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Abstract—Current software remodularisation tools only oper-
ate on abstractions of a software system. In this paper, we inves-
tigate the actual impact of automated remodularisation on source
code using a tool that automatically applies remodularisations as
refactorings. This shows us that a typical remodularisation (as
computed by the Bunch tool) will require changes to thousands
of lines of code, spread throughout the system (typically no code
files remain untouched). In a typical multi-developer project this
presents a serious integration challenge, and could contribute to
the low uptake of such tools in an industrial context. We relate
these findings with our ongoing research into techniques that
produce iterative commit friendly code changes to address this
problem.

I. INTRODUCTION

As software evolves to meet new requirements, its design
invariably deteriorates rendering it harder to maintain. ‘Remod-
ularisation’ of the source code is a key software maintenance
task that is concerned with stemming this problem. Source
code remodularisation amounts to rearranging the files or
classes into a new set of modules or packages that are (amongst
other considerations) more cohesive and loosely coupled.

For any non-trivial project, remodularisation is a highly
challenging, time consuming task. To address this problem,
numerous automated and semi-automated remodularisation
tools have been developed as aids. These tend to operate by
analysing the source code in some form (e.g. its dependencies,
identifiers, or version history), and derive from this a new set
of modules.

Despite over two decades of research into automated
software remodularisation tools [1], [2], their transfer into
industrial use has been very limited [3]. Previous papers have
focussed on addressing the key perceived hindrance—that the
proposed changes often fail to make sense with respect to the
underlying domain model of the system [3].

However, there is a further limitation to existing ap-
proaches: The impact of their solutions is often only deter-
mined in abstract, modular terms, without considering the
extent of the changes at the source-code level. A minor
change at the modular level can lead to disproportionately
large changes at the source code level. For example, moving
a single class to a different package in a Java system can
require multiple changes to the import statements of its client
classes. If it has any public static methods, the call sites to
these methods need to be changed. If it contains any package-
protected methods or variables, their permissions may need
to be changed or suitable accessor methods may need to be

introduced, which can amount to non-trivial changes to the
interfaces of the class or its clients.

Wide-ranging changes to the source code can be notori-
ously problematic, especially if the software is under active
collaborative development, or is used as a library by sev-
eral other systems. By its nature, software remodularisation
changes interfaces, which other developers of the project (and
its libraries) will have become accustomed to. A study by Kim
et al. [4] showed that such refactorings are correlated with
sharp subsequent increases in the number of bugs (indicated
by bug-fixes).

In this paper we investigate the relationship between the
solutions proposed by automated refactoring tools (specifically
Bunch [5]) at a modular level, and the actual changes to the
source code that these entail. Besides determining how many
lines of code need to be changed, we also explore whether
conventional modular measures of similarity (e.g. MoJo [6])
are capable of predicting this impact.

The results indicate that, even for relatively modest sys-
tems, the number of changes required tends to run into thou-
sands of lines of code. We also find that there is at best a very
weak relationship, and at worst none at all between changes at
a modular level (as measured by MoJo / MoJoFM) and changes
required to the source code—the impact on source code cannot
be predicted from looking at changes to the modular structure
alone.

Ultimately, these findings support Bavota et al.’s argument
against “Big-Bang” remodularization and need for an iterative
approach [7], [8], as well as recent work by Zanetti et al. [9]
to make source code a principal consideration in remodulari-
sation. They also raise the questions that we seek to address
in our ongoing research: (1) If an iterative approach is to be
used, how can we select the best refactorings that will limit
disruption of the source code while maximising improvement
in the global modular structure? (2) Can we use the automated
facilities that are built-in to version repositories, such as pull-
requests and hooks?

The core contributions of this paper are as follows:

• A novel approach to measuring the extent of code
changes proposed by remodularisation tools that ap-
plies the suggestions and measures the size of the
changes to the code base.

• A small study that investigates the effect of one of
the most popular remodularisation tools (Bunch [1])
on the source code of four open-source Java projects.



• A set of insights arising from this study that are
required to make automated software remodularisation
a practical prospect for routine software development.

II. BACKGROUND

We first present a brief overview of automated software
remodularisation techniques. This is followed by a discussion
of the practical barriers that have prevented these techniques
from being widely applied. We focus here on the specific
barrier that is the subject of this paper: the extent to which
remodularising the source code can change the contents of the
source code.

A. Automated Software Remodularisation

Software systems are conventionally constructed in a mod-
ular manner; core elements (classes or other components) tend
to be grouped together according to their common functionality
or purpose within the system. As software evolves, elements
within the system are repurposed to address changes in require-
ments and the core purpose of different modules can become
diluted, making the system harder to understand as a whole.

Remodularisation is the challenge of reversing this process
by reorganising it to improve its modular structure. The
theoretical number of possible ways in which a system can
be reorganised is huge [10], and developing a solution can
require an intractable amount of effort and knowledge from the
developer. As a consequence, numerous researchers (starting
with Hutchens and Basili’s work in the mid-eighties [2]) have
developed automated remodularisation techniques that seek
to minimise this effort. Although these tools are automated
in principle, it is generally expected that the final proposed
modularisation is to be refined by an expert software developer
[11].

The majority of existing automated techniques are based
upon established data-analysis techniques such as clustering
[12], [13], [14], [15], [16], [5], [17] or formal concept analysis
[14], [18]. With both types of approach, the classes or files of
the system are characterised by their key features (e.g. other
classes upon which they are dependent, file names, identifiers,
etc.). Data analysis techniques are subsequently applied to
automatically group the files together into modules, according
to shared features.

B. Practical Barriers

Despite nearly 30 years of research, automated soft-
ware modularisation techniques have failed to transfer into
widespread use. A key reason for this is their expense. Al-
though they can easily propose new modularisations, these
have to then be (1) manually refined into designs that are
acceptable to domain experts, and (2) actually implemented
as changes to the source code.

The first problem, of manually refining the proposed de-
sign, has been frequently observed (most notably by Glorie
et al. in their case study that applied Bunch to a large
system at Philips Medical Systems [3]). Several techniques
have been developed to facilitate this step, such as Bavota et
al.’s interactive genetic algorithm [8], or our SUMO supervised
modularisation technique [10].

The second issue, however, has received little attention. The
task of simply moving classes between packages is perceived
to be a mere formality, and has only recently been fully
automated by Zanetti et al. [9]. However, the issue of adopting
these changes extends beyond applying them to the codebase.

Automated remodularisation tools tend to recommend
wide-ranging changes that can affect most of the files. In
our experience, running Bunch on a Java system tends to
require changes to all of the modules to a greater or lesser
extent. Thus, for a non-trivial system, the changes required by
Bunch (presuming that they are validated by a developer) could
run into thousands of lines of code. The changes required to
adopt a new modularisation extend beyond changing package
declarations and moving files. References to methods, classes
and other attributes must be also updated, including those in
the documentation for the class.

In a practical scenario, the software system will be under
active development by multiple users. Returning to the Philips
Medical Systems example of Glorie et al. [3], their example
medical imaging system consists approximately 30,000 source
code files, continuously being developed and maintained by
over 100 developers on multiple sites (the US, Netherlands
and India). In this context, applying such wide-ranging changes
would be extremely disruptive, to the point that the disruption
would probably undermine the purpose of the code changes—
to improve maintainability. Code changes in a collaborative
environment need to be gradual, with the understanding and
consent of the other developers.

C. Acceptable Code Changes

In stating that certain levels of code change are “too
disruptive”, it is of course necessary to discuss the question of
what level of change is acceptable. This question can in part
be answered in intuitive terms; the smaller the better. Smaller
changes are easier to re-test, are better understood by fellow
developers, and are thus less likely to lead to faults.

To put an approximate figure on what might constitute a
reasonably acceptable change, we look at existing research into
the analysis of version repositories [19], [20]. Research by
Alali et al. shows that typical commits are small; the median
number of files changed by a commit to gcc is only two,
with an average (median) of 14 lines changed [19]. Large
commits are extremely rare, often encompassing sweeping
changes to the whole codebase. Such large commits include
non-functional changes to the code base, such as license
header changes, documentation, refactoring, and remodulari-
sation [20].

While these studies show that projects can undergo sub-
stantial changes, smaller patches are easier to integrate. In two
open source systems, smaller patches have been found to have
a higher chance of being accepted than larger patches[21].
Furthermore, care must be taken when making large-scale
modifications, as they may introduce unforeseen consequences
in the form of bugs in consumers of any APIs [4].

Tonella [18] explored the trade-off that exists between
providing an architectural improvement, and the cost of im-
plementing it, using a metric based on the distance between
two partitions (similar to Tzerpos and Holt’s MoJo score [6]).



Tonella argues that architectural improvement is only one side
of the coin; the cost of adopting a new architecture must be
considered on balance with the benefits it can provide.

Our premise is that, while remodularisation (and other
types of refactoring) tools may be able to suggest helpful
changes, it is impractical for those changes to be adopted. We
test this premise in the following section with an analysis of
the typical commits that arise when using Bunch to perform a
system-wide remodularisation.

III. MEASURING THE IMPACT OF AUTOMATED
REMODULARISATIONS ON SOURCE CODE

In this section we present a study that investigates the
extent to which the solutions proposed by automated remod-
ularisation techniques (in our case Bunch) would disrupt the
source code if put into practice. In doing so, we investigate
whether the MoJo metric [6] — a non source-code based
metric to explore differences in modularisations — provides
an adequate basis for estimating this:

RQ 1: What is the impact on the source code of a software re-
modularisation as proposed by an automated remodularisation
tool?

RQ 2: For a given remodularisation, is there a relationship
between the number of lines changed and the MoJo distance?

A. Methodology

We used Bunch [1] to perform the remodularisations be-
cause it has formed the basis for numerous other studies on
modularisation [22], [23], [24], [10], and was used in Glorie et
al.’s industrial case study [3]. To obtain our data, we adopted
the procedure outlined in the following sections.

1. Acquire Projects: We selected four open source Java
case studies (since our tool currently supports Java), shown in
Table I. All have previously featured in publications on either
software modularisation [9] or papers on mining software
repositories [19] (given that this paper is concerned with the
hypothetical commit-sizes of commits), with the exception of
H2DB.

2. Extract Dependency Graph and SIL file: Bunch requires
as input a graph representing the dependencies that exist
between software classes. We extracted this from the JAR files
for each project using Dependency Finder1, and filtered out any
references to external libraries. We also extracted the SIL file,
a simple text file that represents the current modular structure
of the system.

3. Clustering with Bunch: We supplied the dependency
graph extracted from the previous stage to Bunch. Bunch does
not merely produce a single de-facto output, but produces a
hierarchy of package clusterings. In line with Mitchell [25],
we chose the median layer. Bunch includes a degree of non-
determinism, which we account for by running it 30 times for
each system.

1http://depfind.sourceforge.net/

4. Measure the MoJo distance: We calculated the MoJo
distance [6] between the original structure and the version
produced by Bunch. We calculated both MoJo and MoJoFM.
The latter is an enhanced MoJo variant that allows results to
be compared between different systems [26]. For each Bunch
result, we computed the number of operations required to
transform the existing structure into the Bunch structure, i.e.
MoJo(Original,Bunch).

5. Apply the Changes: We have developed a tool that,
given a target SIL file, will invoke a series of refactorings
to transform the code accordingly. The tool iterates through
the classes in the original modularisation and, for each class,
compares the package to the corresponding package for the
new modularisation. If the packages are different2, the class
is moved using the Eclipse Language Toolkit API. If the
destination package does not exist, the tool creates it before
moving the class. We applied this tool to modify the existing
structure to the proposed remodularised version for each Bunch
result.

6. Measure the Size of the Commit: Finally, we analysed
the changes as a diff between the new version and the old
version. In our experimental setup, we carry this out by
preparing a commit to a Subversion (SVN) repository, and by
using svn diff to compute the difference. As SVN is unable
to track rename operations carried out by external tools, we
impose this by temporarily moving files back to their original
location and explicitly applying the move operation using
SVN. We then revert the original file so it is unchanged in the
repository. This ensures the diff only contains the modified
lines (rather than deletion and addition of whole files). We
apply correlation and linear regression to analyse our data to
produce answers for our research questions.

B. Results

1) RQ1—The Impact on Source Code: Table I summarises
the case studies used in the survey and presents median metrics
for the set of Bunch results for each subject. In all cases, the
median number of lines changed runs into the thousands, from
1551 for JUnit to 8306 for H2DB. In the case of JUnit, this
amounts to a change of almost 10% of its code base. Relating
to the commit sizes for gcc of Alali et al.’s example [19],
these commits would all be classified as “extra-large” and
rarely occurrent. We can conclude that using a system-wide
remodularisation tool will produce changes that are difficult to
adopt.

Although there is a minor positive correlation between
LOC and the number of line changes (Spearman ρ = 0.53),
this is not particularly reliable and can fluctuate extensively
depending on the system in question. For example, Ant is
substantially larger than H2DB in LOC terms (72% larger), but
both systems would require a similar number of lines changed
when remodularised by Bunch.

2) RQ2—Relationship to MoJo / MoJoFM: There is a
broad correlation between the MoJo measure and the number
of lines changed in the source code. Figure 1 shows how

2Some tools such as Bunch by default assign a new package name to every
module, regardless of whether it has changed or not. We undo such changes,
so that only modules that have actually changed in terms of the classes they
contain change their names.



TABLE I. SYSTEMS AND RESULTS (∗ DENOTES MEDIANS)

Project Component Revision Source Files LOC MoJo∗ MoJoFM∗ Lines Changed∗ %LOC∗

Ant main f5ed8ba 852 220,215 405 50.670 8293.5 3.77
H2DB (all) r5717 471 159,411 249 46.255 8306.0 5.21
jEdit (all) r23575 533 172,607 282 45.245 4842.0 2.81
JUnit (all) 4ac902d 174 15,753 71 57.230 1551.0 9.85

the size of the commit changes with the MoJo measure. The
dashed line is fitted using ordinary least squares regression
and indicates that MoJo can approximate the relative size of a
commit, within each system.

However, MoJo values are specific to each subject sys-
tem [26], making it a poor predictor for the number of edits
made to an arbitrary system. The specific relationship between
differences in MoJo value and lines of code changes can fluctu-
ate hugely from one project to the next (indicated by the differ-
ent slopes of the regression lines in Figure 1). Accordingly, the
intercept term for each model varied substantially between case
studies as well. This means, ultimately, that it is not possible
to predict the number of lines changed, given only the MoJo
value of the modularisation and the number of classes in the
system. Although MoJo can give insights into the quantity of
changes reflected in two modularisations for the same system,
they cannot be generalised to estimate the commit size for any
system. This lack of generality is documented in work studying
comparison of different algorithms [6], [26].

We performed the same modelling using MoJoFM instead
of MoJo and found it was also unable to offer generalised pre-
diction of the commit size. The coefficients of determination r2
for models built using MoJoFM were almost identical to those
produced using MoJoFM, which is explained by the linear
relationship between MoJo and MoJoFM. Using MoJoFM
yields negative coefficients, due to its properties as a metric,
rather than the cost function of MoJo.

For this research question, we find that, although MoJo
and MoJoFM can provide a relative estimate for the refactor-
ing cost (in terms of commit size) between two competing
solutions, they cannot offer a general estimate for any system.
Thus, we conclude that MoJo, and MoJoFM, are unsuitable
for estimating the real cost of transforming the code base to
reflect a restructuring proposed by Bunch.

C. Threats to Validity

Our experiment design necessarily introduces some threats
to validity which we have addressed to the extent possible in
our methodology.

We measured commits in terms of the total lines added and
removed from each source file in the subject system to reflect
the size of the corresponding patch. Consequently, edits to
existing lines are counted twice. This limitation arises from
the diff tool, which does not distinguish between a changed
line and addition and deletion of unrelated lines.

Our preliminary work is based on a small survey of sample
systems, all of which are implemented in Java. The small
population of systems means our results may not generalise,
however we ensured our choice of case studies was diverse
to mitigate this threat to the extent possible. Our tool only
works on Java systems, which makes us unable to analyse
remodularisation when applied to systems built using different

programming paradigms. This is a technical limitation which
we will overcome as we develop our tooling; our approach
is applicable wherever a remodularisation approach can be
applied as it only relies on the source code of the system.

IV. CONCLUSIONS AND FUTURE WORK

This paper investigates the “disruption” of the code base
that would be required to implement solutions proposed by
remodularisation algorithms. Without any linkage to the code
itself (the identifiers that must be changed and the impact on
consumers of the remodularised code), structural measures can
only paint a partial picture of the practicalities of a remodu-
larisation algorithm. Our findings indicate that the solutions
often lead to thousands of changes, scattered across the code
base. It also indicates that the MoJo and MoJoFM measures
are not suitable indicators for the extent of these changes.

Given the invariably extensive impact on source code,
this clearly supports Bavota et al.’s argument that “big-bang”
system reorganisations are impractical [7]. However, localised
remodularisation [7], [27] cannot offer a global solution that
large-scale remodularisation can. Consequently, there are sev-
eral vital questions that have not yet been addressed to remedy
this problem and enable global remodularisation to take place:

• How can an “idealised” target remodularisation be
decomposed into smaller refactorings that are manage-
able, but also not too trivial to irritate the developer?

• How should these refactorings be prioritised?

• Is it possible to exploit mechanisms embedded within
change-management systems to facilitate the interac-
tion between the automated systems and developers,
such as pull-requests or hooks?

• How can such an approach become adaptive, to adjust
its target to accommodate ongoing software modifica-
tions that are potentially unrelated to the structural
reorganisation?

• How can it encompass feedback from the developers,
in terms of changes that should be avoided, or partic-
ular elements that ought to belong together?

These questions delineate our ongoing and future work.
We are focussing on a source-code centric remodularisation
framework, founded upon our (non source-code based) itera-
tive SUMO algorithm [10]. Our ultimate goal is to develop
a software remodularisation agent that, in addressing the
questions above, unobtrusively remodularises the system in
a continuous fashion, whilst taking any specific positive or
negative feedback from developers into account.
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Fig. 1. MoJo values correlate with with commit size. The dashed line is the fitted using ordinary least squares regression, given by the equation.
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