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Abstract 
 

Chronic respiratory disorders are important contributors to the global burden of disease. 

Genome-wide association studies (GWASs) of lung function measures have identified several 

trait-associated loci, but explain only a modest portion of the phenotypic variability. We 

postulated that integrating pathway-based methods with GWASs of pulmonary function and 

airflow obstruction would identify a broader repertoire of genes and processes influencing these 

traits. We performed two independent GWASs of lung function and applied gene set enrichment 

analysis to one of the studies and validated the results using the second GWAS. We identified 

131 significantly enriched gene sets associated with lung function and clustered them into larger 

biological modules involved in diverse processes including development, immunity, cell 

signaling, proliferation, and arachidonic acid. We found that enrichment of gene sets was not 

driven by GWAS-significant variants or loci, but instead by those with less stringent association 

P-values. Next, we applied pathway enrichment analysis to a meta-analyzed GWAS of airflow 

obstruction. We identified several biologic modules that functionally overlapped with those 

associated with pulmonary function. However, differences were also noted, including enrichment 

of extracellular matrix (ECM) processes specifically in the airflow obstruction study. Network 

analysis of the ECM module implicated a candidate gene, matrix metalloproteinase 10 (MMP10), 

as a putative disease target. We used a knock-out mouse model to functionally validate 

MMP10’s role in influencing lung’s susceptibility to cigarette smoke-induced emphysema. By 

integrating pathway analysis with population-based genomics, we unraveled biologic processes 

underlying pulmonary function traits and identified a candidate gene for obstructive lung disease.  
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Introduction 

Spirometric measurement of pulmonary function is the most commonly used method to 

assess the lung’s physiologic and pathophysiologic state. Forced expiratory volume in the first 

second (FEV1) and its ratio to forced vital capacity (FEV1/FVC) are heritable traits that 

reproducibly measure airflow obstruction and predict morbidity and mortality in the general 

population (1, 2). Impairment of FEV1 and FEV1/FVC are key criteria for the diagnosis of 

chronic obstructive lung disease (COPD)—a highly morbid condition predicted to become the 3rd 

leading cause of death worldwide by 2030 (3). We have previously reported on two independent, 

large genome-wide association studies (GWASs) of pulmonary function, each comprising over 

20,000 individuals of European ancestry (4, 5). These studies, in combination with our recent 

results based on larger joint meta-analyses, have identified multiple loci associated with 

pulmonary function (6, 7) and airflow obstruction (8). However, genetic variants at these regions 

explain less than 5% of the observed variance in spirometric traits (6), strongly implying that a 

substantial portion of the available genetic contribution to variability in lung function is not 

identified using standard GWAS statistical thresholds. 

One promising approach to uncover the genetic underpinnings of complex phenotypes is to 

reach beyond genome-wide significant hits to extract information from the entire association 

dataset and discover sets of pathways linked to a given clinical trait (9). Genes do not exert their 

effects in isolation, but rather cooperate within pathways and larger biologic modules to 

influence disease susceptibility and progression (10, 11).  Pathway-based analysis is built on the 

premise that complex, polygenic phenotypes arise from distinct molecular pathways, and that 

small genetic perturbations (i.e., single nucleotide polymorphisms or SNPs) at multiple sites 

within these gene sets can lead to the observed traits and diseases. This paradigm allows 
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implementation of statistical tests that substantially relax cutoffs for statistical significance, such 

that a pathway can be enriched in a phenotype even though the individual SNPs don’t achieve 

genome-wide significance. Several publications have applied pathway-based approaches to 

previously generated GWAS data and demonstrated the power of this method in identifying 

previously undetected mechanisms (12-14).  

This study was designed to test the hypothesis that the genetic basis of pulmonary function 

and airflow obstruction is orchestrated by identifiable sets of functionally coherent pathways. 

Initially, we implemented a robust methodology based on gene set enrichment analysis (15, 16) 

to identify and validate pathways linked to lung function by step-wise leveraging of two 

independent pulmonary function GWAS datasets. We then applied this procedure to the largest 

available GWAS of airflow obstruction (8). Our integrative approach systematically mapped 

pathways associated with lung function and airflow obstruction to functionally distinct modules, 

and lead to the identification of a putative COPD candidate.      

 
 
Results 
 

Staged analysis of lung function GWAS identifies and confirms a large repertoire of 

enriched gene sets. We performed two separate GWASs of pulmonary function (FEV1 and 

FEV1/FVC) using two large consortia—CHARGE and SpiroMeta.  Cohort details are provided 

in Table S1. Quantile-quantile (QQ) plots of observed versus expected association P-values 

showed significant deviations from the null hypothesis for each lung function measure, 

indicating that many SNPs were strongly linked to these traits (Figure S1). As outlined in Figure 

1, after completing standard GWAS for each consortium, we initially applied gene set 

enrichment analysis (GSEA) to the CHARGE pulmonary function GWAS and identified 444 
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over-represented gene sets associated with FEV1 or FEV1/FVC (FDR < 0.05). We validated 

these findings by implementing the same procedure for the SpiroMeta GWAS. Of the 444 

pathways identified in CHARGE, 131 were also enriched in SpiroMeta (FDR < 0.05). Further 

analysis was restricted to these 131 gene sets that were significantly enriched in both 

independent studies.  A complete list of consortium-specific gene sets is available in Table S2. 

To assess robustness of our findings, we performed an identical two-step pathway enrichment 

method using a different program known as GSA-SNP (17) and found broad overlap between 

processes enriched in both approaches (please see Material and Methods, Table S4).  

Enrichment of pathways is driven by SNPs moderately associated with pulmonary 

function. To assess the relative contribution of SNPs to gene set enrichment, we performed 

sensitivity analyses to verify that our findings were not due to a disproportionate contribution by 

a few, highly significant SNPs. First, we repeated GSEA after excluding all GWAS-significant 

SNPs (i.e., those with association P-values < 5×10–8). No differences were found in the list of 

enriched pathways. Next, we expanded our analysis by additionally excluding all SNPs 

(regardless of P-value) within 100 Kb in either direction from all GWAS-significant loci. Again, 

we did not observe any appreciable change in the enrichment profile of gene sets. While genes in 

enriched pathways included several GWAS-significant loci, most genes were mapped to SNPs 

with moderate association P-values ranging from 10–2 to 10–6 (Figure S2.). These observations 

imply that a rich repository of genomic information rests within a stratum of association P-values 

that is ignored in standard GWAS procedures. 

Pathway-associated SNPs are enriched in DNase I hypersensitive sites (DHSs). We 

investigated whether sentinel SNPs associated with lung function in enriched pathways were 

over-represented in regulatory regions as represented by DHSs. We found highly significant 
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enrichment of DHSs among pathway-associated SNPs in relative to all lung function GWAS 

SNPs (odds ratio 1.86, 95% confidence interval [1.73-2.00], P-value 1.75×10–68). A similar 

analysis of SNPs linked to enriched pathways associated with airflow obstruction revealed 

significant over-representation of DHSs relative to all airflow obstruction GWAS SNPs (odds 

ratio 1.65, 95% confidence interval [1.51-1.80], P-value 3.39×10–15). 

Lung function-associated pathways aggregate within distinct biologic modules. We 

applied unsupervised cluster analysis to the enriched pathways and their associated genes to 

determine segregation patterns based on membership profiles and association P-values. We 

defined a module as a group of two or more gene sets (pathways) that clustered together based 

on sharing common gene members. We found that a majority of enriched gene sets mapped to 

biologically distinct functional modules (Figure 2)—including processes involved in 

Development, Cell Adhesion, Cell Proliferation/Migration, Cell Signaling, Immunity, Ion 

Channel/Transport and Arachidonic Acid/Prostaglandin. However, most of the identified 

modules also shared member genes between them, with particularly large overlaps among 

Development, Immunity, Adhesion, Cell Signaling and Proliferation/Migration (Figure 3).  

Published literature strongly links enriched gene sets derived from pulmonary function 

GWAS to lung biology. To assess whether the identified pulmonary function-associated 

pathways and genes were implicated in lung biology, we systematically searched each pathway 

and gene via a PubMed mining tool (PubMatrix) using the modifier term “pulmonary function”.  

As summarized in Figure S3, every over-represented gene set had published reports for a role in 

pulmonary biology, with immune system having the largest supporting evidence (n = 57,847 

citations) and several other pathways with significant publication records such as free radical 

pathway (n = 14,888), morphogenesis (n = 7,324), epidermal growth factor signaling (n = 1,388), 
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and Wnt signaling (n = 487).  Many of the pathway-associated genes were also highly cited, 

including tumor necrosis factor (TNF, n = 8,961), interleukin 8 (IL8, n = 4,376), epidermal 

growth factor receptor (EGFR, n = 3,549), transforming growth factor β1 (TGFB1, n = 1,758), 

and cystic fibrosis transmembrane conductance regulator (CFTR, n = 1,630). Several genetic loci 

identified in our previous lung function GWASs were members of enriched pathways and cited 

in PubMed including advanced glycosylation end product-specific receptor (AGER, n = 196), 

hedgehog interacting protein (HHIP, n = 19), patched 1 (PTCH1, n = 15). 

Pathway analysis of airflow obstruction GWAS reveals many enriched gene sets 

including those involved in tissue remodeling. The promising results from gene set analysis of 

pulmonary function motivated us to expand this approach to airflow obstruction—a clinically 

relevant spirometric phenotype characteristic of obstructive lung disorders such as COPD. 

Applying the same computational procedures to the airflow obstruction GWAS, we identified 

156 enriched gene sets at FDR < 0.001 (Table S3). Unlike the two distinct lung function GWASs, 

the airflow obstruction GWAS was a combined analysis of CHARGE and SpiroMeta cohorts and 

therefore a two-step validation strategy was impractical. Instead, we minimized false positive 

findings by applying a highly stringent FDR cutoff to designate significance.  

We grouped enriched gene sets into biologic modules based on membership and functional 

overlap. The results are summarized in Figure 4 and provide an overview of key pathways and 

processes associated with airflow limitation. Since most of the airflow obstruction cohorts had 

also participated in the lung function GWASs and airflow obstruction is defined based on 

spirometry, it was not surprising that many of these enriched modules were also identified in the 

pulmonary function analysis, including Development, Cell Signaling, Ion Channel, Cell 

Adhesion and Proliferation. However, we also identified pathways that were not enriched in the 
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lung function analysis (Table S3). Prominent among these airflow obstruction-associated gene 

sets were processes involved in remodeling of the Extracellular Matrix (ECM), such as collagen, 

proteinaceous extracellular matrix, and integrin pathway. Since airway remodeling is a key 

pathophysiologic characteristic of COPD, we further explored the ECM module by mapping 

relationships among its members using a comprehensive gene product interaction knowledgebase 

(Ingenuity) (18). This analysis identified several distinct networks within the ECM module, with 

the highest scoring network being comprised of 21 interconnected focus genes as depicted in 

Figure 4 (please also see Table S6). Since nodal connectivity in disease networks is a topologic 

property that can indicate biologic importance (19, 20), we selected the most connected node in 

the ECM network, MMP10, as a candidate for further functional validation. 

MMP10 is a COPD candidate gene. We assessed the role of MMP10 in obstructive lung 

disease by genetically targeting this gene in an established animal model of emphysema. After 

chronic exposure to cigarette smoke, wildtype mice developed extensive airway and airspace 

destruction characteristic of emphysema, whereas Mmp10–/– animals displayed only modest 

injury (Fig. 5A). Morphometric analysis of acinar airspaces using the mean linear intercept 

method confirmed the protective phenotype observed in Mmp10-null mice (Fig. 5B). To 

complement the morphometric assessment of lung injury in our model, we measured the 

expression of interleukin-1 beta (Il1b) and Mmp10. Il1b is a pro-inflammatory cytokine 

upregulated in the lungs patient with COPD and a robust biomarker for frequent exacerbations 

(21). Overexpression of Il1b causes abnormal airway remodeling and emphysema in mice (22). 

We found that Il1b was significantly increased in the lung of wildtype animals after chronic 

cigarette smoke injury but not in the emphysema-resistant Mmp10-null mice (Fig. 5C). Mmp10 

expression was similarly upregulated in wildtype mice with emphysema, but remained 
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undetectable in the knockouts as expected (Fig. 5C). Collectively, these observations implicate a 

pathophysiologic role for MMP10 in the development of cigarette smoke-induced lung disease. 

 

Discussion 

 
Understanding the genetic basis of normal and impaired lung function can provide new 

insights into the pathophysiology of pulmonary disorders. Chronic respiratory conditions are a 

leading cause of death worldwide (3) and there is a recognized need for new therapeutic targets 

(23). In this work, we initially leveraged two large, independent GWAS datasets totaling almost 

50,000 subjects to systematically identify pathways associated with lung function. We found a 

diverse set of interconnected biologic modules linked to this trait. We extended this approach to 

airflow obstruction—a clinically relevant phenotype defined by spirometry—and identified 

additional pathways associated with obstructive lung disease. We functionally validated our 

approach by demonstrating that MMP10, a member of an enriched airflow obstruction module 

(i.e., ECM), influences the severity of cigarette smoke-induced emphysema using a genetic 

mouse model. 

To date, over 2000 GWASs encompassing hundreds of complex traits and diseases have been 

published (24), with several pertaining to pulmonary phenotypes including asthma (25-27), 

idiopathic pulmonary fibrosis (28), COPD (29, 30), sarcoidosis (31) and lung function (4, 5, 32). 

All of these studies have applied Bonferroni-type statistical cutoffs to minimize false positive 

SNP-to-phenotype associations. For example, our previous pulmonary function GWASs 

identified numerous loci associated with FEV1, FEV1/FVC, FVC, and airflow obstruction (4, 6, 8, 

32). We believe that those findings, while novel, did not comprehensively capture the complex 

biological processes underlying these traits because the standard GWAS approach is overly 
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conservative and discards biologically informative yet statistically modest associations. Enrolling 

larger cohorts can increase the number of loci (6), but retains the individual SNP-focused 

structure of standard GWAS.  To overcome this limitation, pathway-focused approaches can 

complement standard GWAS and allow deeper mining of genomic data (9). A key advantage of 

pathway enrichment methodologies is their ability to place trait-associated candidates within the 

context of biologically meaningful pathways and modules. However pathway approaches have 

important limitations, including the risk of false positive findings and challenges in confirming 

results, especially at a phenotypic level (33).  

In this work, we aimed to circumvent some of these shortcomings by implementing a step-

wise gene set enrichment approach, whereby findings from one pulmonary function GWAS were 

confirmed using an independent and similarly powered GWAS (Fig. 1). We interrogated 

approximately 2000 gene sets, but our two-step validation substantially narrowed down these 

pathways to a limited subset of 131 enriched pathways associated with pulmonary function. 

Since pathway selection was filtered by FDR cutoffs (< 0.05) at each stage, false positive 

findings were stringently controlled. Our approach of leveraging two independent analyses 

addresses instabilities reported during attempts to replicate gene set enrichment findings (34). 

The airflow obstruction GWAS was a combined study using cohorts from both CHARGE and 

SpiroMeta, precluding implementation of the step-wise GSEA strategy. Therefore, we applied a 

much stricter FDR threshold (< 0.001) to identify significantly enriched gene sets and minimize 

false positive associations. In both the lung function and airflow obstruction GSEA, the number 

of pathways identified as being enriched was less than 8% of the total gene sets surveyed, 

implying that the vast majority of the curated pathways were not significantly associated with 

these traits. 
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Our comprehensive, pathway-focused analysis of pulmonary function GWAS yielded several 

important results. Firstly, we observed that SNPs driving gene sets linked to lung function were 

primarily those with moderate associations and not the GWAS-significant variants. These 

modestly significant SNPs did not reach genome-wide threshold, implying that standard GWAS 

analysis fails to capitalize on a substantial segment of the available genomic information (9) 

(Figure S2). Secondly, enriched pathways clustered to a limited set of distinct modules with 

specific functional roles, including development, cell signaling and immunity (Figure 2). The 

concept of a modular network built from specialized yet interconnected pathways is a 

fundamental property of complex biological systems (10, 19). Our findings were consistent with 

this paradigm, and show that each lung function-associated module—while comprised of 

functionally similar gene sets—also shared many gene members with other modules (Figure 3). 

We corroborated the biologic relevance of the enriched gene sets by systematically literature-

mining each term and observed that all pathways and many of their gene members had published 

links to “pulmonary function”, in some cases numbering in the thousands (Figure S3.). 

Furthermore, many SNPs linked to gene members of enriched pathways were within regulatory 

DHSs, implying that our approach captured functionally relevant genetic variants. 

Pathway-based analysis of airflow obstruction GWAS revealed multiple processes 

potentially involved in the pathogenesis of COPD. While many of the airflow obstruction 

modules were similar to those associated with lung function, there were substantial differences 

between their respective gene sets (Tables S2 and S3). Several of these pathways such as 

transforming growth factor-β and phosphatidylinositol signaling have been linked to the 

development of obstructive lung disease (35-37). Another striking difference was selective 

enrichment of gene sets involved in extracellular matrix (ECM). This finding is biologically 
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meaningful because COPD is characterized by structural destruction of respiratory acini and 

extracellular matrix remodeling of small airways (38). The network analysis of this module 

suggested that MMP10, a densely connected node, is a potential driver of ECM remodeling in 

airflow obstruction, and hence we chose to study its role further (Figure 4).  

MMPs are a family of ECM-associated proteins involved in diverse processes, including 

response to injury and inflammation, tumor metastasis, and remodeling (39-41). Our finding that 

MMP10 may be associated with development of airflow obstruction is consistent with other 

reports implicating MMPs in COPD (30). For example, a functional variant in MMP12 has been 

associated with reduced risk of airflow obstruction in smokers (42), and mice lacking this gene 

are protected from cigarette smoke-induced emphysema (43). Furthermore, MMP10 was 

reported to be differentially expressed in airway and surrounding lung parenchyma of COPD 

patients (44).  

It is important to note that in our discovery lung function GWAS the sentinel SNP in MMP10 

(rs11225413) was far from being genome-wide significant (P = 0.03) and would have been 

excluded if standard, Bonferroni-type adjustments had been applied. A joint SNP and SNP-by-

smoking meta-analysis of this SNP and other MMP10-associated variants did not reveal 

significant gene-environment interactions (7, 45). Interestingly, integrating network analysis with 

pathway-based data mining of GWAS placed MMP10 within the context of other putative 

candidates. For example, another member of the ECM network (Figure 4), Fibrillin 1 (FBN1), 

has been linked to development of early emphysema in humans (46), and mice with targeted 

knockout of this gene develop spontaneous emphysema (47). Finally, our functional validation of 

MMP10’s role using an animal model of emphysema serves as a proof-of-concept that pathway-
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based approaches have the potential to reveal disease-associated processes and identify novel 

targets in complex disorders. 

Our study has several limitations. We assumed that a given SNP affects the function of its 

proximally located gene. This is likely an over-simplification of the biologic effects of genetic 

variants since distal regulation can also occur (48). However, there is no accepted method to 

comprehensively assess the global influence of SNPs on gene function in humans. Analysis of 

expression quantitative trait loci (eQTL) can be useful for functional validation (49, 50), but is 

based solely on the transcriptional effects of genetic variants, ignoring any post-transcriptional 

consequences. Furthermore, eQTLs exhibit significant tissue and even cell-type specificity (51, 

52) and require large sample sizes to achieve adequate power. Not surprisingly, many significant 

trait-associated SNPs do not have strong eQTLs. Thus, for our gene set enrichment analysis, we 

opted to not filter candidate SNPs based on limited eQTL information. However, we observed 

highly significant enrichment of DHSs among pathway-associated SNPs, implying over-

representation of functional variants in our approach.  Another inherent shortcoming of pathway-

based methods is their reliance on known biologic processes and gene functions, impairing their 

ability to discover novel mechanisms or relationships. Nevertheless, previously unrecognized 

processes can be implicated in a given trait since enriched biologic modules are placed within a 

phenotype-specific context without bias. Our literature-mining effort was, by definition, based on 

available knowledge. In future studies, it will be of particular interest to investigate members of 

enriched gene sets that did not have published evidence of involvement in lung biology. Finally, 

since irreversible airflow obstruction is a required criterion for diagnosis of COPD and we did 

not assess bronchodilator response in our spirometric measurements, we have refrained from 

labeling individuals with airflow obstruction as having COPD.  
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In conclusion, by integrating pathway analysis with multiple genome-wide association 

studies we have comprehensively mapped processes influencing lung function and airflow 

obstruction. While many of the identified gene sets have been previously linked to pulmonary 

biology in animal models or limited human tissue samples, our approach derived its genomic 

information from large human cohorts, making its findings broadly relevant to the general 

population. The proposed framework, therefore, may have particular applicability in dissecting 

disease mechanisms in complex lung diseases with available GWAS.   

 

Materials and Methods 

GWAS of lung function traits. CHARGE and SpiroMeta cohorts were independently meta-

analyzed for GWAS of pulmonary function. All subjects were of European ancestry and 

underwent spirometry to assess lung function based on forced expiratory volume in 1 sec (FEV1) 

and its ratio to forced vital capacity (FEV1/FVC). In the first phase, we analyzed data from seven 

cohorts totaling 25,366 subjects within the CHARGE consortium. For the validation step, we 

meta-analyzed data from 17 cohorts with 24,583 individuals within the SpiroMeta consortium.  

The analysis of airflow obstruction was based on a combined GWAS meta-analysis of 14 

CHARGE and SpiroMeta cohorts totaling 31,567 participants of European ancestry (3,056 

affected, 28,511 unaffected) (8). These participants constituted a subset of the total subjects 

analyzed in the CHARGE and SpiroMeta lung function GWASs described above. We used 

standardized definitions of airflow obstruction based on the lower limit of normal for FEV1 and 

FEV1/FVC from NHANES III prediction equations (53) across all cohorts.  The presence of 

airflow obstruction was defined as an FEV1 and FEV1/FVC both less than the lower limit of 

normal (54), which is calculated from gender specific equations for age, age2, and height2.  
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Unaffected participants were defined by FEV1, FVC, and FEV1/FVC all above the lower limit of 

normal.  Individuals below the lower limit of normal for either FEV1 or FEV1/FVC but not both 

were excluded from these analyses. Therefore, unlike lung function, the presence of airflow 

obstruction was defined dichotomously. 

GWAS procedures. Genotyping, imputation, genotype-phenotype association and meta-

analysis procedures for lung function and airflow obstruction in CHARGE and SpiroMeta 

consortia have been previously described (4, 5, 8). Non-genotyped SNPs were imputed using 

MACH, IMPUTE, or BIMBAM. Linear regression for age, age2, sex, height, and ancestry 

principal components as covariates was performed on FEV1 (milliliters) and FEV1/FVC (%). 

Residuals were ranked and then transformed to z-scores and used for association testing under an 

additive genetic model stratified by ever-smoking and never-smoking status. Effect estimates 

were meta-analyzed using inverse-variance weighting across the cohorts in each consortium 

using R (version 2.9.2) or METAL (55) and genomic control correction (56) was applied. In the 

airflow obstruction GWAS, for each cohort logistic regression models were adjusted for current 

and former smoking dummy variables, pack-years of smoking, age, sex, standing height, 

center/cohort as needed, and principal components for genetic ancestry as needed. While 

heterogeneity was observed across cohorts, implementation of a fixed effects model was 

effective in extracting homogeneous findings. Genome-wide meta-analyses were performed 

using METAL with inverse variance weighting to combine effect size estimates after applying a 

genomic control correction. QQ plots of expected and observed association P-values on a –log10 

scale for CHARGE and SpiroMeta FEV1 and FEV1/FVC GWASs was created using local scripts 

in R (http://www.R-project.org/). 
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Gene set enrichment analysis (GSEA) of GWAS. We applied a methodology called 

improved GSEA for GWAS (i-GSEA4GWAS) to place variants associated with pulmonary 

function or airflow obstruction within curated pathways (16). Genotyped and imputed SNPs 

from lung function GWAS (n ≈ 2.5×106) were mapped to genes within a 100 kb distance 

(upstream or downstream). No filtering of SNPs based on LD structure or association P-value 

was performed prior to the enrichment analysis. For a given SNP, if multiple genes were located 

within this range, the closest gene was selected and assigned the association P-value. The SNP 

with the strongest association P-value was used to represent a gene. Since multiple SNPs can 

map to the same gene, a SNP label permutation was used to reduce potential biases caused by 

larger loci having disproportionately higher number of SNPs. Log-transformed association P-

values (–log10P) were used to rank order the resulting gene list (~18,000 genes) and calculate 

gene set enrichment scores. The i-GSEA4GWAS procedure calculates a significance 

proportional enrichment score (SPES) that is based on the proportion of significant genes 

mapped to a given gene set relative to the proportion of significant genes across total genes in the 

GWAS. Approximately 2,000 gene sets were obtained from the Molecular Signatures Database 

(http://www.broadinstitute.org/gsea/msigdb) (15, 57). To maximize biologic relevance, gene sets 

were defined and limited to well-curated pathways derived from multiple resources such as 

KEGG, BioCarta, REACTOME, and functional annotations extracted from the Gene Ontology 

database. Therefore the terms “gene set” and “pathway” are used interchangeably. 

Step-wise validation of functional enrichment analysis for pulmonary function. A two-

step approach was taken to independently validate enriched pathways associated with lung 

function. The i-GSEA4GWAS algorithm was initially applied to the CHARGE pulmonary 

function GWAS and enriched gene sets were identified if they met an FDR < 0.05 for either 
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FEV1 or FEV1/FVC. Next, the same procedure was implemented in the SpiroMeta consortium 

GWAS for FEV1 and FEV1/FVC. We restricted further analysis to those enriched pathways in 

CHARGE (FDR < 0.05) that were also significantly enriched in SpiroMeta (FDR < 0.05). Since 

these two large cohorts are independent, this requirement ensured strict control of false positive 

findings. For the airflow obstruction pathway analysis, we used the available combined 

CHARGE and SpiroMeta meta-analyzed GWAS (8) and chose a much more stringent FDR < 

0.001 to designate significant gene set enrichment. 

Sensitivity analyses of gene set enrichment. Since several distinct analytical methods exist 

for pathway enrichment analysis and applying different algorithms to the same GWAS data may 

yield different results, we compared the performance of i-GSEA4GWAS against another 

pathway-based approach known as GSA-SNP (17). There are fundamental differences between 

the two methods, including the statistical framework used to assess enrichment as well as the size 

and content of the gene sets. We used the default z-statistic for enrichment and 2nd-best SNP to 

randomly associated signals in GSA-SNP. We queried Gene Ontology and KEGG databases for 

gene sets. We performed an identical, two-stage analysis on CHARGE followed by SpiroMeta 

lung function GWASs using GSA-SNP. We identified over 300 enriched processes (at FDR < 

0.05 in CHARGE that were also significant at FDR < 0.05 in SpiroMeta). While this was a larger 

number than identified using iGSEA4GWAS (n = 131), it likely reflected the fact that GSA-SNP 

sampled a much larger number of gene sets, whereas the proportion of identified significant gene 

sets is similar between the two approaches. Approximately one quarter of the pathways identified 

by iGSEA4GWAS (32 out of 131) were identical to those identified as significant by GSA-SNP 

even though iGSEA4GWAS included several data resources not sampled in GSA-SNP. Overall, 

there was substantial overlap between the two methods when the enriched gene sets were 
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grouped based on broader functional modules as defined in Figures 2 and 3. A detailed 

comparison between the enriched gene sets identified by each approach is provided in Table S4. 

We did not filter SNPs based on LD structure prior to initiating enrichment analysis in order 

to retain genome-wide coverage and prevent loss of information. The statistical structure of 

iGSEA4GWAS is based on associating a single sentinel SNP with its proximal gene locus (100 

Kb window) without being influenced by its association with other potential SNPs in LD. 

Nevertheless, it was possible that the selected sentinel SNPs themselves may be in LD. Therefore, 

we systematically assessed pairwise LD between all 3307 pathway-associated SNPs using SNAP 

(https://www.broadinstitute.org/mpg/snap/ldsearchpw.php) at r2 thresholds of 0.2, 0.5, and 0.8.  

We found limited evidence for LD between the sentinel SNPs (Table S5).  

Next, we repeated the entire iGSEA4GWAS analysis for lung function using a wider window 

(1 Mb vs. 100 Kb) to associate proximal SNPs with loci. We observed over 70% identical 

matching between enriched pathways using the wider window suggesting that the SNP to gene 

locus selection approach is robust to a range of selected windows. This observation is also 

consistent with our above finding that most pathway-associated SNPs are not in LD.  

Cluster analysis. Two-way unsupervised hierarchical clustering was performed on enriched 

pathways in lung function based on the membership profile of gene sets and their associated 

genes’ log-transformed P-values (–log10P) using Pearson’s correlation metric (58). In this 

approach, gene sets were initially labeled by the presence or absence of any lung function-

associated genes and then clustered together based on shared gene members to form larger, 

functionally coherent pathway groupings defined as “modules”.  

Literature mining. We used PubMatrix (59), an online multiplex comparison tool for 

querying “search” and “modifier” terms within PubMed, to index published literature on the role 
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of enriched gene sets and their associated gene members in influencing lung function. The search 

terms were either pathway-associated gene symbols (n = 3878) or pathway names (n = 131), and 

the modifier term was “pulmonary function”. 

DNAse I hypersensitive site (DHS) enrichment analysis. The frequency that SNPs selected 

for pathway analysis fell within DHS sites was compared to the frequency that all SNPs analyzed 

in the GWAS were located in DHSs.  All SNPs were converted to their UCSC hg19 assembly 

positions using liftOver (http://genome.ucsc.edu).  Sentinel SNPs associated with enriched 

pathways (one SNP per gene) and entire GWAS sets were intersected with the complete set of 

DHS hotspot regions (FDR < 0.05) identified in any of the 349 tissue or cell line samples 

available from Maurano et al (48). The intersection was calculated using the BEDOPS software 

(60).  The enrichment P-values were calculated using Fisher’s exact test based on the total 

probability of two-tailed test. The frequency of lung function pathway-associated SNPs was 

compared to the union set of SNPs analyzed in the CHARGE and SpiroMeta lung function 

GWASs.  The airflow obstruction pathway-associated SNPs were compared relative to all SNPs 

in the airflow obstruction GWAS. 

Network analysis. We imported all 89 ECM-associated genes into Ingenuity software and 

used its network-generating algorithm to develop interaction networks built around these “focus 

genes” using Ingenuity’s knowledge base. We used only direct gene product interactions to link 

nodes, and excluded any non-focus genes added by the algorithm to grow the network. Networks 

were ranked based on Fisher’s exact test of enrichment relative to networks generated from 

randomly selected genes from Ingenuity’s knowledge base (Table S6). Subsequent analysis was 

based on the highest ranked ECM network that included the largest number of focused genes (n 

= 23 ECM-associated genes of which 21 had direct interactions with each other). 
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Animal experiments. The Institutional Animal Care and Use Committees at the University 

of Washington and Washington University in St. Louis approved all animal experiments. We 

generated Mmp10-null mice on a C57BL/6 background (61).  These mice are healthy with no 

overt defects in fertility, litter size, gross appearance, organ structure, or tissue histology. Adult 

male Mmp10–/– (n = 10) and wildtype (n = 9) mice were exposed to the smoke of 4 filtered 

cigarettes (2R4F, Kentucky Tobacco Research and Development Center, University of 

Kentucky) per day, 6 days per week for six months. An unexposed group of age and sex-matched 

Mmp10–/– (n = 9) and wildtypes (n = 9) were used as controls. The exposure experiments were 

performed in the Cigarette Smoke Exposure Core at Washington University, St. Louis. Upon 

completion of exposure experiments, all animals were killed by an intraperitoneal injection of a 

Tribromoethanol (Avertin) overdose and exsanguinated by cutting the caudal vena cava. Lungs 

were cannulated and inflated with neutral buffered formalin at a constant fluid pressure of 25 cm 

for 5 min. Lungs were removed, immersed in formalin overnight, washed with graded increasing 

concentrations of ethyl alcohol, and subsequently embedded in paraffin and sectioned. Structural 

changes caused by chronic cigarette smoke exposure between the genotypes were assessed in the 

Histology and Imaging Core at the University of Washington using morphometry based on a 

modification of the direct estimation of mean chord length from a set of random intercepts 

applied to H&E stained tissue sections (62). Whole slide images were acquired using a 

Nanozoomer (Hamamatsu model C9600) to scan entire right lung sections and were uploaded 

into Visiopharm image analysis software. The software provided 50 random images covering all 

lobes of the right lung, created two randomly oriented lines traversing the image, and provided 

the sampling tools necessary to manually measure distance along the test lines between airspace 

walls. Mean chord length was calculated for each mouse from all images counted. 
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Quantitative real time PCR (qPCR) was performed on total RNA isolated using Trizol 

(Invitrogen, Carlsbad, CA, USA) from whole lung of wildtype and Mmp10–/– mice exposed to 

the chronic cigarette smoke protocol described above (n = 8 per group). RNA was quantified 

using a Nanodrop spectrophotometer (Thermo Scientific, Waltham, MA, USA) and 3-5 µg of 

total RNA was reverse transcribed using a High-Capacity cDNA Archive kit (Applied 

Biosystems, Foster City, CA, USA).  qPCR was performed in duplicates on an ABI HT7900 Fast 

Real-Time PCR System using TaqMan Gene Expression assays for Mmp10 and Il1b (Applied 

Biosystems) in duplicates. The threshold cycle (Ct) was determined by instrument software and 

data expressed as relative quantification (RQ) calculated using 2–ddCt for each gene and using 

hypoxanthine phosphoribosyltransferase (HPRT) as the reference gene. HPRT Ct levels ranged 

between 23 and 25 in all assays.  
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Figure Legends 
 

Figure 1. Outline of the staged approach for pathway analysis of lung function. We 

performed standard GWAS of pulmonary function measures in two large, independent consortia: 

CHARGE and SpiroMeta. Gene set enrichment analysis was initially applied to the CHARGE 

consortium’s pulmonary function GWAS (step 1), and subsequently performed on SpiroMeta’s 

GWAS (step 2). Only pathways that were significantly enriched in step 1 and replicated in step 2 

were used for further analysis.   

Figure 2. Unsupervised hierarchical clustering of enriched pathways (gene sets) 

associated with pulmonary function. Rows representing enriched gene sets (n = 131) were 

grouped based on overlapping gene membership (columns). Gene sets with many shared genes 

clustered together and define functional modules (e.g., Cell signaling, Immunity, Development). 

Columns represent gene membership profiles of enriched pathways and are colored according to 

association P-values of member genes. Note that for any given gene set, the majority of 

pathway-associated genes are not members and are displayed as black bars. For each clustered 

group (module), only representative pathways have been labeled. Complete list is available in S2 

Table. 

Figure 3. Wiring diagram of key biologic modules associated with lung function. These 

modules were derived from membership cluster analysis of enriched gene sets (Fig. 2). 

Intermodular connectivity indicates overlapping genes between modules with the thickness of 

connections drawn proportional to the number of shared genes—for example, Development and 

Immunity have 150 gene members in common. 
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Figure 4. Graphical overview of enriched biological modules associated with airflow 

obstruction. Since the airflow obstruction GWAS was primarily based on the pulmonary function 

GWASs, several of these modules overlap with those identified in the lung function analysis (Fig. 

3). However, some modules such as Apoptosis and Extracellular Matrix (ECM) were enriched 

only in airflow obstruction. Furthermore, even within common biologic modules, substantial 

differences in enriched gene sets were observed between the two phenotypes with several 

representative pathways associated with airflow obstruction being highlighted. Deeper 

exploration of the ECM module using gene product interaction network analysis identified 

MMP10 as the most interconnected node and a putative driver of ECM processes influencing 

airflow obstruction. NOS: nitric oxide synthase, IGF1: insulin-like growth factor 1, TGF-b: 

transforming growth factor beta, EGF: epidermal growth factor, PDGF: platelet-derived growth 

factor. Complete list is available in S3 Table. 

Figure 5. Mmp10–/– mice are resistant to cigarette smoke-induced emphysema. (A) 

Representative H&E lung sections of Mmp10–/– and wildtype animals exposed to 6 months of 

chronic cigarette smoke demonstrated extensive injury in wildtypes with significant loss of 

acinar and small airway structures (top row). In contrast, Mmp10-null mice were substantially 

less susceptible to smoke-induced emphysema (bottom row). Slides are ordered according to 

severity of lung injury in each genotype. (B) Morphometric analysis of airspaces using the mean 

linear intercept method confirmed the protective phenotype observed in Mmp10–/– mice (n = 10 

for smoke exposed Mmp10–/– mice, n = 9 for all other groups). (C) Wildtype mice exposed to 

chronic cigarette smoke have significantly increased expression of the pro-inflammatory 

cytokine Il1b as well as Mmp10 in their lungs, whereas emphysema resistant-Mmp10–/– animals 

do not (n = 8 per group). All P-values based on two-tailed Student’s t-test; NS: not significant. 
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Supplemental Information 
 

Figure S1. QQ-plots of observed vs. expected association P-values for lung function 

measures in CHARGE and SpiroMeta GWASs. Large deviations from the null hypothesis imply 

that many SNPs were significantly associated with pulmonary function traits in each GWAS. 

Figure S2. Lung function GWAS P-values. Distribution of lung function GWAS P-

values for gene members of enriched pathways. Note that the majority of pathway-associated 

genes have modest P-values that would not meet Bonferroni-corrected GWAS threshold (i.e., P 

< 5×10–8). The insert highlights the few lung GWAS-significant, pathway-associated genes. 

Figure S3. PubMed citation index for lung function-associated pathways and their gene 

members based on the modifier term “pulmonary function”. All 131 enriched gene sets (rows) 

and most of the pathway-associated genes (columns) have published evidence in the scientific 

literature. Representative pathways and genes have been labeled, including several of the most 

highly referenced genes (TNF, several interleukins, EGFR, TGF-b1, CFTR, HIF1-a) that have 

well-established roles in lung biology, and selected loci we previously identified from our 

pulmonary function GWAS (AGER, HHIP, PTCH1, HTR4). Note that the frequency distribution 

of PubMed citations is in logarithmic scale.  

Table S1. Cohort summaries. Descriptive characteristics of cohorts included in the lung 

function and airflow obstruction GWASs. 

Table S2. Lung function-associated pathways. Complete list of enriched gene sets 

associated with lung function using staged pathway analysis of two independent GWAS cohorts 

(CHARGE, SpiroMeta). The gene sets were clustered using gene membership profiles to identify 

functional modules (see Figures 2 and 3 in main article). All enriched pathways were required to 
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be significantly associated with at least one lung function measure in both CHARGE and 

SpiroMeta (highlighted in red if FDR < 0.05). 

Table S3. Airflow obstruction-associated pathways. Complete list of enriched gene sets 

associated with airflow obstruction. Gene sets are grouped into modules based on functional 

overlap. An FDR less than 0.001 was used to designate significance for a given pathway. For 

each gene set, the number of significant genes (i.e., loci with an associated SNP with GWA P-

value < 0.05) and the total number of pathway-associated genes mapped from the airflow 

obstruction GWAS are shown. Gene sets identical to those identified from the staged lung 

function pathway analysis are highlighted in bold.     

Table S4. Comparison of enriched processes associated with lung function as identified 

by two programs: i-GSEA4GWAS vs. GSA-SNP. For each algorithm, enriched pathways were 

required to be significantly associated with at least one lung function measure (FEV1 or 

FEV1/FVC) in both CHARGE and SpiroMeta at FDR < 0.05. 

Table S5. Pairwise linkage disequilibrium (LD) analysis of pathway-associated sentinel 

SNPs. Using SNAP (www.broadinstitute.org/mpg/snap/ldsearchpw.php), a range of squared 

correlation coefficients (r2) were surveyed for all 3307 nominally significant SNPs each mapping 

to a gene member of an enriched pathway. 

Table S6. List of ECM-associated networks derived from pathway analysis of airflow 

obstruction GWAS. The highest scoring network was comprised of 23 gene products of which 

21 had direct interactions (please see Figure 4 in the manuscript). To compare the density of 

connectivity between the top two networks we also depict direct interactions between the 15 

members of the 2nd highest scoring network. The relational networks were created using 

Ingenuity Pathway Analysis software. 


