 

8.3.2 Instructional starting points. 

 

The two pairs of students who participated in iteration three of the study in June 2012 

were assessed by their mathematics teachers as achieving at levels five/ six of the 

National Curriculum for England and Wales (QCA 2007). They had not encountered 

the computer files containing the vertical and horizontal bars. 
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8.3.3 Learning trajectory 

 

In this iteration I set up the task with similar objectives as for iteration two, i.e. that 

students would:  

 Drag the bars to generate different shapes.  

 Revise and review shape properties using the measurements of sides and angles.  

 Describe the relative positions of the bars in order to generate the shapes.  

 Investigate the shapes which could be made using one of the bars as a line of 

symmetry. Move between symmetrical shapes and describe the dragging 

activity. 

 Watch the animation of DMS and describe what happens to the figure. 

I hoped to observe the students achieve the following which would indicate that they 

were beginning to use Van Hiele level three reasoning: 

 Observe that most of the time DMS results in kite shapes, including the 

arrowheads. Conclude that kites and arrowheads are the same shape. 

 Consider the rhombus and isosceles triangles as discrete positions along the 

dragging journey and conclude that this means they are special cases of the kite. 

 

8.4 Results and data analysis of the sessions in iteration three 

 

Each of the four sessions was recorded and imported into Transana. The first sessions 

were transcribed into a word processing document containing three columns: the 

dialogue between the students and myself, a description of the on-screen activity and 

thirdly a narrative account giving an overview of the sessions. The original 

transcription/descriptions can be accessed from the accompanying disk. A table of 

dragging activity and a table of episodes for each recording are included in appendix 3. 

A transcription of the dialogue during the animation was also made. 

 

8.4.1 Orientation 

 

In the recordings of the first sessions with the two pairs of students, the issue of 

orientation was a strong focus. At the beginning of the session Stan described the bars 

as being “slanted that way” and did not believe that AC and BD were at ninety degrees. 
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Figure 8.2 shows the isosceles triangle which was on the screen at the time of this 

discussion. 

 

Dialogue Screenshot 

Stan: The lines, the angles are a bit, the lines 

are a bit slanted that way. That line 

doesn't look like a right angle 

Susan: OK. What's that not a right angle 

with? 

Stan: The A and C 

Susan: You don't think that's at right angles? 

Stan: It's at a weird angle so you can't really 

tell. 

 

 

 

Figure 8.2 An oblique isosceles triangle at an angle causes consternation to Stan who 

finds it difficult to recognise a right angle 

 

It appears that Stan had difficulties recognising a right angle which was not „upright‟. 

Later in the session, Stan and Eric both reported finding it difficult to tell which of the 

two bars was the longer one because “they‟re both at an angle”.  

 

At another point in the session the rhombus was on the screen (see figure 8.3) Eric 

stated that the angle between the bars did not look like ninety degrees because it was 

not straight. He said that if the figure were turned round then it might look like a ninety 

degree angle.  

 

After this I asked the boys to use the measuring tool to measure the angles at the 

intersection of the bars and all the measurements were ninety degrees. This did not 

convince Eric who thought there might be a rounding error to explain his perception. 

He made an intriguing comment that the problem they had seeing the angles as right 

angles might be due to the lengths of the bars being different. “If they‟re both eight or 

both six then it would be all equal so then it would work”.  
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Dialogue Screenshots 

Eric:  It doesn't look like a right angle. 

Susan: Why don't you think it looks like a right angle? 

Eric:  Because it's not straight. If it got turned that way 

and then the cross got turned that way it might. 

It's cause it's slanted it doesn't look very well. 

Susan: Because the computer's measured it as ninety 

shall we believe the computer? 

Eric:  No because it might be a rounding error. 

Susan: What if we measured one of the others then? 

Eric:  Ninety. 

Susan: They're both ninety together. 

Stan:  Maybe those two aren't ninety. It might be 

opposite angles so 

Eric:  Yeah it might be 

Stan:  They're both ninety and they're both ninety. Yeah, 

they're opposite angles and that one will be 

ninety as well. 

Eric:  Yeah, all ninety. 

Susan: So do you think it's a rounding error? 

Eric:  It might not be cause, if you look at that, they look 

something like. Look at BCD, that one looks like, 

that's weird, that one looks acute. And that one 

says it's BCD. 

Stan:  Where's BCD? 

Eric:  There. It's to do with the eight and the six 

centimetres. If they're both eight or both six then 

it would be all equal so then it would work. 

 

Due to its orientation? 

 

 
 

Maybe if it was turned the right way 

up I could see it! 

 

 

They still find it difficult to believe 

the angle between the bars is a right 

angle. 

 

Figure 8.3 Stan and Eric find it difficult to recognise right angles in the rhombus made 

from unequal length slanted perpendicular bars 

 

Hemma and Seema appeared to cope with the slanted figure much better but even so 

the issue of orientation did affect the way they viewed the figure. The following 

dialogue occurred while the girls were looking at figure 3.4 on the computer screen. 
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Dialogue Screenshot 

Hemma: It‟s a sort of kite 

Seema: It's a kite with the bottom end 

Hemma:  Yeah, that bit's more shrivelled 

down 

Seema: An obtuse triangle at the top and then 

you've got one isosceles triangle on 

the bottom 

Susan:  So can you give me the 3 letters of the 

corners of the isosceles triangle 

Seema:   C B and D 

Susan:    OK then. What about the other 

triangle? 

Seema:   D A and B, the obtuse triangle 

 

 

 

Figure 8.4 Hemma and Seema perceive the kite as consisting of an obtuse angled 

triangle on the top and the isosceles triangle on the bottom  

 

This part of the dialogue appears to suggest that the girls had mentally rotated the kite 

so that they perceived it as the typical upright kite. i.e. the top of the kite is ABD the 

obtuse angled (isosceles) triangle and the bottom of the kite is CBD the isosceles 

triangle. 

 

A little later in the session the girls, who had labelled the shape in figure 8.4 as a kite, 

forgot what it was and suggested 3D pyramid and trapezium as names for it. 

Orientation did seem to affect their recognition of shapes. The girls also expressed a 

preference for the bars to be „straight‟ as the boys had done. When I asked the girls 

what sort of bars they would like if they were to make a square Seema replied that she 

wanted two straight bars, not diagonal. She agreed that the bars did not have to be 

straight but that “it would make things easier”. 

 

Overall, working with oriented bars did appear to make the recognition of objects such 

as right angles and shapes harder to recognise, though not impossible for the students. 

When it came to dragging maintaining symmetry, both boys and girls had some 

episodes of it which were reasonably accurate as shown in appendix 3.3. In the girls‟ 

session, Seema had control of the mouse first and used DMS much later during her 

turn. Hemma used DMS almost straight away. The boys made use of DMS all the way 
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through their session. So students have been able to drag along a perpendicular bisector 

which is oriented at an angle and with reasonable accuracy. In session one the students‟ 

activity and reasoning were comparable to those of the students in iteration two, even 

though their first introduction to the dynamic figure was with the bars oriented at an 

angle to the vertical. 

 

8.4.2 Using measures and accepting ‘close enough’ measures. 

 

As in previous iterations the students were observed to use Guided Dragging or 

Dragging Maintaining Symmetry to place the bars in order to generate a desired shape 

and then use Refinement Dragging to make the measurements of expected equal sides 

and angles to be as close as possible. Often the students got the measurements to be 

exactly equal and at other times the measurements differed by one degree or 0.1 

centimetres. As in previous iterations the students in iteration three accepted that 

getting measures almost the same was good enough. Seema referred to lines which 

differed by 0.2 cm as „similar‟. Hemma described angles in a rhombus which were the 

„same‟ (74 degrees) and angles which were „similar‟ (105 degrees and 108 degrees). 

However, Stan and Eric were concerned that the sum of the displayed angle 

measurements in a triangle was 179 or, after dragging, 181 which led to a discussion 

about the errors which can be caused by rounding measurements (see appendix 3.2 and 

lines 113-131 in the transcript). 

 

In Figure 8.5 Stan and Eric thought they had a square because all four sides were equal. 
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Dialogue On screen activity 

Eric : Kind of a diamond. 

Susan: Rhombus shape isn't it. What happens 

if you keep pulling? 

Eric:  Oh yes it's a square. All angles equal 

Susan: All sides are equal aren't they? 

Eric:  Sides are equal 

Susan: Is that a square? 

Stan:  There's no ninety degree angles. So it's 

not a square 

Eric:  They're equal and those two are equal. 

Susan: Actually you've got the almost perfect 

rhombus there. 

Eric:  Just a few off. 

 

 
In the rhombus position the boys decide they 

have got a square as they have attended to the 

measurements of the sides and these are all 

equal. However Stan notices that the angles 

are not all ninety degrees and then Eric notices 

the two pairs of equal angles. 

 

Figure 8.5 Is it a rhombus or a square? 

 

This excerpt demonstrates how using the displayed measurements helped the students 

to review their understanding of shape properties.  

 

8.4.3 The typical kite shape 

 

It seems that the students had a preference for the way that the kite shape was 

presented. Hemma and Seema particularly preferred kites made using the 8cm and 6 cm 

bars in the three quarter position with the two smaller congruent sides at the top of the 

shape.  

 

The shape in figure 8.6 was on the screen and the following conversation ensued. This 

kite had been generated using the two 8 cm bars. 
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Dialogue On-screen activity 

Susan: Can you make any kites out of that one? 

Hemma: I think we could but it wouldn't be the same 

as the other ones. They would look very 

different. You could still class that as a kite. 

Susan: What has to be true for it to be a kite? 

Hemma: Two sides the same small length and then 

two sides the same long length. 

Seema: And they're both isosceles. 

Susan: What's both isosceles? 

Seema: Both, triangles  

Susan: So even if it looks a slightly different kite, it 

can still be called a kite? 

Seema: Yeah 

Hemma: And it has to have a line of symmetry 

Susan: It does doesn't it. So can we make all the 

shapes we made before even if are slightly 

different versions. 

Seema: You can but it wouldn't look as accurate 

because the centimetre bars is different. 

Hemma: They're the same, exactly the same. So if 

that one was smaller or that one was taller it 

would look more like a kite. It does look like 

a kite now but before it looked. 

Seema: Because the two of them will be different. So 

when you make a kite because two of them 

are the same size, same centimetres and the 

other two are the same centimetres but they 

have different features but they would look 

more accurate because that's how a kite 

made up with two shorter ones and two 

longer ones. 

Susan: But that's got two shorter ones which are 

close aren't they and two longer ones. 

Seema: I think the other ones are easier to make a 

kite with. 

Susan: In the first file the eight and the six? 

Hemma: It still could make a kite it would just look 

more different. Cause that is still a kite 

because that's erm, it's still got a line of 

symmetry and that's smaller than them two 

and like you could still do that as a kite. 

Seema: But it wouldn't look the same because  

Hemma: Those just need to be a bit smaller 

 

She drags the figure into a kite 

41.22-41.24 DMS 

 

41.25-41.27 RD 

 

41.31-41.35 DMS 

 

 
 

 

Hemma recognises that to be a kite 

a figure has to have the correct 

properties no matter how it looks. 

So she is moving away from the 

perception of the typical shape. 

 

 

 

 

 

 

equal length bars appear to generate 

kites which the girls do not feel 

comfortable calling kites. 

 

 

 

She prefers kites in the typical 

proportion. 

 

 

43.12-43.20 DMS 

 

She dragged the bar backwards and 

forwards to demonstrate multiple 

different kites. 

 

This is Hemma‟s definition of a 

kite 

 

Figure 8.6 A discussion of kites in preferred positions and orientation 
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The girls used the properties of two pairs of congruent sides to qualify their decision 

that the figure was a kite but it was clear that they would prefer the kite to be made 

from the two unequal length bars and to be in an upright position. The kite in figure 3.4 

was perhaps too small and squat. Stan and Eric made a right angled isosceles triangle 

by planning the two 8 cm bars end to end. Eric commented “isosceles don't always have 

to be big ones. They can be small and fat. This one's a bit chubby”. 

 

Examples like this one indicate that the students had moved on from a purely holistic 

perception of shapes to being able to reason using the perceptual aspect of the shape 

properties. Hemma and Seema were able to recognise that the shape was a kite, even 

when it was in an unfamiliar presentation, by referring to its properties. Stan and Eric 

accepted an isosceles triangle even though it looked different (short and fat) to isosceles 

triangles which are typically presented in text books. This aspect of being able to 

recognise shapes, even when their appearances differ from the norm, because they have 

the required properties is evidence that the students are being analytical.  

 

8.4.4 Partitional classification 

 

The students held very strong perceptual understanding of shape properties in the form 

of partitional classification. Figure 8.7 shows how the girls partitioned kites (made of 

two different sized triangles) from a rhombus (made of two same sized triangles). 
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Dialogue On screen activity 

Susan: Can you move it a little bit more and 

it still be a kite? 

Seema: No because always one side has to 

be longer than the top half.  

Hemma: Otherwise it's a diamond. 

Susan: What's the mathematical name for a 

diamond? 

Hemma: Oh that's it, a rhombus. 

 

.......... 

 

Hemma: Yeah I mean like it like it's a 

triangle at the top and a triangle at 

the bottom. 

Susan: That's true isn't it. Is that not true 

for a kite as well? What have you 

got there? 

Seema: But the triangle at the bottom 

they're not 

Hemma: They're different. That's an 

equilateral triangle. It looks like 

one. 

 

 

The bar BD is moved round a bit to 

generate different kites 

 

the girls appear to use a partitional 

classification and to prefer a typical kite 

 

 

 

Figure 8.7 Partitioning a kite and a rhombus 

 

 Seema‟s comment that “one side has to be longer than the top half” and Hemma‟s 

comment that “they‟re different” shows that they thought of kites as being comprised of 

two different sized triangles “otherwise it‟s a diamond” (rhombus). 

 

Stan said described a square and a rectangle in these terms:  

 

“The square has four sides that look the same. A rectangle's longer with two sides that you can 

do like that” 

 

In these cases the rhombus was partitioned from the kites and the square was 

partitioned from the rectangles. Partitional classification has been the norm with all 

pairs of students who participated in the study. 

 

 

 



161 

 

8.4.6 How the students perceived the figure under dragging 

 

Hemma and Seema were an interesting pair of students who interacted well whilst 

working on the task. Seema appeared to use a holistic perception when recognising 

shapes. This became apparent when she made comments such as describing the 

rhombus as “a kind of diagonal square” Later Seema explained how she dragged the 

bars to make a kite as shown in figure 8. 8. 

 

Dialogue On screen activity 

Susan: So where do those bars cross each other? 

Seema: Half way 

Susan: OK so what would you like to know so you 

can put them half way 

Seema: You know how that one's eight centimetres, 

where four centimetres is. 

Susan: Right so you really want to know where the 

middle of the line is. 

Seema: I wasn't actually looking at that when I was 

changing it. 

Susan: So what were you looking at then? 

Seema: I was just looking at A and C wanting to 

know how far it would be until I get like A 

yeah, diagonal but then kite looking.  

Susan: OK so what would you say you were actually 

looking at, cause there's two things to look 

at, there's the measurements 

Seema: I was looking at the area of the shape and 

then I was wondering how far the lines had 

to go between 

from kite 

 

to rhombus 

 

 
Holistic perception of the figure 

By „area‟ Seema may be referring to 

the inside of the shape. 

 

She seems to view the shape 

holistically. 

 

Figure 8.8 Seema describes how she positioned the bars 

 

It does seem as if Seema used the shape of the figure to guide her as she moved the 

bars. This might also explain why she did not use DMS at the beginning of her session 

controlling the computer mouse. She used more Guided Dragging which may have 

been a response to the changing figure and adapting the positions of the bars to gain the 

desired shape. She always got to the desired shape but not always through keeping 

symmetry constant. In this Seema was unusual among the participating students. 
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On the other hand Hemma considered the properties when identifying shapes. This was 

shown by her willingness to accept shapes as being representative of their class even 

when they were presented in an atypical form. For example, Hemma led the discussion 

of whether the kite made with two 8 cm bars was in fact a kite. She said it could still be 

classed as a kite and quoted the properties of a kite; “Two sides the same small length 

and then two sides the same long length”. Hemma was also keen to say that a shape had 

line symmetry. Since she considered the properties of a shape as an identifier of the 

shape she was more willing to identify that multiple kites and arrowheads could be 

generated by moving one of the bars by very small amounts. She and Seema had three 

conversations where Hemma demonstrated that she could make a number of kites or 

arrowheads and she used the DMS strategy whilst doing this. This was the strongest 

indication of a student using DMS and linking it to a possibly infinite set of kites. She 

even managed to convince Seema that there are a number of kites which can be made 

(they settled on twenty six). This particular conversation is shown below in figure 8.9. 

 

 

 

 

 

 

 

  



163 

 

Dialogue dragging activity narrative description 

Susan: They are close enough aren't 

they. OK so how many kites do 

you think you could make? 

Seema: About two. 

Susan: You think about two? 

Hemma: I think a bit more because if I 

do that that's still a kite 

Susan: That's true. 

Hemma: And if I do that it's still a kite. 

Cause look they're the same and 

they're closer. Then if I also do 

that then that's still a kite and 

that's still a kite. 

Susan: How many kites do you think you 

could make then. 

Hemma: I think about six or seven. 

Susan: Could you not keep on moving it 

a little bit all the time and it still 

be a kite? 

Hemma: Like a millimetre 

Seema: It could go on for ages couldn't 

it. 

Susan: So how many do you think it 

could be then if you can go on 

for ages? 

Seema: About twenty. 

Hemma: Twenty five or twenty six 

 

 
 

 

 

 

 

27.45-27.47 DMS 

 

27.48-27.49 DMS 

 

27.55-27.57 DMS 

 

27.58-28.00 DMS 

 

 
 

 
28.10-28.11 DMS 

28.14-28.15 DMS 

 

 

 

Hemma keeps moving 

bar BD a little bit to 

demonstrate that there 

are multiple kites 

which can be made 

with AC as a line of 

symmetry. 

 

 

Figure 8.9 Hemma demonstrates a number of kites 

 

On the other hand Stan and Eric dragged through kites but did not usually stay on a 

kite. They were more interested in isosceles triangles and arrowheads. They decided 

that there were four possible arrowheads with the bars in each of the four relative 

positions. See figure 8.10. 
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Figure 8.10 The four relative positions of arrowheads. 

 

When I suggested that they move the bar just a little to generate another arrowhead Sam 

said “You can make loads if you do it slowly. One, two, three”. (Meanwhile he dragged 

the bar AC using small movements to demonstrate more arrowheads). 

This has a faint suggestion that Sam had started to view the figure as changing 

continuously although he only identified a discrete number of arrowheads. 

 

In order to find out whether the students might see that dragging to keep one bar as a 

line of symmetry would generate a „family of shapes‟ I introduced the term in the 

session. Stan and Eric identified all the different shapes that can be made keeping BD 

as the line of symmetry but they did not make any use of the „family of shapes‟ concept 

themselves. Similarly I introduced the term to Hemma and Seema but they did not 

make anything of the term or use it themselves. 

 

8.5 Discussion on session one. 

  

By the end of session one, the students had made all the shapes which students in the 

other iterations had made, and they used all four of the observed dragging strategies.  
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I decided at this point that presenting students with bars oriented at an angle had served 

its purpose. It had demonstrated that the students in the study could recognise and work 

with the figure when oriented away from the vertical and they used the same dragging 

strategies as those students who had worked with vertical and horizontal bars. It also 

showed that students did not only use DMS when the figure was upright thus indicating 

that they were dragging to keep symmetry a constant rather than just dragging down the 

computer screen. 

 

All students in the study, including Stan and Eric and Hemma and Seema, demonstrated 

that they recognised common triangles and quadrilaterals and could list their properties. 

Sometimes they revised and reviewed this knowledge through the actions of dragging, 

particularly refinement dragging and attending to the displayed measurements of sides 

and angles.  

 

I had observed that a notion of symmetry often seemed to be used when students 

dragged bars to generate a particular shape. When Hemma used short bursts of DMS to 

demonstrate different positions for kites or arrowheads she gave the clearest indication, 

thus far in the study, that the DMS strategy could be linked to the concept of a dragging 

family (all the shapes which can be generated by dragging one bar along the 

perpendicular bisector of the other bar). 

 

In session one of iteration three I had deliberately asked the students to drag through 

shapes which had a common line of symmetry and the students had identified a discrete 

number of shapes which could be generated. It appeared that they viewed the dragging 

process as a journey towards an end (a discrete shape) and not as a continuous process. 

I had identified this at the end of iteration two and in section 8.2 I cited the work of 

Mamon Erez and Yerushalmy (2007) who had observed that students who work at Van 

Hiele level two have a tendency to perceive a dynamic figure as changing into discrete 

shapes under dragging, as the students in this study have done. I wondered then, if 

students could be helped to visualise the figure as continuously changing during 

dragging, whether this might be the catalyst for development of an inclusive 

relationship between the shapes which are generated by a DMS action, a dragging 

journey. My hypothesis was that if they could sit back and watch this DMS action, they 
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might be able to recognise the figure as continuously changing between an infinite 

number of kites with the rhombus as one discrete point. Therefore, in session two the 

students were shown an animation of the DMS strategy with horizontal line symmetry. 

 

8.6 Session two:  the animation 

 

Session 2 was designed to ascertain whether the students could be encouraged to 

visualise all the shapes which the figure moves through by animating the dragging 

maintaining strategy. What follows is an account of the session with Stan and Eric and 

some points from the recording with Hemma and Seema.  

 

8.6.1 Stan and Eric watch the animation of the figure under DMS 

 

In the second session I introduced the students to the new file and asked them what they 

could see on the screen. The figure on the screen was in the shape of a kite (see figure 

8.8).  

 

 

Figure 8.11 The figure before it was animated 

 

 

Stan said “I see a kite”. When asked why he thought it was a kite Eric replied “Because 

it‟s shaped like one”. This suggests that Eric first looked at the shape in a holistic way 

recognising it as a kite by its general shape. 

Next I asked the boys to tell me the properties of the kite. Eric said: 

 

“Two pairs of equal sides and four sides”. 

 

C

A

BD
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Whilst this statement is not sufficient to provide the definition of the kite, since Eric did 

not say which pairs of sides were equal, he moved the cursor over the sides AD and DC 

and then moved the cursor to trace over the sides AB and BC. This activity indicates he 

did know which sides made an equal pair. 

 

When asked about the properties of the bars AC and BD: 

 

Eric: AC and BD, they‟re not the same length 

Susan: What about the angle between them? 

Eric:  It‟s a right angle 

Susan: And where do they cross each other? 

Eric: Mmm, here (the cursor pointed to the intersection of the bars). 

Susan: How would you describe that? 

Eric: Not in the middle but near the top. 

   

As can be seen from Figure 8.8 “not in the middle but near the top” suggests that Eric 

considered that the point B was at the top of the kite. Was he mentally rotating the kite 

ninety degrees so that he visualised it in the typical upright orientation? Alternatively 

he may have been thinking of a toy kite which would fly with B at the top. 

 

       

arrowhead Isosceles 

triangle 

kite rhombus kite Isosceles 

triangle 

arrowhead 

 

Figure 8.12 Seven positions of the animated figure 

 

After we had discussed the kite I pointed out the Animate Bar button on the screen. I 

asked the boys to click on the button and see what happened. The button animates the 

bar AC so that it moves along the line (which is slightly longer than BD on both sides). 

As bar AC moves along this line the figure changes shape in a continuous fashion 

through kites, the rhombus, isosceles triangles and the arrowheads (see figure 8.12). 

Eric and Stan had previously generated these shapes in session 1 when they used the 

Dragging Maintaining Symmetry strategy. The animation was designed to mimic what 
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they were doing allowing them to observe the figure continuously changing. The 

intention was that they would notice many more positions for the kite and arrowhead 

and that this might lead to a concept of a dragging family 

 

It is difficult to demonstrate the fluid movement as the figure changes between shapes 

but Figure 8.12 attempts to give an idea of what this looks like. As soon as the 

animation started the boys began to relate which shapes they were seeing. 

 

Eric:   Triangle, arrowhead 

Stan:   Arrowhead. Now it‟s gone back to a kite. 

Eric:    It‟s showing you all the shapes it can be. Oh rhombus, back to a kite. 

Stan:    Isosceles triangle. It‟s going to another arrowhead. 

Susan: What do you think is actually happening? 

Eric:      Well you know when we moved the line last week, it‟s showing the shapes you can 

make in between them. 

Stan:     Apart from it‟s a bit slower, so you can see what‟s happening. It kind of shows you 

the line of symmetry. 

Susan:   Which one‟s the line of symmetry? 

Stan:      You‟ve got BD so it shows all the shapes you can make with one line of symmetry. 

Eric:     The arrowheads are changing. 

 

In this excerpt from the dialogue it appears that Eric and Stan noticed two different 

aspects of the animated figure. Eric noticed that there were more shapes in between 

those that he had dragged the figure to in the previous week. The other shapes had been 

the many kites and arrowheads between the discrete kites and arrowheads he had made 

by dragging. I had hoped that the animated figure might enable the boys to visualise the 

large number of kites and arrowheads which can be generated when the bar which is 

being bisected at right angles is moved along the other bar. In theory there should be an 

infinite number of kites and arrowheads as the bar would be moved by myriad 

infinitesimal amounts. In practice, the constraints of the computer software probably 

mean that the bar makes small discrete movements leading to a finite number of 

possible shapes. 

 

Stan, on the other hand, had noticed that all the shapes being generated had the bar BD 

as a line of symmetry. The common property of the symmetry of the shapes made by 
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the animated figure might lead to the concept of a dragging family. Next, I asked some 

questions to ascertain whether the boys would be able to appreciate the significance of 

this. 

Susan: How many kites do you think you actually see when you animate the bar? 

Eric: Two cause you see the ones 

Stan: You actually see loads cause each angle changes 

Eric: You see lots of different one‟s cause that‟s still a kite. Kite, kite, kite, rhombus, er 

kite 

 

At this point Eric began to see that many different kites can be generated from the 

figure. I got the boys to stop the animation when the shape was an arrowhead. 

 

Dialogue Commentary 

Stan: It has two pairs the same side lengths. It 

has two angles that are the same. AD 

and CD,and AB and BC. 

Susan: Right. and where are the two equal 

angles? 

Stan: DAB and BCD. 

Eric: It's split in half, it's the same shapes so 

that's why it's symmetrical. 

Susan: That's right. You know when you 

described a kite weren't you saying the 

same things? 

Eric: Yes I suppose they're like brothers. 

Susan: I like that, they're part of the same 

family? 

Stan: The same family yeah. 

Susan: OK so the arrowhead and the kite 

might be in the same family, brothers 

together. 

Eric: Same size, two same size angles and one 

line of symmetry, two pairs of equal 

sides. 

Stan: That's why, same as a rhombus as well 

Eric: I suppose that's why it does that so you 

can see that that, all those are in the 

same family. 

Stan: And the triangle, and the rhombus. 

 

Properties of an arrowhead 

 

i.e. AD and CD 

 

i.e. AB and BC 

 

 

two equal and opposite angles 

 

 

I suggested that they told me the same for 

the properties of a kite 

 

Eric saw a connection between kites and 

arrowheads 

 

We discussed why the kites and 

arrowheads might be in the same family 

and this time Stan and Eric ran with the 

idea, adding the rhombus into the family. 

 

 

 

 

They added the isosceles triangle into the 

family 

 

Figure 8.13 Arrowheads and kites 
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At this stage in the session it did look as if the boys had grasped the idea of the 

dragging family. The boys had noted that the kites and the arrowheads shared the same 

properties and therefore could be related (although they were not able to see that they 

might actually be the same shape). Next they suggested that these properties held true 

for the rhombus and isosceles triangle too. However as the boys thought about this 

again they reverted to a partitional classification by considering that a rhombus has two 

pairs of equal angles whereas the kite has one pair of equal angles. 

 

Susan: Why do you say that the rhombus is in the family of kites? 

Stan: Because it‟s an 8 by 6 bar so you‟ve got two different line sizes obviously. So you 

have two different lengths. 

Susan: Do you think the rhombus might be a member of that family as well? 

Stan: Well I suppose it kind of is. But it has two sets of equal angles. No it won‟t because it 

has two sets of equal angles. 

 

Next I suggested that the properties which hold for a kite are also true for a rhombus: 

 

Susan: If you say that BD is a line of symmetry and AD has to be equal to DC and AB has to 

be equal to BC, that‟s what you are saying for the kite. Is that also true for a 

rhombus? 

Eric: I think so 

Susan: So maybe you could say that a rhombus is a special member of the family. 

Eric: Yeah, maybe it‟s the dad. 

  

After a discussion about the properties of the isosceles triangle the boys decided that 

the isosceles triangles were the uncles in the family. In summary they decided that the 

rhombus is the father, isosceles triangles the uncles and the arrowheads and kites the 

children!  

 

8.6.2 Stan and Eric onstruct their own kite 

 

With time left in the session and in order to try and build on Stan and Eric‟s notion of 

the family of shapes I asked them to construct their own kite figure. Some hints and 
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prompts from me were needed (mainly suggesting they tried to mimic the conditions of 

the bars needed to generate a kite) but otherwise the method was the boys‟ own idea. 

The boys constructed a kite by drawing a line, constructing its midpoint and then 

constructing a perpendicular to the line through its midpoint. In DGS this results in an 

infinite perpendicular so, at my suggestion, the boys drew a line over the perpendicular 

which crossed their first line. Then they hid the perpendicular line. Figure 8.14 shows 

their progress so far. 

 

 

Figure 8.14 perpendicular lines 

 

Next they joined the ends of the lines and constructed the interior of the figure which 

was close to a rhombus because of the way that the boys had positioned the 

perpendicular line symmetrical to the original line (see Figure 8.15). 

 

 

 

Figure 8.15 a kite figure which is close to a rhombus 

 

The boys dragged the top point and the bottom point and were able to generate kites 

and arrowheads and isosceles triangles as they had done with the project files. The 

points at the end of the vertical line are constrained on the perpendicular bisector of the 

horizontal line. The boys were very pleased that the shapes were the typical orientation, 

i.e. using the vertical – horizontal frame of reference. 
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Stan: It‟s an awesome kite. It looks better cause it‟s like upwards. 

 

I suggested to the boys that since they had constructed a kite then the shapes they 

generated must be versions of a kite.  

 

Susan: Is that the kite family because that‟s what you set out to make isn‟t it. 

Stan: It‟s the rhombus family 

Eric: Cause the rhombus is the middle one. 

Susan: But what is it most of the time? Because the rhombus is the middle one doesn‟t that 

mean there‟s only one position you can get the rhombus in? 

Stan: Yeah all the others, you can make two of them (moving back to thinking about 

discrete positions of kites) 

Susan: Mmmmm 

Stan: Maybe it‟s the arrowhead 

Eric: Yeah cause that‟s like the end product. 

 

After some more shapes had been generated and the boys had turned the figure round 

they decided they could make a square if they made the lines inside the figure the same 

lengths. In doing this they were building on what they had learned about the square in 

session one. 

8.6.3 Excerpts from the recording with Hemma and Seema 

 

Hemma and Seema were looking at the figure in the position below in figure 8.16. This 

is very close to the isosceles triangle but Hemma realised that it was not exactly in the 

correct place for a triangle. 
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Figure 8.16 A kite near to the isosceles triangle position looks like a n isosceles 

triangle, but Hemma used its properties to deduce that it was a kite 

 

 

Hemma made the following observations: 

 
“I actually think it might be a kite. But it's just a very odd kite. Cause do you know how we were 

saying that you can make loads and loads and loads of kites, I suppose it is still a kite. It's just 

got a very small top bit”. 

 

Another interesting comment by Seema was to say that bar BD split the figure (seen in 

figure 8.17) in half so anything which happened to that side (here the cursor pointed to 

the top triangle ABD) also happened to that side (then the cursor pointed to the bottom 

triangle DBC). This is a nice observation of the effects of symmetry in a dynamic 

environment. 

 

 

 

Figure 8.17 The kite can be split into two equal halves along bar BD and dragging 

affects the two halves in the same way. 
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Later in the session I asked the girls if kites and arrowheads could be in the same family 

since they had the same properties. “They might be” came the reply “but normally you 

wouldn‟t see it because they look so different”. When I suggested that the arrowheads 

and kites might just be different versions of the same shape I got a very unconvinced 

“mmmm”! When we looked at the rhombus and discussed if this could be a member of 

the family the girls started to look at the similarities between the kites and rhombus, 

particularly that AB = BC and AD=DC. When the girls turned their attention to the 

isosceles triangle they noticed that there were still two pairs of equal sides (just that one 

pair were on the same line). The dialogue suggested that the girls were beginning to 

think in a more inclusive way about the shapes which were generated by the animation 

of the dynamic figure, beginning to notice the similarities between the shapes whilst 

still being aware of the differences. 

 

8.7 Discussion on session 2. 

 

The animation was designed to allow the students to focus on what happens when one 

bar is dragged through the figure using a DMS strategy and it certainly did give the 

students the opportunity to notice the figure as continuously changing through many 

more shapes than they had identified in session one. When they viewed the animation 

the boys noticed that there were many more kites generated between the rhombus and 

isosceles triangle for example. The girls noticed that many shapes were generated 

which had something in common (BD as a line of symmetry which did not move) and 

that the changing position of AC changed the lengths of sides and the angles in the 

figure. That the dynamic figure morphed into kites, arrowheads, isosceles triangle and a 

rhombus seemed to suggest to the students that they had more in common than they 

realised at first. The students did seem to be accepting of the idea that kites and 

arrowheads were the same shape, or that a rhombus was a special instance of a kite 

(when the bar AC was at the mid-point of bar BD). However a partitional classification 

view of shapes can be strongly held and not easily given up in favour of a hierarchical 

classification. As De Villiers (1994) said, students need to appreciate the functionality 

of a hierarchical classification if they are to use one and even students he interviewed 

who competently used a hierarchical classification preferred to use a partitional 

classification. 
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When Stan and Eric constructed a kite from an empty screen and then dragged it they 

again saw that they could generate a rhombus, isosceles triangles and arrowheads. 

When I suggested that these shapes might be special cases of the kites since they had 

constructed a kite, the boys suggested that it might be a family of shapes, but thought it 

would be a rhombus family or even an arrowhead family because the arrowhead is the 

end point. This seems to be the opposite of constructive classification; the boys had 

started with the most highly defined object and relaxed the rules to generate its family. 

 

However, both Stan and Eric and Hemma and Seema were beginning to accept the idea 

that shapes can be related if they have a common property which would indicate a 

(small) movement towards Van Hiele level three reasoning. 

 

My premise in creating the animation was that, if the students saw the rhombus as a 

discrete position among an infinite number of kites, then they might come to see that 

the rhombus is a special case of a kite.  In order to accept the concept of an infinite 

number of kites it is necessary to accept unusual looking kites into the set of kites. 

Hemma showed that she was able to do this by accepting the shape in figure 8.12 as 

being a kite, if an odd one.  Of all the students who took part in iteration three I feel that 

Hemma was the one who was furthest along the road to reasoning at Van Hiele level 

three. She was able to recognise kites in all manner of positions and used the properties 

of the kite in order to do this. She had begun to use analytic reasoning which 

characterises Van Hiele level three reasoning. 

 

8.8 Conclusion 

 

In order to form a concept of inclusive relations of the rhombus into the family of kites 

I maintained at this point in the study that it is necessary to view all figures whose 

properties indicate a kite shape into the family of kites. This includes all the shapes 

which look very close to the rhombus and those which look very close to isosceles 

triangles. Students learn about kite shapes in quite typical orientations where the top 

two congruent sides are equal and the bottom two congruent sides are equal and where 

the proportions look something like the shape in figure 8.18. 
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Figure 8.18 The typical kite 

 

This appears to lead to the development of a concept image of the kite. When students 

are asked to consider kites which are presented in different orientations and proportions 

they may not wish to label them as kites. However, as can be seen from the data in my 

study, students often deal with this by labelling such kites as having some peculiarity eg 

an angled kite, a bit of an odd kite, a short chubby kite. The factor which enables 

students to accept unusual representations of kites into the kite family is an 

understanding that if the properties indicate a kite (usually the properties used are two 

pairs of adjacent equal sides) then the shape is a kite. This is reasoning at Van Hiele 

level two. 

 

In order to progress to an understanding of the inclusive relations of the rhombus into 

the family of kites using a hierarchical classification, students need to accept all the 

kites, no matter their proportions, into the kite family. This is the case for the kite 

presented in a dynamic form at any rate and I suspect that it may be the case even for 

the static version of a kite. Thus it is clear that secure Van Hiele level two reasoning is 

necessary before development of Van Hiele level three reasoning can begin as Van 

Hiele himself maintained. 

 

At this point in the study I was fairly confident that I had found the intervention which 

could act as a catalyst for this development. This would be the working with the 

dynamic perpendicular quadrilateral followed by the animation. In iteration four I 

would trial this intervention with a whole class of students over three lessons. This time 

the bars would be vertical and horizontal because I had shown that the students used the 

same activities and made the same progress with their work on the task whether they 

worked with the upright figure or the oblique figure. 

 

D

CA

B
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9 Iteration 4 

 

In iteration three I tested a new hypothesis: that if students could perceive the dynamic 

figure under DMS as continuously morphing through an infinite number of kites, then 

this could be the catalyst for raising their reasoning to Van Hiele level three. This 

entailed students using the perceptual properties of the kite to identify the dynamic 

figure as a „kite‟ even when the figure was in an untypical proportion such as when it 

was close to a rhombus or isosceles triangle. I had found that, observing an animation 

of the figure which mimicked the DMS strategy horizontally, had helped the students, 

in iteration three, to perceive that an infinite number of kites could be generated, and 

that the rhombus was generated at one position in the animation while the isosceles 

triangles were generated at two positions. The arrowheads, of which there are an 

infinite number, had the same properties of a kite and so could be the same shape (as 

long as the convex angle was not included in the list of properties). The dialogue from 

the recordings showed that the students moved between accepting the rhombus as being 

a special kite and insisting the rhombus and kite were separate shapes. The animation 

seemed to convince them but, when they considered the properties of kites and 

rhombus, they fell back on partitional classification of the shapes. 

 

9.1 Objectives for iteration four 

 

In iteration four I decided to test whether working with the dynamic perpendicular 

quadrilateral could be an effective intervention to develop the concept of inclusive 

relations, particularly for the rhombus as a special case of the kites. This iteration was 

conducted within a whole class context and I modified the task so that it could be used 

with a class of year eight students over three lessons. This meant I could include the 

activities of working with the computer files and watching the animation within a 

pedagogical sequence of activities designed to support the development of the concept 

of inclusive relations. An important part of this pedagogical sequence was interactive 

whole class discussion bringing into play the socio-cultural aspects of learning which 

are discussed in section 9.2.  
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9.2 Theoretical background: Socio-cultural aspects of learning 

 

“The most powerful way of introducing students to new mathematical ideas is to work 

creatively with a whole class so that students become collectively aware of the potential 

of new mathematical tools: new mathematical knowledge” (Sutherland, 2007, p.43). 

 

Vygotsky (1978) said that children actively construct their own knowledge and 

understanding of the world by building on the knowledge they already have and in the 

cultural context in which they live. For most of the world‟s children, and certainly for 

children in the UK, they learn about formal mathematics in the school classroom. The 

school mathematics class is a small mathematical community with the teacher as 

expert. It is the teacher‟s role to introduce their students to new mathematical concepts, 

and the tools which would support the learning of new concepts which may be 

mathematical notions such as mathematical notation, the Cartesian frame or calculators 

and computers (Sutherland, 2007). 

 

Teachers also plan lessons and design tasks for their students. These tasks are mediated 

by particular resources and tools which propagate the mathematical ideas the teacher 

intends the students to learn (ibid). However, the small community in the mathematics 

classroom provides an additional valuable resource in the teacher and students who 

make up that community. Human beings are social animals who create meanings and 

construct knowledge as part of a cognitive community (Donald, 2001). Interactive 

discussion in the classroom between teacher and students, and between students, is 

therefore an effective way to share and develop mathematical ideas and concept 

development in students as individuals. A description of a research project undertaken 

by Sinclair and Moss (2012) exemplifies this. 

 

Sinclair and Moss found that children, aged four and five years old, who participated in 

a class lesson on geometric shapes, were initially unwilling to accept three sided shapes 

as triangles whose proportion and orientation were not that of an upright equilateral 

triangle. Sinclair used a DGS triangle which she dragged into different versions of a 

triangle including a long skinny version and recorded the dialogue between her and the 

children. One particular child in the group perceived the shape to be a triangle by 

referring to the property of having three corners no matter what the proportion and 
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orientation of the shape, demonstrating level two reasoning. The comments from this 

child to the class that the shape was a triangle because it had three corners did appear to 

affect the way the other children viewed the shape, many of whom had originally 

dismissed the label of „triangle‟ for this shape. Having responded to questions from 

Sinclair, listened to the comments of the first child, and viewed the triangle figure 

under dragging, most children in the group had begun to move towards accepting long 

skinny triangles in the family of triangles. During the session some of the children 

oscillated between level one (non-acceptance of an atypical triangle) and level two, 

acceptance due to its properties. Oscillation between two levels of reasoning was 

exactly what I had observed in iteration three (although my older student participants 

oscillated between Van Hiele levels two and three). Their thinking was clearly 

perturbed by the dichotomy between their old understanding of triangles and the new 

understanding introduced by their teacher and more knowledgeable peers. The 

importance of dialogue between teacher and students and between students can 

therefore have an important part to play in the development of their geometrical 

reasoning. 

 

9.3 Process for iteration four 

 

9.3.1 Instructional goals 

 

In the whole class lesson my aim was to introduce the concept of inclusive relations to 

the class through working with the dynamic figure, discussion of the properties of the 

shapes generated from it and by watching the animation. In particular I wanted to 

present the idea that the rhombus, isosceles triangles, kites and arrowheads were all 

members of the same family generated when one bar in the dynamic figure is dragged 

along the perpendicular bisector of the other. This idea is a form of situated abstraction 

(Noss and Hoyles, 1996) of the concept of inclusive relations in the context of the 

dynamic perpendicular quadrilateral. I expected that the class would include some 

students who were more advanced in their geometrical reasoning than others and whose 

contributions to class discussion might act as a catalyst for  the development of the 

reasoning of their peers. 
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The lesson plans are included in appendix 4.1. Activities in the lessons were: 

 

 Students used two geo strips of different lengths as concrete representations of 

the bars. Keeping the geo strips at right angles students put one over the other 

and imagined what shapes they could make if they joined the ends of the bars. 

They were then asked to add the stipulation that one bar now acted as the 

perpendicular bisector of the other bar and to imagine what shapes could be 

made. Students sketched some of these shapes on mini white boards. After this I 

added the stipulation that both bars were the perpendicular bisector of the other. 

Only the rhombus results from this final stipulation when starting with unequal 

bars. The activities with the geo-strips were designed to mimic constructive 

classification of shapes (De Villiers, 1994). 

 

 Students worked in pairs on laptop computers with the computer file containing 

the dynamic figure constructed around 8 cm vertical and 6 cm horizontal bars. 

They were asked to investigate what shapes they could generate and to use the 

displayed measurements to try and make the shapes as accurate as possible. 

 

 For activities with both the geo-strips and the dynamic computer figure students 

revised and reviewed shape properties using the measurements of sides and 

angles and described the relative positions of the bars in order to generate the 

shapes.  

 

 The dynamic figure was projected from my laptop computer onto a whiteboard. 

Using a radio mouse, volunteer students dragged the figure into different 

shapes. During this activity a whole class discussion ensued where I posed 

questions such as  

 

 What has to be true to make that shape an accurate arrowhead? 

  How could we make that an accurate kite? 

 Are arrowheads and kites the same thing (in response to one pupil 

suggesting an arrowhead is a concave kite)? 
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 The students watched the animation of DMS and were asked to describe what 

happened to the figure. 

 

 Class discussions explored whether shapes generated whilst dragging to keep 

one bar as the perpendicular bisector of the other might form a family of shapes. 

 

 Finally in the third lesson the students were asked to each make a poster 

illustrating what they had learned from the previous two lessons. 

 

9.3.2 Instructional starting points. 

 

The class of thirty-one year eight students who participated in iteration four of the study 

in June 2013 were assessed by their mathematics teacher as achieving at levels 

six/seven of the National Curriculum for England and Wales (QCA 2007). It would 

have been more consistent with the rest of the study if I could have worked with a class 

set of average attainers who in this school would have been working at National 

Curriculum levels five/six. However, access to a mathematics class was contingent on 

the availability of a class whose teacher was happy to work with me. In the event I was 

able to collect useful data whilst working with this class. This class had not previously 

encountered the computer files containing the vertical and horizontal bars, nor had they 

previously worked with a DGS program. 

 

9.3.3 Learning trajectory 

 

As can be seen in the lesson plans in appendix 4.1, I decided to change the instructions 

I gave to the students when they worked on the task in order to develop the concept of a 

constructive definition of shapes by adding constraints on a figure as described by De 

Villiers (1994). The properties of the perpendicular quadrilateral are that the diagonals 

intersect at right angles. Adding the property that one diagonal must bisect the other, 

generates the kites which are a subset of the perpendicular quadrilaterals. A further 

property; that both diagonals bisect each other, generates the rhombus, which is a 

subset of the kites. Using a constructive definition of shapes it may be possible to 

develop the concept of inclusive relations and a hierarchical classification of the shapes 
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generated using the dynamic figure. I hoped that the sequence of instructions would 

encourage the students to notice common properties of shapes and to begin to 

appreciate that some classes of shapes are subsets of others. 

. 

9.4 Results and data analysis of the sessions in iteration four 

 

Data which I collected in iteration four comprised my recollections written straight 

after the lessons, photographs of students‟ work, the on-screen recording and dialogue 

from the whole class session based on the dynamic figure and the posters which each 

student made. 

 

9.4.1 Lesson one 

 

In lesson one I wrote my impressions of the lesson straight afterwards (given in the rest 

of this section) and photographed some student work from the mini whiteboards (some 

examples are shown in appendix 4.2).  

 

The students used the geo strips to find shapes which could be made whilst keeping the 

diagonals perpendicular and then later keeping one diagonal as the perpendicular 

bisector of the other. They found it hard to articulate how the bars were positioned with 

each other and preferred to show me visually how they were positioned. When they 

worked with the perpendicular quadrilateral on the computer they were also able to 

generate the arrowheads (which had not occurred to them whilst using the geo-strips). 

Overall the students were able to identify all the shapes which can be made when one 

bar is the perpendicular bisector of the other. Between them, the class identified one 

rhombus, several isosceles triangles and an infinite number of kites and arrowheads. 

In their description of the properties of the bars and the other properties of the shapes, 

students often referred to the diagram they had drawn. The figural aspect and its 

particular representation were clearly dominant. The student who had drawn these two 

shapes (Figure 9.1) on the mini whiteboard described the shapes in the following ways: 
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Figure 9.1 photo of sketch of figures drawn on mini whiteboard 

 

To make a kite: 

Student: So you get the 5 centimetre bar and you put it anywhere on the 7 centimetre line but 

then the 7 centimetre line has to be in the middle of the 5 centimetre line. 

 

Susan: What‟s the difference between a square and a kite? 

Student: A square is regular because all the sides are the same length and the sides are going 

either sideways or up and down. And a kite is more irregular with diagonal lines 

and all the lines are the same length. 

 

 

Hence the kite has been described by the process of placing the diagonals (bars) and the 

square has been described by the property of equal sides and with reference to its 

typical orientation (from a holistic perception of the square). These descriptions are 

suggestive of a mixture of level one and level two reasoning. In this way these students 

were very like the others who had participated in the study and who had been classed as 

average attainers by their teachers. 

 

In lesson one the students had the opportunity to become familiar with the dynamic 

figure and to describe the positions of the bars and the properties of the shape. There 

was a wide range in the sophistication of geometrical reasoning amongst the students in 

this class. Some students identified that there was an infinite number of kites and of 

arrowheads which indicates level two with possible level three reasoning. On the other 

hand some students such as the one who drew the shapes in figure 9.1 described a 



184 

 

square according to the orientation of its sides which is indicative of reasoning at level 

one and level two (since this student also said the square has sides the same length). 

 

9.4.2 Lesson two 

 

In lesson two I used the image capture software to record the on screen activity on my 

laptop computer and the dialogue between me and the class (transcript in appendix 4.5). 

I also used a digital recorder to record some of the comments made by individual 

students. 

 

I decided that the students needed some support to articulate the positions of the bars 

and the properties of the shapes. I projected the perpendicular quadrilateral onto the 

white board through my laptop computer and asked student volunteers to generate 

specific shapes by dragging the figure using a radio mouse.  I then encouraged the 

students to articulate properties of the bars and the properties of the sides and angles in 

the shape. It can be seen in the dialogue below that the use of mathematical language by 

me and some students in the class became a catalyst for the improved use of 

mathematical language by the other students. 

 

Susan: You‟re going to make a shape so that one bar bisects the other.  

 

(The student made the arrowhead kite in figure 9.2 by dragging bar AC to the right of 

bar BD). 

 

Figure 9.2 The arrowhead 
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Susan: OK, thank you very much. Do people agree? Which bar bisects the other? 

Pupil  1: AC bisects BD 

Susan: Is that an accurate arrowhead? What has to be true to make that an accurate 

arrowhead? 

Pupil 5: The AB length the same as the AD length. The CD length the same as the BC 

length. 

 

 

In this excerpt pupil 1 can be seen to have mirrored my use of the word „bisect‟ to tell 

me which bar bisected the other. Pupil 5 described the side properties of a kite by 

referring to specific sides in the displayed kite. 

 

Pupil 1 showed that he was already reasoning at Van Hiele level three and like the 

small child in Sinclair and Moss‟s study his contributions to the class discussions may 

have helped other students to begin to use level three reasoning. Pupil 1 asked of the 

kite displayed in figure 9.2 

 

Pupil 1: Isn‟t it a concave kite? 

Susan: That‟s an interesting thought. Go on then. 

Pupil 1: Erm, because it‟s like a kite but where the A is, if you pulled it out it would be a 

kite. If you move the line (he meant bar) across. 

 

He took the radio mouse and demonstrated what he meant by dragging AC to the left 

and right as shown in figure 9.3. 

 

  

 

Figure 9.3 bar AC was moved left and right to demonstrate a kite (although the end 

point was a rhombus) and back to the arrowhead. 
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This movement suggested that this student conceptualised the arrowhead as a kite 

which had been dynamically changed by dragging one bar symmetrically through the 

shape. 

 

The discussion on the shape continued and one of the students displayed a typical view 

of a kite indicating level two reasoning: 

 

Pupil 10: Kites are like, shorter at the top and longer at the bottom. 

 

Since some students were talking of the kite as having two pairs of equal sides I 

reminded them that the rectangle also has two pairs of equal sides. Pupil 13 clarified: 

 

Pupil 13: The difference between a kite and a rectangle is the kite has two the same size 

lengths at a corner, meeting up at a corner. 

 

From the arrowhead kite we moved on to the isosceles triangle which was displayed 

with horizontal symmetry as shown in figure 9.4. The move from the arrowhead to the 

isosceles triangle entailed DMS for 4 seconds followed by RD for 11 seconds. I 

observed episodes of GD, RD and DMS in this session with the whole class with 

different students having control of the radio mouse. This demonstrated how those 

dragging strategies are strongly situated within this task. 

 

 

 

Figure 9.4 The isosceles triangle with horizontal symmetry 

 

When I asked what had to be true to make that an isosceles triangle: 

 

Pupil 17: The two sides have got to be the same. Not the base line. 
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This is a description of the properties of an isosceles triangle in its typical orientation. 

Perhaps pupil 17 mentally rotated the triangle as the base line would be BD which is 

not horizontal in this figure. 

 

I asked the class whether the triangle was a perpendicular quadrilateral since we made 

it from one.  

 

Pupil 18: A quadrilateral has four sides 

Pupil 19: When you crossed them over there were four points because there was one of them 

sticking out. When the point is on the same line, the A point is on the same line as 

BD, that means there are only three points. 

 

Pupil 19 had given the class a good explanation of why the figure was now a triangle 

instead of a quadrilateral. Reaching the conclusion that an isosceles triangle might be a 

special case of a dynamic kite is, after all, a difficult notion even for most adults. 

 

Next we looked at the rhombus which some students had decided was a parallelogram. 

We had a discussion on which of those the figure might be. Pupil 1, who was possibly 

the most advanced in geometrical reasoning described the parallelogram as a pushed 

over rectangle; another example of a concept formed from a concrete process. 

 

I decided to ask the students to consider the properties of the sides and angles of the 

figure and suggested that the rhombus might be a special parallelogram. Pupil 33 made 

a suggestion: 

 

Pupil 33: Doesn‟t a parallelogram have no lines of symmetry and that does? 

 

This excerpt shows that the classification is affected by how a shape is defined. The 

typical parallelogram presented to students e.g. through textbooks, shows a shape with 

two longer parallel sides and two shorter parallel sides. This shape has no line 

symmetry, only rotational symmetry and students will have learnt this when studying 

symmetry in shapes.  A rhombus, which has two lines of symmetry, therefore cannot be 

a special parallelogram if a parallelogram is defined as having no line symmetry.  
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Overall all students in the class displayed an understanding of the perceptual nature of 

shapes by their properties and some students held to a typical view of shapes in specific 

proportions and orientations. In this they appeared to have a similar level of reasoning 

as other students in previous iterations. Some students such as pupil 1 appeared to be 

closer to level three reasoning which was shown by his willingness to consider the 

arrowheads as special kites. 

 

After the whole class discussion about the dynamic figure under dragging using the 

radio mouse, the students were asked to fill in a worksheet by sketching and labelling 

the shapes they could make from the dynamic figure, the properties of the bars and the 

properties of the shape (some examples of completed sheets are shown in appendix 

4.3). While they did this activity I recorded some of the students telling me about their 

work. The first three students described the bars with reference to the specific shape 

they had drawn. They all used the word „bisect‟ mirroring the way we had talked about 

the positions of the bars in the whole class discussions. The Pupil D called me over, 

very excited to tell me what she had just discovered: 

 

Susan: How could you say that the bars are positioned in that triangle? 

Pupil A: This bar bisects the one on the bottom 

  

Susan: How can you describe the bars in a kite? 

Pupil B: This bar bisects the bigger bar 

  

Susan: What have you made there? 

Pupil C: An isosceles triangle 

Susan: How are its bars positioned? 

Pupil C: The longer one is bisecting the shorter one 

  

Pupil D: A kite and an arrowhead have the same properties 

Susan: A kite and an arrowhead have the same properties? 

Pupil D: yes 

Susan: They do don‟t they cause you‟ve got those. Well what are the properties? 

Pupil D: Two sets of adjacent equal lines, two pairs of equal angles and one line of symmetry 

Susan: That‟s very good isn‟t it. So what‟s the difference between the kite and the 

arrowhead? 
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Pupil D: That BD is more, it‟s more concave 

Susan: What about the bars for a kite and the bars for an arrowhead? 

Pupil D: If you continue the line then they‟re like the same. 

Susan: What is the same? 

Pupil D: They both, the line BD bisects AC. 

Susan: OK so that‟s what‟s the same about them  

Pupil D: BD cutting, bisecting AC 

Susan: OK and what‟s different about the bars for a kite and an arrowhead 

Pupil D: That AC is further away from BD  

 

This last pupil had used the perceptual nature of the shape properties of kites and 

arrowheads to ascertain that they were the same shape. In this she was starting to 

develop reasoning at Van Hiele level three. 

 

The shapes, which the students sketched, make it clear that they understood what each 

shape looked like and how the bars were positioned inside. At the least they were all 

operating at Van Hiele level two in that they were able to list the properties of shapes 

and describe the positions of the bars. Despite the fact that the instructions at the top of 

the worksheet asked the students to draw shapes made from two bars which were 

perpendicular and where one bar bisects the other, not all students described the bars as 

being perpendicular (although perhaps they thought it was a given and so they did not 

need to mention it). Some students described bars as bisecting and others wrote that the 

bars crossed each other. All students drew a kite and their descriptions of the kite are 

the most illuminating. Some described the bars for the specific kite they had drawn, e.g. 

the students whose worksheets can be found in appendices 4.3b, 4.3c and 4.3k 

described one bar as being above the middle or one third of the way down. Other 

students described the kite in more general terms, in particular the authors of the 

worksheets found in appendix 4.3l wrote that one bar crosses the other at any point and 

of 4.3m wrote that you can make an infinite number of these (kites) by moving the 

shorter bar up or down the longer bar. These last two descriptions are indicative of 

movement towards level three reasoning. However other students could show flashes of 

level three reasoning, for example the author of the worksheet found in appendix 4.3h 

made a connection between the bars of the kite and the bars of the arrowhead (the bars 

are like the kites but don‟t touch). 
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Next I showed the students the animation. This has already been illustrated in chapter 8 

but here it is again. 

       

 

Figure 9.5 Seven positions of the animated figure 

In the following dialogue I have noted pupil 1 who was the student who used level three 

reasoning most of the time and who seemed to be able to use more sophisticated reasoning than 

his peers. Otherwise I have used pupil to indicate any of the other pupils in the class. 

 

Susan: So what is AC doing to DB all the time? (I said it the wrong way round!) 

Pupil: It‟s acting as the bisector 

Susan: It‟s always bisecting it isn‟t it. What angle between AC and BD? 

Pupil: Ninety 

Susan: Ninety degrees? So can we put those two words together. We‟ve got AC bisects BD 

and it‟s also at right angles to it. What‟s at right angles? What‟s that word? 

Pupil 1: Perpendicular 

Susan: Perpendicular and a line which cuts another one in half is a  

Pupil 1: Bisector 

Susan: OK AC is the perpendicular bisector of BD because it‟s at right angles and it cuts it 

in half. So we‟ve been making shapes that have the property that one diagonal is the 

perpendicular bisector of the other. In that perpendicular quadrilateral what is it 

most of the time? We‟ve had kites and arrowheads and isosceles triangles and 

rhombuses. What is it most of the time 

Pupil 1: A kite 

Susan: OK and sometimes, go on. 

Pupil 1: An arrowhead 

Susan: An arrowhead. Are we going to agree that kites and arrowheads are the same thing. 

Some people are not quite sure about that. Some people are. We‟ll call it kite stroke 

arrowhead for now. So most of the time it‟s a kite or an arrowhead. And how many 

times do we have it being a rhombus? 

Pupil: One 

Susan: And an isosceles triangle 

Pupil: Twice 

Susan: And how many kites stroke arrowheads do we have? 

Pupil 1: Infinity 
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It can be seen that the students had started to use the word „bisector‟ rather than „cuts in half‟ or 

„crosses in the middle‟. I had been careful in introducing terms such as „bisector‟ and the 

students mimicked my use. It can also be seen that I introduced them to „perpendicular bisector‟ 

by putting together the two words which they already understood. In this way I modelled use of 

mathematical vocabulary inducting the students into the mathematical discourse. 

9.4.3 Lesson 3 

 

I did not record the discussion at the beginning of lesson three and so this paragraph 

details the notes I wrote shortly after the lesson. First we did a recap of what we did 

during the previous lesson looking at the animation. Some of the students offered that 

there were an infinite number of kites. In the discussion the students appeared happy to 

accept the arrowheads as being concave versions of kites. We talked about the 

properties of kites being two pairs of adjacent equal sides and identified these sides on 

the animated figure. The arrowheads had the same properties and the students seemed 

to accept that this meant the kites and arrowheads were the same. They identified one 

rhombus and two isosceles triangles that occurred during the animation. We talked 

about the rhombus as being a special member of the kite family and even the two 

triangles belonging to the kite family in the context of the computer animation. Finally 

we identified the horizontal bar as being a line of symmetry. 

 

In preparation for making a poster the students and I made a list of the vocabulary and 

the students were keen to suggest words (see Appendix 4.4 for a photograph of this list 

on the board). They were becoming familiar with the mathematical vocabulary and 

many of them wanted to use the correct terms.  

 

Several conversations took place whilst pupils worked on their posters. Some students 

discussed whether there were an infinite number of kites or just a lot (but a finite 

number). The students who said there was a finite number appeared to be thinking 

about physically moving the bar a little bit along each time. The students who said there 

was an infinite number appeared to be thinking theoretically if the bar could be moved 

an infinitesimal amount (or as one boy said 0.0000000000000000 (recurring) 1).  

Some students still found it difficult to accept a rhombus being a special kite even if the 

properties for a rhombus were also true for a kite. 
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It might be argued that I had set up the situation for the students to appear as if they 

accepted inclusive relations between the shapes in the animation and that they would 

mirror this in their posters. However my view was and is that the students would be 

honest in using the posters to tell me what they had learnt. They would not be able to 

imitate Van Hiele level three reasoning if they had not understood it (Vygotsky, 1978). 

Indeed an analysis of the posters show clearly the students who reasoned at level two 

and those who had begun to accept inclusive relations and were moving towards level 

three. 

 

9.5 The posters 

 

Thirty-one students made posters of what they had learnt during the lessons. I have 

analysed these according to level of reasoning indicated and identified common themes 

in the comments and drawings. 

9.5.1 Assigning levels to the posters 

 

I assessed the level (according to Van Hiele) of reasoning indicated on each poster, 

using the comments and diagrams to ascertain how each student reasoned about the 

shapes which were discussed in the lessons. Three examples of the comments on the 

posters which provided this evidence are given below: 

 

Comments on Poster A 

“These four shapes, namely a kite, isosceles triangle, arrowhead and rhombus all have 

one thing in common, they all have a perpendicular bisector. They all belong to the 

same family because all of them have a certain property when the bars AC bisect bars 

BD. 

(Describing the animation) When slided along a certain line segment of a certain size, 

then 4 shapes are formed: an arrowhead, an isosceles triangle and a rhombus. The 

shapes always have two equal sides”. 

 

I assessed poster A as indicating Van Hiele level three reasoning because the student 

has clearly seen that keeping the property of one bar being the perpendicular bisector of 

the other has generated the four different kinds of shapes. They have also connected the 
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sliding of the bar to this property. However, there is no suggestion that the other shapes 

are special cases of the kites but there appears to be an understanding that all four 

classes of shapes do belong to a larger class or family.. 

 

Comments on Poster E 

“From a kite we managed to make a family of shapes which all had a line that cut at an 

angle, called a perpendicular bisector. They ranged from a kite to an arrowhead” 

 

I assessed poster E as indicating Van Hiele level two / three reasoning. There is some 

indication of inclusivity in that the student has seen that the shapes originate in a kite. 

However two drawings on the poster of the rhombus and kite show measurements 

which indicate a partitional classification. So it appears that the student who designed 

this poster moves between level two and level three reasoning, indicative of starting to 

think at level three. 

 

Comments on Poster M 

“All these shapes are made from 2 bars. In every shape the lines AB/AD and BC/CD 

are the same.” 

 

I assessed poster M as indicating Van Hiele level two reasoning. Alongside the above 

comment the student had drawn a sequence of shapes under the animation. However 

the comments did not suggest to me that any connections were made between the 

shapes even though pairs of equal sides were listed. 

 

9.5.2 Identifying themes in the posters 

 

Appendix 4.5 shows a table of comments made on the posters. Five themes were 

identified: 

 Description of the animated figure by drawing different positions of the figure 

and / or written commentary. 

 Listing common properties of the shapes drawn and described on the poster 

 Use of the term „perpendicular bisector‟ 

 Reference to a family of shapes either explicitly or by implication 
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 An indication of an infinite number of kites and arrowheads 

Figure 9.6 shows a Venn diagram indicating whether each poster (labelled as in 

appendix 4.5) mentioned the animation, the family of shapes and the infinite number of 

kites. The Van Hiele levels have been written next to each label where A3, for example 

indicates that the student who made poster A demonstrated reasoning at level three, 

E2/3 indicates that the student demonstrated reasoning which was moving towards level 

three and M2 demonstrates reasoning at level two. 

 

 

 

Figure 9.6 Posters, content and Van Hiele levels 
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9.5.3 Posters which mentioned animation 

 

Thirteen of the thirty one posters illustrated and/or described the animation. Five of 

these solely illustrated the animation with diagrams without commentary in the form of 

text.  From these only two (M and W) indicated that their authors probably held a 

partitional view of the classification of shapes. Poster M did not describe the animation 

in words but the student had drawn the figure in seven positions along the movement of 

the animation. Poster W also did not describe the animation in words but the student 

had drawn the figure in nine positions. This student wrote about the properties of the 

shapes according to a partitional classification.  

 

Eleven posters which described or illustrated the animation included information which 

indicated that students were beginning to use the idea of a family of shapes, where 

some shapes (rhombus, isosceles triangles) were special versions of the kites and that 

the arrowheads were concave kites. Comments included „a family of shapes made by 

moving one bar along the other‟, „part of the kite family‟, „these shapes are mostly 

kites‟, and „special kinds of kites‟. Six of the posters also mentioned an infinite number 

of kites and arrowheads. One student wrote: 

 

“You can move even one millimetre and it will be another shape”. 

 

This comment does suggest that the student continued to think in terms of (a large 

number of) discrete positions. However this is a step towards the understanding of 

continuous change.  

 

Another student wrote: 

 

“The smaller line (i.e. bar) must always bisect the other. So is the isosceles triangle really 

acceptable? Or if it bisects it just before the end is it a kite technically?” 

 

This comment suggests that the student had been perturbed by the new ideas with 

which they had been confronted. The student has wondered if the figure continues to be 

a kite right up until the point when it becomes an isosceles triangle.  
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Overall the students who referred to the animation either in words or by drawing the 

animation on their posters were more likely (11 out of 13) to write comments that 

indicated an acceptance of inclusive relations and all of the students who described the 

animation in words were able to describe inclusive relations. 

 

Of the eighteen students whose posters did not mention the animated figure, the 

comments of nine of them indicated that they were beginning to move towards level 

three reasoning, the comments of seven students could either be considered to be 

partitional in nature or to provide insufficient evidence of level three reasoning, one 

poster (F) did indicate level three reasoning and a final poster simply included a 

glossary of terms which had been used during the lessons. 

 

9.5.4 Posters which mentioned a family of shapes either explicitly or by implication. 

 

Nineteen of the posters mentioned the family of shapes, either explicitly or implicitly. 

In the lessons, particularly in the second lesson, I had introduced the idea of a family of 

shapes to the students. It could therefore be the case that students were simply 

mimicking my suggestion that we had a family of shapes when they made their posters. 

I therefore needed to look at what the students wrote to ascertain whether they 

understood the concept of inclusive classifications and that we had a family of kites 

with the rhombus and isosceles triangles as special cases. The students had also been 

asked to consider the arrowhead as versions of a kite. Thus when analysing the 

comments of the eighteen posters which referred to a family of shapes I looked at the 

other comments on the poster to ascertain the level of understanding shown. 

 

Eleven of the nineteen posters indicated reasoning at level three. Students who used 

level three reasoning gave descriptions of the family of shapes using reasons such as 

common properties (e.g. bar AC bisects bar BD for all the shapes), indicated that there 

were infinite kites or arrowheads which could be made, that arrowheads were special 

kites, the rhombus was a special kite, isosceles triangles were special kites, all shapes 

were members of the kite family and combinations of these.  
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Eight posters indicated that the students were moving towards level three reasoning or 

there was insufficient evidence to be confident that they had used level three reasoning. 

Some comments on these posters described how the shapes were in a family because 

they had all been generated in the same way, but without extra supporting statements, 

e.g. all shapes were made by moving one bar along the other. Or the comments might 

have expressed doubt, such as “the kite is possibly a special version of a rhombus”.  

 

The mention of a family of kites appears to imply at least a movement towards level 

three reasoning. The comments on the posters indicated that the students had formed a 

concept of a family of shapes in that they could identify common properties of the sides 

and angles or the movement of the bars. Students who were more secure in level three 

reasoning either mentioned the infinite number of kites or arrowheads which can be 

generated or implied the infinite number (“these shapes are mainly kites” ) otherwise 

they referred to common properties being true for shapes and their subsets (“kites and 

arrowheads have two pairs of adjacent equal lines”). 

 

9.5.5 Perceiving an infinite number of kites. 

 

Eight posters explicitly mentioned the word „infinite‟ in relation to the number of kites 

and arrowheads. Five students whose posters explicitly referred to an infinite number of 

kites demonstrated level three reasoning and three students demonstrated reasoning 

which was developing towards level three. I had originally thought that if the students 

could perceive that the dynamic figure generated an infinite number of kites this would 

help them to develop a concept of inclusive classification of rhombuses in kites since 

the rhombus appears as only one position along the dragging journey between kites. 

However, only five of the eleven students who demonstrated level three reasoning 

referred to an infinite number of kites, which surprised me. During the second lesson 

when the students watched the animation I had asked how many kites could be made 

and pupil 1 (who demonstrated the most sophisticated reasoning)  had replied 

“infinity”. We had also had a discussion in the third lesson, while the students were 

working on their posters, on how many kites could be made; was it just a large number 

or was it an infinite number. Nevertheless the majority of the students did not refer to 

an infinite number of kites.  
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9.6 Discussion 

 

The whole class lessons included more activities than the sessions with pairs of 

students. This enabled the students to perceive the problem, of which shapes can be 

generated using two perpendicular bars, from a kinaesthetic perspective using geo-

strips, and a visual perspective through the dynamic figure on the computer screen. 

There was also discussion with a greater number of people with the potential for many 

more ideas than can be generated with two students and one researcher. Despite this, 

the students did react to the dynamic figure in similar ways to students in previous 

iterations. They used GD and DMS to generate shapes and RD to refine shapes with 

reference to displayed measurements. When the class watched the animation they 

identified the shapes in the same way as the students in iteration three had done. 

 

9.6.1 Changing discourse 

 

Over the three lessons the discourse of geometrical reasoning had changed. In the first 

session I recorded student comments which I classed as level one and level two 

reasoning as reported in section 9.6.1 when one student had said: 

 

“A square is regular because all the sides are the same length and the sides are going either 

sideways or up and down”. 

 

This comment suggests that the student was influenced by the orientation of the figure 

and had not separated orientation form the properties of the shape, which is suggestive 

of reasoning at level one. (Even though the students were in a class of high attainers as 

assessed by national tests and departmental tests they did not demonstrate more 

sophisticated reasoning than other students who participated in the study). However as 

the lessons progressed I was able to identify reasoning at level two and level three. In 

contrast to lesson one where students had found it difficult to articulate the positions of 

the bars inside the figure, by lesson three students were able to describe the positions, 

for example poster D states  

 

“The bars are perpendicular and create four right angles as they bisect each other”.  
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Pupil 1, in particular, demonstrated that he already reasoned at level three before 

participating in the study. His contributions to the class did provide an opportunity for 

the class to discuss the figure and to be confronted with arguments based on level three 

reasoning as when in the first session he suggested that the arrowhead is just a concave 

kite. This may have encouraged his classmates to consider inclusive relations that they 

may not have thought about previously. This effect, from working with a more able 

peer in the classroom had also been observed by Sinclair and Moss (2012). 

 

9.6.2 The catalyst for change in the students’ reasoning 

 

The main focus of iteration four was to test whether the animation, shown to the 

students after they had already worked with the dynamic figure and discussed the 

properties of the shapes which were generated, could be the catalyst for their 

development of level three reasoning particularly the concept of inclusive relations. The 

evidence appears to show that this had happened. Studying the contents of the posters 

shows that ten of the eleven students who demonstrated level three reasoning 

mentioned both the animation and the family of shapes on their posters (see figure 9.6, 

the evidence for level three was taken from all comments made on the posters). If any 

factors are responsible for the development of level three reasoning amongst the 

students it would appear to be the animation which has acted as the catalyst. Observing 

the perpendicular bisector of BD move along the line of BD generating versions of 

kites, rhombus and isosceles triangles appears to have helped some students to perceive 

the rhombus as a special kite and even helped some students to see that the isosceles 

triangle could be a kite in the dynamic context. It appears that the continuous morphing 

of the figure rather than the demonstration of an infinite number of kites was the 

catalyst for the change in the level of reasoning. 

 

9.6.3 Measuring the change in the class 

 

After the three lessons with this class of students I realised that I had failed to collect an 

important set of data. I had not known before the sessions which students already held a 

hierarchical classification of shapes. It was clear that pupil 1 came to the lessons with a 

hierarchical view of shapes but I did not know about the other students. I was given the 
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opportunity to repeat the lessons with the other top set in the year group who were 

taught by another teacher. In the event the lessons took place in the last week of term 

when there was a heat wave and the temperature in the classroom was not conducive to 

working. The regular class teacher was only prepared to let me work with the class for 

two lessons and so they did not make the posters. It was not the best circumstances for 

undertaking research but I worked with this class because I had been asked to do so as 

the head of department wanted the students to be given the same experience as the first 

class. However, I took the opportunity to find out whether the students‟ views on the 

classification of rhombuses as kites would change as a result of watching the animation. 

At the beginning of the second lesson I gave each student in this class a voting slip as 

shown in figure 9.6  

 

A rhombus is a special case of a kite 

 

I agree  

I disagree  
 

 

Figure 9.7 voting slip 

 

I asked the students to decide whether they agreed or disagreed with the statement; a 

rhombus is a special case of a kite. I then asked the students to put the voting slip at the 

top of their desk. At the end of the session I asked the students to write on their voting 

slips whether they still thought the same or whether they had changed their mind. I 

gave them the option of including their reasons. 

 

At the beginning of the lesson 12 students agreed that the rhombus is a special case of a 

kite and did not change their minds at the end of the lesson. 

 

17 students disagreed that the rhombus is a special case of a kite. By the end of the 

lesson 6 of these students had changed their minds and decided the statement is true. 

Two gave reasons which appear to show that they were influenced by the animation: 

 

“I have changed my mind because if the sides of a kite are stretched they are still bisected and 

simply converted into a different shape” 
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“I changed my mind because I saw the animation on the board”. 

 

The students who did not change their minds gave arguments based on a partitional 

classification of kites and rhombuses. 

“A rhombus has all of its sides equal and a kite has two pairs of adjacent sides”. 

 

The voting slips were a simplistic tool to measure change but they do, at least provide 

extra evidence to suggest that the three lessons with the first class would have had an 

impact on students‟ reasoning from classifying shapes into discrete classes to an 

inclusive classification of shapes which can be generated using the DMS strategy on the 

dynamic perpendicular quadrilateral. 

 

9.7 Conclusion 

 

Iteration four concludes the study. In this iteration I have demonstrated that the 

dynamic figure can be used as part of a sequence of lessons designed to develop the 

concept of inclusive relations between shapes. However the development of 

mathematical concepts by students is a complex process which necessitates that they 

are given time to work on tasks which support this development. This process will take 

different amounts of time and experience for each student. 

 

Of thirty one students, by the end of the sessions, eleven demonstrated level three 

reasoning, ten demonstrated that they were beginning to use level three reasoning but 

were not secure in it and ten students continued to use level two reasoning. The 

discourse developed throughout the sessions providing evidence that there was a 

genuine change in the way the students engaged with the classifications of the shapes 

by properties and by inclusion in other shape families.  

 

The animation appeared to be the catalyst for the acceptance in inclusive relations in 

some students. It helped them to observe the figure as continuously changing, rather 

than as discrete shapes produced at the end of dragging journeys. Watching the figure 

change between kites also seems to have helped the students to accept that kites are 
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defined by their properties and not by the typical image of a kite. However the infinite 

number of kites which the figure theoretically generates (although computer screen 

pixels mean it displays a discrete number of kites) did not appear to be an influencing 

factor as I had thought originally. The dynamic change itself is likely to be the main 

factor and this will be explored in the next chapter. 
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10 Retrospective Analysis 
 

Thus far this report has addressed each of the iterations in turn, describing the research 

process, the collection and analysis of data and the developing theory. Now that this has 

been completed the retrospective analysis will provide an overview of the data 

collected across all of the design cycles. First I set out the main themes and sub-themes 

into one table (see table 10.1). 

 

Next the data will be analysed in the context of Duval‟s theory of cognitive 

apprehensions (Duval, 1995) taking each in turn to provide the focus and framework 

for analysing the data: 

 

 Perceptual apprehension 

 Operative apprehension 

 Sequential apprehension 

 Discursive apprehension 

 

Finally this chapter addresses the dynamic element of Dynamic Geometry Software. 

10.1 Themes common to all iterations 

 

Table 10.1 illustrates the themes which have emerged from the data collected over 

iterations zero to four. Within each theme there are sub-themes some of which describe 

student activity (mostly on screen activity) and some of which describe student 

discourse (indicated by the verb to describe or to comment). The themes have been 

grouped into four areas. 

 

 Geometrical reasoning (concerning the shapes generated from the dynamic 

perpendicular quadrilateral) is divided into holistic perception of shapes, 

knowledge and understanding of shape properties and the development of 

analytical reasoning which recognises that there are connections to be made 

between the properties of shapes. These aspects are descriptive of the 

development through Van Hiele levels one to three (Van Hiele, 1986). 
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 Dragging strategies as a theme relates to the instrumentation of the software 

tools by the students when generating shapes from the dynamic figure. The 

dragging strategies can act as tools of semiotic mediation when students are able 

to connect meanings attached to the use of dragging to geometrical theory of 

shapes and their properties and also of inclusive relations. 

 

 Symmetry and orientation are two significant influences on the way students 

have perceived the shapes generated from the dynamic figure. Chapter two, 

particularly section 2.1 shows how research has identified the importance of 

symmetry and orientation in the way human beings perceive shapes. 

 

10.1.1 The Van Hiele levels in the table of themes 

 

The themes have been organised into table 10.1 and I have used Van Hiele levels one, 

two and three throughout the analysis of the work with the dynamic figure and each of 

these levels occur under the headings Geometrical Reasoning and Dragging Strategies.  
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Table 10.1 Overview of the themes 

 

 

 

 

 

 

Geometrical 

reasoning  

Holistic perception of a shape (VH1) 

 Generating the „three quarters‟ kite 

 Comments e.g. “It looks like a rhombus” 

 Describing a rhombus as a parallelogram due to its 

orientation 

Describing a shape as made of triangles 

Describing properties of sides and angles (VH 2) 

Describing properties of the bars (VH2) 

Describing a family of shapes (towards VH 3) 

 Active  DMS between rhombus, kite, isosceles 

triangle and arrowhead 

 Describing common properties of a rhombus and 

square 

 Describing, in multiple shapes, the common property 

that one bar always crosses the other at its midpoint 

 

 

 

 

 

Dragging 

strategies 

Wandering dragging: exploring what happens when bars are 

dragged randomly 

Guided dragging: dragging the bars intentionally to generate 

a specific shape (VH 1) 

Refinement dragging: small dragging movements to make 

sides and angles which should be equal to be as close as 

possible (VH 2) 

Dragging Maintaining Symmetry: dragging one bar along the 

perpendicular bisector of the other bar (towards VH 3)   

Describing an action in DMS “pull it up or down” 

 

 

 

 

 

Symmetry 

Active: Guided dragging of the bars into a symmetrical 

position. 

Active: Dragging Maintaining Symmetry 

Describing axes of symmetry as being in the middle of the 

shape or naming the bars as the axes of symmetry 

Describing the symmetry of the shape in a holistic way “it 

will look equal” 

Describing a process; visualisation of the shape being folded 

in half 

 

 

 

Orientation 

Describing the shape using its orientation: 

 “an angled kite” 

 “A rhombus is slanted and a square is straight” 

Commenting or acting on the non vertical frame of  reference 

 “if you tilt your head” 

Describing the dragging as up or down when the figure is 

being dragged at an angle to the vertical 
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I have linked the holistic perception of the shape (which includes recognising shapes by 

their visual configuration and dragging the bars straight into position) to generate a 

shape with Van Hiele level one reasoning. When students used holistic reasoning it 

appeared that their concept image of the shape had a significant influence on the way 

they saw the shape, which could include its orientation as well as its proportions. When 

students dragged the bars into position to make a kite, they often preferred the three-

quarters kite (with the horizontal bar roughly three quarters along the vertical bar) 

which is a typical presentation of the kite. Using another example, if students viewed a 

rhombus with two of its sides close to the horizontal, then they sometimes viewed it as 

a parallelogram because rhombuses are usually presented with all sides oblique and 

parallelograms are usually presented with a base sitting horizontally as shown in figure 

10.1. Referring back to section 7.4.10 describes how Tara and Ruth perceived the 

oblique rhombus to be a parallelogram.  

 

three quarters kite a rhombus presented obliquely 

 

 

 

Figure 10.1 Proportion and orientation affect perception of shapes so that the rhombus 

presented obliquely can sometimes be perceived as a parallelogram 

 

This preference for shapes in specific orientations and proportions, which may arise 

from students‟ prior experience with shapes in school, is a naive kind of reasoning. As 

students develop a perceptual understanding of shape properties, we might expect that 

they would be able to separate the shape from its orientation and proportion, in other 

words to label a shape based on its properties rather than the way it looks. However the 

students in the study seemed to hold onto their concept images of shapes they generated 

and this overlapped with their understanding of the properties of the shapes, for an 

D

A

B B
C

A
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example see section 8.4.3 where Hemma and Seema discussed kites in different 

incarnations. In terms of their understanding of the figural concept, the students thought 

of the shape very much as a material object (in the spatio-graphical sense) whilst 

maintaining an understanding that the shape obeyed theoretical rules related to their 

concept definition of the shape. Usually the concept definition incorporated the 

„official‟ mathematical definition of the shape but may also have included other 

implicit properties such as orientation and specific proportions.  

 

Displaying an understanding that the shapes they generated had properties which they 

could check (using the measurement facility of GSP) demonstrates reasoning at Van 

Hiele level two. If students were secure in level two reasoning they would be expected 

to recognise shapes on the basis of their properties and thus recognise short fat kites, 

long thin arrowheads etc as being versions of the kites or arrowheads. Whilst all of the 

students were able to use the properties of the shapes to identify them they still 

typically showed a preference for „three-quarters‟ kites (see section 7.7.5) which 

indicates that an ability to think at level two overlapped with thinking at level one.  

 

In order to progress to Van Hiele level three, in the context of this study, it was 

necessary for students to recognise as kites, shapes which have the properties of a kite 

but which look like a rhombus or isosceles triangle. In the context of the dynamic 

figure a kite shape can be dragged so that it is very close to the rhombus or isosceles 

triangle position and look very much like the rhombus or isosceles triangle even though 

its properties identify it as a kite. Students who accepted the near isosceles triangle as a 

kite, say, demonstrated secure level two and it can be argued that they demonstrated 

early level three reasoning because they were being analytical, not merely descriptive in 

relating this position of the kite as being next to the position for the isosceles triangle as 

Hemma did in iteration three (see section 8.6.3). 

 

When students dragged using the DMS strategy they were undertaking an activity 

which I have connected to level three reasoning. However, although all the students did 

use DMS the dialogue from the recordings does not indicate that they had all 

progressed to level three reasoning. My claim about DMS is that it has the potential to 

develop level 3 reasoning but it is not given that this will happen. Although it is 

straightforward to connect guided dragging to holistic level one reasoning and 
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refinement dragging to the descriptive perceptual understanding of shapes at level two 

it is not so easy to connect DMS to level three reasoning. That is to say it is not easy to 

find evidence of level three reasoning if that has been interpreted as the accepting of 

inclusive relations leading to a hierarchical classification of shapes, as I have done. 

 

10.1.2 Symmetry 

 

Symmetry appeared as a common theme in the data, sometimes described as a property 

of the shapes by students and sometimes in use by guided dragging and DMS. However 

if symmetry was being used intuitively during dragging activity the students rarely 

articulated it. When the dynamic figure was oriented at an angle to the vertical the 

students still showed the facility for symmetrical dragging demonstrating that they were 

using symmetry rather than simply dragging up or down the computer screen. 

 

10.2 The use of Duval‟s framework to analyse the overall findings 

 

In chapter 2, section 2.5.2, Duval‟s framework of cognitive apprehensions and 

cognitive processes (Duval, 1995, 1998) was introduced. This framework will be used 

to analyse the overall findings of this study because it is a comprehensive framework 

which provides insight into how students use diagrams in a heuristic way to reason 

geometrically (Duval referred to these diagrams as figures, using this term in a different 

way than I have done). By way of a reminder table 10.2 indicates how the cognitive 

apprehensions and cognitive processes are connected 
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Table 10.2 Cognitive Apprehensions and how they link to cognitive processes  

 

Cognitive 

apprehension 

What it involves and its links to cognitive processes 

Perceptual Perceptual apprehension involves the recognition of the shape of the 

figure including its orientation and symmetry, whether it represents 

an object in two dimensions or in three dimensions and is a process 

of visualisation. It may also involve recognition of sub figures 

within the figure.  

Discursive Discursive apprehension is important for mental organisation of 

understandings of the geometric object and is important in the 

reasoning process. The definition of a geometrical object and a 

description of its construction are part of discursive apprehension. 

Visualisation can be embedded in a natural discursive process when 

a student describes what they are seeing and uses this as part of their 

reasoning process.  

Sequential Sequential apprehension is an understanding of how the figure is 

constructed. This is dependent on the use of tools in the process of 

constructing the diagram (representation) of the figure which works 

like a model of the object. The student learns about the figure 

through the construction of its representation.  

Operative Operative apprehension relates to physically or mentally operating 

on the figure by splitting the figure into subfigures, changing the 

position of sub-figures or transforming the figure. Visualisation also 

plays a basic heuristic role, through operative apprehension, and can 

provide a basis for reasoning.  

 

 

10.3 Perceptual apprehension 

 

Perceptual apprehension involves holistic recognition of the shape of the figure and its 

orientation, and whether it has symmetry. It also involves visualisation of the figure as 

divided into sub figures. When students from the study looked at the dynamic 

perpendicular quadrilateral in any of its various incarnations on the computer screen 

they were able to recognise and name the shape, identify line symmetry and frequently 

made a comment about its orientation.   

 

10.3.1 Perceiving the figure as split into sub-triangles 

 

Since the dynamic perpendicular quadrilateral was based around the two bars which 

split the figure from top to bottom and side to side it would be perfectly natural to 

perceive it as split into smaller figures and many students did so. Students often 
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described the shape on the screen as being made of two triangles or four triangles and 

sometimes these were referred to as being the same, i.e. meaning congruent. For 

example Adam and Jack (iteration one) talked about the necessity of the sub-triangles 

being the same size and having the same angles if the shape were to have symmetry.  

Figure 10.2 shows the triangle (non-symmetrical) which they had generated. 

 

Dialogue On-screen 

Susan: What might be true about that shape. 

What sort of shape is it? 

 

Jack: It's a triangle, it has three sides. 

 

Susan: Mmhmm, anything else  

 

Adam: Well it could be two triangles cause 

it looks like it's split, split in the middle, one 

big triangle one smaller. 

 

Susan: Mmhmm, right, anything else? What 

if you tried to make one that's got 

symmetry? Do you think that's got 

symmetry? 

 

Jack: No 

 

Adam: No  

 

Jack: Cos the top one's bigger than the 

bottom  

 

 

 

Overview: Jack dragged the bar AC to generate a triangle which is not symmetrical.  

 

 

Figure 10.2 Splitting the figure into sub-triangles is an example of operative 

apprehension 

 

Jack referred to the property of the triangle (it has three sides) to justify labelling it a 

triangle and Adam pointed out that the figure was split into two different sized 

triangles. Jack said that the triangle was not symmetrical because the two triangles 

inside were not the same size. He recognised that to have a symmetrical figure the 

triangles inside the shape (the sub-triangles) needed to be the same shape and size. 

D

CA

B



211 

 

Shortly after this episode Adam and Jack generated a symmetrical triangle and then 

referred to having equal sub-triangles inside the larger triangle as shown in figure 10.3. 

 

Dialogue On-screen 

Susan: Think about the symmetry because you 

talked about folding it didn't you. And we'd 

also talked about two triangles inside the big 

triangle. So what's true about the two 

triangles that make up the big triangle? 

 

Adam: They're both right angled, right angled 

triangles. 

 

Susan: Yeah, anything else? 

 

Adam: They're, I think both of the small 

triangles are the same,  they've got all the 

same angles as each other 

 

Jack: the opposite angles of each other are the 

same 

 

Adam: yeah so D and B are the same  

 

 

Overview: Here the boys talked about having two right angled triangles the same size with 

equal size angles. When Jack said the opposite angles were the same this refers to angles 

opposite bar AC which is the line of symmetry. These are the angles at B and D. 

 

Figure 10.3 Adam and Jack refer to congruent sub-triangles in the figure. 

 

These two examples show how the students‟ perception of symmetry was related to 

their observation of sub-triangles in the figure. In order to have symmetry Adam and 

Jack recognised that the sub-triangles BAC and DAC needed to be congruent. In part 

this perception naturally followed from their process view of symmetry where one half 

of the shape has to be folded over the line of symmetry onto the other half of the shape, 

which was used by all students who described symmetry during the study. When 

students imagined folding the shape in half to check symmetry perceptual apprehension 

was linked with operative apprehension (since operative apprehension requires the 

figure to be transformed in some way often by moving sub-figures around). Describing 

this process links it with discursive apprehension hence these three apprehensions were 

often used together. 

D
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10.3.2 The effect of the dynamic nature of the figure on perceptual apprehension 

 

In both of the cases demonstrated by figures 10.2 and 10.3 Adam and Jack had been 

discussing the figure while it was a static image on the computer screen having 

completed an episode of dragging activity. However, it is also important to consider the 

dynamic aspect of the figure and how this dynamic nature affects students‟ 

development of geometrical reasoning. Leung (2011) stated that perceptual 

apprehension comes into play when students begin to explore a dynamic figure by 

dragging. Students observe the shape of the figure changing under dragging in a holistic 

manner. When the figure is subject to a dragging action these sides and angles usually 

change, in size or position. This often causes the figure to become configured into a 

different shape, for example the dynamic perpendicular quadrilateral may take the 

shape of a triangle, and after dragging it may take the shape of a kite. Dragging to 

change the figure from one shape to another is clearly an active process and the 

students in the study often articulated the movement in the bars needed to do this. In 

Figure 10.4 which shows an excerpt from the recording with Aftab and Rupen (iteration 

two) I had asked the boys what they would need to do to make a rhombus into a kite. 

 

Dialogue On-screen 

Susan: OK then. What would you have to do 

to make that rhombus into a kite? 

 

Aftab: Erm, pull it up or down a bit. 

 

Susan: Pull what up or down a bit? 

 

Aftab: The bar AC 

 

Susan: OK then, do you want to have a go? 

Can you describe to me how you decided to 

drag that? What have you been able to do? 

 

Aftab: I was watching the measurements on 

the side .... 

 

Susan: What did you do just there? 

 

Aftab: I just put the mid-point, the middle on 

there 

 

Susan: Could you make a kite in another 

position? 

 

 

At the beginning of this episode the boys 

had a rhombus on the screen 

 

 

 

bar AC was dragged up to make a kite 
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Rupen: You have to do it down, move a bit 

down. 

 

Susan: You could, OK. How many kites do you 

think you could make? 

 

Aftab: Four 

 

Susan: You think you can make four kites? 

What if you move AC a little further up? 

 

Rupen: You'll make an arrowhead if you put it 

up 

. 

Susan: OK. Is that a kite, how it is at the 

moment? 

 

Aftab: Yeah 

 

S: Right, if he moves it a little bit more? 

 

Aftab: You can make loads of kites. 

 

Susan: You can can't you so what happens if 

you keep going up, if you go through  

 

Aftab: If you go past B it will make an 

arrowhead 

 

Susan: OK, what happens at B? 

  

Aftab: It will be a triangle. 

 

 

When Aftab talked about putting “the 

middle on there” he used the cursor to 

point at a constructed mid-point of AC 

and then to point along the bar AC either 

side of the mid-point. 

 

bar AC was dragged a little further up 

 

 

 

 

bar AC was dragged to sit on point B 

 

Overview: Aftab dragged bar AC into different positions which began with the 

rhombus and then generated two different kites and the isosceles triangle. During this 

dragging bar AC continued to be the perpendicular bisector of the bar BD, i.e. using 

DMS. Aftab claimed to be attending to the displayed measurements whilst doing this. 

The dialogue indicates that the students thought about dragging as an activity which 

created different shapes from the figure. However, as I indicated in the introduction to 

chapter eight, it seems that in common with other students, Aftab and Rupen viewed 

dragging as a journey to an end point. They did not appear to see the figure as 

continuously changing. 

 

Figure 10.4 Aftab and Rupen describe dragging between shapes as moving one bar up 

or down and watching the displayed measurements 
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The dialogue in figure 10.4 indicates typical thinking by the students in the study. 

Firstly they talked about dragging the bars up or down but not necessarily noting that 

they were keeping one bar through the mid-point of the other even if they were clearly 

trying to do this. When I asked them if they were being careful how they dragged, like 

Aftab, they would tell me they were trying to keep one bar so that it crossed the other at 

its middle. The perpendicular aspect of the bars was an invariant property of the figure 

so it was natural that students would not mention this.  

 

Similarly the students did not give any indication that they considered the figure to be 

continuously changing (rather than moving between discrete shapes). The many 

instances of students declaring that they could make a discrete number of kites testifies 

to this although some students, such as Kate and Jane (iteration two) did say that they 

thought it was possible to make an infinite number of kites. It was for this reason that I 

had decided to create an animation of the DMS strategy to ascertain whether sitting 

back and watching would encourage students to perceive the figure as continuously 

changing. 

 

10.3.3 The effect of the animation of the DMS strategy on perceptual apprehension 

 

I hoped that watching the animation would encourage students to see the figure 

continuously changing as a kite shape which at three points became a rhombus or two 

isosceles triangles for split seconds. In iteration three Stan and Eric and Hema and Sima 

watched the animation in a second session after they had worked with the dynamic 

figure oriented at an angle in the first session. Watching the animated figure under 

DMS for the first time elicited the following comments: 

 

Stan and Eric (iteration three) 

Eric: It's showing you the shapes you can make in between them 

 

Stan: Apart from it‟s a bit slower so you can see what‟s happening. 

 

Stan: It kinds of shows you the line of symmetry as well cause you've got like D and B and D so 

it shows all the shapes you can make with one line of symmetry. 

 

Eric: The arrowheads are changing. 

 

Stan: There's lots of different shapes. Well it goes into a rhombus anyway. 
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Susan: When does it go into a rhombus? 

 

Stan: When they're both crossing in the middle. Then it's like 

 

Eric: It's kind of a rhombus. Those two are the same. one o six, one o six 

 

....... 

 

Susan: So erm, how many kites do you think you actually see when you animated the bar?  

 

Eric: Two cause you see the ones 

 

Stan: You actually see loads because each angle changes 

 

Eric: There, where you see one down there. You see lots of different ones cause that's still a 

kite, kite, kite, kite, a rhombus, er kite. Then it goes into the kites. 

 

 

From the dialogue it can be seen that Stan and Eric saw many more shapes than they 

had seen when they had dragged the figure. They talked about the changing of the 

figure with comments such as “the arrowheads are changing”.  They said there were 

loads of kites and noted the angle changing. They talked of the figure as “it goes into a 

rhombus”. There appears to be an understanding here of a continuously changing figure 

with changing angles which, at different positions, takes on the configuration of 

different shapes. It is interesting to note that Eric originally said he could see only two 

kites and changed his mind when Stan pointed out that that he could see loads of kites. 

 

Hemma and Seema (iteration three) 

Seema: Oooh! Oh wow! Does it carry on? It stretches......It stretches from both sides then they 

both form the same shapes on each side 

Susan: What shapes does it form? 

Seema: The arrowhead 

Hemma: arrowhead, that was it, and it was also a rhombus at one point and that was right in 

the centre 

Seema: A rhombus 

Susan: What shape's that. 

Seema: A kite  

Hemma: Look, it's still making kites. Is that a triangle? 

Seema: It won't stop there. And the erm angles change 

 

......... 
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Susan: How would you describe what's going on in this file? 

Seema: Basically A and C are moving but B and D are staying the same. And it's just stretching 

from both sides from different shapes. 

Hemma: Do you know it actually looks like, if you have this in real life and not on the 

computer, it looks like a piece of  material and someone's stretching it out and them two are 

just staying the same. 

Susan: Mmmm. And what's staying the same? 

Hemma: B and D 

Seema: B and D aren't moving at all but they're still making the same symmetrical line because 

like I think the angles are changing only when it's ... 

Hemma: Look it's  

Seema: The distance measurements aren't as big but C and D and D and A are the same. 

Hemma: Look these change by one millimetre each time. 

 

Hemma and Seema noticed slightly different aspects of the changing figure than the 

boys (see figure 10.6). For example Seema described the figure as stretching and that 

the shapes on both sides were the same by which, I think, she was referring to the 

shapes generated either side of the rhombus position. When I asked the girls to describe 

what was happening Seema commented that BD stayed the same and AC was moving. 

Hemma, one of the students in the study who made the most insightful comments, 

described the figure as a piece of material which was being stretched. The girls went on 

to say that BD stayed where it was and continued to be the line of symmetry in the 

figure and the side lengths CD and DA were the same as each other. In this the girls had 

observed variance and invariance of the figure under the animated DMS. Hemma noted 

that the measurements of sides changed by one millimetre which, of course, was a 

result of the way that I had set up the degree of accuracy for the line measurements. 

 

In conclusion it appeared that the animation of the figure under DMS did allow the 

students to perceive the figure as changing continuously between shapes as I had hoped 

it would. Furthermore the students had also perceived that there would be an infinite 

number of kites even though the constraints of the software probably mean that a 

discrete number of kites were presented. 
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10.4 Operative apprehension in relation to dragging strategies 

 

Duval (1998) referred to operative apprehension as figurative change, an action which 

transforms the visual organisation of the figure. In his work, Duval gave examples in 

plane geometry where figures or diagrams are split into subfigures, or where subfigures 

are rearranged, in order to help with the solution of a problem. However, if operative 

apprehension is figurative change then that must surely mean that the change of a 

dynamic figure under dragging encourages students to engage in operative 

apprehension. Leung (2011) has certainly claimed that when students use specific 

dragging strategies in order to operate on the figure to discover its geometrical 

properties, operative apprehension is brought to the fore.  

 

In the case of the dynamic perpendicular quadrilateral, the four dragging strategies 

appear to do different jobs and have different meanings for the students. In table 10.1, I 

have purposely listed the dragging strategies in a hierarchical order and this is because I 

perceive them to be attached to a hierarchy of reasoning which becomes more 

sophisticated further along the list.  

 

How is it that using a dragging strategy (through the physical manipulation of a mouse 

connected through hardware to an object on a computer screen) can be imbued with 

meaning? To understand this, it is necessary to refer to the work of Vygotsky (1978) 

who explained that human cognition has developed through use of tools and by 

humans‟ ability to form a mental image and concept of the tool which he referred to as 

signs. Dragging in a DGS environment can therefore become a tool, and together with 

dragging strategies undertaken with intelligent purpose in the mind of the student it 

becomes a utilisation scheme (Verillon and Rabardel, 1995). Thus dragging strategies 

can become tools for semiotic mediation (Bartilini Bussi and Mariotti, 2008) which is 

to say that a dragging strategy itself can carry meaning about the geometrical figure, 

through the task using the dynamic figure.  

 

In the next paragraphs I describe the meanings attached to the dragging strategies which 

the participating students were observed to use when working with the dynamic figure. 
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10.4.1.1 Wandering dragging 

The strategy of wandering dragging was different from the other strategies in that it 

appeared to only have the purpose for the students of exploring what could happen to 

the dynamic figure, i.e. drag and see what happens. It was used infrequently during the 

sessions usually when students were unfamiliar with the figure and so I have not 

studied its use in any detail. 

 

10.4.1.2 Guided dragging 

Guided dragging was used by students to intentionally place the bars. At the beginning 

of the session, when the students were presented with two perpendicular bars separate 

on the screen, and were asked to put one bar so that it crossed the other, they all made a 

(close to) symmetrical arrangement. The students did this in response to my request, for 

example, in iteration two: 

 

To Aftab and Rupen: “OK then, so now, Aftab, if you get the mouse, you‟re going to drag one 

bar over the other bar” 

 

To Kate and Jane: “Right, so drag one bar over the other” 

 

As can be seen from these two examples I did not give the students any clues as to how 

they should place one bar over the other. Nevertheless every single pair of students 

made an arrangement which would result in a kite or rhombus when the ends of the 

bars were connected with line segments. This led me to make the claim that the 

students were showing a preference for symmetrical arrangements. 

 

Guided dragging was also used at other times in the sessions when the students dragged 

the figure from one configuration to another in a purposeful manner (but not 

symmetrically otherwise I would have coded the activity as DMS). The purposeful 

manner and short dragging time (usually between 2 to 8 seconds, for example see 

appendices 1.1a, 2.2a, 3.1a) led me to believe that the students understood precisely 

where the bars needed to go to make a desired shape which must have arisen from a 

strong holistic mental picture of the shape with the bars inside. They must have had 

these mental pictures before the sessions or else quickly developed them based on prior 

understanding. Assessing this kind of reasoning as Van Hiele level one due to the 
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holistic view of the shape the students were using, as I have done up to now, hardly 

explains this complexity. At this point it would be useful to use Duval‟s theory of 

cognitive apprehensions which may provide more insight. 

 

Duval (1998) described visualisation as a cognitive process involving the representation 

of a figure, identification of its constituent parts such as lines, angles and the shape of 

its boundary and the ability to split the figure into subfigures and even to rearrange 

subfigures. Duval also said that students use visualisation to explore the figure in a 

heuristic way. How this description of visualisation explains guided dragging may lie 

with the way in which the bars split the dynamic figure into four triangles, something 

which was mentioned by several students (eg Colin and Terry, Adam and Jack in 

iteration one). Students have also commented on triangles being the same, meaning 

congruent, for example when Adam and Jack described the two congruent sub-triangles 

inside the isosceles triangle as shown in Figure 10.3.  

 

If the students did notice and react to the relative sizes of the sub-triangles in the figure 

while dragging this may also explain how they could make symmetrical shapes since if 

two triangles opposite a bar are congruent then the way the figure is constructed would 

mean these triangles would be mirror images. I have already noted research (e.g. 

Palmer, 1985, Shepard, 1994) which indicates that symmetry is a human intuition 

(section 2.1.2). This may explain how the innate notion of symmetry together with the 

making of sub-triangles to be congruent inside the figure supports guided dragging. In 

the case of the initial dragging of the bars, the sub-figures would have been equal 

sections of one or both bars. 

 

Finally, students used guided dragging to generate right angled triangles by placing the 

bars end to end (e.g. Mike and Luke in iteration zero, see section 5.4.3). Once they had 

worked out one right angled triangle they easily made the others (there are four). 

However most of the shapes they generated, which have labels and known properties, 

and that the students would have learned about in mathematics lessons, have symmetry. 

If guided dragging mediates geometric knowledge about the shapes generated from the 

dynamic figure then that must concern the symmetry of the shapes and the resultant 

splitting into two equal halves. 
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10.4.1.3 Refinement dragging 

Usually, whenever the students dragged the bars in order to make a specific shape the 

positions would be close to but not exactly perfect. Refinement dragging was then used 

by students to arrange the bars in exactly the right place to ensure side and angle 

properties of the desired shape (see section 6.5.1, Tilly and Alice, iteration one). In 

other words objects within the figure (bars) were being moved to make other objects 

(sides and angles) to have required measurements.  

 

I have described in iteration one (section 6.7.3) how refinement dragging appeared to 

support students, such as Adam and Jack, in reviewing and revising their knowledge of 

side and angle properties and how it was used to support students in moving between 

spatio-graphical and theoretical geometry (Olivero and Robutti, 2007). Refinement 

dragging was different from the other dragging strategies because it was undertaken 

with respect to displayed side and angle measurements. It also entailed small 

movements with the computer mouse which must have required careful fine motor co-

ordination of the hand and wrist. Refinement dragging took up more time than the other 

dragging strategies (see section 6.6) and occasionally took up to 100 seconds per 

episode of dragging. Often it was only when I played back the recording that I realised 

that the student with control of the mouse had continued to refine the figure even while 

we were talking (see section 6.4.1 and Table 6.2, Tilly and Alice, iteration one). It 

almost seems that it was a point of pride for some students to persevere to get the figure 

to be accurate! 

 

Assessing refinement dragging activity as Van Hiele level two does appear to be 

justified since students did have to use knowledge of the properties of shapes. However, 

Duval may help to shed light on this strategy. It would seem that refinement dragging, 

with its reference to the students‟ perceptual understanding of shapes, is connected to 

discursive apprehension. This will be discussed further in section 10.5. However guided 

dragging must also take into account the bisecting of one bar by the other and hence, in 

the same way as guided dragging, probably uses operative apprehension but in a way 

which is focused on one small area in the figure, where the bars cross each other. 

10.4.1.4 Dragging maintaining symmetry 

The geometrical meanings mediated by DMS are complicated. First of all there were 

potential meanings understood by me as the expert mathematician but which were not 
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necessarily realised by the students. I could see that DMS generated a figure where one 

diagonal was the perpendicular bisector of the other, with the default shape being the 

kite. Other shapes which were generated at specific points were the rhombus (in paper 

geometry known by expert mathematicians as being a special case of a kite) and 

isosceles triangles (not considered special kites in paper geometry by most 

mathematicians), as well as the concave kites. In my mind using DMS generated a 

specific kite family or „dragging family‟. It was clear from the students‟ comments that 

most of them did not consider the rhombus, for example as being a special kite, an 

understanding that I had hoped they would reach and on which I had pinned my 

expectations for the task using the dynamic figure. I concluded at the end of iteration 

two (section 7.6) that some students perceived there to be a discrete number of possible 

kites and suggested that this explained why they did not perceive the rhombus as a 

special member of the kite family. I postulated that if they could see that an infinite 

number of kites could be generated by dragging using the DMS strategy then the 

position which corresponds to the rhombus ought to be seen as a special kite. 

 

It would be useful at this point to look at DMS through the lens of Duval‟s framework. 

DMS was often quite a short dragging episode. Sometimes a DMS episode lasted only 

two seconds (see appendix 3.1a) even when the bars were oriented at an angle. This 

suggests that the students used a holistic view and probably tried to keep the two halves 

of the shape to be congruent. However, when I asked students how they dragged 

between, say, rhombus and a kite, they told me that they looked at the side 

measurements and tried to keep them equal. No doubt some students did keep an eye on 

the displayed measurements but I suspect that most dragged intuitively. Figure 10.5 is 

an excerpt from the data which records how Tilly and Alice (iteration one) dragged 

between a rhombus and kite. 

 

Dialogue On-screen activity 

 

Susan: You did very well there. OK so what 

have we made so far? We've made an 

arrowhead, an isosceles triangle and a right 

angled triangle. So see what else you can make. 

 

Tilly: we've got arrow, well kite. oh no that's a 

diamond or what do you? . Wait, that's a 

 

She drags the horizontal bar with big 

circular movements and settles it to 

make a kite. Wandering dragging then 

guided dragging 

She drags the horizontal bar down to the 
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diamond and that's a kite  

 

Alice: Oh no that would be the 

 

Tilly: no that's a kite I think  

 

Alice: Isn't that,  

 

Tilly: diamonds are all four, just like a square... 

 

Alice: yeah, yeah, yeah 

 

Susan: What's the difference between a diamond 

and a kite? 

 

Tilly: erm, a diamond is basically like a square 

turned diagonally 

 

Alice: It's more evened out so that, like, you've 

got more lines of symmetry so if you went down 

that way you'd have one line. And then if you 

went across you'd have another line because it's 

more equal 

rhombus position then back up to the 

kite position. Dragging to maintain 

symmetry 

 

 

 

She drags the horizontal bar down to the 

rhombus position then back up to the 

kite position 

 

The students said “that‟s a diamond and that‟s a kite” as the vertical bar was moved 

up and down. This appears to be an instance of „dragging to maintain symmetry‟, 

moving between the rhombus and the kite. The students only allowed kites drawn in 

the three quarters position 

 

Figure 10.5 An excerpt from the data showing DMS in moving between the rhombus 

and the kite 

 

This episode shows that Tilly purposefully dragged the figure between the rhombus and 

kite positions (preferring the kite in its typical orientation, which I started to call the 

„three quarters kite‟). This was the episode which first alerted me to the possibility that 

students might drag keeping symmetry a constant. The dialogue does not appear to 

show that students were aware that symmetry was maintained however, despite Alice‟s 

description of the symmetry of the rhombus. It may be that keeping the congruency of 

two halves of the shape was the strategy the students used but the dialogue gives no 

evidence either way. This led me to believe that keeping symmetry constant is an 
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intuitive action since it has not been verbalised. Hence DMS probably uses an intuitive 

notion of symmetry measured by the congruence of the two halves of the shape. This 

comes under the heading of operative apprehension (for the continuous figural change) 

and perceptual apprehension (for perceiving the shape as two symmetrical halves). 

 

As far as the meanings which DMS may carry, the students recognised that they were 

generating shapes which had a common property (line of symmetry with the necessary 

equal sides and angles which can be deduced). However, the dragging family concept 

which I hoped the task would engender did not appear through the students‟ discourse. 

Development along these lines would require the services of discursive apprehension 

guided by myself in the role of teacher which was undertaken in iteration four. 

 

10.5 Sequential apprehension 

 

Sequential apprehension involves the understanding of how the figure is constructed 

and so is connected to discursive apprehension. In this study the students were not 

asked to construct the figure from scratch. However, because I had wanted them to 

appreciate that the figure was based around two unchangeable bars I had presented the 

pairs of students with the two bars and guided them in completing the figure around 

them. I had not done this when working with a whole class because I thought that it 

might be organisationally difficult to support a large number of students to complete the 

shape.  

 

For the pairs of students who used the line segment tool to join the ends of the bars and 

the construction menu to colour in the interior of the shape there must have been some 

understanding of how the shape was made up. This created a shape with perpendicular 

diagonals (perpendicular quadrilateral and triangles) which could be dragged into 

specific shapes such as the kite.  

 

However sequential apprehension may be deemed to have been used if students attempt 

to construct either a robust figure (whose properties are invariant under dragging) or 

soft figure (which keeps its properties only if objects on the figure are dragged along a 

specific locus) using the tools in the software (Leung 2011). Hence the DMS strategy 
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can be connected to sequential apprehension because it is arguably a strategy which 

provides a soft construction of the kites (with occasional rhombus and isosceles 

triangles as special cases / positions along the dragging journey). 

 

10.6 Discursive apprehension 

 

Discursive apprehension involves verbal or mental reasoning about the figure. In the 

context of this study it involves describing relations between the geometric properties 

of the shapes generated by the figure in terms of a situated discourse about dragging 

activity. However, this has not proved to be an easy step for students in the study to 

make, particularly in terms of inclusive relations between shapes generated by DMS. It 

appears that more work needs to be done with the students to help them make sense of 

how they observe the figure under DMS. As Duval (1998) said, it is important that 

teachers guide students to describe changes in figures otherwise they may notice the 

visual changes but not develop the ability to reason about them. 

 

10.6.1 Talking and reasoning about dynamic figures 

 

When working with dynamic geometry figures, it is interesting to contrast how students 

and teachers speak of them as geometrical objects as opposed to how they talk about 

static figures. For example, in a study of a teacher and student teacher working with a 

class of fifteen to sixteen year old students Sinclair and Yurita (2008) observed how the 

teacher‟s geometrical discourse was affected by whether the class were working with 

static or dynamic images. Static images were spoken of as if they had always existed, 

for example “this is a square because it has four equal sides”. On the other hand 

dynamic images were spoken of in terms of the human agency which had created them 

and thus there was an implicit reference to a point in time when these figures had not 

yet been brought into being (ibid). Saying “I made a rhombus by dragging the bar AC” 

would be an example of this sort of reasoning which is much more of a narrative than a 

description of a static figure because there is a sense of change happening over time. 

 

Sinclair et al (2009) claim that students engage in narrative thinking whilst interacting 

with dynamic figures under dragging and that this narrative is important in developing 
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their understanding of geometry. Here the word „narrative‟ is used in the sense of 

recounting a series of events and interpreting these events. Narratives have a sequential 

process, being accounts of events occurring over time. Listening to the narration 

provides information about what the narrator has noticed as being important. In the 

following excerpt shown in Figure 10.6 Hemma used the dynamic nature of the figure 

to demonstrate to Seema that she could find more versions of a kite than Seema had at 

first imagined. 

Dialogue On screen activity 

Susan: How many kites do you think you could make? 

 

Seema: About two. 

 

Susan: You think about two? 

 

Hemma: I think a bit more because if I do that that's still a 

kite. And if I do that it's still a kite. Cause look they're the 

same and they're closer. Then if I also do that then that's 

still a kite and that's still a kite.  

 

Susan: How many kites do you think you could make then. 

 

Hemma: I think about six or seven. 

 

Susan: Could you not keep on moving it a little bit all the 

time and it still be a kite? 

 

Hemma: Like a millimetre 

 

Seema: It could go on for ages couldn't it. 

 

Susan: So how many do you think it could be then if you 

can go on for ages? 

 

Seema: About twenty. 

 

Hemma: Twenty five or twenty six 

1.  

 

 
 

Hemma moved the bar BD a 

small amount and then another 

small amount 

 
 

Hemma moved the bar BD so 

that she had a kite the other 

way up 

 

Hemma used DMS for two short bursts to demonstrate to Seema that there were many 

positions for a kite. Seema then revised the number of kites to twenty. 

  

Figure 10.6 Hemma demonstrated several different kites by moving the bar a small 

amount each time 

B C

A

D

B C

A

D

B

C

A
D
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During the discussion in Figure 10.6 Hemma used the mathematical meaning embodied 

in the DMS strategy to demonstrate a big idea to Seema, i.e. that many kites can be 

generated from the dynamic figure. Her explanation and demonstration was 

accomplished through the use of her own agency in carrying out dragging actions and 

her narrative which described what she was doing (“if I do that, that‟s still a kite”). 

Even though the girls did not make the leap of recognising an infinite number of kites 

they had made the important change in their understanding that there were many more 

kites in different positions. The other big idea which emerged from the on-screen 

activity in this excerpt is that using DMS generates this large number of kites, which all 

have one of the bars as a line of symmetry. Although Hemma did not articulate this 

verbally, her actions indicated it. 

 

10.6.2 The role of the teacher in helping the students make links between their 

personal meanings and the mathematical content. 

 

When students work with a dynamic figure or watch an animated figure, the 

descriptions of these events over time provide a narrative that the students can use to 

reason about mathematical relationships amongst the objects in the screen figure 

(Sinclair et al, 2009). However these personal meanings made by students interacting 

with dynamic figures need to be linked to mathematical knowledge and this is where 

the teacher has an important role in helping this to happen (Mariotti, 2009). 

 

One example of where I, acting as the teacher, helped students to make personal 

meanings was during the second session with the year eight class in iteration four 

(section 9.4.2). From the beginning of the first session I had introduced the students to 

the words „perpendicular‟ and „bisector‟ and had modelled the use of these words with 

the students. In the second session I showed the class the animation and while they 

were watching it I got the students to put the two terms „perpendicular‟ and bisector‟ 

together so that we had the concept of perpendicular bisector which is important in the 

meaning of the DMS strategy. I have not differentiated between the various pupils who 

contributed but pupil 1 is a specific boy who demonstrated more advanced geometrical 

reasoning than most of his peers. His contributions may also have helped other students 

in the class to make connections between what they observed and the mathematical 

meanings of shapes and their properties. 
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Susan: AC is just going back and forth. So what is AC doing to DB all the time? 

 

Pupil: It‟s acting as the bisector 

 

Susan: It‟s always bisecting it isn‟t it. What angle between AC and BD? 

 

Pupil: Ninety 

 

Susan: Ninety degrees? So can we put those two words together. We‟ve got AC bisects BD and 

it‟s also at right angles to it. What‟s at right angles? What‟s that word? 

 

Pupil1: Perpendicular 

 

Susan: Perpendicular and a line which cuts another one in half is a  

 

Pupil1: bisector 

 

.......... 

 

Susan: AC is the perpendicular bisector of BD because it‟s at right angles and it cuts it in half. 

So we‟ve been making shapes that have the property that one diagonal is the perpendicular 

bisector of the other. In that perpendicular quadrilateral what is it most of the time? We‟ve had 

kites and arrowheads and isosceles triangles and rhombuses. What is it most of the time? 

 

Pupil1: A kite 

 

Susan: OK and sometimes, go on. 

 

Pupil1: An arrowhead 

 

When I asked the students what the figure was most of the time, referring to the way 

that the figure morphed between different shapes, I was trying to encourage them to 

consider that the animation generated a kite family. I hoped that they would then 

perceive the rhombus and isosceles triangles as special positions in the animation and 

connect this to them being special cases of the dynamic kite. However the isosceles 

triangles do not have the requisite number of sides which is a difficulty if it is to be 
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considered a special kite. It can only be considered a kite in the context of a dynamic 

figure. 

 

In the third session the students made posters to demonstrate what they had learnt about 

geometry in the first two sessions. Some of the comments on the posters used the term 

perpendicular bisector, for example the students wrote that they had made shapes with 

perpendicular bisectors, describing what this meant and drawing the bars inside the 

shape. The following is an excerpt from poster A. 

 

“The four shapes namely kite, isosceles triangle, arrowhead and rhombus all have one 

thing in common: they all have a perpendicular bisector. They all belong to the same 

family because each of them has a certain property when the bars AC bisect bars BD”. 

 

Modelling the use of this geometrical term and drawing the attention of students to the 

perpendicular bisector as having a meaning in the dynamic figure microworld idea did 

help many of the students in developing their own concept of the idea.  

 

10.7 The particular value of the dynamic element of dynamic geometry figures. 

 

When students work in a DGS environment the visual representation is clearly the main 

focus of the students‟ attention. The special feature of DGS is its dynamic nature which 

is brought into effect by the affordance of dragging; effectively the way in which 

students interact with the software (Leung and Lopez-Real, 2002, Jackiw and Sinclair, 

2009). Under dragging the dynamic visual representation of a figure on the screen is 

akin to a small motion picture of the figure changing in real time (Lopez-Real and 

Leung, 2006). Dragging strategies used by the students act on the dynamic figure and 

as such become instruments of semiotic mediation which can help students make 

mathematical meanings (ibid). Lopez-Real and Leung (2006) viewed these meanings as 

bridging between dynamic geometry and Euclidean geometry, generally to help 

students develop understanding of proof. However it is likely that the semiotic potential 

of dragging is wider than this, particularly if we start to envision dynamic geometry as 

being a different kind of geometry in its own right. Dragging a figure on the screen is a 

visual actualisation of what humans often do when we mentally animate figures in 
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order to perceive the variants and invariants (Leung, 2008, Sinclair et al 2009) and 

therein may lie the power of dynamic geometry as being more intuitive and closer to 

how our minds work than static geometry. Jackiw and Sinclair (2009, p.413) describe 

DGS environments as  

 

“The powerful temporalised representation of continuity and continuous change and the 

sensory immediacy of direct interaction with mathematical representations”. 

 

In this sense a dynamic figure under dragging changes (morphs into different versions 

of itself) in a continuous fashion and under the direct control of the students. Since the 

figure embodies mathematical concepts this dragging has the potential for the students 

to engage with these concepts. Jackiw and Sinclair (2009) stated that a dynamic figure 

is a manifestation of a mathematical idea which can take all of the possible theoretical 

versions of that idea.  In the case of the dynamic figure in this study a perpendicular 

quadrilateral can become various shapes under dragging and the particular DMS 

strategy generates the shapes which have one of the bars as a line of symmetry. The big 

idea in this is that the default shape produced by DMS is a kite and the other shapes are 

special cases of the kite. To understand this idea it is necessary to have perceptual 

understanding of the properties of the figure under DMS in that the symmetry of the 

shape results in its having two pairs of adjacent congruent sides (the necessary and 

sufficient conditions for a kite). However, as has already been noted students in the 

study did not necessarily develop the concept of the dragging family of kites. As 

Mariotti (2009) stated, the teacher has a role to play in helping students develop 

conceptual understanding from their own personal meanings, in this case constructed 

from working with the task using the dynamic figure. 

 

Taking this further Jackiw and Sinclair (2009), described how dragging has first and 

second order effects. Students drag a specific figure and observe what happens to it, 

noting its example space (the many incarnations it can take). In this study students 

noted all the many triangles and quadrilaterals they made when they dragged the 

dynamic perpendicular quadrilateral, particularly using the DMS strategy. These were 

the first order effects. The second order effects of dragging are the developments in the 

students‟ geometrical reasoning which are mediated by thinking about the figure they 

could see morphing on the screen and the theoretical figure it represented. In this study 
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when students dragged maintaining symmetry they observed that the shapes generated 

had a common line of symmetry and that there were always two pairs of congruent 

sides. However, I found that more needed to be done to support students to develop the 

concept of the dragging family of kites. One of the modifications I made to the task was 

to introduce the animated figure under DMS after having given the students time to 

work with the figure themselves. The other modification was to harness the power of 

the combined intelligences of a whole class of students using discussion to explore the 

big ideas behind the demonstration of the animation. So I could ask the class what the 

figure was most of the time, and pupil1 was able to answer that most of the time it was 

kites and arrowheads. Other pupils were able to answer that there was one rhombus and 

two isosceles triangles and this meant the class could think collectively about what this 

might mean. However I was mindful of the need to allow each student to make their 

own personal meanings and not to plant an undeveloped idea in their heads. 

 

10.8 Reflection on Duval‟s theory of cognitive apprehensions as a tool of data 

analysis. 

 

Using Duval‟s cognitive apprehension, when looking again at the data, has helped me 

to consider the particular value of using a dynamic figure in the task which I gave to the 

students. It appears that the changing figure under dragging provides the environment 

for students to talk about what they perceive as changing and unchanging in the form of 

a narrative, giving them more personal agency over the generating of shapes from the 

figure. This also supports the developing of students‟ reasoning as a cognitive process 

because describing changes in a dynamic figure may act as a bridge to describing 

properties in the theoretical figure.  

 

The innate sense of symmetry which students appeared to employ when positioning the 

bars inside the shapes they generated suggests that students used visualisation as a 

cognitive process (Duval 1998) which can take a basic heuristic role when students 

begin to explore the figure by attending to its constituent parts and its sub figures (as 

when students pay attention to four right angled triangles inside the figure). 

 

Generally, most activities undertaken by students whilst working on the figure could be 

said to employ perceptual, discursive and operative apprehension (and also sequential 
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apprehension if dragging to generate shapes is included). However Duval (1995) was 

clear that the apprehensions should be taught separately, indeed need to be taught as he 

said that students do not necessarily develop these skills for themselves. So it appears 

from what Duval said and also from my findings from this study that the contribution of 

the teacher expert / more knowledgeable other has an important role to play if students 

are to develop more sophisticated geometrical reasoning. 

 

In the next chapter I will consider how the dynamic perpendicular quadrilateral worked 

as a microworld for the students in the study. I make the claim that the dragging family 

is a situated abstraction on which to develop an understanding of inclusive relations 

between shapes. I will also consider the progress students did make towards level three 

reasoning even if they did not go as far as to use a hierarchical classification of the 

quadrilaterals which can be generated from the dynamic figure. 
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11 Discussion  

 
In this chapter I explore the efficacy of the dynamic perpendicular quadrilateral as a 

microworld and consider how it has provided an environment for students to develop a 

greater understanding of kites (including those shapes which are subsets of the kites) 

and their properties. I describe the web of ideas which have supported the students in 

developing meanings within this microworld including the four dragging strategies that 

have emerged in the context of working with the dynamic perpendicular quadrilateral.  

I argue that Dragging Maintaining Symmetry (DMS) is a dragging utilisation tool 

which acts as a tool of semiotic mediation for the concept of the „family of shapes‟, 

which is itself a situated abstraction. However, as I argued in chapter ten, to appreciate 

the meanings carried by DMS it is necessary to perceive its action on the dynamic 

figure as continuous rather than as a journey to a discrete position. 

 

Finally I review the process of development in students‟ geometrical reasoning between 

Van Hiele levels two and three to ascertain how the students‟ geometrical reasoning has 

developed through the task. 

 

11.1 The dynamic figure as a microworld 

 

In chapter three (section 3.3) I described the concept of a computer microworld as an 

environment where students work intuitively, building on their current knowledge and 

understanding to make connections between mathematical objects and relationships 

(Noss and Hoyles, 1996) . Working in this way with the computer changes the way that 

students construct knowledge which is then situated within the context of the 

microworld (ibid). The dynamic perpendicular quadrilateral designed in the Geometers 

Sketchpad is itself a microworld within a microworld (of the DGS environment). It 

embodies a subset of Euclidean Geometry principles in that it can only be used to 

generate shapes which have diagonals at fixed lengths and at a fixed angle of ninety 

degrees. Working in the dynamic perpendicular quadrilateral microworld constrains the 

students‟ activity to generating shapes and constructing meanings about their 

conceptual properties (using the measuring facility). There is the potential in the 

microworld for students to develop more sophisticated meanings if they make 

connections between shapes generated by the DMS strategy.  
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11.1.1 How students construct knowledge through narrative description when 

working in Dynamic Geometry 

 

As was discussed in chapter ten, section 10.6.1 students were observed to talk about 

dynamic figures differently from the way they talk about static figures. Dynamic 

figures were very often described in narrative terms in that they changed as a result of 

the students‟ own, sometimes exploratory sometimes intentional,  activity through 

dragging objects in the figure. So the student was able to interact with the dynamic 

figure on the computer screen and to observe what happens during this interaction. 

When they verbalised this process they did so in a narrative fashion as a chain of events 

happening over a period of time and in which they are a main player (by causing these 

events to happen). It thus appears that the knowledge constructed in this microworld 

has a very personal meaning for the student.  As was seen in chapter ten static figures 

were often perceived to exist in an atemporal sense (Sinclair et al, 2009) and 

consequently students may not feel any personal connection since even if they are 

asked to construct the static figure themselves using ruler and compasses they probably 

use a given algorithm to do this rather than devising their own methods. 

 

However Sinclair et al (2009) view the making of mathematical meanings as requiring 

both the logical deductive reasoning used in static Euclidean geometry and the narrative 

experiential reasoning used in Dynamic Geometry. Students may find the second kind 

of reasoning to be easier and more intuitive and hence much research into learning in a 

DGS environment has addressed the efficacy of working with Dynamic Geometry to 

support students in developing skills of reasoning in the domain of Euclidean Geometry 

(Leung and Lopez-Real, 2002, Lopez-Real and Leung, 2006). This suggests that 

Dynamic Geometry continues to be viewed as the facilitator of Euclidean Geometry 

rather than being a new kind of geometry in its own right. 

 

11.2 The web of ideas accessible through the dynamic perpendicular quadrilateral 

 

Noss and Hoyles (1996) and Pratt and Noss (2002) describe a web as a network of links 

which includes external resources such as the environment, and tools which the 

students use to work on the task, and internal tools such as intuition and understanding 

of concepts. When students worked with the dynamic figure in this study, they had 
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access to a web of supporting concepts which includes the figure itself, the Geometers 

Sketchpad program (and Euclidean Geometry principles, the measuring facility, the 

drag mode) and also the students‟ prior understanding of shapes and their properties, 

the discussion between students and between the students and me as the researcher. 

This webbing has allowed the students to construct new mathematical meanings by 

making connections between their prior concepts of shapes and what they have 

observed and reflected upon when dragging the figure and articulating what they 

understand about it. In particular many of the students who watched the animation of 

the figure under DMS have started to develop the concept of inclusive relations 

between the kites and the rhombuses as a result of making meanings about the „family 

of shapes‟ (see section 9.6.2).  

 

11.2.1 The perpendicular quadrilateral in the web of ideas 

 

The figure with which the students worked is a dynamic perpendicular quadrilateral 

whose diagonals are 8cm and 6cm long. In reflecting on the data, I perceive the first 

layer of the webbing based on the figure itself as the concept that triangles and 

quadrilaterals can be generated by dragging the figure. The second layer of webbing 

based on the figure is that special triangles and quadrilaterals can be generated which 

can be tested using displayed measurements of sides and angles in the figure. When 

students first worked with the figure some of them (e.g. Adam and Jack, Stan and Eric) 

tried to make an equilateral triangle. They had seen that a large number of triangles 

could be made and so thought they should be able to make an equilateral triangle. 

However, with reference to the displayed measurements of sides and angles the 

students found that it was impossible to make an equilateral triangle although it was 

difficult for them to explain why. In chapter 6, section 6.7.4 I recounted an episode 

where Adam and Jack, in iteration one, used dragging and the displayed measurements 

to form a convincing situated proof that it is impossible to generate an equilateral 

triangle from perpendicular 8 cm and 6 cm bars.  

 

Students in the study, having generated the rhombus, often tried to generate a square 

from the dynamic figure (e.g. Adam and Jack, Kate and Jane, Aftab and Rupen). 

Students in school A, especially, held the concept of the rhombus as a squashed square 
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which, they said, they had been told in primary school (ages 5-11). Given this analogy 

the students thought they ought to have been able to make a square but found that they 

could not make one with the 8cm and 6cm bars. However, if I asked the students 

whether they would like to order a different set of bars in order to make a square they 

straightaway replied that the bars need to be the same length. In another example when 

I asked Hemma and Seema what would have to be true about the bars to make the 

rhombus which they had on the screen into a square Seema replied (transcript line 406): 

 

“They would have to be the same size. Cause this one's 8 cm and 6 cm they have to be just 6 

cm and 6 cm or 8 cm and 8 cm”. 

 

Hence at this level in the webbing the students had begun to realise that there were 

constraints on which triangles and quadrilaterals they could generate from the figure, 

given the lengths of the bars. The fixed ninety degree angle also caused further 

constraints on which shapes could be generated. As a further challenge to some 

students I had prepared a file where the bars could be rotated away from the 

perpendicular and, for example, Kate and Jane in iteration two worked with these bars. 

However I decided that this line of enquiry detracted from the work with the 

perpendicular bars. Since I was interested in whether students could form a concept of a 

family of shapes, based on the kites, it seemed more fruitful to keep working with 

perpendicular bars.  

 

In the next level of webbing, based on the dynamic perpendicular quadrilateral is the 

concept that, if one bar is intentionally dragged so that it continues to intersect the other 

bar at its mid-point, then shapes are generated which have properties in common. It is 

this activity which has the potential to mediate the concept of the „family of shapes‟ and 

the inclusive relations of the rhombus in the family of kites. 

 

11.2.2 Students’ prior understanding of shapes and their properties in the web of 

ideas  

 

It was clear from the sessions with the students that they brought prior knowledge about 

shapes to their work in the sessions. I have already noted the intuitive use of symmetry 

when students placed the bars and when they used the DMS strategy. I have also noted 

the concept image of shapes that student appeared to hold, which included notions of 
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the kite having to be proportioned so that the shorter bar was positioned approximately 

three quarters of the way up the longer bar. This concept image, together with concept 

definitions which are definitely partitional (excluding, say a rhombus from the kites) 

may have acted against the conceptualising of a dragging family of shapes. The 

following is an excerpt from the recording with Tara and Ruth, iteration two. 

 

Susan: OK, so what makes a kite a kite? In other words what are the properties of a kite? 

Tara:   Erm, no parallel lines, no pairs of parallel sides. You‟ve got two lines that are 

longer than the other two sides. 

 

Tara and Ruth definitely held the three quarters kite concept image as shown by the 

kites they presented when I asked how many different kites they could make (see figure 

11.1). 

 

 

  

 

 

 

Figure 11.1 Tara and Ruth presented these kites which are close to the three quarters kite. This 

appears to be the typical and preferred proportion for a kite 

 
Other concepts which the students brought to the sessions include line symmetry as a 

folding process, parallel lines as train tracks and (with Hemma and Seema) that 

triangles could not be described as both isosceles and obtuse angled at the same time 

(see section 8.4.1). 

 

The rhombus as squashed square analogy was common and this often led to students 

thinking that the angles ought to be equal as well as the side lengths. Refinement 

dragging to try and make the angles equal served to support students in reviewing their 

knowledge of the angle properties of a rhombus. 
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11.2.3 Dragging strategies in the web of ideas 

 

Dragging strategies have the potential to become utilisation schemes acting as tools of 

semiotic mediation for the concept of the family of shapes (Mariotti, 2009) which was 

discussed in chapter ten (section 10.4.1). 

 

11.2.4 Discourse in the web of ideas 

 

Discourse between students and teacher in an educational setting is a huge area of 

research and I do not have the space to go into the amount of detail the subject properly 

deserves. However it is an important subject because communication is the way that 

human beings share ideas and through which individuals‟ understanding is challenged 

(Donald, 2001).  

 

In the session with Hemma and Seema which was described in chapter ten, (section 

10.6.1) Hemma changed Seema‟s mind over how many kites it is possible to make 

(from an original two to twenty) by moving one bar in small increments and saying  

 

“And if I do that it's still a kite. Cause look they're the same and they're closer. Then if I 

also do that then that's still a kite and that's still a kite”.  

 

She demonstrated and gave good reasons for the claim that many more kites could be 

made than two and Seema revised her own thinking as a result. 

 

When I recorded pairs of students working together clearly some of the pairs interacted 

more effectively than others. Adam and Jack, for example were two students who 

bounced ideas from one to the other and consequently the data from their recording is 

much richer than in cases where students tended to respond to my questions rather than 

discussing together.  

 

In the whole class lesson in iteration four there were more opportunities for students to 

hear other viewpoints simply because more of them were in the same session. In a 

larger group it seems more likely that there will be individuals who have a more 

sophisticated level of reasoning which they might share with others.  As an example 
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there was a discussion of how many kites can be made (which I described in chapter 

nine, section 9.6.3), where a student said that one bar could be moved by 

0.0000000000000000 (recurring) 1 cm and so there must be an infinite number of kites. 

Throughout the three whole class sessions the level of reasoning used when discussing 

shapes in their dialogue and their writing became progressively more sophisticated. 

 

11.3 Purpose and utility of the task and associated mathematical concepts  

 

The purpose of the task and utility of the mathematical concepts which arise through 

the task are important considerations when designing a learning task (Ainley et al, 

2006, Pratt and Noss, 2010). In this section I consider to what extent purpose and utility 

became apparent as the students worked through the task. 

 

The students certainly appeared to find purpose in the task generating shapes from the 

dynamic figure. It was a straightforward instruction to „drag the bars and see what 

shapes you can make‟. I have already mentioned the pride some students took in using 

refinement dragging to get the position of the bars just right so that the properties of 

sides and angles were mirrored in the displayed measurements on the screen. The 

mathematics involved, for which the students appeared to develop an appreciation (of 

its utility) was in revising and reviewing the properties of shapes and also in developing 

an appreciation that shapes like the kite can be presented in different proportions. In 

this the students‟ reasoning about shapes and their properties at Van Hiele level two 

were focused and consolidated. I believe that this is necessary before students can move 

on to reasoning at Van Hiele level three. 

 

The use of the DMS strategy also appeared to have purpose for the students in that it 

was the action used to move between the positions for the shapes which have 

symmetry, namely kites, arrowheads, rhombus and isosceles triangles. Since humans 

appear to like symmetrical figures there may have been an aesthetic reason to generate 

shapes which have symmetry. Another reason may be that most of the shapes which are 

given labels and which students learn about in school have special properties such as 

symmetry. DMS generates shapes which are kites or special cases of kites and I hoped 

that the students would perceive them as members of a family of shapes all of which 
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have properties in common based on line symmetry, and that this might lead to them 

including the rhombus as a special kite in the context of working with the dynamic 

figure. However the students did not easily appreciate the utility of this mathematical 

concept. It could be argued that there was no practical reason why this should be so. I 

had not given them a problem where using inclusive relations would make solving the 

problem more effective. I was simply asking them to consider a difficult idea just for 

the interest of it. Perhaps it is surprising that any of the students made connections 

between the shapes made under DMS! 

 

11.4 The family of shapes as a Situated Abstraction: students did not necessarily 

develop this concept on their own 

 

Situated abstraction refers to the making of meanings in mathematics within a specific 

context such as a microworld which means that the mathematical construct is situated 

within the context or situation within which the student has been working (Pratt and 

Noss, 2002). The tools they use and the way the students think and talk about the 

mathematics tends to be relevant to the specific context (ibid). In particular the concept 

of the „family of shapes‟ (generated using DMS) is a situated abstraction not least 

because it is an idea which does not lend itself to the static geometry environment. 

Figure 11.2 shows how Dave and Evan (iteration two) were beginning to develop the 

dragging family concept. The figure was in the position for a kite and Evan used DMS 

to drag it into the isosceles triangle position. Evan explained how he dragged the bar 

BD to turn the kite into an isosceles triangle.  
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Dialogue On-screen 

 

Susan: OK. So how did you move that? You 

moved B didn't you. 

Evan:  Yeah 

Susan: From the kite position to the isosceles 

triangle position. What did you have 

to make sure you'd do to get it from a 

kite to an isosceles? 

Evan:  Well we had to move it down, so near 

the solid line and I made sure it was 

in the middle so that it made the equal 

side lengths. 

 

 

 

 

Overview: The cursor traced the journey point B made to turn the shape from the kite to the 

isosceles triangle. In this case, when Evan talked about moving it down he actually 

meant towards the bottom right hand corner. It may be that he had mentally rotated 

what was on the screen so that in his mind he was dragging downwards. 

 

Figure 11.2 Description of moving the figure from a kite to isosceles triangle 

 

Here Evan used the DMS strategy to move between two of the shapes on the DMS 

dragging journey. He talked about keeping one bar (BD) in the middle so that it made 

equal side lengths. It is not clear whether he meant that the bar should be kept in the 

middle of the shape or in the middle of bar AC. In either case this would maintain the 

symmetry of the figure. The mathematical meaning making in this episode concerns the 

use of a dragging strategy to move between two shapes which have in common the 

property of equal side lengths. 

 

Other students identified a number of kites which could be generated using the DMS 

strategy. For example, Kate and Jane (iteration two) talked about being able to make 

millions of kites. Figure 11.3 shows how Kate perceived there to be millions of kites 

generated by moving one bar by very small amounts. 
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Dialogue On-screen 

Susan: Can you make another kite whose 

line of symmetry is BD? 

Kate: Yeah, you can like pull it up 

Susan: So what are you pulling upwards? 

Kate: The BD line 

Susan: OK then. 

Kate: That's an upside down kite. 

Susan: How many kites do you think you 

could actually make? 

Kate: Quite a lot cause you can take it 

down from ... 

Susan: You could couldn't you. So what do 

you call that sort of number? 

Kate: millions. It's like 4.2, 4.1 

 

 

 

Although Kate hah generated a three quarters kite, she could see the possible millions 

of kites which could be made by moving the bar by a very small amount (0.1 cm in this 

case). 

 

Figure 11.3 Kate said she can make millions of kites by moving the bar by a small 

amount 

 

Kate and Jane realised that dragging the bar (BD) up or down could generate a large 

number of kites. Although neither of them mentioned the necessity of bar BD passing 

through the mid-point of bar AC, their dragging action indicated that this was their 

intention. 

 

From these examples it can be seen that the students knew that dragging using the DMS 

strategy produced shapes that had the same line of symmetry and that the same pairs of 

sides were equal. However these appeared to be understood by the students at the level 

of observation rather than making any connections between the shapes generated using 

DMS. At the beginning of chapter 8 I wondered whether the reason was that students 

perceived the figure as changing between discrete positions at the end of the dragging 

journey rather than as a continuously morphing figure. There seems to be a dichotomy 

in this argument in the sense that I have claimed that students attended to the symmetry 

of the figure while using DMS, and they often reported that they looked at the 
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displayed measurements while they dragged. It may be that the students did not 

consider the figure under dragging to be a proper shape until they had finished 

dragging, at which point they gave it status as a finished shape. In other words they 

perceived the dynamic figure during the task as being incarnated into a number of static 

shapes and dragging was used as a tool to move the figure between these static shapes. 

 

11.4.1 Teacher / researcher intervention in the concept of the family of shapes 

 

When the dynamic figure is dragged so that one bar is the perpendicular bisector of the 

other bar, in other words using DMS, a family of shapes is generated. These are a 

family of kites which include the rhombus (when both bars bisect each other), the 

isosceles triangles and arrowheads. Although the students observed that they generated 

these shapes when using DMS they did not themselves develop the concept of the 

family of shapes. In iteration three I introduced the idea of the family of shapes to the 

students: Stan and Eric and Hemma and Seema.  

 

During the first session with Stan and Eric I suggested that all the shapes which could 

be made with one of the bars as a line of symmetry constituted a family of shapes. With 

Hemma and Seema I suggested that we could make a family of shapes where the mid-

point of BD was always on bar AC. In neither of the cases did the students take up the 

idea of a family of shapes. They simply ignored that part of what I was trying to say 

because it meant nothing to them. For example, I suggested to Stan and Eric that they 

see what shapes they could make by keeping AC as a line of symmetry. When I asked 

the boys which shapes they had gone through, Eric replied: 

 

  “Started off with an isosceles, went to a rhombus then went to a kite. Then back to an 

isosceles”. 

 

I suggested to the boys that they had made a family of shapes by keeping AC as the line 

of symmetry. However, they did not themselves explore this idea and continued to talk 

about the shapes they made as simply being examples of what could be made by 

dragging. 
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When, in the second session, I showed the students the animation, this made an impact 

and they seemed ready to take up the idea of a family of shapes made through the 

animation. In chapter eight, (section 8.6.1) I  described how, after having watched the 

animation, Stan and Eric began to talk about a family of shapes which included the 

arrowheads and kites as brothers (perhaps because they have the same properties but 

look very different shapes holistically) and also the rhombus as a member of the family. 

I thought that the boys were beginning to see the inclusivity of the relations between the 

shapes and probed further into why they thought the rhombus might be a member of 

this family of shapes.  However, at this point their view of shapes through partitional 

classification became more dominant and as can be seen in the following dialogue the 

boys began to question whether the rhombus should be a member of the family. 

 

Susan: OK then so, do you think the rhombus might be a member of that family as well 

then. 

 

Stan: Well I suppose it kind of is, yeah. But it has two sets of equal angles. No it won't be 

cause it has two sets of equal angles. 

 

 

Although the Stan and Eric had reverted to a partitional classification which excluded the 

rhombus from being a member of the kite family they did appreciate that there could be 

a connection between the rhombus and the kite because they suggested the rhombus 

could be the Dad in the family (and isosceles triangles could be uncles).  

 

Hemma and Seema, after watching the animation, were also beginning to consider the 

possibility that there might be a family of shapes on the screen, although, again a 

partitional classification view and a holistic view prevailed over the perceptual 

understanding of the shape properties. When I had suggested that kites and arrowheads 

have the same properties and so might actually be in the same family Seema said: 

 

“They might be but normally you wouldn‟t see it because they look so different”. 

 

This comment is akin to the kites and arrowheads „as brothers‟ analogy made by Stan 

and Eric. Kites and arrowheads may have the same properties but they do not look 

alike. Overall I would claim that watching the animation helped the students to view the 

figure as morphing continuously between different shapes and they were more prepared 

to consider that these shapes were in a common family but their partitional view of 
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shapes was not completely over-ridden. Partitional classification is a strongly held 

view, which had served the students well so far in their mathematics education (De 

Villiers et al 2009, Okazaki, 2009).  

 

11.4.2 The whole class lessons: harnessing the power of shared meaning making 

 

The web of support changed when I worked with the whole class in iteration four. 

Through the activity using the geo-strips I was able to introduce the concept of a 

constructive classification where properties are added incrementally. However, the 

most important part of the web was the class discussions and the comments from 

students who already demonstrated a more sophisticated level of reasoning about 

shapes than their peers. In this case the Zone of Proximal Development (Vygotsky, 

1978) was active in giving many students who demonstrated Van Hiele level two 

reasoning the space to begin to perceive shapes as being connected to other shapes 

through inclusive relations. In listening to the comments made by their peers, students 

at level two often began to change the way they thought, as was noted by Sinclair and 

Moss (2012) when they worked with four and five year old children learning about 

different shape triangles. 

 

The animation of the figure under DMS together with the power of class discussion 

among peers does appear to have influenced how the students reasoned about the 

dynamic figure and acted as the catalyst for many of them to develop the concept of the 

family of shapes. The data recorded from the work in iteration four indicates that 

students‟ reasoning developed over the sessions and that many students in the class 

were beginning to perceive the rhombus as being in the same family as the kites.  

 

11.5 Development from Van Hiele level two to Van Hiele level three; the second 

period. 

 

If Van Hiele level two reasoning is interpreted as recognition of the properties of 

shapes and recognising shapes from their properties then the students in this study were 

all able to reason at this level. Hardly any of them were secure in reasoning at level 

three by the end of their sessions, but that does not mean they made no progress at all. 
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The evidence from the data in this study indicates that working with the dynamic figure 

and watching the animation did act as a catalyst for the students to progress within the 

second period of development (Van Hiele, 1986). As in any building of mathematical 

concepts, that of inclusive relations needs to be carefully developed and will not 

necessarily be completed over one or two lessons. In this section I will consider the 

activities which may indicate progress within the second period. 

 

11.5.1 From rhombus to square 

 

Mike and Luke (iteration zero), Adam and Jack (iteration one), Aftab and Rupen 

(iteration two), Hemma and Seema, and Stan and Eric (iteration three) wanted to make 

a square with the 8 cm and 6 cm perpendicular bars and the nearest they could get to a 

square was a rhombus. At the point in time where they had tried to make a square but 

found that the figure could only be a rhombus I had asked them if they would like a 

different set of bars in order to make a square. All commented that to make a square 

they would need equal length bars. As Eric put it: 

 

“It's to do with the eight and the six centimetres. If they're both eight or both six then it would 

be all equal so then it would work”. 

 

In deducing that equal length bars were needed to generate a square these students 

demonstrated reasoning at Van Hiele level three. 

 

11.5.2 Perceiving similarities between the kites and the arrowheads 

 

In iteration four one of the girls had noticed that she had written the same properties for 

the kite as for the arrowhead on her worksheet. In chapter nine (section 9.6.2) I 

described how she had called me over while the class wrote on their worksheets to tell 

me: 

 

“A kite and an arrowhead have the same properties” 

 

When I asked her what those were she replied: 
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“Two sets of adjacent equal lines, two pairs of equal angles and one line of symmetry” 

 

Stan and Eric, in iteration three, had suggested that kites and arrowheads could be 

brothers because they had the same properties. In both these cases the students had 

noticed the same properties but, possibly due to kites and arrowheads looking different, 

they did not make the step to perceiving kites and arrowheads to be the same shape.  

 

11.5.3 Perceiving the figure as being able to generate a very large number or infinite 

number of kites / arrowheads. 
 

 Aftab said “You can make loads of kites,” 

 Kate said “millions” when I asked how many kites she thought she could make, 

 Eric said they could make “quite a few” arrowheads, 

 Hemma said they could make twenty-six kites and a lot of arrowheads. 

 

In the whole class lesson pupil 1, who demonstrated inclusive reasoning about shapes, 

said there were infinity kites. (Students typically think of infinity as being a number 

rather than a tendency of numbers to keep increasing). 

 

Being able to appreciate that there are many positions for the kites and the arrowheads 

is connected to the tendency to accept those positions where the proportions are not 

typical, such as where the cross-bar is close to the end of the other bar or near the 

middle. This requires that students use their perceptual understanding of shape 

properties to recognise shapes as being kites or arrowheads and that these are given 

preference over the figural nature of the shape. Thus understanding needs to be secure 

at Van Hiele level two, before the student can progress to level three reasoning. 

 

11.5.4 Perceiving the figure to be a kite when the crossbar is close to the mid-point or 

the ends of the other bar 

 

In chapter eight, section 8.8.3 Hemma had looked at the screen shown in Figure 8.12 

which was very close to an isosceles triangle and suggested that the figure was a kite, 

“just a very odd kite with a very small top bit” She also linked this with their being 

“loads and loads and loads of kites” which connects the ability to accept atypical 
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representations of kites with their being an infinite number of kites. I view Hemma‟s 

reasoning as being analytical because she showed that she privileged the properties of 

the kite over its figural nature, which would prompt most people to say it was a triangle 

including, most students in the study. Hemma demonstrated, by her appreciation that a 

figure which was a near triangle was still a kite, that her reasoning was more 

sophisticated than level two reasoning. 

 

Some would look at Figure 8.12 and decide it was close enough to be considered a 

triangle whilst its displayed side and angle measurements indicate it to be a kite. A 

dichotomy that may arise from seeing a near triangle as a kite is that sometimes I have 

encouraged students to be happy with „close enough‟ as when the measurements of 

expected equal sides and angles could not be made exact. This happened more in 

iteration zero and iteration one when the measurements were displayed to two decimal 

places and it was difficult to make expected equal measurements to be spot on.  

 

Overall there was evidence that working on the task with the dynamic figure had a 

positive effect on the students in that their reasoning moved from level two towards 

level three. 

 

11.6 Conclusion 

 

In concluding this chapter, the dynamic perpendicular quadrilateral as a microworld has 

accomplished its role as an environment where students can develop their 

understanding of shapes and their properties and make connections between them. 

There is the potential for students to develop the concept of inclusive relations 

indicative of a move to reasoning at Van Hiele level three. There is evidence from 

iteration four that students were developing this concept but we cannot expect concepts 

to be built in a short space of time. Carefully designed activities together with 

discussion between teacher and students are necessary to build concepts such as 

inclusivity, particularly because students have to rebuild their original concepts about 

shapes which they have held since early childhood.  



248 

 

Chapter 12 Conclusions 

 
In this concluding chapter I address the research questions. I  also consider what using 

the Design Based research method brought to the study in terms of how undertaking the 

research in a series of iterations allowed me to reflect on the findings and to make 

improvements to the overall task which the students worked on.  

 

12.1. Addressing the research questions 

 

In chapter 3 (section 3.7), I posed two research questions, which arose from the review 

of the literature. The first question was to ascertain which aspect of the dynamic nature 

of DGS impacts on students‟ reasoning about 2 dimensional figures. The second 

question addressed whether the Dragging Maintaining Symmetry strategy acts as a 

dragging utilisation scheme to mediate the concept of inclusive relations, particularly 

between the rhombus and kites. Since the two questions are connected in the context of 

this study I have synthesised my answers to both. 

 

Dragging Maintaining Symmetry appears to be a special case of Maintaining Dragging 

(itself a dragging utilisation scheme) which was described by Baccaglini-Frank and 

Mariotti (2010) as intentional dragging of a figure in order to keep a desired property 

constant. In the case of DMS the desired property is the symmetry of the shape. The 

ability to use DMS to drag the figure so that it keeps close symmetry would suggest 

that humans have an innate notion of symmetry which they use in spatial problem 

solving. 

 

The symmetrical aspect of DMS gives the dragging strategy its meaning as a generator 

of a family of shapes with the common property that one diagonal is the perpendicular 

bisector of the other. The family of shapes is, in fact, a family of kites with the rhombus 

as a special case of the kites (also isosceles triangles and arrowheads). However, it was 

when I animated the figure under DMS that students were able to perceive the figure as 

continuously morphing through kites with the rhombus and isosceles triangles as 

special positions along the dragging journey. Thus DMS has generated a situated 

abstraction (the dragging family of shapes) which has potential for being the catalyst 
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for students‟ progression in geometrical reasoning. Clearly DMS is a speciality situated 

within the specific microworld of the dynamic perpendicular quadrilateral.  

 

An important factor in the development of the concept of the family of shapes was the 

dynamic nature of the figure, first under manual dragging and later when it was 

animated. When the students watched the animation they articulated a narrative to 

describe their observations which enabled them to form new concepts about the 

relations between the shapes in the kite family. The advantages of creating a narrative 

came to the fore when students discussed their observations with their peers. In this, the 

whole class context provided an extra dimension when many more ideas and 

observations could be shared, including from the students who were more advanced in 

their geometrical reasoning.  

 

12.2 The value of higher level thinking in geometry. 

 

In chapter two (section 2.5.2.2) I wrote of how Duval (1998) questioned the teaching of 

deductive reasoning and proof to all students, particularly as doing so often results in 

students losing their natural ability to use reasoning and justification. In agreement with 

Duval I would argue that we need to develop tasks for students which encourage the 

use of reasoning and justification, and which will give those who wish to study 

geometry further a firm foundation on which to develop deductive reasoning and proof 

skills. Concept building is important as a basis for higher mathematics and geometry is 

no exception to this. 

 

“If mathematics instruction were to concentrate on meaning and concepts 

first, that initial learning would be processed deeply and remembered well. 

A stable cognitive structure could be formed on which later skill 

development could build”.  

(Heid, 1988. P.4) 

 

I believe it is the dynamic nature of DGS which, through the narrative that students 

construct of the changing figure, has potential for developing such conceptual 

understanding. 
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12.3 Using the Design Based Research method 

 

The advantage of using a Design Based Research method has been that it allowed me to 

treat the study as a journey and process of discovery. The emerging findings, from each 

iteration, have been taken into account and tested or used to justify the modification of 

the dynamic figure itself or the way that the task was presented to the students. There 

were three main modifications to the task before I decided it was ready to trial with a 

whole class. 

 

12.3.1 First modification 

 

The first modification to the direction of the study occurred after iteration zero when I 

decided not to continue with the construction of shapes task (although Stan and Eric did 

get to construct a kite in their second session in iteration three). When analysing the 

data collected during iteration zero I decided that the way the students interacted with 

the dynamic figure was interesting and that I would focus on looking at the dragging 

strategies the students used when generating shapes from the figure. Four distinct 

dragging strategies emerged and iteration one was designed to ascertain whether other 

students would use the same strategies. By the end of iteration one I had observed that 

pupils used a sense of symmetry when generating the shapes and that one dragging 

strategy, DMS, brought into play students‟ intuitive use of symmetry (with a preference 

for dragging keeping vertical symmetry).  

 

12.3.2 Second modification  

 

The modification of the figure in iteration two was designed to test whether students 

would continue to use a sense of symmetry, when dragging the bars inside a figure 

which was not oriented within a vertical – horizontal framework. The evidence from 

the recordings showed that students dragged the figure using the same strategies 

whether the figure was „upright‟ or presented obliquely. However the students working 

with the oblique figure appeared to find it slightly uncomfortable and some of them 

asked me if they could not turn the figure so that it was the right way up! 
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12.3.3 Third modification 

 

Although the students had observed that the use of DMS generated kites, rhombus, 

isosceles triangles and arrowheads, they did not develop the concept of the family of 

shapes which could lead to an understanding of inclusive relations. I wondered whether 

the problem was that the students perceived dragging as an action leading to discrete 

shapes rather than resulting in a continuously changing figure. The modification in 

iterations three and four to address this was the animation of the figure under DMS, 

shown to the students after they had themselves worked with the figure. The animation 

had an impact on the students who began to talk of the figure as „showing the shapes 

you can make in between‟ or being „like a piece of elastic material‟. The students began 

to talk of the shapes as being members of the same family. The animation acted to 

mediate the concept of the family of shapes. 

 

12.4 Limitations of the study and what might be done to improve it. 

 

If I had to carry through this study again there are a number of things which I would do 

differently.  

 

12.4.1Pre and post assessment of students’ reasoning about geometrical shapes 

 

In collecting data I took the view that I would assess the students‟ prior understanding 

of shapes through their work with the dynamic figure and that I would be able to 

observe if their reasoning about shapes developed during the session. To a large extent 

this worked with pairs because the students would name the shapes they generated and 

when I asked what would need to be true to make a specific shape a kite / isosceles 

triangle or whatever they would tell me what they thought to be the properties of the 

shape. I was able to asses these comments and assign a level of reasoning according to 

Van Hiele.  

 

Certainly for the class lesson in iteration four, I regretted not finding out if any of the 

students had already developed the concept of inclusive relations before the lesson as 

pupil 1 clearly did. Collecting such data from the second class had to act as a proxy for 

the information I did not collect from the first class. However the data collected from 
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the three lessons did indicate a development in the discourse between the students in 

the class, both written and verbal. 

 

12.4.2 Introducing constructive classification to the students 

 

In the sessions with pairs of students I had allowed them to explore freely which shapes 

could be generated. However, in iteration four with the whole class working with the 

geo-strips I followed this by introducing constraints.  First I asked that the geo-strips 

should be kept perpendicular (as the bars are constructed to be) and then added a further 

constraint that one bar had to bisect the other (making sure the word „bisect‟ was 

understood by the students). I had introduced this constraint to students in iterations 

two and three when I asked them to drag keeping one bar as a line of symmetry but 

because it was not given to the students in the logical manner of iteration four these 

students may not have appreciated the implications of generating subsets within sets of 

shapes which emerges when constraints are added. 

 

12.4.3 Involving class teachers 

 

It became clear to me that the ownership of the research methods and findings rested 

solely with me even though I had attempted to involve the contact teachers in School A 

and School B I through co- teaching whole class lessons. The task with the dynamic 

perpendicular quadrilateral was not used again after my involvement with the schools 

had finished. Sutherland (2007) describes the importance of collaboration between 

researchers and teachers in sustaining innovations which develop through classroom 

based research. I realise now that, for classroom teachers to take ownership of the 

research outcomes, they need to be involved in the research in terms of designing and 

undertaking activities, and discussing the analysis.  

 

12.5 Did the task achieve the goals set down for Design Based research? 

 

In chapter four (section 4.1) I described two important goals for Design Research; to 

advance new theory of how students learn and to use this theory to develop educational 

interventions, in the form of new activities and resources which can be used in the 
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classroom to facilitate that learning (Design Based Collective, 2003, Lamberg and 

Middleton, 2009). In this section I will address whether this study has achieved these 

goals and aims. 

 

Symmetry and orientation have emerged as important factors in how students perceived 

the shapes generated from the dynamic figure and this has been observed by previous 

research into how students perceive shapes in a static environment (e.g. Palmer, 1985, 

Shepard, 1994). The students‟ concept image of shapes (Tall and Vinner, 1981) clearly 

affected how they expected shapes to be presented, particularly the orientation and the 

proportions of the shapes. It is not surprising that students would bring preference for 

symmetry and their concept images of shapes in a static environment into their 

experiences working in a dynamic environment. However, it appears that pupils used 

their intuitive notion of symmetry when positioning the bars inside the dynamic figure, 

and in particular when using DMS to drag between symmetrical shapes. 

 

What I have shown in this thesis is that, when working within the microworld of the 

dynamic perpendicular quadrilateral, students used dragging strategies which were 

situated within the specific context. These dragging strategies can be aligned to 

cognitive activity and of most interest during this study has been the Dragging 

Maintaining Symmetry strategy since it has the potential to mediate the concept of the 

„dragging family of shapes‟. However the students did not access this concept until they 

were able to perceive the dynamic figure as continuously morphing through the 

animation. I suggest that it was the animation of the figure under DMS which allowed 

the students to perceive the figure as being a kite which at certain points changed into a 

rhombus or isosceles triangle. The concept of the rhombus as special case of a kite 

follows from this observation although a strongly held partitional classification view 

can interfere with this development. 

 

Finally the task using the dynamic perpendicular quadrilateral has shed some light onto 

how students perceive two dimensional shapes and has been shown to be an effective 

intervention to use in the classroom to facilitate the development of geometrical 

reasoning. Working with the dynamic figure appears to encourage the use of 

perceptual, operative and discursive apprehensions (Duval, 1995), in a heuristic way, 

allowing students to think about the shapes they generated in a new way. 
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12.6 Final Conclusion 
 

Past research into Dynamic geometry Environments has focussed on the dragging tool 

as a way to test whether a construction is robust, or to generate a soft construction 

which keeps specified properties. However the potential of the dynamic nature of DGS 

to encourage a narrative through which students construct meanings in geometry is less 

researched. Further analysis of how students‟ reasoning develops as they work with 

dynamic representations in mathematics could prove to be an immensely fruitful area 

for research. 
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Appendices 1 Iteration 1 
 

Appendix 1.1a Adam and Jack June 2010 Table of dragging episodes 

 

 

 1.10-1.15 5 seconds GD One bar is dragged over the 

other. 

2.40-4.21 

Investigating 

what shapes 

can be made 

2.49-2.53 4 seconds DMS The bar AC was dragged left and 

right to make a rhombus, then a 

triangle, then back to a rhombus. 

The bar BD was dragged to make 

an isosceles triangle then back to 

a rhombus, then to an arrowhead. 

All the while symmetry was 

maintained. 

3.05-3.10 3 seconds DMS 

3.16-3.19 3 seconds DMS 

3.21-3.26 5 seconds DMS 

3.31-3.35 4 seconds DMS 

3.49-3.58 9 seconds DMS 

4.16-4.20 4 seconds GD 

4.21-4.57 

Isosceles 

triangle 

4.52-4.57 5 seconds GD The bar AC was dragged to make 

an isosceles triangle with BD as 

the base. 

4.57-

14.23Trying to 

make an 

equilateral 

triangle 

12.15-

12.35 

20 seconds GD The boys first measured the 

angles. There was a discussion 

on how they positioned the 

bars by eye. AC was dragged 

up and down keeping point A 

touching bar BD. 

13.11-

14.23 

72 seconds RD 

GD 

14.23-17.35 

Isosceles 

triangle 

15.38-

16.09 

31 seconds RD The bars were positioned to 

generate an isosceles triangle. 

When the boys were asked which 

angles should be equal Jack 

pointed to the pairs of smaller 

angles either side of bar AC. 

Refinement dragging was used to 

make the angles at B and D 

equal. The boys referred to two 

triangles being the same. 

17.35-23.40 

kite 

17.36-

17.53 

17 seconds WD The bar AC was moved left, 

down, then up. The sides AD 

and CD were measured to 

check if they were equal and 

similarly the sides AB and BC. 

The bar AC was dragged to 

generate an upside down kite. 

20.18-

20.25 

7 seconds RD 

22.21-

22.29 

8 seconds DMS 

22.40-

22.54 

14 seconds DMS 

23.02-

23.13 

11 seconds RD 

23.40-29.57 

rhombus 

23.40-

23.47 

7 seconds DMS The bar AC was moved down 

to the middle of bar BD. 

Refinement dragging was used 

to make the sides equal. There 

was a discussion on the sizes 

of the angles. 

23.53-

23.55 

2 seconds RD 

24.20-

24.35 

15 seconds RD 
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24.50-

25.04 

14 seconds RD 

25.07-

25.34 

27 seconds RD 

29.57-33.34 

arrowhead 

29.57-

30.03 

6 seconds DMS The bar AC was dragged below 

point D and it was symmetrical 

by eye. There followed a 

discussion on symmetry by 

folding. There was refinement 

dragging of bar AC whilst 

measures of sides were attended 

to. There was a discussion on 

which sides and angles should be 

equal. 

30.49-

31.08 

19 seconds RD 

33.34-36.49 

Trying to 

make a square 

with the 8 cm 

and 6 cm 

perpendicular 

bars 

33.35-

33.41 

6 seconds WD The bar BD was dragged right 

and left and back to an 

arrowhead. Then BD was 

dragged up, then down, to the 

side (wandering dragging). 

The boys made a right angled 

triangle and called it half a 

square. The bars were dragged 

back to the rhombus position. 

33.51-

33.58 

7 seconds WD 

34.05-

34.16 

11 seconds WD 

34.17-

34.22 

5 seconds GD 

35.00-

35.02 

2 seconds GD 

35.03-

35.06 

3 seconds DMS 

35.07-

35.12 

5 seconds RD 

35.34-

35.43 

9 seconds RD 

35.44-

35.56 

12 seconds DMS 

36.03-

36.13 

10 seconds WD  

36.16-

36.26 

10 seconds DMS 

36.49-42.59 

Square using 

two 8 cm 

perpendicular 

bars 

36.57-

37.00 

3 seconds GD The bars were dragged to a 

vaguely symmetrical shape 

(about both bars). The angles 

of the shape were measured. 

Refinement dragging was used 

to get the angles close to 90 

degrees. 

37.50-

37.52 

2 seconds GD 

39.52-

39.57 

5 seconds RD 

40.03-

40.46 

43 seconds RD 
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Appendix 1.1b Adam and Jack June 2010 Visualisation window 

 

The screen shot below shows the visualisation window in the Transana file for the 2 

boys June 2010. As can be seen the intervals of dragging are grouped together and 

correspond to the generation of the trial shapes, isosceles triangle, right angled triangle, 

kite, rhombus and square. This particular pair of boys was quite interesting in that they 

used DMS early in the session, being able to visualise where they should put the bars 

for each shape. It was only later in the session, when I asked them to make a square in 

the first file (with the 8 cm and 6 cm perpendicular bars) that they used wandering 

dragging over a period of time trying to do the impossible! 

Two long bars coincide; RD and GD. This corresponds to an interesting episode where 

Jack and Adam tried to make an equilateral triangle and appeared to be using guided 

measuring. 
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Appendix 1.2a Colin and Terry Jan 2011 Table of dragging episodes 

 

 

0.00-5.54 

Exploring by 

using WD 

2.26-2.35 9 seconds WD The bars were dragged 

randomly and the boys 

generated a number of 

triangles and quadrilaterals 

including the kite, rhombus 

and isosceles triangle. 

4.11-4.18 9 seconds WD 

4.28-4.35 7 seconds GD 

4.45-5.44 59seconds WD 

5.54-14.40 

 

kite 

5.51-5.56 5 seconds DMS The boys generated a kite and 

identified two pairs of equal 

sides and one pair of equal 

angles. 

6.15-6.17 2 seconds DMS 

9.35-9.38 3 seconds RD 

9.54-

10.17 

23 seconds RD 

11.03-

11.12 

9 seconds RD 

14.40-35.06 

 

rhombus 

14.40-

15.06 

26 seconds GD The boys generated something 

which was close to a rhombus 

and could get the four sides to 

be within 0.4 cm of each other 

and they could not identify 

angles which ought to be 

equal. At my suggestion they 

put infinite lines over sides 

AB and CD and getting these 

to be parallel helped the boys 

to make the sides of the 

quadrilateral much closer and 

they were able to identify 

pairs of equal angles. 

Later they added the mid-

points to bars AC and BD and 

lined them up to make a fairly 

accurate rhombus. 

15.17-

15.27 

10 seconds RD 

 

15.42-

16.07 

25 seconds RD 

16.17-

16.21 

4 seconds RD 

16.27-

16.29 

2 seconds RD 

16.53-

17.37 

44 seconds RD 

20.41-

20.48 

7 seconds RD 

21.28-

22.15 

47 seconds RD 

22.57-

23.14 

17 seconds RD 

24.25-

24.27 

2 seconds GD 

25.43-

25.45 

2 seconds GD 

26.53-

27.01 

8 seconds RD 

35.06-42.42 

 

Isosceles 

triangle 

35.06-

35.52 

46 seconds DMS They generated an isosceles 

triangle and identified its side 

and angle properties 37.14-

37.50 

36 seconds RD 

38.17-

38.21 

4 seconds RD 
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38.49-

39.28 

6 seconds RD 

42.42-43.23 

Between kite 

and rhombus 

42.42-

42.53 

7 seconds DMS The boys used DMS to move 

from the isosceles triangle. 

Through the kite to the 

rhombus. 

 

Colin and Terry made very little use of the DMS strategy during the session but they 

did make a great deal of use of the RD strategy. They were very careful when dragging 

the bars and may have been carefully watching the measurements change while they 

dragged. 

Since Colin and Terry mentioned parallel sides earlier when we were talking about the 

rhombus I decided to explore this idea. I told them how to put infinite sides over the top 

of the sides AB and CD so that they could see whether the sides were parallel. Making 

the sides parallel did help Colin and Terry to generate a fairly accurate rhombus but, in 

the end I decided that parallel lines were not a helpful line of enquiry, and I did not 

explore this any further. 

 

Appendix 1.2b Colin and Terry Jan 2011 Visualisation window 

The visualisation window below indicates that most dragging activity is RD with some 

WD, GD and a little DMS. 
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Appendix 1.3 The strategy of Dragging maintaining Symmetry 

 

This episode shows Adam and Jack beginning to use DMS as a 

strategy. In this episode the boys began with an isosceles triangle 

with horizontal symmetry. This was unusual because most 

students made shapes with vertical symmetry. Jack had control of 

the mouse and he first used Dragging Maintaining Symmetry 

horizontally followed by dragging (without maintaining 

symmetry) vertically.  

However as the vertical dragging continued the shape became 

closer to symmetrical until, at the end, the „equal‟ angles were 

only two degrees apart. 

. 

This series of screen shots depicts the figure at stages during the 

dragging process. 

 

First Jack dragged bar AC to the right and AC stayed close to the 

perpendicular bisector of BD while he was doing this. 

Then Jack dragged bar AC straight down the computer screen but 

not maintaining symmetry. 

 

At the lower limit of the dragging he started to move bar AC 

slightly over to the left so that the figure became closer to having 

symmetry. 

The figure became closer to symmetrical as he dragged bar AC up 

the screen. 

 

By the time he finished dragging bar AC upwards Jack had got 

the shape to be close to symmetrical. Angles DAC and DCA were 

less than 2 degrees apart. These angles lie between the bar AC and 

the lower sides of the kite. 

 

 

 

 

 

 
 

Adam and Jack: an example of dragging maintaining symmetry 
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Appendix 1.4 Two episodes per pair of students where displayed measurements 

indicate DMS. 

 

 Time interval Differences 

between expected 

equal measurements 

comments 

Adam and 

Jack 

22.21-22.29 

 

 

35.1-35.56 

 

Angles < 3 degrees 

Sides < 0.2 cm 

 

 

Angles < 2 degrees 

Sides < 0.2cm 

 

Tilly and 

Alice 

13.45-13.50 

 

 

41.15-41.23 

No angles displayed 

Sides < 0.3 cm 

 

Angles < 11 degrees 

Sides < 0.7 cm 

Alice had the mouse and 

dragged carefully. 

 

Tilly had the mouse and 

tended to sway the vertical 

bar hovering around the 

middle position. 

Colin and 

Terry 

35.06-35.40 

 

 

42.42-42.53 

Angles < 3 degrees 

Sides < 0.1 cm 

 

Angles < 4 degrees 

Sides < 0.4 cm 

 

Gill and Sara 18.28-18.30 

 

 

42.11-42.16 

Angles < 9 degrees 

Sides < 0.4 cm 

 

Angles < 6 degrees 

Sides < 0.2 cm 

 

 

 

Illustrated example in 

chapter six 

 

Clearly some students have a steadier hand than others when moving the mouse to drag 

the bars. The differences given are the greatest differences observed during the DMS 

episode which often indicated more accurate dragging over most of the time interval. 
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Appendix 1.5 Table of episodes for the recording with Adam and Jack 

 

Line numbers 

from narrative 

Time interval in 

recording 

Description 

 

3 1.10-1.15 Bars put straight into symmetrical position 

7-17 2.49-3.58 DMS while investigating shapes  

24-31 4.20-4.50 Triangle split into two right angled 

triangles. There cannot be symmetry as “the 

top triangle is bigger than the bottom 

triangle”. 

Discursive and operative apprehension. 

158-172 13.11-14.23 Boys prove they cannot make an equilateral 

triangle.  

Discursive and operative apprehension. 

173-192 14.23-16.09 Symmetry leads to certain angles being 

equal. Symmetry as a process (by folding 

one half of the shape over the other). 

Refinement dragging with instructions. 

VH level 2 

Discursive and operative apprehension. 

193-207 16.09-17.26 Boys talk of the isosceles triangle being 

made of two right angled triangles which 

are the same and opposite angles being the 

same. 

VH level 2 

Discursive and operative apprehension. 

249-252 20.17-20.25 RD to within a difference of 0.01. Boys 

identify equal sides. 

VH level 2 

283-287 23.40-23.47 DMS “move AC bar into the middle” 

VH level 2 

298 24.20-24.35 RD with instructions and reasoning 

Discursive and operative apprehension 

300-306 24.50-26.05 RD Jack works out the difference between 

expected equal lengths as being 0.01. 

VH level 2 

307-334 26.05-28.15 Properties of a rhombus 

Position of bars for a rhombus 

Symmetry of a rhombus with a functional 

explanation 

VH level 2 

336-366 28.18-29.41 Boys review properties of the angles in a 

rhombus. 

VH level 2 

372-378 30.08-30.34 Symmetry of arrowhead by folding 

Discursive and operative apprehension 

VH level 2 

385-395 31.28-32.12 Properties of an arrowhead 

VH level 2 
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432-451 35.26-36.38 Boys try to make a square using unequal 

length bars and don not succeed. They 

decide they need equal length perpendicular 

bars to make a square. 

Towards VH level 3? 

463-465 37.55-38.28 Position of bars to make a square. 

Comparison of bar positions in a rhombus. 

Mention of orientation (“looking at it at an 

angle to see whether it‟s perfect”). 

Towards VH level 3? 

481-490 39.54-40.46 RD with instructions 

Discursive and operative apprehension 

VH level 2 

4910497 40.46-41.01 Close enough measurements, but Jack says 

that it is not definitely a square since the 

angle measurements are 0.07 either of 90 

degrees. 

(need for the perfect square but getting 

close is an indication that it could be 

 perfect). 

Figural concept 
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Appendix 1.6 Table of episodes for the recording with Tilly and Alice 

 

Line numbers 

from narrative 

Time interval in 

recording 

Description 

 

5-7 0.43-0.48 Bars put straight into symmetrical position 

53-57 4.25-4.38 Triangles in the shape 

65-68 4.54-4.59 Line of symmetry identified 

73-95 5.21-6.58 Girls used a functional meaning of 

symmetry derived from how they had been 

taught to check for symmetry 

Situated abstraction 

96-103 6.58-7.37 Use of symmetry to identify equal side 

measurements 

VH level 2 

144-152 10.04-10.48 RD with dialogue, girls cannot get 

measurements to be exact 

153-168 10.48-12.41 Alice attends to the measurements whilst 

dragging and Tilly instructs her to keep the 

bar BD in the middle of the shape “we‟re 

trying to get BD in the middle of the shape” 

169-177 12.41-13.54 Tilly takes the mouse and makes an 

isosceles triangle, uses RD to get it accurate 

then moves from that position to make an 

arrowhead and a kite using DMS 

189-194 15.14-15.44 DMS. Connecting position of bar in the 

middle of the shape to getting equal length 

sides 

Towards VH level 3? 

198-219 16.01-17.25 Properties of isosceles triangle 

VH level 2 

286-293 22.04-22.37 RD with dialogue 

298-300 23.19-23.25 “you sort of know” a right angle 

VH level 1 

305-345 23.50-26.08 Discussion on whether the right angled 

triangle is half a square or half a rectangle, 

visualising a transformation 

350-358 26.38-27.09 DMS “that‟s a diamond and that‟s a kite” 

“ a diamond is basically like a square 

turned diagonally” 

392-455 29.09-33.51 Girls compare properties of rhombus and 

square, they review their knowledge about 

angles of a rhombus 

VH level 2 

463-469 34.48-35.27 Girls check and review angle properties 

VH level 2 

529 39.41 Typical kite with obtuse angle at the top 

540-541 40.37-41.08 Girls start with a rhombus and drag bar AC 

higher 
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Appendix 1.7 Table of episodes for the recording with Colin and Terry 

 

Line numbers 

from narrative 

Time interval in 

recording 

Description 

 

21-23 2.38-2.42 Description of the isosceles triangle as two 

triangles 

operative apprehension 

24-28 2.48-3.11 It cannot be an equilateral triangle because 

the sides are not all the same size 

VH level 2 

67-70 5.40-5.52 Rhombus is a pushed over square 

71-72 5.52-6.04 “if you look at it this way it looks a bit like 

a rhombus or a parallelogram” 

Holistic view, possibly orientation,  

VH level 1 

73-81 6.04-7.17 Description of a kite in typical orientation 

(2 sides at the bottom are usually bigger). 

VH level 1 

Split into 4 triangles,  

operative apprehension 

102-110 8.54-9.20 

 

Fairly accurate kite straight off 

281-287 25.30-25.56 

 

Rhombus split into triangles 

309 28.13-28.38 Properties of bars,  

VH level 2 

439-443 40.01-40.22 

 

Satisfied with near accuracy 

459-461 41.27-41.35 

 

Satisfied with near accuracy 
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Appendices 2 Iteration 2 

Appendix 2.1a  Lesson plan Geometers Sketchpad session 
 

Topic: properties of 2D shapes 

Lesson objectives To use dynamic geometry software to investigate 2 D shapes that can be generated 

with diagonals of fixed length and orientation. 

 

Outcomes Pupils learn about shape properties from a fresh perspective 

 

Vocabulary 

Dynamic, dragging, properties, symmetry 
Resources 

Computers loaded with the Geometers Sketchpad 

software (GSP) 

A file in the GSP which contains 2 perpendicular 

bars (rigid lines) of 8 cm and 6 cm. 

 

Starter 

From a bag of cardboard shapes, pupils pick them out at random. They name the shape and give the 

remembered properties of the shape. 

 

Main activity: Pupils work in pairs with a computer. 

 

Task 1. Pupils open the file then spend 5 minutes using the arrow tool to drag the shape, 

investigating what specific shapes they can make. 

 

Questions: What changes and what stays the same when you drag in the shape? 

What shapes is it possible to make? 

 

Mini plenary – pupils share their answers to the questions. 

 

Task 2. Pupils click on the buttons (on the screen): Show lengths and Show Angles 

 

Pupils drag to generate a shape which has the vertical bar BD as a line of symmetry. 

They need to check the lengths and angles of the shape to check how symmetrical their shape is. 

 

Mini plenary – The first pair of pupils come to the IWB (or computer linked to projector) to 

demonstrate their symmetrical shape. Discuss what lengths and angles need to be equal and the 

position of the bars to generate the shape. 

 

The next pair to come to the front, are asked what shape they made. They are asked how they need to 

drag the bars in order to generate their shape. They then drag the bars. Discuss the properties of their 

shape and the position of the bars. 

 

Repeat with further pairs, hoping to get the rhombus, kite, concave kite and isosceles triangle. 

 

Task 3. Pupils asked to make the horizontal bar AC the line of symmetry and to see what they can 

make. 

 

Task 4. Pupils generate a shape of their choice from the file. They use the text tool to write the name 

of the shape, a description of how the bars are positioned and the properties of the shape. They could 

save this or print it off. 

 

Plenary 

Question: If you had to describe how to position the bars to make a kite, what would you say? 

 

If you had to change that kite into a rhombus what would you do? 
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Appendix 2.1b The computer file given to the classes 
 

 
 

 

Appendix 2.1c Whole class lessons 

 

I had another objective for iteration two which was to ascertain whether the task could 

be used with whole classes. I took the opportunity to work with two classes from the 

School A and two classes from School B. This was the completion of my work at the 

School A and the beginning of my work at School B. I wanted to thank the mathematics 

department at School A for allowing me access to their students and the contact teacher 

and I agreed we would work together with two top set year seven classes. Although I 

had previously been working with year eight students the school were keen to offer new 

experiences (i.e. working with computers in mathematics lessons) to their „more able‟ 

students. An account of these lessons with one of the year 7 classes has been published 

(Forsythe and Cook, 2012). 

At School A the Head of Mathematics and I took two year eight „middle ability‟ 

classes. In both schools the whole class lessons used the 8 cm vertical and 6 cm 
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horizontal bars. When I worked with pairs of students from each of the classes they 

worked with the bars in different orientations.  

 

The files used with the classes were modified versions of the files used with the pairs 

that contained the 8 cm vertical bar and 6 cm horizontal bar. The reason for this was 

that I would not be able to easily show 30 children how to construct the shape. So the 

shape was constructed in the file and also the side lengths and angles were measured 

and hidden with a hide/show button. A copy of the file is shown in appendix 7.1b. 

 

The first lesson 

At the beginning of the lesson I showed the class a number of different paper triangles 

and quadrilaterals to test whether the pupils knew their names and properties. The 

pupils were knowledgeable about both names and properties and only needed to be 

reminded of the name for the rhombus (which they remembered as a diamond). 

The task had been designed so that the students, who had not used the software before, 

did not need to learn many of its features. First they were asked to drag the bars and 

find out what changes and what stays the same. Next they were asked to investigate 

what shapes they could make. When the students made a particular shape, they were 

asked to give their properties and then to check these using measurements of sides and 

angles.  

The pupils easily dragged the bars to form different shapes. At the first plenary, when 

asked what stayed the same, the pupils observed that the lines inside the shape (the 

bars) stayed the same. When asked what changed the pupils observed that the shape 

changed. 

During the lesson the pupils were asked to make specific shapes and to note the 

position of the bars within the shape. At first they found it hard to articulate this.  After 

hearing some examples given from pupils who were prepared to offer suggestions for 

the positions, all the pupils were able to describe the bars. In the final plenary I asked 

the class to tell me what bars they could need to make a square. The suggestion came 

back that they would need two equal length bars.  At the end of the lesson the pupils 

were given a worksheet to complete where they named shapes they had made, drew the 

positions of the bars and described the positions in words. 
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The second lesson 

For the next lesson, the pupils worked in pairs at the computers. When devising the 

follow on task for the next lesson, I decided to give the pupils two choices. One choice 

required them to construct a square from scratch which would remain a square when 

dragged and they had the use of a construction booklet to give them instructions on 

how to make mid pints, perpendicular lines, rotations, etc. Many pupils successfully 

constructed a square, usually by drawing a line, constructing a mid point and then 

rotating the line 90 degrees about the mid-point. A different method that was observed 

was to draw a line, construct its mid-point, then draw a circle with the mid-point as 

centre and the circumference passing through the ends of the line. Then the pupil 

constructed a perpendicular to the line through the mid-point. The particular boy who 

devised this method had to be given some help in using the software to be successful 

but the idea was his. On reflection I wish that I had spent more time questioning the 

children as to how they thought of the method which they used to construct the square. 

Inevitably some pupils made squares which did not remain squares when dragged.  

The other choice of task was more structured. I showed the class the four files 

containing, 2 unequal perpendicular bars, 2 equal perpendicular bars, 2 equal bars at an 

adjustable angle and 2 unequal bars at an adjustable angle. The pupils who chose this 

task had to try to make a rectangle, a parallelogram and a right angled isosceles triangle 

using the appropriate file. Then they completed the worksheet drawing the bars within 

the shape and describing the bars in words. To help them in their descriptions I had 3 

questions on the worksheet as hints: are the bars equal lengths or unequal lengths, are 

the bars perpendicular or at another angle, where do the bars cross each other. When 

some of the pupils appeared to be stuck on this question, I found that by asking them to 

trace and then describe the positions of the bars inside the diagram of the shape on the 

worksheet, helped them to identify which file they needed to use. 

Overall the pupils were able to access the task and to observe the type and positions of 

bars which generated certain shapes. Since, in a quadrilateral, these bars are the 

diagonals this activity might help pupils to observe the properties of the diagonals and 

to reflect on the connection between the diagonal properties and the side and angle 

properties.  

 

 

  



Appendix 2 

 

 

Appendix 2.2a Table of dragging strategies used by Dave and Evan 

 

 Time 

interval 

Length of 

time 

interval 

Dragging 

strategy 

Description of student 

activity 

Original 

placement of 

bars 

0.35-0.39 4 seconds GD Bars placed fairly 

symmetrically 

Attempt to 

make a square 

2.32-2.34 2 seconds RD Point C is dragged down and 

up 

 4.32-4.40 8 seconds DMS Bar BD dragged down to 

make an isosceles triangle 

which is adjusted to get 

angles A and C closer 

The boys tried 

to make an 

equilateral 

triangle but 

instead made 

an isosceles 

triangle. 

5.01-5.03 2 seconds RD 

7.07-7.14 7 seconds GD An attempt to make an 

equilateral triangle. Instead 

an isosceles triangle is made. 
7.18-7.20 2 seconds GD 

7.55-8.01 6 seconds RD 

11.20-11.21 1 second DMS The boys constructed the 

mid-point of the horizontal 

bar and moved bar BD on to 

it. 

11.42-11.44 2 seconds GD 

11.46-11.50 4 seconds DMS 

Vertical and 

horizontal 

kites. 

Discussion of 

how many 

kites can be 

made by 

dragging the 

bars. 

13.56-14.05 9 seconds DMS Bar BD dragged to generate 

a kite with vertical symmetry 

15.40-15.44 4 seconds DMS Another vertical kite is 

generated 

16.18-16.23 5 seconds GD A kite with horizontal 

symmetry is generated and 

adjusted for measures. 
16.24-16.36 12 seconds RD 

16.55-17.02 7 seconds RD 

18.49-18.54 5 seconds DMS Two more horizontal kites 

are made. 19.00-19.04 4 seconds RD 

19.38-19.42 4 seconds DMS 

19.57-19.59 2 seconds DMS 

rhombus 20.29-20.33 4 seconds RD the mid-points of both bars 

are put together to make a 

rhombus 

new file with 

bars oriented 

at an angle 

21.22-21.24 2 seconds GD one bar dragged over the 

other, result is reasonably 

symmetrical 

kite 27.42-27.48 6 seconds RD no measurements shown 

29.44-29.46 2 seconds RD adjustment to get sides equal 

isosceles 

triangle 

32.43-32.45 2 seconds DMS isosceles triangle is 

generated and refined 32.45-32.49 4 seconds RD 

32.55-33.00 5 seconds RD 

rhombus 34.15-34.17 2 seconds DMS rhombus is generated and 

refined 34.18-34.22 4 seconds RD 

34.58-35.04 6 seconds RD 

arrowhead 35.54-35.58 4 seconds GD the bars were dragged up and 
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36.01-36.06 5 seconds GD down, though not with 

accurate symmetry although 

the shapes generated during 

dragging were symmetrical 

36.07-36.11 4 seconds GD 

36.11-36.15 4 seconds RD 

36.15-36.22 7 seconds GD then 

RD 

seamless GD and RD 

36.40-36.59 19 seconds WD point B is dragged with big 

movements  

37.00-37.09 9 seconds RD an accurate arrowhead is 

achieved 

40.21-40.26 5 seconds DMS one arrowhead is changed 

into a different arrowhead 

40.26-40.35 9 seconds RD the new arrowhead is made 

accurate 

How many 

isosceles 

triangles can 

you make? 

40.43-40.46 3 seconds DMS an isosceles triangle is 

generated 40.46-40.49 3 seconds RD 

41.22-41.43 21 seconds WD then 

RD 

seamless WD into RD 

41.45-41.47 2 seconds DMS another isosceles triangle is 

generated 41.51-41.52 1 second RD 
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Appendix 2.2b Table of episodes from the recording with Dave and Evan 

line numbers 

from 

narrative 

time interval 

in recording 

description 

54-86 7.31-11.35 Isosceles triangle with vertical symmetry, boys 

identify side and angle properties and position of 

bars 

shape: side and angle properties 

94-96 13.34-13.53 From isosceles triangle to kite “you‟ve got to keep 

the dot (i.e.mid-point) central as you‟re going up” 

focus: attending to bars 

106-120 and 

144-168 

15.22-16.14 

18.48-20.19 

When asked how many kites it is possible to make 

the boys identify a discrete number of kites “about 

eight” 

discrete number of kites 

169-200 20.19-22.03 Comparison of rhombus and square. Boys discover 

the rhombus has 4 equal sides and 2 pairs of equal 

angles 

shape: squashed square, side and angle properties 

212-223 22.59-25.15 Symmetry as a folding action and cutting a shape in 

half. Dave deduces which side-length of the 

rhombus another would sit on another under this 

operation 

symmetry: folding, equal sides 

249-266 30.11-31.34 File with bars at an angle 

boys identify the properties of the bars needed to 

make a kite including the perpendicular property. 

The boys were unable to deduce why having one bar 

in the middle of the other would result in the shape 

having equal side-lengths 

shape: properties of bars 

285-286 33.28-33.48 When moving from kite to isosceles triangle Evan 

describes how one bar is dragged „down‟ to make 

sure it was in the middle and that this leads to equal 

side lengths. Yet the dragging had to be at an angle. 

Orientation perception: „down‟ when at an angle 

289-294 34.08-34.41 Boys accept close enough measures in identifying 

two sets of equal angles “B and D are two degrees 

out and A and C are just one”. 

measures: close enough 

301-311 35.10-35.43 Boys identify that both bars cross at their mid-points 

to make a rhombus and that only one rhombus can 

be made. 

shape: properties of bars 

338-346 39.42-40.36 I ask how many arrowheads can be made. At first 

Evan suggests there are two. When I suggest that 

they try to make others Dave says they could just 
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keep pulling it (i.e. the bar) down. Evan adjusts his 

idea of the number of possible arrowheads to “quite 

a few”. 

orientation perception: „down‟ when at an angle 

many arrowheads 
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Appendix 2.3a Table of dragging strategies used by Tara and Ruth 

 

 Time 

interval 

Length of 

time 

interval 

Dragging 

strategy 

Description of student 

activity 

dragging of 

separate bars 

one over the 

other to the 

rhombus 

position 

0.53-0.56 3 seconds GD Original dragging of one bar 

over the other to the 

rhombus position then 

adjusted angle measurements 

(displayed) until perfect 

0.56-1.26 30 seconds RD 

The kite. 

 

Tara and Ruth 

position the 

bars where 

they think they 

ought to go and 

then refine the 

shape using 

RD by 

attending to the 

measures. 

They report 

that they can 

make four 

kites. 

13.18-13.25 7 seconds DMS The girls make a kite by 

dragging one bar through the 

middle of the other bar. Then 

they adjust the bars to make 

the kite close to perfect. 

13.25-14.13 48 seconds RD 

15.08-15.18 10 seconds RD The girls try to get the kite to 

be perfect. 

17.36-17.48 12 seconds GD The girls demonstrate the 

four different positions of 

the „three quarter‟ kite 

19.34-19.41 7 seconds GD The four kites in the ¾ 

position. 

19.47-20.05 18 seconds DMS She generates kites with the 

cross bar in different 

positions 

20.16-20.26 10 seconds RD She makes adjustments to 

get the kite perfect. 

isosceles 

triangle. 

Tara and Ruth 

say they put the 

end of one bar 

on the middle 

of the other 

bar. 

They report 

that they can 

make four 

isosceles 

triangles. 

21.38-21.44 6 seconds GD Girls exploring what 

happens if bar BD is dragged 

randomly 

21.52-21.57 5 seconds GD Girls generate an isosceles 

triangle 

22.16-22.19 3 seconds GD  

22.22-22.29 7 seconds RD Isosceles triangle made close 

to perfect. 

22.47-22.51 4 seconds RD  

23.24-23.26 2 seconds DMS The bar BD is dragged to 

demonstrate the four 

possible isosceles triangles. 
23.26-23.30 4 seconds GD 

23.30-23.34 4 seconds DMS 

how many 

kites? 

23.42-23.46 4 seconds DMS bar BD is moved along in 

small increments to show 

kites in different proportions 
23.46-23.52 6 seconds RD 

24.10-24.16 6 seconds DMS 

new file with 

angled bars 

24.43-24.48 5 seconds GD Girls again place the bars so 

that they are in the rhombus 

position 
24.48-24.59 11 seconds RD 

First a rhombus 

and then kites. 

 

28.21-28.25 4 seconds DMS A kite is generated and is 

adjusted so it is close to 

perfect. 
28.25-28.50 25 seconds RD 
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Squashed 

square analogy, 

keeping the bar 

in the middle, 4 

discrete kites 

can be made. 

30.30-31.05 35 seconds GD The girls demonstrate the 

other three ¾ kites using 

these bars 

31.17-31.28 11 seconds WD  The girls try to make 

arrowhead kites. They seem 

unsure of how to make an 

arrowhead but when they 

have made one they refine it. 

31.28-31.50 22 seconds RD 

31.50-31.55 5 seconds DMS BD is dragged to make sides 

equal 

arrowhead 

kites 

 

an interest in 

infinite lines, 

an isosceles 

triangle with 

another 

isosceles 

triangle bit 

missing, 

reflex angle. 

31.59-32.03 4 seconds DMS Use of DMS followed by RD 

is used to make a good 

arrowhead. 
32.03-32.26 23 seconds RD 

34.33-34.36 3 seconds WD BD is dragged seemingly 

randomly then brought back 

onto the perpendicular 

bisector of |AC 

34.36-44.44 8 seconds DMS 

40.41-40.46 5 seconds DMS Bar BD is dragged along the 

perpendicular bisector of bar 

AC to make an arrowhead. 

42.20-42.26 6 seconds GD A kite is generated. 

43.24-43.30 6 seconds GD having constructed the mid-

point of BD the bar AC is 

dragged over to it. 43.35-43.39 8 seconds GD 

44.07-44.16 9 seconds DMS careful dragging through 

kites to the arrowhead. 44.52-45.00 8 seconds DMS 

45.00-45.06 6 seconds RD 

45.15-45.21 6 seconds GD the two mid-points are 

moved together and a 

rhombus results 
45.21-45.27 6 seconds RD 
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Appendix 2.3b Table of episodes from the recording with Tara and Ruth 

line numbers 

from 

narrative 

time interval 

in recording 

description 

2-10 0.55-1.35 Tara places one bar over the other and tries to get the 

bars to cross at the mid-points. 

Tara says she was trying to get the two pairs of angle 

measurements to be equal 

shape: properties of bars 

focus: attending to measures 

24-30 3.05-3.38 Tara and Ruth prefer the rhombus in this orientation! 

orientation: looking at the shape this way 

39-41 5.14-5.32 The girls list the properties of a rhombus 

shape: side and angle properties 

55-63 7.54-8.34 The girls refer to the rhombus as a squashed square. 

They compare the angle properties of the rhombus 

and square. They say a square has straight sides. 

shape: angle properties 

shape: squashed square 

orientation descriptive: straight sides 

74-101 9.51-11.32 I question the girls about the properties of the 

rhombus which arise because of its symmetry by 

asking them to imagine folding in half. The girls 

identify equal sides and angles. 

symmetry: equal sides and angles 

symmetry process 

106 12.18-12.30 In a rhombus the folding lines are the bars 

symmetry: naming axes 

109 12.55-13.05 You can fold the rhombus into halves and quarters 

symmetry process 

shape: split into triangles 

130-132 15.39-15.58 Tara gives a description of purposeful dragging of 

bars to make a kite followed by refinement to get 

measures accurate. 

focus: attending to bars 

focus: attending to measures 

136-141 16.20-16.46 Ruth describes making the shape look equal and it 

having one line of symmetry via folding. 

shape: holistic 

symmetry process 

151-158 17.26-17.51 Tara identifies that four kites would be made from the 

figure. Ruth questions whether a short squat kite is 

really a kite and Tara replies that it is a different 

shaped kite. 

discrete number of kites 

shape: typical proportion 

159-168 17.58-19.08 The girls and I have a discussion of how we know a 

shape is a kite. Tara says that normal kites are quite 

thin. Ruth says that you have to have a line you can 

fold it over and equal sides. 
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shape: typical proportion 

shape: side and angle properties 

symmetry process 

170-174 19.31-19.41 The girls identify four discrete kites but I suggest they 

slide the cross bar over a bit more and a bit more. 

discrete number of kites 

176-185 19.52-21.32 I ask the girls how they are being careful to move the 

bar BD. They reply that they are being careful to keep 

the measurements of sides BC and DC and sides AB 

and AD the same. Ruth comments that they are 

always in a cross shape. 

focus: attending to measures 

focus: attending to bars 

189-193 22.16-22.35 The girls describe how the bars need to be dragged to 

make an isosceles triangle. 

focus: attending to bars 

202-207 23.13-23.40 The girls identify four isosceles triangles which they 

demonstrate on the screen and one rhombus. 

208-212 23.40-24.19 The girls identify four kites which can be made from 

the figure. Tara says there could be more than four 

kites if the line (ie cross bar) is moved over a little 

more. 

discrete number of kites 

new file with 

bars at an 

angle 

213-215 

24.38-25.03 Ruth positions the bars into a symmetrical 

arrangement and refines to get the displayed angles 

being equal 

focus: attending to bars 

focus: attending to measures 

224 26.20-26.22 Ruth says that the figure looks like a parallelogram. 

orientation: shape looks like.... 

225-226 26.25-26.35 Ruth wants to measure the sides before committing to 

the shape being a rhombus 

measures 

244 28.20-28.25 Ruth says of the figure “it‟s a bit of an angled kite” 

orientation: descriptive 

248-255 29.09-30.05 I asked the girls how they had moved the bars to make 

a kite. They talked of bringing the bar up and moving 

it up, even though the dragging was in a direction at 

an angle to the vertical. 

orientation perception: up when at an angle 

279-280 32.34-32.53 I ask the girls how the bars are positioned in an 

arrowhead and Ruth replies “not on AC but still in the 

centre”. Although the bars do not cross each other 

when an arrowhead is generated the girls still knew 

that they had to position one bar so that it would line 

up with the mid-point of the other one. 

shape: properties of bars 

289-292 34.10-34.43 I ask how the bar would be moved to generate another 

arrowhead. Ruth replies that it would be moved 

upwards. Tara says that they would make sure the 
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guideline went through the point (they had drawn an 

infinite line over bar BD and constructed the mid-

point of AC). 

orientation perception: up when at an angle 

shape: properties of bars 

388-389 43.46-43.56 The girls identify four or eight potential kites 

discrete number of kites 

398-399 44.53-45.08 The girls identify thousands of potential arrowhead 

kites. 

many arrowheads 
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Appendix 2.4a Table of dragging strategies used by Kate and Jane 

 

Kate and Jane worked through the task quickly, seeming to have remembered all they 

had learned from the class lesson. In consequence we spent some time working with the 

files containing the bars at adjustable angles. 

 

 Time 

interval 

Length of 

time 

interval 

Dragging 

strategy 

Description of student activity 

Kites, kites in 

different 

orientations, 

millions of 

kites. 

0.10-0.12 2 seconds GD The bars are moved to a 

symmetrical kite position 

2.32-2.34 2 seconds RD RD to get equal angles 

3.12-3.14 2 seconds DMS A kite in the opposite orientation 

is generated. 3.16-3.20 4 seconds RD 

Rhombus 3.57-3.59 2 seconds GD A rhombus is generated. 

4.08-4.10 2 seconds WD 

4.13-4.17 4 seconds GD 

4.20-4.23 3 seconds RD 

Isosceles 

triangles, in 

different 

orientations, 

millions 

4.50-4.52 2 seconds DMS Bar BD is dragged up to make an 

isosceles triangle and then refined 

in one seamless movement. 
4.52-4.55 3 seconds RD 

5.40-5.44 4 seconds DMS Bar BD is dragged to generate an 

isosceles triangle in the opposite 

orientation followed by an 

arrowhead. 

5.48-5.52 4 seconds DMS 

6.04-6.07 3 seconds RD 

A description 

of DMS by 

pulling bars 

through the 

middle of the 

other and 

making 

different 

shapes. 

7.39-7.45 6 seconds DMS Bar BD is dragged down to 

generate a rhombus 

7.58-8.04 6 seconds DMS BD is the line of symmetry 

8.04-8.07 3 seconds DMS AC is the line of symmetry 

8.23-8.26 3 seconds DMS kite to isosceles triangle to 

arrowhead. 8.27-8.31 4 seconds 

DMS 

 

8.49-8.54 5 seconds RD 

8.54-8.57 3 seconds DMS 

Girls give 

reasons why 

they cannot 

make a 

square 

9.19-9.20 1 second WD WD to see if they can make a 

square. They conclude with a 

rhombus which they adjust to 

make accurate. 

9.23-9.35 2 seconds WD 

9.29-9.32 3 seconds GD 

9.32-9.35 3 seconds RD 

new file with 

bars at an 

angle 

11.19-

11.21 

2 seconds GD One bar is dragged over the other 

and refined in a rhombus position 

The girls 

discover they 

cannot make 

a square with 

the 

perpendicular 

bars at an 

11.28-

11.30 

2 seconds RD 

13.13-

13.22 

9 seconds RD The girls try to make a square. 

There are four series of RD but 

overall the RD went on from 

11.28-13.53. i.e. the girls used RD 

to try and make a square for 2 

13.25-

13.30 

5 seconds RD 

13.38- 8 seconds RD 
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angle. 

They 

successfully 

drag the 

figure into 

kite, 

rhombus, 

isosceles 

triangle and 

arrowhead. 

13.46 minutes and 25 seconds. 

13.50-

13.53 

3 seconds RD 

15.54-

15.59 

5 seconds DMS An arrowhead is generated and 

refined. 

16.03-

16.17 

14 

seconds 

RD 

16.24-

16.27 

3 seconds DMS A perfect isosceles triangle is 

generated straightaway. 

16.57-

17.05 

8 seconds DMS Bar BD is dragged to generate 

kites and a rhombus and an 

isosceles triangle. 17.09-

17.12  

3 seconds DMS 

17.24-

17.28 

4 seconds GD 

17.30-

17.38 

8 seconds DMS 

17.39-

17.42 

3 seconds GD 

new file with 

unequal bars 

at adjustable 

angles 

18.29-

18.39 

10 

seconds 

WD Jane takes over the mouse from 

Kate. She drags the bar BD around 

trying to make a parallelogram. 

Parallelogram 18.46-

18.48 

2 seconds GD Jane continues to try and make a 

parallelogram. 

18.51-

18.55 

4 seconds RD 

19.40-

19.45 

5 seconds WD 

19.47-

19.55 

8 seconds RD 

19.59-

20.00 

1 second RD 

20.44-

20.53 

9 seconds RD Jane tries to get the shape to be as 

regular as possible. 

20.55-

21.03 

8 seconds RD 

The girls 

adjust the 

bars so that 

they are at an 

angle of 90 

degrees and 

generate a 

kite. Then 

they adjust 

the angle and 

generate a 

shape which 

28.17-

28.20 

3 seconds GD the angle between the bars has 

been changed. The girls make a 

right angled triangle. 

28.40-

28.48 

8 seconds WD The bars are adjusted to be 

perpendicular then the angle is 

changed, the figure looks like a 

kite seen from the side. Then the 

bars are changed back to 

perpendicular and the figure 

changes to a kite. 

28.52-

28.56 

4 seconds GD 

29.05-

29.08 

3 seconds GD 

29.46-

29.49 

3 seconds WD The girls experiment with 

changing the angle between the 
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looks like a 

kite if 

viewing the 

computer 

from the side. 

29.54-

29.58 

4 seconds GD bars when the figure looks like a 

kite seen from a different 

perspective. 29.58-

30.07 

9 seconds RD 

parallelogram 30.51-

30.58 

7 seconds GD The bars are dragged so that they 

both cross at their mid-points and 

this is refined to make an accurate 

parallelogram. 
31.04-

31.15 

11 

seconds 

RD 

31.50-

31.58 

8 seconds GD Jane changes the angle between 

the bars again. 

new file with 

equal length 

bars at an 

adjustable 

angle 

32.35-

32.37 

2 seconds GD The bars are dragged so that they 

cross each other, the shape is 

constructed around the bars. The 

mid-points of the bars are 

constructed. 

square 33.26-

33.30 

4 seconds GD Jane places the mid-points of the 

bars together 

36.28-

36.36 

8 seconds RD She tries to get the measurements 

exact but cannot do so though they 

are within 0.1 cm and 1 degree 36.54-

36.55 

1 second RD 

rectangle 37.44-

37.48 

4 seconds GD Having adjusted the angle between 

the bars another rectangle is 

generated which is accurate. 
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Appendix 2.4b Table of episodes from the recording with Kate and Jane 

line numbers 

from 

narrative 

time interval 

in recording 

description 

1 0.10-0.12 One bar is dragged over the other so the result is a 

nearly symmetrical kite position 

4-7 1.11-1.29 Kate identifies the shape as a kite because it has two 

shorter sides at the top and two longer sides at the 

bottom. 

Shape: side properties 

9-11 2.13-2.21 Kate identifies two equal angles in the kite 

shape: angle properties 

14-17 2.47-2.58 Kate identifies the line of symmetry in the kite 

symmetry: naming axis 

18-31 2.58-3.47 Kate says that to make another kite with BD as the 

line of symmetry you need to pull BD up. She 

demonstrates this and labels the result an upside 

down kite. She identifies that it is possible to make 

millions of kites. 

focus: attending to bars 

orientation descriptive: upside down 

infinite number of kites 

39-44 4.24-4.35 Kate identifies the two lines of symmetry in the 

rhombus 

symmetry: naming axes 

47-51 4.49-5.12 The girls identify the properties of the isosceles 

triangle. 

shape: side and angle properties 

55 5.33-5.35 Kate refers to an „upside down triangle‟ 

orientation descriptive: upside down 

58-60 5.46-6.05 The girls identify properties of an arrowhead 

shape: side and angle properties 

62-64 6.19-6.35 After they had made the kite, rhombus, isosceles 

triangle and arrowhead I asked the girls how they 

moved the bars to get all those shapes. Kate replied 

that you just have to move one of the lines (bars) 

either up or down. 

focus: attending to bars, describing DMS 

67-79 6.50-7.31 When I asked them where the bars crossed each 

other for all the shapes they had made the girls 

replied „in the middle‟. For a rhombus the girls said 

that the bars crossed „in the middle of both of them‟. 

shape: properties of bars 

85 7.52-7.54 Kate says the bars are both lines of symmetry in a 

rhombus 

symmetry: naming axes 

93 8.10-8.12 Kate refers to the figure as a „kite on its side‟ 

orientation descriptive: on its side 

94-95 8.13-8.17 Kate said they could make millions of kites on their 



Appendix 2 

 

side. 

infinite number of kites 

97 8.22-8.24 Kate refers to a sideways triangle. 

orientation descriptive: on its side 

99-103 8.34-8.47 The girls describe the properties of the bars for an 

isosceles triangle and an arrowhead 

shape: properties of bars 

107 9.16-9.18 I suggest that the girls make a shape without 

symmetry and Kate refers to the shape as „just 

random‟ 

random shape? Lack of special properties? 

113-117 9.31-9.50 The girls say that they cannot make a square with 

these bars because the bars are not the same length. 

deduction: square needs equal length bars 

new file with 

perpendicular 

bars at an 

angle 

128 

 

11.19-11.21 The girls move one bar over the other to the 

rhombus position 

 

symmetry: intuitive 

128-131 11.19-11.37 The girls identify that if the bars cross in the middle 

the shape should be a rhombus 

shape: properties of bars 

133 11.43-11.45 I ask Jane how she is looking at the shape and she 

says you have to turn your head. 

orientation perception: turning the head 

138-143 11.51-12.14 I ask which bar they are trying to make the right way 

up if they turn their head to the left (bar DB) and to 

the right (bar AC) 

orientation perception: turning the head 

149 13.32-13.36 When I ask how the girls position the bars at first 

Jane says they try to make things look equal first. 

shape: holistic perception 

150-153 13.39-14.00 The girls appear to find it more difficult to position 

the bars when the rhombus is at a different 

orientation. 

 

166-169 16.29-16.48 Kate says she keeps the bar BD in the middle of the 

bar AC when moving from the arrowhead to the 

triangle 

description of DMS 

new file with 

unequal length 

bars at an 

adjustable 

angle 

185 

20.03-20.06 The girls have made a parallelogram. Jane says it is 

a parallelogram on its side. 

 

orientation descriptive: on its side 

193-199 21.16-21.22 In the parallelogram the girls cannot get the pairs of 

angles to be equal. Kate says they are not that far 

off. Jane says two degrees. 
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I ask the girls where the bars should cross and they 

tell me they should cross in the middle. I suggest 

they construct the mid-points of the bars. The girls 

are then able to get the measurements exact. 

measures: close enough 

shape: properties of the bars 

209-252 23.00-27.20 The girls identify that the parallelogram does not 

have line symmetry but does have rotational 

symmetry. They perceive rotation as turning the 

shape round on itself (through 180 degrees). 

However they find it difficult to visualise congruent 

triangles within the parallelogram which would turn 

onto each other. 

symmetry process: rotational by turning 

258-263 28.55-29.39 The girls rotate the bars so that they are at 90 

degrees and make a kite which is accurate. Jane says 

there are 2 shorter sides and 2 longer sides. I ask 

what the angle is between the bars and she says it 

looks like 90 degrees. 

shape: side properties 

shape: properties of bars 

263-268 29.39-30.33 I ask the girls if they can make a kite with bars 

which are not at 90 degrees. They make a figure 

which they label as looking like a „flat kite‟ i.e. if 

you look at it in a perspective. 

shape: holistic perception albeit at a perception 

from the side 

269-273 30.35-31.41 I ask the girls if they could make a rhombus. Kate 

says they need to get the bars to cross in the middle. 

They do this and generate a parallelogram. 

shape: properties of bars 

273-274 31.41-32.03 I ask if they can make a rectangle and Jane asks if 

we can make the bars the same length. 

deduction: rectangle needs equal length bars 

new file with 

equal bars at 

an adjustable 

angle 

277-300 

33.37-35.41 The girls identify that if they have equal bars at 90 

degrees which cross at their middles they will have a 

square 

deduction: bars needed to generate a square 

317-324 38.13-38.50 The girls have adjusted the angle of the bars and 

generated a rectangle. They are able to identify 

congruent triangles within the rectangle. 

symmetry process: rotational by turning 

329-335 39.16-39.54 The girls identify the properties of the bars 

necessary to generate a rectangle and also that the 

bars are the diagonals of the rectangle. 

deduction: bars needed to generate a rectangle 
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Appendix 2.5a Table of dragging strategies used by Aftab and Rupen 

 

 Time 

interval 

Length of 

time 

interval 

Dragging 

strategy 

Description of student 

activity 

kite 0.07-0.10 3 seconds GD one bar is dragged over to 

the other in a kite position 

The boys try to 

make a square 

but instead 

manage to 

make a 

rhombus 

3.49-4.04 15 seconds RD The boys try to make the 

figure into a square and keep 

checking the angle 

measurements on the screen. 

4.11-4.18 7 seconds RD 

4,22-4.39 17 seconds RD 

4.40-4.46 6 seconds RD 

4.47-5.01 14 seconds DMS 

5.04-5.11 7 seconds DMS 

5.14-5.18 4 seconds RD 

5.23-5.25 2 seconds RD 

5.29-5.30 1 second RD 

kite 9.49-9.56 7 seconds DMS Aftab drags bar AC to 

generate a kite which he then 

refines. After constructing 

the mid-point of AC he drags 

it onto BD. 

9.59-10.07 8 seconds RD 

10.15-10.17 2 seconds GD 

10.41-10.49 8 seconds DMS A kite in two different 

positions is generated by 

dragging bar AC up 
10.53-10.54 1 second DMS 

isosceles triangle 

and arrowhead 
11.02-11.04 2 seconds DMS an isosceles triangle is 

generated 

12.20-12.21 1 second DMS an arrowhead is generated 

shapes with 

horizontal 

symmetry 

13.00-13.12 12 seconds DMS the figure is dragged into a 

kite with vertical symmetry. 

13.37-14.03 26 seconds DMS then the figure is dragged 

into a rhombus 

15.42-16.08 26 seconds DMS various shapes with 

horizontal symmetry are 

generated. The boys appear 

to find it harder to drag 

horizontally. 

16.08-16.23 15 seconds RD 

16.30-17.10 40 seconds DMS 

17.13-17.17 4 seconds RD 

17.20-17.25 5 seconds RD 

17.41-17.50 9 seconds RD 

17.53-17.58 5 seconds  

18.14-19.08 54 seconds DMS 

19.11-19.22 11 seconds DMS 

new file with 

perpendicular 

bars at an angle 

19.55-19.59 4 seconds GD one bar is dragged over the 

other to the rhombus 

position 

rhombus 20.18-20.21 3 seconds RD the mid points are constructed and 

then moved together to generate 

the rhombus 
21.24-21.28 4 seconds RD 

kites, then 

isosceles 

triangles 

24.28-24.30 2 seconds DMS the bar is dragged with 

reasonable accuracy to 

generate a kite 
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25.18-25.22 4 seconds GD a different kite is generated 

25.47-25.49 2 seconds GD a kite with BD as line of 

symmetry is generated 

26.32-26.34 2 seconds DMS BD is dragged further along 

to generate another kite 

27.35-27.41 6 seconds GD an isosceles triangle is 

generated 

27.45-27.54 27 seconds WD different shapes are 

demonstrated. 
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Appendix 2.5b Table of episodes from the recording with Aftab and Rupen 

line numbers 

from 

narrative 

time interval 

in recording 

description 

10-12 1.33-1.47 Aftab identifies two equal sides in the kite 

shape: side properties 

16 2.54-3.00 Aftab identifies two equal angles in the kite 

shape: angle properties 

29-72 4.14-7.18 The boys try to drag the figure into a square. They 

construct the mid-points of the bars because they 

have identified that the bars need to cross at the mid-

points. They decide in the end that they have got a 

rhombus 

shape: properties of bars 

74 7.21-7.23 Aftab says it is a rhombus because it looks like a 

rhombus 

shape: holistic 

76-77 7.34-7.42 The boys identify the side and angle properties of a 

rhombus 

shape: side and angle properties 

93-100 9.00-9.23 The boys identify the lines of symmetry in a 

rhombus 

symmetry: naming axes 

104 9.30-9.34 Aftab says the bars in a rhombus cross at the mid 

point 

shape: properties of bars 

106-115 9.40-10.33 When I ask how the rhombus can be changed into a 

kite Aftab says bar AC has to be pulled up or down. 

Aftab said that he put the mid-point of one bar on 

the other and moved it down to make another kite 

description of DMS 

116-123 10.33-10.56 Aftab reports that it is possible to make four kites. 

When I suggest that he could move the bar up a little 

bit more he changes this to “loads of kites”. 

discrete kites 

many kites 

159 13.20-13.22 when I ask Aftab if he looked at the bars or the 

measurements when he was dragging he said that he 

looked at the bars 

focus: attending to bars 

181-184 14.50-15.02 The boys said that they made a kite, an isosceles 

triangle and an arrowhead when the middle of bar 

AC was kept on bar BD 

shape: common properties 

188-189 15.18-15.28 I suggest they make shapes with AC as the line of 

symmetry and the boys say they could make the 

same shapes but on the side 

orientation description: on the side 

197-204 15.38-16.20 The boys dragged horizontally and it appeared to be 

harder for them to keep symmetry than when they 
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dragged vertically. 

cognitive load? 

new file with 

perpendicular 

bars at an 

angle 

235 

19.55-19.59 one bar is dragged over the other bar to the rhombus 

position 

 

shape: holistic 

236-247 19.59-20.33 The boys construct the mid-points of the bars and 

place them together. They decide they should be 

able to make a rectangle. 

deduction though incorrect 

265-271 23.28-24.02 The boys turn their head to look at the figure. Aftab 

says of the shape “you can tell it‟s like a kite this 

way”. 

orientation perception: this way 

274-276 24.06-24.20 Rupen says he thinks the shape is a rhombus 

because the sides are the same and two angles are 

the same. 

shape: side and angle properties 

279-280 24.24-24.31 I ask how the rhombus could be made into a kite and 

Rupen demonstrates by dragging bar AC down and 

left. 

DMS to go between shapes 

283-284 24.48-25.00 When I ask the boys how they dragged the bars to 

change form the rhombus to the kite Rupen replied 

that he made sure AC stayed on the mid-point of BD 

shapes: common properties of bars 

308 27.05-27.18 Aftab talked about pulling the bar down when he 

meant at an angle. 

orientation perception: down when it is really at an 

angle 

 

In the remainder of the session Aftab and Rupen used the bars with adjustable angle to 

generate a parallelogram. With some help they recognised 2 congruent triangles within 

the parallelogram by imagining turning the parallelogram through 180 degrees. 
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Appendix 2.6 Accurate DMS episodes 

I have included one DMS episode from the file containing the 6 cm vertical and 8 cm 

horizontal bars and two episodes from the file containing perpendicular bars oriented at 

an angle. 

 

 

 

 orientation of 

bars 

Time 

interval 

Differences between expected 

equal measurements 

Dave and 

Evan 

horizontal and 

vertical 

4.32-4.40 angles < 4 degrees 

oriented at an 

angle 

40.21-40.26 

 

40.43-40.46 

angles < 1 degree, sides < 0.6 cm 

 

angles < 1 degree, sides < 0.3 cm 

 

Tara and 

Ruth 

horizontal and 

vertical 

13.18-13.25 

 

angles < 4 degrees, sides < 0.2 cm 

oriented at an 

angle 

31.59-32.03 

 

40.42-40.46 

angles < 5 degrees, sides < 0.6 cm 

 

angles < 5 degrees, sides < 0.6 cm 

 

Kate and Jane horizontal and 

vertical 

5.40-5.44 angles < 2 degrees, sides < 0.4 cm 

oriented at an 

angle 

15.54-15.59 

 

16.24-16.27 

angles < 5 degrees, sides < 0.6 cm 

 

angles < 0 degrees, sides < 0.1 cm 

 

Aftab and 

Rupen 

horizontal and 

vertical 

13.00-13.12 angles > 2 degrees, sides < 0.1 cm 

oriented at an 

angle 

24.28-24.30 

 

26.32-26.34 

angles < 4 degrees, sides < 0.1 cm 

 

angles < 4 degrees, sides < 0.3 cm 
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Appendices 3 Iteration 3 

Appendix 3.1a Table of dragging strategies used by Hemma and Seema 

 

 Time 

interval 

Length of 

time 

interval 

Dragging 

strategy 
Description of student 

activity 

Initial 

exploration of 

shapes. 

0.45-0.47 2 seconds GD Bar BD is dragged over bar AC 

reasonably symmetrically  

3.06-3.08 2 seconds GD A triangle is generated 

3.19-3.25 6 seconds GD The figure moves through 

kites 

3.36-3.39 3 seconds WD The figure is dragged into 

concave shapes 

4.03-4.11 8 seconds WD The girls explore the figure 

4.14-4.15 1 second GD an isosceles triangle is made 

4.19-4.30 11 seconds WD Crossed quadrilaterals are 

formed and the shape ends as 

an isosceles triangle. 

4.38-4.43 5 seconds WD Bars are dragged around and 

a right angled triangle is 

formed at the end. 

4.53-4.59  6 seconds GD Arrowheads and a kite are 

formed. 

Kites 6.46-6.50 4 seconds GD The kite is turned into an 

isosceles triangle but 

accurate symmetry is not 

apparent. 

7.36-7.38 2 seconds RD This dragging was an 

adjustment to make the 

triangle symmetrical. 

7.54-7.58 4 seconds GD Isosceles triangle on base 

AC is moved to isosceles 

triangle on base BD 

8.03-8.11 8 seconds GD From isosceles triangle to 

kite. 

8.20-8.23 3 seconds GD From one kite to another by 

moving both bars in turn. 8.25-8.30 5 seconds GD 

8.31-8.35 4 seconds GD 

8.47-8.50 3 seconds RD Making measures more 

accurate 

8.55-8.59 4 seconds WD BD is dragged to generate 

different kites. 

10.12-10.15 3 seconds RD The girls try to get one of the 

exterior angles to look like a 

right angle. 

rhombus 11.07-11.47 40 seconds RD The girls try to get an 

accurate rhombus 
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12.35-12.41 6 seconds RD This makes a rhombus with 

four equal sides. 12.48-12.57 9 seconds RD 

13.25-13.35 10 seconds RD The girls try to get two pairs 

of equal angles. 14.19-14.20 1 second RD 

14.24-14.29 5 seconds RD 

15.22-15.23 1 second RD Having constructed the mid-

points of the bars the girls 

get the angles close to equal. 
15.33-15.37 4 seconds RD 

kites 19.06-19.10 4 seconds GD A kite is generated and 

refined. 19.12-19.15 3 seconds RD 

20.12-20.14 2 seconds RD Two sides are made to be 

exactly equal. 

20.59-21.01 2 seconds DMS 2 different kites are 

generated with a small 

movement of bar BD. 
21.03-21.08 5 seconds DMS 

22.42-22.44 2 seconds DMS The girls make another small 

movement of BD to make 

another kite. 
22.48-22.53 5 seconds DMS 

and RD 

26.38-26.55 17 seconds GD A kite is moved to another 

with AC as the line of 

symmetry. 

27.00-27.14 14 seconds RD A little adjustment generates 

a rhombus. 

27.17-27.28 11 seconds DMS Another kite is generated. 

27.45-27.47 2 seconds DMS Little movements of the bar 

demonstrate different kites 

which can be generated. 
27.48-27.49 1 second DMS 

27.55-27.57 2 seconds DMS 

27.58-28.00 2 seconds DMS 

28.10-28.11 1 second DMS two more different kites. 

28.14-28.15 1 second DMS 

Isosceles 

triangle 

28.37-28.39 2 seconds GD The bar is moved 

purposefully but not keeping 

symmetry to make an 

isosceles triangle. 
 28.43-28.47 4 seconds GD 

Arrowheads 28.57-29.35 38 seconds DMS Slow, careful dragging to 

generate many different 

arrowheads. 

29.39-29.44 5 seconds DMS Dragging back and forth to 

demonstrate more 

arrowheads. 
29.47-29.49 2 seconds DMS 

29.52-30.02 10 seconds DMS The arrowhead with the right 

angle (exterior to the reflex 

angle) is demonstrated. 

31.47-31.56 9 seconds WD BD is dragged around and 

the end result is an isosceles 

triangle. 

32.00-32.05 5 seconds DMS To make an arrowhead 

Rhombus 32.45-33.00 15 seconds GD To make a rhombus 

34.45-34.47 2 seconds RD Hemma tries to get side AD 
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on the parallel line 

34.53-34.55 2 seconds GD She moves AD onto the 

parallel line 

Equal length 

bars and the 

square 

36.34-36.38 4 seconds GD BD dragged over AC into a 

symmetrical arrangement. 

38.16-38.22 6 seconds RD To make the square more 

accurate looking. 

40.07-40.17 10 seconds RD More accuracy on square 

Kites 41.22-41.24 2 seconds DMS 2 kites are generated and 

refined. 41.25-41.27 2 seconds RD 

41.31-41.35 4 seconds DMS 

43.12-43.20 8 seconds DMS Many kites are demonstrated 

using DMS. 

43.30-43.38 8 seconds RD The kite is made accurate. 

44.12-44.22 12 seconds DMS Short bursts of dragging 

demonstrate different kite 

positions. 
44.24-44.32 8 seconds DMS 

44.36-44.39 3 seconds RD Refinement of the kite shape. 

Arrowheads 45.06-45.17 11 seconds GD AC is dragged away from 

BD to generate arrowheads. 

45.18-45.35 17 seconds DMS Many different arrowheads 

are demonstrated. 
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Appendix 3.1b Table of episodes from the recording with Hemma and Seema 

line numbers 

from 

narrative 

time interval 

in recording 

description 

6-11 3.05-3.28 Seema perceives the figure with the bars as a 2D 

representation of a 3D figure. 

shape: holistic perception 

27-29 4.31-4.38 Seema recognises and names the shape as an isosceles 

triangle and Hemma identifies that it has a line of 

symmetry. 

shape; holistic perception 

symmetry; naming axis 

33-38 5.02-5.22 The girls discuss the properties of a kite as having 2 

longer sides at the bottom. 

shape; side properties 

shape; typical representation 

48 6.26-6.28 Seema says that two sides which are 0.2 cm apart are 

quite similar 

measures; close enough 

81 8.37-8.39 Seema says that two kites can be made from the 

figure. 

discrete number of kites 

86-90 8.48-9.10 The girls describe kites as having longer sides at the 

bottom and shorter sides at the top in comparison to a 

rhombus which has all sides the same. 

shape; side properties 

shape; typical representation 

shape; partitional classification 

121-129 11.07-11.56 Seema tries to make a rhombus. The girls identify that 

all four sides need to be the same. Seema refers to the 

measurements as centimetres. 

shape: side properties 

140 13.06-13.11 Hemma describes angles in a rhombus which are the 

same (74 degrees) and angles which are similar (105 

degrees and 108 degrees). 

measures; close enough 

157 14.23-14.25 Hemma says that the bars cross in the middle to make 

a rhombus. 

shape; properties of bars 

164-167 15.14-15.43 Seema appears to view the shapes holistically. She 

describes a rhombus as a “kind of diagonal square”. 

shape; holistic perception 

171-175 15.48-16.17 Seema identifies the need to know the half way point 

of the bars in order to make them cross in the middle. 

“You know how that one‟s eight centimetres, where 

four centimetres is”. 

shape; properties of bars 

measures; used to check properties 

180-186 16.52-17.24 When Seema positions the bars to generate a kite she 

reports that she looks at the shape while moving the 
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bars and tries to get the shape “kite looking”. 

shape; holistic perception 

201-205 18.37-19.02 Seema thinks that two rhombuses could be made if 

the shape could be turned round. 

orientation; perception 

213-220 19.35-19.56 A discussion of the properties of the kite. The girls 

have a partitional view of kites and rhombuses 

because rhombuses have four equal sides and kites 

have two longer sides on the bottom. This 

demonstrates that they have a stereotypical view of a 

kite. 

shape; side properties 

shape; partitional classification 

shape; typical representation 

224-226 20.02-20.20 Seema used RD to adjust the kite so that the bottom 

two sides are equal. 

shape; side properties 

232-236 21.04-21.27 When I ask where the bars should cross in a kite, 

Seema says they should cross in the middle of BD and 

Hemma comments that is the same as the other one 

(ie the other kite they made previously). 

shape; properties of bars 

260-267 23.31-24.06 The kite they have made has its „top‟ pointing left and 

downwards. However the girls talk about the kite as if 

they had mentally rotated it so that the „top‟ pointed 

upwards. 

The girls have split the kite into two triangles; an 

isosceles triangle and an obtuse triangle. 

orientation perception; looking this way 

shape; split into triangles 

270-281 24.10-25.05 Following on from this the girls do not think that the 

obtuse angled triangle can be labelled isosceles. They 

seem to think it must be one thing or the other but not 

both. 

282-291 25.05-26.18 The girls forget that they labelled the shape a kite (in 

line 260) and suggest other things the shape could be 

eg 3D pyramid, trapezium. It may be that the 

orientation of the figure affects their recognition of 

the shape as a kite. 

orientation perception 

300-304 27.14-27.36 After dragging bar BD along AC the girls identify the 

shape as a kite and that two sides at the bottom are the 

same and two sides at the top are the same. Hemma 

also says that the measures are close enough (sides 

differ by 0.1 cm and angles differ by 1 degree). 

shape; side properties 

shape; typical representation 

measures; close enough 

306-318 27.42-28.23 I ask the girls how many kites they think they could 

make. Seema says two. Hemma then demonstrates 
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that many more kites can be made by dragging the bar 

BD to different positions on AC. Hemma thinks they 

can make six or seven kites. I suggest they move the 

bar a little bit. “Like a millimetre” Hemma asks. 

Seema suggests it could “go on for ages” and that 

they could make twenty kites. Hemma suggests 25 or 

26 kites. 

discrete number of kites 

many kites 

329-330 29.19-29.28 Hemma says that they can make quite a lot of 

arrowheads and demonstrates by moving the bar 

along. 

many arrowheads 

331-337 29.28-29.58 The girls notice that as the bar BD is moved further 

away from point C the exterior angle at C becomes 

more acute. 

effect of moving bars 

339-340 30.04-30.11 The girls consider that the line of symmetry in an 

arrowhead is just the part which is inside the shape. It 

appears that the analogy of a fold line as a line of 

symmetry may cause difficulties when they need to 

view a line of symmetry as being an infinite line. 

symmetry process 

351-357 30.50-31.30 The girls have learnt that parallel lines are like train 

tracks. 

parallelism process 

394 35.05-35.11 Hemma says that the shape is not a square because the 

angles are not ninety degrees. 

shape; angle properties 

395-406 35.11-36.17 The girls see that they need the bars to be equal length 

in a square but they also want them to be „straight‟. 

shape; properties of bars 

deduction; square needs equal length bars 

orientation perception 

407 36.28-36.57 Hemma opens the new file and drags one bar over the 

other to make a symmetrical arrangement. 

symmetry; intuitve 

410-416 37.57-38.24 The girls identify that the bars need to cross in the 

middle, but they would still prefer „straight‟ bars and 

the reassurance of using measurements to check. 

shape; properties of bars 

orientation perception 

measures; check on properties 

448-455 41.17-41.48 Using equal length bars Hemma has made a kite. It‟s 

proportions are not pleasing to the girls but they 

acknowledge that it is a kite because it has the 

properties of a kite (two equal short sides, two equal 

long sides and made up of two isosceles triangles). 

shape; typical representation 

shape; side properties 
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461-472 42.04-43.22 The girls discuss how the unequal length bars made 

more accurate kites which are easier to make! 

shape; typical representation 

484-485 44.10-44.41 Hemma demonstrates that a number of kites can be 

made using fairly accurate DMS. 

many kites 

489-491 45.12-45.24 Hemma demonstrates that a number of arrowheads 

can be made. 

many arrowheads 
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Appendix 3.2a Table of dragging strategies used by Stan and Eric 

 

 Time 

interval 

Length of 

time 

interval 

Dragging 

strategy 
Description of student 

activity 

Exploring 

shapes which 

can be 

generated. 

1.55-1.57 2 seconds DMS A kite, triangle, rhombus and 

arrowhead (not symmetrical) 

are made. 
1.58-2.00 2 seconds DMS 

2.05-2.17 12 seconds WD 

2.36-2.55 19 seconds WD 

 

Isosceles 

triangle 

2.57-3.01 4 seconds GD  

The boys try to generate an 

equilateral triangle but find 

that they cannot do so. 

3.26-3.57 31 seconds RD 

4.00-4.10 10 seconds GD 

4.14-4.20 6 seconds RD 

4.21-4.24 3 seconds RD 

5.42-5.45 3 seconds GD The boys make a scalene 

triangle then go back to the 

isosceles triangle. 
5.54-5.55 1 second GD 

6.55-7.02 7 seconds WD  

The boys investigate making 

the two base angles equal 
7.07-7.21 14 seconds WD 

7.30-7.40 10 seconds RD 

7.44-7.48 4 seconds RD 

11.01-11.10 9 seconds RD The boys adjust the angles 

whilst discussing that the 

measured angles sum to 179 or 

181. 

11.16-11.18 2 seconds RD 

 

Rhombus 

12.49-12.57 8 seconds DMS The boys make a rhombus 

and then refine it. 13.22-13.33 11 seconds RD 

13.34-13.41 7 seconds RD 

13.50-14.20 30 seconds RD 

 

Isosceles 

triangle 

17.36-17.38 2 seconds DMS They demonstrate the four 

possible isosceles triangles 

which can be made with the 

figure. 

17.38-17.43 5 seconds GD 

17.50-17.58 8 seconds RD 

18.38-18.41 3 seconds DMS 

18.42-18.56 14 seconds RD 

18.56-19.04 8 seconds GD 

 

Rhombus 

19.39-19.42 3 seconds DMS Eric focuses on the 

measurements of the sides 

when dragging the figure 

into the rhombus position. 

19.42-19.48 6 seconds RD 

20.34-20.51 17 seconds DMS 

 

Arrowhead 

21.16-21.22 6 seconds DMS The boys generate 

arrowheads with BD as a 

line of symmetry. They say 

they can make 4 arrowheads 

by moving AC by small 

amounts. 

21.24-21.30 6 seconds DMS 

21.38-21.43 5 seconds RD 

21.46-21.50 4 seconds RD 

22.11-22.29 18 seconds DMS 

22.30-22.34 4 seconds DMS 

 

Shapes with 

BD as line of 

symmetry 

22.50-22.59 9 seconds DMS Arrowheads to rhombus 

through kites. 22.59-23.01 2 seconds DMS 

23.07-23.09 2 seconds DMS 

23.22-23.27 5 seconds RD 
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Shapes with 

AC as line of 

symmetry 

23.48-23.54 6 seconds DMS Isosceles triangles and 

arrowheads. The boys hardly 

seem to notice the kites. 

They make what they call a 

fat kite. 

23.56-24.12 16 seconds RD 

24.15-24.27 12 seconds DMS 

24.29-24.43 14 seconds WD 

24.54-25.02 8 seconds GD 

25.02-25.10 8 seconds RD 

25.20-25.25 5 seconds DMS with BD as line of symmetry 

25.25-25.32 7 seconds DMS with AC as line of symmetry 

25.32-25.40 8 seconds RD  

 

A number of 

arrowheads 

25.40-25.45 5 seconds GD They drag slowly to 

demonstrate a number of 

arrowheads. 
25.47-25.54 7 seconds WD 

25.55-26.02 7 seconds DMS 

26.02-26.06 4 seconds GD 

26.06-26.08 2 seconds DMS 

26.08-26.12 4 seconds WD 

26.14-26.20 6 seconds DMS BD as line of symmetry 

26.20-26.21 1 second GD AC as line of symmetry 

 

Rhombus 

26.47-26.51 4 seconds DMS They make a rhombus and 

compare it with a square. 26.51-27.00 9 seconds RD 

27.28-27.30 2 seconds RD 

 

Square 

33.40-34.35 55 seconds RD In a new file with equal 

length bars they place the 

bars so they cross in the 

middle. RD does not get it 

perfect so the mid-points are 

constructed and a perfect 

square is made. 

35.45-35.51 6 seconds RD 

36.00-36.03 3 seconds RD 

37.09-37.15 6 seconds DMS 

39.37-39.44 7 seconds DMS 

Isos RA triangle 39.45-39.51 6 seconds WD Bars end to end 

 

Dragging to 

make different 

shapes 

40.16-40.25 9 seconds GD Different scalene triangles 

are made and the boys make 

some arrowheads at the end. 
40.25-40.38 13 seconds WD 

41.10-41.13 3 seconds GD 

41.16-41.18 2 seconds GD 

41.18-41.34 16 seconds WD 

41.54-42.00 6 seconds GD 

42.00-42.10 10 seconds WD 
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Appendix 3.2b Table of episodes from the recording with Stan and Eric 

line numbers 

from 

narrative 

time interval 

in recording 

description 

33-48 4.28-5.11 The boys perceive the angle between the bars AC and 

BD as other than a right angle. Stan says he can‟t tell 

because it is at a weird angle. 

orientation; perception 

85-92 8.10-8.39 I ask the boys what they could call a triangle which 

has two equal angles. Stan half remembers the label 

„isosceles‟. Naming the shape an isosceles triangle 

appears to jog the boys‟ memory about the side 

properties. 

shape: side and angle properties 

100-108 9.45-10.13 The boys find it difficult to see which of the bars is 

the longer one. This may be due to the orientation of 

the bars. Stan says that if the triangle was tilted up the 

line would be up there. He may be mentally rotating 

the shape. 

orientation; perception 

113-129 10.37-11.28 The boys notice that the sum of the displayed angle 

measurements is 179 or, after dragging, 181. This 

bothers them. 

measures 

131 11.44-12.00 I explain about how the computer is rounding the 

angle sizes to the nearest whole number. Stan then 

suggests possible real measurements for the angles. 

measures 

135-140 12.23-12.39 Stan and Eric discuss the symmetry of the isosceles 

triangle and decide there is only one line of 

symmetry. 

symmetry; naming axes 

153 13.50-13.52 Eric decides that the tilted rhombus is a 

parallelogram. It is a special parallelogram but Eric‟s 

comment is more likely to be the result of the 

orientation of the figure which is close to the typical 

orientation of  a parallelogram 

orientation; typical 

156-159 14.28-14.41 The boys identify the properties of the bars for a 

rhombus. 

shape; properties of bars 

163 14.52-14.56 Eric identifies the side properties for a rhombus 

shape; side properties 

167-172 15.24-15.48 The sides of the rhombus are measured. Eric 

conjectures they will add up to 20 and they do. 

177-182 15.58-16.38 The boys discuss the lines of symmetry in a rhombus. 

Eric discounts Stan‟s suggestion that the lines which 

go through the middles of opposite sides are lines of 

symmetry because the angles either side are not equal. 

symmetry; naming axes 
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symmetry; equal angles 

191-196 17.48-18.29 They make an almost perfect isosceles triangle. Stan 

says the angles add up to 181 but then Eric suggests 

this is due to a rounding error. 

measures 

197-209 18.29-19.27 The boys demonstrate the four isosceles triangles 

which can be generated from the figure. 

211-220 19.35-20.14 I suggest that the boys turn the isosceles triangle into 

a rhombus and ask them how they do this. Eric had 

the mouse and explained that he dragged BD down 

(although it was left and down). 

He said that he watched the measurements of the sides 

while dragging. 

orientation; perception („down‟ when at an angle) 

focus; attending to measurements 

224-230 20.47-21.06 While they have the rhombus there is a suggestion 

that this is a square as all four sides are equal. Stan 

points out that the angles are not all ninety degrees. 

Eric notes the two pairs of equal angles. 

shape; angle properties 

233-238 21.13-21.34 The boys drag quickly from the rhombus to the 

arrowheads and do not seem to notice the kites they 

pass through on the way. 

discrete number of shapes 

241-247 21.53-22.34 The boys only consider the four arrowheads in each of 

four positions. 

discrete number of arrowheads 

269-272 24.12-24.32 Eric recounts that they made an isosceles triangle, 

rhombus and kite. These shapes appear to be discrete 

positions at the end of a dragging movement. 

discrete number of shapes 

291-295 25.44-26.06 I suggest to the boys that they try to make different 

arrowheads by moving the bar slowly. Sam says you 

can make a lot of arrowheads by moving slowly. This 

suggests a perception of continuous change as 

opposed to all other references to discrete positions. 

many arrowheads 

302 26.58-27.06 Eric lists the properties of a square. 

shape; side and angle properties 

309-315 29.15-29.35 The boys have difficulty seeing the right angles at the 

intersection of the bars. This may be due to the 

orientation. 

orientation perception 

336 31.50-32.00 Eric says they need equal length bars. I am not sure 

whether he means equal bars to make a square or 

equal bars will make the angles at their intersection 

look more like ninety degrees. 

344 32.33-32.37 The new bars are placed symmetrically in a square 

position. Stan says they should cross in the centre. 

shape; properties of bars 
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349-354 33.20-34.27 The square is made but the boys are not convinced 

due to its orientation. Eric gets the angles to be close 

to ninety but not spot on except for a split second. 

orientation; perception 

356-357 34.34-34.49 I ask where the bars should cross and Stan says they 

should cross with BD and AC straight. Eric says they 

should cross in the centre. 

orientation; perception 

shape; properties of bars 

361-364 35.01-35.21 The boys bemoan the orientation of the square and 

say it is slanted and does not look like a square. They 

say it would help if the square was straight. 

orientation; typical 

366 36.03-36.08 They boys construct the mid-points of the bars which 

helps them to get four right angles. However Stan 

does not quite believe it. 

orientation; perception 

368-372 36.14-36.35 Stan says the shape is a square because it has four 

right angles. I remind him that rectangles also have 

four right angles. Stan says a square has four sides 

that look the same and a rectangle is longer. 

shape; partitional classification 

390 40.07-40.14 The bars have been put end to end and the result is an 

isosceles right angled triangle. Stan says isosceles 

triangles don‟t always have to be big. They can be 

small and fat. 

shape; typical representation 

399-403 41.27-41.48 The boys generate an obtuse angled scalene triangle 

and check with me that it is a real shape. 

shape; typical representation 
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Appendix 3.3 Accurate DMS episodes 

 

 

 

 Time 

interval 

Differences between expected equal 

measurements 

Hemma and 

Seema 

21.03-21.08 angles differ < 4 degrees, sides differ < 0.2 cm 

44.12-44.22 angles differ < 3 degrees, sides differ < 0.2 cm 

Stan and Eric 17.36-17.38 angles differ  < 3 degrees, sides differ < 0.4 cm 

26.47-26.40 angles differ < 6 degrees, sides differ < 0.3 cm 
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Appendices 4 Iteration 4 

 

Appendix 4.1 Lesson plans for the whole class lesson  

 

Making shapes from a dynamic perpendicular quadrilateral 

Resources: geo-strips, class set of  laptop computers, my laptop comouter, radio 

mouse, ipad for photos of pupils work, digital voice recorder, worksheets, poster paper 

 

Lesson 1  

Pupils log in to laptops and leave them booting up. 

 

On computer attached to projector display the 8 cm vertical and 6 cm horizontal bars. 

 

Keeping the bars perpendicular 

Pupils are each given two geo strips of different lengths as concrete representations of 

the bars. 

 

Keeping the geo strips at right angles students put one over the other and imagine what 

shapes they could make if they joined the ends of the bars. Students to sketch some of 

these shapes on mini white boards. 

 

Class discussion on which shapes the pupils think it is possible to make. 

 

Adding constraints 1 

Pupils now asked to keep bars perpendicular but also to keep one bar so that it always 

crosses the other bar at the mid point. Paired discussion then class discussion on what 

shapes can be made. 

 

Adding constraints 2 

What happens when both bars cross in the middle? 

 

Working with the dynamic perpendicular quadrilateral 
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Display the dynamic perpendicular quadrilateral on the board. Tell the pupils 

A perpendicular quadrilateral is a 4 sided shape whose diagonals cross at right 

angles. This shape is a perpendicular quadrilateral and its bars can be dragged on 

the screen in the same way as you moved the geo strips to make different shapes. 

On pairs working with the dynamic figure in the GSP on laptops pupils encouraged to 

drag the bars inside the dynamic shape to make all the shapes they have previously 

made using the geo strips but also to drag one bar so that it is below or to the side of the 

other bar. Paired discussion then class discussion of what shapes can be made. 

 

Plenary 

Bars perpendicular and one bar crosses the other at its mid point:  

 

Which shapes can you make? 

What do these shapes have in common? 

How many rhombuses can you make? 

How many isosceles triangles can you make? 

How many kites can you make? 

How many arrowheads can you make? 

 

Lesson 2 

Discussion on the shapes we made yesterday, properties of bars and properties of 

shapes 

 

Listing shapes and their properties. 

Recap the perpendicular quadrilateral and its properties. 

Project dynamic figure onto screen through my laptop. Use the radio mouse so that 

volunteer pupils can drag the figure into different shapes. 

Discuss shapes which can be made, properties of bars, properties of shapes. 

 

Pupils fill in a sheet with columns for bar positions and shape properties. 

 

shape How the bars are 

positioned 

Properties of the shape 
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Remembering what we discussed yesterday how many kites do you think it is possible 

to make? What happens if you move one bar a little bit? 

How many arrowheads is it possible to make? 

 

Animation of the dynamic shape whilst the bars are kept so that one crosses the 

other at its mid point 

Whole class watches the animation. Class discussion of the changing shape. 

 

Questions for class discussion: 

Develop use of mathematical language: When you drag one bar so that it always 

crosses the other bar in the middle we say that one bar bisects the other. The bars are at 

right angles so one bar is the perpendicular bisector of the other bar.  

 

Think about the kites and the arrowheads. What is different about them? What is the 

same about them? 

 

How are the bars positioned for a kite? 

 

How are the bars positioned for an arrowhead? 

 

What happens when both bars are the perpendicular bisector of each other? 

 

Is a rhombus a special kite? 

 

Plenary 

Large circle on board. This is the perpendicular quadrilaterals. Circle inside this. What 

shapes could be in this (that are the shapes made in the animation). What shapes are 

inside the second circle? 

 

Lesson 3 
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Pupils make posters of what they have learned about the shapes, the properties of the 

bars and the properties of sides and angles. 

 

 

 

 

 

Appendix 4.2 Examples of the shapes students sketched on their mini whiteboards. 

 

4.2a 
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4.2b 

 

 
 

 

 

4.2c 
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Appendix 4.3 Examples of completed worksheets 

 

4.3a 
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4.3b 
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4.3c 
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4.3d 
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4.3e 
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4.3f 
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4.3g 
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4.3h 
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4.3i  
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4.3j 
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4.3k 
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4.3l 
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4.3m 
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Appendix 4.4 Screen shot of the board showing the vocabulary the class 

discussed that they should use for their posters. 
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Appendix 4.4 The contents of 31 posters 

 
30 of the posters displayed the shapes that could be generated from the dynamic figure 

indicating the bars inside. 10 mentioned using geo-strips. 10 mentioned the Geometers 

Sketchpad programme. 

 
 animation properties perp. 

bisector 

family of shapes infinite 

kites / 

arrowhe

ads? 

A 7 positions drawn 

of the animated 

figure 

all shapes 

have 2 equal 

sides 

perpendicular 

bisector 

same family due to the 

property of bar AC 

bisecting bar BD 

 

B description of  AC 

moving along BD. 

AC is always 

perpendicular. 

infinite number of 

kites if you move 

AC along 

named 2 sets 

of equal sides 

and 2 equal 

angles 

perpendicular mentions these 

properties as the 

defining properties of a 

kite. 

A kite is similar to a 

triangle 

∞ 

C They (shapes) are 

all created by 

moving one of the 

diagonals along the 

other 

 when 

diagonals are 

perpendicular 

in terms of dynamic 

geometry they (shapes) 

are very similar 

∞ 

D family of shapes 

made by moving 

one bar along the 

other continuously 

2 pairs of 

equal sides, 

but if all 4 are 

the same it is 

classed as a 

rhombus 

perpendicular 

bisector 

in this family there are 

1 rhombus, 2 isos 

triangles and an infinite 

variation of kites and 

an infinite number of 

arrowheads 

 ∞ 

E  drawing of a 

specific kite 

and a specific 

rhombus with 

equal sides 

shown by 

measurements. 

perpendicular 

bisector 

from a kite we 

managed to make a 

family of shapes which 

all had a perpendicular 

bisector 

 

F  arrowheads 

are concave 

kites because 

the top half of 

a kite has been 

folded in on 

itself 

 arrowheads are 

concave kites. 

Rhombus is a special 

parallelogram with 

equal sides 

 

G  perpendicular 

bars 

perpendicular family of shapes made 

from 2 perpendicular 

bars 

 

H the rhombus uses 

the same bars as the 

kite (implies a 

movement between 

rhombus and kite) 

the bars were 

perpendicular 

and bisected 

the other. 

you need 

equal bars for 

a square 

perpendicular 

bisector 

these shapes are mainly 

kites apart from the 

isosceles triangle. 

the rhombus is a 

special kind of kite as it 

uses the same bars as 

the kite. 

arrowhead kite 

 

I 7 positions drawn all shapes perpendicular arrowheads/concave ∞ 
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of the animated 

figure 

have a 

perpendicular 

bisector 

bisector kites 

all the shapes are from 

the same family 

J  all shapes 

have a 

perpendicular 

bisector 

perpendicular 

bisector 

all the shapes are from 

the same family 

∞ 

K you can move even 

1 mm and it will be 

another shape. 

2 pairs of 

equal sides, 

all shapes 

have a 

perpendicular 

bisector 

perpendicular 

bisector 

arrowheads are like 

concave kites. |In a 

way they are part of the 

kite family. 2 pairs of 

equal sides like a kite. 

Isosceles triangles 

belong to the family 

too. A rhombus also 

belongs to the kite 

family 

∞ 

L it may be 

considered infinite 

but you have to stop 

at one point 

(describing kites) 

2 pairs of 

equal sides 

perpendicular 

bisector 

Family of shapes where 

bars have 

perpendicular 

bisectors. 

arrowheads are a 

special kind of kite. 

Using the GSP an 

isosceles triangle could 

be considered a special 

kind of kite but the 

only property it does 

not share is 4 sides. A 

rhombus can be 

considered a special 

kind of kite but instead 

of 2 pairs of equal sides 

all of its sides are the 

same. 

∞ 

M no words, but 7 

positions drawn of 

the animated figure  

lines AB and 

AD, BC and 

DC are the 

same 

   

N      

O  AB = BC 

CD = DA 

 a concave kite has the 

same properties as a 

convex kite but in the 

shape of an arrowhead 

 

P  the rhombus 

has 2 sets of 

adjacent sides 

and unlike a 

kite the pairs 

of adjacent 

sides are equal 

to each other 

 the kite is possibly a 

special version of a 

rhombus 

the isosceles triangle is 

in the rhombus family 

 

Q  the line 

bisectors are 

perpendicular 

bisector, 

perpendicular 

  

R  annotated 

diagrams to 

indicate equal 

sides and right 

angles. 

bisects kite family, 

arrowhead is a special 

kind of kite 

 



Appendix 4 

 

a kite has 2 

sets of equal 

sides, BD 

bisects AC,  

<DCB = 

<DAB, one 

line of 

symmetry 

S  annotated 

diagrams to 

show equal 

sides and right 

angles 

   

T (starts with 

isosceles triangle). 

If you move this 

line (i.e. base of 

triangle) up the 

middle line and 

bisect it like this it 

turns into a kite. If 

you carry on and 

bisect in the middle 

like this it‟s a 

rhombus. If you 

carry on for a long 

while and over the 

vertical line (points 

to an arrowhead). 

kites and 

arrowheads 

have 2 pairs of 

adjacent equal 

lines. 

bisects an arrowhead is a 

concave kite. It is an 

irregular kite. 

a rhombus is a special 

parallelogram. It is not 

a square because all the 

angles are different. 

 

U   perpendicular 

bisector 

  

V  partitional 

classification 

of shapes by 

properties 

perpendicular 

bisector 

  

W no words, but 9 

positions drawn of 

the animated figure 

partitional 

classification 

of shapes by 

properties 

   

X     ∞ 

Y  kites and 

rhombuses 

described as 2 

pairs of 

adjacent 

angles and 

sides. In a 

rhombus all 

sides are 

equal. 

 a kite could possibly be 

a special version of a 

rhombus 

 

Z  they all have 

perpendicular 

bisectors 

perpendicular 

bisector 

  

AA  2 sides equal 

length 

perpendicular 

bisector 

  

BB  partitional 

classification 

of shapes by 

properties, 

specific 
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instance of a 

kite 

CC if you push the line 

along to the left a 

bit (in an 

arrowhead) you get 

a kite. If you align 

the bars so that they 

cross exactly in the 

middle you get a 

rhombus, if the bars 

are the same length 

it becomes a square. 

DB is the line 

of symmetry. 

kites and 

arrowheads 

have. 

2 long sides 

and 2 short 

sides. 

the smaller 

line must 

always bisect 

the other. So is 

the isosceles 

triangle really 

acceptable? Or 

if it bisects it 

just before the 

end is it a kite 

technically? 

 arrowhead is a special 

kind of kite. 

 

 

DD diagram of the 

animation showing 

the bars and dashed 

lines indicate 

different shapes 

which can be made 

superimposed on 

each other. 

arrowheads 

are concave 

kites because 

the different 

sides are equal 

like a kite. 

Kites have 

similar if not 

the same 

properties as 

arrowheads 

 arrowheads are 

concave kites, they are 

part of the kite family.  

rhombus are equilateral 

kites, just look like a 

tipped over square. 

isosceles triangles are 

actually in the kite 

family even though 

they have 3 sides. The 

base is just like the 

point of a kite 

flattened. 

 

EE  in every shape 

there was a 

perpendicular 

bisector 

perpendicular 

bisector 
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Appendix 5 
 

Letter to Head teacher  May 30
th

 2012 

 
Dear, 

As part of my studies for a PhD I am undertaking a research project into children‟s geometrical 

reasoning in a Computer Geometry environment. I have devised a task in a program called the 

Geometers Sketchpad and I have already worked with a number of pairs of children, observing 

them while they work together on the task. Last year I came into School B to work with two of 

(HOD)‟s classes and afterwards worked with two pairs of pupils chosen from those classes. 

 

I am writing to ask your permission to come into School B again this year to work with pairs of 

year 8 pupils on these tasks (between two and four pairs depending on availability of times). 

The pairs of year 8 pupils will be asked to work in pairs at the computer and will be encouraged 

to discuss the task together. I will bring a computer for them to use which is loaded with an 

image capture software program. This records the screen activity and the dialogue so that they 

can be analysed. 

 

If you are happy for this to go ahead then I have given (HOD) an electronic copy of a letter to 

parents of the pairs of children to ask for their permission. As the letter to the parents states, I 

have ethical approval from the ethics committee at the university to undertake this research. I 

would be very grateful to be allowed to work with School B pupils and hope that the maths 

department would also benefit from being involved. 

 

 

Yours sincerely 

 

Sue Forsythe 

 

 

Letter to head teacher May 20
th

 2013 
 

Dear, 

As part of my studies for a PhD I am undertaking a research project into children‟s geometrical 

reasoning in a Computer Geometry environment. I have devised a task in a program called the 

Geometers Sketchpad and have worked with a number of pairs of children (including at School 

B), observing them while they work together on the task. I have also developed the task so that 

it can be used in a whole class setting and used this in School B two years ago. I am at the point 

of writing up the PhD and have studied the task enough to have a better idea of how it works 

conceptually. As a way of concluding the research I would like to trial a new lesson plan with a 

whole class.  

 

I am writing to ask your permission to come into School B to work with year 8 pupils. I have 

approached (HOD), Head of Mathematics at School B, and she is happy for me to come into 

school so that we can co teach the whole class lesson to her year 8 class for two consecutive 

lessons with the option of a third lesson if needed. I will bring a computer which is loaded with 

an image capture software program. This records the on-screen activity and the dialogue so that 

they can be analysed. I would also like to bring a digital recorder to record interesting 
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comments the pupils make and my i Pad to take photos of pupils‟ work. I will not make video 

recordings or take photos of pupils and any contributions will be anonymised. 

 

If you are happy for this to go ahead then I have given (HOD) an electronic copy of a letter to 

parents of children in the class to ask for their permission. As the letter to the parents states, I 

have ethical approval from the ethics committee at the university to undertake this research. I 

would be very grateful to be allowed to work with School B pupils and hope that the maths 

department would also benefit from being involved. 

 

 

Yours sincerely 

 

Sue Forsythe 

 

 

Letter to parents  2012 

 
Dear Parent / Guardian, 

 

There have been a number of developments in mathematics teaching over the last few years. Children 

now have opportunities to learn in a computer environment and this can be very valuable given the right 

kind of task. There is more emphasis placed on learning through task-based activities and the profile of 

geometry is being raised. Our colleague Mrs Sue Forsythe from the School of Education, University of 

Leicester, is researching into the kinds of activities which promote effective learning of geometry, using 

tasks in a computer geometry environment.  

 

The children taking part in this project will work in pairs at the computer with Mrs Forsythe. The 

computer being used will have been loaded with image capture software, which records what happens on 

the computer screen. The pupils‟ conversations will also be recorded but there will be no video 

recording. The information collected will remain anonymous, and any pupil asked to participate will be 

able to withdraw at any time.  

 

The information collected will be held in a secure place and will only be used by Mrs Forsythe and 

(HOD)to aid understanding of how successful the tasks have been. It is hoped that the work completed 

on the computer activities would be used for eventual academic publication in education journals to share 

any good practice with others in the education sector. 

 

If you have any further questions concerning this matter, please feel free to get in contact with Miss 

Green.  If you are happy for your son/daughter to be involved in the collection of information, please 

complete the slip below and return to (HOD) 

 

Yours faithfully 

 

_________________________________________________________________________ 

 

We/I am happy for our son/daughter to take part in the computer geometry project. We understand that 

some audio recordings may be made in class and work may be photographed.  

 

Name of student:__________________________ 

 

Signature:____________________________   Date:__________ 

 

Student signature:____________________________  Date:_________        
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Letter to parents 2013 
 

Dear Parent / Guardian, 

 

There have been a number of developments in mathematics teaching over the last few years. Children 

now have opportunities to learn in a computer environment and this can be very valuable given the right 

kind of task. There is more emphasis placed on learning through task-based activities and the profile of 

geometry is being raised. Our colleague Mrs Sue Forsythe from the School of Education, University of 

Leicester, is researching into the kinds of activities which promote effective learning of geometry, using 

tasks in a computer geometry environment.  

 

The children taking part in this project will work in their usual mathematics lessons with their regular 

class teacher, (HOD) and Mrs Forsythe. On screen activity of the class computer will be recorded and a 

digital recorder will be used to record some of the pupil comments during the lesson. Photographs will be 

taken of pupils‟ work. There will be no video recording and all pupils‟ contributions will be anonymised. 

Any pupil asked to participate will be able to withdraw at any time.  

 

The information collected will be held in a secure place and will only be used by Mrs Forsythe and 

(HOD) to aid understanding of how successful the tasks have been. It is hoped that the work completed 

on the computer activities would be used for eventual academic publication in education journals to share 

any good practice with others in the education sector. 

 

If you have any further questions concerning this matter, please feel free to get in contact with Miss 

Green.  If you are happy for your son/daughter to be involved in the collection of information, please 

complete the slip below and return to (HOD). 

 

Yours faithfully 

 

 

 

 

 

_________________________________________________________________________ 

 

We/I am happy for our son/daughter to take part in the computer geometry project. We understand that 

some audio recordings may be made in class and work may be photographed.  

 

Name of student:__________________________ 

 

Signature:____________________________   Date:__________ 

 

Student signature:____________________________  Date:_________        

 
 

 

 

 

 

 

 


