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Abstract

Development and Validation of an In Vitro Model to Explore Mechanisms of Skeletal
Muscle Toxicity

William Dott, Cardiovascular Department, University of Leicester

The validation of in vitro skeletal muscle models may play a pivotal role in capturing
safety endpoints early within the research and development process. Therefore, the
primary aim of this project was to investigate the extent of translation from an in vivo
rat model to an in vitro skeletal muscle model, using a toxicogenomics approach. To
this end, the mechanisms of toxicity of three novel sulfonyl isoxazoline (SI) herbicides
(two triazoles and one phenyl) developed by Syngenta were investigated in vivo and in
vitro. In vivo histopathology studies identified striated muscle as the target organ of SI
triazole toxicity, and the stomach and liver as the target organs of Sl phenyl toxicity.
Mechanistic toxicogenomics was carried out on liver, heart and skeletal muscle tissues
from rats treated with sub-toxic doses of the Sl triazoles (177 and 197) and phenyl
(907) compounds for 28 days. The biological processes perturbed by Sl triazoles
included mitochondrial dysfunction, oxidative stress, energy metabolism, cell death,
protein regulation and cell cycle. In contrast, perturbation of cholesterol biosynthesis
was identified as the SI phenyl mechanism of toxicity. Using an in vitro rat skeletal
muscle cell line (L6), it was demonstrated that the Sl triazoles induced mitochondrial
dysfunction, mitochondrial superoxide production, cell cycle arrest, hypertrophy and
apoptosis. These in vitro results were consistent with the in vivo toxicogenomics data,
providing validation that these models may predict skeletal muscle toxicity. To
increase detection of xenobiotic-induced mitochondrial effects in skeletal muscle, L6
cells were forced to rely on mitochondrial oxidative phosphorylation by substituting
galactose for high glucose in the growth media. In galactose-grown cells, oxygen
consumption was increased, glycolysis was repressed and susceptibility to
mitochondrial toxicants correspondingly increased. Future work should aim to further
develop the L6 model to better mimic the in vivo model using 3D and microfluidic
technologies.
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CHAPTER ONE

Introduction



1.1 Xenobiotic-induced toxicity

The cost of research and development (R&D) of novel xenobiotics (i.e. a drug or
agrochemical that is foreign to living organisms) has been increasing for many years,
with the average cost of developing a successful compound estimated at more than £1
billion (Guengerich, 2011). In spite of the increased spending, the decrease in
productivity is perhaps the greatest challenge facing the agrochemical and
pharmaceutical industries (Kramer et al, 2007). One of the major reasons for attrition
of compounds 25 years ago was due to poor pharmacokinetics (PK). However,
improvement in the throughput and sensitivity of techniques like mass spectrometry
and an increased understanding of metabolism and transport of compounds has
reduced PK attrition (Guengerich, 2011). As a result, the number one reason for
attrition in the development phase of a compound is organ toxicity, accounting for
approximately one-third of all cases (Kramer, 2007; Dykens and Will, 2007) (Figure
1.1).

Commercial (20%)
Formulation (3%)
Financial (8%)
Other (5%)

Organ toxicity (31%)

Pharmacokinetics (8%)
Efficacy (25%)

ODONCOOCK

Figure 1.1 Estimated breakdown of attrition of compounds in developmental phase
(Guengerich, 2011).

The most common organ toxicities leading to attrition in all stages of R&D are
cardiovascular (27.3%) and hepatic (14.8%), and to a lesser extent skeletal muscle
(3.4%) (Guengerich, 2011). Of the compounds that were approved by the FDA
between 1994 and 2006, 38 have been withdrawn from the market because of safety
concerns, the majority being hepatotoxic (14) and cardiotoxic (17) (Dykens and Will,
2007). In addition, skeletal muscle toxicity has become an area of concern, highlighted
by the withdrawal of cerivastatin from the market in 2001 due to potentially fatal
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muscle injury (rhabdomyolysis) (Charatan, 2001). Furthermore, the incidence of

skeletal muscle injury is becoming increasingly more prevalent in the R&D of novel

compounds (Vassallo et al., 2009). As a consequence, much research is now focused

on identifying adverse toxicities early in the R&D process to improve the design and/or

selection of xenobiotic candidates that are safe and effective.

Xenobiotic-induced toxicity can be broadly categorised into 5 classes on the basis of

the mechanism underlying toxicity (Table 1.1). Although these categories are

historically established, well-recognized concepts and involve clear mechanistic

distinctions, there is some mechanistic overlap (Guengerich, 2011). Ultimately, the

pathological effect of these toxicities culminates in either cell death/tissue injury,

altered phenotype/function, cancer or a combination of each (Liebler and Guengerich,

2005).
Type Definition Example Reference
On-Target Toxicity that occurs because of | Statins Itagaki et
modulation to primary target al., 2009
(i.e. enzyme, receptor),
whether in the same cell tissue
or not
Hypersensitivity | Xenobiotics, or their Pencillin Padovan et
and metabolites, react with al., 1997
Immunological proteins to induce antibody
and immune responses
Off-target Adverse effects resulting from | Terfenadine Taglialatela
interaction of a xenobiotic etal., 2000
with targets other than
intended target.
Biological Biological transformation of a | Acetaminophen | James et
activation xenobiotic to toxic metabolites al., 2003

which often results in organ
and tissue-specific toxicity.

Idiosyncratic

Rare toxicities that represent
unique susceptibility of
affected individuals.

Halothane

Uetrecht et
al., 2007

Table 1.1 Mechanistic causes of toxicity. (Liebler and Guengerich, 2005; Guengerich,

2011).




1.1.1 Striated muscle toxicity

Cardiac and skeletal muscles are grouped together under the term striated muscle.
This refers to the ordered and regular arrangement of the sub cellular contractile
elements, the sarcomeres, which have a striped appearance under the microscope.
Although cardiac and skeletal muscle appears similar at the cellular and molecular
levels, activation and regulation of each has evolved to achieve different, highly-

controlled functions (Gordon et al.,2001).

1.1.2 Skeletal muscle toxicity

Skeletal muscle accounts for around 45% of total body weight and is characterised by
a high rate of blood flow. Consequently, it is highly exposed to circulating xenobiotics
(Owczarek et al., 2005). In addition, skeletal muscle is one of the most metabolically
active tissues, along with the heart and liver, and so requires a large amount of
mitochondria for ATP production, making it particularly prone to xenobiotic-induced
mitochondrial toxicity (Dykens and Will, 2007; Neustadt and Pieczenik, 2008). Skeletal
muscle injury (myopathy) induced by a toxin is referred to as myotoxicity and is
defined as the subacute, and rarely acute manifestation of myopathic symptoms such
as muscle weakness, fatigue, myalgia, creatine kinase (CK) elevation or myoglobinuria
(Dalakas, 2009). Although myopathy is usually a non-fatal injury, it can be potentially
life threatening, resulting in rhabdomyolysis, in which skeletal muscle disintegration
releases large quantities of toxic muscle cell components into the plasma. Excessive
leakage of toxic muscle components, such as myoglobin, can cause direct
deterioration of renal function and ultimately renal failure and death (Hohenegger,
2012). Notably, xenobiotics have become frequent causative agents in 81% of cases of
rhabdomyolysis (Coco and Klasner, 2004). A wide variety of xenobiotics are known to
induce myotoxicity and so xenobiotic-induced myopathies are often categorised
according to the type of injury induced in the muscle fibre or specific organelle (Table

1.2).

Some xenobiotics, such as Emetine and colchicines are on-target toxicities and so their

side effects are directly linked to their intended mechanism of action. For example,



colchicine, a treatment for gout, inhibits polymerization of microtubules by interacting

with tubulin.
Type of myopathy Common xenobiotics Reference

causing myopathy
Necrotising myopathy Statins Kaufmann et al., 2006;

Itagaki et al., 2009

Inflammatory myopathy Inteferon-a Venezia et al., 2005
Mitochondrial myopathy Zidovudine Scruggs and Naylor, 2008
Type Il muscle fibre atrophy Steroids Schakman et al., 2008
Lysosomal storage myopathy | Chloroquine Kimura, et al., 2007
Antimicrotubular myopathies | Colchicine Choi et al., 1999
Myofibrillar myopathy Emetine Sieb and Gillessen, 2002
Recreational drugs Alchohol Owczarek et al., 2005

Table 1.2 . Types of myopathies induced by xenobiotics (Sieb and Gilleson, 2002;
Dalakas, 2009).

Since membranous organelles, including lysosomes and autophagic vacuoles, are
conveyed along the microtubule-dependent cytoskeletal network, disruption by
colchicines results in accumulation of autophagic vacuoles and subsequent injury of
the lysosomal membrane (Sieb and Gillessen, 2002). It has been hypothesised that
proteolytic enzymes released from injured lysosomes may cause myofibril
degeneration in a mechanism similar to chloroquine-induced lysosomal myopathy
(Choi et al., 1999). This example serves to illustrate that the myopathy-type categories

are not mutually exclusive and some compounds fit into more than one category.

Similarly, proposed mechanisms of statin-induced myopathy relate to both necrotising
and mitochondrial-type myopathies (Kaufmann et al., 2006; Dalakas, 2009). Statins (3-
hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors) impair
cholesterol production by inhibiting mevalonate, a critical intermediary in the
cholesterol pathway (Kaufmann et al., 2006). Although generally well-tolerated, they
can produce myotoxicity ranging from muscle pain to rhabdomyolysis. Notably,
cerivastatin was voluntarily withdrawn from the market in August 2001 because of
100 rhabdomyolysis-related deaths (Charaten, 2001). The exact mechanism of statin-
induced toxicity is not fully understood, although a number of mechanisms have been
proposed. One hypothesis is an ‘on-target’ mechanism, in which a decrease in the
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synthesis of isoprenoid intermediates by statins (produced by mevalonate) adversely
affects myocyte function. For example, ltagaki et al (2009) have shown that a
reduction in the mevalonate derivative, geranylgeranylpyrophosphate (GGPP), in L6
muscle cells results in RhoA dysfunction and statin-induced apoptosis. A number of
studies have demonstrated that statin-induced mitochondrial impairment could be
largely implicated in the deleterious effects of statins (Kaufmann et al., 2006; Sirvent
et al., 2008; Bouitbir et al., 2011). It has been proposed that a decrease in the
isoprenoid, ubiquinone (coenzyme Q10), which is an essential electron transporter of
the mitochondrial electron transport chain (ETC), has a deleterious function on
mitochondrial function in skeletal muscle (Marcoff and Thompson, 2007).
Investigations have also shown that statins have a direct effect on mitochondrial
function by inhibiting complex | of the ETC and interfering with calcium homeostasis
(Sirvent et al., 2008). Recently, Bouitbir et al (2011) have shown that statin-induced
mitochondrial reactive oxygen species (ROS) production plays an important role in the
pathogenesis of skeletal muscle myopathy. They demonstrated that statins induced a
small increase of ROS in cardiac muscle, which activated mitochondrial biogenesis and
improved antioxidant capacity. Conversely, in skeletal muscle statins induced a large
augmentation of ROS production resulting in oxidative stress and mitochondrial
impairments. The authors suggested that the level of ROS induced by statins explained
the beneficial role of statins in the cardiac muscle and the toxicity to skeletal muscle

(Bouitbir et al., 2011).

1.1.3 Cardiac muscle toxicity

Cardiac muscle toxicity (cardiotoxicity) is one of the most common and serious
adverse effects associated with xenobiotic insult. Cardiotoxicity is a cause of severe
morbidity and mortality due to the relative inability of the myocardium to recover
from a significant insult without lasting detrimental effects (Schimmel, 2004; Hirakawa
et al., 2008). Xenobiotic-induced cardiotoxicity affects all components and functions of
the cardiovascular system and can manifest as functional (alteration of the mechanical
function of the myocardium) or structural (morphological damage to cardiomyocytes
or loss of viability) in nature (Pointon et al., 2013). There are examples in almost every

class of xenobiotics that have produced unanticipated cardiotoxicity. Well known
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among these are the anthracyclines (Simunek et al., 2009), trastazumab (Sengupta et
al., 2008) and other chemotherapeutic drugs (Gradishar and Vokes, 1990). In addition,
antiretrovirals, antifungals, antiarrhythmics, antipsychotics, antibiotics and

antihistamines have also been associated with cardiotoxicity (Wallace et al., 2004).

The most common xenobiotic-induced functional cardiotoxicity is QT interval
prolongation, which results in a distinctive polymorphic ventricular arrhythmia,
termed torsades de pointes (TdP) (Kannankeril et al., 2010). The mechanism by which
xenobiotics induce QT interval prolongation is almost always by block of the delayed
rectifier potassium current, I, (encoded by KCNH2, formerly termed hERG) (Heist and
Ruskin, 2010). The KCNH2 channel is a ‘promiscuous’ channel and so is blocked by

many different classes of xenobiotics with diverse structures (Kannankeril et al., 2010).

The mechanisms of structural cardiotoxicity vary and can result in a range of clinical
manifestations including hypertension, ischaemia/myocardial infarction, cardiac
hypertrophy, cardiomyopathy, and cardiac failure. Perhaps the most studied
cardiotoxic compound is the chemotherapeutic agent, doxorubicin. Several
hypotheses have been reported for the mechanism of cardiotoxicity, including redox
cycling and ROS production, mitochondrial dysfunction through cardiolipin binding
and altered iron homeostasis (Pointon et al., 2010). A recent study, by Zhang et a/
(2012) showed that doxorubicin cardiotoxicity is not solely due to redox cycling and
implicates topoisomerase-IIf (Top2B) as an essential driver in mitochondrial
dysfunction. Doxorubicin binds to Top2a in tumour cells to inhibit growth, and also
binds Top2PB expressed in cardiomyocytes, which markedly alters the transcriptome,
resulting in defective mitochondrial biogenesis and metabolic failure (Zhang et al.,
2012). Thus, if the reported data are reproducible, doxorubicin cardiotoxicity can be

considered an ‘on-target’ toxicity.



1.2 Bringing Toxicology into the 21* Century

1.2.1 Traditional approach to toxicity testing

Toxicity testing and the assessment of safety of drugs, veterinary products and
chemicals are essential in today’s society. Toxicology has traditionally focused
primarily on the observation of adverse effects in laboratory animals through intensive
studies done one chemical at a time (Houck and Kavlock, 2008). Today, in vivo toxicity
testing accounts for about 10% of animal use, equating to over €2 billion worldwide
every year (Hartung and Daston, 2009). Toxicology studies rely heavily on the use of
vertebrate animals to evaluate a broad range of toxicological responses in order to
classify compounds by their potential for causing adverse health effects. These animal
studies include acute, subacute and subchronic and/or chronic tests to identify end
points such as target organ lesions (using histopathological examination of tissues and
biomarkers) and oral, dermal and ocular toxicity (Xia et al., 2008). In addition, these
studies aim to identify similarities and differences in sensitivity between species and
sexes, and to determine the shape of the dose-response curve (Chhabra et al., 2003).
Depending upon the information needed for a particular chemical, these studies may
also include the evaluation of a number of other toxicity endpoints that serve as a
screen for immunotoxicity, genotoxicity, neurotoxicity or behavioural and

reproductive toxicity (Chhabra et al., 2003).

The advantage of testing in vivo is that the basic technology is simple and accounts for
the complexity of tissue and physiological reactions. In addition, there are animal
models for a vast range of toxicant-induced diseases, indicating that the animal
models contain the same molecular targets or pathways as humans (Hartung and
Daston, 2009). While the animal models are clearly useful, there are a number of
disadvantages and shortcomings of the in vivo approach. Animal tests are low
throughput, relatively expensive and intrinsic differences in species sensitivities hinder
the extrapolation of animal data for predicting human responses (Shukla et al., 2010).
The use of relatively large numbers of animals raises increasing ethical issues and is
inconsistent with emphasis on the reduction, replacement and refinement (3R’s) of

animal use (Krewski et al., 2010). The main problem is the inability to discern



mechanisms of toxicity using the “black box” whole animal assays, making cross-
species extrapolation and low-dose, real-life exposure effects difficult to appropriately
assess (Houck and Kavlock, 2008). For example, carcinogenicity studies are conducted
using a 40-year old model requiring ~400 animals and two years of exposure at a cost
of millions of dollars (Houck and Kavlock, 2008). Results of these assays suggest
maximal 70% correlation between rodent species implying about 80-90% false-

positive findings (Hartung and Daston, 2009).

Notably, there have been huge advancements with in vitro testing platforms and
technologies that have contributed largely to the biotech revolution of recent years.
Regulatory toxicology has embraced them in part, including assays for metabolic
activity (cytochrome P450 activity) and genotoxicity (Ames Salmonella typhiumurium
assay) (Liebler and Guengerich, 2005), although acceptance and adaptation have been
slow. One reason for the slow adaptation to the advances in science and technology
are the internationally harmonized guidelines in place (Hartung, 2009). However, the
increasing public concern over the minimal toxicity information available for
thousands of chemicals has resulted in new guidelines implemented by REACH
(registration evaluation authorization and restriction of chemicals), which requires a
registration of ~30,000 chemical substances over a period of 11 years. This new
legislation would require millions of animals and billions of pounds to conduct the
appropriate safety assessment with the traditional methods (Houck and Kavlock,
2008). While the current in vivo methods would provide useful information on these
chemicals, they are low-throughput and a lack of mechanistic understanding makes
them inadequate. Therefore, it is important that development, translation and
validation of alternative methods for assessing the safety of new (and old) compounds
are found that will ensure consumer safety and decrease the reliance on animals.
Furthermore, the high rate of compound attrition due to organ toxicity in the R&D of
new compounds, as described previously, means there is a need for robust predictive
in vitro models to identify toxic effects earlier in the R&D process (Van Hummelen and

Sasaki, 2010).



1.2.2 The future paradigm for toxicity testing

Toxicity testing is currently undergoing a transformation brought about by the
emergence of a large range of advances in molecular biology, cell culture biology,
computer science and bioinformatics (Kramer et al., 2009). The future strategy for a
new paradigm encompasses the need to; develop a more robust scientific and
mechanistic basis for assessing health effects, reduce the cost and time required for
toxicity testing, and minimize the use of animals in testing (Andersen and Krewski,
2009). To achieve this strategy, the traditional toxicology assays need to be refined
and a new system of toxicity testing, based on rapid, mechanism-based, predictive in

vitro screens needs to be developed (Hartung, 2009; Shukla et al., 2010).

In 2007, the National Research Council (NRC) provided a report on the vision for the
future of toxicity testing based around 4 key components; chemical characterisation
(e.g. physical and chemical properties, environmental fate and transport, metabolism
and interaction with cellular components), toxicity pathways (defined as a ‘cellular
response pathways, that when sufficiently perturbed, are expected to result in
adverse health effects’), targeted in vivo testing (to further explore and quantify
information obtained by exploring toxicity pathways) and dose-response and
extrapolation modelling (which includes dose-response models in vitro and/or in vivo,
physiologically based pharmacokinetic (PBPK) models to extrapolate to human
exposure and dose-response models for toxicity pathways) (NRC, 2007). Combined,
these elements provide the basis for a more informed assessment of health risks
based on deeper understanding of the mode of action by which toxic effects are
induced, including the key molecular and biological targets in the pathways (Houck

and Kavlock, 2008).

Central to the NRC strategy is the use of high-throughput in vitro tests of toxicity
pathway responses to characterize the potential for toxicity and understand
mechanisms of action (Andersen and Krewski, 2009). An example of a toxicity pathway
is the Nrf2 antioxidant-response pathway that is activated in response to oxidative

stress (Krewski et al., 2010).
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An improvement in the mechanistic understanding of toxic events will result in safer
drugs and chemicals and a more efficient R&D process (Blomme et al., 2009). For
example, if more than one compound in a project’s lead series exhibits the same
toxicity, a mechanistic understanding of the nature of the toxicity provides guidance
to discovery chemistry for designing out the toxicity and improves safety margins in
back-up programmes (Kramer et al., 2007). Moreover, more mechanistic
understanding will help elucidate common pathways of toxicity and susceptibility

(Sipes et al., 2013).

The eventual goal of a future vision is to integrate a range of in vitro, in silico and in
vivo approaches into a high-throughput pathway-based risk assessment, where
relevant concentration of compound perturbing a pathway of toxicity can be modelled
to predict human risk (Van Vliet, 2011). Targeted in vivo testing will always be required
to further understand the metabolism and pharmacokinetics of compounds as well as
further characterise the mechanisms of toxicity of compounds (Andersen and Krewski,
2009). For example, mechanistic information from in vivo toxicity tests could be
achieved through examining changes in gene transcript levels (toxicogenomics) in key

tissues at end of life studies (Foster et al., 2007).

1.3 Technologies and approaches for toxicity testing

The modern technologies and tools available to improve the current system of toxicity
and develop a new testing system are detailed in table 1.3 and include cell-based
assays, omics technologies, bioinformatics, image technology, high-throughput testing

and in silico (computer-based) modelling.

1.3.1 Toxicogenomics

The recent advances in omics technologies, such as microarray, mass spectroscopy,
nuclear magnetic resonance (NMR) allow the transcriptome, proteome and
metabolome to be investigated (Hewitt and Herget, 2009). Of these bimolecular

components, transcriptomics has become the “universal language” with which to
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describe cellular processes (Lamb et al., 2006). This is attributed to the high-

throughput and highly descriptive data produced by microarrays.

Toxicity testing
tools

Summary

Cell-based assays

Cell lines, primary cells and stem cells can be used to assess a
range of parameters including, cytotoxicity, metabolism,
genotoxicity (Van Vliet, 2011).

High-throughput
screening (HTS)

High-throughput screening technology enables screening of
compounds with a large range of assays using multi-well plates
and relies heavily on automation and robotics. Allows analysis of
toxicity pathway perturbations across a range of doses and
molecular and cellular targets (Houck and Kavlock, 2008).

Imaging
technologies

High content screening of cell-based models enables a range of
parameters to be assessed in a high-throughput and
guantitative analysis using automated, epifluorescence imaging
platforms and robust image analysis platforms. (O’Brien et al.,
2006; Pointon et al., 2013).

Omics
technologies

Microarray, mass spectroscopy and nuclear magnetic resonance
(NMR) allow the transcriptome, proteome and metabolome to
be analysed, respectively (Gatzidou et al., 2007).

Bioinformatics

Software is available to interpret complex multivariable data
from HTS and ‘omic studies in relation to mechanistic
investigations and biomarkers 