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Man is a rope stretched between the animal and the Overman - a rope over an abyss.

A dangerous crossing, a dangerous wayfaring, a dangerous looking-back, a dangerous trembling 
and halting.

What is great in man is that he is a bridge and not a goal: what is loveable in man is that he is an 
over-going and a down-going.

I love those that know not how to live except as down-goers, for they are the over-goers.

I love the great despisers, because they are the great adorers, and arrows of longing for the other 
shore.

I love those who do not first seek a reason beyond the stars for going down and being sacrifices, 
but sacrifice themselves to the earth that the earth of the Overman may hereafter arrive.

I love him who liveth in order to know, and seeketh to know in order that the Overman may 
hereafter live. Thus seeketh he his own down-going.

I love him who laboureth and inventeth, that he may build the house for the Overman, and prepare 
for him earth, animal, and plant: for thus seeketh he his own down-going.

I love him who loveth his virtue: for virtue is the will to down-going, and an arrow of longing.

I love him who reserveth no share of spirit for himself, but wanteth to be wholly the spirit of his 
virtue: thus walketh he as spirit over the bridge.

I love him who maketh his virtue his inclination and destiny: thus, for the sake of his virtue, he is 
willing to live on, or live no more.

I love him who desireth not too many virtues. One virtue is more of a virtue than two, because it 
is more of a knot for one's destiny to cling to.

I love him whose soul is lavish, who wanteth no thanks and doth not give back: for he always 
bestoweth, and desireth not to keep for himself.

I love him who is ashamed when the dice fall in his favour, and who then asketh: "Am I a 
dishonest player?"- for he is willing to succumb.

I love him who scattereth golden words in advance of his deeds, and always doeth more than he 
promiseth: for he seeketh his own down-going.

I love him who justifieth the future ones, and redeemeth the past ones: for he is willing to 
succumb through the present ones.

I love him who chasteneth his God, because he loveth his God: for he must succumb through the 
wrath of his God.

I love him whose soul is deep even in the wounding, and may succumb through a small matter: 
thus goeth he willingly over the bridge.

I love him whose soul is so overfull that he forgetteth himself, and all things are in him: thus all 
things become his down-going.

I love him who is of a free spirit and a free heart: thus is his head only the bowels of his heart; his 
heart, however, causeth his down-going.

I love all who are like heavy drops falling one by one out of the dark cloud that lowereth over 
man: they herald the coming of the lightning, and succumb as heralds.

Lo, I am a herald of the lightning, and a heavy drop out of the cloud: the lightning, however, is the 
Overman.

Friedrich Nietzsche, 'Thus Spoke Zarathustra'.



“Nonlinear Prediction and Analysis o f Solar-Geophysical 
Disturbances within the Ionosphere” By Nicholas Francis 

Abstract

This thesis presents novel and robust nonlinear techniques that can be used to 
analyse and predict geophysical time series. The techniques presented can cope 
with the problems of noise and non-contiguity that are typical of solar-terrestrial 
data sets. Existing nonlinear analysis techniques are prone to giving spurious 
indications of nonlinear behaviour in such circumstances. These new techniques 
can be applied as either an alternative to established techniques, to determine less 
fragile and more qualitative nonlinear properties that may be present, or as a 
precursor - to determine whether or not it is viable to proceed with the application 
of standard nonlinear analysis methods. The methods in this thesis have a general 
applicability that extends to any time series prediction problem, and are not 
necessarily limited to geophysical applications. Furthermore, these techniques 
have been adapted to form the basis of a real-time ionospheric forecasting 
demonstrator.
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Chapter 1: Introduction

1.1 Problem Definition

A long-standing goal of solar-terrestrial physics has been the prediction of specific 

events or indices that are indicative of geophysical activity. Linear correlation 

studies, that relate solar wind energy input to various indices of geomagnetic 

activity, have played a crucial role in understanding the sun - solar wind - 

magnetosphere - ionosphere coupled system and the time scales of variation 

within the solar-terrestrial environment. As an extension of these studies, linear 

predictive techniques have been used to deduce relationships between input and 

output data [e.g. Milsom et al., 1989, 94]. Although linear techniques have 

achieved some measure of success, it is unlikely that they will ever provide an 

adequate description of the nonlinear physical processes that are taking place 

within the solar-terrestrial environment.

The fundamental limitations of linear analysis have led to increased interest in the 

application of sophisticated nonlinear techniques to solar-geophysical data sets. A 

number of experimental studies have demonstrated the importance of nonlinear 

behaviour within the solar-terrestrial environment [Baker et al., 1990]. Attempts 

have also been made to derive nonlinear theoretical models from the fundamental 

nonlinear MHD equations [Klimas et al., 1992, 1996]. However, the MHD 

descriptions are often very complicated and analytical nonlinear solutions are 

available only in a small number of simplified scenarios. In the absence of a 

tractable nonlinear theory derived from the full MHD equations, it is an attractive 

idea to look for nonlinear features in experimental data, in order to develop 

nonlinear models using empirical methods.

These empirical methods, which are a development of work over the last decade 

to find evidence of finite dimensional dynamics in fluid turbulence, have received 

much recent attention. However, these techniques have been developed for well-
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controlled experimental systems or computer simulations. Consequently, they 

work best when applied to large sets of low-noise, stationary data. In practice, 

solar-terrestrial data sets are very different from this ideal; they are noisy and 

highly quantised, with many data dropouts. They are rarely stationary, due to the 

large range of physically significant time-scales. It follows that the naive 

application of many of the nonlinear techniques whose purpose is to extract 

detailed information (e.g., attractor dimensions and Lyapunov exponents) from 

data are almost certain to fail or give spurious results without additional 

safeguards. Consequently, alternative methods are required that can be applied to 

such time series as an alternative to determine more robust nonlinear properties, or 

as a precursor to validate the subsequent application of traditional nonlinear 

methods.

1.2 Summary o f  Previous Nonlinear Empirical Studies

In a few cases, the use of empirical nonlinear time series methods to characterise 

the behaviour of complex solar-terrestrial systems has met with success, when 

applied to specific data sets. Examples include dimensional analysis of 

magnetospheric systems, as well as auroral indices of activity and nonlinear 

prediction of geomagnetic indices [Vassiliadis et al., 1992; Sharma, 1995]. In 

some of these studies, subsequent use of surrogates showed that the results 

obtained could not be demonstrated as significant indicators of nonlinear activity 

[Vassiliadis et al., 1995]. This highlights the importance of employing safeguards 

and precursive studies.

Most recently, attention has turned to knowledge-independent methods derived 

from studies into artificial intelligence (Al) and the application of techniques 

based upon neural networks to geophysical prediction problems [Cander et al., 

1997; Lamming et al., 1997; Williscroft et al., 1996; Wu and Lundstedt, 1997]. 

These techniques are robust and more suitable for use with solar-terrestrial data.
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1.3 Space Climate and Space Weather

This thesis concerns itself primarily with prediction of short-term events in the 

solar-geophysical system (space weather), rather than issues relating to long-term 

climatological trends (space climate). However, the division between these two 

areas is often unclear. For example, the 11-year solar cycle is a significant 

climatological feature for a number of parameters such as sunspot number or 

geomagnetic activity. On the other hand, the 27-day periodicity associated with 

the solar rotation is more closely related to space weather. The 27-day recurrence 

cycle is one of the most predictable features of space weather, particularly during 

the descending phase of the solar cycle, and its characteristics change over the 

solar cycle as a whole. Thus, space climate and space weather are inextricably 

linked such that they cannot be easily decomposed into two separate issues.

In many ways, the prediction of short term and impulsive space weather is 

analogous to terrestrial weather forecasting, but there are important differences 

between atmospheric and solar-terrestrial weather systems. Many meteorological 

systems are localised and it is therefore possible to make good limited-area 

weather forecasts. Space weather is global on the planetary scale due to the large 

spatial scale sizes and long correlation times for the solar-terrestrial plasma 

systems. Thus, disturbances originating from the sun give rise to global changes 

within the near earth environment (the magnetosphere and ionosphere).

Space borne monitoring capabilities are also much more limited than the 

capabilities provided by the network of terrestrial sensors used to monitor 

meteorological conditions. Current space weather prediction schemes are only 

able to utilise isolated satellites in the solar wind and magnetosphere, in 

conjunction with a limited number of ground stations used to provide ionospheric 

and magnetometer measurements. As a direct consequence, space weather 

measurement activities are often restricted to global or long-distance scales.
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1.4 Overview o f Applications

Space weather effects give rise to changes within the near earth environment on 

time scales varying from minutes to weeks. These effects may damage space- 

borne or ground-based technological systems, or endanger human health or life. 

The socio-economic aspects of space weather and forecasting are aimed at 

avoiding or reducing the consequences of disturbed conditions within the near 

earth environment. This can be achieved through system design and prediction 

systems that allow timely preventative measures to be taken.

The effects of space weather can manifest themselves in many different forms. 

Within the disturbed magnetosphere, dynamic magnetospheric processes may 

enhance existing energetic particle populations to levels that are hazardous to 

electronic space-based systems. Undesirable effects include particle-induced 

anomalies, lattice structure damage and charging effects. Cosmic rays produced 

by particle acceleration also pose a significant hazard to satellites and to high- 

altitude civilian aircraft and their passengers. Thermospheric drag on spacecraft 

can increase during periods of elevated geomagnetic activity, reducing space 

system life expectancy and functionality.

The impact of space weather is not necessarily limited to space based systems. 

Enhanced geophysical activity can give rise to powerful current systems in the 

auroral regions at high latitudes. These auroral systems can produce 

Geomagnetically Induced Currents (GIC) along long distance power cables and 

pipelines, leading to corrosion or transformer overload. GIC effects can be 

mitigated through appropriate network design but a measure of forewarning may 

help to reduce infrastructure damage. Enhanced activity in the ionosphere that is 

attributable to space weather, the main topic of this thesis, can also disturb high 

frequency (HF) / very high frequency (VHF) radar and communications, GPS and 

ultra high frequency (UHF) satellite communications. Magnetic storm effects can
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also influence mining operations, which are dependent upon accurate geomagnetic 

information for guidance purposes.

All of these effects tend to be correlated (with the exception of cosmic rays) with 

solar activity and disturbances are more frequent at the peak of the solar cycle. 

Despite advances in radiation hardening techniques, it is also expected that effects 

on made-made systems will become more severe over time, due to the increasing 

sensitivity of electronic circuits utilising ever-smaller components. Consequently, 

solar-terrestrial environment predictions will have an increasingly important 

bearing upon the specification and operation of a number of services [Koskinen et 

al., 1998].

At this point, it is worth drawing attention to the fact that the current state of the 

art for operational geophysical forecasting services falls far short of the predictive 

precision that is required for an acceptable model of future solar-terrestrial activity 

[,Joselyn, 1995]. In practice, existing forecasting schemes are capable of little 

more than providing ‘now-casts’ using real-time data monitoring experiments. For 

temporal, fixed-point predictions, current in-service models often even fail to 

offer an increase in performance over reference persistence and recurrence 

models. In particular, predictions of storm events and disturbances are very poor. 

Disturbed conditions occur infrequently and the existing basic techniques are 

unable to predict such impulsive events with any degree of accuracy. This 

performance shortfall can be attributed to several causes, but includes an 

inadequate understanding of, and inability to model, the coupled solar - 

magnetospheric - ionospheric system. The widespread adoption of purely linear 

modelling techniques is also a contributory factor. Consequently, the adoption of 

knowledge independent (time-series) nonlinear modelling techniques, that can 

utilise typical geophysical data sets and incorporate physical understanding, is 

highly desirable and is a primary motivator of this thesis.
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The historical record of space weather stretches back well over a century. The first 

ground-based effects were observed with the dawning of the electrical 

communications age in the middle of the 19th century. Around 1850, it was 

noticed that the first electric telegraph communications were disturbed or stopped 

during periods of intense auroral activity. Later, long-distance telephone 

connections became the most susceptible technological systems. During a space 

weather event on March 24, 1940, 80% of the long-distance telephone 

connections out of Minneapolis, Minnesota were put out of operation.

One of the most reported space weather events took place on March 13, 1989, in 

Quebec, Canada. A severe geomagnetic storm caused the complete failure of the 

local electricity distribution system, such that several million people in the area 

were without electric power for up to nine hours. The peak power lost during this 

period exceeded 20GWh. The effect cascaded through the system very rapidly, 

spreading from the initial point of failure to system-wide collapse in less than 90 

seconds. Simultaneously, EM propagation was also severely affected. HF 

communications were degraded worldwide and VHF signals were subject to 

unusual propagation conditions. The range of VHF signals was greatly increased, 

giving rise to severe interference problems. Satellite operations were also 

disrupted - a Japanese communications satellite lost half of its redundant systems 

and a NASA spacecraft lost 5km in altitude due to increased atmospheric drag.

Most recently, several satellites have experienced operational anomalies due to 

space weather effects. Anik El and E2 both experienced circuit failures in 1994 

and 1996 that led to significant operational difficulties. Telstar 401 also 

experienced anomalies that were attributed to a solar coronal mass ejection.

1.5 Aim o f this Thesis

This thesis presents novel and robust techniques, based upon recent developments 

in Al and nonlinear theory, for the analysis and prediction of solar-geophysical
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parameters. The techniques described in this thesis can cope with the problems of 

noise and non-contiguity that are typical of solar-terrestrial data sets. Existing 

nonlinear analysis techniques are prone to giving spurious indications of nonlinear 

behaviour in such circumstances. These new techniques are an alternative to 

established nonlinear techniques and can be used to determine less fragile and 

qualitative nonlinear properties that may be present in the data. Alternatively, they 

can be used a precursor, simply to determine the validity of standard nonlinear 

analysis methods. The methodologies presented can also be used for the purposes 

of time series prediction. Such methods have a general applicability that extends 

to any time series analysis or prediction problem.

These techniques have also been adapted to form the basis of a real-time 

ionospheric forecasting demonstrator, discussed at greater length in the final 

chapter of this thesis. This tool provides real-time predictions of the ionosphere 

that are of operational significance. Currently, the tool provides predictions for a 

single parameter at a single station, but could be expanded to cover a network of 

stations or adapted to create models of other solar-geophysical parameters.
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Chapter 2: Solar-Terrestrial Physics

2.1 Introduction

This chapter provides a simple description of some of the relevant physical 

processes that underlie space weather and which are driven by solar activity. It 

deals with the solar origin of geophysical disturbances and the propagation of 

effects to the near Earth environment via the solar wind. The chapter then deals 

with the behaviour of the magnetosphere and ionosphere and the coupling of these 

systems to the solar wind. Finally, it covers solar-geophysical variations during 

normal and disturbed conditions and details previous attempts to model these 

variations.

2.2 The Sun and the Solar Wind

The sun is an unremarkable star that emits electromagnetic radiation over the 

entire frequency spectrum. The visible surface is known as the photosphere and 

approximates a black body at 6400 K, with a radius of approximately 7xl05 km. 

The chromosphere and the corona lie above the visible surface of the sun. The 

chromosphere extends a few thousand kilometres above the surface of the sun and 

reaches temperatures of up to 50,000 K. The corona can be observed at distances 

of up to 106 km and can reach temperatures of up to 1.5 x 106 K. After this point, 

the corona becomes more diffuse and merges with the solar wind.

The sun emits considerable energy in the form of electromagnetic radiation. The 

peak of the energy distribution occurs in the visible light range and is constant to 

within 1%. The UV and X-ray emission levels are much more variable, as the 

black body emission at these frequencies is supplemented by other processes in 

the suns atmosphere. These frequencies are of particular relevance to ionospheric 

issues as they directly affect ionisation within the upper atmosphere.
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A flux of energetic particles also originates from the solar surface. This flux arises 

from imbalances between the force of gravity and internal pressure at the stellar 

surface. This leads to the ejection of protons, electrons, alpha particles and a small 

percentage of heavy ions from the corona, the outermost layer of the sun. These 

particles are then accelerated to escape velocity by magnetic processes in the 

atmosphere of the sun and travel outwards across the solar system. In conjunction 

with the diffuse corona, these accelerated plasma particles are collectively known 

as the solar wind. The steady solar wind thus pervades the whole solar system as 

far as the heliopause where it forms a shock boundary with the interstellar 

medium. This steady solar wind stream is punctuated by brief and localised 

periods of enhanced density and velocity that have their origins in certain features 

of the active sun.

The rotation of the sun about its own axis is very important in relation to 

geophysical phenomena because the active regions of the sun are not uniformly 

distributed across the visible surface. As the sun is not a solid body, it exhibits a 

differential rotation rate with latitude. The rotation period varies from 25 days at 

the equator to 33 days at 75° latitude. This differential rotation is also thought to 

drive the solar dipolar magnetic field by creating circulating currents beneath the 

surface of the sun. The solar magnetic field is subsequently carried by the solar 

wind as it travels outward across the solar system. The coupled particles and field 

are collectively referred to as magnetoplasma. The interplanetary magnetic field 

(IMF) flux is “frozen” into the plasma because the electrical conductivity of the 

plasma is very large. Thus, the motion of this magnetoplasma is dictated by the 

plasma component of the solar wind, because it has a much higher energy density 

than the magnetic component.

The sun itself also undergoes periodic variations in the form of the 11-year solar 

cycle that governs the level of overall activity. The size and number of sun spots, 

cooler patches (4000K) on the surface of the sun that tend to occur in clusters, are 

often taken as a measure of solar activity. The Wolf sunspot number is derived
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from observation and used as an index of sunspot activity. Historical sunspot 

number records are available from 1700, but it is possible to infer indirect values 

from geological records covering the last two thousand years. The 11-year cycle is 

present for most of the historical record, excepting the Sporer and Maunder 

minima of the 15th and 17th centuries respectively. During these latter periods, 

solar activity was exceptionally low for some decades and coincided with harsh 

winters in northern Europe. In the light of these records, it is interesting to note 

that recent studies have provided evidence to suggest a much stronger link 

between climate change and solar activity than can be accounted for by the 

variation of the total energy output of the sun over time [Robinson, 1998].

Longer-term processes of uncertain origin modulate the 11-year cycle and account 

for the variation in duration and magnitude of each solar cycle. Within the 

historical record, the direct sunspot data shows a variation of a factor of four 

between the highest and the lowest peaks of 11-year activity. The length of each 

solar cycle can vary between nine and fourteen years, shorter cycle lengths being 

associated with stronger solar cycle activity. While sunspot number is one 

particular aspect of solar activity, it has been found that other solar features are 

also strongly correlated with the solar cycle. Many of these features are relevant to 

the prediction of solar-geophysical disturbances and will be dealt with later in this 

chapter.

2.3 The Magnetosphere

The magnetosphere is defined as being the region of space to which the magnetic 

field of the earth is confined by the immiscible solar wind magnetoplasma flowing 

outward from the sun [Cowley, 1996]. This region extends more than 60,000 km 

from the earth and takes the form of a cavity within the solar wind. The magnetic 

field of the earth is generated by currents flowing in the iron core. In the far field 

and in the absence of external effects, it is dipolar in form and is approximately 

aligned with the spin axis of the planet, which is also approximately aligned with

10



the spin axis o f the sun. However, this dipolar field is distorted by the solar wind 

and IMF.

In the same way as the solar wind and the IMF are coupled together, terrestrial 

plasma is frozen into the magnetic field of the earth. Consequently, these two 

plasmas are immiscible and form distinct regions separated by a thin boundary 

layer, known as the magnetopause. Thus, the solar wind confines the magnetic 

field o f the earth to a cavity surrounding the planet, referred to as the 

magnetosphere, as shown in Figure 2.1.

MAGNETOSHEATH

SOLAR WIND

FLA SM A S H  HUT

RADIATION HHLTAND  
RING C U R R E N T

POLAR WIND

'OI.AR
CUSP

M A G N E T O PA U SE

Figure 2.1 The structure of the magnetosphere
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The volume of this cavity is determined by the pressure balance between the solar 

wind and the geomagnetic field. The equilibrium point (magnetopause) occurs at 

about ten earth radii on the upstream (day) side of the earth. On the downstream 

(night) side of the earth, the cavity is drawn out into an extended feature known as 

the magnetotail. This feature can extend out to greater than a thousand earth radii. 

At the magnetopause, the magnetic field usually undergoes a pronounced change 

in both magnitude and orientation. Consequently, a neutral current sheet forms at 

this interface.

The speed of the solar wind is greater than the speed of wave propagation within 

the solar wind plasma itself. Thus, when the solar wind meets the magnetosphere, 

information concerning this obstruction is not transmitted ahead into the medium 

and shock waves form in the flow upstream of the cavity. In crossing the shock 

zone, the solar wind plasma is slowed down and kinetic energy is dissipated 

thermally, forming a layer of hot, turbulent plasma that surrounds the 

magnetopause. This layer of plasma is known as the magnetosheath.

So far, the magnetosphere and the solar wind have been presented as two 

immiscible fluids. However, the frozen-in approximation breaks down under 

certain circumstances. One such circumstance occurs when very high current 

densities are present in the plasma. Sufficiently large currents can occur at the 

magnetopause boundary, violating the frozen-in condition. The magnetic field can 

then move independently of the plasma in the magnetopause, allowing the IMF 

and terrestrial field lines to interact through a process referred to as reconnection.

Reconnection refers to the process whereby the oppositely directed field lines on 

either side of the magnetopause diffuse into the boundary and become connected. 

The magnetic tension of the reconnected field lines causes them to contract along 

the current sheet away from the site of reconnection, accelerating the plasma as 

they do so. The plasma then moves towards the poles and joins the general 

circulation within the magnetosphere.
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An additional reconnection mechanism occurs in the magnetotail, where open 

field lines from opposing poles reconnect and contract towards the earth. 

Consequently, the plasma on the night-side is accelerated along the magnetic field 

lines from the reconnection point towards the poles, precipitating heated plasma 

into the auroral regions of the high latitude ionosphere. The plasma on the other 

side o f the reconnection point is accelerated towards the end o f the magnetotail, 

back into the solar wind. This process of double reconnection forms a cyclical 

flow system within the magnetosphere and the high latitude ionosphere, as shown 

by Figure 2.2.
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boundary
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Figure 2.2 Ionospheric image of the magnetospheric flow

13



The strength of magnetospheric - ionospheric convection is modulated by the 

orientation and magnitude of the IMF. The dayside reconnection rate is strong 

when the IMF points south, opposing the alignment of the geomagnetic field. To a 

first approximation, reconnection does not occur when the IMF points north and 

therefore magnetospheric - ionospheric convection ceases. In the absence of 

reconnection, the magnetospheric field lines are frozen into the plasma originating 

from the ionosphere. The terrestrial plasma will therefore co-rotate with the earth 

and this process dominates the inner reaches of the magnetosphere in the 

equatorial plane.

The variability of magnetospheric activity on time scales of minutes and hours is 

associated with changes in the behaviour of the IMF, which affects reconnection 

on the sunward side of the magnetopause. The direction of the IMF is an 

important feature of this variability, but the continuity of the magnetospheric 

current systems is dependent upon reconnection in the magnetotail. Consequently, 

the magnetosphere does not evolve smoothly towards a new stable state of 

enhanced convection when reconnection occurs. This entire process of 

reconnection, at the magnetopause and within the magnetotail, evolves on a time 

scale of 1-2 hours in a process referred to as a magnetospheric substorm.

Three phases have been identified for the substorm process, as shown in Figure 

2.3. In order of occurrence, these phases are referred to as growth, expansion and 

recovery. The growth phase (Figure 2.3a) corresponds to elevated reconnection 

levels on the sunward face of the magnetopause, attributed to periods when the 

IMF turns southward. The magnetospheric system adjusts to the altered magnetic 

field configuration, giving rise to large-scale excitation of the magnetospheric 

flow. During the expansion phase, the field lines become distended and rapidly fill 

with plasma. This process continues steadily for a few tens of minutes, before 

catastrophic reconnection occurs in the magnetotail and the distended field lines 

collapse inward towards the earth (Figure 2.3b), accelerating a great deal of 

plasma into the auroral regions. This plasma is strongly heated and compressed.
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This produces an intense electron flux within the atmosphere at the feet of the 

associated magnetic field lines. This process is responsible for the auroral displays 

observed at high latitudes. Strong enhancement of the ionisation in these regions 

is observed with associated magnetic effects can be measured on the ground. On 

the other side of the reconnection point, the plasma within the recently closed 

field lines is ejected as the recovery phase begins. The ejected magnetoplasma is 

known as the plasmoid and can be detected as a burst of high-energy particles 

moving away from the earth. Continued reconnection then closes the open field 

lines, before the reconnection rate slackens and the magnetosphere assumes a pre

substorm configuration (Figure 2.3c).

Figure 2.3 The magnetospheric substorm process

15



This process may run through several cycles while the IMF points south, each 

lasting about an hour.

2.4 Solar-Geophysical Variation

Geomagnetic activity displays a range of observed medium and long term 

periodicities, from the -27 day solar rotation period (Ts) [Chapman & Bartels, 

1940] to the 11 year solar sunspot cycle [Delouis & Mayaud, 1975], described 

above. Investigations of periodicities within geomagnetic time series have 

concentrated upon those parameters for which long time series are available, such 

as the magnetic indices, aa and Kp. Direct spacecraft observations of Ts and 7 ^  

(the second harmonic of Ts) periodicities have also been undertaken. Gosling et 

al. [1976], found that the -27 day periodic solar wind variations occur most 

strongly during the declining phase of the solar cycle and are much weaker during 

the ascending phase of the solar cycle. This observation may be related to the 

theory that there is less activity during the latter phase with respect to coronal 

holes [Jocelyn, 1995], which are discussed in the following section.

Shorter time scale periodicities within the solar cycle are associated with the 

sector structure of the solar interplanetary magnetic field (IMF), which permeates 

the solar system. The solar magnetic field can be considered approximately 

dipolar at distances greater than a few solar radii. At these distances, the complex 

magnetic fields of the photosphere, the opaque visible light surface of the sun, can 

be neglected in models of the solar magnetic field. The high electrical 

conductivity of the solar wind plasma couples the solar dipolar magnetic field to 

the motion of the solar wind particles. As a result, the radial velocity of the solar 

wind, combined with the -27 day rotation of the sun, distorts the solar magnetic 

field into a garden sprinkler configuration, often referred to as the Parker spiral.

The component of the IMF in the ecliptic plane can be directed inwards or 

outwards with respect to the sun, as the axis of rotation is inclined to the ecliptic
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plane. The neutral current sheet exists in or near the equatorial plane and divides 

the inward IMF from the outward IMF. As the solar magnetic dipole is tilted from 

the axis of rotation of the sun, then a two-sector structure is observed from the 

earth as the sun rotates. However, perturbations can develop within the neutral 

current sheet, creating a four (or higher) cell sector structure at certain periods 

during the solar cycle.

2.5 Solar-Geophysical Disturbances

Although they do not directly affect the far-field dipolar approximation of the 

magnetic field of the sun (and hence the solar wind structure), photospheric 

magnetic fields are associated with features such as coronal holes, which are able 

to influence the solar sector structure. Coronal holes are a source of localised solar 

wind enhancements and persist for many solar rotations, producing a modulating 

effect upon the solar sector structure. These holes are cool regions of low coronal 

density above a quiet chromosphere - the transparent layer of gas above the 

photosphere. Magnetic field lines are weak and diverging (open) above the 

coronal hole and give rise to High Speed Solar-Wind Streams (HSSWS). These 

streams propagate away from the sun at speeds several times greater than the 

ambient solar wind speed. Signatures of these features persist for as many as ten 

solar rotations and create patterns of enhanced geomagnetic activity with a 27-day 

period.

The most short-term and energetic geophysical disturbances have been associated 

with solar features known as coronal mass ejections (CMEs). These events 

originate from regions of the sun where enhanced convection forces magnetic 

field lines of opposite polarity into close proximity. Sudden reconnection can then 

take place, which generates a considerable shock wave. This shock wave can 

accelerate the large mass of ionised plasma, frozen into the reconnected magnetic 

field lines, free of the gravity of the sun to form a CME. These magnetic clouds 

expand to widths of millions of kilometres as they travel away from the sun and
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take two to three days to reach the earth where they may have a considerable 

impact on terrestrial and space based systems.

The frequency of occurrence of coronal holes and CMEs is correlated with 

position in the solar cycle. These events occur most frequently when solar sunspot 

activity is at a maximum, in the same fashion as solar flares. A solar flare is 

defined as a localised brightening of the photosphere that can take place over time 

scales ranging from a few minutes to several hours. These events can be attributed 

to the release of energy that has been gradually accumulated in a solar magnetic 

flux loop over the course of a day or so. When the loop collapses, the energy is 

released in a violent burst that produces high-energy particles and X-ray radiation. 

Solar flares are the source of many of the sporadic particle and electromagnetic 

emissions that affect the near earth environment. They are also responsible for the 

increased radio noise observed during periods of high flare activity.

Solar-geophysical disturbances can give rise to magnetospheric storms when they 

reach the near-earth environment. Storms events are characterised by continuous 

and very energetic substorm activity over several days. Significant global 

deviations in the geomagnetic field are also observed. The prolonged duration of 

these phenomena gives rise to global magnetospheric and ionospheric effects, 

over and above those normally associated with substorms, which are normally 

localised in extent to the high latitudes. This occurs primarily because the 

dissipative mechanisms in the magnetosphere, that result in short relaxation times 

for substorm activity, are not sufficient to prevent storm events from enhancing 

the particle population in the inner magnetosphere, which then produces global 

geomagnetic effects.

The classic magnetic storm is characterised by three phases. The initial phase is 

associated with the compression of the magnetospheric cavity as it encounters the 

enhanced solar wind. This causes an increase of the geomagnetic field at the 

surface of the earth, lasting only a few hours. At the same time, enhanced
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reconnection takes place at the magnetopause and heated plasma is circulated into 

the magnetotail. The second phase of the magnetic storm occurs when heated tail 

plasma is circulated into the inner magnetosphere by increased convection. The 

positively charged ions in this plasma drift westward around the earth and the 

negative electrons drift eastward. Consequently, a current system circles the earth 

at a distance of several earth radii; this system is referred to as the ring current. 

The magnetic field produced by the enhancement of the ring current produces a 

significant global decrease in the strength of the H component of the geomagnetic 

field. This deviation reaches a maximum about 24 hours after storm 

commencement, before slowly decaying over the course of several days in the 

final phase of the storm.

2.6 The Ionosphere

The ionosphere is the ionised layer of the atmosphere that extends from 85 km in 

altitude to over 1000 km. This region affects all electromagnetic waves, up to a 

few GHz, that pass through it and therein lies its operational significance for man- 

made systems. Some systems are wholly dependent on the ionosphere for their 

operation, while the performance of other systems can be degraded by its 

presence. This region is highly variable in time and space, in such a way that it is 

very difficult to anticipate the nature of electromagnetic propagation through this 

medium. The ionosphere is particularly disturbed during magnetic substorms and 

in the auroral regions, as well as during periods of enhanced solar-geophysical 

activity. The high latitude ionosphere is particularly prone to instabilities. 

Consequently, propagation and prediction models have been developed to 

characterise the behaviour of the ionosphere and the passage of radio waves 

through it.

HF signals (3-30 MHz) can be “bounced” off the ionosphere, facilitating over-the- 

horizon propagation. However, the ionosphere is not a smooth reflective surface. 

Thus, the propagating signal can be scattered and reflected by these irregularities,
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reducing the received signal strength at the receiver. In addition, multiple signals 

can interfere with each other. These processes adversely affect the integrity of the 

propagating signals. Shorter wavelength radio signals above the HF band are able 

to pass through the ionosphere but are still degraded by effects such as scattering 

and scintillation.

The ionisation of the upper atmosphere of the earth, which gives rise to the 

ionosphere, is produced by several mechanisms [Hargreaves, 1992]. The most 

important of these, at non-auroral latitudes, are the ionising actions of solar ultra

violet (UV) and X-ray radiation upon the upper atmosphere. This ionisation 

produces a sufficiently large number of free electrons that the propagation of 

electromagnetic radiation through this region is affected. Absorption in the 

atmosphere means that less intense radiation reaches the lower levels of the 

atmosphere leading to a reduced level of ionisation at these altitudes. However, 

the reduced density of the outer atmosphere means that there is less ionisation at 

high altitudes. These two opposing factors produce a peak in the level of 

ionisation at a certain altitude. This is a simplified view of the ionisation process. 

In reality, there are a number of different molecular and atomic species, which 

require different amounts of ionisation energy and which have specific 

concentration height profiles. In addition, different frequencies of EM radiation 

are attenuated differently as they pass through the atmosphere and interact with 

atoms and molecules to form different ion species. The plasma density at any 

given altitude is determined by the rate at which electrons are formed and the rate 

at which they recombine with positively charged ions to form neutral atoms or 

molecules. Diffusion can also affect the plasma density height profile by 

transporting charged particles to different altitudes.

Ionisation also occurs when energetic cosmic ray particles and energetic 

magnetospheric particles enter the upper atmosphere. At mid-latitudes, this is 

generally a second order effect in comparison to the ionising effects of solar 

electromagnetic radiation. However, these mechanisms are important in the high
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latitude night-side ionosphere, where there is no direct solar illumination, at low 

altitudes where electromagnetic radiation cannot penetrate and in the polar cap 

region. In addition, this mechanism becomes more important during solar- 

geophysical disturbances when energetic particle populations are greatly 

enhanced.

' / / / / /  Magnetosphere ^

/ V  / / / ' ■ '  / V V / / / V '  S ' / / ;

El ectr on C one enlrafi onTempera, tire

T w L o p a u s e
Mesopawe

M e s o s p L e  r e
S t r a t o p a u s e

S t r a t o s p L e r e
laiwe ------ -VT r o p  o s p l i e r e —1'

Ozonoephere

Electron concentration (cm  ̂ Tem perature (*l<)

Figure 2.4 Ionospheric profile of electron density with altitude
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The combination of these different factors produces a complex profile of electron 

density with altitude and gives rise to several distinct layers within the ionosphere, 

as shown in Figure 2.4. The principal layers are designated D, E and F, each being 

characterised by a different set of ionisation and loss processes. Fine structure can 

be found within each layer, giving rise to further sub-divisions within each region. 

The number of layers, their heights and their ionisation densities all vary in space 

and time. The high latitude ionosphere is subject to additional physical processes 

related to the magnetosphere, further complicating the behaviour of this region.

The Z)-region is the lowest layer of the ionosphere at 50-90 km in altitude, 

although there is little ionisation below 85 km. As the lowest region of the ionised 

atmosphere, it is produced by the most penetrating types of the ionising radiation, 

such as X-rays, extreme UV and solar cosmic rays. This layer is only very weakly 

ionised, the relative concentration of electrons is orders of magnitude lower than 

the neutral density. The electron density in this region exhibits strong diurnal 

behaviour, varying by two orders of magnitude. While the ionisation levels are 

low, the electron-neutral collision rate is high, leading to strong absorption at HF 

frequencies. At higher frequencies, losses due to this effect are negligible. In 

addition, the rapid recombination at this altitude, coupled with the direct radiation 

induced ionisation, means that D-region absorption is almost entirely a day-time 

phenomenon that disappears a few minutes after the cessation of direct solar 

illumination.

The E-region peaks at around 110 km, with a thickness of about 20 km, and can 

be attributed to soft X-rays and UV radiation. This layer is quite stable and 

predictable compared to the F  layer above. However, the E-region also contains 

an unpredictable sub-layer, referred to as sporadic E (Es). This thin, optically 

dense layer acts as a smooth mirror and reflects electromagnetic signals 

accordingly. However, this layer is prone to transparent irregularities that can 

disrupt the seemingly ideal propagation properties of this region.
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The F-region can be divided into two layers, the FI layer that lies between 150 

and 200 km altitude and the F2 layer that lies above. The F2 layer is generally the 

denser of the two and is, therefore, of greater operational significance. The FI 

layer is dominated by solar ionisation and disappears soon after sunset. In 

contrast, the mid-latitude F2 layer is maintained at night by virtue of the slow 

recombination rates and transport processes. At high latitudes, precipitation and 

convection processes maintain the F2 region through the night, even in winter. 

The F2 layer is highly variable in space and time on many different scales. The 

ionosphere also includes complex features such as the equatorial anomaly and the 

trough, which are beyond the scope of this discussion.

By processes already described, variation in the IMF and the solar wind in general 

are indirectly coupled to the ionosphere, particularly in the high latitude region. In 

the latter region, precipitation of energetic particles and plasma driven by the 

process of convection often dominates the electron density, particularly at night. 

Some of these high latitude enhancements also exhibit signatures at lower 

latitudes as these effects propagate towards the equator.

One important manifestation of the solar-terrestrial coupling is the geomagnetic 

storm, as discussed previously. This is closely related to the ionospheric storm. 

Ionospheric storms are characterised by an initial positive phase lasting several 

hours when the electron density and content are greater than normal. The main 

phase then follows and these quantities are reduced significantly below their 

normal values. The ionosphere then returns to its unperturbed configuration over a 

period of several days, referred to as the recovery phase. The effects are most 

pronounced at high and mid latitudes.

The mechanisms linking magnetic and ionospheric storms are not clearly 

understood, though of necessity such a link must exist given the high correlation 

between the two events. The ionospheric storm cannot be attributed to increased 

ionising flux, as solar EUV is approximately constant during these events. In
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addition, the storm effects observed in the F2 region do not extend to the F I  

region. Consequently, it is likely that the phenomena can be attributed to localised 

effects within the F2 region. The major contenders include:

i) Heating from the magnetosphere that alters the chemical recombination 

rates in the F2 region.

ii) Depletion of the protonosphere reducing the reservoir of available particles 

for the ionosphere.

iii) Changes in the neutral wind altering the transport processes in the F2 

region.

iv) Slow precipitation of particles from the ring current. This explanation is 

very attractive as it directly links magnetic and ionospheric storms.

2.7 Solar-Terrestrial Forecasting

The socio-economic effects of Space weather necessitate the adoption of 

techniques for predicting events that have an operational impact upon man-made 

systems. The origin of most geophysical variability can be traced back to the sun. 

Consequently, space weather forecasting of geoeffective events often benefits 

from the inclusion of precursive solar information and this requires monitoring of 

both the sun and the solar wind.

One such real-time monitoring instrument is the Solar Orbiting Heliospheric 

Observatory (SOHO), which has been placed at the LI Lagrangian point between 

the earth and the sun. At this point, the gravitational forces of the earth and the 

sun exactly balance out. A satellite placed here will orbit the sun in such a way 

that it is stationary with respect the rotating rest frame of the earth. From the LI 

point, direct observations of the sun can be used to provide a measure of 

forewarning for specific events that are deemed important for the task of 

predicting space weather.
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For electromagnetic effects, SOHO can provide about eight minutes warning 

following an observed event. For particles, most features take 3-4 days to traverse 

the distance between the sun and the earth, although energetic protons may 

complete the journey in less than thirty minutes, if they have been accelerated to 

relativistic speeds. In addition to SOHO, satellites such as the Advanced 

Composition Explorer (ACE) also sit at the LI point and measure the in-situ 

velocity, density and composition of the solar wind. This can provide information 

concerning the solar sector structure, which is essential for characterising 

reconnection at the dayside magnetopause.

In addition to satellite based instrumentation that monitors the sun and the solar 

wind, networks of ground stations specify the behaviour of the magnetosphere and 

ionosphere in real-time. It is essential that these networks are well distributed and 

capable of providing good quality data. Data gathered from these networks is then 

made available in real-time by regional World Data Centres (WDCs), in 

conjunction with a number of limited forecasts made at some of the regional 

centres. For example, ground based magnetometers are used to measure 

enhancements of the ring current and produce DST as an index of activity. A 

network of sensors also measures the total electron content (TEC) of the 

ionosphere across the globe. This parameter is useful for imaging the ionosphere 

using tomographic techniques. Ionosondes are used to measure the critical 

frequencies of regions within the ionosphere, at low to high latitudes.

However, characterisation of the dynamic regions of the auroral region and polar 

cap ionosphere requires additional instrumentation. The ionospheric convection 

patterns in these regions are determined in almost real-time by the SuperDARN 

[Greenwald. et al, 1995] system. This system comprises three pairs of coherent 

HF radars in the Northern Hemisphere and three additional radars in the Southern 

Hemisphere. An improved predictive capability for high latitudes using input from 

the SuperDARN network would be very useful. It is likely that self-determining 

methods can be evolved to utilise the high latitude data network to provide
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accurate forecasts, given the success of this thesis in applying these techniques to 

the mid-latitude ionosphere.

The data gathered by these monitoring instruments can be used as input to 

physical or numerical models that describe the evolution of solar disturbances and 

their effects within the near-earth environment. However, our understanding of 

solar activity and associated disturbances is far from complete. Current in-service 

forecasting techniques are solely based upon direct observation of the sun or in 

situ measurement of the solar wind in real-time in conjunction with the inherent 

time delay between the origin of effects and their propagation to the near-earth 

environment. Such predictions, although qualitative or probabilistic in nature, are 

still sufficiently useful to meet some operational requirements.

The Space Environment Centre (SEC), based in the United States, offers a space 

weather warning service based upon such techniques (http://www.sec.noaa.govT 

The SEC offers 24 hour forecasts of solar and geophysical activity and also acts as 

a repository of historical data that is relevant to space weather forecasting. It also 

offers an alert warning service to specific customers. The Helios Space Weather 

Centre in Lund, Sweden also offers a forecasting service 

(http://www.irfl. lu. se/HeliosHome/forecastservice.htmU. The service is based 

upon real-time predictions of space weather, gathered from various institutions, in 

conjunction with real-time data resources. A number of neural net models are also 

demonstrated.

The simple qualitative or probabilistic models that are currently employed by 

space weather services have reached the limits of their performance, as discussed 

in section 1.4. In the absence of a complete theoretical understanding of the 

physics of the coupled solar-terrestrial system, an alternative strategy is to use 

knowledge independent techniques. These methods can be used to determine the 

dynamics of the data and to model any deterministic behaviour that may be 

present. Such techniques can be applied to the ionosphere and magnetosphere and
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the modelling of processes within these realms and the nonlinear interaction 

between them. This thesis has attempted to apply such nonlinear techniques to the 

characterisation and forecasting of the ionospheric aspects of space weather.

2.8 Neural Network Predictions o f the Ionosphere

As described above, space weather forecasting requires the utilisation of 

environmental sensing data as input to physical or empirical models. Due to the 

incomplete understanding of the coupled solar-terrestrial system, a particularly 

attractive modelling solution is the application of neural networks (NNs) (see 

section 3.5). The application of nonlinear predictive techniques to the forecasting 

of the ionosphere has focused exclusively upon the use of such neural network 

based techniques.

The earliest NN prediction studies were not true forecasting papers, since they did 

not incorporate a temporal aspect, i.e. some or all of the input variables were 

coincident in time with the output variables to be predicted. Models of this type 

are more properly referred to as cross prediction or now-casting tools. For 

example, Willis croft et al. [1996] adopts such an approach for the prediction of 

daily and monthly foF2 values at Grahamstown, South Africa using seasonal time 

information, solar activity and magnetic activity as input data. The models 

presented were assessed in terms of RMS error, but no indication of the standard 

deviation of the foF2  time series under examination was included. It also lacked a 

comparison with simple models such as recurrence or persistence, which makes it 

very difficult to judge the relative success of the work.

Cander et al. [1997] predicted the state of the ionospheric parameter foF2  at 

Slough station, during 1973, up to 5 hours ahead (identical to the test period 

employed for the hourly predictions in this thesis). The neural network used the 

previous history of the ionospheric parameter, along with magnetic and solar data, 

as input to provide the predictions. However, the input parameters included values
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that extended in time past the point at which the prediction was being made (i.e. 

input information was included from one step ahead). Such information can never 

be available for real-time predictions and it is questionable whether or not the 

results have any validity at all for the one step ahead prediction.

Lamming et al. [1997] detailed the prediction of monthly median foF2  values at 

Poitiers station, France using the historical monthly median time series, R12 and 

the time of day. R12 was coincident in time with the monthly median to be 

predicted, so this is another example of cross-prediction rather than forecasting. 

Consequently, it cannot be directly compared with the results contained within 

this thesis. This problem is compounded by the significant overlap between the 

training and testing time series, which is likely to undermine the veracity of the 

results.

Stamper [1996] investigated the application of NNs to predict the values of the 

monthly ionospheric indices of activity, If2 and Ig, up to eighteen months ahead. 

These indices were derived from noon monthly median foF2  values, averaged 

over twelve months to eliminate the annual and seasonal variations and to reveal 

the variation due to the solar cycle. The resultant NN model showed a clear 

advantage over the reference technique, which was based upon sunspot number. 

The author also highlighted the importance of precursive information for 

ionospheric predictions, a point that has also been made in this thesis.

McKinnell et al. [1999] presented a study concerned with the NN prediction of 

foF2  using temporal, solar and magnetic inputs in conjunction with a previous 

history of the parameter to be predicted. This work was a direct extension of 

Williscroft et al. [1996] and the model from this previous paper was extended to 

provide hourly predictions into the future rather than just cross-prediction on 

timescales of days and months. A particularly novel aspect of this work was an 

attempt to predict the error on the prediction, in addition to providing the 

prediction itself. However, indication of the predictive performance of the model
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was provided solely in terms of RMS error, with no reference to the standard 

deviation of the input data. Hence, it is difficult to judge the success of this 

predictive technique relative to the results contained in this thesis or reference 

persistence and recurrence models, although their model is shown to outperform 

the International Reference Ionosphere model, referred to in their text. However, 

no attempt has been made to assess the ability of the model to predict the errors on 

its own predictions. Notwithstanding these comments, the paper is clear and 

rigorous in its approach to the problem of ionospheric forecasting.

Wintoft et al. [1999] described a NN model that was used to predict foF2  at 

Slough station from 1 to 24 hours in advance using temporal information, the AE 

index of auroral activity and a past history of the variable to be predicted. 

Comparison between the observed and predicted time series revealed that the 

model lagged behind the actual time series by at least one point. It is to be 

assumed that the NN is equivalent to a recurrence model, though this is not 

explicitly stated in the text. No reference models are provided to assess the results 

of this study, but the plots of observed versus expected output indicate that the 

model has difficulty modelling even mildly disturbed ionospheric conditions.

Whilst a number of useful contributions have been made, some of the recent NN 

based ionospheric forecast studies have lacked rigour with regard to the 

assessment of results and the nature of the inputs used to feed the predictive 

models. For example, in the absence of a suitable model to act as a control, it is 

often impossible to judge the effectiveness of a prediction scheme. Such a NN 

based prediction schemes might well offer no advantage over simple persistence 

or recurrence models, or could be considerably less effective in the worst cases. 

This is a common failing of studies that adopt a black box modelling approach 

using third party NN toolkits. It is a common misconception that such techniques 

shift the onus of understanding the physical system to be modelled from the user 

to the modelling tool. NNs are simply a means of constructing a nonlinear 

functional relationship between available input and the desired output; they do not
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have the ability to capture abstract concepts in the same way as the human mind. 

Consequently, the context in which they are applied is of paramount importance. 

Successful model optimisation requires a great deal of effort and it must be 

approached in a studied manner. This thesis has tried to adopt such an approach.
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Chapter 3: Mathematical Theory

3.1 Introduction

This chapter deals with the fundamental mathematical concepts that underlie the 

work reported in this thesis. The following section places nonlinear techniques in 

their historical context and outlines the stringent conditions that should be applied 

to these methods. Typical solar-terrestrial data sets fail to meet any or all of these 

conditions. The next section introduces the technique of singular value 

decomposition (SVD), which is used to provide the core of the neural network 

modelling framework and also the principal component analysis (PCA) filtering 

method. PCA is used both to create an orthogonal basis set from a time series for 

the surrogate analysis and also as a noise reduction technique for the neural 

network models. Section 3.4 describes a means of testing for the presence of 

nonlinear behaviour within a time series, based upon the application of a nonlinear 

predictive function [Brown et al., 1999] to an orthogonal basis set created from 

the time series under study. This approach is utilised in chapter 4 to form the basis 

of the nonlinear analysis technique.

Section 3.5 introduces the basic concepts of the nonlinear neural network (NN) 

techniques that have been adapted to provide a novel, robust analysis and 

prediction scheme that is suitable for application to solar-geophysical time series. 

Section 3.6 details the construction of the Radial Basis Function (RBF) NN used 

to provide the nonlinear modelling capability used in this thesis. The same RBF 

techniques also form the basis of the time series prediction models described in 

chapters 5 and 6 [Francis et al., 2000, 2001]. Section 3.7 details the construction 

of two hypotheses, based upon surrogate data techniques. These hypotheses are 

used to provide a level of confidence that the nonlinear behaviour found has 

physical meaning and is not just an artefact of the data or the analysis, before 

moving onto standard nonlinear analysis techniques. Finally, section 3.8 details
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the precursive and supportive role of these techniques in relation to the application 

of standard nonlinear techniques.

Notation key for this chapter:

Matrices / Sets A

Vectors y

Variables / functions x, f

Constants N

Manifolds / spaces / maps M

Set elements {X,}

Permutations Px

3.2 Nonlinear Analysis

Linear techniques have proved to be powerful tools in the characterisation and 

prediction of general time series. However, there are situations in which these 

techniques are unsuitable and nonlinear techniques need to be considered instead. 

Solar-terrestrial systems are one such situation, as the underlying mechanisms that 

govern these systems are thought to be nonlinear.

Nonlinear methods evolved from work done in the early 1970’s to establish the 

mechanistic origins of fluid turbulence. The idea proposed [Ruelle and Tokens, 

1971] was that the apparent randomness of turbulent fluids could be related to the 

complex behaviour observed in low-dimensional dynamical systems that had a 

strange (chaotic) attractor. The original purpose of these methods was to 

demonstrate that the underlying attractor governing the observed dynamics of the 

system was of low dimension, using time series data. Several groups proposed

italic upper case

italic underlined lower case

italic lower case

italic upper or lower case

bold upper case

italic upper case

lower case element ordinand

upper case

upper case set ordinand
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ways of doing this, including Packard et al [1980], Takens [1981] and, more 

recently, Sauer et al. [1991].

The fundamental principle behind nonlinear prediction techniques is Takens 

theorem [Takens, 1981]. A brief statement of which is included:

"Let M be a compact manifold of dimension d. For triples (f, h,t), where /  is a 

smooth vector field on M with flow (/>, h: M —> R a smooth measurement function 

and the embedding delay r  > 0, it is a generic property that the delay coordinate 

map F{h, (j>, t): M -»  R 2rff 1 is an embedding."

In essence, the theorem states that for typical real-valued measurements (the 

measurement function h) on typical low-dimensional dynamical systems (the 

compact manifold M of dimension d), it is possible to construct from the time 

series data alone a representation of the system (the coordinate map F with 

embedding delay t). This construct will agree with the original, up to a nonlinear

change of co-ordinates. In other words, it is possible, using this construction, to 

calculate from time series data any property of the system that is invariant to 

smooth changes of co-ordinates (the smooth vector field function/ with flow 0).

In the first instance, this result was used to justify direct estimates of attractor 

dimensions using time series data. Calculations of this kind are, however, 

notoriously vulnerable to data limitations. Generally, they require large amounts 

of high quality statistically stationary data.

The implications of Takens’ theorem, however, go beyond simply being able to 

estimate attractor dimension. A corollary of this theorem is applicable to any 

dynamical system, possibly of high or infinite dimension, which has a stable 

attracting set with dimension d. For any such system, there generally exists a
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function, requiring at most 2d+\ independent inputs, which can be used as a 

predictor for a time series arising from that system. Takens result guarantees the 

existence of nonlinear predictive functional models of the data. In addition,

several simultaneous measurements, any single time series can be used to 

construct a nonlinear model of any of the others (a variant of this property is used 

in the next chapter). However, it provides no details about the dimension of the 

attractor or the derivation of the underlying function.

However, techniques are available that allow the determination of both local and 

global attractor characteristics. This information can be used to generate and 

validate prediction systems. For example, calculating the dimension of the 

attractor can help to determine the number of inputs required for modelling the 

dynamics of the system. Correlation dimension estimation [Grassberger and 

Proccacia, 1983] is perhaps the best known technique for calculating the 

dimension of the underlying attractor. The local scaling properties of the density 

of data points are investigated in this instance by calculating the distances 

between each pair of points in a set X  of size N  and counting (the Heaviside 

function 9) those that are less than a distance r apart to give the correlation

function:

Takens result implies that where a given system is being monitored by making

(3.2.1)

The correlation dimension D corr is then defined as:

D co rr  —

l o §  (3.2.2)
Hmlog(c(r))
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Crudely, this technique involves determining how many pairs of phase space 

points are less than a distance r apart and then determining the power law 

dependence of this number upon r as it is increased. Each point in phase space is 

derived from n consecutive points within the time series and is referred to as a 

delay vector of embedding dimension n. A set of delay vectors is constructed by 

sliding a window of length n points across the time series, one point at a time. The 

power law dependence upon r will reach a limiting value, the correlation 

dimension estimate, as the embedding dimension is increased.

It is also desirable to characterise fundamental upper limits on prediction time 

scales. The calculation of Lyapunov exponents and Kolmogorov entropy provides 

an insight into this problem. Lyapunov exponents are a measure of the divergence 

along the phase space trajectory and, similarly, Kolmogorov entropy describes the 

‘information loss’ along the path [Ott, 1993].

All the above techniques are based on certain assumptions regarding the quality of 

the data. The techniques have proven to be successful with time series that possess 

the following properties:

i. The data is well sampled in the time domain, such that the essential 

dynamics of the system have been captured.

ii. The underlying attractor is of low dimension, otherwise vast quantities of 

data are necessary for an accurate dimensional analysis. The amount of data 

required to characterise the properties of the attractor scales exponentially as 

the dimension of the attractor increases.

iii. Quantisation error is low enough to resolve the scaling properties of the 

attractor.
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iv. The signal to noise ratio of the data is high. Any noise present in the system 

increases the amount of data required to obtain reliable estimates of the 

desired properties.

v. The underlying dynamics that produced the data come from a stationary 

process, i.e., a process in which the moments of the data are time invariant.

vi. The data forms a single contiguous sequence. This property is required for 

calculations of the attractor dimension, Lyapunov exponents and 

Kolmogorov entropy.

Solar-terrestrial data sets typically fail many or all of these stringent conditions. In 

addition, some of these conditions are mutually exclusive for geophysical data 

sets. For example, to get a stationary (or approximately stationary) data set, one 

must use only a short section of data relative to the length of the solar cycle. This 

may not provide sufficient coverage to reliably estimate the global properties of 

the attractor.

The properties outlined above have been the driving force behind the development 

of more robust nonlinear techniques derived from biological analogues that can be 

applied to time series for which these prerequisites do not hold true. These 

methods can be used either as an alternative or a precursor used to validate the 

subsequent use of established techniques in conjunction with nested surrogate 

hypotheses. The basic concept for the technique presented in the following 

chapter is determined by the physics believed to be behind the problem.

3.3 Singular Value Decomposition and Principal Component Analysis

Linear Singular Value Decomposition (SVD) is a powerful technique associated 

with matrix-based computations and analysis [Golub and Van Loan, 1989]. SVD 

is used principally to provide the optimal solution for a linear least squares 

problem. Applications of this technique include orthogonal filtering of an input 

time series (see section 3.4) and principal component analysis. The particular
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algorithm adopted to calculate the SVD in this thesis is detailed in Press et al. 
[1992].

A complete proof and description of the SVD technique is lengthy and beyond the 

scope of this thesis and is contained in the above references, however the 

definition of SVD is as follows:

"Let A be a general real M-by-N matrix. The singular value decomposition (SVD) 

of A is the factorisation A — UEVr , where U and V are orthogonal M-by-N  and 

N-by-N  unitary matrices respectively, r = min (A/, N) and£ is a matrix containing 

only non-zero real diagonal elements:

The Gi are called the singular values, the first r columns of V the right singular 

vectors and the first r columns of U the left singular vectors.”

SVD provides a numerically robust solution to the problem, Ax = b. By noting

the solution x = A'!b = (ATA)'lArb to give x = VZ1 UTb. SVD can then be used to 

derive V, Z  and U and hence complete the matrix inversion.

Solar-terrestrial data sets are typically very noisy. SVD can be applied to perform 

a process known as Principal Component Analysis (PCA) to pre-process the time 

series to allow selection of principal components to optimise separation of the

S  =  diag(tr1,...,<Tr) >  * • • >  &T >  0

M 1 < h < N  
1 < n  < N

N l < k < N
l < n < N

that A'1 is equivalent to (ATA)'IAT then it is possible to substitute A — U ^V T into

37



signal and noise subspaces [Broomhead and King, 1986]. Removing the noise 

subspace improves the performance of RBF NNs by reducing the effects of over 

fitting. This technique is explained more fully in the following section.

For an ideal error free measurement system, in which the data lies in a finite 

dimensional space, measurement data can be arranged in a matrix with 

sufficiently many columns, such that the matrix is known to be rank deficient. 

This means that some or all of the rows or columns of a matrix are linearly 

dependent upon each other. This linear dependency breaks down when any form 

of noise is present, as is the case in almost all real-life measurement systems. The 

resultant measurement matrix will then become full rank and independent. PCA 

can be used in these instances to determine a set of orthogonal basis vectors, 

which characterise the principal directions of variation within the vector space. A 

subset of the basis vectors can then be selected to produce the optimal separation 

of the signal and noise subspaces and to minimise redundancy in the input vector.

To achieve this optimal estimate, a sliding window, of length «, is passed along 

the data set, one point at a time, to construct the matrix of delay vectors, as 

mentioned above. Each window is a short time history of the data set. The SVD 

form of this matrix can be used to derive a set of n orthogonal filters. Each of 

these filters corresponds to the projection onto a principal vector, which in turn 

has an associated principal component (PC). Those filters that adversely affect the 

model accuracy are removed by setting the weight of the corresponding principal 

component to zero in Z, incidentally reducing the dimensionality of the prediction

problem and the associated processing overhead.

The magnitudes of the PCs can be plotted in order of decreasing size to assess the 

relative linear contribution of the output of each of these filters in characterising 

the variation of the time series. For a linear model, the efficiency of the predictive 

scheme can then be optimised by removing all filters that correspond to PCs
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below a certain threshold magnitude, as determined by optimum model 

performance. PCA for a nonlinear model is more complicated as the magnitude of 

the relative linear contribution of a component is no longer necessarily correlated 

with the affect of that component upon the accuracy of the nonlinear model 

utilising the filtered input data. Thus, a simple sequential search algorithm must 

be applied to test each of the components in turn to determine whether adding or 

removing them has a positive effect upon the model output error. Each iteration 

adds or removes the PC that has the greatest positive effect upon the modelling 

accuracy until the process converges on the optimum model.

3.4 Correlation and Dependence

It is well known that nonlinear processes introduce dependence between data sets 

that is not captured by simple linear correlation statistics. A simple example of 

this is a time series generated by iteration of the sequence function (map):

b ^ = l - 2 b l  (3.4.1).

The auto-correlation function of this time series is zero for every non-vanishing 

lag. There is, however, a nonlinear dependence between the data points that could 

be extracted from the time series by fitting a nonlinear model of the form 

b = y ’(£n), where / i s  the nonlinear mapping function described in equation

(3.4.1).

The method employed in the following chapter, to look for nonlinear 

dependencies within a data set, is based on a generalisation of these simple facts. 

Assume that the time series of measurements is made on a dynamical system that 

evolves on a finite-dimensional state space M (i.e. it is not noise). Delay vectors 

are constructed from the data by treating consecutive data values as components 

of a (d+1 /dimensional vector. If T denotes a transpose matrix, the delay vector is:
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Z i  =  {b„ b,+i, b,+d)T (3.4.2).

A consequence of Takens’ theorem is that for d > 2m + 1 (w is the dimension of 

M) these vectors can be partitioned into two parts; a ^-dimensional vector X/ and a 

scalar where

Zi = (Xi, ydT (3.4.3).

such that there is a smooth (nonlinear) function/ which relates the two

T /= /fe )  (3-4.4).

In general, y  -, and the components of x* are linear combinations of the components 

bi, bi+j,...9bi+d of zj. As a special case, x, can be the vector (bt ,bi+]i...,bi+d_]) T and 

the scalar y, can be bi+d (in which case/x) would be a predictor).

For the purposes of this thesis, the {x,} need to be linearly uncorrelated with the 

{y,}. This lack of correlation means that there is no non-trivial linear model that 

relates the two. Therefore, if a relationship of the form of equation (3.4.4) can be 

found which has modelling power, then there is evidence that there is some 

underlying low-dimensional, nonlinear mechanism at work.

There is a simple technique, based on the application of principal component 

analysis to all of the vectors {zj}, whereby this orthogonality can be arranged 

[Broomhead and King, 1986; Horn and Johnson, 1991]. The techniques of SVD 

and PCA are discussed in the previous section but are also presented here for 

completeness. To see this, consider the following matrix that gives the covariance 

of the components of the {z,} averaged over a time interval, say 1 < / < V :

N

i (3-4.5).
i= \
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T *Each term z, z/ of this sum is an outer product i.e. a (d+1) by (d+1) symmetric 

matrix whose (Jk)th element is the product of theyth and the Jcth components of z,. 

H is a real, (d+1) by (d+1) symmetric matrix and hence has an orthonormal set of

eigenvectors, say {vk}dk=0. (In practice this set of eigenvectors is calculated using 

singular value decomposition of the matrix

\^N -d j

by noting that, if the singular value decomposition of Z is UZVT (section 3.3), 

then:

S =ZTZ=VZUI ULV1 = VE2V \T— T /V2 t/T

i.e. the eigenvectors of S, {y*}, are known as the right singular vectors of Z). It can

be shown that time series generated by projecting the vectors {z,} onto any two 

different principal components, corresponding to two principal vectors Vk and y*-, 

are uncorrelated. Hence, by writing:

f e z ) *  = Zt  -v*

y t -y.k'

(3.4.6a)
O A M )

it is possible to generate {*,}, a set of ^/-dimensional vectors with components 

(*,)*,& ^ k \  which are uncorrelated with the {y,}. A nonlinear modelling

technique can then be applied to determine if there is evidence of a low

dimensional nonlinear mechanism in the data set in the form of equation (3.4.4).
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3.5 Neural Networks - Basic Concepts

The past ten years have also seen a rapid growth in the evolution and application 

of Artificial Intelligence (AI) techniques to real-life problems. Advances in terms 

of available computing resources have made it possible to simulate and test self- 

adaptive models in ways that were not previously possible. The basic premise of 

“weak” AI states that it is possible to add features that are analogous to biological 

processes to computers to augment their capabilities. Over 600 million years of 

evolution, biological systems have managed to solve many of the problems that 

scientist’s face when processing massive amounts of noisy, inconsistent and 

highly redundant data. Natural systems are robust, efficient, flexible and fault 

tolerant. Techniques such as expert systems, classification and recognition 

algorithms, fuzzy logic, genetic algorithms and self-organising maps are already 

in widespread use and have been developed from insights into biology, evolution 

and cognitive processes.

One particular branch of AI is relevant for the purposes of this thesis. This area 

comprises a group of models and associated techniques that are referred to as 

artificial Neural Networks (NNs) [Hertz et al, 1991]. These methods have their 

roots in neurobiological studies of brain structure. In a fashion analogous to the 

neurons that compose the human brain, a generic NN is a collection of simple, 

highly interconnected processors (“units”, “nodes” or “centres”), each of which 

has a small amount of local memory and processing power. The units are 

connected by channels of communication (“connections” or “links”) that carry 

encoded data. In general, each unit is dependent only on local data and on the 

inputs received via direct connections. Such networks can be applied to many 

different tasks, depending on whether or not they are trained and what algorithms, 

functions and interconnections are used to encode data and functionality. 

Knowledge can be encoded in the network via a learning process or in the links 

used to connect the nodes. These networks have enormous potential for
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parallelism, since the nodes are largely independent of each other, and their 

interconnectivity provides them with a high measure of nonlinear adaptability.

This thesis restricts itself to the use of supervised learning networks for the 

purpose of time series prediction, where a constrained set of basis functions is 

used to create a predictive model from a set of input-output training vectors. In 

this instance, a radial basis function neural network approach has been adopted 

and the exact implementation is described in the following section. The resultant 

model is validated upon test data from the same source as the training data to 

assess its performance in terms of its ability to generalise onto unseen data. If this 

process is successful, the NN model can be said to have characterised the 

underlying dynamic of the input data.

3.6 Neural Networks - Radial Basis Function Implementation

Functional approximation addresses the problem of fitting a set of vector-point 

pairs {Xn, Yn), where n = 1 ...N, to a model of the form Y=f(X ), w here/is a scalar 

function of a vector. Clearly, for a finite data set, there will be a class of functions 

in a function space, F, such that any f e  F satisfies these relationships.

As already described, matters are further complicated by the presence of a noise 

component that is associated with each measurement. By fitting the data exactly, 

the function inadvertently fits this noise as well. Therefore, the model is likely to 

perform sub-optimally on unseen data, as the unseen noise will not be predictable 

from that contained in the original data set. Any process that minimises the 

contribution of noise to the model, such as principal component analysis, will 

necessarily improve the predictive accuracy.

To address the problems of fitting and noise simultaneously, it is usual to select/  

so that the modelling error is minimised in an arbitrarily restricted class of
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functions. Increasing the size of this class will result in a decrease in the error 

calculated over the original training data. However, on previously unseen test data 

drawn from the same distribution, the error will eventually begin to grow. This 

happens because the noise in the original data is modelled increasingly accurately, 

as the size of the function class is increased, until over-fitting occurs and the 

model is no longer general enough to predict unseen data. At the point where the 

test data error is minimised, the approximation is deemed optimal, since it models 

the general trends within the data without modelling the noise or characteristics 

that are specific to the training data.

There are numerous linear and nonlinear methods for determining such functional 

relationships between time series. The RBF neural network [Broomhead and 

Lowe, 1988] offers one approach to the solution of this problem and has been 

successfully applied to time series prediction problems in other areas [Smith, 

1994]. In the most general case, given a set of vector-point pairs {X^, Y„}, where 

n= I... N, it is desirable to construct a function /  that minimises the summation,

£  = £ ( / < £ ) - K)2 (3.6.1).
n=\

The RBF approach restricts/ to a certain form, such that the solution of (3.6.7) is 

equivalent to that of a suitably posed linear least square problem, which can 

subsequently be solved using SVD (section 3.3). It is assumed that/ is a linearly 

weighted sum of radially symmetric functions of the input data, wherein lies the 

nonlinear adaptability of the network, that is,

= ^  (3.6.2).
/=!
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The weights, {© i}, are chosen to minimise equation (3.6.1), to complete the 

construction of the function,/ For the purposes of this thesis, (p is a cubic function 

of the form,

(p(r) = r3 (3.6.3).

In this thesis, a number of individual basis functions, {(pi), were chosen with

centres of radial symmetry, denoted by the set of vectors {c,}. These centres were 

placed at equally spaced intervals through the embedded time series. More 

complex methods of placing centres were investigated but provided marginal 

improvements in predictive accuracy at a high computational cost. Different basis 

functions were also employed but this was found to have very little influence on 

the predictive accuracy of the model, so cubic were selected for simplicity.

Given this formulation, equation (3.6.1) can be posed as a linear least squares 

problem of the form M W =Y, where W = [ah,..., (Op), Y= [Y\,..., T„] and

M  =
€ - C

-

(3.6.4).

Solving for W yields W = NY, where N  = {MTM)'JMT (ifp  < n) or N  = M7(M M7)'1

(if p  > n), the Moore-Penrose inverse of a non-square matrix. We can use SVD 

(section 3.3) to solve this problem by noting that, if M  = UEV7, then N  = VEll f .

As the problem reduces to a linear least squares form that can be solved using 

SVD, the RBF method has several advantages over the more commonly used 

Multi-Layer Perceptron (MLP) techniques. For a given set of centres (specified by 

quantity and individual locations), RBF NNs are assured of finding the global
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optimum solution in a single pass, because the training process is reduced to a 

linear least squares problem. MLPs train using gradient descent algorithms, which 

determine optima on a nonlinear surface, given a set of initial conditions. There is 

no guarantee that a particular optimum is global and various initial conditions 

must be tested to find the best optimum solution. Gradient descent also relies on 

an iterative process, the back-propagation of training errors through the network, 

to adjust the network parameters to reach each optimum. Cross validation against 

a control data set determines when the network generalisation capabilities are 

optimum in each case, for any given set of initial conditions. These iterative 

processes are typically numerically intensive and arbitrary to a certain degree.

Consequently, RBF NNs are relatively cheap in computational terms and are more 

straightforward to use than MLPs. The disadvantage of the RBF approach is that 

its form restricts the search to a linear hyper-surface in the nonlinear function 

space (linear combination of nonlinear functions). Therefore, it can require more 

degrees of freedom (centres) to perform as well as the MLP, which searches a 

nonlinear hyper-surface in the nonlinear function space (nonlinear combination of 

nonlinear functions). This can sometimes be an issue when the amount of data is 

limited, as dictated by Takens theorem (section 3.2). In general, however, the ease 

of fitting the RBF more than compensates for any necessary increase in the 

complexity of the class of models. In addition, RBF NNs provide a 

straightforward functional relationship between input and output vectors, which 

facilitates understanding of the model constructed by the network. Rule extraction 

for MLPs is a much more complicated matter and the information contained in the 

knowledge matrix is not amenable to intuitive decomposition.

3.7 Surrogate Data

The final aspect of mathematical background needed in this thesis relates to the 

use of surrogate data and its application to determining the level of confidence of 

the nonlinear analysis results presented in Chapter 4. Essentially, given that it will
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always be possible to find some relationship between any two finite data sets, the 

following question needs to be addressed: what is the level of confidence that the 

relationship that has been found has some physical meaning and is not just a result 

of some chance correlation within the data? In this section, the concept of 

surrogate data is introduced to provide an answer to this question.

Surrogate data methods [Theiler, 1992] are closely related to the ‘bootstrap’ 

methods of statistics. Bootstrap methods employ statistical tests to distinguish 

between a data set and an artificial attempt to replicate the data using a nested set 

of assumptions about the nature of the underlying distribution of the data. 

Surrogate techniques are designed to test hypotheses, such as the hypotheses 

outlined in the following paragraphs, by generating surrogate time series that 

share some statistical and / or nonlinear properties with the original time series. 

By comparing the original and surrogate data sets, it is possible to distinguish 

between processes that may have generated the data. This approach can be used in 

the present case to interpret the results of fitting a relationship such as equation

(3.4.4).

The first null hypothesis (I) used in chapter 4 of this thesis states that the original 

time series was generated by a correlated Gaussian noise process. The first step is 

to ask how the original model compares with similar models of surrogate data sets 

that have the same correlation properties as the original data. Such surrogates can 

be generated by randomising the phases of the Fourier transform of the original 

data and applying the inverse Fourier transform to the result:

>£ - £ — F Q (,u )  Bndimie F (X ,u )3 '*» F” (3 .7.1).

Here the notation ) means the Fourier transform of the process X. Elf, u ) 

represents the component of the Fourier transform corresponding to the frequency 

r . The time series Hi - though phase randomised - clearly has the same
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power spectrum (and, therefore, the same auto-correlation function) as the original 

time series \X t . The generation of the surrogate data is equivalent to passing a

white Gaussian noise process through a linear filter having a spectral response that 

is the same as the power spectrum for the original data. If the modelling errors (as 

quantified by the normalised mean square error) for such surrogate data sets are 

statistically indistinguishable from the fitting error on the original data, then it is 

not possible to reject the null hypothesis (I).

A more sophisticated null hypothesis (II) considers data generated by a correlated 

Gaussian noise process that was subsequently subjected to a fixed nonlinear 

transformation. This may be tested using surrogate data generated in a different 

way - essentially by shuffling the order of the original data values. The process is 

complicated by the fact that it is not sufficient to perform any random shuffle. A 

family of constrained shuffles is found which rearrange the original data so that it 

appears to have been generated by a process satisfying the null hypothesis (II). 

The process removes any detailed phase relationships that the original data may 

have had, whilst still approximating the original amplitude distribution.

Firstly, a randomly generated Gaussian series > = kfi Ki is shuffled in such a way 

as to appear to be a monotonic nonlinear function of the original data \X j . To 

do this it is necessary to find mapping permutations q, and q, which respectively 

rearrange the sequences T* and X  into descending order (which are labelled q T  

and Q X )- These mapping permutations have clearly defined inverses that 

transform the reordered sequences back to their original state. The desired 

monotone function, say # ,  is defined implicitly by associating corresponding 

elements of the sets q .r  and ( \X  •

(q.T), = 0  {p,X)t (3.7.2).
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Since #  is defined point-wise on the set, it commutes with the permutation 0%, 

i.e.

Q t y X ^ C f l X  (3.7.3).

Hence, it is possible to write,

e x t =(C^qT)i (3.7.4).

where i is the z-th element of the series. The set - a permutation of r  - is a

sequence that is Gaussian distributed but, according to equation (3.7.1), appears to 

have been generated from X  by the application of , a fixed monotonic function 

(i.e. the sequence increases when X  increases and decreases when X  decreases).

The second step in the procedure takes the resultant ordered random series and 

generates a number of new data sets using the phase randomisation technique 

summarised in equation (3.7.1). Finally, for each of these X \  a monotone 

relationship with the original data is constructed. In this case, however, X  is 

shuffled to produce ,&'̂ '&x X  which is a time series that is distributed in a very 

similar fashion to Xbut appears to have been generated from X ' by the application 

of a fixed monotonic function. Whereas & generates Gaussian distributed points 

from points distributed like X , # _1 does the reverse. It is, therefore, the inverse of 

at least where the probability density of X 1 is non-vanishing.

Formally, surrogate data sets can be thought of in similar terms to equation 

(3.7.2),

% . ' k  -Z-F( W)P) F (
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although they are, in fact, permutations of the original data set. This representation 

demonstrates the main point of this approach: that the surrogate sets can be 

thought o f as having been derived from correlated Gaussian processes by 

application of a fixed nonlinear function, ft~] .

The particular correlation properties built into X ” are derived from those of X  

using ft in such a way that the correlation properties of X  = ft~lX '  will 

resemble those of X. In essence, the original time series has been reordered as a 

phase randomised copy of a Gaussian time series with the same mean, variance 

and amplitude distribution as the original time series. All of the original phase 

information (and hence the nonlinear properties of the time series) is removed, but 

the surrogate bears a much closer resemblance to the original time series. This is 

because it is a constrained shuffle of the original points and approximately 

conserves the original correlation properties and amplitude distribution. In other 

words, while both surrogates have the same, or a similar, power spectrum as the 

original time series, only the type II surrogate approximately conserves the 

amplitude distribution of the original data.

In principle, it is possible to devise ever subtler surrogate data sets to test ever 

more subtle null hypotheses - possibly involving the use of established nonlinear 

techniques. However, if  the original data cannot be distinguished from either of 

the surrogates described above, there would be little point in trying to do this.

3.8 Broader Relation o f  Technique to Standard Nonlinear Methods

The final point of the previous section bears further examination in the light of 

traditional nonlinear techniques (dimension, power spectrum, phase analysis, 

entropy, correlation, Lyapunov exponents etc). Established nonlinear methods are 

dependent upon the presence of meaningful phase information within the data. On 

their own, such methods are not sufficient to provide evidence of nonlinear 

dynamical behaviour within a time series, as they can give spurious results in the
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presence of broad band noise signals [TheHer, 1992]. For example, it is possible to 

construct a coloured noise process with arbitrary power law spectrum and 

amplitude distribution that will give a positive result using dimensional or power 

law spectrum analysis. The type II surrogate is an example of just such a noise 

process and could be used to create spurious power law spectra. In addition, 

established nonlinear techniques require many good quality data points. Hence, 

there is a clear need for tests of nonlinearity that can be applied to analyse much 

smaller and less well behaved data sets.

Thus, there is an essential need for additional safeguards and significance tests 

when applying these standard methods. The checks take the form of a nested set 

of null hypotheses that can be used to identify and then classify any nonlinearity 

that may be present in the data. The surrogate type I test assesses whether the 

nonlinearity detected is significant enough to indicate that the data can be 

distinguished from a Gaussian noise process with the same statistical moments as 

the data. The type II surrogate test assesses whether the data contains the 

meaningful phase relations that are a necessary precondition for nonlinear 

dynamical behaviour. In essence, if the data cannot be distinguished from a type II 

surrogate then there is little to be gained performing any examination of the phase 

information. Likewise, any traditional nonlinear analysis method will give 

negative or spurious positive results. However, if both of these tests indicate the 

data contains significant nonlinear behaviour then it is reasonable to proceed to 

standard nonlinear techniques, given that there is sufficient data and that it is of 

good quality. In like manner, surrogate data hypothesis can be constructed around 

these subsequent analyses for the purpose of significance testing.

In summary, existing nonlinear analysis techniques are prone to giving spurious 

indications of nonlinear behaviour when given few or poor quality data points. 

Data processing techniques applied either before analysis, during measurement or 

collimation may also introduce artefacts. Even if conditions for the quantity and 

quality of the data are met then such techniques may well still provide spurious
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results. The techniques presented in this thesis can be applied as either an 

alternative to established techniques, to determine less fragile and more qualitative 

nonlinear properties that may be present in the limited data, or as a precursor - to 

determine whether or not it is viable to proceed with the application of standard 

nonlinear analysis methods.

Chapter 4: Nonlinear Behaviour within the Solar Sector Structure

4.1 Introduction

This chapter reports on the analysis of data from the SABRE (Sweden And Britain 

Radar Experiment) VHF coherent bi-static radar, which was designed to probe the 

irregularities in the E-region to the north of the UK. These irregularities are 

indirectly related to the solar sector structure and other facets of the IMF. Using 

data from the SABRE VHF coherent radar, Yeoman et al. [1990] found evidence 

for two and four sector structures in the IMF during the declining phase of solar 

cycle (SC) 21. No such obvious harmonic features were present during the 

ascending phase o f solar cycle (SC) 22. It was suggested, in a private 

communication with the author, that the structure of the heliospheric current sheet 

might exhibit nonlinear dynamical behaviour during the latter period. Such 

behaviour could account for the observed complexity of the spectrum during the 

ascending phase of the solar cycle.

A direct test of this suggestion, using established nonlinear methods, would 

require the computation of the fractal dimension of the data, for example. 

However, the quality of typical solar-geophysical data precludes the use of such 

traditional techniques for the quantitative characterisation of nonlinear systems 

without first conducting preliminary tests and establishing safeguards. Therefore, 

this thesis tries to answer a simpler question: is there any evidence that the 

SABRE data was generated by a (low-dimensional) nonlinear process? If this 

were the case, it would be a powerful indicator of nonlinear behaviour in the solar 

current sheet. By looking for relatively unsophisticated information, the results
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should be less sensitive to imperfections in the data. If  positive results are 

obtained using these methods then it is sensible to proceed to traditional nonlinear 

techniques, again using surrogates to validate the results.

4.2 Previous Related Research

Yeoman et al. [1990] analysed daily averages of the signal-to-noise ratio (S/N) 

from SABRE and found periodicities that could be matched to the solar rotation 

period and harmonics derived from the IMP8 satellite data. Evidence was found in 

both data sets for two and four sector structures during the declining phase of 

solar cycle 21 (SC 21), but no such features were present during the ascending 

phase of solar cycle 22 (SC 22). The spectrogram plot in Figure 4.1 shows the 

results of this analysis. The reason for this absence is not clear but may be related 

to the paucity of persistent co-rotating coronal holes during the ascending phase 

[Jocelyn, 1995]. The results are, however, consistent with those of Gosling [1976] 

for solar wind measurements. Yeoman et al. suggested, in a private 

communication [1996], that another possible cause of the observed spectrum 

complexity during the ascending phase was the intrinsic nonlinearity of the 

system. In other words, the observed broad band spectrum could be attributed to 

low dimensional nonlinear dynamics. These nonlinearities may originate very 

early in the system, in the solar current sheet for example, or may be due to some 

transfer mechanism between the sun and the ionosphere.
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Figure 4.1 SABRE Spectrogram plot from Yeoman et a l [1990].

4.3 Aim

In this chapter, a technique is described that can determine the nonlinear 

properties o f a data set. Firstly, principal component analysis is employed to 

create a set o f  orthogonal linear filters to separate the data into linearly 

uncorrelated time series. A nonlinear modelling study is then undertaken to look 

for nonlinear dynamical relationships between these time series, using radial basis 

function models (which can be thought of as a class of neural networks). The 

presence of such a relationship, indicated by the ability to model one filter output 

given another, would equate to the presence of nonlinear properties within the 

data [Brown et al., 1999].

The data for the descending phase of SC 21 and the ascending phase of SC 22 are 

examined separately for evidence of nonlinear effects and their relative 

proportions during the two phases of the solar cycle. Statistical tests are then 

conducted to determine the significance of the observations, through the use of 

surrogate data techniques. By this means, it is possible to assess whether a similar 

result could have been obtained by using data generated by various noise
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processes. This technique can be applied to distinguish between the noise and low 

dimensional nonlinear dynamics hypotheses.

The purpose is not to establish if there are nonlinear physical mechanisms at work 

in the underlying systems that determine the SABRE time series. Undoubtedly 

there are, but the purpose here is to establish whether or not these effects can be 

seen in the data using techniques based on finite dimensional dynamics.

4.4 The Experimental Data

This thesis makes use of experimental data from SABRE [Nielson et a l, 1983], 

which comprised two VHF, bi-static, phased array, coherent, backscatter radars. 

SABRE was operated over the period 1981 to 1994. The first station was located 

near Wick in Scotland, UK, and was operated by the University of Leicester. The 

second station was located at Uppsala, Sweden, and was operated by the Max 

Planck Institute, Germany. SABRE used a frequency of 150 MHz and measured 

both the received backscatter power and the Doppler velocity associated with 

irregularities within the ionospheric E region. The spatial resolution was 

approximately 20 km by 20 km, over a field of view of some 200,000km2 

covering the plasmapause boundary at high latitudes and the auroral oval during 

periods of high geomagnetic activity. Backscatter was recorded when ionospheric 

flows exceeded the threshold velocity required to generate irregularities 

(~300m/s). Measurements were produced every 20 seconds for each of the beams 

that comprised the field of view of the radar.

For this thesis, the Wick SABRE database was processed to produce a sequence 

of daily backscatter power values, averaged over the day and the field of view of 

the radar. If an average could not be constructed for a given day, due to an 

absence of data, an appropriate marker was inserted to indicate a “bad” data point 

in the time series. The Wick station was chosen as it operated almost continuously 

from 1981 to 1990. The Uppsala radar was operational for a much shorter period.
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For the Wick station, approximately one third of all of the daily data points in the 

time series were classified as “bad”. These missing points often appeared in 

contiguous blocks up to several months in length. This problem became worse 

near the end of the operational period of the radar. These discontinuities pose a 

significant obstacle for nonlinear prediction schemes, which generally require 

continuous time series.

A simple, but not particularly effective, solution to the problem of data gaps is to 

set all missing data points to a value of zero, after normalising the input time 

series (de-meaned and reduced to unit variance). This minimises the average mean 

square interpolation error, for a constant value interpolation, over the de-meaned 

time series as a whole.

For time series that contain a significant proportion of missing points, a more 

sophisticated linear interpolation scheme could also be used. However, due to the 

fragility of the nonlinear properties that have to be characterised, use of a linear 

interpolation scheme could seriously alter the apparent underlying dynamics of 

the system. This is particularly true for time series that contain a relatively high 

proportion of missing data points. Linear interpolation techniques are, therefore, 

highly undesirable in these circumstances.

A third simple approach is to discard those training vectors that contain missing 

data. In the absence of a suitably robust nonlinear method of dealing with missing 

data points, this was the adopted technique.

4.5 Analysis Techniques

The analysis technique described in this section is depicted by Flowchart 1 in 

Annex A. The SABRE radar data set considered covers the period from day 252, 

1981 to day 84 of 1994, a total of 4579 days. Daily average signal-to-noise values 

were determined in like manner to Yeoman et a l [1990]. These values were
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reduced to zero mean over the whole time series, to remove the need for a DC 

component in the modelling process. All missing data points were then set to zero 

to minimise their effects upon the subsequent principal component analysis.

The data set was divided into three portions. The first 2048 points covered the 

descending phase o f SC 21, starting from day 252, 1981 to day 109, 1987 (Figure

4.2). The second set o f 2048 points covered the ascending phase of SC 22 (Figure

4.3) from day 269, 1986 to day 127, 1991. These two sets overlapped by -10% , to 

allow for the uncertainty in the position of the end of one phase and the beginning 

of the next. This division was made so that it was possible to assess the relative 

contribution o f nonlinear effects within each of the two phases of the solar cycle. 

The remaining portion o f the data was discarded due to the poor continuity of the 

time series near the end o f the period of operation of the SABRE experiment.

SABRI
S/N
(dB)

Day Number (252, 1981 to 109, 1987)

Figure 4.2 SABRE signal/noise (dB) for descending phase of SC 21.
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Day Number (269, 1986 to 127, 1991)

Figure 4.3 SABRE signal/noise (dB) for ascending phase of SC 22. 

Principal component analysis (PCA) was performed, as described in section 3.3, 

separately on both o f the retained portions o f the data. For this analysis, a delay 

vector length o f 29 was selected, a value that is very close to the solar rotation 

period, Ts. This choice is not central to the approach, however it leads to a more 

intuitive interpretation o f the results. With this approach, some o f the larger 

eigenvalues o f S , the covariance matrix, are found to come in pairs associated 

with eigenvectors that are sine/cosine filters at this fundamental period and its 

higher harmonics. This is to be expected due to the strong harmonic content 

present within the time series, and because the choice o f window length has a 

direct bearing upon the features extracted by PCA. This effect is well known and 

is referred to by Gibson et al. [1992] as well as Broomhead and King [1986]. 

Figures 4.3 and 4.4 depict the magnitude of the contribution o f each principal 

component filter to the variation of time series data from the descending phase of 

SC21 and ascending phase o f SC22 respectively. The pairing of the eigenvalues 

can be clearly seen in Figure 4.4 and to a lesser extent in Figure 4.5. This property 

indicates that the data has a strong harmonic content. Given the results o f the
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original spectral analysis o f Yeoman et al. [1990], it is not surprising to find that 

the effect is more pronounced in the descending phase of SC 21.

Relative
Magnitude

PC number

Figure 4.4 PCA spectrum for descending phase o f SC 21.
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Figure 4.5 PCA spectrum for ascending phase of SC 22.

By construction, the output o f any of these filters is linearly uncorrelated with the 

output o f any o f the others. Following the discussion of section 3.4, it is now 

necessary to look for evidence of nonlinear dependence between the filter outputs.
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For the ascending and descending phases, two uncorrelated data vectors y  and x  

(see equation (3.4.6a) and equation (3.4.6b)), were generated from the principal 

components. Two co-ordinates in y  were adopted (in the notation of section 3.4): y  

the projection of the data onto the eigenvector v/, and y  the projection onto 

V2 (v/ and V2 correspond to the ~TS sine/cosine filters). The vector x was chosen to 

be the projection onto vo (which is a low pass filter that essentially generates the 

mean of the delay vector) and {v*}*=3 (the second and third pairs of eigenvectors 

that effectively pass higher harmonics of the fundamental ~TS component). 

Including the remaining spectral information ({v*}*>6 ) with jc  does not appreciably 

alter the outcome of this analysis.

The radial basis function approach was used to generate two functions f i  and f 2 

that attempt to model y (I) and y (2) respectively (from j c ) .  The accuracy of the 

attempt was assessed using the normalised mean squared error (NMSE) of the 

model:

S I / ( * / ) -  y ?  f  + [£ (*<) -  y™ f
NMSE =  Jf------------------------------  (4.1).

/=1

This is simply the square of the modelling error introduced in equation (3.6.1) 

scaled by the variance of the y  data sets. A successful model will produce a value 

of NMSE «  1. For example, including the projection onto v ;  and v2 into jc  (so 

that the first pair of components were used to model itself) results in an RBF 

model, using an optimal value of 30 centres determined by experiment, for which 

the NMSE is ~ 10'4. If, however, the value of NMSE is close to unity, then the 

model has only been able to represent the mean of the data set. In this case, the 

modelling error on the data set is equivalent to the variation of the data set about 

its own mean.
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Each of the filtered data sets, consisting of 2048 pairs of xj, yl9 was split into two 

portions. The first 1600 pairs in each instance were used to fit the RBF model 

using the least squares procedure described in section 3.6. The final two hundred 

contiguous pairs from each time series were then used as test data to determine the 

optimum number o f centres, and calculate their corresponding weights, for the 

model. This left a two hundred point buffer between the training and test set 

portions of the data, to avoid spurious correlations. The testing and optimisation 

of the model was achieved by plotting the number of centres against the model 

NMSEs calculated using the testing data sets. The fitting set NMSE will always 

decrease as the number of centres increases (it can be shown to reach zero when 

the number of centres is equal to the number of data points). The NMSE on the 

test set does not decrease indefinitely -  for the reasons given in section 3.6. The 

optimum number of centres is the value that gives the smallest error before the 

test and training set errors begin to diverge significantly from each other; beyond 

this point, the model loses its ability to represent unseen data.

For each of the data sets, a number of surrogates, satisfying hypotheses (I) 

(Figures 4.5 and 4.6) and (II) (Figures 4.7 and 4.8), described in section 3.7, were 

created and the same filtering and modelling schemes applied. The surrogates 

were used to construct a distribution of possible values of NMSE. Statistical 

comparison of these distributions with the NMSEs obtained for the actual data set 

were then carried out to determine whether it was possible to reject either or both 

of hypotheses (I) or (II). Surrogates were assumed to have the same optimum 

number of centres for the RBF model as the original data set. The type I surrogate 

time series (Figures 4.5 and 4.6) possess only the same power spectrum as the 

original data. In particular, note that they do not bear close resemblance to the 

original data from which they were derived. The type II surrogate time series 

(Figures 4.7 and 4.8), however, bear a much closer resemblance to the original 

terms series. This occurs by virtue of being derived from the original data by re

ordering it in a way that essentially conserves the original amplitude distribution.
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Figure 4.6 SABRE surrogate ‘I* for descending phase of SC 21
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Day Number (269, 1986 to 127, 1991)

Figure 4.7 SABRE surrogate T  for ascending phase of SC 22.
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Day Number (252, 1981 to 109, 1987)

Figure 4.8 SABRE surrogate ‘IF for descending phase of SC 21.

Day Number (269, 1986 to 127, 1991)

Figure 4.9 SABRE surrogate ‘II’ for ascending phase of SC 22. 

4.6 Results o f  A nalysis
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The optimal number of centres (assuming the centre positions are randomly 

placed) required to model the descending phase of SC 21 was found to be ~68 

(Figure 4.10). For the ascending phase of SC 22 the optimum number of centres 

was ~26 (Figure 4.11). The origins of this difference are obscure. It is possible 

that the functional relationship between the x  and y  components of the ascending 

phase is less complicated in the sense that it requires fewer basis functions to 

model the system dynamics during this period. On the other hand, it may be that 

the noise is just more important (and deterministic behaviour less important) 

during the ascending phase of the solar cycle. Therefore, there could be little 

deterministic behaviour to fit the RBF model to, hence a simple model would 

provide the optimal fit. The NMSEs for both the training and test sets are both 

close to unity for the ascending phase data, also indicating that there is no good 

RBF model for this period. Combined with the lack of observed linear periodic 

structure during the ascending phase, this fact tends to support the idea that the 

ascending phase exhibits primarily stochastic behaviour.
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Figure 4.10 Optimal number of centres for descending phase of SC 21.
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Figure 4.11 Optimal number of centres for model of ascending phase of SC 22 

It should also be noted that the descending phase results show an anomaly in that 

the fitting NMSEs are greater than the testing NMSEs (Figure 4.10). 

Experimentation with different test sets revealed that this is a property of the time 

series. If the descending phase of the solar cycle is divided into two equal lengths, 

the anomaly follows the latter portion of the time series, regardless of whether or 

not it is used for training or testing the model. This anomaly can probably be 

attributed to non-stationarity of the statistical moments of the SABRE time series, 

taken over the solar cycle as a whole.

For surrogate data of type (I) -  a correlated Gaussian process -  any set of 

orthogonal, linearly filtered components of the data will be independent. A 

Student’s test was employed to look for any significant difference between the 

fitting errors for the real data and the type (I) surrogates generated using the data. 

The t-statistic for a two-sided test concerning the population mean is given by:
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t _ x ~Vo
s j a

(4.2).

where x  denotes the mean NMSE of a number of surrogate data sets, f i0 is the

value of NMSE observed for either the ascending or descending phase of the solar 

cycle, s is the standard deviation of the NMSE of the surrogate data sets and n — 5 

is the number of surrogate data sets employed. This quantity has a t-distribution 

with (n-1) degrees of freedom. The means and standard deviations for both the 

descending and ascending phases are described in Table 4.1.

Using this value of t in conjunction with a table of probability values for the t- 

distribution provides a quantitative measure of confidence in the null hypothesis 

that the errors for surrogate data and real data have been drawn from the same 

sample. For SC 21, the value of the t-statistic for the descending phase is 8.47. A 

value of 10.72 is likewise obtained for the ascending phase of SC 22. Both results 

are significant at the 99.5% level, so there is a high level of confidence that the 

deviation from the mean of the surrogate time series is significant. Thus, the first 

null hypothesis must be rejected in both cases. In conclusion, therefore, there is 

some evidence for a nonlinear dependence within the data. However, the 

magnitudes of the test NMSE values suggest that, particularly during the 

ascending phase of SC 22 (see Table 4.1), there is no good low-dimensional 

nonlinear model of the dependence between uncorrelated components.

Data set 

Descending phase of SC 21 

Mean of surrogates (method I) 

a  of surrogates (method I)

Mean of surrogates (method II) 

a  of surrogates (method II)

Training error Test Error

0.814457 0.783399

0.968563 1.071137

0.001719 0.075972

0.878556 0.981377

0.042104 0.246892
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Ascending phase of SC22 0.898442 0.951368

Mean of surrogates (method I) 0.984017 1.011248

a  of surrogates (method I) 0.002897 0.012487

Mean of surrogates (method II) 0.813867 0.975038

a  of surrogates (method II) 0.056054 0.223164

Table 4.1 NMSE results for optimised RBF NNs for original and surrogate data

However, a nonlinear dependence does not necessarily imply the presence of 

nonlinear dynamics. Thus, it may not be necessary to invoke nonlinear dynamics 

to explain these results. An alternative to a nonlinear dynamical process would be 

that the data is the result of applying a fixed nonlinear transform to a Gaussian 

noise process (possibly a radar systems effect). It is possible to distinguish 

between these two types of nonlinear behaviour by estimating the significance of 

the NMSE results obtained for the type (II) surrogates. The normal statistic for a 

two-sided test concerning the population mean is given by:

£ Z ifo _  (4 3 )
£

As the number of surrogate time series used in this instance was 1000, the normal 

distribution can be used in preference to the t-distribution. Using this value, in 

conjunction with a table of probability values for the normal distribution, provides 

a quantitative measure of confidence in the null hypothesis that the observations 

are consistent with a fixed nonlinear transformation of a correlated Gaussian 

process. For SC 21, the value of the normal statistic for the descending phase is 

0.802. A value of 0.106 is likewise obtained for the ascending phase of SC 22. 

Neither o f these deviations from the mean is significant, even at the 90% 

confidence level, so the null hypothesis cannot be rejected -  the data provides
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insufficient evidence to distinguish nonlinear dynamics from a nonlinearly 

transformed coloured Gaussian noise process.

4.7 Conclusions

Studies o f the solar wind -  ionosphere -  magnetosphere coupling reveal 

periodicities of the order of Ts, the solar rotation period. From the SABRE data, Ts 

and higher harmonics can be clearly observed within the high latitude ionosphere 

from spectra extending over 200 days. This clearly indicates that a definite two or 

four region solar sector structure is present during the descending phase of SC 21. 

No such obvious structure was present during the ascending phase of SC 22, when 

the behaviour o f the heliospheric current sheet is expected to become more 

complex and dynamic.

The possibility that the structure of the heliospheric current sheet may exhibit 

nonlinear behaviour during the latter period has been studied. A novel technique 

has been used to investigate this proposition. Many of the existing nonlinear data 

analysis techniques were developed for application to well controlled 

experimental systems and even numerical data. Such data sets are generally well 

sampled, stationary and do not suffer from missing points, in stark contrast to 

most solar-terrestrial data sets. Consequently, it is often inappropriate to apply 

these techniques to geophysical time series without precursive study and adequate 

safeguards. The technique employed in this instance, however, is sufficiently 

robust to be of use in instances where high quality data is not available and it has 

wider applicability to a range of real-world classification problems. Its robustness 

is, however, its limitation. In contrast to the other nonlinear analysis techniques, it 

provides little detailed information. Given that these techniques give positive 

results, it is then possible to apply more sophisticated nonlinear methods to obtain 

more precise information concerning the nonlinear properties of the data. Again, 

using surrogate hypotheses must be used to validate the results.

68



Although there is evidence of nonlinear behaviour in the SABRE data (rejection 

of null hypothesis I), in both the descending period of SC21 and the ascending 

period o f SC22, it is not distinguishable from a nonlinearly transformed coloured 

Gaussian noise process in either case (acceptance of null hypothesis II). The 

absence of meaningful phase information then precludes the application of further 

nested hypothesis that might be constructed based upon the application of 

traditional nonlinear techniques. This topic is discussed at greater length in 

Chapter 3.

The RBF models of the dependency between filter outputs produce very large 

errors, particularly in the case of the ascending phase of SC22. This suggests that 

the former phase is dominated by the purely linear structure noted by Yeoman et 

al [1990]. It also suggests an unresolved high dimensional (>10) or noise process 

is dominant during the latter phase of the time series, due to the absence of linear 

behaviour noted during that phase. Thus, it is not possible to support the 

hypothesis that increased nonlinear dynamical behaviour dominates, or even plays 

a significant part in, the behaviour of the ascending phase of SC 22. Contrary to 

expectations, the NMSE evidence seems to suggest that the descending phase of 

SC 21 exhibits more obvious nonlinear properties than the ascending phase of SC 

22. The lower number of centres required to model the ascending phase of SC 22 

also suggests that the ascending phase has less structure and is more noise-like 

than the descending phase.

These conclusions carry the proviso that this thesis has restricted itself to an 

investigation on the time scales dealt with by Yeoman et a l [1990]. The SABRE 

data used has been averaged to give a set of daily values. Thus, this analysis takes 

no account of nonlinearities that may be present on time scales of less than a day.

An absence of appreciable levels of nonlinear behaviour implies that the apparent 

lack of structure with the data set is attributable to stochastic processes, or high 

dimensional mechanisms that cannot be resolved given the data and the available
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techniques. The very low-level nonlinear behaviour that was observed in this 

study could be attributable to the characteristics of the measurement system itself, 

or to some nonlinear transfer mechanism within the solar-terrestrial environment.

If stochastic processes do play a significant role in the observed geophysical 

systems, this will have significant implications for solar-terrestrial prediction. 

Stochastic phenomena are inherently unpredictable and are only tractable using 

probabilistic models. The source of this noise could lie in a number of areas. 

Instrument noise, the processing of the data, or the effects of non-contiguity of the 

time series could be masking or disrupting any structure that might be present. It 

is also conceivable that some mechanism in the solar wind, magnetosphere or 

ionosphere may be imposing a dominant noise-like process over the modulation of 

the solar sector structure upon the solar wind. Non-stationarity of the time series 

due to the long-term variation over the solar cycle may also give rise to 

misleading results. Finally, it may be that the solar sector structure itself exhibits 

stochastic behaviour during the ascending phase of SC 22. The near solar 

environment could be dominated by features that have a duration much shorter 

than the period of solar rotation, due to the paucity of coronal holes. This could 

account for the observed lack of recurrent structure based upon Ts, observed in the 

original study.

In conclusion, therefore, there is insufficient evidence within the SABRE data set 

to support the suggestion of increased nonlinear dynamical behaviour during the 

ascending phase of solar cycle 22. In fact, nonlinear dynamics would seem to 

exert very little influence within the measurement time series at all, given the 

observed data. Therefore, it is likely that stochastic or unresolved high 

dimensional nonlinear mechanisms are responsible for the observed spectrum 

complexity during the ascending phase of SC 22.
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Chapter 5: Nonlinear Prediction of the Ionospheric Parameter 
foF2

5.1 Introduction

In this chapter, the application of nonlinear radial basis function (RBF) neural 

networks (NNs) to improve the accuracy of the prediction of ionospheric 

parameters is presented [Francis et al., 2000]. Principal component analysis 

(PCA) is adopted for the purposes of noise and dimension reduction. Hourly, daily 

and monthly predictive models have been created for the Slough, \JK,foF2 time 

series. The quality of the model predictions is evaluated by comparison with 

corresponding predictions from reference persistence or recurrence models.

Each RBF NN offers a significant improvement over the performance of the 

corresponding reference model. The noonday model gives a performance 

improvement o f approximately 60% over the baseline persistence model, for a 

one-day ahead prediction. For a one-hour ahead prediction, the hourly model 

offers an improvement of approximately 45% over the baseline 24-hour 

recurrence model. Finally, the monthly median model gives a performance 

improvement of approximately 40% over the baseline persistence model, for a 

one-month ahead prediction.

5.2 The Experimental Data

This chapter utilises the foF2  time series corresponding to the ionosonde station at 

Slough, UK. The critical frequency of the F2 layer of the ionosphere, foF2, is one 

of the most significant parameters of the ionised upper atmosphere. As this area 

often contains the highest electron concentration within the ionosphere, it 

generally determines the maximum usable frequency for HF communications. It 

also characterises that portion of the bottom side ionosphere that is farthest from
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the ground, a fact that has direct bearing on the maximum usable range of a 

communication link. For a fixed elevation angle, transmission range increases as 

the maximum height of the point of reflection increases.

The first RBF model was trained and tested using noonday foF2  values from 

Slough station covering the period from 01 January 1957 to 31 December 1990. 

This represents the entire available noonday record available on CDROM and 

provides a time series of 12,418 points. The first 10,000 were used to train the 

RBF model while the remainder of the points were used to test the predictive 

performance of the model on unseen data. The standard deviation of the training 

set was 2.65 MHz.

The second RBF model was trained and tested using hourly foF2  values from 

Slough station. Much more data was available than could actually be used (1957- 

1990), given existing computer resources. An arbitrary decision was made to 

select data covering the period from 01 January 1971 to 31 December 1973. This 

enabled the model to generalise from year to year, whilst keeping processing 

overheads to an acceptable level. Consequently, the generality of this model may 

not extend over the whole of the solar cycle. The total length of the time series 

was 26,304 points. The first 23,000 were used to train the RBF model, while the 

remainder of the points were used to test the predictive performance of the model 

on unseen data. The standard deviation of the training set was 1.92 MHz.

The final RBF model was trained and tested using monthly median foF2  values 

from Slough station covering the period from 01 January 1951 to 31 December 

1995 (the entire available monthly median record). The total length of the time 

series was 12,960 points. The first 10,000 were used to train the RBF model, 

while the remainder of the points were used to test the predictive performance of 

the model on unseen data. The standard deviation of the training set was 2.31 

MHz.
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Each time series, as a whole, was normalised to zero mean and unit variance. 

Normalisation of each input time series removes the need for an offset component 

parameter for the radial basis functions.

5.3 Missing Data Points

The complete noonday time series contained approximately 8.9% missing data 

points. The hourly and monthly median time series contained approximately 6.6% 

and 1.4% missing data points, respectively. In addition, these missing points are 

not randomly distributed through each time series, introducing a potential source 

of sampling bias into each model. A missing data point may correspond to an 

equipment failure, or ionospheric conditions may prevent a clear measurement of 

the properties of the F2 layer. Another class of data dropouts includes those 

values that fall outside the accepted range of variation for the foF2  parameter. 

These discontinuities pose a significant obstacle for prospective nonlinear 

prediction schemes, which generally require continuous time series.

Potential strategies to deal with missing data points are similar to those elucidated 

in Chapter 4 and each carries with it the same advantages and disadvantages. In 

the absence of a suitably robust nonlinear method of dealing with missing data 

points, it was decided to reject incomplete input vectors.

5.4 Creation o f  Data Vectors

A one dimensional sliding window was passed along each time series, one point at 

a time, to construct the matrix of input vectors that are required to train the RBF 

model. Input vectors that contain one or more missing data points were then 

removed from the training set. The optimum window length was selected by 

assessing the relative performance of the one step ahead prediction model using a 

range of input window lengths. The optimal model parameters derived for the one
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step ahead prediction were then also adopted for the models used to predict from 2 

to 30 steps into the future, due to processing constraints.

The prediction step ahead increment was a single point for the hourly and daily 

predictions. However, the monthly median time series contains 24 concomitant 

hourly median values for each month on record. Therefore, it was necessary to set 

the prediction step ahead increment to 24, to ensure that the model predicts from 1 

to 30 months ahead, rather than 1 to 30 points ahead.

5.5 The Modelling Process

In each instance, training and testing data were processed entirely separately; i.e. 

the sliding window used to create the input vectors was not allowed to overlap 

both of the data segments at the same time. The analysis technique described in 

this section is depicted by Flowchart 2 in Annex A.

Missing data points gave rise to approximately 90% rejection of possible input 

vectors for the noonday value predictions. The corresponding rejection rates for 

the hourly and monthly median predictions were approximately 60% and 15%, 

respectively. Thus, the problem was most severe for the noonday value test set. In 

this instance, the bias due to the effects of non-randomly scattered missing data 

points and the statistical uncertainty of the error measurements is likely to be more 

significant.

The training vector set was projected onto its principal axes using SVD. If PCA 

noise filtering was to be performed, principal components that adversely affected 

the prediction were removed, otherwise all of the principal components were used 

for the subsequent modelling process.

The remaining filter outputs were then used to train the RBF model. The optimum 

number of functional centres was determined by assessing the relative
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performance of the one step ahead prediction model using a range of values for 
the number of centres.

A value of 140 centres and a window length of 90 days were found to give the 

optimal error results for the noonday model. The hourly model required 153 

centres and a window length of 61 hours, whilst the monthly median model 

required 398 centres and a window length of 73 points.

Models were constructed, using the same parameters, to predict from 1 to 30 steps 

ahead, for each of the three models. Due to limitations on processing resources, it 

was not possible to optimise the predictions for each step value. The results were 

compared with the corresponding reference model predictions, using the root 

mean square (RMS) error.

5.6 Additional Comments on the Median Model

The monthly median time series used in the median model used all 24 hourly 

values for each month on record. Thus, the input window of length 73 points 

covers a period slightly longer than three months, in which the input values are 

not successive in the strictest sense. The additional complexity of the median 

model, reflected by the larger optimal number of centres, may be required so that 

the RBF model contains sufficient adaptability to process the median input vector 

correctly, given its more complex format.

The ideal solution to the monthly median prediction problem is to create 24 

separate monthly median models, one for each hourly median. However, the 

median time series contains insufficient data points (approximately four hundred 

per hourly median) to successfully train and test a monthly median neural network 

model for each hour of the day in isolation. This problem was compounded by the 

low ratio between the number of available data points and the length of the 

optimal input window for such a model. These two factors led to an extremely low
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number of input vectors, further reduced by the subsequent rejection of 

incomplete vectors. A composite model, which combines the training vectors for 

each separate hour together, in conjunction with an appropriate hourly time stamp 

for each vector, also proved non-viable. Insufficient training data was available to 

produce an RBF model with the required performance.

The technique finally adopted used an input window that included all the monthly 

median values over a period of about three months. It was the only candidate that 

produced results that were an improvement upon the reference model, for a one 

step ahead prediction. This median RBF model has enough input data to create a 

satisfactory model and utilises cross-prediction between hourly monthly median 

values to achieve prediction accuracy results that are comparable to the hourly and 

noonday RBF models.

It is interesting to note that longer-term information, covering one or more solar 

cycles, seems to be of little consequence to the one step ahead median predictions, 

for which the model was optimised. Under this scheme, increasing the input 

vector length led to degradation in the predictive accuracy of the model. This 

observation can probably be attributed to increased redundancy in the input vector 

or to under-training of the model due to increased input vector rejection. 

However, it is likely that multiple step ahead predictions will require additional 

longer-term inputs, covering one or more solar cycles, to produce optimal results.

5.7 Reference Models

A successful predictive model must offer a significant increase in performance 

over the reference technique to prove the value of the method employed. The 

persistence reference model predicts that the value of an observable at some 

specified point in the future will be identical to the current measurement of that 

observable. This model performs well for quiet time conditions, when the 

terrestrial environment is relatively undisturbed. However, it cannot predict the
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onset o f  the short-lived impulsive disturbances that characterise periods of 

unusually high geomagnetic activity. Similarly, the recurrence reference model 

predicts that the value o f an observable at some specified point in the future will 

be identical to the measurement o f the same observable a set number o f steps 

before the point to be predicted.

5.8 Noonday foF2 Value Predictions

5.8.1 Results

The performance of the noonday RBF NN model has been quantified in terms of 

the RMS error, and has been compared with the reference persistence model for 

prediction time scales o f one to thirty days ahead (Figure 5.1).
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Figure 5.1 RMS prediction error for foF2 noonday test values.

For a one-day ahead prediction, the noonday RBF model (no noise filtering) gave 

an RMS error o f 0.655 MHz, in comparison with an RMS error of 1.186 MHz for 

the persistence m odel. This represents an increase in perform ance of
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approximately 45% over the persistence model. Optimising the noise filtering 

process led to the removal of 36 of the PCs that adversely affected the accuracy of 

the model. For a one day ahead prediction, the noonday RBF model (with PCA 

noise filtering) gave an RMS error of 0.484 MHz; a relative increase in 

performance of 59% over the standard persistence model.

The standard unfiltered noonday RBF model (Figure 5.1 - dashed line) represents 

a significant improvement over the standard persistence model. This is 

particularly true up to 10 days ahead during which time the RBF predictive 

accuracy stays roughly constant. The performance increase margin narrows as the 

prediction time scale increases to thirty days and the model error rises more 

quickly. The likely cause of this effect is that the optimised model parameters 

were only derived for the one-day ahead prediction, due to limitations on available 

processing resources. The optimal one-day ahead model parameters become 

increasingly inaccurate as the prediction extends further into the future.

Noise reduction (Figure 5.1 -  heavy solid line) provides significant 

improvements, particularly for the long range and one step ahead predictions. The 

noise reduction process was also only optimised with respect to the one-day ahead 

prediction - hence the substantial improvement over the unfiltered RBF model for 

the one-day ahead filtered noonday RBF model. Much smaller improvements are 

observed for short time scale predictions (2-10 days). Apparently, the noise 

reduction scheme produced for the one-day ahead prediction is too specific to 

have a pronounced effect on the other short-term models. This suggests that 

optimising each model separately, with regard to noise reduction, would also 

provide substantial improvements in terms of predictive accuracy.

Using noise reduction, the short-term prediction accuracy plateau now extends out 

to 15 days - five days longer than for the corresponding unfiltered noonday RBF 

model. Noise reduction provides tangible improvements for medium time scale 

predictions (10-25 days), giving a constant improvement in accuracy across the
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whole period. The effects of the noise reduction scheme upon the longer-term 

predictions (25-30 days) are even more pronounced - probably due to the effects 

of the solar rotation, which gives rise to recurrent structure with a 27-day period. 

This periodic structure could account for the fact that the one step ahead noise 

reduction scheme is also applicable for the predictions one solar rotation ahead.

Figure 5.2 presents the RMS difference between the noonday RBF model and the 

corresponding persistence model for each prediction step. This information allows 

assessment of the similarities between the model produced by the RBF and the 

reference persistence model to be made, for varying time scales. The effects of 

noise reduction on these features can also be determined.
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Figure 5.2 RMS difference between RBF and persistence models.

The divergence of the unfiltered noonday RBF model from the corresponding 

persistence model increases markedly after twelve days. This point coincides with 

the longer term narrowing of the performance increase margin noted earlier. This 

implies that, while the RBF and persistence model errors are converging, the 

actual structure of the RBF model is diverging from that of the persistence model.
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It is, therefore, possible that including persistence (or first differences of the 

original time series) information into the RBF model could provide a worthwhile 

accuracy improvement over the standard RBF models, for medium term 

predictions. This divergence can also be observed for the filtered noonday RBF 

model. However, in the latter instance, the relative difference undergoes a 

dramatic decrease after 25 days. This effect is coincident with the improvement in 

predictive accuracy over the unfiltered noonday RBF model noted in Figure 5.1. 

In that graph, the filtered noonday RBF model is markedly superior to the 

unfiltered noonday RBF model for prediction time scales greater than 25 days. 

These two observations lead to the deduction that the noise reduction process 

improves the ability of the RBF to successfully model structure that can be 

attributed to periodicities based upon the solar rotation (25-30 days).

5.8.2 Strategies fo r  Improving the Noon Daily Predictions

A detailed comparison between the testing data set and the corresponding 

prediction output time series (Figure 5.3) reveals those areas where the noonday 

RBF prediction is least effective. The predicted foF2 values at the onset of periods 

of unusually high geomagnetic activity lag behind the actual time series. In 

addition, the model underestimates the peak magnitude of these events. These 

events account for a significant proportion of the overall RMS error. However, in 

this respect the performance of the noonday RBF models is still superior to the 

reference persistence model.

Three factors could account for the relatively poor behaviour of the model during 

periods of increased geophysical activity. Firstly, periods of elevated ionospheric 

activity are rare in comparison with quiet time conditions. Therefore, the training 

process is biased against the prediction of these infrequently occurring events, and 

in favour of accurate prediction of quiet time conditions. Secondly, the time scales 

associated with the evolution of such disturbances are very much smaller than the 

resolution of the input time series. Therefore, the input time series does not
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contain sufficient information about the dynamics of these events to accurately 

model their rapid development. Use of additional higher resolution inputs would 

be required to address this issue. Thirdly, the current RBF model relies solely 

upon a single input time series to produce a prediction. Certain data sets are 

capable of providing precursive information that has a direct bearing upon the 

prediction of foF2. This might include direct measures of solar variability, solar 

wind activity or magnetospheric time series. Including these time series as 

additional inputs to the model would provide a measure of forewarning that could 

improve the prediction accuracy during periods of increased ionospheric activity. 

However, incorporating additional inputs into the model will increase the amount 

of training data required by the model. If insufficient training data is available, the 

performance of the model will be severely degraded.
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Figure 5.3 Comparison of predicted RBF and actual foF2 daily values.

Generally, as the number of model inputs increases, the number of degrees of 

freedom required by the model also increases, reflecting the increased complexity 

of the modelling problem. As a rule, the model must be trained using at least twice
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as many training vectors as there are degrees of freedom (hidden nodes or centres) 

in the model. Ideally, the number of training vectors should exceed the number of 

degrees of freedom by a factor of ten or more. Use of additional time series inputs 

will also increase the amount of processing time required in a polynomial fashion.

It is also possible that the tracking of storm onsets could be improved using a 

positive feedback mechanism to improve the responsiveness of the RBF model. 

One possible method of achieving this would be to auto-correlate errors on 

previous predictions into the current prediction

Finally, geophysical theory suggests that linear functions may be less prone than 

nonlinear functions to over-fitting for quiet time conditions. Cursory studies have 

suggested that a hybridised technique, containing both linear and nonlinear 

aspects, provides further enhancements of the models capabilities. In such a 

hybrid model, the linear functions are used to model the linear characteristics of 

the time series, while the nonlinear functions are used to model the residue, using 

the complete time series as input. This suggestion seems to be supported by 

observation of the behaviour of the relative difference between the RBF and 

persistence models, as outlined in the previous section.

Given the quality o f the noonday time series, it may be preferable to construct an 

alternative daily time series such that input vector rejection is less of an issue. The 

number o f missing points could also be reduced by using persistence or recurrence 

to fill in the each gap. However, the interpolation process should only be allowed 

to search up to a set number of steps into the past to find a suitable replacement 

point, to limit the deleterious effects of this scheme.
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5.9 Hourly foF2 Value Predictions

5.9.1 Results

Figures 5.4 and 5.5 describe the relative performance of the hourly foF2  value 

RBF NN model, in terms of the RMS error, for prediction time scales of one to 

thirty hours ahead. This time, the results are compared with both the recurrence 

and the persistence models. The recurrence model utilises the 24-hour cyclic 

nature of the hourly time series such that the value of the predicted measurement 

is the same as the measurement 24 hours before the time for which the prediction 

is required.

3.5  Recurrence model
 Persistence model
 RBF model

Filtered RBF model
3.0

N
X
2

2.5

2.0

<D
CO

a:
0.5

0.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Hours ahead

Figure 5.4 RMS prediction error for foF2 hourly test values (large scale).

For a one-hour ahead prediction, the hourly RBF model (no noise filtering) shown 

in Figure 5.4 gave a RMS error of 0.452 MHz, in comparison with a RMS error of 

0.781 MHz for the persistence model - an increase in performance of 

approximately 42.1 %.
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Figure 5.5 RMS prediction error for foF2 hourly test values.

Optimising the noise filtering process led to the removal of 15 of the PCs that 

adversely affected the accuracy of the model. For a one-hour ahead prediction, the 

RBF model (with PCA noise filtering) gave an RMS error of 0.447 MHz, an 

increase in performance of 42.7% over the standard persistence model. In 

comparison, the RMS error for the 24-hour recurrence model was 0.818 MHz. 

The corresponding unfiltered and PCA filtered RBF model values relative to the 

24-hour recurrence model were 44.7% and 45.4%, respectively.

For a one-hour ahead prediction, the persistence model gave slightly better 

performance than the 24-hour recurrence model. However, at prediction time 

scales greater than one hour, the strong diurnal variation offoF2 generally led to a 

poor correspondence between the actual value of the point to be predicted and the 

persistence prediction. To provide a more effective reference model it was 

necessary to default to the 24-hour recurrence model. This model gave a constant 

RMS error for all prediction time scales up to 24 hours ahead, as shown in Figure 

5.4. For predictions more than 24 steps into the future, the recurrence model 

utilises the value o f the measurement from two cycles (48 steps) in the past.
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Figure 5.5 shows the variation of model output error as the number of hourly steps 

ahead for the prediction increases, for both the PCA filtered and unfiltered RBF 

models, but on an expanded scale. The error rises steeply from one to six hours 

ahead, but the model still provides a significant improvement over the baseline 

recurrence model. For longer-term predictions, the model performance degrades 

more slowly and converges towards a constant margin of improvement over the 

reference model. The rapid degradation of the model between one and six hours 

ahead can probably be attributed to short-term features that are being modelled, 

but which are not predictable on medium to long time scales. It may also be a 

function of the optimisation process, as outlined previously.

For the hourly RBF model, noise reduction produced only marginal benefits. 

Indeed the improvement in performance is so small that it can only be discerned 

for one or two points on Figure 5.5. The principal component analysis technique is 

intended to remove those features of the time series that are present in the training 

data, but which are absent from the testing data. The absence of any significant 

enhancement of the performance of the model, using this noise reduction process, 

indicates that such features are not present in the training set. The input time series 

covers a three-year period at the bottom of a solar cycle. This time interval is 

likely to be approximately stationary with respect to the long-term variation of the 

solar cycle. Hence, the statistical moments of the time series may not alter to any 

significant degree over the time series as a whole, unlike the noonday foF2 value 

time series. The dominant diumal variation could also give rise to a lack of 

redundancy in the input vector, such that our noise reduction scheme can only 

offer very limited benefit. However, while the technique did not offer a significant 

performance advantage in terms of accuracy, it still reduced the dimensionality of 

the modelling problem, thereby reducing the processing overhead.

Figure 5.6 displays the RMS difference between the hourly foF2  model and the 

persistence model, to assess the similarity of the RBF model to a simple climate 

based model. Currently, the modelling software only produces a direct
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comparison with the persistence model and makes no direct comparison with the 

recurrence model. Little can be deduced, therefore, besides the dominant diurnal 

influence. However, the persistence model defaults to the 24-hour recurrence 

model in the case o f the 24 step ahead prediction. In this instance, the RMS 

difference between the RBF and recurrence/persistence models was very much 

lower than the RMS prediction error of either model in isolation (Figure 5.4 and 

5.5). This observation indicates that the 24 step ahead RBF prediction is little 

different to the 24-hour recurrence model or one day persistence model prediction.

RBF model

Filtered RBF model

Hours ahead

Figure 5.6 RMS difference between RBF and persistence models.

The apparent similarity between the 24 step ahead RBF prediction and the 24- 

hour recurrence/persistence model is an interesting result when taken in 

conjunction with the fact that the noonday RBF model performs significantly 

better (-60% ) than the one day persistence model. Furthermore, the RMS 

prediction error to test set standard deviation ratio is approximately constant for 

the time series for all hours in the day. Therefore, there is no reason to believe that 

noon is inherently more predictable than any other time of the day. We conclude, 

therefore, that the hourly foF2  model could be improved such that the 24-step
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ahead RBF prediction error is comparable to the one-day ahead noonday foF2 
RBF prediction error.

5.9.2 Strategies fo r  Improving the Hourly Predictions

Figure 5.7 compares the testing data set and the corresponding prediction output 

time series and shows that the RBF model provides high quality predictions one 

hour ahead. It has also successfully modelled the elevated activity on the final day 

of the plot, something a simple model such as recurrence would not be able to 

match. However, there are a number of potential improvements that could be 

made to the hourly RBF model. These improvements illustrate the complexity of 

predicting geophysical variables and particularly the need to keep in mind the 

background physical processes. To elucidate the potential improvements to the 

hourly foF 2  model, we first examine the possible causes of the discrepancy 

between the hourly and daily model errors for 24 hour / one day ahead 

predictions.

One obvious possible cause of the discrepancy is simply that the model 

predictions are optimised with respect to the one step ahead case. The dynamics of 

short-term hourly predictions may differ markedly from the longer-term hourly 

predictions, necessitating the adoption of optimisation for each individual hourly 

prediction time scale. However, attempts to re-optimise the hourly models for 12 

and 24 step ahead predictions have only produced marginal improvements in 

predictive accuracy. Therefore, it seems likely that the cause of the anomaly lies 

elsewhere.
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Figure 5.7 Comparison of predicted RBF and actual foF2 hourly values.

Another possibility relates to the nature of the inputs used to produce the hourly 

time scale predictions, compared with those used to produce the daily time scale 

predictions. The latter utilises longer term information that is not characterised by 

the short input window length (<3 days) adopted by the hourly time scale 

predictions. Additional inputs, in the form of a longer term daily sampled time 

series, could, therefore, provide improvements. Inclusion of longer-term 

information is also likely to improve the ability of the model to track the non- 

stationarity of the time series over the whole solar cycle, should sufficient 

resources become available to process the entire available historical hourly record.

The dominant, presumably largely linear, diurnal influence present within the 

hourly foF2 time series is likely to mask more subtle influences within the data. 

This occurs because the adaptability of the RBF NN is primarily focused on the 

dominant short-term variation. As such, little may be gained by optimising the 

model with respect to hourly prediction time scales, because the model is 

dominated by a linear periodic component. Nonlinear models are susceptible to 

this kind of interference and compound the problem by over-fitting a linear signal,
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in comparison with a purely linear model. Removing the dominant diurnal 

variation in the pre-processing phase is likely to mitigate this problem.

Using first and second differences of the data, in conjunction with the complete 

hourly time series, would be one way of mitigating this effect. Another would be 

to use a hybrid linear / nonlinear model in such a way that the linear aspect of the 

modelling process is used to characterise the diurnal variation. The nonlinear 

aspect can then be used to predict the deviation from the purely diurnal variation. 

Any or all of these techniques should improve the predictive accuracy of the 

model.

The hourly model has been trained and tested using data from a portion of one 

solar cycle. Processing constraints prevented the use of a time series containing 

data from multiple solar cycles. Therefore, the generality of the model is likely to 

be compromised with respect to other periods within the solar cycle. In addition, 

the nature of the diurnal variation is such that the RBF model is modelling very 

different characteristics for a given hour of the day. Currently, the optimisation 

process finds a non-optimum solution, in the sense that it minimises the error over 

the day as a whole and not for any given hour. A separate model for each hour 

would enable the entire available time series for each hour, covering several solar 

cycles, to be used to train and test the RBF model. These models would then be 

able to generalise over the entire solar cycle. These individual models would also 

decompose the original composite hourly model such that the dominant diumal 

variation no longer masks more subtle variations within the hourly time series. In 

essence, the existing prediction problem would be rendered down into a number 

of specific sub-problems that can be modelled more accurately, at the expense of 

an increased processing overhead.
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5.10 Monthly foF2 Value Predictions

5.10.1 Results

Figure 5.8 describes the variation of RMS error for the monthly median RBF NN 

model, for one to thirty months ahead, in relation to the reference persistence 

model. In this instance, rather than use a prediction of the sunspot number to 

predict the median foF2, we have chosen to attempt this prediction based upon the 

time series offoF2 in isolation.
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Figure 5.8 RMS prediction error for foF2 monthly test values.

For a one-month ahead prediction, the monthly median RBF model (no noise 

filtering) RMS error was 0.499 MHz, in comparison with an RMS error of 0.829 

MHz for the standard persistence model. This was an increase in performance of 

approximately 40% over the persistence model. Optimising the noise filtering 

process led to the removal of 22 of the PCs that adversely affected the accuracy of 

the model. For a one-month ahead prediction, the monthly median RBF model
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(with PCA noise filtering) produced an RMS error of 0.488 MHz, a relative 

increase in performance of 41% over the standard persistence model.

As expected, the persistence model error curve displays clear recurrent variation 

on a time scale o f twelve months. The monthly median RBF model is a significant 

improvement over the persistence model for almost all time scales. In addition, 

the RBF model does not exhibit any cyclic structure over the prediction time 

scales shown in Figure 5.8, indicating that it has characterised the annual variation 

successfully. For predictions up to eleven months ahead, the RBF model captured 

variations that were not characterised by simple median climatological models 

and consequently the RBF model errors were lower than the persistence model. 

However, the cyclic (one year) nature of the monthly median time series, coupled 

with the approximate stationarity with respect to solar cycle variation over the 

course of a single year, means that the persistence model and the RBF model 

achieve very similar results for the twelve month ahead predictions. This does not 

hold true for the 24-month ahead prediction, as non-stationary features of the time 

series become significant at these time scales. The RBF NN has better 

characterised this long-term non-stationarity, as evidenced by the much larger 

performance increase margin at 24 months, relative to the reference persistence 

model.

The RBF model performance degrades relatively smoothly from one to thirty 

months ahead and contains no prominent features. The rate of increase of 

prediction error decreases with time and this is most likely due to the convergence 

of the model dynamics towards the underlying climatological variation of the 

median values. For predictions greater than 18 months into the future, the RMS 

error is almost constant, indicating that linear features are likely to be dominant at 

these time scales.

The monthly median RBF model exhibited the greatest disparity between the 

predictive accuracy of the one step ahead and 30 step ahead predictions. The ratio
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of the 30 step ahead prediction error to that of the one step ahead prediction was 

approximately 3 to 1, at least 50% higher than either of the other predictive 

models. A limited specific optimisation of the 30-month ahead prediction yielded 

some gain, but the improvement was of a lower order than that observed with the 

noonday value RBF model. Therefore, it is unlikely that this effect arises directly 

from the limitations of the optimisation method, as outlined earlier in chapter for 

other time scales. It is probable that the cause of this effect can be attributed to the 

format of the monthly median input vector. The input vector covers a period of 

approximately three months, which is very short in comparison with the longer- 

term prediction time scales

Figure 5.9 presents the RMS difference between the monthly median RBF model 

and the corresponding persistence model for each of the prediction time scales. 

The plot shows a strong annual variation in the RMS difference between the RBF 

model and the persistence model. This is due to the inability of the persistence 

model to successfully characterise the annual variation of the foF2  parameter. 

Although the 12 month ahead RMS prediction errors are very similar in terms of 

RMS error (<0.1 MHz apart), the RMS difference between the two is very much 

higher (>0.5 MHz), indicating that they are achieving similar results in different 

ways. This suggests that further improvement of the 12-month ahead RBF 

prediction is possible, such that it incorporates those features of the reference 

model that are not currently characterised by the RBF model.

Noise reduction produces only marginal benefits for the monthly median foF2  

model. The improvement in performance is so small that it cannot be discerned in 

Figure 5.8. The absence of any significant enhancement of the performance of the 

model, using noise reduction, can probably be attributed to the smoothing inherent 

in any median time series, which removes the noise-like features of the data. 

Again, the technique does not offer a significant performance advantage in terms 

of accuracy, but still reduces the dimensionality of the modelling problem and 

thereby reduces the processing overhead.
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Figure 5.9 RMS difference between RBF and persistence models.

5.10.2 Strategies fo r Improving the Monthly Median Predictions

As already discussed, the ideal solution to the monthly median prediction problem 

is to create 24 separate monthly median models, one for each hourly median. 

However, the median time series contains insufficient points to create isolated 

hourly models. A composite model, which combines the training vectors for each 

separate hour together, in conjunction with an appropriate hourly time stamp for 

each vector, also proved non-viable. Insufficient training data was available to 

produce an RBF model with the required performance.

The actual input window used in this thesis, constructed from the median time 

series, covers a period slightly in excess of three months. This window length was 

determined to be optimal for the one-month ahead prediction. It utilises any or all 

of the values for a given month, as the data window slides across the entire time 

series. Consequently, the length of the input window is very short in comparison 

with the long-term prediction time scales. The longer-term variations in the 

monthly median parameter may not be characterised successfully by such a short
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input vector. This is the most likely cause of the high prediction error ratios 

between the short and long-term monthly median predictions. It may therefore be 

necessary to re-optimise the input window length for each prediction time scale. 

However, this approach may incorporate redundant medium term information into 

the model. A better solution may be to supplement the existing predictions with 

selected longer-term monthly median inputs, corresponding to the hour to be 

predicted. This would provide the model with information concerning the long

term variation of the monthly median time series for a specific hour, improving 

the longer-term performance of the RBF model. Keeping the number of selected 

longer-term additional inputs small would prevent a marked decrease in the 

number of available training vectors.

It is also likely that this approach would benefit the twelve-month ahead 

prediction, such that it incorporates more of the features of the persistence model. 

It should result in a more definite improvement in performance over the reference 

model for that particular prediction time scale. Whilst producing similar results in 

terms of predictive accuracy, the RBF and persistence models are achieving this in 

different ways. A hybrid linear / nonlinear approach should combine the best parts 

of each model to improve the ability of the RBF to model linear recurrent 

structure in the foF2  time series. It should also improve the long-term predictive 

capabilities o f the model, as the features that are dominant at these time scales 

seem to possess a linear structure.

In comparison with the daily time scale predictions, the one month ahead 

prediction is significantly more accurate than the thirty day ahead model. 

However, this difference may be due to the smoothing inherent to any median 

time series. It is not possible, solely based on this evidence, to assume that the 

noonday RBF model would benefit from longer term inputs, though this is likely 

to be the case.
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5.11 General Remarks

This chapter has presented a nested hierarchy of predictive models that operate 

upon different time scales. Prediction accuracy decreases as the sampling time 

scale increases from hourly to monthly values. Thus, the hourly one step ahead 

prediction is the most accurate, while the monthly median one step ahead 

prediction is the least accurate. However, the one step ahead prediction errors, for 

each of the models, all lie in the range 0.44 to 0.50 MHz. The range of variation of 

the error results over the different timescales is much less (-10%) than the 

variation between the standard deviations for each input time series (-40%). This 

observation runs contrary to the following preconceptions concerning the 

expected performance of the models. Due to the averaged nature of the monthly 

median time series, it was expected that the corresponding median model would 

exhibit the lowest error. In the same fashion, we expected the hourly model to 

exhibit the highest prediction error, due to the short-term dominant diurnal 

variation swamping other, more subtle, influences within the time series. In 

addition, the hourly time series should be more impulsive than the other time 

series.

An irreducible error in foF2  predictions may be responsible for this discrepancy. 

The foF2 parameter, which is used to derive all of the time series employed in this 

thesis, varies considerably between hourly measurements. This can be due to the 

effects of gravity waves (travelling ionospheric disturbances), sudden ionospheric 

disturbances and to uncertainties in the measurement techniques. The magnitude 

of this variation is thought to vary between 5% and 30% [Professor T. R. 

Robinson, private communication]. Therefore, aliasing effects introduce an 

ultimate prediction accuracy threshold. The RBF models will only be able to 

meet, but not exceed, this threshold. Assuming an average within hour variation of 

15%, we can directly equate this figure to a normalised mean error (NME) of 

0.15. It is then possible to compare this value to NME values for the RBF models. 

The hourly, noonday and monthly median models produced NME values of 0.202
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MHz, 0.170 MHz and 0.209 MHz respectively, for one step ahead predictions. 

The values are very close to the proposed irreducible error figure and could 

explain why the model prediction accuracy statistics do not occur in the 

hierarchical order that the underlying physical preconceptions suggested. The 

fundamental hourly sampling information limit has been reached in each instance. 

The noonday RBF model NAE may be lower because the ionosphere is more 

stable at noon than at other times of the day. The noonday within hour variation 

would, therefore, be lower than the average value of the within hour variation, 

taken over the course of an entire day.

In comparison with the reference model, the noonday one-step RBF model 

provides a relative improvement of 60%, the largest performance increase margin 

of the three models. The monthly median value RBF model provides the smallest 

relative improvement (41%). The smoothed nature of the median time series 

means that a linear persistence model already provides a reasonable baseline 

model of the median time series, for the one step ahead prediction. The hourly 

value RBF model provides a relative improvement of 45%. Again, the reference 

recurrence model can provide a good approximation to the dominant linear diurnal 

variation. The larger relative improvement observed for the noonday model could 

be attributable to the fact that the noonday time series contains no smoothing or 

dominant short-term variation that can be characterised by a trivial linear 

reference model. In such an instance, however, the RBF model is still able to 

produce a model with a predictive accuracy in line with the other RBF models.

It is also interesting to note that the noonday model training errors were found to 

be much higher (-40%) than the corresponding test errors. It is more usual for the 

testing error to be higher than the training error, due to the fact the model is being 

applied to unseen data. This effect was also observed with the hourly model 

errors, but the magnitude of the effect was much smaller (-5%). No such effect 

was observed with the monthly median model errors.
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The origins o f this effect may lie in one of several areas. Firstly, statistical 

processes may be responsible for this effect. The large number of testing vectors 

that have been rejected during the modelling process may result in a lower level of 

statistical significance for the RMS prediction error results, particularly for the 

noonday predictions. The non-random distribution of missing points could also 

introduce a potential source of bias. This is supported by the fact that the 

magnitude of the effect seems to correlate with the number of input vectors that 

were rejected during the creation of each of the models. The development of an 

optimal nonlinear interpolation scheme will allow a more detailed examination of 

this issue. Secondly, physical processes could be responsible for this effect. 

Improvements in measurement and equipment accuracy over time may result in a 

decreased noise contribution in the later portions of the time series. Alternatively, 

long-term non-stationarity based upon the solar cycle may be responsible for more 

predictable behaviour during the portions of each time series used to test the 

hourly and noonday models.

Essentially, the statistical nature of a non-stationary time series alters on time 

scales that are much longer than the prediction time scales, but that are short 

enough to be present in the input time series as a whole. The hourly value time 

series covers the period from 1971 to 1973, at the solar activity minimum. This 

time series is quite short with respect to the solar cycle period and is 

approximately stationary, as the rate of change of solar activity is minimal at this 

point. Hence, the effects of non-stationarity upon the hourly value error results are 

quite small. The noonday value time series covers the period 1957 to 1990, 

encompassing three complete solar cycles. Thus, this data set is non-stationary, 

which could account for the large discrepancy between the observed training and 

test set errors. The monthly median value time series covers the period 1951 to 

1995. In this instance, the parameter to be predicted is directly representative of 

the solar cycle variation. Therefore, the issue of non-stationarity does not arise in 

this instance, barring the presence of an undetermined non-stationary process that 

varies from solar cycle to solar cycle.
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Preliminary studies, that partition the entire available noonday historical record 

into two equal parts and attempt to predict each set from the other, suggest that the 

observed discrepancy in the testing error is a property of the time series itself. 

This supports the hypothesis that non-stationary physical processes are 

responsible for this anomaly. Further investigation may well highlight the need to 

develop an adaptive modelling technique or hybrid linear / nonlinear model that 

deals more effectively with the problem of non-stationarity.

Further general enhancements of predictive accuracy may also be possible. Use of 

additional input time series, higher resolution data and individual optimisation for 

each number of prediction steps ahead should all yield improvements. Creating 

specialised predictive models for specific sub-problems should also increase 

prediction accuracy. An ensemble of such specialised models can then be used to 

cover the original broader problem.

Predictive accuracy may also respond to carefully selected presentation of an 

input time series. For each model, the most accurate result was recorded for the 

one step prediction. This may be due, in part, to the restricted optimisation noted 

earlier. However, it also possible that the sampling rate of the input data is 

coupled to the optimum prediction step number. Therefore, a prediction for a 

certain number o f steps into the future might be best served by an input vector set 

sampled from the original time series at the same rate as the prediction step size.

5.12 Conclusions

This chapter has presented a simple technique that can cope with the problems of 

noise and non-contiguity that are typical of solar-terrestrial time series. The 

method of using nonlinear radial basis function (RBF) neural networks (NNs) to 

model the noonday variation of the critical frequency of the F2 layer of the 

ionosphere,/oF2, was implemented. The benefits of PCA noise reduction were 

assessed and found to offer a substantial improvement for the noonday RBF
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model, in addition to providing worthwhile reductions in processing requirements 

for all three RBF models. This thesis has also highlighted the need for a novel 

nonlinear technique that interpolates missing data points in any specific time 

series. Optimising the models for each individual prediction time scale will bring 

further improvements in terms of accuracy.

The performance o f the noonday foF 2  RBF model was compared with the 

reference persistence predictions. For a one-day ahead prediction, the unfiltered 

noonday RBF model produced an RMS error of 0.655 MHz, which is 

approximately 45% more accurate than the corresponding persistence prediction, 

which had an RMS error of 1.186 MHz. For a one-day ahead prediction, the 

noonday RBF model (with noise filtering) produced an RMS error of 0.484 MHz, 

a relative increase in performance of 59% over the corresponding persistence 

model. This accuracy was maintained for a ten to fifteen day period before the 

error started to rise significantly.

The performance of the hourly foF2 RBF model was compared with the reference 

recurrence and persistence models. For a one-hour ahead prediction, the hourly 

RBF model (no noise filtering) produced an RMS error of 0.452 MHz, in 

comparison with an RMS error of 0.781 MHz for the standard persistence model. 

This represented a relative increase in performance of approximately 42.1% over 

the persistence model. For a one-hour ahead prediction, the hourly RBF model 

(with noise filtering) produced an RMS error of 0.447 MHz, a relative increase in 

performance of 42.7% over the standard persistence model. In comparison, the 

RMS error for the 24-hour recurrence model was 0.818 MHz. The corresponding 

unfiltered and noise filtered RBF model improvements over the recurrence model 

were 44.7% and 45.4%, respectively. The accuracy of the RBF model degraded 

rapidly up to 6 hours ahead, but then reached a stable level of improvement over 

the recurrence model.
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The performance of the monthly median foF2 RBF model was compared with the 

reference persistence model, for prediction time scales of one to thirty months 

ahead. For a one-month ahead prediction, the monthly median RBF model (no 

noise filtering) produced an RMS error of 0.499 MHz, in comparison with an 

RMS error of 0.829 MHz for the standard persistence model. This represents a 

relative increase in performance of approximately 40% over the persistence 

model. For a one month ahead prediction, the monthly median RBF model (with 

noise filtering) produced an RMS error of 0.488 MHz; a relative increase in 

performance of 41% over the standard persistence model. In this case, the model 

accuracy degrades smoothly from 1 to 30 months ahead.

In conclusion, the RBF NN models presented in this chapter are a significant 

improvement over the standard persistence and recurrence models, which act as 

references for the assessment of any proposed prediction scheme. Unlike many 

existing studies, that utilise input parameters from supplementary time series that 

are concomitant with the future point to be predicted, the techniques presented in 

this chapter could be used to form the basis of a real time ionospheric forecasting 

service. This chapter has also highlighted the need for a novel nonlinear technique 

that interpolates missing data points in any specific time series. This should be 

done in such a way that the effects of the interpolation are minimised for any 

specific model that uses that time series as an input. This issue is addressed in the 

next chapter.
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Chapter 6: Development of a Nonlinear Interpolation Technique

6.1 Introduction

This chapter proposes a novel technique for the prediction of solar-terrestrial data 

sets that contain a significant proportion of missing data points [Francis et al., 

2001]. A nonlinear interpolation technique is employed to assign values to gaps in 

a time series. Each missing point is interpolated such that the error introduced into 

any specific predictive function is minimised. This interpolative technique has 

general application in any instance where the effects of interpolation upon a given 

analytical or predictive process need to be minimised or a complete time series 

needs to be constructed from incomplete data.

6.2 Incomplete Data Sets

As already discussed, incomplete data sets are a recurrent problem associated with 

geophysical parameters. Instrument failure or prevailing conditions often give rise 

to missing points in the time series of measurements. Discontinuities pose a 

significant obstacle for prospective nonlinear prediction schemes, which generally 

require continuous time series data. Relaxing this requirement necessarily leads to 

adapting the predictive techniques to cope with this particular problem. Three 

simple approaches are commonly used to overcome the problems associated with 

data gaps. These have already been discussed but it is useful to reiterate the issues 

involved.

The simplest solution is to set all missing data points to a value of zero, after the 

time series has been normalised to zero mean and unit variance. This minimises 

the root mean square error for a constant-value interpolation method, averaged 

over the entire set of missing values contained in the de-meaned time series. 

However, this approach is likely to be unsatisfactory for more than a small 

proportion of missing data points, depending on the data characteristics.
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For time series that contain a larger proportion of missing points, a more 

sophisticated linear interpolation scheme could be used. However, geophysical 

systems such as the ionosphere are thought to exhibit significant levels of 

nonlinear behaviour, as previously discussed. Use of a linear interpolation scheme 

on such data could alter the apparent dynamics of the underlying nonlinear 

dynamical system, thereby degrading the performance of the modelling process. 

The magnitude of this distortion will increase as the proportion of missing data 

points increases. Linear interpolation techniques are, therefore, highly undesirable 

when using nonlinear models or time series.

A third approach is to discard those training vectors that contain missing data. 

This avoids the issue of interpolation altogether and prevents any possibility of 

providing the NN with misleading interpolated data. As the proportion of missing 

points in the time series increases, the proportion of rejected vectors also 

increases, in some fashion dependent upon the distribution of the missing data 

points and the method of constructing the data vectors. This would be the 

preferred technique in the absence of a suitably robust nonlinear method of 

dealing with missing data points. However, rejecting a proportion of the training 

vectors may compromise the model training process. This is more likely to occur 

with a lower ratio between the length of the available time series and the length of 

each training vector. Additionally, a significant bias will be introduced if the 

missing points are not randomly distributed through the time series.

In the absence of a standard and mathematically rigorous alternative, the rejection 

of input/output pairs containing missing data points was adopted in the previous 

chapter. The proportion of missing points observed over the hourly foF2 time 

series in the previous chapter (6.6%) gave rise to a very high vector rejection rate 

(60%). It would be highly desirable, therefore, to make use of the information 

contained within these discarded vectors to improve the training of the RBF NN. 

This must be done in such a fashion that it does not alter the apparent dynamics 

captured by the modelling techniques or introduce excessive artificial bias. The
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satisfaction of these requirements underlies the novel nonlinear interpolation 

technique outlined in this chapter.

Consequently, it has been necessary to devise a more complex nonlinear 

interpolation scheme to overcome the considerable drawbacks of the above 

techniques. This chapter presents a technique that minimises the effects of 

interpolation upon any given modelling process. The optimal value is interpolated 

for each missing training point, such that the RBF gives a minimal error over the 

training set as a whole. Incomplete training vectors can then be interpolated and 

included into subsequent modelling attempts, improving the predictive 

performance of the RBF model. This approach allows the extraction of the 

maximum amount of information from initially incomplete training vectors, whilst 

introducing a minimum amount of artificial bias.

6.3 The Problem o f  Missing Data Points

Given a time series { x n ~jj£=l consisting of measurements of a physical system in

which some of the data points J l ,  correspond to failed measurements, it is

desirable to construct a k  step ahead predictive model of optimal order d. This 

model aims to utilise the general input vector Cw+y,..., x„) to predictxn+k, where 

d < n  < (N~k).

RBF NN techniques provide one such means of creating a predictive model. 

These techniques require a matrix of input vectors derived from the input time 

series. This matrix o f input vectors is constructed by sliding a one-dimensional d- 

length window along the input training time series, one point at a time. Each 

vector is then matched with the corresponding k  step ahead point to be predicted 

(desired output) to form a set of augmented input/output pairs {Xn input, Yn 

output} of the form *„), xn+k}, for n = d  .. (N-k). The RBF modelling

technique uses a constrained set of nonlinear functions /  (equation 3.6.2) to
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provide an approximation to the mapping between the input/output training 

elements. This mapping is the required predictive function. The model parameters 

(including d) are optimised to give the best functional solution by minimising the 
error

E = X  (/(X .)-Y „ )2 (6.1).
n -d

The presence of missing data points necessitates an adaptation of this scheme to 

cope with input/output pairs that contain one or more missing elements. Trivially, 

any input/output pair that contains a missing element has the corresponding entry 

deleted from the input vector set to form a subset, M, of input/output pairs that 

contain no missing elements and can be used in equation (6.1). This is the 

approached used in Chapter 5 and described in Flowchart 2 of Annex A.

This process of creating the final uninterpolated vector input set is represented 

pictorially in Figure 6.1. This figure depicts the construction of the input/output 

pair matrix (augmented array) from an input time series using a moving window. 

Missing points are indicated by **’ characters in the input time series and 

augmented array. Input/output vectors that contain a missing point are crossed out 

in the figure to indicate the fact that they are removed from subsequent stages of 

the modelling process.

Equation (6.1) is then summed over the input/output test pairs that contain no 

missing elements. It is worth noting that each missing element will be involved in 

the deletion of d+ 1 rows of the array, as the moving input window moves along 

the time series one point at a time. The proportion of rejected vectors will 

therefore initially increase geometrically as the proportion of missing points 

increases. As the proportion of missing points increases still further, the rate of 

increase of vector rejection will decrease, as the probability of multiple missing 

points occurring in the same input/output vector becomes significant. Finally, for
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a given proportion of missing points, increasing the length of the sliding window 

will also increase the vector rejection rate. The distribution of missing points will 

also have an important effect upon the proportion of rejected vectors. In addition, 

non-randomly distributed missing points will introduce bias into the model. This 

will occur because the rejected vectors will be correlated with certain features 

present in the data and these features will be poorly represented in the training set.

• • • • * • •  •  • • • • • • •  •* * * « + * «  #mm

tim e

U seab le  p e r t o f  
a u g m e n te d  a rray

A u g m en ted  a r ra y

Figure 6.1 Pictorial representation of data vector construction
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6.4 Interpolation Theory

Using the basic prediction framework outlined in the previous section as a starting 

point, several possibilities emerge for a prospective nonlinear interpolation 

scheme. In each instance, the interpolation scheme is only used to fill the gaps in 

the input time series. Gaps in the output time series are inviolate. Interpolating 

these points would compromise the veracity of the statistics used to assess the 

performance of the interpolation scheme. Fortunately, given an interpolated input 

time series, each missing output point only leads to the rejection of a single 

input/output pair. Thus, the residual number of rejected vectors after interpolation 

of the input time series is now only directly, rather than geometrically, related to 

the proportion of missing points.

The most obvious possibility for a nonlinear interpolation technique is based upon 

the direct application of the predictive function derived from the complete 

input/output pairs to the prediction of missing data points. Essentially, this method 

uses successive application of the one step ahead RBF NN model, as the input 

window moves from the start to the end of the time series, to provide a prediction 

for the missing values. It utilises complete vectors, or vectors that contain missing 

points that have been previously interpolated by the technique, to predict one step 

ahead to interpolate subsequent missing points. Subsequent models can then be 

derived using the interpolated input data set. The one step ahead model is the 

logical choice because it gives the best results in terms of predictive accuracy and 

should therefore provide the most accurate interpolation. However, once the RBF 

model moves far outside of its normal operational regime (i.e. complete input 

vectors only), this scheme can become highly unstable and either converge 

towards zero or infinity. Even if such asymptotic behaviour does not manifest 

itself, the interpolation process can result in distortion of the apparent dynamic of 

the system that is being modelled. This is a particular problem if the interpolation 

process is iterated in the hope of achieving better predictive results through 

successive interpolations of the input data.
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It is possible, however, to control the stability o f the nonlinear interpolation 

process by further constraining the gap filling technique. The previous method 

only considered the d  points of the input window that determine each point to be 

interpolated, via the predictive model, /(equation  3.6.2). However, the 

interpolated point will also form a part of each of the d  consecutive input vectors 

that determine the d  subsequent points in the output time series.

•  • • • •  • • • • •

Figure 6.2 Pictorial representation of blanket of influence

The second possibility for a nonlinear interpolation technique, which was the one 

finally developed, considers this factor by widening the area of influence of each 

missing point. Thus, each missing point can be said to possess a blanket of 

influence of 2J+1 points, as shown pictorially in Figure 6.2. Essentially, this 

region includes all those points that determine or are determined by the missing 

point. For a single blanket of influence, the effects of any interpolation do not 

need to be considered outside of this set of points.

Adjacent blankets of influence may overlap good data points without introducing 

interdependence, as these points are fixed values with respect to both zones of 

influence. In such a case, there is no interpolative interdependence between the 

missing points at the centres of each of the overlapping blankets of influence. 

However, multiple missing points within a time series may give rise to
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overlapping and interdependent blankets of influence within the time series, such 

that two or more missing points are within d  points of each other.

An example of overlapping blankets of influence is shown in Figure 6.3. In the 

case depicted, two overlapping blankets of influence encompass the missing point 

denoted by *#’. The interpolation problem then becomes multi-dimensional as the 

impact of this missing point will effect both blankets of influence and hence the 

interpolation of the two adjacent missing points. Each blanket may be inter-linked 

with several others, forming long chains of overlapping blankets of influence, 

along which the influence of a single missing point can propagate through mutual 

dependence. These chains can span a significant proportion of the time series if 

the proportion of missing points is large enough and the associated interpolation 

problem can become very high dimensional.

Figure 6.3 Pictorial representation of overlapping blankets of influence

Initially, consider the case where a solitary central missing point is surrounded by 

n good points on either side (Figure 6.2). The influence of the missing point is 

confined to this portion of the time series. It is desirable to interpolate the point in 

such a way that the error on the predictive function/ (equation 3.6.2) derived 

previously from the complete vector only input/output pairs is minimised over the 

set of n input vectors that are derived from this set of 2n+\ points. In a sense, the 

stability and accuracy of the interpolation process is preserved in both forward 

and reverse directions along the time series. Given a sequence of input points {xs.
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„,..., xJ+„}, where xs (d < s < N-k) is the only missing point and {X,Y} are the set 

of corresponding input / output pairs, this is achieved by minimising, with respect 
to xs, the error

jtn

E = £  ( /(X ,) -Y ,) 2 (6.2).

3E
Local minima occur w hen-— = 0 and the second derivative is positive.

ox„

This minimisation technique can be extended to encompass overlapping blankets 

of influence, where two or more missing points are within n points of each other. 

The simple minimisation scheme outlined above is extended to encompass a 

region of the data, containing t missing points, which is bounded by n good points 

at either end of the set. Given a sequence of points (x»i. „,..., x* + n} in which the 

subset of points x*} , where {d<s\ ... st < N-k), are the only missing points,

it is necessary to minimise, with respect to the entire subset of missing points, the 

error

s,+n
E = £ ( / ( x ' ) - Y ' ) 2 (6.3).

i = Si

Without loss of generality, it is possible to assume that si + n <, S 2 , . . . ,  s,-i + n<zsi, 

since if  this were not the case then it would be possible to sub-divide the set into 

independent partitions. For a multi-dimensional minimisation problem, local
3E 3E 3E .

minima occur when ^—  = 5—  = -  = 5— = u and the matrix o f secondox si °xsl oxxl

derivatives, the Hessian, is positive definite (positive determinant and positive 

valued at the turning point).

109



Many techniques exist for calculating local minima, usually based upon a variant 

of a gradient descent algorithm [Press et al., 1992]. This thesis has employed 

conjugate gradient descent, which often converges more quickly than other 

gradient descent methods. It is guaranteed to find a minimum of a quadratic 

function within p  steps (for a /7-dimensional minimisation problem). Techniques 

such as steepest gradient descent require many multiples of p  steps to approach 

this minimum, especially if  the minimisation surface is strongly elliptical. The 

conjugate gradient descent technique is applied in this instance to solve the multi

dimensional minimisation problem outlined above, by combining the baseline 

RBF function derived in the previous chapter (equation 3.6.2) with equation (6.3).

6.5 High Level Interpolation Methodology

An interpolated model has been implemented for the prediction of hourly foF2 

values from 1971 to 1973 for Slough station, UK. The time series as a whole 

contains 6.6% missing data points, which gives rise to a vector rejection rate of 

approximately 60%, if  incomplete input vectors are discarded. A missing data 

point might correspond to an equipment failure, or ionospheric conditions may 

prevent a clear measurement of the properties of the F2 layer. Another class of 

data dropouts includes those values that fall outside the likely range of variation 

for the foF2  parameter (0.5 to 17.5 MHz) and are probably due to clerical errors or 

poor measurement conditions. In general, missing points are not randomly 

distributed through each time series. This introduces a potential source of 

sampling bias into the uninterpolated RBF model.

In this study, the first 23,000 points of the hourly time series have been used to 

train and optimise the model, while the remaining 3304 points were used to test 

the ability of the model to generalise when applied to unseen data. A one

dimensional sliding window was passed along the data, one point at a time, to 

construct the matrices of input vectors required to train and test the RBF model. In 

each instance, training and testing data were processed entirely separately; i.e. the
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sliding window used to create the input vectors was not allowed to overlap both of 

the data segments at the same time. The effectiveness of the interpolation process 

has been assessed relative to reference persistence and recurrence interpolated 
models.

Flowchart 2 in Annex A details the basic, non-interpolated RBF NN predictive 

modelling process adopted in the previous chapter and in Francis et al. [2000]. 

This procedure produces an uninterpolated RBF predictive function that acts as a 

bootstrap for the subsequent interpolation of missing data points, which is 

presented in this chapter. The optimal parameters derived in the previous chapter 

were also adopted for the purposes of this thesis, due to processing limitations.

By combining the baseline RBF function derived in the previous chapter (equation 

3.6.2) with equation (6.3), the conjugate gradient descent method can be applied 

to find the optimal interpolated values for the missing points in the input time 

series.

Flowchart 3 in Annex A details the high-level process of applying the error 

minimisation algorithm to interpolate the gaps in the input time series. The basic 

interpolative scheme, outlined above, is initially used to fill in the gaps in the 

input time series using only the complete input vectors (-40%). Equation (6.1) is 

then summed over a set of vectors M*, which contains the interpolated input test 

vectors that do not correspond to missing output points, in addition to the set M of 

complete input vectors, to determine the new predictive model that includes the 

interpolated input data.

In this instance, the vector rejection rate is only dependent upon the output time 

series, so the model can utilise a much greater proportion of the total number of 

possible input vectors (-93%). In turn, this means that the second RBF model can 

subsequently be used to create a much better interpolation of the original non

contiguous input time series than the first RBF model - which only utilised
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complete input vectors. This process can be iterated until the model error on the 

test set is minimised and the best interpolation (and the best predictive model) of 

the input time series is obtained. In this application, two iterations of the 

interpolation process were sufficient to achieve the optimal results. The optimally 

interpolated model was then used to predict one to thirty hourly steps ahead and 

the results were compared with the reference models described in the next section, 

using the RMS error.

6.6 Reference Interpolation Models

Three simple reference interpolation schemes were adopted for the purpose of 

comparison with the nonlinear gap-filling method. The first technique, the zero 

interpolation scheme, set all missing points in the de-meaned and normalised time 

series to a value of zero. The second used persistence to fill in missing data points. 

The third and final technique used the 24-hour recurrent structure of the hourly 

foF2  time series to replace missing points. In addition, the complete vector only 

RBF model was included for comparison. However, the complete vector test set is 

much smaller than the interpolated vector test set, due to incomplete vector 

rejection. This means that the results are not directly comparable with the 

interpolated techniques, which use a significantly larger superset of the complete 

vector test set.

6.7 Results and Discussion

For each of the prediction schemes, Figure 6.4 shows a graph of root mean square 

(RMS) error, on the interpolated test vector set, plotted against number of hours. 

Using any of the proposed interpolation schemes, the vector rejection rate falls 

from 60% to 6.6%. Residual rejection occurs because training vectors are still 

rejected if  there is a gap at the corresponding point in the required output time 

series.
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Figure 6.4 Relative performance of interpolation techniques
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The graph clearly shows that the nonlinear interpolation technique consistently 

produces the best results in terms of relative predictive accuracy over the test set. 

The complete vector only (no interpolation) model is also included for 

completeness and outperforms the interpolated model up to 15 hours ahead. 

However, direct comparisons cannot be made with the interpolated models for 

reasons stated in the previous section. The nonlinear interpolation technique 

shows a 2.3% improvement in test set error over the recurrence interpolated 

model (the level of improvement rises to 3.8% if the incomplete test vector set is 

considered in isolation). In turn, the recurrence interpolated model shows a 

similar improvement relative to the persistence interpolated model. The zero 

interpolation model falls significantly behind these reference models, indicating 

the necessity o f adopting at least some approach to deal with the problem of 

missing data points in geophysical time series.

The benefits of this technique are more apparent when input vectors containing 

missing data points are also used to test the model. In this case, the uninterpolated 

predictive model produces an RMS error of 0.653 MHz, 44.5% higher than the 

corresponding error for the model upon the complete vector only test set. 

Utilising the interpolation algorithm lowers the error by 26% to 0.486 MHz, 

almost equivalent to the performance of the uninterpolated model upon input 

vectors that contains no gaps (RMS error ~ 0.452 MHz). In fact, the performance 

of the interpolated model on incomplete vectors lagged just 7.1% behind the 

performance o f the same model upon complete vectors. This clearly shows the 

benefits that can be achieved using this technique.

The complete vector only model curve (Figure 6.4) cannot be directly compared 

with the interpolated model curve, as both models have been applied to different 

test sets. Though it is not shown in the figure, it is interesting to note that the 

interpolated model produced lower RMS errors, relative to the complete vector 

only model, when both were applied to the complete vector only test set (M) 

instead of the interpolated vector test set (M*). This shows the positive benefits
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that can be accrued, in terms of improved network training, through interpolation 

of the input time series. This point is further strengthened by the fact, on the same 

test set, the zero interpolation model performed less accurately than the complete 

vector only model. From this evidence, it would appear that rejecting incomplete 

data vectors may be preferable to including them in a model without further 

processing, as zero interpolated vectors seem to provide the network with 

deleterious training material.

The improvement in overall predictive accuracy observed in this thesis might be 

considered relatively modest. This is most likely a side effect of the increased 

dimensionality o f the RBF model optimisation problem, given the iterative nature 

of the interpolation methodology. The size of the optimisation space to be 

searched, in conjunction with associated limitations in terms of available 

processing resources, necessarily involved compromises in terms of the level of 

optimisation that could practically be achieved. The overall effect of these 

compromises is likely to have had a very significant effect on the performance of 

the optimisation process. This issue will be discussed at greater length in the 

following section.

In addition to the improvement in predictive accuracy provided by the 

interpolation process, the nonlinear predictive model is also enhanced in terms of 

its generality. The latter effect is arguably the more important of the two. Missing 

data points can give rise to correlated data vector rejection, as there may be 

features present in the time series as a whole that are not characterised in the 

complete vector only training set. While an improvement in predictive accuracy 

is a worthy goal, the model is of little use if it can only be applied to a limited set 

of circumstances with the indicated level of accuracy. Furthermore, it may not be 

straightforward to deduce in advance whether or not the complete vector model is 

going to be applicable for any given prediction. Such a limitation would preclude 

the use of an uninterpolated model for real-time predictions, where no a-priori 

knowledge concerning applicability is available.
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Increasing the amount of training data available to an RBF NN can be vital if 

training material is a limiting factor on the predictive performance of the NN. If 

the number of available training vectors is adequate, then little may be gained in 

terms of predictive accuracy. In such instances, however, the interpolation 

technique outlined in this thesis can still be used to significantly reduce the 

effects of sampling bias and correlation of missing points with features present in 

the input time series.

For time series where simple periodic climatological models cannot be used to 

interpolate missing data, this technique will find the best interpolative solution 

for any given problem. In such a case, the resultant improvement in performance 

may well be greater than for the prediction of the hourly foF2  time series. The 

dominant diurnal variation of this ionospheric parameter is well modelled by 

simple recurrence and this simple model can be used to provide a reasonably 

effective interpolation scheme.

6.8 Restrictions on Use o f  Methodology

This method is currently subject to several restrictions. First, the interpolation can 

only be carried out for a self-prediction problem. This means that only the time 

series history of the data to be predicted can be used as an input to the predictive 

model and the input time series itself must be one-dimensional. Secondly, the 

RBF function used for the interpolation must be for a single step ahead 

prediction.

In theory, any of these limitations could be circumvented through further 

development of the underlying interpolation technique. However, it may not be 

advisable to lift any or all of these restrictions. With regard to the first limitation, 

any attempt to fill gaps in the input time series using a model that predicts a 

different output time series is likely to be ill advised. Supplementing the self

prediction input time series with additional time series to improve the predictive
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accuracy of the model, and hence the accuracy of the interpolation, is a more 

considered approach. For the prediction of the variation of hourly foF2 , measures 

of solar activity or the interplanetary magnetic field could be appropriate. Any 

such supplementary time series will need to contiguous or contain very few 

missing points. Otherwise, the benefits of interpolating the original input time 

series are likely to be severely compromised. This is due to the fact that gaps in 

the supplementary time series will need to be considered during the process of 

rejecting incomplete input/output pairs and will contribute to increase the overall 

input vector rejection rate.

As a simple alternative, supplementary inputs could be interpolated separately 

before being used to enhance the original self-prediction problem. It might also 

be possible to evolve a co-minimisation technique, where each additional input 

time series added to the model necessarily requires a corresponding output time 

series. This would give rise to an output prediction for each input time series, 

some of which could be discarded if necessary. This multiple input / output RBF 

model could be used in conjunction with a multi-dimensional and interdependent 

analogue of equation (6.3). This would simultaneously find the optimal values for 

missing data points in all of the input time series in a fashion very similar to the 

interpolation of each time series in isolation. However, the minimisation would 

be further constrained by cross prediction between the time series and should 

achieve better results. This would partially be due to the inclusion of spatial 

information that can be utilised in the interpolation process. This could reduce the 

effects of under-sampling, as some constraints would not have a temporal aspect. 

It may also make the process less susceptible to choosing local optima that are 

based upon simple temporal properties of the data, such as recurrence.

The second limitation of the interpolation technique could be removed with only 

minor modifications to the underlying algorithm. The one step ahead predictive 

RBF model is usually the most accurate. As a direct consequence, it will provide 

the best average interpolation for any given missing point in the time series,
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given a complete input vector. For consecutive missing points, however, it may 

be preferable to extend the existing scheme. Currently, the first gap of the 

consecutive series o f missing points is filled by the one step ahead model using a 

complete input vector. The second gap then also has to be filled using the one 

step ahead model. This is achieved by moving the input window along one point 

to encompass the previously interpolated point, so that the second gap to be filled 

is the required one point ahead. It may arguably make more sense to continue to 

fill the first gap with the one step ahead model, but to fill the second gap with an 

optimal two step ahead model. This will allow the use of a complete input 

window rather than an interpolated input window. This would avoid using an 

interpolated input vector to interpolate the second missing point, improving the 

stability and accuracy of the interpolation process still further. By looking at the 

distribution of lengths of missing sections of the input time series, it should be 

possible to produce a scheme that trades processing resources against the number 

of different step ahead models available to be used by the interpolation algorithm. 

These models can be placed in a way that gives efficient coverage of the 

distribution of lengths of contiguous series of missing data points. This would 

necessarily involve an additional optimisation overhead. All of the models, not 

just the one step ahead model, would need to be fully optimised in terms of the 

model parameters to justify this approach. Otherwise, much of the performance 

advantage of using separate models would be lost.

Another possible improvement to the gap filling technique employs the idea of 

partial confidences for data points. Currently, valid and missing data points are 

assigned a confidence value of one or zero, respectively. Additional information 

is sometimes available for measurements of geophysical parameters. For foF2 , 

each measurement has an accompanying URSI code that provides an indication 

of the reliability o f the value as well as possible upper or lower bounds. These 

codes could be used to derive fractional confidence values for those points that 

are deemed less reliable. An input vector containing points with associated 

confidences of less than one could be assigned a lesser weighting in the training
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phase. This would be achieved by weighting each input vector with the product 

of all of the individual confidence values for each input vector element. The 

resultant weighting for each complete input vector would be in the range (0,1].

The above idea could be extended to the utilisation of fractional confidences in 

the interpolation process. The filling procedure could be modified to take into 

account the confidences o f surrounding points when interpolating a missing 

point, to improve the reliability of the gap filling process. Partial confidences 

could also be assigned to interpolated points in the foF 2  input time series. 

Interpolated points are currently assigned a default confidence value of one, in 

the absence of a rigorous alternative. The existing technique could be adapted to 

produce an appropriate partial confidence value for the interpolated point that 

minimises the error on the model output. The partial confidence of a filled point 

would be dependent on the accuracy of the predictive model employed, as well as 

the number of other missing points that are interdependent with it. This gradation 

of data quality, and attendant weighting of interpolated input vectors, would 

improve the general stability and subsequent iteration of the interpolation 

process, as described above.

6.9 Optimisation Issues

Model optimisation is a very important aspect of the work presented in this 

thesis. It influences the performance of the model in two respects. The first and 

most straightforward aspect of this influence is the optimisation of the 

interpolation of missing points detailed in section 6.4. Currently, the technique 

merely finds local optima for equation (6.3) from an initial starting condition. 

This chapter employed both a persistence initial condition and a zero vector 

initial condition, either of which led to a 2.3% improvement on persistence. There 

is no guarantee that such a solution is globally optimum. It may well be possible 

to find a lower cost solution, in terms of test set RMS error. The removal of 

persistence information, using linear feature extraction or by taking first
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differences of the data would be desirable. This would remove the dominant 

persistence based minimum, and enable the search technique to concentrate on 

more globally optimum areas within the solution space.

Heuristic techniques, that contain a measure of backtracking, could also be used 

to conduct a more thorough and efficient global search of the solution space, 

whilst keeping the number of initial conditions used to an acceptable level. Such 

a modification would require significant extension of the existing interpolation 

framework, but should not dramatically increase the processing resources needed 

to find a solution.

The second aspect of the optimisation issue relates to the free parameters used in 

the RBF modelling process. In the previous chapter, the only significant 

compromise made with respect to this optimisation was that the optimal model 

parameters were only derived for the one step ahead model, due to processing 

constraints. This chapter then used the optimal one step ahead model to 

interpolate missing points. However, the iterative interpolation of the input time 

series necessitates a re-evaluation of the idea of the optimality of the one step 

ahead model. The optimal parameters for the one step ahead RBF model in the 

previous thesis were determined using the complete vector training and test data. 

These parameters are not necessarily valid for the interpolated RBF model, which 

uses the set of interpolated input vectors.

The input window length is one of the most important free parameters of the RBF 

model. For a time series that contains no gaps, a balance must be struck between 

not including sufficient information (input window too short) and including 

redundant information (input window too long) in each vector. Essentially, the 

correct input window length will just resolve the topology of the underlying 

dynamical system that belies the parameter to be modelled. This ideal situation is 

complicated by the presence of missing points and the limited number of points 

that are available for geophysical time series in the historical record. The number
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of training vectors obtained from a specific number of consecutive points 

decreases as the length o f the sliding input vector window increases. If the 

number of available time series points is limited then the optimisation of the input 

window length may be compromised, as the window length increases past a 

certain point. This can be attributed to inadequate training of the RBF model due 

to a lack of data, rather than increasing redundancy in the input.

This problem is compounded by the issue of input vector rejection, which is also 

directly related to the input window length. The proportion of rejected vectors 

will increase as the length of the input window increases, possibly compromising 

the training process. Thus, vector rejection is very likely to be a limiting factor on 

the optimisation of the uninterpolated RBF model. For the interpolated models, 

this limiting factor is removed and the interpolated model is free to adopt a longer 

optimal window length if it will improve the model performance.

These limiting factors will also directly influence the testing process in a similar 

fashion, by altering the number of available test vectors and hence the assessment 

of the optimum parameters as determined by the RMS error on the test set. For 

the hourly foF2  time series, the interpolated RBF model uses more than twice as 

many test and training vectors as the uninterpolated model, as vector rejection has 

dropped from 60% to 6.6%.

The arguments applied to the choice of input window length also hold true for all 

of the other free model parameters. These parameters include the principal 

component selection, the number of functions used to construct the model and the 

placement o f functional centres. The optimisation issues are also compounded by 

the iterative nature of the interpolation process. At each stage, the model must be 

optimised anew in some fashion that is dependent upon interpolations derived 

during previous optimisations. This very large meta-optimisation problem is 

based upon individual model optimisations that are already very demanding in 

terms of required processing resources. These limitations precluded re
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optimisation of the RBF model at successive stages of the interpolation process. 

It is very likely, therefore, that the current interpolated RBF model may be 

improved given greater processing resources.

In summary, there are many degrees of freedom in this meta-optimisation, with a 

degree of linkage between stages. Model parameters are not linearly separable 

and must be treated as a coupled whole. For example, the optimal PC A derived at 

one stage during the iteration of the interpolative process might discard 

information that could be vital for the next iteration. Feedback is therefore 

required in both directions, between iterations of the interpolation process. Again, 

heuristic approaches may be the appropriate response to this problem and it is 

likely that very significant gains in predictive and interpolative accuracy can be 

made using such techniques.

6.10 Conclusions

This chapter describes a novel and general scheme to deal with the problem of 

non-contiguity in geophysical time series. The scheme can be used to improve the 

viability, accuracy and generality of the underlying non-interpolated predictive 

model, derived in the previous chapter. This method can then be used to provide 

real-time predictions even when the input time series contains missing data 

points. This baseline nonlinear interpolation scheme provides a significant 

improvement upon simple schemes that rely upon persistence or recurrence 

interpolation of an observed ionospheric parameter.

In instances where simple periodic climatological models cannot be used to 

provide realistic interpolations of missing points, this technique will find the best 

interpolation solution for that particular problem. In such a case, the resultant 

improvement may be greater than for the prediction of the hourly foF2  time 

series, where the dominant diurnal variation of this ionospheric parameter is 

reasonably well modelled by simple recurrence.



7.0 Conclusions

7.1 Introduction

The central theme o f this thesis has been the development of novel and robust 

nonlinear techniques that can be used to analyse and predict geophysical time 

series. Simple linear techniques have achieved a measure of success in these 

areas, but are not adequate for the task of characterising the nonlinear dynamics 

that underlie the behaviour of the solar-terrestrial system.

The MHD equations that describe the solar-terrestrial environment are currently 

not thought to have tractable analytical nonlinear solutions. Consequently, it is an 

attractive idea to look for nonlinear features in experimental data, in order to 

develop nonlinear models and analytical tools using empirical methods. 

However, existing techniques in the field of nonlinear mathematics have been 

developed for well-controlled experimental systems or simulations. Therefore, 

these methods work best upon large sets of clean, stationary data. In practice, 

solar-terrestrial data sets are very different from this ideal; generally they are 

noisy and highly quantised, with many data dropouts and are rarely stationary, 

due to the large range of physically significant time-scales. As a result, many of 

the existing techniques are not suitable for application to such data and will give 

spurious results without additional safeguards. Thus, alternative methods are 

required to either assess nonlinear behaviour within data sets or validate the use 

of these standard nonlinear techniques.

The techniques presented in this thesis have been developed to cope with the 

problems of noise and non-contiguity that are typical of solar-terrestrial data sets. 

Existing nonlinear analysis techniques are prone to giving spurious indications of 

nonlinear behaviour in such circumstances. These new techniques can be applied 

as either an alternative to established techniques, to determine less fragile and 

more qualitative nonlinear properties that may be present, or as a precursor - to
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determine whether or not it is viable to proceed with the application of standard 

nonlinear analysis methods. The methods employed have been derived from 

studies into nonlinear dynamical systems theory and artificial intelligence, 

specifically neural networks, and have a general applicability that extends to any 

time series prediction problem. Such tools can be used to create knowledge 

independent and self-determining nonlinear models that do not require a 

complete understanding of solar-terrestrial physics.

7.2 Gains and Advancement

This thesis has attempted to take a rigorous approach to the application of neural 

networks to the particular problem of solar-terrestrial prediction. By avoiding the 

widespread ‘black box’ approach to developing these modelling techniques, it has 

been possible to evolve analytical and predictive techniques that are robust and 

capable of handling typical geophysical data sets.

The first application of these techniques pertains to the analysis of the SABRE 

data, which can be used to infer the behaviour of the solar sector structure. In 

chapter 4, this data set was examined for evidence of nonlinear dynamical 

behaviour, as originally postulated by Yeoman et al. [private communication]. A 

combination of linearly orthogonal filtering and neural net based nonlinear 

prediction was applied to the problem, in conjunction with a set of nested testable 

hypotheses concerning the underlying nature of the SABRE data. It was 

determined that although there is evidence of nonlinear behaviour in the SABRE 

data, it is not distinguishable from a nonlinearly transformed coloured Gaussian 

noise process in either the descending or the ascending phase of the solar cycle. 

In such a case, standard nonlinear analysis techniques would either provide 

negative or spurious results so no additional knowledge could be gained through 

their application. Consequently, it is not possible to support the hypothesis that 

increased nonlinear dynamical behaviour dominates, or even plays a significant 

part in, the behaviour of the ascending phase of SC 22. Contrary to expectations,

124



the evidence seems to suggest that the descending phase of SC 21 exhibited more 

obvious nonlinear properties than the ascending phase of SC 22, which had less 

structure and was more noise-like.

Chapter 5 of this thesis presented a technique that can deal with the prediction of 

typical solar-terrestrial time series, or real-world data in general. Nonlinear radial 

basis function (RBF) neural networks (NNs) were used to model the variation of 

the critical frequency of the F2 layer of the ionosphere, foF2, on hourly, daily and 

monthly time scales. The benefits of principal component analysis based noise 

reduction were assessed and found to offer a substantial improvement for the 

daily RBF model. Noise reduction was additionally found to reduce the 

processing requirements in constructing all of the RBF models.

The RBF NN prediction models were found to be significantly more accurate 

(40-60%) than the standard persistence and recurrence models, which act as 

references for the assessment of any proposed prediction scheme. RMS errors 

were in the range 0.45 to 0.5 MHz for the hourly, daily and monthly models. 

Many existing applications of AI techniques utilise input parameters from 

supplementary time series that are concomitant with the future point to be 

predicted. The NN techniques presented in this thesis do not suffer from such a 

drawback and form a viable basis for a real time ionospheric forecasting service.

Chapter 5 also highlighted the need for a novel nonlinear technique that optimally 

interpolates missing data points in any specific input time series. This should be 

done in such a way that the effects of the interpolation are minimised for any 

specific model that uses that time series as an input.

It was stressed that optimising the models for each individual prediction time 

scale would bring further improvements to the accuracy of the predictions. It was 

also noted that normalised prediction errors for all three model time scales were 

very close to the irreducible error associated with the input time series. All three
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models used data derived from an hourly time foF2  time series, which has a 

within hour variation of between 5-30% at mid-latitudes [Professor T. R. 

Robinson, private communication]. This variation is comparable to the observed 

magnitudes of the normalised RMS errors for the predictive models (between 

20% and 25%). This indicates that the accuracy of current foF2  predictive models 

could be improved by higher time resolution data.

Chapter 6 o f this thesis described a novel and general scheme to deal with the 

problem of non-contiguity in geophysical time series. Missing data points are a 

major difficulty associated with all geophysical data sets. It is a particular 

problem for data measured by spacecraft, where telemetry often fails and large 

sections o f data measurements can be lost. Similarly, ground based measurements 

are also prone to dropout, due to equipment limitations and failure. Simple linear 

interpolation schemes cannot be used to overcome this problem because the time 

series involved are nonlinear in nature.

The interpolated RBF models presented in Chapter 6 can be used to improve the 

viability, accuracy and generality of the underlying non-interpolated predictive 

model, derived in chapter 5. These methods can be used to provide real-time 

predictions even when the input time series contains missing data points. Such a 

capability is essential to ensure that it is possible to provide continuous 

predictions in the presence of data that contains a high proportion of data 

dropouts. In this study, the input vector rejection rate was reduced from 60% to 

7%, with corresponding benefits to the model training process. However, the 

main advantage of this technique is apparent when data containing missing data 

points is used as an input to the model. For the data set considered, the 

uninterpolated predictive model produces an RMS error of 0.653 MHz. Utilising 

the interpolation algorithm lowered the error by 26% to 0.486 MHz, almost 

equivalent to the performance of the uninterpolated model upon data that contains 

no gaps (RMS error ~ 0.452 MHz).
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7.3 Broader Scope

The techniques developed during the analysis of the SABRE data have general 

applicability as time series classification tools that can be applied to any data set. 

By removing the obvious trends and linear structure within a given time series, it 

is possible to apply these techniques to classify the contribution and nature of any 

nonlinear behaviour within the data set. This allows us to quantify the relative 

contributions of low dimensional nonlinear effects in comparison to stochastic 

processes or high dimensional nonlinear dynamics that cannot be resolved given 

an input time series of limited length.

It is in fact possible using these general techniques, developed in Chapter 3 and 

used in Chapter 4, to create a model of any nonlinear behaviour and subtract it 

from the time series. This process just leaves the noise and high-dimensional 

nonlinear components that the technique has been unable to classify. This residue 

could then be subjected to further analysis to quantify these aspects of the data 

and to categorise the features that the model finds difficult to predict. This 

residue ultimately defines the absolute limit of predictability for a nonlinear 

model o f a particular time series.

This approach can be further extended by examining the behaviour of the 

prediction error for a set of predictive models for a specific time series that 

predict the time series a number of consecutive steps into the future. The 

predictive accuracy curve, as the models extend further into the future, provides a 

description of the temporal correlation of the system over time. Linear periodic 

systems exhibit a periodic correlation of the model error as a function of 

prediction time scale. In comparison, a constant level of correlation is observed 

for a purely stochastic process. Correlation for a nonlinear time series, however, 

should fall off sharply with time as the prediction extends further into the future.
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Having examined the time series in question using this methodology, the 

nonlinear models constructed can be compared with nested sets o f testable 

hypotheses to determine the presence and character of the nonlinear properties 

that might be present in the data in more detail. Although the SABRE data 

contained low-level nonlinear behaviour (can be distinguished from type I 

surrogate), the presence of nonlinear dynamical behaviour could not be 

determined (cannot be distinguished from type II surrogate). Consequently, there 

was no point proceeding to more complex surrogate tests or applying standard 

nonlinear analysis techniques, which are dependent upon phase information that 

has been shown to be absent from this data set. For time series that can be 

distinguished from type II surrogate data, subsequent surrogate tests might 

encompass tests for distinct types of nonlinear dynamical behaviour. 

Alternatively, surrogate tests could then be used to validate results obtained from 

standard nonlinear tests for dimensionality and power law spectrum, given that 

the methods presented in the thesis had already been used to show that nonlinear 

dynamics were present in the data and were not an artefact of the analysis process 

or the noise structure of the data. Standard nonlinear techniques are susceptible to 

this problem and employing surrogate tests to establish the presence of nonlinear 

dynamics and then assess the significance of the results obtained using the 

standard nonlinear techniques is an essential safeguard.

The nonlinear RBF modelling techniques presented in Chapter 5 have a general 

applicability that extends to any time series prediction problem, and are not 

necessarily limited to geophysical applications. Further applications of this work 

to geophysics are discussed in section 7.5.

The gap-filling technique presented in chapter 6 will find the best interpolation 

solution for any general problem and is most useful in those instances where 

simple periodic climatological models cannot be used to provide realistic 

interpolations of missing points. In such a case, the interpolation technique may 

provide a greater advantage than is evident for the hourly foF2 time series, where
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the dominant diurnal variation of this ionospheric parameter can be reasonably 

modelled by simple recurrence. In addition, this interpolative technique has 

general application in any instance where the effects of interpolation upon a given 

analysis process need to be minimised or a complete time series needs to be 

constructed from incomplete data.

7.4 Future Theory Development

Further enhancements of the underlying theoretical framework and the existing 

modelling capability fall into one of three categories: improved model 

optimisation, extension of existing methods and development of new techniques. 

These topics are dealt with separately in the following sections.

7.4.1 Improved Model Optimisation

As discussed in chapter 6, the determination of the best (uninterpolated) RBF 

model for a given time series is not currently optimal in the strictest sense of the 

word, though the RBF model itself is optimal for a given set of free parameters 

(number of centres, window length etc). Instead, the model free parameters are 

optimal within a set of constraints imposed by limitations on available processing 

resources. For the uninterpolated modelling process, it would be possible to 

overcome these constraints with greater resources and locate the true optimal 

configuration for each time series to be modelled using exhaustive search 

methods.

The iterative nature of the interpolated modelling process means that it is not 

possible to perform an exhaustive search across the whole of the solution space 

for this type o f modelling scheme. The individual iterations of the modelling 

process cannot be decomposed into separate optimisations. Therefore, the set of 

free parameters increases in direct proportion to the number of iterations. 

However, the size of the solution space increases as the exponent of the number
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of free parameters, as dictated by permutation theory. In addition, the objective 

function to be minimised in equation (6.3) changes at each iteration because the 

interpolated input vectors are used to create a new predictive model at each stage 

of the process. For the purposes of this thesis, the same parameter set has been 

used at each iteration of the modelling process. This is far from ideal but it does 

allow the interpolation to be carried out within realistic time scales. However, 

techniques are available that can be used to perform efficient searches within very 

high dimensional optimisation problems. Heuristic techniques are one such 

approach and can be readily applied to solve combinatorial optimisation 

problems of this type. These techniques have evolved in response to the need for 

‘rule of thumb’ methods for determining near optimal solutions in very large 

search spaces. These techniques include methods such as taboo search, simulated 

annealing and genetic algorithms. Such methods could fully automate the 

optimisation of the model free parameters and result in a more thorough search of 

the solution space. Heuristic techniques may also be applied to the actual 

interpolation process itself. The resulting solutions would be more globally 

optimum, in terms of minimising the error introduced into the predictive function 

by interpolating points.

The next area of model optimisation relates to the fitting of the radial basis 

function set to the data. Currently, singular value decomposition (SVD) is used to 

determine the optimal weights by minimising the linear least squares error 

between the output of the constructed function and the input time series used as 

training data. However, it is possible to improve upon this technique by adopting 

nonlinear minimisation methods that do not limit the functional fitting process 

with linear constraints. Such techniques will improve the quality of the fit, but the 

RBF will no longer be a single pass process. Again, heuristics could be used to 

provide a mechanism for this approach.

The effectiveness of the nonlinear models that have been derived in this thesis 

has been determined using variants of the root mean square error. It has been
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used as a means of representing the accuracy of the models as well as a means of 

assessing the optimal choice of free parameters for each model. The use of this 

error measure in the choice of free parameters can be deemed an optimisation 

issue. For example, RMS error stresses the accurate modelling of peaks at the 

expense of other characteristics within the data. Alternative error measures would 

increase the emphasis o f different features within the data, according to 

requirements. The stringency of the testing criteria can also be increased by using 

the model predicted output (MPO) at one step as training input to the model at the 

next, such that the model output feeds back into the model input. Actual input test 

data is only used to start the process until MPO points are available, though the 

effectiveness o f the model is still assessed using the original desired output for 

the test data. This improves the ability of the model to capture the underlying 

dynamics of the data, as opposed to creating just a one step ahead predictor.

7.4.2 Extension o f  Existing Methods

It has been noted that linear predictive models can be more effective than 

nonlinear models for periods of low geomagnetic activity. This observation can 

be attributed to the fact that linear models are less prone to over fitting when 

applied to purely linear data. It has also been noted that the efficacy of either 

modelling approach can be degraded by the presence of non-stationarity within 

an input time series.

A modified modelling scheme has been proposed to tackle the problems of 

nonlinear over-fitting and non-stationarity, but has not yet been tested. The first 

stage of this process employs physical knowledge concerning the input time 

series to remove the non-stationarity of the data. This could be achieved by 

taking first or second differences of the input time series or by removing simple 

climate based trends, such as recurrence, from the data. More sophisticated 

techniques might involve the application of adaptive nonlinear techniques such as 

Kalman filtering or RBF models of the non-stationarity in the time series.
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The removal o f the obvious long-term trends from the data enables the 

subsequent modelling procedures to focus more clearly upon the remaining 

features within the resultant stationary time series. The original time series would 

also be used as an input to subsequent modelling stages. This is necessary to 

allow the model to relate features within the stationary data to the original time 

series, as features in the former may be correlated in some sense to the non- 

stationarity of the original data.

A hybridised nonlinear / linear modelling technique could be implemented to 

produce a model o f the data that is optimal with respect to both the linear and 

nonlinear aspects o f fitting the input time series. A single pass process fits the 

linear and nonlinear adaptability of the model simultaneously. This approach has 

the advantage o f simplicity and ease of use over separate linear and nonlinear 

modelling stages but it is more difficult to assess the relative contributions of 

each of the models.

It is also planned to develop a weighting scheme that will accord more 

importance to periods o f unusually high geomagnetic activity in the training 

phase of model development. This type of functionality is related to the partial 

confidence concept suggested in Chapter 6. The weighting could be applied as a 

multiplier to the confidences associated with all sets of points that represent 

periods o f special interest during the training process. Alternatively, training 

weight could be designated as an additional parameter to accompany the 

confidence level already associated with each data point.

The concept of partial confidences could also be extended to encompass the data 

quality field values that are often associated with geophysical time series. These 

fields provide additional information about the associated data point, such as 

noting uncertainty or whether the value is an upper or lower limit. This 

information could be used to modify the data confidence value and adjust the 

importance of that point in the training process. By going one step further still, it
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might be possible to use the interpolation scheme to adjust the value of such data 

points in light o f subsequent data points and predictions, even though they 

represent legitimate measurements.

Finally, the functions used to provide the nonlinear adaptability of the RBF 

modelling techniques need to be selected to suit the characteristics of the time 

series being modelled. For example, for a time series with a very wide dynamic 

range, it may be necessary to transform the input data logarithmically before 

applying the RBF model. This would improve the ability of the model to track 

dynamic events and estimate their magnitudes but at the expense of quiet time 

performance. A similar effect could also be achieved by using the auto-correlated 

errors on previous predictions to provide feedback to the current prediction.

7.4.3 Development o f  New Techniques

This thesis has highlighted areas where new techniques, not necessarily based 

upon time series methods, could be employed to widen the scope of the existing 

work and to provide additional functionality.

The first o f these areas shifts the emphasis of the modelling from the prediction 

of exact time series values to the classification, extraction or prediction of 

patterns and features within the data. Fuzzy logic, Bayesian statistics and self- 

organising mapping (SOM) techniques could all be employed to classify patterns 

within the data and predict the occurrence probabilities of pre-defined events. A 

specific application would be prediction of geomagnetic storms from solar wind 

and magnetospheric data [Chen et al., 1996, 1997, 1999]. Exact predictions are 

not required in this case and it is more appropriate to employ methods that 

estimate the state of a set of observable systems in a probabilistic fashion 

according to user-defined categories. Expert knowledge could also be 

incorporated into such systems more easily than is the case with time series based 

methods.
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For a complete space weather forecasting tool, it is likely that many such models 

of varying types would need to be employed to achieve the overall aims of such a 

service. A hierarchical structure composed of individual time series and pattern- 

based models could be integrated by using expert systems, neural networks or 

statistical methods. An example of such an integrated model would be a pattern- 

based system to classify behaviour of the solar wind into disturbed or quiet time 

conditions. An appropriate ionospheric predictor could then be selected from a 

collection of models, where each model has been optimally trained for a specific 

set of observed conditions. As a second example, the outputs from a complete set 

of solar-terrestrial models and classification tools could be used to feed a 

classification system that would issue appropriate warnings to users.

Data related issues have been a recurrent theme throughout this work, particularly 

with respect to availability and continuity. In addition, real-time data made 

available on the WWW often falls far short of the quality that can be achieved for 

historical time series. The latter have usually been checked by an operator and 

may be significantly different from the automatically processed real-time data. 

Days or weeks may elapse before the automatically processed data is checked 

manually and corrected.

A significant bias may be present in the automatically processed data if the 

corrections turn out to be systematic rather than random in nature. Consequently, 

misleading results may be produced using a historically trained model to predict 

automatically processed real time values. A large error between the prediction 

and the automatic value may not necessarily indicate an inaccurate prediction. 

The accuracy of the prediction may not become apparent until the automated 

value has been manual checked. However, further analysis needs is required to 

assess the importance of this effect upon real-time forecasting schemes. Possible 

schemes to mitigate this effect could involve using principle component analysis 

or classification techniques to pre-process the data or provide a correction factor.
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The simple nonlinear functional relationship between input and output data is an 

important advantage of RBF techniques. It is likely that this simple functional 

form will prove more amenable to intuitive decomposition and rule extraction 

than conventional neural network techniques. It may be possible to evolve self

determining rule based systems that would utilise the physical knowledge 

encapsulated within the RBF network and that these techniques might lead to a 

better understanding of solar-terrestrial physics.

7.5 Future Modelling Requirements

Although it is possible to suggest the methodological enhancements and 

additional functionality stated above, it is also desirable to apply the baseline 

nonlinear models and techniques presented in this thesis to investigate additional 

problems or applications within geophysics of a similar nature to those already 

described.

Due to processing limitations, the models in this thesis have necessarily been 

restricted to the problem of self-prediction, where the future value of a parameter 

is predicted solely from the history of its time series. However, as disturbances 

propagate from the sun to the near-earth environment, it is to be expected that 

additional time series inputs in the form of precursive information supplied by 

up-stream and solar monitoring would lead to substantial improvements in 

predictive accuracy. Satellites such as SOHO, WIND and ACE can provide such 

observational and in-situ time series. It is to be hoped that these capabilities will 

eventually be supplemented by satellites that image the ionosphere, the 

magnetosphere and the solar wind over greater spatial scales at high time 

resolution.

Models derived from data provided by these monitors can be used to provide 

precursive inputs to existing magneto spheric and ionospheric models. For 

example, solar wind data from ACE can be used to help model the behaviour of
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the ring current system. The level of activity in this region of the inner 

magnetosphere is closely related to satellite risk levels and effects within the 

auroral region of the ionosphere. Existing models of foF2 may also be improved 

by incorporating parameters indicative of behaviour within the solar wind and 

magnetosphere.

It was noted that the RMS errors for the hourly foF2 model were very close to the 

irreducible error attributable to the within hour variation for the input time series. 

This suggests that utilising higher resolution input time series would yield 

improvements in predictive performance. In general, care must be taken during 

the determination of a model to ensure that the inputs accurately represent the 

long term and short-term variations of a parameter. The model performance will 

be degraded by aliasing effects without sufficient short-term information. 

Similarly, insufficient long-term information makes it difficult to follow any non- 

stationarity that may be present in the system. The model will cease to be 

effective as soon as the data used to train the model is no longer representative of 

the training data. It is often necessary to trade off between processing 

requirements, generality and accuracy during the training process to achieve 

specific operational aims. Consequently, it is likely that the predictive models 

evolved during the developmental phase of this project will need to be reassessed 

when they are incorporated into applications.

Any spatial correlation of parameters would allow the possibility of using the 

data from one station to predict data at another station. Initially, these stations 

would be chosen from approximately the same latitudes, at varying longitudes. 

The behaviour of ionosphere varies primarily by latitude so keeping this variable 

fixed would reduce the complexity of the modelling process. Subsequent tests 

would then predict readings from stations that lie along the same line of 

longitude, a much more taxing task for an ionospheric model. Cross prediction 

between stations could be used to provide additional constraints for the 

interpolation process and to give advance warning of activities that may be taking
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place at one station before the effect has had time to propagate to the next. A 

complete set of predictions for a network of stations could be used to provide a 

contour map for a parameter over a given area. The geographical covariance 

function, derived from the prediction accuracy plotted as a function of the 

distance between any two stations, could be used in conjunction with a 

contouring technique to produce an ionospheric area map.

7.6 Forecasting Demonstrator

The techniques presented in this thesis have been adapted to form the basis of a 

real-time ionospheric forecasting demonstrator. The Ionospheric Forecasting 

Demonstrator (IFD) is a schedule-based event driven modular system that can be 

run in either interactive or automatic modes. It controls data download and 

processing (including optical character recognition) together with the prediction 

algorithms and the graphical output of results via WWW or email. Custom 

schedules can be specified to suit specific users. The model framework allows the 

incorporation of additional models, data sources, algorithms and output formats.

As an example o f our capability, foF 2  forecasts based upon Slough, UK 

measurements and real-time, hourly updated foF2 forecasts from 1 to 24 hours 

ahead are released online fhttp://rasp.dera.gov.uk/ifs/ifs.html). This scheme will 

be extended to include additional stations and ionospheric parameters.

By incorporating the future modelling requirements outlined in the previous 

section, the IFD could be broadened to encompass space weather. It could 

specifically incorporate magnetospheric and solar parameters that are relevant to 

the problem of satellite anomaly prediction. Such predictions are of great 

importance to both military and civilian HF users, as well as academia, and could 

potentially pull through to civil mobile communications, ESA, NASA, GPS 

operators and utility companies.
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