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The flavour of a beer is determined mainly by its taste and smell, which is generated by  about 700 key volatile 
and non-volatile compounds. Beer flavour is traditionally measured through the use of  a combination of  
conventional analytical tools (e.g., gas chromatography) and organoleptic profiling panels. These methods 
are not only expensive and time-consuming but also inexact due t o  a lack of either sensitivity or quantitative 
information. In this paper an electronic instrument is described that has been designed to measure the odour 
of beers and supplement or even replace existing analytical methods. The instrument consists of  an array of 
u p  to 12 conducting polymers, each of which has an electrical resistance that has partial sensitivity to the 
headspace of  beer. The signals f rom the sensor array are then conditioned by  suitable interface circuitry and 
processed using a chemometric or neural classifier. The results of the application of multivariate statistical 
techniques are given. The instrument, or electronic nose, is capable of discriminating between various 
commercial beers and, more significantly, between standard and artificially-tainted beers. A n  industrial 
version of this instrument is now undergoing trials in a brewery. 

Keywords: Odour detector; beer flavour sensor; conducting polymer sensor; sensor array; analytical 
instrum en tation 

Introduction 
Chemical Senses and Flavour 

The sensation of flavour is due to the simultaneous stimulation 
of all of the chemical senses together with an integration of the 
signals from the component senses by the higher brain centres. 
In humans there are three main chemoreceptor systems. 
These are gustation, or the sense of taste, olfaction, or the 
sense of smell, and the trigeminal sense. Taste is used mainly 
to detect non-volatile chemicals which enter the mouth while 
the sense of smell is used to detect volatile compounds. 
Receptors for the trigeminal sense are located in mucous 
membranes and in the skin, they also respond to many volatile 
chemicals and the trigeminal sense is thought to be especially 
important in the detection of irritants and chemically reactive 
species. In the perception of flavour all three chemoreceptor 
systems are involved but olfaction plays by far the grcatest role 
with the other two senses contributing much less to the overall 
perception. 

The sensation of smell arises from the stimulation of the 
olfactory neurones, the receptor cells located high up in the 
nose in the olfactory epithelium, by the odorant molecules. 
Odours can be simple or complex, a distinction which is based 
on the nature of the stimulus and not the quality of the 
sensation. A simple odour is one which consists of only one 
type of odorant molecule whereas a complex odour is a 
mixture of many, possibly many hundreds, of different types 
of odorant molecule. Simple odours, as defined here, are 
essentially man-made curiosities because virtually all naturally 
occurring odours are complex mixtures. Odorants are typi- 
cally small hydrophobic, organic molecules containing one or 
two functional groups and with a mass range from 34 to 
300 Da. The relationships between the physico-chemical 
properties of the odorant molecules and the odours have been 
discussed by several workers172 and whilst it is clear that the 
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size, shape and polar properties of the molecule determine its 
odour properties the rules which govern this are poorly 
understood. As a result, classifications of odour type are 
empirical and the number of distinct odour descriptors 
required (the dimensionality of the problem), has not been 
established. 

Beer flavour is a complex problem because there are 
hundreds of compounds present. Some of these are at levels 
that exceed the sensory threshold ( i e . ,  down to parts per 
billion) but are below the detection limit of most gas 
chromatographs.3 Studies of beer flavour show that there are 
just over 100 separately identifiable flavour elements of which 
39 or so are present in most beers with the others less common 
or flavour faults, i.e., off-flavours.4 Of these 39 key flavour 
notes in beer, 15 can be explained ( e . g . ,  alcoholic, estery and 
diacetyl), 20 partly explained (e.g., hoppy, malty and worty) 
and 10 cannot be explained at all (e .g . ,  spicy, woody and 
grainy). The situation is further complicated by the fact that 
the beer flavour is unstable and its odour will change with time 
as the chemical composition of the beer changes. Beer is 
prepared commercially by batch processes and it is of concern 
to ensure consistency from batch to batch and overall product 
quality. Quality is currently assured in several ways including 
the use of analytical techniques such as gas chromatography 
(GC) or GC-mass spectrometry (GC-MS). However, the 
most important method remains the use of sensory panels of 
trained individuals who score the product on the basis of a 
number of flavour descriptors. All of these techniques are 
slow (i.e., it takes 2-3 d to obtain a result) and rather 
expensive. In this context the use of an electronic instrument, 
i.e., an electronic nose, which can assist in the monitoring of 
beer flavour, is highly attractive. 

The mammalian olfactory system makes use of a large 
number of non-specific receptors which show broad patterns 
of response. Typically, in the human olfactory epithelium 
there are about 50 million such receptors. These cells send 
their signals to secondary cells located in the olfactory bulb. 
There is a marked convergence at this stage with between 1000 
and 20000 primary receptor cells connecting to each secon- 
dary cell. This suggests that the secondary cells are involved in 
processing and integrating the information from many input 
cells. This suggestion is consistent with the observation that 
while the primary cells are non-specific in their responses the 
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secondary cells respond to distinct categories of odours.5 The 
secondary cells, in turn, interact with each other and with 
higher cells. These interactions are reminiscent of those found 
in the vision system.6 In the electronic nose we have attempted 
to mimic some of the features of the mammalian system by 
combining an array of non-specific, chemical sensors with 
suitable data acquisition and processing software. 

The sensors in the electronic nose described here are 
conducting polymer chemoresistors fabricated by the electro- 
chemical deposition of this conducting polymer films across 
the gap between two thin gold electrodes. Conducting 
polymer chemoresistors, based on polymers such as poly- 
(pyrrole) (PPy), have been shown to respond to  a wide varicty 
of gases including inorganic species such as ammonia and 
hydrogen sulfide7-9 as well as many organic vapours.l@-*2 A 
detailed understanding of the response mechanism is not 
available although it is generally believed that the adsorbed 
molecules affect both the inter-chain hopping electronic 
charge-transfer process and cause physical swelling of the 
polymer structure. 

Experimental 
Preparation of Odour Sensors 

The devices were fabricated by the physical evaporation of 
pure gold (99.99%) onto alumina tiles (12 x 12 mm), out of 
which an electrode pattern was etched by conventional 
ultraviolet (UV) lithography and then a final passivation layer 
was spin-coated and etched away to  leave the areas where the 
polymer growth was desired. The active area of gold was 
approximately 1 mm2 per device, and had a 15 pm gap 
vertically along the centre of the gold pad. Each tile contained 
three independent devices and electrical contact was made to 
each of the devices by pads at the top of the tile. Fig. 1 shows a 
tile containing three electropolymerized areas seen as a black 
coating. 

All electrochemical procedures were carried out using a 
three-electrode system, controlled by a laboratory-construc- 
ted potentiostat. The reference electrode was a saturated 
calomel electrode (SCE), and all the potentials quoted are 
relative to this reference. The counter electrode was a large 
surface area platinum gauze, which was flamed prior to use. 

Tetraethylammonium tctrafluoroborate (TEATFB, 
Aldrich) was recrystallized from methanol, tetraethylammo- 
nium toluenesulfonate (TEATS, Aldrich) was recrystallized 
from acetone. All other background electrolytes were used as 
received: butanesulfonic acid (BSA, Aldrich), pentanesul- 
fonic acid (PSA, Aldrich) , hexanesulfonic acid (HxSA, 
Aldrich), heptanesulfonic acid (HpSA, HPLC grade BDH), 
octanesulfonic acid (OSA, Aldrich), decanesulfonic acid 

Fig. 1 Photograph of an alumina tile upon which three different 
conducting polymer chemoresistors have been selectively electropoly- 
merized 

(DSA, Aldrich), para-toluenesulfonic acid sodium salt 
[TSA(Na), Aldrich], para-toluenesulfonic acid monohydrate 
[TSA(m) Aldrich], and sodium hydrogensulfate monohydrate 
(NaHS04, Aldrich). 

Pyrrole (Py, Aldrich) was purified by passing it through an 
alumina filled Pasteur pipette, while aniline (AN, Aldrich) 
and 3-methylthiophene (3MT, Aldrich) were distilled at 
reduced pressure. All aqueous solutions were prepared using 
water from a Whatman RO 50 reverse osmosis de-ionizer, 
with a,. Whatman 'Still Plus' organic removal system. Aceto- 
nitrile (CH,CN, Aldrich HPLC grade) was distilled over 
calcium hydride, and propylene carbonate (PC, Aldrich) was 
percolated over molecular sieves, then distilled. To  prepare 
the solution for the deposition of poly(ani1ine) (PAN), aniline 
was added to the background electrolyte and then the solution 
was acidified with concentrated sulfuric acid until the white 
precipitate dissolved. 

Prior to  deposition, the devices were examined using a' 
low-powered microscope to check for any major mechanical 
defects, and the resistance of the devices was measured to 
ensure that there was no electrical shorting. The gold working 
electrodes on the devices were cleaned prior to polymer 
deposition by cycling in 2 mol dm-3 sulfuric acid followed by 
washing with water. The cleaned devices were kept under pure 
water until required to avoid recontamination of the surface. 

The 12 polymer systems used in this work along with their 
growth conditions are given in Table 1. The polymers were 
deposited by stepping the potential from 0 V to the required 
growth potential for a fixed time of 120 s. At the end of this 
time, the polymer-coated device was either stepped back to 
0 V, and the current allowed to decay until it became stable, or 
the electrode switched to open circuit, thus leaving the 
polymer at the growth potential. This final step is important 
because it controls the oxidation state of the polymer and 
hence the resistance of the final device. After coating, the 
devices were removed from the growth solution, washed with 
solvent and allowed to dry. The base resistance of the dry 
devices was recorded. Full details of the fabrication and 
electrochemistry of the devices will be given elsewhere. 

Instrumentation 

Headspace sampling 
In the design of an electronic nose for monitoring beer flavour 
it is necessary to use a number of broadly tuned sensing 
elements combined with suitable multivariate analysis tech- 
niques. This principle of using sensor arrays for odour 
discrimination was originally demonstrated by Persaud and 
Dodd for a three-sensor system.13 

Fig. 2 is a schematic diagram of the instrument developed to 
analyse the static headspace of beer samples. It consists of 
three separate elements. The chemical hardware consists of a 
glass vessel (2.0 dm3) to hold the analyte, immersed in a 
temperature-controlled water-bath set to 30 "C. It was found 
that this temperature was required to produce an odorous beer 
headspace from 100 cm3 of the analyte. A motorised fan was 
installed within the sample vessel to assist uniform mixing. 
This arrangement is shown in Fig. 3. The sensor head was 
designed to house four separate tiles, one on each side of the 
block, with each tile containing three separate polymer 
devices. This was fabricated using a brass block and poly- 
(tetrafluoroethylene) as relatively inert materials. Devices 
were wire bonded on one end and soldered onto metal posts in 
the block. A perspex disc was incorporated into the sensor 
head to seal the sensor vessel during testing. 

The following procedure was used to  sample the beers: first, 
the sample vessel was lowered into the water-bath. Then 
100 cm3 of beer were transferred into the sample vessel, the 
vessel was sealed and left for 20 min while the liquid and 
vapour phases of the analyte equilibrated. The lid was then 
removed from the sensor vessel and the sensor head lowered 
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Table 1 Details of conducting polymers 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Polymer system 
PPy-BSA 
PPy-PSA 
PPy-HxS A 
PPy-HpSA 
PPy-OS A 
PPy-DSA 
PPy-TSA(Na) 
PPy-TS A( m) 
PP y-TEATS 
PPy-TEATS 
PAN-NaHS04 
P3MT-TE ATFB 

Monomer 
concentration/ 

mol dm-3 
Py 0.1 
PyO.1 
PyO.l 
PyO.1 
Py0.1 
PyO.1 
PyO.1 
Py 0.1 
Py 0.1 
Py 0.1 
AN 0.44 
3MT 0.1 

Electrolyte con- 
centration/mol dm-3 

BSA 0.1 
PSA 0.1 
HxSA 0.1 
HpSA 0.1 
OSA 0.1 
DSA 0.1 
TSA(Na) 0.1 
TSA(m) 0.1 
TEATS 0.1 
TEATS 0.1 
NaHS04 0.5 
TEATFB 0.1 

Solvcnt 
Water 
Water 
Water 
Watcr 
Water 
Water 
Water 
EtOH 
Watcr 
PC 
Water 
CH3CN 

Growth 
potential/V 

0.85 
0.85 
0.85 
0.85 
0.85 
0.85 
0.80 
1.20 
0.7.5 
1.10 
0.90 
1.65 

Final 
potential/\/ 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.80 
0.00 
0.00 
0.00 
0.90 
1.65 

Resistance/ 
!2 

1650 
193 
27 
16 
35 
37 
19 
70 
34 
37 
44 
13 

User control 

Polymeric sensors File conversion I I  
Pre-processing I I  

Template matching University 
Response plots network 

Cali bration 
Fig. 2 Basic arrangement of the electronic nose 

D Electrical connection 
to interface electronics 

I ’ ----- Perspex 
Polymeric 
sensors 

lid 

Sensor head 
Teflon/brass 

control led 
water - 
bath 

Beer sample 
(100 cm3) 

tional amplifier (U2A). This constant voltage offset ensures 
that the current through the precision scaling resistors 
(R3-R10) and hence through the sensor itself is only related to 
that set of precision resistors selected through the dual in-line 
scale switches (S3). At low concentrations, because the action 
of the conducting polymer sensors is virtually ohmic, we can 
assume that the voltage generated across the device is linear 
with conductance. The second stage of the circuit (U2D) is 
then simply to provide voltage offset nulling (via adjustment of 
CE2) and scaling of output voltage VA (via adjustment of 
CE1) during calibration. Hardware calibration takes place 
through the use of a shorted link in place of the sensor element 
(across RA and supply common) representing a nominal 
impedance to the circuit. The null offset potentiometer (CE2) 
is then adjusted to trim any zero error of output voltage VA. 
Standard precision resistors (accurate to 0.1% and possessing 
good long-term stability), suitable for the selected scale 
settings are then substituted as the input element, and the gain 
adjust potentiometer (CE1) is trimmed to scale the output 
voltage (VA) to be as close to the full dynamic range of the 
analogue to digital (A/D) input stage as possible without 
causing saturation. This ensures that the highest resolution of 
the A/D sub-system is exploited during data acquisition. 

Two printed-circuit boards were laid out using Orcad SDT 
IWRacal Redac Redboard, and constructed in such a way that 
each circuit could process the signals from six polymer sensors 
(module 2), see Fig. 5.  These were assembled in a rack system 
along with another custom PCB (module 4) to synchronize the 
signals feeding the DT2811 A/D card in the PC. 

Fig. 3 Schematic diagram of the bcer headspace sampling system 

into the vessel. The resistances were monitored for 10 min 
after which time the sensor head was removed from the vessel. 
The vessel was cleaned with water and then blown with a clean 
air supply for about 2 min to remove any contaminants. The 
sensor head was subsequently replaced in the clean vessel. The 
sensars were left to recover for 30 min (maximum 1 h). 
Therefore, the total sampling time was typically about 40 min. 

Interface electronics 
The headspace sampling system was followed by the interface 
electronic circuitry that converts the polymer resistances into a 
0-5 V analogue signal suitable for input to a DT2811 data 
acquisition card in a 286-based PC. The interface electronic 
circuitry for a single polymer is shown in Fig. 4. The 
conducting polymer sensor is connected across the input port 
RA and supply common. The operation of the circuit is based 
upon the principle that the first stage supplies a constant 
current to the sensor. This is achieved through the action of 
the precision voltage reference diode (D2) tied between the 
output (pin 1) and inverting input (pin 2) of the first opera- 

Data acquisition 
Data acquisition and processing software routines were 
written in TURBO PASCAL version 5.5 (8000 lines of code) 
using pull-down menus. The function of these software 
routines was to provide data collection and storage, softwar? 
calibration, response display, chemometric fingerprinting, 
pre-processing and communications with a local area network. 
Further facilities incorporated into the data acquisition 
software include file conversion utilities to allow acquired data 
to be stored and retrieved in a portable file format (Lotus 
1-2-3). 

Data Processing 
It is convenient to consider the process of pattern recognition 
to have three stages.14 In the first stage the physical world can 
be represented as a continuum of parameters that are 
essentially infinite in dimensionality. The sensors describe a 
representation of that world in terms of R scalar variables. 
This then becomes the dimensionality of the pattern or sensor 
space. Secondly, the dimensionality of R is often high and so it 
is then convenient to reduce the dimensionality while still 
retaining the discriminatory power for classification purposes. 
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0.1 % Precision 

-- 8765 
IT" I 

L 
SW DIP-4 I 
L Angle mount p+ vcc 

I I 

Sensor connection 10k 

c 2  
0.1 

p: 
-vcc 

U2D 

U F  

2 

Null  

i* I 

offset R11 
-vcc 100 

- - 
Fig. 4 Intcrfacc circuit for polymer chemoresistors (for details see text) 

_ _ _ _ - _ _ _ _ _  
Backplane Rack system I I 

r- I 
Module 4 

I I 

Q+ - - I I System cards I 

DT 281 1 board 

A/D converter 1 

L - - - - - - - - - - - - - - - - - 
Data acquisition PC 

Module 2 

Module 2 - To sensor head 

Signal pre-processi ng 

Fig. 5 Architecture of thc data acquisition system 

This then becomes the feature space of a lower dimensional- 
i ty .  Finally, the classification space is simply the decision space 
in which one of K classes has been selected. We can, 
therefore, consider the pattern recognition problem as a 
transformation (usually non-linear) from pattern spbce, 
through feature space, to classification space. By using this 
description, the response of our sensor array to an odour can 
be represented as a path followed in R dimensional pattern 
space, as shown in Fig. 6 in 3D pattern space ( x l ,  x2, x3). The 
response parameter is usually defined as a function of the start 
and finish points, e:g., the change in sensor values. The 
starting point occurs just at the time when the rig is subjected 
to the odour and the end point is reached when all sensors 
have reached steady-state values. In this example the path 
followed and the speed at which it is travelled, is ignored. The 
broken line in Fig. 6 illustrates the use of a euclidean distance 
metric to map out pattern space, being linear this is the 
simplest metric. 

Fig. 6 
sensor space (for details see text) 

Representation of an odour signal in R-dimensional pattern or 

In general a point in pattern space is a column vector of 
sensor responses 

x = (XI&, .. . )  x,, ..., XR)T (1) 
In our instrument the response vector X corresponds to the 
time-dependent conductance of the polymeric sensor array. 
However, we pre-process the scalar terms in the response 
vector in order to reduce temperature effects. The pre- 
processed scalar x: is defined as the fractional change in 
response for each sensor1s 

maxos, s r , , b , >  - mino,,,&,> 

mino<rst,,{x,> 
(2) x' = 

where t is time and t,, the time at which steady-state values are 
achieved. Many distance metrics have been used in the 
analysis of sensor data, including difference16 (simply the 
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difference in response due to stimulus), relative17 (the ratio of 
the resistance of the sensor in air to the resistance due to the 
odour stimulus) and fractional models defined above.18 By 
splitting this distance metric into its constituent scalar com- 
ponents across all channels we can define 

(3) 

This normalizing procedure helps reduce concentration errors 
in a triangular taste test. In terms of the vectorial representa- 
tion, the response vectors are mapped onto the R - 1 
dimensional surface of an R-dimensional hypersphere of unit 
radius, centred at the origin. 

It is now possible to define a score 2, as being a standardized 
normal variate with mean = 0 and variance = 1, where 

with N,fe\t represents the normalized response components of 
our unknown odour under test. This assumes that the response 
scalars N,fe\f come from a normal distribution and are 
independent. The term p, is the average and or is the adjusted 
sample standard deviation of the rn samples carried out for 
each reference beer (as part of a class-conditional database of 
sensor responses) for sensor Y. The distribution of the scores is 
by definition the x’ distribution, i.e., 

We can use the computed value to rank the odour patterns to 
their proximity to known classes and assign a confidence level 
from standard statistical tables. 

In reality, the pattern space X ’  is both non-euclidean and 
non-normal. However, the analysis of two beers in close 
proximity in pattern space permits us to make a local linear 
approximation of pattern space and thus employ this simple 
method. The main disadvantage of the method is that it treats 
all sensor signals as equal, thus it may be necessary to weight 
sensors that are known to be more sensitive or reliable by 
inserting an additional factor in eqn. ( 5 ) .  

This chemometric fingerprint, or template, method has 
bcen incorporated into the electronic nose for sensing beer 
flavours. Fig. 7 summarizes the two elements of this method, 
first the supervised template learning and class assignment 
process, and secondly the template matching or predictive 
classification of unknown test samples. The template learning 
process must be carried out for all data runs to be used as part 

of a class conditional database. First, an averaging filter 
(moving or block average) is applied to improve sensor 
response continuity. Next a statistical feature extractor then 
computes the component values of x’, or N ,  through the use of 
eqns. (2) and (3) for all the sensors. These reference values are 
then stored in a template file and assigned to one of the known 
classes. The classification database is then created by defining 
the classes of the template files, i.e., lager 1. In the work 
reported here crisp classification functions are used, although 
fuzzy organoleptic data could also be mapped onto feature 
space. Finally, an odour of unknown class is sampled and its 
class is assigned, using the template matching process, to a 
known class from the class-conditional database previously 
generated. 

The pattern vectors in R-dimensional space can also be 
analysed using a standard technique in cluster analysis (CA). 
Firstly, the distances between points are calculated for a 
euclidean metric and then their proximity is calculated and 
ranked hierarchically by a similarity index. Finally, the points 
are linked together by a simple rule applied to their similarity 
indices. Single linkage uses the nearest distance while com- 
plete linkage uses the furthest neighbour. These are the 
simplest linking methods although a variety of others are 
available. More details on the application of CA to odour 
discrimination are given in ref. 19. 

Results and Discussion 
Fig. 8 shows a plot of the typical percentage changes in 
conductance of three conducting polymers (polymers labelled 
8, 9 and 11 in Table 1) in lager 1 (a standard strength lager), 
lager 2 (an extra strength lager), ale 1 (a low alcahol beer) and 
methanol. Batch variability of two of the polymers is shown as 
well as typical polymer stability via the response to air. Typical 
responses were of the order of a 1-10% change in the 
conductance of the beer headspace and a 5-20% change for 
methanol vapour. Most of the polymers listed in Table 1 gave 
reproducible stable responses except PPy-TSA-H20 which 
was the least responsive and P3MT-TEATFB which gave 
large responses but also showed considerable drift. After 
allowing the polymers to stabilize, the drift of the sensor 
baseline conductance in air ranged from 0.1 to 10% per 
month, but was typically 2%. However, the sensor response 
[i.e., relative change in conductance as defined by eqn. (2)] 
was much more stable (<1% per month), suggesting that the 
change in sensor conductance with beer is a function of the 
baseline conductance. This is an encouraging result as the 
stability of the sensor response space now exceeds that of the 
conductance space. Typical response times (tg0) of the 

Class known 

Class Template matching process 
unknown Match with class-conditional database 

t t 

Class-conditional database 

Fig. 7 Functional block diagrams of thc template learning and matching procedures 
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polymeric sensors were about 250 s, with linear temperature 
coefficients of resistance of 1 X 10-5 K-1. 

A brand test was first carried out by sampling the three 
dissimilar beers, namely lager 1, lager 2 and ale 1, which 
should in principle be easy to discriminate. Fig. 9 shows the 
results of CA using a euclidean metric and a single-linkage 
procedure. Three distinct clusters (labelled A, B and C) can 
be seen with no incorrect class assignments. In fact two 
jack-knife classification planes would give a 100% success rate 
on this data set. Next a 12-element array was used to analyse 
five sample headspaces of two similar products, i.e. , lager 1 
and lager 3 (lagers of similar alcoholic strength and taste). 
Fig. 10 shows the dendrogram of the same CA on the X' 
response vectors as before. Two clusters, labelled A and B, 
are observed with one sample in each class being wrongly 
identified. The template matching method confirmed this 
result by also giving a success rate of only 80%. This is very 
encouraging as the difference in flavour of the two products is 
slight (with alcoholic content the same) and the centroid of a 
set of, for example, five samples is easily discriminated. 
Moreover, the selectivity of this polymer array was found to 
exceed that based on commercial tin oxide sensors. A 
measurement was then made of a control lager, i . e . ,  lager 1, 
and the same lager with a single taint (stale) artificially made. 
Ten samples of each were taken and there was a success rate of 
90% using the template matching method. Fig. 11 shows the 
cluster graph which again shows the discrimination of the 
lagers from the normalized vectors, N' (the normalized data 
gave slightly tighter clusters, A and B). An examination of the 
points plotted in the figure shows that two control beers and 
one tainted beer were misclassified. A close examination of 
the sensor data for these three samples showed that sensor 11 
was giving anomalous values and so upsetting the clustering 
result. This problem could be obviated by a simple sensor 
validation scheme in which the initial data are checked for 
outliers, or ameliorated by averaging the results from several 
samples. The difference between individual sensor responses 
to tainted and control lagers varied with the largest value of 
15% (sensor 1) and an average value of about 4%. As the 

Fig. 8 Typical responses of conducting polymers to beer headspaces 
(the letters denote repeated sensor type) 
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Fig. 9 Cluster graph of the response of a six element polymer array 
to samples from three lagers: ale 1 (A), lager 1 (B) and lager 2 (C). 
Euclidean metric, single linkage 

classification technique is biased towards the larger differ- 
ences, a value averaged over the five most sensitive sensors 
may be a more relevant measure and would be about 6%. 
Thus a calibration period of about 6 months could be expected 
on this test for a sensor response stability of typically 1% per 
month. Clearly the drift, and hence the precise calibration 
period, will be odour specific. However, some advantage may 
be found in the use of a neural predictive classifier that has 
been trained upon a data set which contains the effect of 
long-term systematic drift of the sensor responses. ' 

Finally, an experiment was carried out to ascertain whether 
intra-batch variation of lager 1 could be detected. Five 
samples from five batches of cans were analysed but no can 
batch could be identified at a significant level using the 
template matching procedure. Again this result is confirmed 
by examining the cluster graph, see Fig. 12, where all can 
batches are intermingled. No significant improvement was 
observed with either the use of non-euclidean metrics or other 
linkage methods in the CAs. This validates the use of a linear, 
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Fig. 10 Dendrogram of the res onse of a 12 element polymer array 
to two similar lagers: lager 1 &luster B) and lager 2 (cluster A). 
Euclidean metric, complete linkage 
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Fig. 11 Cluster graph of the res onse of a 12 element polymer array 
to 10 samples of tainted lager 1 (!luster A) and control lager 1 (class 
B). Euclidean metric, single linkage 
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Fig. 12 Cluster graph of five samples of five batches of cans ( ~ 1 x 5 )  
of lager 1. Euclidean metric, single linkage 
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multi-normal template matching routine as a simple predictive 
classifier of beer odours. 

In conclusion, an instrument based on polymeric chemo- 
resistors and associated pattern recognition techniques has 
been developed which is capable of discriminating the flavours 
of various commercial lagers, or identifying certain off- 
flavours in a standard lager. The principle application 
envisaged is the quality control of beers in breweries. 
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