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INTRODUCTION




Probability diétributions due to the indeterministic
nature of man's interaction with the micro-world, are
inherent in the formulation of Quantum Mechénics. Probability
distributions are also one of the main units of language in
such 'widely dispersed fields as Economics, Psychology,
Statistical Mechanics, and Control Theory, As here incomplete
characterisation of the systems under study, due to the very

large number of variables involved, lead to indeterminism,

A careful note must be made as to the different nature of
the factors that cause probability distributions to play a
centrol role in (a) Quantum Mechanics (b) Statistics (in general).
In (a) determinism will never be attainable to man no matter how
well he characterises the system under study, in (b) it is
theoretically possible that a detérministic picture could be

formed given all the pertinent variables,

Given that all these fields of study have such a common
factor, is there a mathematical term that expresses such a link?
Indeed there is - 'The Density Matrix', although known under
different names in the varying disciplines its mathematical
properties stay constant. Numerous reviews!2®3%* scan the usage,
so only aspects that will be of relevance to the fbllowing pages

will be mentioned,

In Quantum Mechanics we say that system under study can be
described completely, within the limits imposed by the micro-

world/macro-world interaction, by a set of pure state vectors
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Q?L)Lz\.”.uao that exist in an infinite Hilbert Space,
These vectors are eigenvectors of the Hamiltonian operator,
that is represented by H in the Hilbert Space,(properties'

of which are discussed in many texté& |

te. HY' = ghyd
This operator commutes with a maximal set of other operators,
the set of all operators that correspond to.the maximum
number of simultaneous observables of the system, and thus
the eigenvectors i?L are simultaneous eigenstates of the

other operators

In general the state of the system would be an
incoherent superposition of eigenstates (pure states), i.e,
Y= 3 ct9r
and the probabiiity of observing any pure state in the mixture
would be \cﬂ‘ , (only pure stéfes can be observed). Vhen
this is so we have incomplete information about the system,
i.e. it has not been prepared into a pure state by maximal
set of measurements (the act of measurement being equivalent
to filtering out a pure state of the system) so we have a
statistical spread. of states, Vhen we make a measurement
on such a system two different averaging concepts enter
(1) the expectation value of the action of a given operator
on a pure state - expressing the inherent uncertainty of the
interaction of the micro and macro worlds, and (ii) the
ensemble average of the expectation values due to the different

states, the ensemble weighting factors being C“ . (i)

! Yermetian matrices that commute i.e.AB-BA=0 have
simultaneous eigenvectors.
U, T



and (ii) correspond to (a) and (b) before, nothing can be
done about (i) but it is possible to prepare the system so
that it is in a definite state, [i.e. characterising the

system completely, within the limitations mentioned].

That there are two different averaging concepts utilised,
is aesthetically unsatisfactory and leads to complexities,
- and a lack of clarity in actual compufations. For this reason
J. Von Neuman proposed, in 1927, an alternative method of -
characterising states, The Density Matrix

Following V.FANO,Rev lod Phys,29,74,(1957) and

'P.ROMAN ,Advanced Quantum Theorye-

Let our system be represented by a set of normalised
puré states ‘f;,, and the normalised weight of each pure state
be denoted by C{_ , we can expanq our pure state in terms of
orthonormal eigenvectors 'Kﬁ&ggoffa maximal set of commuting
operators. [not the same maximal set for which ?Lis a pure state]
&%

1.

?;=Zn‘;0\t X , with < X, | ™S
Z \an\* _

Then the expectation value of fL in the pure state S{; is

<AV z‘a ALxMUKY= 2 dhol

Thus the grand average of the observable {2 would be
@y -Takey - ZAR Zadiall
If we define || ('I‘he Density Matrix) as

2 LA, al.
Then.<&> : zTnﬂt -TTR
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Here T‘ and_Q are representations of the Density Matrix,

and the operator in the bases X'X-;Sof the Hilbert Space.

Thus the grand average of.Q. éan be computed by knowing 'T‘ .
The diagonel elements of |' have a direct physical meaning, |
the probability with which the base state)(n occurs in

the ensemble. \.¢

To = Zculaty’
.

Yov O T = LT
So '\1:‘ =

P S SRR RS T T A
Thus the operato;' T is given by

n
T = Z \\2~.> C—L(‘EL\ 1..e, it can be represented as a
(%

sum over projection operators,
The eigenvectors of T are the possible pure states the system
can have, and the eigenvalues the corresponding statistical

weights,

If the system is in a pure state'.(i.e. describale by a single

state vector %;_ ), then C_{ = 1 and C—K'-:O-?o« K L
1P <P\

Thus for a pure state the Density Matrix becomes a

fl

and for that state T"L

projection operator, with the related property of idempotency
-, 2 )
\ v = T‘L
and the expectation value of an observable for a pure state is
given by <S7.> = Tr T';,_Q, as it was for a mixed state, thus

the same formalism can handle pure and mixed states,

The state vector or the Density Matrix for a particular
system can be determined either analytically or experimentally,
Analytically the state vector is a solution to the eigenvalue
problem H\P_;'= E." (P"' , vwhere H, the Hamiltonian of the
system characterises the symmetry of the system to the fullest
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extent, Experimentally it is determined by carrying out
a maximal set of simultaneous measurements of all possible

commuting observables on the systen,

The Density Matrix is determined analytically:by
finding a matrix that commutes with the Hamiltonian of the
system, where the Hamiltonian embodies the complete symmetry
of the system, viz one finds a \' s.'[H;?] = 0, the set of
all solutions are the density matrices corresponding to the
possible states of the system, Experimentally_v is determined
by making N® - 2 or N¥ - 1 independent measurements'of the
system, where N is the number of possible pure states the
system could be in, if the system is actually in a pure
state N° - 2 measurements are enough to completely determine

the density matrix of that state®.

A fundamental difference between the Density Matrix
and the state vector descriptionris apparent, State vectors
can only be characterised for pure states and thus we can
only predict the behaviour of a system in a pure state, while
the Density Matrix can be characterised for a mixed state of
the system, so we can predict the behaviour of mixed state
systems, viz for the state vector description we have to
have complete knowledge of the system, while.in the Density

Matrix scheme we can work with incomplete knowledge,

Furthep if we are only interested in certain properties
of the system we can express the Density Matrix in a basis
of the possible pure states of this property. If there are N
such states, then we need only make N° - 1 independent
measurements to determine the Density Matrix w,r.t. these

properties, Such a Density Matrix is only valid in predicting
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behaviour that is a function of these properties,

The behaviour of the system w,r,t, these properties
of interest is thus predicted in the average field of the

properties not of interest,

Analytically we can determine such a Density Matrix
by finding T’ that commutes with H when the Hamiltonian

only characterises those properties of interest,

When we have a N particle system and we are only
interested in P particle properties we need only find @
Density Matrix that commutes with a Hamiltonian that only
expresses P particle properties., Such Vensity Matrices are
called PP Order Reduced Density Matrices, This is not
possible in the state vector formalism, as state vectors are

only defined for pure states of the system and have to be

determined maximally.

Almost all chemical systems (and indeed most physical ones
as well) are expressed in terms of two particle Hamiltonians,
thus only two particle properties are of interest, (Two particle
properties determine one particle ones)., Hence to describe
such systems the an Order Reduced Density Matrix has to be
determined, such that [ E ™, 7] = 0, where H embodies
all 2 particle symmetries implicitly, If We define a Hamiltonian
that only embodies energy properties, but not angular momenta
or statistical, and if we are only interested in the S = O state

of the system Vle have to dctermine ¥ Tw

1
Vi +A.BINGEL and W.KUTZEINIGG (Queens Papers No. 11).
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k%
where [H®, 7@ ] =0=[1®,0% ] = [, ?® ] =0
) R ) (" '
so to [H( ,J » ] = [H‘L ’ Tr] = [qu ,’lT] = O
3
where J¢° embodies all angular momenta requirements, and m

statistical (i.,e, Fermi~Dirac, or Bose-Einstiens) requirement:.

However analytically it has prbved impossible to describc_'
7w completely, s.t, ™ represents the statistics of a 2 particle
subsystem of a N particle system, This is known as the N

representability problemn,

In Part I of this thesis we will limit ourselveé to systems
that are in singlet spin states (this is for simplicity in
the application of the probability constriants), and describe
and analyse the mathematicai structure of the representations
of various‘N particle operators in (a) the continuous co-
ordinate representation, and (b) the discrete functional
representation of a Hilbert Spaée,' This will be achieved by
utilising the notation developed in Chapter 1 which is, due
to the lack of space and direct relevance to this thesis
of many ancillary topics, of a rather truncated and abrupt form,
However it is important to refer on€s concepts to a general

mathematical structure rather than develope notions in vacuum,

Chapter 2, 3 and 4 will deal with various propefties of the
representations of operators, with particular concentration on
the 2nd Order Reduced Density Matrix andits eigenfunctions, Also
rather intensively developed will be the sub space structure

of the functional representations and their associated spin
symmetry. In chapter 5 we will interpret the 2nd Order Reduced

Density Matrix, and its relation to other orders of Density
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Matrices, propabilistically.Thus trying to find conditions i 3
T has to obey so that it does correspond to a descriptio:.
of two particle properties of a system of N identical Fermions.
Hence trying to find some partial solution to the N represent-

ability problem, In Chapter 6 we describe the application

of the previous chapters to a practical approach, using a
computer program that has been written along the structure
presented in this chapter, The resulté achieved by restricting

possible '?‘ng'by various constriants are discussed and given,

To people involved with the efficient production of -
mathematical results that can be applied to chemical systems
that the experimenter has characterised, the N reprgsentability
problem and its attempts at solution would seem to appear
rather esoteric, and in fact it cannot be claimed that an
efficient method of furnishing a mathematical paraméterization
of an experimental system has eVen been developed through
the approach of trying to determihé directly the Reduced Second
Order Density Matrix of a system, However one can never feel
satisfied with the cruder approximation that, although super-
ficially predicts results in qualitative agreement with some
experimental parameter, often at the same time predict parameters
that are wildly in disagreement, Thus doubt exists as to
whe ther one has characterised the structure of the physical
system mathematically or whether one hés just fortutiously
computed a parameter that happens to agree with experiment but

for the wrong reasons,

So a balance must be sought and mathematical analysis
must extend from both ends of approximation, one end at which

theoretical rigour is maintained and the other where refinements
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to a gross approximation are developed,

Thus in Part II we look at two extensions of the
independent particle model (where ﬁe do not limit ourselves
to singlet states of systemsl i,e., where we characterise only
1 particle properties of the system, and hence all predictions
ére based upon the 1lst Order Redﬁced Density Matrix, The
first extension is that of partial Configuration Interaction.
In a full CI calculation one determines the coefficients of
a full Slater Determinental expénsion of the N particle
wavefunction - (which in fact is an expansion over the exterior

W,
), i.e, one solves the

_product functional space /ﬁ(LF(z
eigenvalue problem H \:’8." = E"'\ZL where the Hamiltonian and
wavefunction are represented in /Nﬁ,F‘”“, which does in fact
solve the N representability problem but only does so at an
'overwork' cost, For our Hamiltonian usually only embodies
at most two particle operators, and we are determining an
N particle wavefunction (or in fact its discrete representation).
To shorten the work involved we trancate our CI expansion to a
fixed number of terms and try and construct an optimum partial

¢ . . . . R
”). This is known as the HMulti-configuration

basis to /Q:F
Self consistant Field Method (MCSCF). This does improve upon

the basic independent particle model but not very efficiently.'

Chapter 1 (in Part II) deals with the MCSCF method
and presents some computational results and comparisons with"‘

other approximathn&s

# See chapters 1,2,3,44 for usage of notation,
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Another type of extension of the independent particle
model is the U H.F. (unrestricted Hartree Fock) method which,
although very efficient (usually) and improves upon the
Restricted Hartree Fock Method, suffers from the limitation
that wavefunctions it predicts are not eigenfunctions of the
totél spin angular momentum operator S°®, and thus the
associated FPull Density Matrix does not commute with the
representations of S®, Chapter 2 hence deals with methods
attempting'to constrain solutions to the UHF method so that

they are eigenfunctions of §%,

In appendix 4 there is an example that, it is hoped,
illuminates some of the mathematical forms described in genefal

in Chapter 1,

References to Part I are of Such general applicability
to all of Part I, they are collected at the end of this

introduction with relevant remarks,
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PART ONE,




CHAPTER _ONE,




Notation and Algebra play an important part in Quantum
theoretical discussions, and for convenience this chapter collects

tozether basic definitions and algebraic relationships used in other

parts of this thesis,

Vector and Tensor Products

Strictly, the following applies to vectors referred to a discrete
basis. However, with certain qualifications the relationships can be
extended to vectors refeired to a continuous basis i.e., functions.

As these qualificatibns do not affect the essence of the definitions
and relationships they will not be explicitly stated.

The following notations are used in this section:-

E(m) - an m~dimensional contravarient BEuclidoan vector space (space of
Tensor rank 1)

E(m) -" " covarient " vector space (space of
Tensor rank 1)

S - symmetric group of degree m.

m
Qk m " totality of strictly increasing éequences of k integers
) , S
chosen from 1l,....m. The number of such sequences, i.e. order
-~ . m
of Q&,m is Ck'
Sk - Totality of sequences of k integers chosen from 1,....m.
)]
Gh;m - Totality of non-decreasing sequences of integers chosen from 1,...m.
a, - eque S S
y a sequence & {QﬁaM. S, Si,m, ér Gh,q}
o = {UY.,) .......... R} each Sy, being an integer, i.e. o;k = Lp.
Any vector x; € E(m) can be expressed as a linear sum
' t=m ¢ ‘ ) . 3 ala
x; = Z“‘ xi e where { e; }(,:1’ _______ m is a bﬂ.u;l.u of E(m)
where :té L= ...n are componcnts of the covarient vector =x;.
) (8 'REXX ~J



In Dirac Notation, a covarient vector is symbolised by <:>c:j l:md a

" contravarient vector by \x">

The spaces E( n) and D( ) are called dual spaces, and a unique
scalar can be associated with a pair of vectors, one from D( n) and one

from E(m)' This association is called a scalar product and is denoted

by <3¢ l xJ > , and is defined in terms of components as:-
<3<-|. lx} > 2 :C xk
The two spaces E( m) and E( ) are isomorphic and to every vector
E( m) there is a vector associated with it in E(m) A Y-
These vectors are dual to each other, and the relationship between
the components is:- ,
J L X

X = xJ- where * indicates coinplex conjugate,

hence the scalar product (x.i ‘DCJ> could be written as:-

(xtlx5> Z x x J*‘

A scalar product is also known as an Inner Product.

An Outer Product or Tensor Product, is:symbolised by @ and is defined as
W, .ke
1]

- . e e R_e
wij = X ®X;j, where the components of wij are = XX -

This is a covarient Tensor product and the space of all such procducts
is denoted by ®2. E(m) » The contravarient tensor product is-
defined as:-

Wij = x‘:® xJ' , and the components are defined as:-

wid Re = xé 'r_i , the space of all such products being @2 E(m)
and the mixed contra-covarient product being

wj: = xz'® Xj , the components are w;i IL-Z'.;' , and the space

of all products being @ E( m) . The spaces ® g a.nd X, E(m)

(m)

are dual, and the space @, is dual to itself, the tensor w;

being dual to Wi.
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In general, a covarient Tensor space of rank p and dimension m
is written as ®P E(,,ﬂ and is a p-linear map of the space E(m)
and contains tensors of the form

P® ’
W =2XQ.... @x‘)’-];\' X WG@PE(m)
Similarly, the contravarient Tensor space of rank p and dimension m
P —~(m
is written as ® E ) and contains tensors of the form
i p_ KO L

Woex'®....@xf= 73®x
and the mixed Tensor product cpace of covarient rank p and contra-
" varient rank q is written as @: E(m) and contains tensors of the

fornm

W=x®.. ®x'0y®.. ®Y,.

From now on for the sake of simplicity, we will only refer to mixed

P _tm)
spaces of the form ®? E i.e. equal contra- and covarient rank.

(m G
A basis for @PE ) (whatever property ®PE m) has is

reflected, in ®P E(m) and sometimes
P
Qp £ ).
can be formed by the MP Tensors formed by the products
S % R® o ,
v' Y = R (3 -~
B @R = K2 e,
P . .
and any Tensor W ¢ &' E can be expressed uniquely as a linear

sum

A
W= 2 (.L)o, e , as W is a tensor product
a;es’,’m vV

‘then W = x’®‘_” ® xl’
f bR P
and Wo. = H'o_y. ..._._of))? = I%l.xo?i.... xayf.

Yy .
where x,ry is the component of the jth vector along the axis marked
(]

by the basis vector e,d*"'-.
7%@ . . e
Each product e " can be thought of as denoting a particular

il
tensor axis in the m-dimensional p-rank Tensor space ®PE(~D’
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In Dirac Notation, a Tensor I‘rodﬁct can be written as
b D la®> 0 1xP Dy (x4l (x Pl o
lx'> | <* > . le> <y']<y" < , depending on

whether the products are contravarient, covarient or mixed.

) f
The inner product between two tensors w’ and UJR ER E(m')w &, E@

is defined as

Cwilwt> = 5 w’ uo
2 % ﬂ'és‘gm P

-«»;‘;,Sffn' T '5"9:’
2.‘. Z (I“ Ht.) sz 3; (IF‘P 9:9)
<.I ]j > ...... <xplj >

“and wk = B|® @5? '
Now if we define the basis vectors of E(m) and E( ) to have the

property (3;_ le. > = d-‘:. i.e. to be orthonormal

m)

then the inner product between two bases Tensors €®P E_( and

® Ecm> is
< nf® lﬂ®e""> <e,9\e.“"> e,

=8 L. &'
= SNy
- -

P
Thus the base tensors of ® E ™ and ®F E(m) are orthonormal.

A basis for ®PP E(m) can be formed by the C'ijPTensor products

o %ip - PO o, fe
e'0..0e"Rey ® .., = T e™ @ T e, -

Then we see that ®S E("’)can be decomposed as

RLE™ - @ E™ g @ Epmy

and any tensor € @; EC"‘) as a product of tensors X @9,

x e @M g ye®p Epy-
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P (= . _
Any Tensor w6®p E™ can be expressed uniquely as a linear sunm

w-% W %o ®e Co

v HyESpm Mo

< O, Op 1 2 P 5 ovp
and LOM = LL}‘V""/“W = I. .Iﬂ%....a:mp.j, ...... 3?
-2
= C:c ja"‘) (* ) Ca:h,( ”)

P { (m)
Thusw = Z:®®2’P where Z;' = :r. ® Hio ard Zie @.‘E

P ~0m)
The inner product in ®‘o E ie defined as

ulw >- . WL where <1 = TUGS 2

0"9}—\96 p,m ; ‘
' [ 1\, I:P 'S FJF
'”.g ;u.z 'Jl t ceee —Z-PJ.PQ(L‘.-. aflf .
[ f’\‘-f Ge
] Z;N CZ Qe ) JP Q”":°3
»Ji

ZI& > <Z,l©§,>

and if Z: = x;@gl

and G-: = PL Q %L . . . .
then : < Z,: l G,t > = <x; ,p" > <CL'— (j >
and thus -

<Lulwd = <x| IP‘><‘L‘ lﬂ' > <xffp"> <cif‘5f>'

and the inner product between base ’censor; gives
P P : . F®
<%, o T®e™ e 1T exv.>
. Vi vP ?P>
_<%t MY L, lemD e, le0<e, ]
I e,

f
?‘ Xy }“\)f ' Y-vla

"

£, ;"“"*’
%y so agein the base tensors are or*honormal.

Another type of product can be defined in ®‘, E that

- 1.5 -



4 (m) P
associates two Tensors LL,V e ®? E with o third U) €®r E
This product is called a Matrix Product and is defined as

Wwy = U) wnere

U.): ' - Zx: u”cr v¥ Exp Z‘ bl GJ}JO} ( Pab ‘)P)
14 y L,
where Z @ o

. b
and if we define R Z'o &—L

then
My N PMvp
wav - R'f?‘ . R20Y1 ........ R?G'QP

and thus W = R: @ ........ @ Rf;

(m
The inner product £ U—’V> as defined in Q? E can be thought of as
Tr W, vhere w- W V.

Tt is possible to define entities W, V, W,

u 2 ua.o U@ o‘\’»

‘fvtC-.S?,
Y ‘g‘es,,m v 7T f,e .
‘ op -{—‘ )-‘s:vL ® -ﬁ@

w « 2 u-) 0'\71.
e O € RTET, @ E,, od @F ET

) J

respectively, such entities LL)VL\) are not Tensors as they do not

obey the Tensor Transformation Laws.

Only when o
’ 2
= X, L Lieaeen o &
u.o,)’ xa,\" . :I-O.pl .o 6‘9P
o,

% . o2, v ove
Y U 2 T

O"‘; .0.9, 2.2&9! 2
W BB 2

are W,V andW Tensors (as they then transform as Tensors).
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LINTAR TRANSFORMATIONS

The spaces of 1l.t's that map E(m) onto E(m) and E(m) onto D(m)
are denoted by L(E(m))h and L(E(m)) respectively. An 1l.t. that maps
x € E(M) into 316 ELm) is defined as having the following effect

L] m
K L
3{ = g xy LLJ,,_ where 5=x.u. and the elements of Ware ‘
J'
U, LLG,L_éE(M)X \ ’ ;
) (m 3 m
and an l.t. that maps x"eE intoy € E
. m .
L R L ()
e Wk, UeL(e )

m)
Every 1.t. € L(e™ ) can be associated with an 1l.t. € LC'E‘M)X

is defined as

if \ .
and the relationship is/ L E-,L(E‘mlnd'\/is the corresponding l.t. €.
L (Epny)
. v*
then U-3=V'{ or w - \/+
wheret denotes the Hermetian transpose.

If we transform E(m) byllat the same time as we transform E(m) by

W then
<xb{,wj> Z(chm!p iJZ!ZIjLwaSK

{ (iu wf)yk}

al lz
Now if 2 then the scalar product is 'equal to
i

]

"
J

2 xjn =L l‘j> i.e. is left unchanged

J

We can see thatd:’g can be thought of as the elements resulting

. from the Matrix product of WwithWi.e.
k

Uw=T where the elemen’: of L =JJ
Iis known as the identity transformation and has the property of
mapping vectors onto themselves.

When
w.vs L where
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WELLE™), VE LlEuy), then LV = T
whersll & L (E®) gud V¥ e L (E™)
So we define WS = VA thus put. T
whore W,and W' € L(E®)
Such a transformation Wom E®® and U™ Fon E(d is known as a

Cimilarity Transformation.

T = U:F (babkéL(EM) then WUY=2 Tve say that the

transformation is Unitary.
I -l —Und
The pace ®| E ) is isomorphous to a subspace of L(E ) and
L(Elmb , i.e. those l.t.s that can be decomposed into Tensor products
from a subspace of LCECMbaw:( L-CE-(,“)).
M9 My, o ')
Though all 1l.t!s can be expanded on the basts (& & & ®€w eg},z
]
)
for |l CE >
- o Pl
or the bases { .. Qe e qe Y"_} for LU:W) (as e
My, M,
the bases are the sam%
Where/‘?,oq, (=3 s:_,M , some are not Tensors.
. : \}
Similarly 1l.t'%s associated with @P E(M),i.'e. L(@o EG“) and those

assoPciated with ®fE(w)i‘e' LC@f E(w)> can be e;cpa.nded on the bases
B v TC® - § e & o
[ M®er*o 1%, ] = { 1%, @ TT%e J

respectively, but not all are Tensors.

Thus, any 1l.t. U:Le L. (®?ELWJ> and L(@P E(m)) can be expanded so
w=28 Uy . e Tr® ep.

Ty A .
A sufficient condition for b €=L(®fE("'>) and L(®f E(m)) is that
X} Mo -
W wl e U
1oy, zrvz Puvf, Y

Transformations that do not have such a property might map tensors

P~ )
€ ® E or ®P E(m) into entities that have Non-Tensor character.
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When WL = u‘® LL,,@ ...... ®U’f
then U EL (®f ELM)), L.<®‘> E.MB

’9 - #ol sz }{.\,F
where Lk/up = LL,W‘ . u,_wz.... .o LLFUVr ,

' m
and only when all the constituent l.t's € ®‘ ém) does ue@,‘: E )

Thus we have all linear transformations defined on the basis

{ PR oy,  +@ :

Tf e'® IJ 6)"%} forming the spece G L(@”E(m)),

then we have those transformations that map@PE(M) o'nto QP Ecm)
forming the subspace L@ E m) ) or GLE E.m) and we have those
1eve. € LR EP™Y that are Tensors, which form a subspace of
LIQFE™) vin @F E® |
The matrix product between 1.t's € L(®r ) being defined ac
W= WV, : | |

then
My xXo MV
W, = 2{_", u'vv-.\/xv '
’ULQGSP'M,

and an inner product between l.t's can be defined as

<U~IV>, Uue L(®P E'(m)>, Ve L(@PEW)>
| v AV
where <UIV> = 2 2 u"/“\? 'v’tp =3 2 u—av . Vo'};o

oV My
r‘y’w Aty 'V,Mésflm

AHVES M
+ Proa) - ov _ Mo
ure LQFE) ad U = L.

Symmetric and Antisymmetric Tensors

If the linear mapping TTA -=,L. Zl C» O is defined vhereor € S?
P. U’ — — —
(QP is the full symmetric group and & is a permutation operator &€ -S~f’

with effect O Ce.®....® €r>= e,q@) ®e’0‘99 ) , and
Co is the parity of ‘the permutation). .

' AP g O - ' P ™
Then the mapping Hg l® E i.e. TYA on every element of® E
defines a subspace of ®FE that contains only antisymmetric tensors.
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2, .
]Tg is a projection ogperator i.e.ﬂA =Trﬁ and is known as the

Alternator or Antisymmetry Operator.

If :tG:@PEM thenTla X is the antisymmetric pari of .

Ir T\'ﬁx-—-.:t then the Tensor is antisymmetric.

The inner product of antisymmetric parts of tensors, or antisymmetric

tensors is given by

<TR(x®... ®.xp)”— (Y®....8y 7= <-TA(2® ®3C‘>!3® By D
LTy &8... @xply@..@f >+ Dt (<2 ly 7

If the linear mapping—”; T’L Zn’ G is defined
o3
Q’&SP

then the mappingTl, ;®rE(M) defines a subspace of ® E(nb that

a—

contains only symmetric tensors; Tr,-, is also a projection operator

'IT"— Trs and is known as the symmetriser or Symmetry Operator.

It 3::6@ E thenn & is the symmetric part ofx -and
if .:c=Tr ¢ then XX is a symmetric tensor., and the inner product

(m)
of the symmetric parts of two tensors or symmetrlc ten°oru€®PE

and ® E(M)l given by
{My(x@...@xp | T Ye... ®HP)>=.L Perm (Lox; 147D

where Perm = DPermanant, known sometimes as a positive Determinent )

o
is defined as Z aa.,‘a;"....qf;’l’ - Pern (A)
«Esp o
where tis anP block of numbers wﬁ:h(_h ") efemenl:a j = row

YL = column

The Determinent is defined as

T o €ra e ...o.;,"’ = Det (A)
U'éSP

wheref is again aPXP block of numbers with (J,\?,,) element QJ

The Antisymmetric subspace of ® EMJ..; denoted bjx (ECM))
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. "
the symmetric subspace 25 Y (ECM)).
—bm,
Hence X (t >) Im‘T (Im = Image)
' .
Y (-E )'Im vhere Trﬂa.nd'"s are mappings defined on
fe™
A Tensor can be described completely by the sum of its symmectric
| P . im) A s
and antisymmetric parts, i.e. if XX 6@ E thente Nl 2+ T 2

Thue T4 TP (the identity map)

ana @FE™ o YPE™) + XP(EM),

Exterior Powers

A skew-symmetric p—linéa.r mapping of E(r“) is called the pth
Ixterior power of E(m) and is described by /\PELM) , The tensors :
e/\P E tm) are extérior,powers of the vector €& ECM). te |
1t WeA B then W - 2'Ax® ... Axt,

a basis for ,\PEcm) can be formedpfrom the bosis of E(m) i.e.
o, oo A Cp.
™ YePA L AL f}:iﬂy‘@ en

where O—\PQQP,M . The number of such'_ sequences is me , thus
(m)
there are mCP bases Tensors in /\P E .

D) ‘
Any Tensor We/\r E can be expressed uniquely as a linear sum

w2 W Tf"‘ef"‘

oo f,'/,.

Y E Qp,m L : )
where U, < (xAZE... Axh) Fl y, Det °'v| e Togp
Y &y, Ty O, P . p
. rp'...-...xv9?
and hence W = x'AxIA ........ xP.

UJ 's that cannot be decomposed in this fashion correspond to (J.)S
P lm)

that are not Tensors G.A E

The inner product between u,‘-'.x,A ..... /le é/\f, E(m) and

P
v=j‘l\..../\jf € /\ = {3 is given by

- 1.11 -



, ‘ ;

(U‘ V> = <x.n..../\xr|3/\..../\3?) =.!§‘. Dot [(:zb[3 >]

and thus the scalar products between bases Tensors are given by:-
{ P v.

l N e > D) L )

,ﬂ<1§ e °_!‘7;\'e > _Fba,l:(é l€ >§ !}ek(

5o

i é/’“v ‘
A very important property of exterior products is that if the set

of vectors{x,,.....%} arc 1.4, then .x,/\...../\xr =0

Symmetric Tensor Product

o(m)

A symmetric p-linear mapping of B is called the pth symnetric

P~ i (my
power of E(m) and is denoted byV E « The elements of VrE

: (m
are symmetric powers of vectors & E viz.

Wex'vo...vxf W eVIE™

e
The base Tensors oi‘_.vv E can be defined as

2y P \V4 b'?.:

._L—-—-" O’p'
P’.“"J[\T{y;) e V... P = f”’gJ—-—-) TS;

0LE qum i.c.0y arc ordered sequences,

v

P =t
and each rf‘e']sor (< \/ E can be eyPressed uniquely as a linear sum

Py o
W = Z .w -ﬂ-v : J%E‘M!V"

vet

Each component LUD,\, can be expressed in terms of the components of

‘ ‘ P
the vectors& D , i.e. where W =xA ... AX

i P
- { e ‘ Top, " XTop
f' UM | TR ', a P
UJ LU {"—"’(U» Pt h ] (v Ve S

a‘aﬂ oop

where M(a",) is the multiplicity of the sequence which is defined as
the product of the number of times any one integer appears in the
Sequence, viz.
If the sequence was Sy = (0'\7--.-0’9 )=CC, L. ---L'-, ’br--i-z. "-3«--'L33
‘ 1 g )Y ] : 5 ’
P/s /3 /3
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L, <, <4 (as they are different)

then M(b;,}:.g.f._e = Fg

3 3 9 :
-
The inner product between V& VPE< ) ana Ue Vf Ew) is given

by

' .
) P — J
UV « Ve Naegly Ve Ny P e o [l >
number of repeated vectors inde

Mx
My = " n . n 1" n 3

and the scalar product between bases Tensors is thus

P!J"‘_‘(W—3<ﬁ Coo; Iﬂ'”e, "> Plr’W@ Pem[ée.,\,l ﬂo‘]
-?!m T @rw‘f‘%‘:‘]

Mo
&y

| ¢
The difference between XP(ELW) and /\ (EU“))
and Y'(E"“’) and VP(EW) bheing that Xf and y(’ arec reducible
while /\PCEMO) and VPCE (Ms) are not.

Mixed Bxterior and Symmetric Tensors

The tensor product between tencors € /\PE‘”) and those

- P o
64 E&D | definfas.a. space A)’ E‘"b = /\PE ®/\P Eﬁq),
that contains tensors"(l_)o.f‘ the form
)
Q)- zA se me Ax?@j‘ Ac --.3P
The bases of such a space can be defined as

L [e .
Pl {TVA e @ HABM} o % & Gy

(@)

O'v,)&o
»ou vve M

Any tensor w e A E can be expanded with reference to this
basis:~ . e P

v J_ A el A
w=z u)r‘,' P' 7¢Te ®7:.r e‘c‘y;
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oo .
and U.)I“\, rust be of the form

. G‘y‘.-.‘;‘r
(x'A....Ax )a,v Top’ (31/\ ‘ /\3‘,) y .w; e
WL oeb[_"r»--' "w] et [F1 '*‘:’;v ]

d;, ™ P zgﬂ‘ x,;pp 99\’" .-Bf' ¢

(n)
and components with such a property are components of Tensors 6/\') E
Inner and Matrix products are defined in an equivalent marmer %o

E(m)

viz.

that in ®P

<ulv> . 2 2 U \éo

o‘\’l ne QP:M

“and LU = WU, VvV where

3 Ty

In an equlvalent' manner the space Vf E € v E "0® \{g E(m)

P ~nd
can be defined, and tensors LL) c Vr E are of the form

LLJ = x'v.... V:z,f ®3‘V....V3P

and the base is of the form

1
Py og  f
TN CTA ) {TX e” ® T-T"euo-vl v, % € Gpm

¢
Thus any Ll)e Vf E ™ can be exp wndcd in the form

Ww. s W Tr *® Tr"o,,p

”w./uoe'Gr,
where the components rmust be of the form
°’v
d ceve LEXRR Iy )
Perm [ g x%’f . Perm [ 3 :)
bl ﬁiz;) *Gop" X6 pp

3:'. .. '59‘?

and the Matrix and Inner products being defined equivalently to the

other two cases.

Exterior and Symmetric Products of Linear Transformations

Ve define only the 31mple t case i.e

Ww- UI\UA....AQ.. and w Qv ces (L ~:he-re .
U.G.L(E“a) or L.. (E@) thenw;m the first case € L(/\?E,Lm»
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or L (/\F E(M’> :nd in the second to L. CvaCn‘\) or L (VP %MB

The components of W=Ua......AlL  are given by
W U, u"’?
U)”'o Det [ ::' | G
- L 4
% - u’)“P s g 000 60 o0 @ ua)‘PP

%, M & Qpym

)
Any we L,(/\' E‘M\ can be expanded so:-
\ P 4

L A A
%2 LL) il e @ M ey,
c,, e " ones
T, 9au Qpim oy P —(md
but only certain forms of w).\, are allowable, or/e L (/\ E )

the above one is the simpless, vhen W is made up of an exterior

product of p l.t's that are all the same.

The components of Ld : Uv..... -V U.. are given by:-
%o Patm| il
u) JMI°.9>M()AO> ’9‘ ) ..u’:’:(; o’v’ o e Gf'M

)
and any We LCVP ¢ ) can be exnc.nded s0:—

w.- 5 W mﬂ e,’“@'ﬂ'er,i

oo v
G0 €& Crpyme '

again with the a.bove quallflcatlon.

The Matrix products are defined in an analagous way to that of

1.t's

e LU E™) or L(@,Ew)

Three important relationships follow from the properties of 1l.t's

previously discussed.

LU ' ® U x ..o W - (Ue....0D(e.. o)
whereu‘.....u?e L(E(MSB
and & ,.....xfe E_w

e U Al Al = (lU.A\LLAé..../\\l}(ac'l\.....:\x")
vhere L € L (.Ecm)> and x* € EUQ
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3eWax' VUL x2v...... Vu.,s = (,UN \.L;vug (a,'v......VJce}

LeL(£“Y
N ~
x e B,

Contraction
An operation that can be defined over a mixed Tensor product

 space is one of contraction, which is a (P + P)~ linear mapping of

P lm) 9‘ I¢
p onto@ EM)

The contraction operator is denoted by C‘l? and has the i‘.ollowing
effect:- ¢
I3 . . A
J ' 2 P J ' Ny Q-
¢ (= x'®...0x 0y, ®... Oy |-<= 1y, > x'@..0T'Q. xBYR.G4OC
Cg is called the contraction operator with respect to the pair (i,3).

: we -
when j = 1 = p/denote the operation by C( c )

4 ECM)

The contraction of the Tensor U G@ is given by the

expansion
; &5, £ & 7Er® J'[: 1 P-1 mS
. > . e‘ . e -.OC'. :w

G :C"Lj Dé‘e’uese-n,mw”»:“’}‘i’-’ TS.@) Q0 a8 e

- M O, we s Tog R -
where “) P! - E: Y vp- _
.. /PR PR
Fr-t R -1

as oy, ....G'vf . 2 P Do, ’\’f
(L%.....%P * X X mb,’ut"' ‘xrf.r-gt _‘1‘)

then 0'9,-. ‘9 ol ? ' l\D’o vof" 3 h
U.)U,u.- ,up.. = 2 x, "‘ x,)u :'.o;“? . 3. ‘-...3? xk 9" .

(m) "
"Contraction operatorg can &100 be defined to map /\P ontc /\P { E

P ~tm) P! =tm
and V E onto V E > but no particular vectors that make up
the exterior, or symmetric product can be chosen to be contracted out,

thus all contractions are denoted by C. _
P =lon) P=' _tm)’
Ir 2 € /\? E then Wz €LZ) e'/\f-l E has the components

b'o viree s TPt .
c [ 4 .
RS Tap-1 whextg Oy and o"“eQP_‘,M and the components

are defined as:-
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69“"‘%‘)-' i Rb‘p-"‘v\) )

U\)tr cenna = Z zng' v
e T G i, o+ Shap-!

i.(’-a if Z"x'A""AmP®BIA""A_B-P

then h50"".... 6)‘?"
: m X P! Jt 4
STl 5 S ek | Deklt g Gy
wo).,-.-.a‘/-;.; = P. Y X 9‘, Ye .',..39 p-
. 6)7,5/,\& QP."M p )
and similarly if & € v; EcwQ then W)= CCZ] € Vf.l E

. O,

\)' Y D'w «)
where U) has the components CU,A....,}"_‘
and the components are defined as

“9...--69 ™M Qr 0000’\,
¢-! ‘ P .. ' e
= Weee q"'

w"}t....o:up,, % Zn%....%?_,  6gainif B 3 V.2 @Y,V Vyp

.0-915}4 € C'p-l,m ond

then nn'. T
L ! -
8 ...0,
veeeGopat =) ZI :
Gityre-Tprp ot = Pl m m(’wk)“(b/h./s)
where %.c',‘e Gf—bm  but Oyt kR, o;u;

sequences
d‘,;k s {hb-o'-..‘o"??-‘s
LA {ko}*'....o-#r_,

Multilinear Functions as Tensors

o

If we consider the contravarient space T and the covarient =
space Tw) of all continuous vectors, i.e. linear functions, we see
)
that the bases linear functions can be {J()( - X’)’B over all X
where J(X"X') is a dirac delta function and has the property
. '
_f&(x)é‘(x-x‘)d::: FIXD, and x=%D=17g ®=2X
1
=0} X&X
; (c0) :
Then any function eT can be expanded as
'l. .
£ 2 JEXDExX=-xDd %'

Go .
Inner products between elements of T >and T;w) are defined as:-
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i Dep>+ [§ g @d=

@)

and each element of T ~ is zssociated with a unique element of T(p)
) (20 ¥ |
viz, 3)(_\}) eT ~3 (3) € Teo
GeT™ ~L e T
e ~k e T

thus
’ 'R 3 .
< P> gz,
t _;.l- I.- T(°O>
( )9 €
o :
The inner product between bases functions of T a.ndT@ thus being
LEx-xVEx =D = [F-XDE(R-XxDdx = & (x"-x").
D
Functions € @rTM, (X)r'l'm) can be defined as
]
W:fe.ef we' T
each"component"of L) thus being
£ o) 2 () FPD - W', oD
eachxi'being a particular value of the varicble XL over the interval
in which the functionF‘ is defined. w'.cnn then be thought of as -~
being a function of P variebles X: XF wvhich can have the
i { ¢ L ;
values X = L__OC; ’ x;j, wtere Eac:,.x‘b-] is the interval over

(c2)

p .
vhich the function is defined. Any LUG@ T can then be expanded

W f W', ..o SR Y. F P 2§ P-f). de'd™. dex

each "basis" function of ®I’ T(w) beingé\ (X ,-::c')cf ()(1-—.56’)5‘ (xﬁ.m%

C . t f_’)d" . . )
vhich is the (::c. R o base function. Quite offen,as in the

above,the tensor product of two functionsg(;(')@f (X 2) is written
30( ‘)'f (Xz) i.e. as the product of two functions over every

possible value of their variables.

The inner product between fuctions (L& ®P T@@ and we®f’.{(-¢)
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is éi'efined asi~

<U %, XWX XD = fu(x XWX X
ju_*(x XD WKL XY dyt dx
The symmetric and exterior powers of functions € T“o> and T

form the uen.,og spaccs A\ Tw /\91{@, VPT@O)ONLVTM)‘
We /\P T(PO becing defined as w (X XP) fb‘)l\‘c lX) ’\'FP(Xf>

each "component" of U_)(x XP> beins defined as
| pot f'(xg,c'fxé ------ 4‘@?)
W(='..xP- 7 7 YO )]

with the assumtion that X' £x*&....4=f and the functions

.
;a ------ ‘f' are defined over the same interval.

£ (X)) eoonnen -F'( xf)
=1 Dekl: : where the values
O FUN S L) of X! v xf

are always different

from each other.
The inner product in terms of the con‘sﬁituent functions is given by
QU XD (.o xD 2 O [<ailr' 7]

) oetl’ 900‘0) gule)
where () (X .. XP) (’"" 99(3.) 9?"‘?)

m)
The symmetric functions We VPT‘ or V‘, T‘"o can be similarly
defined as _"_'(XD....-F'(;(O P
[ : : T
Wexx) b Pl | TR

where M(‘f} is the product of the multiplicities of the functions

constituting w (x . er
P Tled) P —(e0) P -3
The spaces ®? T , A‘, T and VP T can be defined in an |

analagous way as before.
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(o) )
Linear Manpings of.‘T andT(g,) onto themselves

Mappings € L (T(oo)) can be defined as U.(X,Xz\ sometimes

written 2s W (X, 1X,) . Tuese mappings have the effuct

f &) =[&(X,X‘)g(xg\d><2, f(x),q () eT®

and mappings €L (Tie))  as + W(X'X;,) which have the effect
f(x') ~fu(x‘x2>3cx")ol X, , $(X), 9 O € Teny

Linear functions and linear transformations associated with linear
‘functions have the properties:-

o f (X)+89(X) = h(xD

where the components of l\(x) are given by

h(x) = cf () +pgla.

oL WCX'IX) + B Vx'Ix) = W Ox'l )

where the components of Lu()('lx,) are given by

W'l = ¢ Ul [ +8 V {x'lx,)

In this very truncated section on multilinear functions as tensors
no consideration has been given to the. }?roblems of convergence and
other properties associated with the cénfinuous and thus in_finite
dimensional "vectors" and Tensors, and thus the preceeding scction

is one of schematic understanding rather than of mathematical rigouxr.

Functional Vector and Tensor Spaces

" Due to the linear nature of the functions we have previously
been considering any linear function :F(:r) can be expressed as a
l.c. of other linear functions (of thc same type i.e. covarient or

i wo)
contravarient). In general any f (") eT can be expressed
as an infinite sum
¢ L
£ Z ¢ e’ o,
¢ b
e

T . , Lo
If we choose the functions € (X) tofl.i. then any function €T )



can be cxpressed in terms of a unique linear sum of them, and thus

the set of coefficients {C;J }j,‘.m,”w forms a unique charczcter-
()
isation of the function'F (X , and in fact we can say that the

L 4
vectcr € represents the function £ (X) in the functional space

Ffw)

. There is a 1-1 correspondence between every function GT‘OO)

and every vector in F o) . Thus the spa ceT ) and Fc 20) are 1gonorphlo.

The set of functions {e- (X}_}“, is 2 basis for F*®and

we can choose this set to be orthonormal. .
. “ .o J
.. [ . el (xXydx = § =je-cx>e, (Ddx
When €. (x) & T(0) and € *(x) € T,
If we restrict the size of this base set to bem w‘nerem ié finite

F(u)

f;hen we ohly hr_ve an approximate representation of T
£ 2= Z; c e’(x)

The spaces are now homomorphic i.e approximations ‘F (X) ,-F" OQ,
might be the same; thus the vector C‘ night represent several true
functions in T'éo) , but every tensor e_[Jao) has only one representation
inF’Lm) , and F‘M) is isomorphic to a su}:)space of T‘co) , Signified by
Fwi e. to every vector & F(N) (M)

s.t. 3"(X) 2 C e (X)-“"'-f"()o

The spaces of llnear transformations L(T"o‘> LCT@)

isomorphic to L(Fl ) and L(F(co)) , and the l.t.seL(F(N)

and L(F(m)') map one approximation into another.

there is one function cF

()

Another very important isdmorphism exists, That of E with

(w) . . . .
F and El ) with F(M) . For succinctness and brevity, we list
here the following isomorphisms denoted by = and homomorphisms

denoted by N~ .

£ ~ £ A g T(po)’ L(E"“’) ~ L(F‘”")cL(F‘”"")va(Tw)
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By 2 Ry = Ry ™~ Teed 5 L>(E(M\2 “—:)L(Fwn(ﬁ..&”l‘(rw)-

®F £ 2 @FFCD 22 QP £~ QT ; B, &2®PES®PFW~&'Q@,
L@ E) o L@ £~ L D ~ L QT

®: ECWOQ—" ®ff F(m):\_a_ ®(; F(wf\l ®?p Tw.

The equivalent isomorphisms and homomorphisms are also true..for the
symnetric and exterior Tensor product spaces and their associated

linear mappings.

Direct Product, Compound and Induced Matrices

It is possible 1.:01 represent all multilinear mappings, (i.e.
Tensor products, exterior products, symmetric products and contrac-
tions) as linear mappings between, in general, different dimensional

spaces. In fact, multilinear maps are isomorphous to linear Maps viz.
M (E(AQ —-?@P E(W\)) ~ L(E(wo——; E‘(M?a

ME™ 5 NE™) 2 L(EW = g7P)

MUEM—s VPES) o2 (B g™Feed),

and multilinear mappings of the linear transformations associated

with Ew and E(,“) are isomorphous to Direct, Compound or Induced

Products of W, U & L(ELW) ’L(El.wo) . The Direct Products

are isomorphous to L( @P ELM) ) , the Compound Products to L(/\PE(M)
and the Induced pr;aucts to L(VPE(WO> . The mappings L(E"‘D_—)EM‘C’)’
LZE"»Q Et“tp) " and Lo (E‘")—-; E(“*P’Jc?’ can also be thought

of as special cases of Direct, Compound and Induced Products.

The above properties lead to a very useful way of conceptualising
Tensors and the 1l.t's associated with Tensors.
E(W\)

Vectors € or E can be represented by a one-dimension-
L o

al array of scalars, each scalar correspeonding to a component of the
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vector, we can arrange this l-dimensional array either as a row or

. ) ( (m\)
a column. We. choose contraverient vectors(& to be represented by

a column of numbers and covarient E‘,,o by a rov.

So we can write a scalar product as

(1234 5)
1

»

.—-"""—-\J
N

> I\

E

the product being defined as the sum of the products of like positions
in row and column.
1.4's € LLE(M)B or L (E¢(.y) can be represented by a

2~-dimensional array of scalars so

J : - denoting row
s .'O'a ....... .

o~

i J - denoting column

3
An 1.%. connecting two vectors € E(M is written as

0’» ...... bJ 3 C'J ’ .

each row of Q acting as a row vector and forming an inner product
with b to give each element ¢ the element corresponding to that
row of Q used in the inner product.

An 1.t. connecting two vectors € E(m> is written as

(------bj......3( ..... ot = (3.

J
This time, each column of A acting as a column vector forming a
scalar product with b .

¢
A Tensor product between vectors W € E =) and V € E‘M) can

be represented as the Direct Product, so

(\L’ @(.T.v.t....) -,-,(oci) hare q;:' - v,

-1.23 -



and thus a € @: EM
2 — (m) )
A Tencr€ @ E can be represented by the Direct Product
H H )
e . l Jb 1

i \
where O.J = vt

and a Tensor &@2 Eud by the Direct Product
Cowdo 3@ vb Y v Cuain L)

M > M m> >

vhere G)h 2 U.JV‘
The Tensor Product of l.t's where - - XelL (E(M))) Ye L (E‘"’)

then W = X @ Y is gnren by

%%;_}@6’?3% =|...xd (Y>

) R
where w = X{_ yQ_ .

The structure is exactiy the same for X € L(E"w‘3>dnd YeL(E;m) )

The above cases can easily be seen to be generalised to the general

case for any p-linear Map (above case is when p = 2).

t -
Exterior products of vectors € E can be represented in the following
way
( =, )A(x >....I\(.‘>CP> ( ...... )
é—-M—-b 4._,“.9 MC? >
where the elements of X are defined as
,9 ’QF

. x‘l......-_x,

! : 3 Q
x o S i

)~ (y) - A(y")’

has a corresponding definition.

Both these are special cases of the Compound Product defined for l.t's

el (NE®) o L (Np Eemd).

-
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rrhe LE™)  then Un....

.....AUWl  dcnoted by CP Cu.)

is defined as

WeC (W Ces We L (AF )
thn W has the elements

U);: e D‘*(lk CO'\, \}1\7-.]3 %, Mo € QPM\

and Dek [U. Cos l /u\,].) is the Minor formed from elements

or WL
ovp
This is a special case of the compound product of a matri}:u(rxm)
() tr)
i.e. 2 mapsing € L (e " —E \ in which case W= Cf(U.) is

defined as having elements

& .
%9 = p¢ ((.L E-U'OIWj} 09 e Qfof
. i oun € Gsf,,,,

Then the exterior product of vectors is generated vhen W is considered

to be formed from the p- row vectors X,...... xP (.a prm madzix ) .
Then CP CU.) is the product P!y"x|/\...... Aa:.P and row vector
~m ' :
of dimension C‘, is formed, as there 1s only one cequence 0'\,6 QM,.

’ s (7] .
The Induced product of 1l.t's W & LCE"M’——7 E LL s an PXm matrix

is defined as
P‘> (w = w,

and the elcments ofLO as [

}
o : Pe
Wi + HEMGD

wlov I,U-a] % € Gp,p
€ Grp,m
thus for Wel CE(M)) , U):: has the same definition but
Nu e C"f.m and then
"P? CU») . !,lV..p....v ué = W
and W e L EVP E‘ms).

Vhen we consider tc be made up of the p-row vectors zf......xf &

then P‘, w) - p.'""‘ac.\l.... e Vacf.

E(M\
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as there is only one sequence 'a'u (=3 G- 2% N........\x is
mpd P2 P :
represented by a row vector with C‘, components defined as
. o 2
x. .J- P 'x. .'.noal A ‘or i
R R fop | T € Ghune

xd'\’r
xf R 2
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CHAPTER TWO,




Mathematical Structure of Density Matrices and wavefunctions of

identical particles with spin

Fermions are represented by antisymmetric wavefunctions and Bosons
by syn;xmetr'ic wavefunctions (w.r.t. interchange of particle space-
spin co-brdina.tes) These functions are Tensors € /\PTw a.ndVPTw
respectively. Systems of N Fermions or N Bosons could equally well
be represented by Density Matrices defined in terms of the wave-

functions thus:=

‘,{'_( (' x0) Pp (%o %)
Q_F*(x,'....xf') i’{ (X, ... X,p)

.where X,j are space-spin co-ordinates of the ith particle.

Tty ke B 60 By O )

'l_:';‘")(x,'.. ¥ 1, . Xo)

where f stands for Fermions and g (x!. xf) E /\ Tw
and B stands for Bosons and ? (x!. P) € VPT
Thus —l:.Ftn) € /\PTQD and T‘"° E VPTGO
Wavefunctions could equally well be defined in terms of the I)ensity
Ma.trices, thus assigning the fundamental characterisation of the system
to the Density Matrix rather than the wave-function.
From now on we will deal explicitly with Fermions.

We can approximately represent g"( X,....Xn) on /\n Ff%o'OD and
Ty )X [ X Xp) on ALFE | 4@ e A Frape
it can be expressed as an exterior product of functions &F(an) ’

er Pl Xa) = X, (XDAN XD, . Ay (Xp) vmereX Ve R, o

Now if we say that F(ng is spanned by the orthonormal functions

{w; 63Y,., .
{ i A cv,b(')Bb've:Gn z°

a product of a .

, then a basis for /\‘ F(m) can be written as

We can write the space-spin function wf. (X)as

-2.1"



position space function and a spin space functiox} i.e.
: L«)i()a s 0; Cr) SQ (q(?) r - position space variable
76- spin space variable
and (2= (k,e).
Thus Ftaoo) can be decomposed as
F(z-.ocb = tho)@ Scol.-,o)
where (moe). (dos) = oo,

For an electronic systemdeo = 200, thus dimensions of F is 2w

i.e. F(Qm.oo) = Qm) ® S(:zoa)

and

AaFlans = Pl ® Spe ) A Ponmed @ Sc.w\’\ l\("cm)@s@oﬁ}
2 An Py ® Stacs?

We are mainly interested in the case ofn=2 so we will look at that

in some detail.

/\ F (2 meo) T /\ (ptmao) ® Sfﬁ)\ [.P("‘@@S(ﬁ] A [?(M®SL:;J

This product can be shown to be equal to:-

:/\z P(kw) 9] V,_ s(w @ V-J_ P(med) ® AzS('zoo) y

3
Now the dimensions of V:. 5‘33 = C:. = 3, - (i.e. number of bases

Tensors being 3). :
. If the base of S (:L){ the functional discrete spac% is {0( (’)b), ﬁ(qu}

& and being orthonormal viz

| Xxmﬁm d% - o, Jﬁ(ﬂmmﬂ : S@"‘mpmﬂsn

Then we can construct the bases Tensors of \,/ S 'l:o be

o ()b, BN B ond L (WP (% 3+«('z\fs<%\j

while /\ 5(,_,0) has only 1 independent Tensor, which we construct as

& [ B —eh B2
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The bases of N\ P(.M) (the functional discrete spa.ce) is given by

(o3
{“A (D, } o € Qnm

and the base of V,_ ?(.M) is given by
TV

i-n; O'(r'),;—\,i_'j oo € Gin
t .

V, S(2.0 can be decomposed in terms of a direct sum,

o s o5°°F

V:.s(z..cb = Ve (PR

l!oo)

ouX

where S( wo)corresponds to the subspace generated by the basis tensor

o((t,)ot(')l,b,etc....., “ﬁs
and we can write Az S(.‘Loo) as S“w)

We thus can write

AFs = Aol YA

2 (2.»\

Each subspace has a particular spin symmetry, thus within a subspace

we can ignore the spin symmetry and say that the space is spanned by
n
A Vv
spinless Tensors {'ﬂ" 0.(0’\7 }V\,GQ'\‘M or {Tr OZf‘bv;_

[9 “pt

and we notice that /\.L P Mod) ? /\ Fcho) and /\2 P(M)

by identical sets of Tensors.

The product /\ F(a mos) S0 also be written as

Alc(?.w\.o -/\ (P(w\ )®S(\°°)\®A (P(Moo) ®S(!oo)§

(Moo) ® V (Moo)

are spanned

@ Pc.v.») ® 6(@) A PCW\.&@ ‘50@)

where 5&») = S(‘w) @ 6(“’0)

The subspace S(l o0) associated with the basis vectoroé(%) and S

with the basis vector B( rZ,)

Now A (P(M)®S ,o)\ AN leoo) ® Suoo) = A; P(moo)

B :
and /\1(?(“\»)®S(loo>3 /\ F(,Koo)@S(’B-A

- 2.3 =
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& B _ 9413
and we can write P(w) ® S(‘d» 74\ em¢)® S(‘w): P(M)

ol
. Thus Agﬁzw) = Az P(:i:“,) @ /\2 P(r(iB @ P[Mi)

20)
L S oy .
We. note that ﬁmmls not-a - factored position-spin space tensor

. . oL
space i.e. tensors € fi“[;) are not of the form er)@ (s)

where X is a space function a.nd@ (S) spin functions.
Ve kmow that A, Fp, o= T, (&, Rl )

(though Az‘:hw)is an irreducible form of TI; (@,F(z,” 97\ ).

ant ®, Flames = ®; (ﬁm@@ S(:z)3 = Flps ® St @ BM»@ S(z)

Rt @ ~%B @ fx @ _.fB8
= ®1P(M.o) ® ®25L'z\ =®1. emw)®[s(m3 @ S(lna)® S(""’)e S("o)]

0 ol
where (log) oo etc are the 4 subspaces associated with the 4 bases

tensors that span ®2 S(Q) N {OC Cqb‘\ {3(')62\'0(('11,)0((0&1\} (%)B (1,), ﬂ(’l;,\d(ql.,\k '
Thus @, Fppy = @, foy @ &ﬁiﬂ@ ., f?ﬁ:) &K f’(ffwg

- o B
Hence A; plﬁ”\co) = -n-a. [®1 f():o)e ®7_P( u S ®:.F(ww0)® ®1 Pfffb)

MoO)

As T(Q(X: X;‘X,‘Xbé/\:‘:(z"‘w’ we can see that the spin
factorisation (i.e. decomposition of /\:’.,_F (zw)into a direct sum of
direct products of position space and spin space functions) will
follow from that of /\,_F(g.w.o) . Hence considering the 3 represente

2 (2w
ations of A\, Fia,.,5 we have for /\ZF =) the following: =

(\)./\’;_F““‘“‘)E [/\z P(Moo)® stu»)® Vv.P(m) 2 /\7. Sczw)] ®
= AP @ N3O A, Pl @ N1Scae)

| @sz(m@@ /\'zSCzoo)® VaPlhw ) /\2 5(,“)
@ /\‘L P(Mhﬁ) ® V15 (200) ® \]2 P‘M) @ /\251200).
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& \j'z.P(mao) ®/\25(2w>® /\zP(&w) @ V,,

(2,6)

which in equivalent notation to that of before becomes
()]

(a ) (;«Mo) 2 [M\ 2
/\::F: e E /\22. Po{g;g{o‘ @ /\: PQ{p(d.{at @ /\2 Polclpﬁ

(acd 1 mep) L))
45 /\12 P“‘,gl_qo( D /\?-Pdﬁe‘*ﬁk ) A-;Eq&klgﬁ

® N g © NaFpe © Aa g
B N VB © KV, R, ® KV, fae 5
® VA Reo, © VA, Rnmp, ©V AL 28
B V3 b
Clarity will be restored in the following Direct product representation

2 _ {2mo0)
of an element of /\,_F which is partitioned in the same way as

the above decomposition

ool *Ds ‘*ﬁf
Ay By A AR

. i Thus w.r.t. spin symmetry a
2 _no 2 2
/\ f:‘x ol ol oot “ﬁs Mﬁi‘ Mﬁﬁ Tensor € /\,_ F< meo) has

16 components. These comp-
onents are completely spin |
independent (within the

2 (nad) ‘qualification that each one
v PMBS o s ot Bsotfog (XN Xf3 ﬁﬁ is associated with a partic-

ular spin symmetry). The

(A«J dimension of this represent-

A By B 4Bt oty B, BB

ation is: -

< Mtnal m mine|
Aﬁfp"‘;”) 63“0( ﬁﬂdﬁs ﬁf;uﬁk ﬁﬁﬁﬁ (?Cn"' Cﬂ\)x (3 Cn.{. Cn\
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(i)
/\ Flzv\ub W [,“L P(uc:;) S ® P(w«oa)@ ®‘F (::-oa\ @ @'Fﬁ“ﬁ“’]@ﬂq
[®,6 0,07 00,15 0,00,

2 o) watd) (Vkua)

=70 [@ f;:;i @ fi“,(lg@ ®1 ﬁi:;;@@ gfuﬁ,ﬂ ® o Bt
e " (wco) (me) ( )
@®;o:pa%@® Ef@';ie@ Lgpp © o8, pu;:a . e

® &m0 ®: ik 08 e ®: it
(meoo)
@@ P,z,e,/gfg
(QMQ

2
In Direct Product Representation of /\1\: the above decomp-

osition is“represerited by the following partitioning: -

LU X AN

This decomposition is not a

decomposition into a factored

B, 2 M olololed oot 3 (KAt [olet
T @Rk« B I8 BB | Tensor space of the form

position functions X spin

functions, Thus each comp-

Trn:@té““”)‘o(ﬁm( wRxp (epp UpAR

g onent is dependent on spin

and each block is in general
A _2 [

T ®Pﬁo(. {S"‘"‘x ﬁ“‘x_ﬁ Buﬁ“ B“ﬁB a different subspace w.r.t.

spin and position. The

dimension .of this represent-

T‘B;ééﬁ‘;ﬂﬁﬁdu ﬁﬁ“{g ﬂigﬁu ﬁﬁﬁﬁ ation is 4‘M“ X4-M1

In general (4ad)' > (37 Coat T CL)

. .
If the Tensors € @2 - 2ruco) are antisymmetric then
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T‘-: @i Fzzmub____ ®: F(Zmob) =

(i)

. /\ZB::) ﬁi; AZEfﬁ)
PN P"‘*”) BoAeiX | eXelek (3 ot BR
f}:ﬁ) oLPuck | Aot % BBR
N BBt | B P |PRAA

(2
/\1; F Mca.)

This Direct Product represent-
ation corresponds to the

decomposition

/\"lFuzm‘e’)i-'[/\t’,,“l ® g @/\ f!p,g)]

[A wos@

Kl @R @Rl
@/\ o= ,@/\f”"‘”’ﬁ

Lueo3 eémo) lueo) A:.P;ﬁoo 5.

©® P‘* uw)®A1P{ wMod) *

\ oA, P/m» )
lw
oM fgpze

This decomposition is into a partially factored space, the components

containing an X /3 subscript are not a product of position~-space spin

parts while the others are.

independent.

(2:"C +m) % (2™ Ch + )

Thus these latter subspaces are spin

The dimension of this representation is

which is equal to the Dimension of representation (jj), though there

~ are only 9 different components in the above decomposition.

2
The preceeding analysis of the structure of /\Q_F{ZM) and /\,_F

(2ue0)

shows the structure of Xk (X,xz\ c AQF[1W3 and )\(Y(Xz‘jx\xa)

€ /\7'1‘:(2,M N

w.r.t.

spin symmetry, and in certain decompositions we

can separate spatial and spin parts of ti’le functions, thus making it

possible to work in position functions that have implicit spin properties
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A set of orthonormal functions € A:LF'(AM oy can form a basis -
for /\1‘:(1.\-0 (i.e. a discret functional spacé), thus a basis for
/\,;. F(M can be derived. As the spaces /\2 F(Qm o) and/\lF(nm\
are isomorphous the spin decompositions in /\7_ Flzm ") é.re exactly

. reflected in /\gl’—'(am)
Representation of Ki -T;s WPand. LLSM@’. P(M\

| 2 5 {m)
WR is defined as JZ-. 2 EO’X.O'«K whantt € QP

TS

Ox € Sam T @™ 5 TTP g P]

' \}
Trs is defined as L gi.l: Oy whea it € @z P(m.
| xeShn  TU@PTTLEP™]
U.R a.ncl‘us have tﬁe following action
uﬁ: ®1. P(M)-—P A&P(m\
' 4
U @ P 5 VP
m+n-{ .
Thus u_ﬂ e L(m* —-7MC,\\ ancl U.SGL(M"-a Cn)

. S (3 r3
wile TTM € Lo (M M) and TT%€ Ly (M*— M)
(L(, indicates subspace of L. y the subspace of l.t.s that are pro-
jections)
. . . ‘ ) S
In Dirac Notation the projection operators“ and T ® are represented

asse
ROV, ®V a, v, :
M e o= L0 (1)0 (rn\-;:;z:xer.,,.g_,_lc%cf,xa%gr,\>

CzESa,m :
Now the action of E‘ﬁ.’- is defined on m integers as Ex.(t,....lm\= (o;(-‘-,d“)
while its action on two integers is O'x_.[!:,'!.z\ = i.,i.z , bal, ot O
depending whether o’#‘. ' Gy, L Lior i,
Thus

' A ”"0 4 - ..l 3"5 bv A ’
M =% <o @)™ 6oy, (00, 00, 00y, (137

='5.{6 iy fg"lg'?a}
upa Yougon,
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and

| ngj.“‘ =< N Pl N3 ZO‘X }on‘(r) (r,}>
‘ °"£C.52 m

--<or°(r)a—“""’*tr')l:zr (5 O, ) + 6, 0) 0y m>

0.0’\71 Oy, v .
= Ji {Jo' + J‘C*’ o :)]

)‘.o;“z /“1'6 ’
The projection matrices can be represented by a product of the form
u* U where || is a rectangular (pyg ) matrix, and uuts: IS.'
i.e. | has as its right inverse U,*; thus we can say that it is unitary
to the right, and W e L {r = 8).

Thus we have
m+n-l

Tfs = usfu.s where U.’ us+='Im'l., U.SG. L(M‘L—? Cf\3 and.
TP uf Ut o WU T, Ute LI —"Cp)

R
The elements of us and UL~ are given by: -

; € 51 m
S0V, 0 v, ! 0o, a0, oo, Oy, | where Tu ,
W %, Tpuy < V2 o5 {Jo./“'%z-l— Oas Oy Om & Ga,m
w 00,00 el i 0o, Ove _ oo, 00, :oe Sa,m
f/“t‘}«q. - JEMZO’V; °]u. 0;“1. Ope 5/‘7. /“G'G""“

It can be shown quite easily that P
L 5% oo, d 0900 PRy e .
T AT T W gl 0 @ o

AG' S’..M

and

v, 0. o, Fod
. oY, - SN0 o, Ml
——= 0 N D = 2 Wono 07 ()07 5) 0, € Gy, m
: o.€
M ™
2

thus showing that U.“ transforms a basis of & P(M\into a basis for

P and that W transforms a basis of @ into a basis for
Y, 2 P(m}

and it is also easily verified that

'n-S u'S'*uS and -n-ﬂ uﬁ* uﬁ

So we have that ir X € ®* Pl

WX = XSe V5P

then
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andA ) T i)
ufx = x* e AP
TSx = (mx) e @™ = U U % =u*X
S+
Thus the reverse transformations on XA and XS viz U,M'Xﬂ and A Xs
: § : . . . . o 1 Lm‘
give the antisymmetric and symmetric projections of X énto @ P

S
not Xitself, and in fact as X = _ITA X +TU7 X
then X = UM XA+ U X2

Now,

@ P= (TP e TNy @) P
TS @ P™e TE: ©) P™
= (M@ P T @ P™) @ (Th: @ By 0 T 00 )
= Q' P g Q, b
and any element W e @2P™ can be represented by the projections

TRWT,, ThW T, TEWT,, T W
(a(vwb

: i
onto the various subspaces of ®3 and the associated l.t.s will

give the reduced pro'jec’cions onto /‘\tz P(M) ’ /\1 \lzt)(m3 ,Vz/‘\zrlm)
: )
and V; P i uA W Ua UWRr o ug, UWW Lilnnnol wsw Usg.
Thus we can write in terms of us. Ut e L(N‘-bmi'n-cn\and L{M*= MC»\)
that if We @} P hen
u'SLd uS"ﬁ' N wSS c \/: ‘)(r.«)
Wwut = Whe A \J,P"“"
(m
WU - wi¥e VAP
UPLOUN = W e AL P
and noting -n-+ = Tl' -".s.
L ™
]Tsw“s= us-r us W Ll‘fus: us-&u)ﬁsuse @2 ‘3( 3
. S.
T TR U LS LOUT U Ut Wt LA e QL P
TAWTE = U LA W b U« UMW Ufe T @ #

!
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T‘rﬂ LO -ITA = uf\'\' ua w uﬂ+uﬁ: U.A‘l"wﬂﬂuﬂ ewg :@i le‘

and hence the reverse transformations from the subspaces are only

P(m\

onto the associated projections of ®Z’_

‘I'hus' . _
W:T W o TWT e TwT e TR WTTA
L wEuse Ut Wt ute UMWt Ut e UM WA U
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CHAPTER THREE,




Representations of 2nd Order Reduced Matrix

The central point of interest in this thesis is the 2nd Order
Reduced Density Matrix. In this chapter we analyse its various forms
of representation for Singlet Spin states, its symmetry properties
(with respect to spin for this state) and its associated natural spin
geminals (N.S.G's). Then in conclusion we study the relation of the
natural spin_orbitals (N.S.0's) of the 1lst Order Reduced Density
Matrix with the N.S.0's associated with the N.S.G's, and thus infering
in general the difficulty in relating Natural expansions of differeht
orders of Reduction of the Density Matrix to each other.

The 2nd Order Reduced Density Operato;"'/l\“(g‘) can be represented
on /\ o vy T (X Xz l XX') . This can be expanded-

over a basis for /\ F(2m) in the form

TR T 2] TR 2 W I 6 @ Wy DAy, ()
\"o» e Qz,zm
Thus T®  forms a representation of '?“c") over Ay F 30
Waen we consider the decomposition (A?P™ @ VISV @ \*#"@ NS®)
® (l\z?t..)g \I,S‘,) ® V,_PM @A, Sey)
of A’,FQ"‘) on which the representation of S@  is diagonal(the
scalar total spin angular momentum oper‘ator), Tm(x,‘x,_'\x,xgﬂ

can be expanded as

T‘(”(:lhz) Z' eZT"::‘” T' (rQ@T\'% (rpem)et@u(c)“@
+ 2 Z Thoaw 6% et @ TT oy L) FOPDPIRL)

(=2 a“l“
P ] 5
W32 “Lgi I Oy (alOpsift
(fd({f@ﬂ@
s 21;:*22‘ 2 e e o, @ pro-sopd -
o Xx "‘_ 7 ) Cec(op&)-ozcaapm)

.-
Y

——
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+2 % % > 7}‘;§’°Tr o B@Tr“cr D ®x 2By 1
(200 At
+ 2; GZ %l {T‘ TT o/*»(r \@'ITA o }j(g-\@x(n\&% (OBt 315

ST o g <00, 0]

where XY = m}ﬁﬁ , xi@"
and @dxﬁn.}:o( GYa (D ,@513(12) :ﬁ@pﬁ)j@dﬁ&afb =‘/—l_-‘ (dé)ﬁ&‘f‘“’(ﬂ}ﬂ[‘) )
2 R

where 0, O, € Q and ')(w)(, = CT?.

The terms mvolvmg mixed spin functions are zero J.fT' (\,'z l }:L}

2, m

represents a pure Singlet Spin state.

The most: succinet bilinear expansion of T'(z) ( i'2! la.) in
. 2 2
terms of a set of functions that form a basis for A, F( ) is its

Natural expansion i.e. its expansion in terms of its eigenfunctions,
viz functions with the property
. K kK Ak
j-r'm ha). 0% (Dd T, = N® Q7 02)
~ where is the eigenvalue associated wi e eigenfunction l
nere N®  is th 1 ted with th function SLF (12

Fu.m)

In terms of such functions that form an orthonormal basis for /\a
| ‘w‘h.erej,ﬂk(m)ﬂ (lDd'T"z "gk

' m(ta,..;

T‘z)(l'2'||23 = 2)(; mK Q_k(l 9.)_0*(!2) where T:{ K NK
Notice that the sub and superscripts associated with each function

are no longer associated with sequences in Qz, 2w This as will be

shown is because exterior products formed from a common set of functions

that form a basis for F ca.nno‘!: in genera.l form the set of functions
ﬂ-S).KCI 1\)}

Ve joan connect the two bases of /\ F“*\ _Q_ (l‘l)’}j and

...... m(2m-1)

A
{7\— "(X 3} by a unitary transformation maitrix v viz.
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.QK(IQ: Z \/:"(Q TSALJ’QL(XD S.t. \I*Vz \/\.,“_=j:7....c1

9 € Qﬁv 2un

If T‘l‘a) can be diagonalised on the spin symmetric basis of _/\2{:(2“‘) |
we can consider the Natural expansion of-r'u)(l'l'l ll) over the
spin symmetric d‘.ﬁ?om$osition of /\12_‘: (2w and we see that
2/, SRR K oAy K, A
T i = 2& waxk./u (i ‘.'L> }ikbﬁb.x(t}o{(:}d(ﬂu@
i h\(m-l)/L \ < a A .
{2 K
v+ T Gy (2) (D REDAIDA(D
mz“.ydﬁﬂ(’ﬁk# 1>/uk Pﬁﬁ/z
ST @D kA K A A
0D T b M 2 L L) B

wﬁ*%ﬂ‘) S U DL (%6 RED arte) BY) DR ~at3) £015)
+ . 4«/;,-«,«,/"1“,'2/%’ 2 G fa)antz) f0)) 12 «o{z5f;§1?
all other terms being zero, which would not be the case if T"[’)

was not diagonalisable over the spin partitioned bases, but when it

represents a pure Singlet spin state it is always possible to find a

. . o 2 thm\
diagonal form over the spin symmetric decomposition of /\z
Ak \ 2.0 ()
MU0 e NP S/L&“(n)c—.\/ P .
2 (D L ) . .
‘The two bases of /\ P are linked by the unitary transformation

2 .
WD B el T s T

L

"y
. zf)(m)
and the two bases of \/ by
s RV + o\t
MK'(\ZU = ze \/5 :0 T;"V (8] v (f’i\) where VSVS :Vs \}5 =Im+,‘_|c
T Sv n

Gty |
These tra.nsférmations between bases of /\zF(MZ /\1 P(“Qand‘vz P(M)
én to bases of AIF(MA ’ /\1 P(m) and \/'J P(".’J can be represented
in the form | o

-D-I(IQA = \,/LJ({Q_) where ). (12) is the column vector with
components ox (12), and LJ12)  is the

2.
AU 2
column vector with components 7T 5Y) 'f( XL)
i
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Similarly
A/Mcm) - VA OA (D where the components of the column vectors
"Ly, Slen, 0" and oY)
are defined in an analagous fashion to ,
those of W (12) and Q6.
If a function-F(\:B is represented by a vector {. on the .ﬂ_ (19.3
basis of /\1 F“M‘ and by -F2 on the L) (12) bases of A F Bned
then f, and {, are related by ’

'F\' = V. 'fat
and if D(y'a'} 12) is represented by a matrix b, on the
O Y@l G2 basis of /\’;F(g’"‘) and by Dy on the
Q)(I'l‘)@ (D G2 tasis, theﬁ D, and D, are related by

= Vb, VT .
Now the expansion of Tl&)(l’i'lla) over the LJ(I‘?A@ W)
basis of A} 3> can be written as
T =T W Gt T
where W (1'2°{12)  is the matrix defihéd as wa'z'ha)-:\A)(i‘i‘)® W)
and thus has elements W(n'o.'haf;: 7:\"\ UOWC(XQQ 7J-TA LOa}“j(.&)

and s)v((la): V.S O'V(l'):)

TS is the representation of TW® (12 ]12) on /\1; F
wor.t. the W)@ UD basis.

Hence we can write the Natural expansion as

TO02 (18 = T L G 1D, THD wohere L0212 SRVLT-AVEN
‘and has elements _Q_(l‘:r.'h'.ﬂi = Q*0aNe Q, (raY).
We can also write £)_ (i'2° 1) = \V4 wél‘:z'hp.\ &
| To® = VT Oy+
fe. T®( 1D = T,V W 21 VAV TV

Similarly we can apply this formalism to the spin symmetric decomposition
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of Nz(:h“\ viz

WD e Vy 0 rarha) Wt

S/u(""'l‘ﬁ\ = Ve OV G hi ) \VF

Aii“ " _D‘:& la:’zf’ﬁ' n-r;’ggﬂ\ﬁ T‘m ap,_.-Va “iiizmva

(2) (2) +
amol —m:ﬁsaﬁ = Vs —r:(};;“‘ ns\’s .

The matrices VA and \/5 are submatrices of the total ma:l:rlx‘ that
transforms the basis { (0} (l?-)ul o c" (lz)\r 0‘11)‘8(23-%&(2)[3(13} @

o (l'bf“l)ﬁh)@ oVant {dh)ﬁ(z) d(l\ﬁ(l)} } onto the corres-
ponding natural basis of /\,_F“‘”“ i.e. V= VAGBVR @Va GDVS

Old= O, & O @ Ol ® O'detgg
and V.olid = /u( Dand VVI=\(FY: [I"‘c“@ IMcN@RNQIM""Cu]

where}i(m} :}1“(\9.)«“ @/‘/‘A‘“\u@(@/{*‘@ﬁﬂ @/A"bn\«lgs
wa ™ 2[Vae VaoVaols ) T Ve Ve Ve V)

T i } : A
where is expressed on the spin symmetric O (ll) basis, and is

of block diagonal form on this basis i. e.
{2) (2) (2)
TS, T
X! -E‘ﬁt-"‘ﬁb pf-”ﬁ@ @ T‘-’(‘ﬂs“()’s

(as we a.ssume-P 2) represents a pure spin state of the system)

(2 .
Thus we can write when | (l').'lll} represents a pure spin state

P , ) 'V(. -1 -y . +' -
| Tt O ] AV,{'O VAVAO Va U O
Vn 1‘ . \'y "

0 . O beti, av; OY“\g 0 HV:

Tegag,

-
‘-'ﬁk S Lo i -t de -

that

T251'1‘9 = Tr

where O(12) is the matrix
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[6“(\9““@6 (1‘&, 2 ¢ (), a80 (\:)dﬁ;l({)(_G (2), B G, (n)_(ﬁEBO’ (2 r@(S (\2)

and this is not of block diagonal form.

The eigenfunctions}kj (roe)) '®i. ("[,:‘\,,) L= ux,u(;b,[iﬁ,ufgs,
are called Natural Spin Geminals (N.S.G.) and they form Natural
representations of ![\.' (D, F(QM\

The bases that form a diagonal representation of Tﬂl) can thus be
constructed in two different ways

i.e. either from dla,gona.llsmg_“‘ as represented on the {U (x XQ’S
basis of /\1 F( w) or by dla.gonahslngT” 2) as represented on the

{ SMITNY: Yoy ppinede Odﬁt(r,r,)e o wp, rQ} basis of

A® F 1% 004 the new bases are

{.ﬂ.()( X 3} and{ g(,((r‘ r‘,}@t(?,ql 3?) respectively
over Spindunctions
wiith are identical to each other or can be made so, thus there is a

unique correspondence s.t.

I)."(x x)vu.J(rr,‘)@ (u2,).

Kzl,...... m(2-0) J=be ...m(m-l)/,_wkup.xpguﬁb,ﬁ/;
%dj-‘-\-.....mfm-(»% " L-di;,

As we see an N.S.G. can be constructed from a direct product of a pure
position space function with a spin space function. The position space
function (£, is called a Natural Geminal and the set of Natural
Geminals forms a basis for either Aﬁ-‘)(m') or V"le)

The elements of the diagonal representation of_?-'(’b on A22Ffm) are
called the occupation numbers of the essociated N.S.G. (i.e. the N.S.G.
they are associeted with when T‘u)[ 1'1'! 11} is expended over the

set of N.S.G's). |

When TP (jrar) 12)  represents a pure spin state of the N

- 3,6 =



particle system then we have see that its N.G's are either anti-

symmetric or symmetric functions

i.e. either € /\'z.?(mw') or VLP‘MGOS

i «
viz Mq" (r, )= -yuct (fz{‘ ‘\ superscriptq é;enoting eN
and 5 € VP,

Pﬁhqﬁ

and /L(i (re) = /Ut E A

Hence they can always be written as the symmetric or exterior product

e Plme

of the functions

and

Ml =

J-lf { cl)(q) XD - (’P 0N X(qﬁ |

"307"~



Orthonormality of Geminals and 'Overlap

A geminal R is spatially orthonormal to another geminal R' when the

following relationship is satisfied.

AN > = dr - J A, (6 Nomddnde

where )\‘Q and )\k' are purely spatial functions,
(mro)
Now if AR ’)\h‘ (& /\2 PCMco) or VzP they can be expressed in

terms of one variable function so

@ e NP |
)\k(lgb :\—,,'—2_.{¢L(D 4)3(2‘)— (PLCD (IbJ(l)} ‘Q"Fo. (LJ)
® e V2P |

R ~. U/ Adren o AN A 3
| =2 - L
' ko= f£gL5) v
We make no assumption about the properties of the set of functions {(p"}

except they form a basis for F'(M3 (i.e. they are 1l.i.)

The orthonormality condition in terms:of, these 1 variable functions

5 zu;k(m I )\R'U:z)>=_;. {<dapiml o @@?-( bodinl§ 0w
€ NP CFadielplogedt < Pgialhop]
-1{s;.s0-shsi-sistesisl)
- =S.si-sisd
were St = X0, 0] ()
;imilarly@ <A g(wa )\k,'( 12> \—)'-:i &5; s, +S§.Si’. + 5\; S:' +S;'.S§-S

4 {sh.slesi i)
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.L'
\)r;’ < L\- if c:J and r=$
=AJVa i} L:J andl ¢S or L#J and =g
2 f U] and ris
Thus for the geminal orthonormality relationships to hold
. 2 (k»‘ . 3 . . .
@ AP S§% .63 2656l  when kRFR
" . “’ .
andSL.Sj. - SJ 'SJL =] whew k= k'
. \apt P i L g
®iN2P™d S QY . ~S!SY  whew R k'
ve. f56ig) F f£5(rs)
i i v Qd ij '
Mds‘ SJ +SJSL = \_Jfg‘ when k= k',
One possible solution in terms of the functions { Cbt} is when
these functions form an orthonormal basis for § i.e. YV n-
However, this is only a particxilar solution not a general one,and
generally the set {C{)‘_’B would have to . be 1,4 if it was to furnish

a solution for, all k,

E () (=
{ i.e. for all the orthonormal geminals ‘in A" F  and Vz F }

" N.S.G's and their N.S.0's

We have seen that

2, , 3 .
To0210m) = 2 O @) Ly o TR
7 .
Now if we define a partial 2nd Order Reduced Density Matrix, or the

2nd Order Reduced Density Matrix associated with a particular N.S.G as

T exlia) = Q2 Oy )

Then e 2ieni)

T'w(l‘z‘ltz) : 2, 71‘1.)(1‘2‘!!93 T;_wﬁ ]
K )

)
.T'l‘( ("2‘ UR) is also the projection Matrix associated with the ku‘

-39~



(2 ) 2
eigensubspace ofT' Ll'.’{‘“ D and it projects elements of A F(Mw)

- onto this subspace, in common with all projection operators

E’T‘:)(l'a'lm)]" = T’,i” G'a'112)

i,e. it is idempotent and it has one eiéenva,lue of 1 and the rest of
gero, Thus Tp aﬁ"m(l‘i‘h:ﬁ: { , the eigsnfunotion asscoiated with

the non zero eigenvalue is KORICEN
With.r{(m( 1'’2'112)  we can associate a 1lst Order Reduced Density Matrix
g0

[‘Tr":"’ (2D dT, = QKU‘IO

The 1 variable eigenfunctions of Qku'ln) form a basis for F‘m‘ tha

gives a dia.gonal matrix representation of Qk("l') viz

£, b < 2" e (2= ptud 42
wherejek(‘c“) qSQ(Dd‘T.: eiea (bﬂ(\).

In Matrix notation we can write

e cod = TP @4, whue.k¢ . "y .

k .
The elements of ek are the statistical weights with which each (P"(X,}
appears in e K((‘ID known as the occupation number of that orbital.
d ‘ ‘ (
e K expressed in the orthonormal basis { W (l)} of F ") is a

unitary transformation of e K i.e.

ek kued Ku«r ohare guKu‘b KU‘H‘U I
and K (p M = 2 U‘ LL)',(O

q) (O)'S are known as the N.S.0's of Té”(.'z'hg_)_
Each of the N.S.G'S giv'és: riée to an associated 2nd Order Reduced

‘ .
Density Matrix Tkz.’(l';_'h)) , labelled with a subscript q when the N.G

- 3.10 -



2 o (neo) 2 plmes)
e N P and a subscrlpt S when it € \ prm viz T'( )("ﬂlll)
K (l'z'h:.) . The N.S.0's are a direct product of position
space functions q) (r) and spm space functions 5 (qb} The

spin functions are

S )= S @, (%D @d“ca.%g.ot%, s (1)
MOE S L’&,"‘Lp B (%,%).A%; L (104 LAWY
Sdp‘(D-SQﬁ; ('\b %z>®°‘ﬁ (,2[ 'IL ) 011& (O&ll) +L‘S(t)>

where Lz \n .
Each set of N.S.0's associated with an N.S.G has m orthonormal members - -

and forms a basis‘for Fu”oa.nd only when the e,"s can be simultaneously
diagonalised are the sets {kq);'(l}} the same.

Every Reduced 2nd Order Density Matrix can be represented as a
direct product of a pure position spage density matrix and a spin

space density matrix, so

. ‘r‘“’(x X, X, X) -Fm(r 6 lenY @("L "L ”Lq'l.\ téweT' (rf;_’\er(rr, ))um)

Also every CK(X:“(‘) can be so factored

0 (X 16)=€ (s 15). @ 1%) wohare € L1} "PL (eI Y )

Where the context is clear 1 will still be used to denote r', and
2 2 f, etc; and spin mnction®("{,'l7¢§:®‘pk(71:”,> for example is

given by

®"Bt E §f’* k(?d\s,,ﬁ l_“t) s —li (xd- lﬁ,(o)éttb-ﬂ‘},(\\) =l2 (o(l\)cé(i) +('$(D[3()}))

If an N.G can be expressed as a symmetric or antisymmetric product
of two functions k'P(l\ ,'X(\') , the  type of product depending on

whether}lk (L'b (S A?P(M) or/u k(l'l) \P F(‘M) then we can say that

- 3011 -



jU*0:u [ 12co"xu) i Xdo]

whereV is a nonaalisation factor satisfying

C "WA=1 "14>«>«{) (0|n"T1'?2to><7(.) |s"T|ial) X Dtu|s5Hixt.)X=a)/. A

wWwW  r<IBIX>; Vo (01w

ri/\*l
For the geminal to be normalised * -S\y Jd”*
Thus 0 \
’ 0
%) s & ] tpo S.gA jeryU™ 6

'V
bAt0.4. ,» ylI*' 6

The eigenfunctions of Gy**/Ir,3 associated with non-zero eigenvalues

must be of the form j4‘ ~ Ft1"X*thus: -

¢\ = (> dwrlSychs

B [(»»ii)sS* + S JT

Thus for T3j*~(l2.M1CUG we have

. ) [Cc. W (5>tCi, § t W> ]
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- c |y wdecy, [20)
For the eigenvectors to be oi‘thonormal

[Lvwleqrxme,] e wiy+co|xa)- |
(Cwwler s tei] Colweyd+enixm D=0
le.Ny.CL+ NgCE +2¢;, €3-S =1 ...l @
N\P C&l J.“'N-‘C“CJ,_"'(CL\ J;+C‘_Q,Cd|)si ......... @
As all l.c's of\P(t) and'}((l)can be eigenvectors we can choose C;,=Ciz,
then we have from 0, CL‘; C“\P-" N‘X*'lS%):l
ci«l =‘-"- (N\_P"' N.L-l-ils.}_)). /2. < Ci_z.
If we choose C;, = +(N“,+ N-L'l-.'lsg)-yz =C¢q
we have from@ N‘V J’+ N'LC.)'L+ (Cjz"'cjn) 5:}" =0
e, (N\pf Sy )%'l':— (Nx’rs;{) Cia
If ve let X = (Np+Sy),  then —Xej, = €,
(N-x'i-s.\‘\))

Then from the normalisation on the 2nd eigenfunction,we have

“,c‘+N )(z .‘lxc 5‘*’::

=+ E Xz‘\li'{'“\? -stg-}- Y2 we choose +ve sign

and
¢ » - X[ X*Ny+ Ny -2X 58]

Thus we have

OO (u\pmv:zsw)’*[.,l\"“»"fX“)yj
"G00 = g avst s L1900 X 7]

where X = (Nyp+ 52)
TN-L-G- S‘{)

- 3.13 -



Both eigenfunctions have the eigefzvalue ﬂ:’%-

When X =1 ,/UK(IQ can be expressed an an antisymmetric product of
its N.0's, This is the case when Nv:“—; , but we always scale the
functions W) and ¥X() so that Nw:ﬂ.,_ without altering their

eigenvalues.

O [atns T [+ [ % 03]
B0 Tata-sy] [ 19> - X(y>)

K 1 2
then we can form l.c's of qb (l) and qu (h that are still

eigenfunctions with eigenvalues = IZ

1.e.£‘§.—,; [Cz(n+s$ Nk O + Can-s¥ )% k¢=( u)] - EI}"I A

and gl [Cz(u—esﬁﬂvz Kq)'(l)-CﬂN'Sg.ﬂvz K(bz(‘)] ‘ﬁl"’zl')((l)>

and we can always scale “p(l)> and ‘X(¢)>to be normalised to 1 i.e.
N=| and thuslukflz) e N P(m) can always be expressed as an

antisymmetric product of its N.O's viz

pead =S { PO X -paxm] (9-37)

This analysis can be generallsed to functions €& /\ F
and it can be shown that if Gr (l Fh ()\ X* (l P')'X.(lP)

um)for any P

)
then the lst Order Reduced Density Matrix associated G;(? (l.'...P'“.... P)

and defined as G"""'O:SCT"”("....P'I:.---P).A XaeroXp

S
has N.S.0's {3 (‘)}i" % each associated with the eigenvalue "r‘;
- ’I'.'
or O. There a.reP N.S.0's associated with the eigenvalue "; and m-p

with the e:.genvalue 0.

GO0 = .... 2 3 “‘33?“)'
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and X ('f) can be constructed from the exteriozf product of the

© N:S.0's associated with the non-zero eigenvalues i.e.

Y(l..l.p): 8' (X)I\..nci?()%) Wwhere 3'(1),....9f ()
have eigenvalues -;-5 and 8P+‘( D.... 3“(\) have eigenvalues of O,

.For symmetric N.G's i, e/uK(lo_)e \]"P""‘) we have:-
e \W(yS + C.ah((:)>'] {['(N.,_NMS\,, )e, 4N, 59 G| 14105
* [2 Ny S*L CL,+(N~‘,NU)+S¢ )C.,.:l \Lli)> ! |

For ¢ YLD + Cizl‘x(‘)> to be an eigenfunction we have the

constraining condition

[(Nx_Nw + 332) C{_‘ +2 N‘S\: c‘.:.] s [?-NU?S:J Ci.ft (Nﬁt\\\?'*s.'\-;)c'\.z]

C i Cia

ie. Cia =¥ [ Ny
C N«

The eigenequation then becomes

Ce I [Elwdd e, | XY = [ N;«}; 3;‘ + 15’3,(%»:13'3][&.[(9 uy-}ch\x(o)]
& [( l’.um‘]’&t Sfp)’] [c«u|vg(|)>+c¢,[xm>]

So the eigenfunctions are no longer degenerate except in the special

case S?P = 0.
[ . . K 2.p (m) K eN* )
This is a special case for/u adeV P and not for/LL G2)eN°f
7 :
as in the latter case the eigenvalues are independent of Ov while
X
in the former they depend on Sq,-]
For orthonormality of the eigenfunctions we have the same conditions

as before viz

2
N\p Cil+N“-c'?‘l+2cu c s\‘)-l .......... ®

¥
N@Cq,. Cjp + N,,_cu Ciat (Cir €1a+ €;,€5,) S 0. -..®

(33 JI
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Using @ and the above condition en (i3 we have
S

, 2 2 2 * Yy _
N“?Ci.t + N\PCLI t2 C’Ll S\y[ﬂ&;] 2z 1
| *
S R
which gives for }Jv% [’S—“" A S'x' that
I/
-r' [N‘Y+EN$] : q;] /
RE Y. x
when N“,'o'[ﬁ : St, L-Q.[NXN\P] ts S\P
. | "
. We have only 1 non-zero eigenvalue of the value — ( [Q. N.’_N“,.] 2)

RES
- UNxNg  GNaNy -
Y = '-t-Nth » and C{,can only have the value

c, =t3‘§[n~xw+[ ]’?EN1N\>]V‘]-' =1e ["N_J \p

Thus the eigenvector associated with the non-zero eigenvalue can

only be of the form

' i .
“P=t g (1> W) = g vy >
For the more general case of 2 non-zero éigenva.lues we take

) ) N, V2
Cu= "'”‘ ["‘\P*'CW "5 7\L\’] " (2[N\PN'LV""' Nw"’stfﬂ
heax-t N '
then Cip=+ ( D‘w w 'S ] )’ ( um,,u.o"ztc:uw,,)"‘*rs’ﬂ\-
Y, =Y.
and C;, \r‘[ﬂ [—-“’] ’Sw] *e (2C.M‘PN1(. Nwz‘sw]\N
— -Y, X
then C; = - -':TZ 1(\5 [““\P'[-’,E‘r!,’_ ‘Sw] ’):-(ﬂwﬂoz[m\pﬂﬂ Sq,:b

The eigenfunction K 4)"(() -Cu\\.}’ﬁ)),,, Cu\ ]L(l)> is é.ssociated
with the eigenvalue 1 [_CEN'LN\P] 2 +9 )1] and the eigenfunction

4)“ OF C N?(l)> +C ‘\X(D > - with the eigenvalue Q" [(ng[\ujv -STp)]

These two functions satisfy condition @ for orthoganility.
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A p\( (L~ € \]19(“‘3 can have 1 or 2 non-zero eigenvalues, and

- in general cannot be expressed as a symmetric product of its N.O's.
Thus we have the following expansions in terms of their eigenfunctions
for eK (|'I 13 associated with},lk(lz} € N P(M> and eK (l'fb
assooiated with Ju“(w.) € \» pim)

0, L1 = lz“g "D G« £ { P D G, W+ ¢ g, )}

K : .
/u (ll)é /\1 Ftho L-a.ndJ' being the eigenfunctions associated

with the only 2 non-zero eigenvalues.,

QK(I'IO {?.‘ }\: K¢L(‘,)k¢i(’) where kXLL 3

2 .th
MK(W) eV P(M) the eigenvalue associated with the ¢ eigenfunction
19(»0

2 possible expansions exist for /U"(u) e\! viz: -

QK“ D= K(b U)Kd) ) i.e. only one non zero eigenvalue = 1.

= ALK GG by KN KOS 0

two non zero elgemra,lueé:< )\" and © }\3
Because of the normalisation condition on }J. ('93 the sum of the
eigenvalues belonging to any one decomp'o'sition must be unity i.e.
k )\t + K)\:‘j =1,
We can now write out two equivalent expansions of the 1lst Order
Reduced Density Matrix, These can be arrived at by considering the
contraction of T"ﬂ(("z,‘hg\ in two different ways,
The Natural expansion of the Reduced 2nd Order Density Matri; can be

written as
mlm-u)/

T2y - Z I /u(g\ﬁ;w et Do Ty Lspap; f;(:)/ibf(bﬁb)
’l:i%“ mi (om)ﬁwi-cu:)ﬁm)(aa)ﬂz; ww,em)}
+ 2 /u (r2d Sl (tz)'l;,ﬁ‘“ﬁ‘ .L(u(opw-xb)ﬁ(x))@(\)Nﬂ-umpm)
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Hence the 1lst Order Reduced Density Ma.trlx can be defmed as

' efl'l\\ RQ'YJ‘T‘Q(VZ'UIBCH; 3"1{2( e (\'h}[T'( elll)*...l\) 1;3(;)"5}3 ﬁ‘l)r»(i)
mint A

-I;"ﬁg't 1 (o(h)u(l)+ﬁl\)§>l3)]+2 E; ‘(l DYH d:‘? ugs (c(ﬁ)dll\fp(\) (’z)\ j

Now if we expand each em(pl D) a.ndeis(\-u) in terms of their

N.0's we can wr:.te

e(“ D———- { 2 22“/\ an).}( ) tA¢ LO[ (13 l-o((x)cx(u)-; f%plp(\)p&)

MIWHY m

T et (gmuu\»,pmfsm)}x "ciy‘a)‘scb 0\ Tepgeps
A (mmmﬁto(uoﬂ

We can write thls in matrix notation as alm +)/

Caeny=3 {2 [T‘“)\‘“cb(tlb] +)’H)12 [T“’}\“#)(m\}
AT
O o KD o Lacldert
¥ JEF}W BOBOT S, PO

L ‘l"‘)
3 ldoz/g xBs 2

Yo 1 = T e & BB

4« )

L
A )\ is the diagonal matrix with elements )\J m>\

"5>\ Wnoowom ’ ’ ’ ‘S)\J u}\

¢(|‘D is the matrix with elements A‘b (y [)h ‘ﬁ¢h(, "ﬁ ¢e (')
i o k- 5@‘2(:)"@) w.

Now if we write each “(b(\ ll\ ‘9(| D) t‘:‘}\ and s)\ in

terms of the {O‘(l} basis of P(M) we can write

patd <2 { B [+ Na NN, o ][V ‘ ]
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hdhﬂiz

+3 [1- A “A\* Vs+‘\ls“¢('b\/s][‘/ +>/sﬁ:]‘i '

where the matrices \l , \/ﬂ transform from the basis { "“d)J-(l)}

and {;54) (0} :x:to)the basis O’Cl)} ' -. '

: e(m) 1{ Z T, o ][V
S, g oo [yit Y]

and we can define
mlm-l)

A . -
e (11.)--—-{2 [ A o] YRS [N ol

& i
S
Mlmﬂ

anat PP 2 { Eﬁ* VYA ol DIN 4% [T VN o) YE }
then @ (11 ))= Q“Q'll)-t PRa) = X% DD+ LFO)RUIRG)

where fq(l‘ll) a.ndfﬁ(l'h) are the spinless lst Order Reduced Density

Matrices.

Now we can expand @ ((!l{) in terms of its own N.S.0's so
(AbY 2 A O R A0THATIRT u)é"xiw)“mef"‘ Bda0)

where ed and ed are the representations of euh'\ ‘) a.ndeﬁ("“)
on F (20 w.r.t. a basis of eigenfunctions of e(l Il)

We can write this expansion of e(lv\ () as
€ iny= WA WIS+ Te B 1) Qf

where X(l‘h} is the matrix with elements X(l ]l)" °"X (|) X (l)
and BXCppy mom v w "Xm.)* Byl (.)f‘x (0)

Also

PO = To*VEXGd ™Y e YT Ry VEREDEVEvEg Ayt
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« 2 | ™M
where ij:g‘ VfO;(I)MﬁXJ(I)=§pV§O'kb)
' _and“V“V"':“V*“V:BVﬂV*z‘S\I+P\!:I
Thus e(l ll) =Tr (1’ Il)“VE““V* +Te O h)ﬁveﬁ BV*,

We can now compare the two expansions ofe Q'll) which gives the

equalrt:.es
~ N-l

\ " mbwtly "
{2 TN (ALYEY VE 0l0+ % e VoA Yot NG ot

ved“v*cmo - )

2 {";“j“’/’r y, (0290 )V ot o T (AN UMD}
=TV eE Pyrod - w
where we have multlphed the matricesia)\ ,ls)\ by the scalars
¥ i Y
tv 5 Lty (k¢ ;

If we make the hypothesis that for all & and b

“' i’l . Ll
VR"' \Ia'w“\/s‘v VS

L 2
and " Vg =" Vg
~and thus ‘AN LT,  for all relevent {
. Ls A 'éI ('Y )) " " n L

Then we can write the L.H.S of (1) as
0))
and L.H.S of (2) as’ |

N_r{TrV c[r‘g;aﬁ? +£r;‘;}% F’)\J"oﬂ WL TV C[ddf, uF']V”c(vn)“_‘]

and only when is the above hypothesis satisfied can we express
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& B : . ' () ) ) )
e d and ed as.Contractions of T‘ Aetetst '.de.uﬁtxﬁ t’-r;‘ [5ﬁﬁp omd Edi‘»’m’_‘

and only then can double subscripts be used to relate the elements of

T‘d“) with a common set of functions & s viz only then do

the N.S.G's have common N.S.0's, and these are the same as the N.S.0's

of the 1lst Ordexr Reduced Density Matrix i.e.

“V=V, LAVAS Vv,

e € c[d‘*’ it 5 Tpecpet S g )
(Y

and eol N ;1- C\% d[;:_;?p Bh(ﬁkupf*'i u“ﬁsc‘(Ps].

The non-equality of the N.S.0's associated with N.S.G's and those
of the 1lst Order Reduced Density Matrix is true in genera.i of all
other orders of Natural ﬁinc’cions, and we can say in general that the
N.S.0's of the pth Order Reduced Density Matrices associated with the
pth order Natural functions are not identical with the N.S.0's of the
1st Order Reduced Density Matrix formed by reduction of the pth Order
Reduced Density Matrix, which infers that the pth natural functions

are not exterior products of a common orthonormal set of functions
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A general N-particle Operator can be expressed as a sum of

h2,...... N particle operators so

A A MooA [ A
0(...N) = 0,4+ 2 0,0+ 3 ZJ O, lij)+.eeere. Ollueee ND

where primed summation infers ( -'-F J and the arguments of the Operator

On(i-- ) refer to the particlel...... .
o ‘
odl...... N) can be represented in the co-ordinate representation over
' (oD le0) ¢
Q' F ALF . AVE®™

As we are only interested in at most two particle operators for the
purpose of this thesis, we concern ourselves only with a {truncated

. A
expansion of O(.... N) viz

A A " ‘A )
O(l.....N)== 0, + Z:} Ol + 71 ZJ 0, Lij)

With a system of identical particles, operation on one partiocle must

be the sé.me as operation on another thus

A
B2 G+ NG, () + NIN-D 0,11

and we can write
A A A A
o = [O + N O, ) + NN-D O._lmb] X over 2 particle sub-
° - =
system of an N particle
system
A )2 (w))
The operator o( |9.)can be wholly represented over L(I\ F as its
eigenfunctions must belong to that space. If, however, we limit
FS
ourselves tol (I\z F [2'““’) we can approximately represent O( 19.)
fa)
thus we can construct approximate eigenfunctions of O (19.)
We note that all orders of operators are self conjugate i.e.
AL é
O ( ' Vegee’ = ( l
4
Thus the representation of é(‘,,,_,,fﬂ & L(NF ak&)\
= the representation of 0(\,.....')) e L{A 2 2. :D‘
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Representation of Operators in(QE ™ ana AXE 3™ ,

The basis of @ F 2™ 15 detined as | Wey Cwb} 0% € Sa,an
or {O;/(m)@ @q(u:ﬂ} where Cu€ Sy ) O, (D€ ®’P"‘“‘;

and 0 €5, 0 @on 1D e®5Y

where (W) 2. 59; G2 Wey, 03 W, (1)

O, s 11D = T, 01 Opy, (DD

®e, 1 Sery, 00 S (D Souy; D €S
The basis of A £ as {w"'\: ((:Dj oo € Qg pu
where We, (12) = T30 | Loy, €0 Wy, () = Wy, (D Wrs (0
that of A2P(™ o5 {O’o—’:, C&B} 6o € Qg m
where C‘:\, 1) =J£—£' s Or,, (1) O‘,vaC:D-O'g,,.(z\ O’,AC\)} o

" and that sz)‘m) oS {0':0 “933 oo Gy, .,

shere O, 0> = ey ] 0y 0 6, () + O, @ 0, O

[£))

1

The bases of the spin spaces of rank 2 can be written explicitly

Azsm = :f—‘—i' {d () [3(1)_.,((2)/3(.)}5 @dﬁs(lﬁ)only 1 function ggit

is a 1 dimensional space
%

_ v g { o) « (D), JLE (P + DB (l)),ﬁ(n)fsb)}s {@u (12),@,‘ 4 z"’)@aé'

SPIN FREE OPERATORS

These can be represented completely in [ ( N P(m)x , & (v? P(M))

or L( ®2P(“°> then assigned to a particular spin symmetry. .
)
The bases of LINRP™Y) | LIVZP™Y) ana l(®P™)  are respectively

[OAOV("2'>® Ogﬂﬂﬁ)} ) o;,,o/'ué Qg,m

:{.O.Vo\?(l':v)® O'o;“ Cm).ﬁ , 051 0, & Cra,,.

and {o"’(n'a')® O;ﬂcm} O, Ou € Sgpp,
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and if 0( I'.2'Il2) is an operator representation in /\:_lew) its
representations over L (®* P(M)) . L (N P(M)) and L (V? P‘WO} can be

written in Dirac Notation as
2 plww
<CS""(\:L')\O(1:2 ha)lcr, ad Ve L(RP 3)o:-,. 814€ S, o

. (o""’(vf}lO(;‘a'lm}lO";ﬂaz\)e L(’\zPl“’) v o€ Qa,n

0, - <" 0wz Loy, a3y € LIV Yo, 5,6 6

™M
and each of these elements can be assigned to a following spin

symmetry respectively viz

@6_‘(!'1’“9)0'15 34,4_ (1.e. one such sequence iso((l')ﬁ(ﬁ')ﬁ(l)odﬁ))

®°ng$ a‘gsCl'l'lm-)
®w(.l'9-'ll?>, ®°‘5e°‘ﬁe 0'2'19) and @ppﬁ{}(l'fﬂ.l ‘7:5

The representation of the operators over L([\" P('“)) and ‘L(V"P('“) )

can be written solely in terms of the elements that represent the
operator over L ( ®2’ P l“‘)) '

viz if
o .
AO e L(N ?(M))a»d Ov= C"")‘SeQz,m
Om= 0ijad i
AUz __l.{ “."‘z _ tal, iy ‘:3"1}
then O_j,\'),, =2 OJ.J: oija - O,jzju + Oszn

oy "
where OQ € L-(@a?( )), Ox,0p GS,_,M
v 09
and if 'Od)‘_ e L (VP™ aud O}\i=(::J:_) € G’a,
) )
v

. .LJ'?. - L‘” — "'!.‘.-: Ll{’- "L‘
then OJ.j; : \,MG,L.DM(.JU,}lgOJU-Z + szj' + O J,_, 0

POSITION SPACE FREE OPERATORS ~ SPIN DEPENDENT

These can be completely represented on L(A‘S l:D) ’ L_ (V" 5“))
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or L(@‘S‘”) then assigned to a representation of a particular position

space function

Thus
o , Oy o€ S'.L,o.
O"Z = <®U$CI 2.')( O(r9'12) \®5£(193> a.:d' gg over the sequences

€ L(@‘saﬂ) based on o(lﬁ
P’ - @) o el l@xﬁ (D) ¢ LINS™)
L @™ (n:x)l OCralind l@r LY € LINS™)

O1,08 2 B 00, 30

)
The representations of the operators over L(/\zs“n) and L (V" S(z 3

can be written solely in terms of the elements that represent the

operators over L_ ( ®2 S (ﬁ}

viz
O:/fs £ (0, Oa(z Oﬁa ) e L(RS™D
. S
O . o 0f+ 0fe) e L(vs™
/3 ( O % E oy “ﬁ ) |
and each one of these elements can be assigned to a spatial represent-
ation
<ot oy, und =&, e VPP
,l>lO'°;uUa) = 0o, e VP O’\;‘b}‘GG'z'm
LS a. 2 olm
<™ 02 1og, ey - 8«; e NP )0\:,0}4 e Qz,u

O
aud<oc°(l'2'> lo%m)) s CS:,; (S @2 P(‘b °§>.°;u € Sa,m

If the position space functions were not orthonormal the iepresentations
assigned to the spin functions would not be 8 ;

The general spin-position spaée dependent operator has to be represent-
ed ox'rer L( A':\ F(m)orL(®:Fu~3completely. This will be dealt with

a little later as for the partioular case of the 2nd Order Reduced

Density Matrix,
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PARTICULAR EXAMPLES

1. 2 particle Hamiltonian H (19-)

H (193 is defined in a two particle picture a.s
(32 .) (R w+h @] + % 0D+ % o

where h () is a 1 electron operator, defined in the co-ordinate

representation as

Sy : :
h (L) vz-z 2-5 where the number of nucleii in the system = N

3= i f¢s = distance of ith electron from sth nucleus
izlor2 25 = charge on sth nucleus
and k(o} nuclear-nuclear repuls;on term i.e.

"\(o) 2 2 -é%i Rs'. = inter nuclear distance

and k (l‘:.) i where “n. is distance between electron 1 é.nd .electron
Cia
2
2
We define XkJ € L(@ P‘M> as

Ko ) oy = [ EYPINGEIES-ANSY

(S wo (93>
R
'(N ) [‘/\R ('ge-i-k Sh] l-'. +N(N\)J (S NG

whereh <U (l)l]r\(l ll\lokcl)>
- <oty @ | Wl ok ot Y

The term —F— 5 A‘ hio) is usually ignored as it is a constant

N(M O
and is independent of the functianal form of i o ¢ (.l)ﬂg g
Its effect is allowed for later in the evaluation of energies, but

it is not pertinent in the discussion of the properties of Hamiltonian

operators.,

Thus we take

RE _ e oL L 0k kQ
X2 [nedy 4 8] + 6,
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and we say that the representatlons of H12) in L(N* P""a\ and
L(VIP(.‘\\ are respectively: = " "
RL R
HlaLJ - %:{X%n' —XF. - XJ.D +x"}
k
B [h ;- R é" k"&“ + L\ g ]
k1
+3 [ oy Sy -—G;k e

fori.éj
k<2

ee _ ! ke u( ke ek}
H2%8) = et L Koy + Xij +Xji + X

2 ok ok KA ]
‘lfmi(w “1) [k cf +L5k kJn—kJ ]+Gr +6r; +G- G
for(.éJ
keg

A
2. 2 particle S operator S {(j12).
(‘7\)13 a scalar operator defined as S( 12, S (12) (scalar product)

vhere S (19)13 a vector operator, defined as

S (l:D 5(:3 + 5 (2
Thus S (12 = [.‘5(\)4—5(75)] [S(\)+Sla\] S(D +2 Sls),ﬁ(:ﬂ*'s @
S0 §° (1Dis made up of 1 particle operators S(:} + S () and a two
particle operator 25 (N.5(2) . I order that S (549 (D gives the
correct expectation value in a 2 particle space it mist be scaled by

i B
a factor of (N-1),

rows S0 = 2 [ + S +2 § 0o $a

Now
SV =S G 5,.(0+ 53 () S2 ()
5(9.3 - 8. l:zssJ,(o} + S5 (13+S,2(13

25 S =2 [ St Sh2d+ s:,m.sy () + é\z M. S, )]

sl - 4,6 =



A oA N
where 53:55 a.nng. are scalar operators defined as operating along
the cartesian axesd 3,% respectively.
The action of Sx.sj andSz when represented in spin'spa.ée are defined
as
. O . . . L .
SulP=5pl  Sa(PelPd=zalld

S:C(j)p (J>='9L~°(LJ) S;;. (J>/5(:J>="."i.ﬁ{))
Sy¢elp =3 ipgd
SyIRG> =-5ix ()

2 2 el 2 pold _
. As the representation of S (323 in/\,_s ande S can be expressed
2 2 )
" in terms of the 16 elements representingsufl) in@zs we find these

elements thus:—
o (1)L ()

Firstly the effect of 52(1‘2.\ on\ & (1) /3(2)
o« () B11)
| [JDYIEY

50 «ld (D *“.i:) [%._ecl;)ct (:b] +la (dot(D

Sty plad) s [%_x[\)ﬁ(:))] +alD) R - 1 k) Al
S:(wboc(:)ﬁc D= 1[2 «(a)/sm} o) Bla) - Lo DA
5 (D pdpIDd = L [%g(:)/%(a)]f_'i ) ﬁw

Then The representation of 3
et 2 l 31(‘9’3‘“('>°‘(2)> 27%,7,3"'-'7: inL(®*5Pveing symetric
<«(.§«(®}S"(u§}°ﬂ(u)ﬁ(z‘)>= @) the remaining elements
| <°<(Decl13l52 ([ 0n>=0 are defined by the elements
<xtyuR[SD|FOFD D=0 - siven. |
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<o( () B | 5*02) | () BlaYY = ':%G'ﬁ -3

&ty pray 181 Lot () LY 2= |
sy pLd 1s* (R (1) pd>=0

Calyp(d 15702y felad AL Yemam E
Ledpw Is*ad lpip@ > =0
BB |1 IR VT 3

2
Thus S € LIAES" ):Ls given by

13 o 2
G| 5l @y > =488 -Sh - B 4 T47]

=23 - 143 -3 - _3_
Talan-d 2 ! +'T_——\') 24 D X

and S €LV ‘ﬁ} are given by

<®ss“J(:MS (1:Dl®ss(l33> L4 ] {s =&, 5,= {3}

viz
| 2 20 206 2o |_ B

Z. Sox + Stx TS stat T Otk :z(sx-l) 2
Sx.gf; 2,eu+slu/;+ 1ﬂ°‘]-| Ef—b L+141+ 3 - -J

p ‘ D 3
m Nt
4-[52"’; +s’ﬁ‘@ + 52’3/9 +8 | =3— + L

AR 4 AND 2

2
'The matrix elements representingS (12) in LG2S™) ana L (v?s®)

are of the form

<®,< G2 |52 cmmt@*cm> oy € Coyp
and {@QCIOD‘}

. 2 .
. . form a basis forY Sa’D
|

oy "I-; 0'1_‘032 76.‘,.;0'-‘ 1"‘3"";} - )
ERCIER) {5“/3 Spe TSeg *O @

wnile < @), (r27) [SCir212) f@dﬁ’((93>ais given by
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!
‘ F-—‘ @x “/6 1/5“ (e
which is equivalent to (1). Substituting in the 3 possible sequences
€ Gl)Lwe have ” )
S +5 wg ( whid, =0

1&“‘{ . 0
"Fﬁ 5"/3f3 ﬂﬁ_i_s/?ﬁ} which. =0

“”d-;-_isz,:ﬁ 7.{3.(. _ ':./3.4 szof;;} {Q%N-\') —.'-L}CN—-\.Y.‘ +l}

whic, =0

(Rm’\
Thus confirming the spin symmetric decompos:.tion of /\ F does indeed

Lnd
lead to a diagonal representation of S ( 19-) overL,(f\ F( M‘) when we

1r (2m)
are working in an orthonormal basis of /\

SPIN AND POSTTION SPACE DEPENDENT OPERATOR i.e. 2nd Order Reduced

A .
Density OperatorT'[ﬂ( 12)  of a Singlet Spin State

which in the approximate co-ordinate representation is designated
. D, , 1 ~ (non)
by the 2nd Order Reduced Density Matrix T‘ Cita. ‘I?D é,/\,_ F

If we consider the spin symmetric' 'decomposition of AtFu'm) then

AT ~(and)
/\Q_F . is defined as

[/\Q_P(m')® v‘z. C:D@ v F(m)®/\ S(ﬁ)} ®
CA:.P(..‘\ @ Va.st:\)@ vzem) R} /\a.%(ﬁ)']

. : (1 .
over which we can represent T‘ 3( ' h 9:) . We see then we have to

consider representations over

(NP e Vis?) @ [/\aﬁm)‘g VaSen]
[P @ A's”] @[V, fy® A, S
[RFe VIS ] B[V, k@A Se )
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(m
wa (VP K 5% @ [A,hy @\, Sa)
Giving a matrix structure of the form

o oaf+fx BB Bk

(when V;_ SQ) and /\29_ S(ﬁ) are

ol _HA R (M® AB A CA—B) explicitly expanded in terms of

(DA [ Dad|(s0)8 |(eBd(p-g) | oI TRSe fomctions)

pplBA__ |8(A+® | B8 | B(A-R)

o BAx|(A-Q A |(A-ad) (n-B8 |(a-B)ALD)

(2w
which is quite general for any Operator € /\1,_{:(1“\ or L(I\L F \\
F'(‘).»\

. 2
The matrix of structures of non-general operators in /\

A A
ie.HL a.nd.fs"L are special forms of that just shown with certain

null blocks.

r.S
For H % blocks RA} (A%}CA@,BBIG\-@CA—&} are the only non-zero
ones - due to spin orthoganility.

A

And for S 1a,gain only blocks AR, (FH-ED(FHB), BB;CQ-B)CQ'@

: : 2 ('\)

are non-zero and they are also diagonal when the bases of AN P
(

and VZP W are orthonormal and also for Singlet Spin States the blocks

FA,(R-rB)(A—f»S}, BB and(A-BYXA-L) are the only non- zero blocks of T@

Expectation Values

The 2nd Order reduced density matrix represents the system as
~ expressed as particle pairs., If there are/N particles in the system
then the number of particle pairs isN(N-D/Q_ . Now the Quantum (and
statistical) value of any observable (taking into account at most
two particle properties) is defined as being
< Ob> = \¢ ObTL,:D where Ob a.ndT(Qare representations of the
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Operator associated with the observable and 2nd Order reduced density
matrix respectively.

In a continuous representation—r;- is an integfal operation,

i, T.0p T —U 0, (X IXY T (1%, dX,’,dX:'a.

while in a discrete representation it has the usual matrix definition

ToaT“" 23, 25, Oy 'T“)‘

NLN-D/ _ :
As there are identically 2 particle pairs in the system we

define

TITT®. NN

whereIis the represenj:ation of the identity operator.
The expectation value of the hamiltonian operator, viz the energy is
given by

E=Tr HAT'®

2-(2m) .
and if HX is represented as an operator inA F over the decomp=-

- osition .

| A F m..a P(m‘)® vas(:)@ V fm® A Stz)

then it has the components w.r.t. spin symmetry

ALl=H) & H2 Wy Bt ) Hiﬁﬁs"ﬁs‘@ Hlﬁﬁﬁﬁ

all others being zero (as HL is a spinless operator)

(2,
Thus the only components of T ) that are effective axe

(2) (z) (2) [¢))
Tt Tipps T PARR

o(ﬁ,_.oqg,._ ) dﬁ,x{gs )

and the energy is given by - @ T
lz.) 2
<W>- € = Te W et TP H3 g dfw‘s +Te Wy g Targp st :H o
(2) -nﬁ'gﬂﬁ
and the expectation value of the S operator is given by - :
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2 2) —nl2) @ D T m
DTS T T S B Wi T s Ve

()
Now in an orthonormal basis for /\ P(M) a.nd a\P
2

,Sm; Sdptuﬁe '
So‘(;,oc‘g‘, Sﬁﬁﬁp are scalar matrices i.e. multiples of the unit

matrix.

Thus,
2 ) ‘ﬂ ~
<s:Ts' T, T Supop _“.T‘F’-"‘#* % s wps U o(psuﬁs
+ Sﬁ Tl' T'(ﬁt

| 3 _N+2 . ol+f+2
where%x’%tpt«,ee’gpﬁﬁ/s 2(N- D :z ) Al 3-0

3 . b-3N . b-3x-3p

and S“F:“ﬁs YD) 2 2N A e’

I -P‘.?:\

represent‘s a pure spin state, the following trace relation-

(
ships are satisfied by the components (w.r.t. spin subspaces) of T )

T;Te:::uo( = Number of alpha electron pairs in the system = « (ot~ D/z
T o o n e gy
Te T’;;th n " spin symmetric alpha-beta electron pairs = L“-D%
177:‘;;1‘6’ " " oon antisymmetri.c n w " " '[“-H)l[%

51> [ot (- l)/ + (o(-\)ﬁ/a-l-ﬁ([& ')/2] [z(&*ﬁ' _J
»[eepy] (43228

s S(S+D

where S is the total spin of the system

"~ ) "
Representation in F'u J (& F(zm AF(ZM) \I' F‘2 D
Bases of Foa we let be {LO (\)} {5’ (l)® S (0}

~,SQ -2 or'?g
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L=1,2
2m) \
an operator in F( S L ( ‘:(2.« )
It X( l ll) is a general operator in the continuous co-ordinate
F(?-Wt)

space representation, then its matrix elements over ®

defined as

><J <w, @ X1y o> {53.4,,\.;..‘3 f j X 0 XYW e X dXi }
=<0, 4§, (M XGIN "3 ¥

= <G&(|'3|X 'l |\lo"(0><sh(u') %@ h\lSﬂl‘buhem{’-’;ﬂ%}

)
If the operator is spin independent then it can be represented in
L (P (o 3 then assigned a spin symmetry thus making it a representatn.on
in L.(F @)

viz

=<icg(|5l><(vh3lcj(07>‘

then XJL can be assigned a spin symmetryol or ﬁ(\% representation,
If the operator is positioh independent and spin dependent, then it

can be represented inL(S(zs) then assigned a position space part.

Representation of 1 electron hamiltonian and lst Order Reduced Density

Matrix  gun,

A 2 2

YOV ; r~s. in the co-ordinate representation
LS .

As the 1 electron hamiltonian is a spin independent operator we ean

write its representation in W(F‘*)as: -
S-ﬂs\

h = <o IV SZ =23 lc‘m>é‘s

fis

- 4.13 -



-{<-()Hﬁlc%>>'§T<cn>ﬁilc%>>} o
j- 0:‘ l t { .s;‘ 4] | Iis \ SJ

L,J'zl......w\
i=oorf
; etor[&

while @ the 1lst Order Reduced Density Matrix is both spin a.nd

bH
"

F‘Zm)

[
position dependent thus we can only write its representation in @.
which is a subspace of LIFE™)

i ‘ ’ .
- <w,lew! wh ey >

L)J Zleieee. dm

’ .
The general structure of an operator € L(F (3w ) w.r.t. spin symmetry

- 12m) .
(when F is expressed as a direct product of the form

(20) 6w (2)
F’-g(@sﬁ>

7

AR A8

p.| BA BB

{3)
The basis of O  is given explicitly as {0‘ (0 ,/5(‘3}

A _ : )
For spin independent operators e.g. h (‘3 the only non-zero components
are AR ana BB s @s they are for spatial independent operators
R A
Sz () ana 51(0 , while for general 1 electron operators of the type

N
@  a11 blocks are non-zero.

Expectation Values

The 1lst Order reduced density matrix represents an N x| particle

subsystem of an N particle system. Thus we define -
TeI@ =N=T-€

The 1 particle energy is given by

- 4.14 -



<hiyd = €=The = Tk €+ Ten 07

where superscript X or/5 represents the component of that spin

symmetry i.e.

(m
x € P )

(m)®F

<p € P‘(:) Q FCM)
pe e P9 @ P"”
p € P"‘) ®P‘")

Component of angular momenta along the Z - direction of a 1 particle

subsystem is ( in atomic um.ts of momen'ba)

<s L) =T 5,0 =TS e +T- 5B @~
5 {05 (-]
& = number of alphav electrons; f3 = number of beta electrons

Contraction
Contraction is a procedure by which one can average out the effect
of one or more particles, i.e. we map fromp particle representation
| onto a Ct particle representation where P > CL
The 2nd Order Reduced Density Matrix is a contraction of the full

N particle density matrix i.e.
TO0w)=NuD ¢ [TO0 NN ]
a

and the lst Order Reduced Density Matrix can be considered to be a

contraction of either the 2nd Order Reduced Density Matrix

C,CI'ID = T‘Q:.T C [T‘“’(n'a'ha)]

or a contraction of the full N particle Demsity Matrix

- 4,15 -



Camy = N [T ]

where contraction of a continuous tensor (i.e. many variable function)

is defined as

Coanp [F O N Xyerrc] = [F O IR Dol = F OHLpl )

These contractions are from

‘C " N'F (2nec0) N F Gmed  ynere the exterior product spaces are
g n e ARAYY

represented over the Tensor product

Ci N ECR 5 A F G

spaces

(2 00) (2me0) n ~(2mod ' Moo, (
% %FFIMM‘) Sy INF ®n 3 * ))®-F(2 )) ®22F2,m°)°

When we consider the contractions of the representations of 'the's_'e |
contractions on the functional spaces we have the relationships: =
(’ :r-:)‘.—\c T“*’] oc ®-‘Fczwo 5'1’") € /\’;F“‘“’
T.n)= CN_Q_ET'L"U -rl(z) c /\’laF(zm)} -V(") ¢ /\A,\Fum)

and

C-c[m=] Ce®F%, TNe Ay F&

Contractions retain the symmetry of the Tensor space i.e. contracfi_ona
of antisymmetric spaces are antisymme‘bric. spaces.

Thus when we contract into the one particle space in which eexz.sts ‘

we contra.ct onto the basis of /\ F 2m) which although /\ F l2~.)— @ Fum)
is different from the basis of ®.F’ )usually defined. This is
particularly inconvenient as we refere to the {Q‘(f)@b%(l')}

basis. To overcome this problem we usually transform representationa

(2
on /\ F‘ ") to representations on @PF ") which does contract

onto ® thm) with basis {w ) @LO (0‘_\] |
The transformation U.A ' @ PE (2w )/\P F("m) (and thus the reverse

et 4016 -'



one) has been defined.

The contractions in terms of the Direct product spaces are

6 T‘C [-[rcz)] Trll) c @22 F(zm)) e c ®l| FU'"A
Tu(x\z !:2_)51[-[-\“\'] -rl(b\) € ®:\ F(Zm\’-rtlz) c @11 F(iuo
e, NC, [-p(.o] T e Q" th..)' & Q' F.(‘lwb

In particular we will now consider the relationship between the lst

and 2nd Order Reduced Density Matrices.
: s 2 )
When the spin symmetric decomposition of /\7_ is considered and

T‘“’e /\22_":(2""‘X represents a pure spin state it can be thought of
as a product of a position space representations € Azz f(m) and
sz P(M) times spin space representation Vz, SQ) and /\zz S“)

respectively. |

(1
(It is shown elsewhere thatT’ ) when representing a pure spin state

is of block diagonal form on the spin symmetric decomposition of

t
NoF ).

Contractions of Direct product spaces satisfy the condition
c[s@s]=e[s] ®cfs.]

where S. and Sz are 2 tensor product spaces.

(2D
When T' is a pure singlet spin state it is represented over

/\z ?"‘"@ Vz gt» o \/ ptu) ® /\1 Su-)

Then we can write the relationships between the bl and 2 particle spaces
" as : .
(w) (~ 2 (D ¢ o lw ' A>2)
[P Vis@e Vit e A sT] APV, S
(m) 1 ol
Chapters 2and 3.
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and
¢ [rus® AP oCug vis®loCug Vi Pl LU £, S“’]]
. Q) P(.@® ®:Sw@ ®’ P(“J@ ®:Sm

. [ (2 )
when we contract omto the {LO"(\B ® hz‘ (I)} basis of @, F " .

Let us consider the spin space contractions first.
: 2 o (D I c(2)
(l)C[V:,S( ] :_\/‘S

’ 2
The only elements of interest in V Shb are the bases elements viz

o (1 uel2) @t (Dox 2 .- cem)pfzh«cz');sa)(«zofswu@pm),ﬁ( )ﬁ(z’)ﬁcoplz)

these contract to basis elements of \/ S(n which are
o({l')ot 0y, : (ot o0+ RO B(D), and. RO DALY

the contraction being defined as

®; () = 5®i(g'z'lm> dh,.
@) C[ALS™] = A5

Here there is only 1 basis element

"9: («lv)p (2") —o¢ (2')/%(:’))(«(:) ﬁ(nb-ozcz)/&(‘ﬂ

which contracts to the basis element of
/\, S‘z) 7 (<D0 + B¢ ){5(0)

) C [®;S“’] = ®:5%

' The bases elements of ®'. Su)aredfl')ﬁ&)) d(l’)d(l)) ﬁ(l')ﬁ(l)md [5(\')0((\)
which are formed from the contraction of the bases elements { d(l')ﬁ(&')dfl)ﬁb)‘
& ( |‘)[‘3 () &) [5(1), o (2') ﬁ(l')o((l) [3(9) o (2) ﬁ(l)ollﬂp(l), o (12Dt (1) (2), nic}

O.f_ @z SCZ)
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POSITION SPACE CONTRACTIOINS
. ' {m)
N C[@P™] =@, P
| ) £ o s
The basis elements of @g_ P M)) 0 Y602 ® O;./“Cu)} O'Q,O;ué 92'm
&9, c L
contract so jO’equ'B O'd')’(z) O‘a;“. () 6%1613 al("2 =0 @) cr%cod‘@::e ®,

. 2
as 0‘91 = ‘5% M times; M basis Tensors of @.,_ P‘M maps onto
P(m\

] »
1 basis tensor of @l and the mapping is M,
2 .
Tensors € Q) P(M) i.e. X=X'Q@QC QX,Q X4 contract to
[}
Pensors € ®g P(M) in the following way

C(x‘@oc‘*@:cagx,;]? = jZ.,‘ x| xR x} xy = lj’f_ e ®, ™

or more generally if X € ®22 le) ,

then " - y . A
J 1) ( Y

(X =2 Xt =V e® P

W c[ A, P"“\] = A P
a2 ptm) [ n O A :
The basis elements of /\,_]D R {-TI ) (XD@F 6%‘;()(;)} 0o, OuE Q,\ -
contract so -;{[CO'W'(I') O'o'a"(ﬂ -O’do'(a)oda'((% (O'b;u ‘(0 O’OJML':)—O'% {25 O',)‘ .(l)) dr,_ ‘

c, 4 9
=% {Oa"‘(\') O, ) &;‘2 -6 T, © ‘gdj? -0™) G (1 &"wz

0'9‘ Ve \ (m)
+0 10 Gy, S;} e NP

2 A~ (M)
and Tensors € /\;,_ P i,e.L =.x'/\acz® :C3I\1C4. contract to

ensors €A P iy the following vay; - '

C(x’wc‘gacs:\ac‘a‘: =;2,R'ioc‘-:§ +3§liocg‘:= ‘jkf e./\“ P‘m)

(i) C.f\/zz P = V) P

Thé basis elenents of \/:(:M, {'E:{"g’ *(x)® 'ﬁTVO’dm((XJ")S c'\,,o;e.Gtz' -

contract sog m [f oo (\') c w"(]) + Da‘:.(zo)' :)' 6::21);( 0'0/:_. .)(;) :";“2;") --
‘ T2 Uy O O R
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.
o™, (I + 0 6Dy c»c? 4670, coJ o

f ' ‘m)
+0 a(.')o'%‘mg%} eV P

and Tensors € ViP(m} t.e. X=2' chz®~'1'3 VX,

9. M(b;,) M(

contract to Tensors € \/l P(MB in the following way
LIRVL (na)
c[xcvact ®ac3vac4] +2 xiF =Y eV, P
) 7 Rk, |. Jeki
Any Tensor E/\,_Pb“3 or Vi P(M3 can be expressed in terms of its
components & @2’_ P(m) viz: - o 5o ‘ |
oy { 69,00, CV,C0, O.J&D'.;' V" oo 5. € G
XD)f'i{ S Zes ™ X508 ™ gu Gy T T, ue) TR = 0
2 plnw)
where X € /\zz P(WO) X € @,_P ™
and
) ! LR 59,09, e9,0y, 09,05, 'S
0.
\/O’J“ Q.JM(D'.;)M(O’}Q [\j” ' j)ﬂ Taas j"’ 1pe jb}"o)‘*z 03 € Ty m
2 plm) 2 plra)
Ye\lzp”‘,ﬂe®zf’

If we now write the contractions of X and y in terms of X and H
and consider only the diagonal elements of the contracted ‘l‘ensors_ we

see that

5\’.602 Uézc-o‘
C[X] ¥ 23 + 2 Xb‘q &
o 9, &5 )0' W% gy 28y, 2" V)
G, 80
6\’. D’Oz Gq D. -7,_ a"aa 2, . 3 .
s { 2 g -2 -C +
-y )
2 Loayey, x’ﬂ,b‘o 59,59, 9,067,
+ 2 ( O'J‘c’o, xao,oz;,_ 5'~’. 00:_)}
89,26, "02% a‘o o9, B9 02, ap N
&9
Cv,09, [
+1 { (xo‘o.c ) 2 C [ X]
72
-2 Bq
09,6, {)(m’
As xc,, 09, are the components of X as represented in @
9,00, 62,09, OOV 5009 09,69, 50,07

. 09,09, = 00,09 )= 0o, &9, - 69,09, o.nd-- 09,00, ~ o’o,c'az‘

and that
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G, 5\71 j 8"72 a”l

cly \ +
]G‘o -D’qt‘,;o‘o JV-O‘UJ.. o g,o"?. G, 09

&
2 w.m,_ \ju'é.b'oa + j + jm’s"*" }
oo 0_9 Q.\)MZB'\;)M(D’Q ( J bR GQ?. U’o‘ b, o, a"’; ﬂ'qzvo.
09,50, 09,09, ju‘?tv"u ja"zo'ot )

60 6-5'0 Q.JM(D'\;) M(p‘,; (550‘50 5035\7: 89, 0.!?; O'qzvo,

=2 (Y15

()
i.e. the contractions that gJ.ve rise to dlagona.l elements in /\ P

(w)
and V P are just twice those that give rise to dlagona.l elements

in ® P(m\ ;
(2
Now we can write the contraction of T‘(QG Azq_ F ™ as
(2 (€)) (2) ) Lz)
T Tt Tapeepe* Trppp * epsps

The spin space parts of the density matrices contract to give

oL (1), L (o WO+ {3("},‘3(\3) BOBLW, avsol.':z (a () o((\)ﬂg(l')ﬁ( l)}

respectively.
If we then express the position space parts of the density matrices

into the Tensor product space@zP (ra) i, e_
(:J

-P(Z) uA ,U,+ -l-\(z)dﬁtu UR ﬁﬁﬁu Oﬁdus ogpfkﬁs

2 (m)
we can then contract as described i.e. from @z P(wb-a® ,P .
If we then collect togethei‘ parts of the same spin symmetry we can

then define - the 1st Order Reduced Density Matrix of /X or ﬁﬂ

spm symmetry as

o( N- ‘{C [u gToc’g dﬁbuﬂ+ U.g lg‘g‘g U]}dll)dll)
e {C[u papp Ut iU T;f;i«,é atg ls TI(’)«,; Us]}ﬁ(l)(s(t)

We also note that the dlagona.l elements of e“ and Q (5 could be

defined as: -~
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,@ec: =ﬂl"{ {-T;fiu -P{&adiit- 'D,?Lp }o((\)ct(l)

l-._‘.-.{ [ u) !1) +.—T ;3 (") (‘)
ﬁi' =5 ﬁFﬁ "‘p’c"(ﬁt ;“ﬁs ‘3 '3
i.e the diagonal elements of the reduced first order

density matrix represcnted on the iw;'(u) D w& (0}

basis of ®"Fumare directly linked to the contractions
of the dilagonal elements of the reduced second order

density matrix represented on . /\:F““’
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Prcbability and Phyuical Interpretation

Having a mathematical recipe that, given certain input data,
enables an output to be manifested, which can be tested against an
experimental ’fact* is all any theoretical formalism would want to
acheive. However, certain qualifications are desirable. For if the
output is just a set of parameters like pressure,volume, energp',
temperature and the mathematical recipe has no physical interpretation
then the end result is a characterisation of a system without any
reference to its structure. 'Feel* for the output parameters in
terms of structure is lost, thus prediction (non-mathematical) about
future values of the parameters given nNow circumstances becomes
virtually impossible. If, on the other hand, information about the
structure is output like spatial densities (of varying kinds), then
a picture, schematic as it may be, can be built up in one*s mind and
the system can become an envisaged djuamic entity with many conjectured
possibilities. The optimum theoretical description is when each
stage of the mathematical recipe is open to physical interpretation,
in contrast with a set of mathematical abstractions leading - *as if
by magic* - to a physical picture. Vhen this is the case, inferential
logic can begin to play an important part in the analysis of the
problem one is studying and thus leads more quickly to useful results
than if one had worked through all the deductive possibilities.

Given that a physical interpretation (at the maximum possible
times) is the desired state, one has to be careful of the many dangers
that may trap the unwary, viz. a ITon-realistic .interpretation of
the mathematical forms - giving them a meaning when they have no
such meaning - is worse than giving them no meaning at all, for this

will lead to misguided inferences about the possibilities of the



cyntcn, and a fallacious understanding of the mechanism by which
the parameters characterising the system come to have their values.
The problem of mathematical/physical description is of partic-
ular importance in chemistry, where multitudes of qualitative theoriies
era based upon a physical interpretation of quantitative work.
Unfortunately, not always is this done in a realistic way (in the
above sense) and inherent faults thus become a part of the qualitative
theory. The incorporation of such faults is thus made easier by the
physical uninterruptible path through which the mathematics meanders
before reappearing in a physical tangible form. For this reason, the
Density Matrix picture, in terms of Natural expansions is of partic-
ular benefit, for this leads directly at all stages of the mathem-
atical treatment to physically meaningful interpretation in terms
of probability distribution functions, but care must be talien in
understanding what these PDFs are of.
A short section will follow on the probability notation and
some properties of probability measures. Then will follow a
probalistic discussion of Density and Reduced Density Matrices, with

relation to their expansion over a basis set of matrices.



Ax ions Or Probab iliF;' Monrave

1. For any event P\ ,PC where PCa') is the probability
measure associated with the
event ft

2, P CU.') s I where LL is the universal event
for that set of events to
which the probability measure R
refers (to a particular
sample space).

5. If A. n ~ then

A = P~ where “* is the null event.

(3) is when the events A and 8 arc mutually exclusive.

U = sot Theoretical Union.

~ ~ " " Intersection.

4. 0 arepairwisemutually exclusive events then
pcgqg: A.3 . * P(fl1l.b

and for finite

? (0~, £1;). s P(A;'1l,

Tlie following Theorems also hold:-

1. P(<1>)ro

2. P ( r )— P 6A % whore A is the complement

Of the event fl sth=ﬂUA B

3. If fl and & arc any two events then

PCA U6") = P(fl) + P(6) - P*A nS")
when the probability measures refer to the same sample space.

4. A generalisation of (3).

If  ..... Prr, are anym events then



* .. (> p(ni',rflit>. -
5. ir i ¢ 6 thon P Ca') 6 PC61
i.e. if the event ft contains the event B then the probability of 6

occurring is loss than or equal to the probability of A occurring.

SantiQ Space: - i.e. a set of events

Set of Elementary Events: - a set of events that are pairwise mutually
exclusive that define the sample space. (This set is not unique),

ie. where CL” are elementary events. Such events
can be described by experiments or questions that have a Yes/ho

answer (i.e. obey a binary logic). If the space is infinite, m =

As the universal event is the union of all such events

Then P ( {Jt=3 =i , as o= ~ () we have from (4)
above
P(O-;7ab= =

( I

A sample space does not need to have discrete elementary events

a continuous sample space.

5 S { a X-continuous parameter.

X«
Then the union is written as GL" X') if finite,if infinite
X*.o1 and Pf c P (cL C'X"))(Ly : T

The functions P (oL) defined over a set of events are called probabil-
ity distribution functions PDF. These are discontinuous discrete
functions when defined over a discrete sample space (i.e, a space
with discrete elementary events) and are continuous when defined over
a sample space with continuous elementary events.

The values of the functior | is the probability associated with

a =4,

the occurrence of CXj



As the probability associated with the universal event is 1, the
value of the functions (any PDF) must lie between 0 and 1,
otherwise it is not a probability measure, (b in any type of event,
compound or elementary).

Only when the function is defined over a complete set of elementary
ex.r}?nts does

P dx (for continuous samnle space) = 1.
or 2i*° P ( £ o r discrete sample space) = 1.

If the functions are defined over compound events b (x) /X
or(x e ) then
r ) (ban have any
17y

2 1< \oositive value
For clarity wo here interpret into English the concept of Union
and intersection of Events.
Union:-A (JB (A and 6 any two events), this is the event that
occurs when the event A occurs or the event B occurs.
Intersection:-A H 6 , this is the event that occurs only when f\
and Boccur.
Thus P L?8) is the probability that A or B will occur, and

P (f\n B) o " " fl and 6 " "

Cond itiona.l Probability :- This is the probability that given 8
has occurred thenA will occur, which is written os P*A/6".
This is a renormalised measure of the probability of fl occurring,
i.e. instead of it being a measure wnr.t. the sample space * D A
and 6 , it is a relative measure w.r.t. the probability of 6 occurr-
ing, i.e. the probability of A and 6 occurring simultaneously is

scaled up by a factor of which makes the probability of 6 occurr-

ing in this new relative measure = 1, and thus define a new sample



space in which 6 he the universal event.
Th, :n PCEijfU . —]:;_71>;

If P*Bl&) -0 then the events A and B are exclusive (as then
Pfpiflé ~0 ) and if P I then & DA (3§ A

Now if two events A and S are independent then the occurrence of one
will not effect the occurrence of the other.

Thus P(AjB) . % P (A\ PM)

“this factor scales the relative measure s.t. it
can he directly cf to the absolute measure, and
PCg/A). PAA) . P*B\ PCfi\ = PCS')
'"ThuoPCftAfe) -p(£8P£1V-Pi'A). Pfe.")

So ve car. oay that the eventa A ano 6 are independent if and only

if e(Pif\B'"" P (al\?ce)

Thus exclusive events are not independent.

This generalised to k events is:- A|,........ aremutually indepen-
dent if and only if we have for j -2., h
For all “~ iper.autationo k integers.

Probabilistic Interpretation of Density Matrices

V/c will consider a system of A identical Fermions i.e. obeying
Fcrmi-Dirac Statistics and thus the system isantisymmetric w.r.t.
particle interchange.

Any state of a micro-system is fully characterised by its full
M particle Density Matrix associated with that state in the co-
ordinate representation
TV (/. M'/1 N) — n’) “h ... w)

~ being the wave function of that state.

5.0 -



The co-ordinate and spin space properties of the system are fully
determined by the diagonal elements of the density Matrix

T'-'hl". N'F1 Nt S N)

The off diagonals only being pertinent for momentum properties (such
as KM.) of the system, Even though it will not be very informative
about momentum properties, it is very instructive and useful to
study the properties of the diagonal elements of T* ~ N/1 A/)
i.e. the position and spin space structure of the system.

The diagonal elements of the full N particle Density Matrix
form a continuous PDF over a sample space \ based on the element-
ary events.

"Is there a particle at point X, , at the same time as there being a
particle at  ..... etc. .. ?", where these arc co-ordinates or
position vectors in position-spin space.

These elementary events i.e. the simultaneity of particles at the

pointrK, , Xn or in the configuration ( ) are denoted
by E" %X, ..... Such a sample space is infinite as well as being
continuous.

Thus A istheprobabilitythat there are/\l particles

in the configuration (X/...
M~at once fulfils the normalisation condition of PDF over
a complete set of elementary events viz. Pj)dT.dT
The universal event ~ N j is the occurrence of
particles in space, and as the events are exclusive they can be express-
ed as

Now let us consider the following union of events



LJ E Cr..... N ) t.G. the union over all events associated
with the configurations that contain the
position vector” in then.

Thus the evenLf (X in:-

Y} -/, \ ,I'S 0
E'xo - Cl aNf/\EO u Z -y r
w-it
A/-Ia—«0
*je (x'z n)dr*...~ 4 J£0,X78" NAdT? .-
........... n ....N-1 x0OtiT, ....

due to the nairwise exclusiveness of the events

-CW3
where the integrations are over the sample space \
PCE Ix')) : E1 [P(E(:x"*..... X- X')uT. ..... ,
v.'horeCr = "L, a-ij’ the net of N

ordered sequences of A-I different integers

chosen <£xidmiZy xhtegei o

And we have u:sod P

i.e. we have replaced the integration in sample by the integration

in probability measure space.

As we are dealing with indistinguishable particles

where * and 0~ are two different sequences in Gr * *

Thus

P(e (3')). V [pCEdxi Nbdig w
. NJ NVg aJ

which is just the definition of the diagonal elements of the 1lst

Order Reduced Density Matrix ¢ 0'11 ).

5.8



Thus £Cl |0 =£Cl) =P( ECU ) ; and” CU in a PDF defined over
the compound events "IS THERE A PARTICLE AT POIITT X ?” = £(x').
That the PDF S CO in defined over a compound set of events is obvious
S (OolTI V.
Similarly the union of events defined as
b(x'X") - U E (| i.e. the union of all events
ct u) 2 x nndX"
associated with the config-

urations that contain the po-

sition vectorsX' and X 'in thorn,

- E U_.
where cr . E [1 U 7 the sot of §) (N-1) (n ordered sequences of

A -2, different integers chosen from. A integers.

pCscx'x")) N)VTj ..~
.aaauf'T'-"Rx'x'm NU Tg

which is the definition of the diagonal elements of the 2nd Order

Reduced Density Matri;: T* U 2'33%).

Thus ~ E (12)"') and is a PDF
~ CA\3

defined over the compound events in \

"IE THERE A PhRTICLE iE X ' AHD A PARTICLE AF X" 1 ~ E~X &% "S.

The sum of all such probabilities is given by JT A%6ci)ciLTA” which

has the valuej" =N

"P 6 represents a/ identical Fermions 6 A and thuc
ar

So



Ty = BT TV W) Wy, ()

where WY = U\)"CX)/\ ...... Aw(x,\)
! ' n (2 )
The functions LJ (l---...r\l )..L‘)O'),.“ ----- -NS GAKF oo can be

thought of as Transition Density Matrices O, fe% and Density Matrices

o, o i.e.

w) , Yoo, '

szo_;u(' ...... N /L.....N)Ewo“_i U......N)h)%(z ,,,,,, NY 50 F00s
n) ' . = 3 . . ‘ ‘ _

and T:_V%U......NIL....N) = W% (1 N W, (1) 5 =0

and the diagonal elements can be thought of as PDFs when &, =0 e

and Transition Distribution functions (IDF) when &, F ©

. They have the normalisation properties

f T e DA T e = |

h\)
.[ LT3 l"""\“dT',.....N"'O

M n D
(W A Fl3m
The decomposition of T™(...... N) over the above basis of n

can thus be written as

T = B TOB T e T, TO% T, e
0'\7 :}: oM

Unfortunately, TDFs are different in character to PDFs and do not

comply with the laws of probability measure, and in fact the values

of TDFs lie in the interval (-|, + D

()
However when we consider the Natural expansion of T": " ( l....N /I ..... N.)

> lm
i.e,
T ) = 2 Co X D) X L N
. L/, (n) .
ve see that if we define K (l'....N") X, Cloe. D= L Y IL...ID
then T'(vo(l ...... N) can be expanded completely in terms of PDFs
w) o
T‘: (1...... N) i.e.
awg )
("}
T ) = 20 € T (10 ND
L
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€. 1is the eigenvalue associated with the ith eigenfunction of

T N1 N) dee.

[ e N) Y e T = Wl ).,

: ()
The PDFs T (l..

S'r'{“’a ..... 0T,y =t (T 0] aze POFs
over Sm, and Ttﬂ(l ..... N)can be completely described in terms of
this set of PDFs.

An inte’resting. point about the Natural expansion above is that
we can define a new PDF on a new sample space with elementary event
"Are the N particles described by the PDF T‘-_“)(l.....I\D?“EE(T:“»
The new PDF over this new sample space is the diagonal elemen’cs of
the Dens;Lty Matrix represented in a basis of its natural orbitals,

i.e. the {X‘(l NB@X Q... N\} basis of /\ meﬁ)

viz the PDF is
n) .
T" = T"OE =C

L

where Ty™ ¥ = (X‘(t'.....u‘)/T"‘)C:.'....u'[t....n){YJ. () )
(which = 0 unlessl'.':j ). | ‘

Ca)

This new sample space 9F  is usually finite (if m is) and is discrete
thus the PDF T“"\ is discontinuous.
n
The events E(T'l"»form a complete elementary basis for SF and
T Ty (n) - 2 -r{;\y.
(u) -T,(n\i

The values of 'bhe PDF Ty  i.e. Iy ¢ are the probabilities that the

Cnl Ln b
PDFs (based ond ) describe the N part.lcles, or equivalently T'

(n)
is the statistical weight of the PDF T (... N> in the decomposition
(n)

of the PoF T lL..N) over the set of PDFs { ™" (..., AD}.-u....?:"tcap_
These probabilities or weights are known as the occupancy of the

functions Y»‘ U..... N)

The probability that N particles are in the particular configuration

- 5011 -



(X ..... X“\ is now given by

2 T T ) T K D

=1
Yow let us consider the event E(X') expressed in terms of the

¢
Natural Expansmn ofT‘ " N> viz 2m

Ch
Elx)- M’Z’ " U E, (X7 )= 0 T E 0

Y U1 D (2. NY

where :

E(x):NU Eilx'2.... N

K M....,y 20 0)

and the events E. (l .N) have associated PDFs T: (1... N)

The probability assocla.ted with the event Ex )15 then given by

P(E(x’)> Q(x) Nz (““-’ [T'(“)(Xl N\d-T,_m,N
2 (m i P (g )

If we define >\ (X'> = P(E (X‘))
then >\ (O= N Thﬂ(l 2.. N\AT N and thus J)\;(&MT‘ =N
and @(l) Z T"“)‘ N )

Now, )\l(l) is the diagonal elements of )\{.("} () where )\i(,'[l) is

the Reduced lst Order Density Matrix associated with the Natural Full
4 f ’

N particle Density Matrix Tl.“)(l,'_“,u ll N)’ and M: (l'l l)

can be written in terms of its natural 1st Order Density Matrices so:-
)\ ([ n= Z AD (C]1) where "3 G ‘P D) ‘f’J oN

{ \P Q) are the N. S 05 s of )\ (l]l) each N.S. O has the eigenvalue 1.

Thus T‘;M)(l N/: 1\1) can be expressed as x (1... N)XL(’""
whereX (1... \P (l}/\ ..... A “P (NB

The PDF )\; (Ve S can thus be expanded as
N
[ M
)\:Cl) = Z ":)J )
J:‘
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A= o
&

X ;(l) gives the probability of finding 1 particle of a N particle
system at a given point in spin-p;asition space,' but it is only a
partial PDF for the whole system (as T'.:“)(f....l\ﬁ )is only a partial
descrip’cidn). The .weight with which it describes a 1 particle lsub-
system is given by Tdf) f . The PDFs ij o) € SC.v'J - referring to
events "IS THERE A PARTICLE AT POINTX ?" which are 1 particle events
and not associated with an N particle system. This is also expressed

by the normalisation of A, (1\ and D (l)}
NWdT =N and J 'OJ WdT, =

Lal..... 2MC,~ . {or L= t.... -2“‘5»
J=t1..... N
. T.(uo F¢:~J
The discrete PD €S as well as referring to the events

(w)
ECT, ) can be seen to refer also to the events E()\;’\ , and a -
link between SF dSchca.n be seen to be in the form
EQ‘L) U ( IU) and in- general only this form.

If we now consu’ier the Natural expansion of @ G ll>1.e.

@(x V= Eed. ’b () where D'y = Y (13"}) ()

a.nd thus the Natural decompositlon of @(I)

e(l)t 2 ed (b (l\

c
. we see that n);_ e 5 , as 0.);_(\)5[1’. = | and thus ed’ e SF &
Now unless E(’b;) ) E()\ for ;.:l......zlm
oversame_, J=(...--."‘c~
Enl
ed € SF if the above relationship is to be satisfied

’DL ) 2 )\ Q)

ovVeer Same J

1.0, ) (¢ ll) : Z' N (/1) 5f this is so the eigenfunctions of
J
are also eigenfunctions of each )‘J ('] l) but we know in general that

this is not so, and in fact is only the case when {)\J (“h)}.f" . ZMCN

- 5.13 =



All have simultaneous eigenfunctions that are equal to the eigen-
functions of @(I“\).
Thus, in general,@d is not a POF overSFCN:lwhich is based on the.
events E(T‘c?)) and is not related in a probabilistic way to Tc(['o
But @o{ is a discrete representation of en - fha’c represents the 1
particle subsystem of an N particle system, and thus T @d=N ,
but the arguments of ed refer to the events E ('nb) i.e. "Does the
PDF ™ i(\describe 1 particle ?", and the 1 particle can belong to
an N particle system. |
It is in fact unfortunate that there is no direct link between Cd
a.nder )for this would simplify the problem of N = Representgbil;’.ty
considerably. ‘ '

If we consider the Natural Expansion of the 2nd Order Reduced

Density Matrix viz

T(l)( tat ¢ (7-)4, L, ' .
P s 20 Ta o f 502900 0D

and then the PDFs T'“)(l‘l) , .T-'él) and sz)( 12) where
T}m(l‘z'lm):_f?f(l'l‘)_flc ()

can be an analagous analysis to that presented previously for the

1st Order Reduced Density Matrix. We see that 'l"‘f‘:"3 is a PDF E,SFcﬂ

€Nl
and not in general € SF - but it does represent T'(z\( |2) which
& SCNJ
» and thus (2
¢2) _ . 2
T Ty =n (N-)}/z , while ST’;_ (2DdT, =1.
The events E ( (z)) r
s -Pi can be interpreted as
"Are 2 particles simultaneously described ‘DyT‘;23 ?" and the 2

particles could be a subsystem of an N particle system.

A similar problem arises in relating T‘o(h) toed and analagous

c2]
reasoning would show that eo{ (‘t SF in general; in fact, not unless

-'5.14 -



C.¢'1))  the 1st Order Reduced Density Matrix associated with
T';»Cl‘l'llﬁ-) has the same eigenfunctions for all i=l. ...Q:MCQ_
which are identical to the eigenfunctions of@(l‘“) , will @deSF:ﬂ
However, it is possible to link the PDFS 'l""o[l_,_.‘.bb , T'h)(ll)-
and eCl) in a partial manner by consmerlng the discrete PDFs
TM'-‘ T‘“)gg,o've Qrgam 9 T‘ T‘u)b\?ooean. L7

and @ -:e-:‘i-.e. ‘the diagonals -of the non-diagonal- representatlon of - . ... .
2n) N3 w2

TR0 N ), TP 021D and €W ID& K F 25 ALF and
Q’i. the bases
{-]T L\) L |.>® (XB} °'o eQNzW\
{v" (! )@T Lo, cx)3 and iwm}
Suoue R2, 'LM
i.e. if we make the approximations
W)
TOU e S TYe T (o)
Up&(kn 2vm v
TP g TS 2 T 0D where T2 = L3 0AW @
V€2 "® W, (O Ly (D

and Q(\) 1 2 G E () ol«eree l.lB w (\)@ L\) QLD

If we define )\‘,9(1\ = N jT(M N)AT N,SOJ)\V\’(O&T, =N

)\UQU) is given by
L2
}\%a) NI o WOA-.. /\w,q ® W tya.... W M w)dT,.....N

N i W, (\)L\) () where o, e Q, ,2m
L&O‘Q

i
Thus the eigenfunctions of )\Uo(ﬁ are {LJ (O}ié o
Ve have definea C (1) to have eigenfunctions {w.‘ LOJ{,:I.....ZM

Thus }\VO(I) and eu)have the same eigenfunctions when all values of O

are considered.

. \ (2)
Similarly the eigenfunctions of Y,‘,(l “> : (QX—PU\, (IQDOH;)

695&023“
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) i
are also the set {b) (l)) when all values of O are considered.

2)
Thus the N.S.O.s associated -*th {‘T‘yo (l?.>}°’er'= . =nd
™ (... ] | dontioal.
{ oo C N) T9€ Qu,2 0d @ () are identical.
(W
The relationships between t ‘iscrete PDFs .Po—v (N T Q;\,gm

(2)
1,702 O e o . .
T Cu€ a'l,’Lm and ¢ i .re given by.the contraction relation:

c. [Tm'l
T(:).,J ) C Ln)']"J
L

QC; = ﬁ:-\ C \-.T‘(’D ]f,

ships, viz

and

E(e ) N Ua. 5N E(T’L ) UQG-QN,‘)_W,
E(T(z(\,J)) M:Q U E(Tb\b'o) o'ge&hl,lm

E (@) = (N._ VI U E (T‘( ) oy € Qz,z-...

) 1End
The discrete PDFs |’ (n , Q and _r'(ﬂ all &€ SF a sample based on

(u) w ») {
the elementary event & CT‘; ] where -Pi = T : (l.....N‘i.....N)
and thus can be analysed in terms of each other which enables us
to apply the probability measure relationships to them i.e. we can

) Tg(?-\ v
assign to be a PDF over discrete events E;. that have Probability

i)
PMJ. of occu.rring,T””) to be a PDF over discrete events E;‘.,...,‘,"
with Probability Pg'n,_,,_, Aia ©of occurring and e a PDF over discrete
events E;. with Probability p;' of occurring.
For an N particle system Tc“‘(l......NB determines ail lower order
PDFs i.e. PDFs referring to subsystems of the N particle system,

.T'('\)‘(l e N is found by determining a solution to
[, 7* ]« Cu, 7] [T 5] -0
{n . .
and 8.t T' \(l-.....N l’.....-N) E /\':\ F‘w).
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However, we usually determine approximate solutions over the

(2mcc)

n
subspace A,‘F and only take into account 1 and 2 particle

e 2 L
. = 1l ) -r :T“)
operators i.e. A= it = ’

thus we find a solution
w.r.t. a 2 particle cubsystem of the N particle system. Hence,
T'm(l'l'[ 12) determines all the properties of the system (as fully
as possible within a Quantum Mechanical description) w.r.t. the
operators we are interested in (viz 1 and 2 particle ones) and T‘-{’)[m_)- -
will then completely describe the positon-spin space structure. A4s
T‘ﬁj‘) represents both T (l'l’{ll) and -T‘“J(lﬁ.)completely we

can formulate the problem of detemining?‘z)(l'?.' [t2)  in terms

of T'é(ﬂ

T;{'z) as well as being a discrete PDF representing T‘(ﬂ(l?)aléo
gives a complete description of the momentum space properties of the
system, & characteristic not shared by the diagonal elements of the
non-diagonal 2nd Order Reduced Density Matrix.

Unfortunately, we cannot be sure that aTa‘ll) that satisfies the
above commutation relationships does in fact represent a 2 particle
subsystem of an N particle system of identical Fermions ( N Represent-
ability Problem).

One way round this is to determine the full N particle Density
Matrix T”'o(l',...,N'l l...... N) w.r.t. all 2 pa.rticie operators, -
then construct T'u)(l'.'l'llﬁ aﬁd hence Tgf?')'from it. This is often
achieved by the method of full Configuration Imnteraction, but although
sometimes practical, is laborious and lacks an aesthetic succinctness
for we "oversolve" our system.

b As we have noted before, there is no direct probabilistic link
between the various orders of discrete PDFs T:(“), Té“.'?..._nfl.)( = @)

As in general they cannot all be expressed in terms of events forming Sl'-'-’:"j
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If this was not so we could constrainT;;ﬂ to comply with sufficient
of the probability measure relationships manifested by an N particle
system of Fermions, so that it is indeed a PDF describing a 2 particle
subsystem of an N particle system. However, we do kmow th.i the PDFs
T(",)......T(') (i.e. the diagonal elements of the non-diagonal
Density Matrices of various orders of reduction) do all € SF.‘:NJ
Thus in theory we ca.n-clm:xcacteriseT'‘.z > sufficiently to be a 2 particle
description of an N particle system; unfortunately, even if we achieve
this completely _P;f(ﬂ is only partially characterised.

In practice the probability relationship that T'h) has to comply
with are numerous, and many are non-linear. We select the fpllowing

events and associated probabilities for their 'simplicity and linear

nature in terms of T'u) iz

:E(ecB = E".'l O'LO)D'\. e (25) 5, € Ql.lm
UEE)=Y EE@Y-N_egend
LEDH LeEoV

teoy

and we note that T

n E(QL = E(. (1.)
also E(@t)) ECT >)‘-or Le o

The associated Probability relationships with these events gives:-
: a‘
v (Do
(s;)P(UE(@L)) =24 Qi -T",
lecy LEDOY
@€ > TR for te o,

As ebls a probability measure we know that it lies in the mterval(o l)

as does P (U E(C: \X thus the constraints that can be held on T'a—\-,
L&O‘,;

can be formmlated as:-

(HN-1 2 2 TP

oIt
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1PN e -T® 20

LED'Y

() &2 20

Coupled with these we have
. (Do
() T o.\‘; 2 O

(2) )]
"Many more constraintslinking'ro-\', - with T"(P'o-x ( o XG‘ G?.,_Q fu‘ '
f‘-‘ 3N give rise to non-linear constraints that if held would

indeed completely characterise T':.g .
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CHAPTER _SIX,




An Attempt at Solution

As pointed out in the introduction, the central problem to solve
in Quantum Mechanics is to determine the allowable density operators
for a given system characterised by a Hamiltonian operator within
certain symmetry constraints, which are usually due to angular momenta,
and statistical requirements. The system is completely described by
a maximal set of commuting operators, these embodying the above
requirements, so we seek allowable Dgrs ( { can be discrete or

continuous) such that
(o =[50 (w77 =0

A
and [n_n , D;_] =0 for Fermions

ALY

each DL characterises a state of the system, and H is spin independent.

®) for Bosons

Except for atomic problems we usually take the less stringent angular
momentum requirement that of [ H,Sz] = C D; ,Si] =0

- where 'T‘=(L+S). (L+S) = L*+S*+ 2L.5

thus commutation with J = infers C Lz, H:] s E Lz, Da = Esz, H] =CS: b,:)
=CL.s,u31=CLs,Dl=0

We have seen that we can characterise a n particle system completely
w.r.t. two particle._operators b.y. -F;_h) .where this is tﬁe 2nd ﬁder
B_educed Density operator. T]:xus we can write the characterisation of

a system n particle .w.r.t. ;l:wo particle operations as the solution

of the following commitation requirements when the system is in a

Singlet spin state.

[H‘:’):, T-':.h)-_l . EH‘? J-w‘] - [T'L (:)'Tm"] =0
or [H w’-‘-{(ﬂ] . EH m’ Sw"]; (T":Q "Sm'-} -0
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and that T‘.:Z) s C.J:_ T'{'“)-] i.e. T-"(ﬂ is a (r\-i )th
contraction of T{"‘) , where ['ﬂ'z "T‘.f")] = O for Fermions.
This last condition is in fact the N-Representability problem which
has enthused many attempts at solution.
No naive claims of complete solution are contemplated in this work,
but the hope is for a practical metnod that leads to a partial solution, -
" not solely in thé form of mathematical equations but also of numerical -
results that can be analysed in terms of probability requirements that
are introduced by a system of linear constraints.

The space we choose to represent. the operators in is L(@" F(zm})
where F @M ioa 2 m dimensional space spanned by the set of ortho-
normal space spin i‘unctions{ LO."(X)} e ‘F (Mo which form a

‘basis for £ (=

These functions are formed by determining a basis for P e then
forming the direct product spac; P“‘)® 5(2') e« The orthonormal
basis for P(M) is signified by {0’"&)3 . These functions are
generated from a set of 1l.i. atomic orbitals (spatial) based on each

atomic centre. These orbitals are each formed by an expansion of

gaussian functions, The atomic orbitals a.i-e signified by
‘S-L(r), 1si(r),2‘>x'.'(r),1?5 (), 9'92.1(")» ..... ekc.

The letter and number indicating spatial symmetry properties
and L the atomic centre.
Each type of atomic orbital is expressed as a l.c. of gaussian functions

)-é C LA ~ . .
i.e. Istr) = J e . p = the number of gaussian functions
J ,
used in the approximations

Cj andet; are parameters that define Is(r) .

Atomic orbitals of the same symnietry type but based on: a different
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centre are 1l.i, thus only one expansion for each type is necessary.
Hence o’i'(r) is an l.c of atomic orbitals (the atomic orbitals are
now written for simplicity as ad ) ), anda P (n) is defined by
these orthonormal functions. However, it is easier to first compute
representations of operators using the non-orthogonal functions
{Qs C")} then transforming into a basis defined by the orthogonal
functions [o‘ ¢ U‘)] ; the properties and relationships between
representations on these two bases are discussed in Appendix 3, where
transformations a.reggiven that enable us to work equivalently in
either representation.

For molecular systems in a Singlet spin state, (i.e. S=0 )
we muét find, in the representation space, matrices %:hat represent
%(,31 ’ a(z) and -?1“') that commute.
The matrices that represent ’S\(“); and ﬁ(zb suchi that they commute
are easily computed, leaving the representation of -?'a) the only
unknown that has to be determined, within the constraint that it must
represent the two particle behaviour of an N particle Fermion system.

It is a well-known fact that commutating matrices have simultaneous
eigenvectors?, thus we first find simultaneous eigenvectors of ng
and H"D which have the property of being a basis in which representations
%(232 and l"\lh) are diagonal. Then we assume that _T’u) is also-
diagonal in this representation (as it represents a state with S=0O ).

2
Production of Simultaneous Eigenvectors & Az F (L) of H(’) . Sl» a.ndT'h‘) .
+=

'-'F See Chapters 2 and 3 for fuller discussion of structure of decomposition
+ If the eigenvectors of a particular matrix are degenerate then we can
éonstruct an l.c of them that corresponds to the eigenvectors of the

other matrices that it commites .with.
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wow as /N FO™ AP g VISV gV pwd g AFSED
e ALFE [N VISP @ V2P NS |
2

@ [A-J)Lm\ ] \/16('1) ® \Iz Ptm) ® Azs(»]
N 2
We first set up the representations of the operator S"J in the

26 mbomsces o2 LVI5%0 K510 L, 520 AuSu 1

viz
b)

/\2. D)

olob(e( )

o \)
A SS)"‘“ﬁt’ omm; /\ :l}?,gaw) ;Ptaﬁt'/\ ﬁtﬁﬁ)

(\3

N, 3}1«» Shage A, Sﬁﬁﬁf’w/\ 3 5“‘*“(‘“/\ N 5"&"‘159
l\) t (D

/\\] ppap ,Vz/\,'sg)f»; awty Sd[‘s“ﬁS'V /\ a(Pst fs Bs-

To each component of the representation we multiply a vector from

/\ (""" Vl P(m), /\ V ?(M) \I‘l/\zetm) and then we
have a representation of S (92 /\ F"mﬁi The only non zero
components of the spin space representation are fhe "diagonal" ones

A Seiag, N Sayupy, N Shasp and V3 S5 oeps.

Thus if we miltiply each vector of an orthonormal set of vectors

€ I\l PL\M) Vzp(m) by the bases vectors of /\"S“) ’ /\ S‘(’?PL‘»
/\"S((;f; y  and V 52)[35 such that we produce an anti-
A

symmetric vector, then we have a diagonal representa.t:.on of S

on /\z F‘Z“) . The na,ture of ‘the orthonormal set is quite arbitraxy,
and thus can be chosen as des:.red

The basis on which é‘(z * is reﬁresented as a diagonal matrix is
hence a basis formed from its eigenvectors.

The arbitrary orthonormal set can be chosen such that the represent-
ation of ﬁ (2 on AzzF(wa is/a.lso diagonal. This is

¥ See Chapters 2 and 3 for fuller discussion of structure of decomposition
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, .
A
achieved by the diagonalising of the representation of H(") on

Azz P () and V",_P‘“") , thus producing the position space
eigenvectors of H(“Q s from which simultaneous eigenvectors of H(’b
and S(z)"e /\z F (204} are computed - viz the direct product of
the respective eigenvectors such that a symmetric eigenvector is
always multiplied by an antisymmetric eigenvector.

" For Singlet states of molecular systems, we know that T'*
commutes with H (= and sz , thus the eigenvectors computed are

also the eigenvectors of T(“') i.e. they are the N.S.G's. The only

>

unknown is now the allowable sets of diagonal elements of T'(?')g

on the basis of its eigenvectors (i.e. N.S.G's).

~ . . -~
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Practical Procedure to determine S'imultaneous Eigenvectors

1. The representation of H"D is set up in @23._ P‘M\ ; this is

accomplished by evaluating the integrals.
{aW|oiwy - [61*w O"’.(t)aii‘_lng
L& W[ |oid fo"*ca[Vf— Z 2 |o'odds,
Sz1 i
a8 - number of atomic centres. .
G006 % [Fuy o) - ( j‘o"io e oo dedr,
which are best evaluated by expanding the ¢ R'Cr)‘s in terms of their
constituent O.J Cr) 'S which are in turn expanded in terms of their
constituent gaussians (for the evaluation of each Matomic" integral)
The representation of the Hamiltonian on the non-orthogonal basis of

®; P‘“) is then given by:-
DRL s ko2, 12 .k kL
iy = (WL S5+ Sov-n * 3 )
R 1
where ;= 6,0 |WWD]THW
6? =<0"-L\5[c5"(0> _
RQ _ . I R ¢
and 3;; -<<>’¢ll§0\;l.z)[;‘—z cWom
Hence the resultant matrix représeﬁtation of Hu) is on the
{aiLr.’baJ(r;’) Q ak(q) @ae(@} basis of @i?(m) and
is converted to the orthonormal basis { o (r“ ) @O\} ( rg«) ® Ok(r,) QOQL';)-S

by the transformation which also correcfs for the metric of the

non-orthogonal basisf .
7 - 2 7 -! =Y,
H{) . (S QS *\. Hn-o (‘S ,’-®S z) _ subscript o= non-orthogonal
(2) (2) oY -2
H ’ Hn.o ’ a.nd[s " @S z.] are ME*Xm matrices, where M isthq
T ArPPENDIX 3 AR
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size of the basis set of atomic functions.

2, From H™®wve construct the representation of H‘:?, N;f’(m_) and

Vz P(m) 1

. This is achieved by the following transformations .

H(‘l) US H(ﬂ) us“' € V'z (m‘ (. Hl‘l-) uS“'H (ﬁus ua'*H(i’)uﬁ)
H(ﬂ LT At 2 plm)
a s UMHRE U e AP

U™ ""C, X M* maatrix.

Weoo Mcoxmt o

Hm- " "‘h\-'c wil-l\-‘c

mc&fix.
n

2 "M ~
Hﬂ L) C“X C“ "

2]
3. We find the eigenvectors of H(s) and H::') , thus we solve the

eigenvalue equations

H('AV V H(‘L) V H(:DV H_(‘z\
A
(D . + )
HS VS :VS Hsol ..\/s H‘sz \/s =Hs°‘
The eigenvectors are orthonor}ﬁal s.t. VA \/‘: = VR Vﬂ=Im

- and Vs V: \4+ Vs =IM+n-|C

The eigenvectors are stored in columns of VR and VS

These eigenvectors times the relevent spin vector thus form a basis
for /\7' Fm"‘\ in which H‘ﬂ and ‘5"D are simultaneously diagonal.
The Energy of the system is given by E'-‘ T(‘) H(ﬂile Rwe A F(lu)}
If we do not knowT‘ we can treat T' as a variable matrix;we
Know that the stationary points of the equation

T(TDY) = T g (fixed HD, variable ).

4 cmAPTER 2 T
- - 6.7 =



give matrices T‘“') that commute with' H“'.) . However, not all solutions

are allowable (N-representability), thus the fa.ria.tion must be a

constirained variation of the function

i(T“n\ = (p VD H“'\ subjection to constraints si(T“‘))é S :
(i=1 ,...... any number

If, however, we use the diagonal representations of H t2) , thus

assuning T'® to also be diagonal, we automatically have a stationary

point of the above variational equation, one of the infinite solutions

T'“) for C; €= O when iv is unconstrained. These solutions can

be written in the linear variational form

Mm{Am 1) . '
W\ () yql2) _ () i
L) TR W TR

2
All values of L(T:i 33 correspond to stationary values of i
As we noted above only some of these solutions are admissible. The

constraints 3 (T“\) < S , «+..ass now have to be applied
() : ca\ &
to T; 1 1.8, 3-‘( d > SL .
As we usually are mainly interested in the Lowest Energy state, we look
' ) (
for the lowest stationary point of ‘c'. (T 2.3) that has an allowable
Tl(t) « When this is so T'h') corresponds to a reduced second order
Density Matrix for the lowest energy state of our n particle system,
In the diagonal form we thus look for the lowest value of . ('Té‘z))
T () .o
that corresponds to an allowable {4 ,i.e. a d that satisfies
. )

the constraints 3': (T:‘ )é 5 i

" As -r;‘ﬂ is to be expressed on the same bases that diagonalise
H“b and S“”z for the particular spin state that we are interested
in. .We see that T'h')ca.n be represented on the same subspaces as

2
H“\ and 5“’ viz T'uD can be expressed as

L) (z) 1)
T 2 T+ o, + Tadp + T Tpepe T

- 6,8 -



ta) 7w (L)) (‘3 (2)
T‘ﬁoux Blage T!ﬂﬂﬁﬁ -(:F"“" EF‘“F& “Bspﬁ

W +'l:‘(

+ T * Tepetgs 7 Bhapst Wps

1 .
where the subscripts imply € to that subspace of /\thM) that has

been defined by those subscripts previously, viz .
T4 E 2 tm) 2{olm) c‘) \
The diagonal matrix -Pa( can thus be represented as

ST () (D (2) (2
Ta™ = T T gt Wlopspy

It is these diagonal submatrices we wish to constrain. We know the
following conditions that they have to fulfil due to normalisation

of the subspaces: =

@) Te T2 s (),
(15) Te 7;;:;&,'% - (DY,
(111) Tr -Pol(;)ppﬁ = (£-0p,
(iv) ¢ du,g gy ® (et-n)p/z

where o is the number of alpha (spin symmetric) andﬂ the number of
Beta (spin antisymmetric) electans in the system.

When the normalisation conditions (i) - (iv) are fulfilled then the
total normalisation of T'du) is indeed g 'T:lm =N (:s,l-l}/2~ .

We also- know that -r:{“‘ should represent a discrete FDF over a given
set of events and any value of a PDF must lie in the interval (0,1),

hence we have the conditions

)| 7/1:(:;“ > o}

(vi) ‘ 7/TmJ >0

upbvfﬂ

- 6,9 =



. (a)
A 12 Tappep > ©

u)

(vili)‘ “ﬁ‘“ﬁs >0

Now, due to the non-equivalent nature of the pair probability
space described by the N.S.G's and the individual probability space
described by the N.S.0's we have been unable to formulate explicitly
any constraints between the pair probability fuhctibn'_clu) and the
individual probability function ed_ . However, we see that a relation-
ship between the pair PDF represented by the diagonal of-r'(") and the
individual PDF represented by the diagonal of ( does exist, explicitly.

Thus to each diagonal element of T (P 1 plm) ) i
€ /\ Pu.owq: e'-l:l'ccoto( LJ' :

we can associate the event
"Simultaneous occupation of orbitals O'i(f) and O; e which both have
alpha spin symmetxy", ;

(1.\ i.'

FFPF "J the event
"Simultaneous occupation of orbitals Ui(') and o’j (r\ which both have

beta spin symmetry";

to T:!L:tup L:.S the event

"Simultaneous occupation of the orbitals O‘L (r) a.ndg:,. (r) where they
have alpha and beta spin symmetry, resulting in an alpha~beta
triplet spin symmetry". ; |

and to n";’ugsi: the event

"Similtaneous occupation of the orbitals G ) ando' (r) where they
have alpha and beta spin symmetry, resulting in an a.lpha.-beta singlet
spin symmetry".

We can then apply the probability relationships : =

(a) € 'l'Pj - P;r\3 = PLuj

- 6.10 -



(0) R 2 Ping
(e) P; 2 P.o;

J
(a) ?i = ZJ: Pi. n§ (remembering that P\.'“j - l: ai ).

L

N -1
. . . iy .

~where we as.socla.te €; witn P ana T ‘-j‘\ with Pin:, and P,{ni. .

As Piuj and P; are probability measures they lie in the interval (0,1)

~ Thus we can write (a) and (4) as

(a) ‘Z'P.:"'Pj"?il\j >0

() Nt 3 ‘33 P;,\J )

7

However, (b) and (c) ensure the lower limits of the constraints (a) and

(d). Thus we can write our system of constraints as : =

(a) P'-_ * PJ‘ -P;,\J-é {

(b) Pin\; -P; £0
(O) Pt.fu "PJ' £0
(d) Za' Pinj £nN-).
o d

We also know from the contraction relatioships between the 1lst and
2nd order reduced density matrices that the full equality expression
for (&) is in fact the contraction of T‘“Jover TFA . ®:_Fam)that
gives the diagonal elements of ( over @l. 2 ""M)_

Hence if we express the elements of Tin)over the orthonormal atomic
geminal basis of AZF("“\ we can formulate indirect probability
constraints on these elements ( of T;l“\) by using (a), (b), (¢) and
(a).

All these constraints are linear in the elements of T:{’J , thus

we have a linear programming problem, viz
mi2m-t)

Min(LOT) <M (3 TR LHL)

- 6‘11 -



&ln-\)/z . ’ N‘m“) ( ‘ . L \ »

. L 2 t 2 L

=M (2 73::{«« Hdcmqa: Y ? T dufigdfy; Hcl afteft L
m(u-i-n)' lz) (2 Palin- o ;

) () L
F T e e Z e o
subject to constraints (i) - (viii), (a), (b), (¢), (d) formulated

¢2) (t\ ()
in terms of T, ” ““,Tupt“& FH‘P -G«ﬁsuﬁs

Procedure to.Construct Constraining Equations For lLinear Programming .

L . {'-rl 3 {a) i {) t
We use as our basis variables | ‘aaaey ¢ defeafe o> "‘Pﬁﬁﬁ i.='---~b\\-')/l
&

(a) 3
and {T; O(Ps“ﬁs i,} L=l

If we define the constraints so as to be able to be expressed in the

form A. X £ y

where X is a column vector containing the basic variables, thus has

e o alms ‘>/2

dimension R X[ , where R = m (2m~1).
A o (§xR) matrix containing the coefficients of the constraining

equations, and y a 9 X! column vector containing the constraining
values. O is the total number of constraints (excluding the non-
negative constraints on the basic variables).
Any equality constraint i.e.@Q¢yX3Y, Ay = i row of A
is replaced by 2 constraints @¢;).X 1%3 . Yy aith component -of Y

andQ (X 2 Y;,
The latter constaint is then replaced by

- O.“)- X £ —B's

So we can always have the constraint equations in form A.X & 3 -
There is no need to hold the non-negativity constraint on the basic
variables, as these are automatically held by the linear programming
method. { |

Constraint (i) then gives

- 6012 -



Mlu-l)/l '
)y | o -
2 T‘Aoto(««‘;'. Sl 0/2.

(-]
M(n-l)/z ,

) ¢
% -Eu«uu : l;-dl«-ﬂ/"
mln-l)/a_ )
(11) 2; -Sdfat“ﬁt 2 (ot-Dp,
ml.w\-l)/x R
5T g -l
________ Mm“(if'i.';,wﬂ
(111)%3 /:;pr £ plp+d/,
- ) i L N
AT e i
slwat) w {
(iv) ? E“ﬁs“ﬂs t ‘;-(ou-ﬁ[&/z
LA

(§)) : \
2:; --‘;“quf:s':; é_(ou-t)p/z

" This gives rise to the block of A and Y matrices as shown :

fA X Y o
1 1 ™ : A
il o o o ( \ xeoo Taula-iy
8 O ko O. T th41dp4 g
O 0O 4o XBsfs E ™ + (oc-D3Ya,
Vv o O 0 ...l::ﬂ j__ S ﬁ “';‘ tﬂ(ﬁ")/g L .
‘-—‘- MmlAma)) —> .’J “ﬁtaﬂb L L
\TJ_Eﬂ_ﬁ/i_
(V) -I-\(z\ L 2

dototatst L Z 1 f-or £="....M(“~-0/2.

(v) TR Ly, for iz,

d“ﬁe“ﬁk . ....rsilm-s)é.

(vii i :_
(u)-‘:lﬁz;?aﬂﬁzé" f-or -f,

VI :
(viii)'E“Ps,,,’gs.L 2] forizy,

oo ,;g(m-l)/z

m(m-e-u)/a

These constraints give the block

i
'
‘ H

-6.13 -
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mim-tyy slat),  ptae-y nray,

d

—>
~
/

K}

7

—

J

A Y

L 4

-y,

nlm-Y min-i mlmeg]
et Qi Al
/
/7
Vs
/
]
Ml -y)

> afsap

dRBe

L N PR | L
A X

-
L §
&
.

~

(N-‘)(“':; -(N_')C _r.(z) _I;(‘). o ,_Plt‘ J_]“’ .......

o ctcr el |§. o ﬁe dfiXp

(w '
and (N-1) Q‘S =(N-D) C [ BRLS {Ept«m o ﬁs“ﬁs]

t ) + . A [\ k
Now T\ . =V, —‘:l‘:x“d\l . ‘-[:lol-zu 'Lj’ = Zh ,“[,k.g 4 -Eomou kv k
T (2) (2 ij N la)
“ﬁe*pe'vﬂj;«ptdﬁ -Qﬁb“ﬂt L 2,{ V T;*ﬁtqkk Ay

R ) @ i . R p Ry R
17‘/*1‘!* ’*T"‘PPPP %FP Y 2»4 Vo ‘JTPF'P?’ k RY

() L' 'h)/l
and Epﬁps V dqg(;se(f.s\r. T:psuﬁs 2 \)S tJT;l«p,'x/&sVs Y

C(T&o:] 2 uﬁﬁa"+2 T 3t

J . B(KNO{ j L

L
Analogues relatlonshlps hold true for C Ti;&p:} and C[ ;M!

(T3 lﬂ U @D I
waile ¢ T0 P’J Ps"‘ﬁ‘ 22 T’F‘"‘BJL
Thus " Al ‘) k lz)
i () k
“‘“’f 2 2 (T;!“w kR q_-lzwﬁkxﬁe R

M u(m-n}' R ) R
*J§ AJ‘ {E«mh ;_.!:(ocpbupt R}
~ mtm-ﬂyz @ g '™ n(mﬁ)’z k\ R K
+2.J>,i 2& Vs ] Eﬁt“} R -"a. ‘E Vs.ii dxpsoifs o -

which can be written as

Zv"('rf;‘m'; AWV ("’ R “}

9% Ri§ 4"‘#*“&1& jei Aji decenp '3 Hppey o

: A
(N-DR 2 {
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M(m-h)}'_ h?. )
+ T {J i T‘l“{g %fs h*izl V sit d"Psuﬁ‘}

P

and similarly

m(m-t) R ©)
(-0 =3 {}-ﬁ.\(aq (Dpﬁmsh _g‘*ﬂt“t‘t %)

k W
* 2 k(o R Awe A}
lulm-h)) L?)

..... 2 (B (45 Dot s:,( Tt}

Thus for any particula.r constra.ining equation of this type
( X (\l for R EcodX set of basic variables
) J7s d¢i

or AR depending on value of &.

ac§)=_‘.z{ (A“ & )‘} forhe“/;e“ﬁe

LO 3 .,7,.,( 3 Jz.,, 5‘:‘3‘}

2 2
for k €aB%Bs  subspace of /\,_F( ~>

R
and y =N -1 for all values of ke ““““)/%Fﬂa“ﬁt“ﬁb Mdg({;suﬁ:,

Then these constraints can be written in the form for this blockdﬂ
of A and the section y of 3
The constraining coefficients of type (d) constraints are signified

¥y Aa(—§ which are the rows of dQ.

Constraints of Type (a) i.e. P, +P P"“,& 2 1.
From type (d) above we have the coefflclents of (N-\)Q"; and (N-1) (3
viz d(\ (i.) andd a(p . thus the constraining equation of type (a)

beéomes

Wi _ e { i - i L
h ) J Y
where T‘ J {T;w ‘J 'Eﬂ’“ﬁt ;Jl-l:ﬁsuﬂs ‘J .lgplgp ‘J]
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: : ' i ' 3
depending on L and j , referring toed";, Qﬁﬁ-_ ,Qq‘s of Qj

For the cases

. i J . . - (a) o
(1) Qu . and eu\.’ i.e. union of two alpha individual events = _E‘m o
L A s n " " . " " T‘h) 3]
(11)€ﬁ : and-efs.} i.e. beta PﬁﬂP J
and

~ 'L.'

(11)€y; andfg i i.e. union of a beta and alpha individual event (z)

~ o
resulting in a triplet pair situation. pb«{i ¢ "J
Thus the coefficient of th basic variable € dxexexX |, Fﬁpﬁ or
1
g op ( X so we can write the !,kkconstraining coefficient
¢t Pe” A "J
for constraints of type (a) where i and J refer to orbitals of the
type described as
] ] L 3 2
aLLJ) = QLL) ¥ a(J) +('-N (VA LJ}
For the case
(iv) eo{ l:i. a.ndcﬁj, i.e. union of a beta and alpha individual event
J e
resulting in a singlet pair situation . = opaps ;j

The coefficient of the Q%" basic variable € Nﬁs %, = (Vs LB
so we can write the 2™ constraining coefficients of type (a) where

orbitals i. and § form a singlet pair events as

Taly =atn+tady - (V)

" . .
V™ for constraints of type (a) always = N-1 for all i .

Constraints of type (b) and (¢) 4i.e. ij -P. £ 0 and P;nj-PjeO
The coefficients of this type of constraint can be completely determined

from the coefficients of the previous types of constraint. ‘I‘hus'the_

Q,H" coefficient is then given by

d .0 ]
b a%;j) = Qg - "G

- 6016 -



q Q 4 [
Qiy= Q- Ay and YV for constraints of the

type (b) and (c) is equal to O for all Ly -
In the case of a second order reduced demsity matrix that

describes a system in a singlet spin state

(2) () &\
_‘:(dclo( * Eﬁt“ﬁt =T[‘3fap@

- thus we only need to determine the optimum feasible values for -

(2) (2)
-’:latalcc and -Dﬁs“ﬁs .

- 6,17 -



The constrained Linear Minimization is carried out by the
SD’LPLEX-rmethod. The matrix A and the vector ¥ are constructed by
the methods just described and are used by the Simplex method in
a prescribed manner which divulges (quite quickly) optimum values for
it (T ) Tt e i
the lowest value for L(T“l )\ within the gJ.ven constramts. Oinously
the method is only as good as :.ts constramts, whlch we lcnow are not |

complete, but we hope will give some insight into the structure of

further constraints that may be required.

From these values of ulﬂ we may then comstruct T:&?(o( o
(2 (2) . .
( Pt“ﬁt =T Pﬁﬁ\ and -F“Bsuﬁs from which we can derive

the o and ‘% spin symmetric reduced lst Order Density Matrices.
However, Tensors € /\zz P(”‘) and V:'.P‘”‘) contract to vectors expressed .

on & 'symzﬁétrised' or 'antisymmetrised' bases of @: P(m]

not on

the {O‘i (r,') Qo J (f.)‘ﬁ bases., So before we apply the contraction
operation it is beneficial to work with the representations of T:‘f:&“
u%:qpt , T&‘gsazﬁ, and -Pﬁc;-’:/!ﬁ € ®:_ P(M) expressed on the

{0’.: (r")b:,ir{)@d'k(rﬂdz(r } bases, which does contract to

the bases {,ULLﬁ')® o—%r,)} . From e“ and Q p ve evaluate the

alpha and beta N.S.0's and their associated occupation numbers,

Rutf g =  charge Density Matrix over orthonormal basis orbitals &y (r)
From these matrices we can construct the distribution of charge and

spin over the non-orthogoné.l atomic orbitals,

The 1st Order Reduced Density Matrices associated with each N.S.G
are also computed, and thus the N.S.Ofs and their occupation numbers,
associated with a particular N.S G.A "I‘hese can be expressed on both
bases of P )which is linked by the transformations given in APPENDIX 3.
1 ApPENDIX 2



Computation of Pc( N Pﬁ and associated vectors and matrices
\ )

(2) (2 + At D | A xnd A+ 2 ~
T:x-c.: =VA-I:(u2(u.cVA "—M'“u;i -I:M(o(u =" T™e TrA'®au»uP( :

T _yTe VE o, U TS R T, rh e g2 pln]

.(Pe.(#‘ R deattx A’ HBpe LR T
(2 ¢ + At =& A=f> ) A, (n)
Totre =V Tppgp Vo » W Tgp 0= T € T @ fygg
(v R + STl |5 FBsmita) oS« o2 plw)
Toan AT » U T T w2,

e [CETEY 45 {c TR cOATO % 2
Car [ cLFT®]+ & {c LHfepe] cf"ﬁ’Tw]}]

Contractions of Tensors (B € @2 P () are defined as

cCwli-2 Wl
J J

#*_2
N-i

thus all the above contractions. are performed in this manner.

The o¢ = N.S.D's are found as solution to the eigenvalue equation

where Do is a diagonal matrix containing the occupation _numbers of
the of - N.S.0's.
The columns of K,( i.e. K: are the o - N.S.0's vector represented.
Similarly, solution of
Qp kg =kp Dk a give.s"theﬁ' N.S.0's.
Each 2nd Order Density Matrix associated with an N.S.G is constructed
50 . . Col |
_l;'u) ¢ =Vﬂu\® VA‘Q ) for N.S.G's of «u! yfL0T B spin
l:'l’.,,,, m(m-l)/z symmetric type. '

' Vﬁ(n - i*"colum of the matrix
and.]:“') (ﬂ: \é‘a® V:D for N.S.G's of X85 spin symmetry

. ft:,,. e e Mcm*"/z

- 6.19 -



: A
From which we obtain the representations in a '. @:‘ P lim> and
S (
S ¢ @1;? ) 80

: + () ) + et &)
ﬂ-r.(:.)l\)= uR -’;(‘L\ & uﬂ and s-rr(z =us T-‘z) 3 uS.

Thence

¢« C( f T“"D] and ec:). : c[ 3 ‘["(z\(f)]

A

The solutions of the eigenvalue equations -
G L | LY NG W ) _ LW pwd
then give the N.S.0's associated with an N.S.G as columns of K:>
or ks“) with the aésocia.ted eigenvalues as the diagonal elements of
L) Lid
Dp” or bs .
The results are listed in the following format : =
Calculations within the 1 Determinent R.H.F. method are compared to
results obtained by the application of
(1) Contraints (i), (ii), (iii), (iv), (v), (vi), (vii) and (viii).
(2) The contraints of (1) + constraints of type (d).
(3) » " " (1) + (2) + type (a).

4) " " " (1) +(2) + (3) + type (b) and (c).

Table XI: N.S.0's referred to Non-orthogonal atomic orbital bésis
{a{(()} with Associated Occupation Numbers.
Table II: CHARGE DENSITY MATRICES
(a) referred to non orthogonal basis { Q,‘_(t)}
(b) n " orthogonal basis {O’;(I)}
Table III: N.S.G's (on orthogonal basis) and associated qccupation
" numbers for Methods 1,2,3 and 4, and Faergies.

Table IV: N.S.0's of the N.S.G's and associated occupation numbers
(on non-orthogonal basis).
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4

Table V: 2nd ORDER REDUCED DENSITY MATRICES (on orthogonal basis).

Table VI: MOLECULAR ENERGIES FOR THE DIFFERENT METHODS.
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As the molecular system under consideration is of Singlet spin
“symmetry, obviously no distinction exists between alpha and beta
electrons.
Hence,eu =€§

(alpha and beta lst Order Reduced Demsity Matrices)

Thus the alpha and beta N.S.0's are identical.

. (2) TR ey
T = bpen, * Taang

and thus the triplet N.S.G's belonging to the spin components

Wl i-("i. (o( WA+ Ln‘)‘) and ﬁLD &S
are also identical.
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Table I

lsLi

«999794

.091854

lsLi

«999345

-.069875

1s;;

.992869
.149116
.002303

lsLi

+988540
-.175131
-.012118

lsLi

«974934
=+239517
-.012789

ZsLi
-.000451
-+351899

-1.08410%

2sLi

-.035421

*.025107

“1.114432

28y

.055864
~1.112329

2sLi

-.151303
-1 (] 104797

sy

-.223226
«»1.09269
-.004682

lsH

.001910

-.787912

.834866 -

| 1s

H

.000666
1.014005

472876

lsH

.044096
-.973185
.550258

lsH

-.003319
.482818
1.009304

lag
.032064

494752
1.003000

-6.23 =

OCCUPATION

NUMEERS
1.000000
1.000000

0.000000

1.166648
666671
166681

- 1.003392

779186
217422

.982151
«918897
«098952

«982301
.946215
071484

R.H.F.

METHOD 1.

METHOD 2.

METHOD 3.

METHOD 4.



Table II

(a) ORTHOGONAL BASIS

2,328599

2.000000

1.959927

1.959828

-.083139
.378768

-059077
527639

-.029242
1,768388

’

-.026227

1.808799

.042852

.198702

(b) NON-ORTHOGONAL BASIS

ls

1.292632

«033335%
307683
1.472362

-.046800

-.336703

.271670

-.047037
~.380381
«231373

2s

1ls

Li i H
ls;; 2,016052 =.06550.  =.140926
zsLi .247667 «554530
sg - 1.241620

2,337809 =.054399 =-.099717
417789 =.206677

1.445495

2.012918  .096552 =-.137734
.549657 =.172174

1.611483

1.975935  .061830 =.164262
2.288209 =,983192

630039

1.975938 L067738  =.164677
2.357446 =1.037811

.609076

- 6.24 -

METHOD 1

METHOD 2

METHOD 3

METHOD



Table III N.S.G's.

TRIPLET GEMINALS, OCCUPATION NUMBERS
METHOD
C,AC, O, A0y 0,A03 1 2 "f_"jz 4
-.204544 -.9776815  .045166 1 P T .061238  .059126
976244 =-.205831 =-.025915 0 0 899444  .921475
034637 03686882  .998643 0 0

SINGLET GEMINALS,

O.vo, 0Ovoy ooy OyNe,  Oyvoy 03Ny
=.185137 --.290251 -.937321 .Ol7374 .027231 -.043177

556041 <T54704 =.342424 =.045668 .040101 -,017083

.810228 -.584789 .020879 .025061 -.022071 -.000069

.003353 ,016139 =.033792 =.318081 .943617 -.033646

.007551 =.062359 .008416 =.944979 .309756 .083960

.001929 .006962 -.050261 ,053138 =.103925 =.103925

ENERGIES Ev

TRIPLET SINGLET

-1.749875 =1.755404
-1.608652 -1.656530
- 583034 =1.433450
= «593380
-. 422240
- 241622

- 6,25 -

.019319 .019399

METHOD
L 2 2
1 1 0
1 1 .981322
1 .403967 1

0 .596035 .144369
0 0  .841019

0 0  .033389

4
0

980987
1
025477
941962
051574



Table IV

SINGLET N.S.G's

N.S.0's
1ss
. 720633
077069
-.875675
N'ng' .488855
-.047352
.914141
N";:G .405972
.086964
~.010048
N.S.G
q. --098482
3999114
=.069590
N‘?:G .064123
«999537

28p;

.033789

-.094706

1,110735

«579189
-.924881

«230167

-.419386
.988630
« 300947

.668464

-.891981

-.037010

~1.114288
030889
-.035391

lsH

.623770

C=,T26811 - -

=.578337

-.387037
«573744
.879112

079653
-.190286

-1.09966

-505556
998108

003311
-467705

~1,016401
-.002346

- &26% -

OCCUPATTON

NUMBERS

.648014

.351986° - -

.000001

827205
172794
000000

.976586

023414
.000000

«T71535
228443
.000022

«983402
.016567
.000032



~.082999
N.z.c -.057760
.998901

TRIPLET N.S.G's

N.S.0's

lsLi

1.001049

Noi.G’ -.032342

=+337623
-1.06198

2sLi

-.034568

- 0026328

-.0699031 -1.114431

.996921

NG og7an
-.067744
052601

N‘§°G .081907

999276

«151085
-1.104712

-.025088

1.079316
278717
=.035478

1.106082
.168519
.001471

H

-.034201

1.01344
.472861

-.077291
+456504

1.014011

-.,229009
-1.09516
.001681

- 6.27 -

«997742
«002258

.000000

OCCUPATION

NUMBERS

0.5

0.5

0.5

0.5

0.5
0.5



Table T

TRIPLET SECOND ORDER REDUCED DENSITY MATRICES

A
0; AO
0, A3

S, AD,
T, ADy

AN A

O'|AO'1

SN £
6}_363

.041838  .,200006 -.009238
.956122  =,044164 METHOD 1

.0020%9

C,AC, O,A0y; 0, Al

.041838  .200006 ~.009238
.956122  -,044163 METHOD 2
.002039

) Ao'z o'll\cz O'ZAO'B
8641557 =,164831 -.022884
115808 .001960 METHOD |

.020036

G, A, o, o, AC3

.884313 -.173689 -.023258

' .095601  .003057 METHOD 4
.020086

SINGLET SECOND ORDER REDUCED DENSITY MATRICES

G,vo, +999928 -.000430 .000047 -.008304 -.000626 -.001561
oND, .995803 ,001420 =.054164 .035268 -.000319
LRV 996261 =.000124 =-.039716 .046319
N, .003015 -.001911 ,000028
o,V 0y .0U2837 =,001859
RNy ‘ .002156

CNG,  OWNOy OOy oanDy  GWNO3 Vi3

- 6,28 -
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ONG, OO0, ONOy T,u0, 06,¥03 o3 sy
G\ O, .608656 .281947 -.009968 -.019771 .011919 -.001360

S,vo,

U.QUS

LA

' Cﬁ;\{O%' o

792127 .008372 =—048488 .018498 =,001149
.996682 .005971 -.020437 - 048048
.062945 .177316 .015887

.533264 .045186

-------- . ..006327

GND, ONb; OOy NG,  G,NO03 03 V03

o, V0o, «959927 -.061616 -.169969 .001545 .002482 -,009806

oD,

5,voy

d:,VO;.
o, V&,

904228 =.266343 ,003534 .024140 =.016979
.115808 .010641 -.006969 .005076
.768383.~.205409 =.060365

.211580 .029148

«040072

OO, OGv0, OWby O,ub; O,vo3 O3V
oyo,  +959828 -,061702 -,169927 .002148 .001859 -.009865

LA
cSwo3
G,v0,
C,vo;

TABLE VI

«904399 -.266251 .006930 .023976 =.017217
.115687 .008508 =.010394 .003903

.846556 =,270712 ~,070577

.115687 .020522

057843

R.H.p METHOD 1  METHOD 2 METHOD 3 METHOD 4

ERERGY Ev.-7.778464 =9.057825 =8.557116 =7.274157 =7.240477

- 6.29 -
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» Discussion
Appliéation of constraints formulated in Method 1 lead to an
energy which is very much lower than the R.H.F. energy. This, as has
been observed before, is due to the non N répresentable nature of the
- Yoptimised' second order reduced density matrix. Application of
further coﬁstraints (Method 2) increases the energy to some extent,
but still seem t§ iead t§ é éeécfiétioﬁ fhét ié ﬁof ﬁh&sicéliy fiabié.‘
The charge density matrices associated with Methods 1 and 2 although
similar to each other, are somewhat different from the charge
distribution predicted by the R.H.F. method, and in fact predict far
more charge on the atomic centres than the R.H.F method.
Unfortunately, Methods 3 and 4 (i.e. application of further constraints
as described) increase the energy above the R.H.F level,which suggests
that the constraints are now too 'tight'. However, the reason for
this is not clear, although the-ménifesfations are, viz, the 2s
orbital on the lithium atomic centre becomes very much more populated
with charge, and the transition density between the 2S Aorbi'ta'l on
Lithium and the 1S orbital on Hydrogen becomes very negative,
Further investigation is thus called for concerning the inter-
pretation of the connection between the elements of the 1lst and 2nd
order reduced density matrices with respect to constraints associated

with the probability relationships

PL? P""j amd PJZ P\;

nj-

At the present time it does not &eem too productive to follow the
probabilistic approach discussed in this thesis if practical approx-
imations are sought. However, further study of the reduced denmsity

matrices reported might suggest new types of physically representive constraints,
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The gaussian expansion coefficients used where those

published by S,HUZINAGA J,Chem, Phys, 1965,42,1293,
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CHAPTER _ONE




The Multi Configuration Self Consistent Field Approach

Introduction

The elctron spin resonance spectra of many radical systems haye
been successfully explained using any one of a number of xne'l:hod:a;l"8
which have been proposed to calculate spin density distridbutions,
Agreement between these'methods is generally only qualitative but
‘this reflects the unusual sensitivity of spin density distributions
to small details in the electron density which are insensitive to the
energy. Electron correlation is normally introduced into calculations
using either solf—consistent field method with configuration interaction
{SCFCI)or the unrestricted Hartree-Fock method (UHF) with annihilation
of the largest contaminating spin component (AUHF). Both of these
methods have one characteristic in common; the resultant wave functions
have not been completely minimised with respect to all the variational
parameters.

In the SCF-CI method the orbitals are obtained by minimising
the restricted Hartree-Fock energy. The same orbitals are used for
the configuration interaction wave function. In the AUHF method the
orbitals are obtained by minimising the UHF energy. The same orbitals
are used to construct the AUHF wave function. A practical attempt
has been made7 to obtain orbitals which lower the AUHF energy,
producing significant differences in the spin density distributions
(this is referred to as the IAUHF method in this paper,i.e. the
Iterated AUHF method). The orbitals which lower the SCFCI energy
can be obtained by thefaﬁplication of the partial multi-configuration=-
al self consistent field‘(PMCSCF) method. The complete variational

minimisation procedure is called the MCSCF metho 9.

- 1,1 -



Method of Calculation

(1) The SCF-CI method.
The solution of the SCF equations of Roothaanlo gives the

complete set of molecular orbitals, §' , in terms of basis orbitals, f‘
~J

® = pc ; cct=cte=T
~ N

~n ~) ~r IS
where § and ¢ are 1 x n row matrices and <, is an x n matrix, the
colums containing the coefficients of each LCAO-MO.

The terminology used is in common with the rest of this thesis

n 1

where(C) = C where i refers to atomic orbital (i.e. basis

~ MA "~
orbital) and™M to molecular orbital.

The interaction of any two configurational sta.tes,")(r and 7(.3

definéd in terms of the molecular orbitals @ is given by
n S s oMl -~ RS L .mima

2 2 MIM2ZMIM
The term state infering that the function (configuration of molecular
orbitals) is an eigenfunction of the’ %l operator.
ks ﬂ and Rs fe are representations m molecular oxrbital space of

basic first and second order reduced density matrices, i.e.

Rs?&_zj )(,R(lf,,...N') 1) S (TN ) AT;.....N.

where the basis of A"F®* is defined aS{XRfI------N}}R,l - e

Y YTy “
Rf or o7 .
and XMoo D = @ WAL ABTRHGD 5 O € Qg 2m
. [@“‘)}agn........nm being a basis forFmM) .
The functions {@"(_s)} are simltaneous eigenfunctions of the

13t order reducedpensity Matrix (determined within the independent

particle approximation) and the lst Order Reduced Density Matrices

-1,3 =



corresponding to the basic Density Matrices of /\':,, ~ (2 defined as

B0 N e W) = XRG o DX Ll N

The ﬁmctions{@ ‘ (D} also form a natural basis for T‘w(l'p.’hp)

over Tr: : @: F("‘“) , the basis being defined as
® RACR (. @ .
(.{% o (o8 -.I;T ©°'SJ (XJ>} Or,0s € S2,2m

(2)
In the independent particle approximation T'*2 (S‘:L‘l l:ﬂ' - is -determined
by e(l ll} completely.
(2w RSP -n-R: (2ne)
The elements of the matrices Pl € ® F &e .®1 F

are given then on the Fatural bases of e(! 1) and T'u)(\':.‘h‘l) as

(*RY; - o (“P:z\z g R

Os;Use
where O’R » Os G QN,?.M
For a given choice of molecular orbitals, g , selected electron
configurations XR -, corresponding to the spin symmetry of the
molecule are constructed to form the configuration Interaction Matrix
over a subspace of /\7\ F(M

A
H with elements
~

WMo = LA RED .

The Natural configurations (functions) of H over this subspace are

determined by the choice of kg -

then determined by the solution of the eigenvalue problem,
A
H.d =d E
which gives T'("b that commites with H where [ = (O( >< d l
~o ) . ~ ~o ~ ~
T'“'o corresponds to the energy state E , which is choosen to be the
~N
lowest (i.e. ground state)

The representation of the 2nd Order Reduced Density Matrix over
A 2 :
Tr @ F (am) is then given by

P = 5 THOR Rspy



)X R
where [ s = o’. ,ds
and the-lst Order Reduced Density Matrix over @: F-(:m) a

=3 % el

RS

The energy E can then be expressed as

E -Tr(Pl H)*-—T?(Pz Gr)
,where (HjMz - <N|l h[m,_>
($§M\Mz <"“‘ml31u~3mu->

(ii) The partial MCSCF method.

The configuration interaction wave function
=2 d
\P R R XR

does not necessarily use the optimum molecular orbitals @ « The

~t

purpose of the PMCSCF method is to vary the orbitals § y, for a given

d , such that the energy, E , is minimised, In terms of the basiis

Lo ]

orbitals, qb , the energy E of the wave function \P can be written

_,E=Tf(c+k ¢, Pl+1Clg C P2Y
~~N A A __a.~~~

where [ c @c hgpge_ C:: ::_ s C:.'l . C;a%.
)“’ LU LILES
(3 ‘)m -(AIAZBIA%A#—>

M3 Ml ALRAZ A3 Al CM‘”“*

MIM2Z  ACRS num.jm AZ A3 AL
A3 Ak

such that (G-

Following McWeeny9 S_' is allowed to vary, within an orthonormality
constraint, such thatE is minimised,

ie.C + de :(£+!\£

“105-



such that L+Y is unitary., This implies that
v vt + \/ 4 v¥ =0 '
~ N ~J

The corresponding first order change in the energy is
- +
e=aT(yln ¢ B ¢t+al)

where (Q\ (2)::'::_ and g ctra ¢

~~~~~

ie. Q=C CZj : viz (3 is-a contraction of &  «
The direction of steepest descent is thus

Yo=-[he fL &+g]

v

the actual magnitude of the change which takes the energy, E , to its

most negative value for the given direction Vo is

y\— = )\Xo ( A is a scalar).

such that X-{-i"’-{.'\{' \.J:' = Q for an energy descent that would

retain the orthonormality of the orbitals. In principle )\ can be

found by solving the equation OE/ON =0 but since _\é =f(Y, N,

this necessitates solving a high order' polynomial in )\ .« This

should be clear since the X that satisfies V + V+ + V V+ 0]

is found by finding that Vo which makes the mnctJ.onT;'( )\VOVO +V +Y+)1
a minimum, viz. the suitability ofx is a function _of its length.

As an alternative the energy,E, is calculated for various select-
ed values of )\ frommwhichr that value of A which minimises the
energy is estimated numerically. ()\ is generally found to be very
small, the values selected being multiples of + 0.015). Each value
selected for )\ gives only a first estimate of'\L , hence a first
estimation of a trial é\S [2s T+ N will not in general be unitary
as required] « So thé.t the correct energies for each )\ can be

calculated ,Y, is corrected such that y\' \ﬁ/'++y\_ +V+= @] as follows;

-1.6-



The function
e Tr [+ YD (L Y+ YY) )

is minimised, for which one obtains the descent direction

D[V +yr+a¥ty +¥ Y +VYVV]

~ and a step length a.long this direction to a second order
L=Tr(pB Y/ Telp +2 B +4pY D +22R Y +

raRB YV 42y B V)

The process is repeated with a new «Yn +1 =y_ - LR « This produces

a new set of molecular orbitals, 'Q'

o = (T VDL,

~nNn+)

n+l)

Although the new orbitals should be orthonormal this depends on how
closely '.I_:-i-\i is unitary. Any non-orthonormality can be rectified

by minimising the function,

U=Te[ (T-¢feXI - QY] '

with a descent direction

D':.C+C C+—C+
~ O NS A o~

é.nd step length a.loné th:ié direction
+
L =Tr(RBYTlap K¢ e + 2R -2 X))

which gives a new set of orbitals 2,»\-!-) which are at least as
orthonormal as the previous € wm

Snﬁ = ,EA LD

and the process is repeated until the desired accuracy is obtained.
The whole PMCSCF process is now repeated using the new matrix £ nel

until self-consistency.

A . _ 1.7 -



(iii) The MCSCF method.

Since E =

flod

where ol is obtained by the SCPCI method for 2 given ¢ , and ¢ is

~ ~ ~
then modified by the PMCSCF method for that EL/ y it is logical to use
the matrix 'C; resulting from the PMCSCF method as a new starting
point in the SCFCI method to obtain a new 'c\L’ , and so on, until further
iterations do not change c or d .

~o

Results

The MCSCF method has been applied to the molecules described in
figuré 1. The calculations were carried out within the framework of
the Pa.riser;-Parr-Pople approximation scheme for TV - electrons systems
using the integrals and bond lengths of Amos and Snyde:c3 in order to
facilitate comparison» yith results from references 3,4 and 7.

The doublet spin eigenfunctions used were , e.g., for pentadienyl -

(2" (et p-B oD Ct p -Rodet

®

o

®‘ (lﬁ).V’.(olﬁ - 3 (aocotﬁ -t fpox -ﬁo(oc\

where @o is the ground state spin eigenfunction

and ®| is the excited doublet state spin eigenfunction.

All possible excited states with spin e\igenfunctions of the type @. ~
are included in the calculations.

All the results are collected in Table 1.
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DISCUSSION

Since both the UHF and SCFCI methods are practical for large
molecules it is of some interest to investigate if one is more reliable
than the other in the calculation of spin density distributions. The
" SCFCI methods are normally limited to including only singly excited
configurations. Since the wave function in the SCFCI method is aiso
a spin eigenstate this would seem to be more appropriate than the UHF
wave function to calculate spin density distributions, even though
the AUHF method attempts to remove the major unwanted spin eigenstate
from the UHF wave function. However, whereas electron correlation
in the CI wavefunction is introduced after the orbitals have been
optimised, in the UHF method the electron correlation is introduced
before optimisation. It is possible that +this dichotomy can only
be resolved by comparison with an analagous complete CI calculation.
Only a very few complete CI calculations exist and for these radicals
only pentadienyl (a) has been studied®,  For this radical (see table 1)
the SCFCI and AUHF calculations are only in qualitative agreement.
The agreement with the AUHF method is progressively imfroved for the
PMCSCPF and MCSCF methodé. It has been suggested3’8 that it ié better
to use the UHF formula (e mp t 3 QAUHF)/4 to give a better
estimate of the spin density distribution. This in facts gives an
excellent correlation with the complete CI results (those given in
brackets in the columnhlabelled McLachlan in table 1) for pentadienyl
(a). |

If we use the SCF_bﬁlculations as a standard for comparison
(becaﬁse this methodAiﬁfroduces no electron correlation between

electrons of different spins), we can compare the relative magnitudes

L
.
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of the spin densities due to fhe other methods. One of the most
important aspects of TT - electron calculations for aromatic radiéals
is to assign the observed hyperfine coupling constants to the various
atomic centres. There are some significant discrepancies with the
relative order of the spin densities as calculated by the SCF method:-
Pentadienyl: SESCF, UHF and IAUHF give opposite assignments for atoms
-1 and 3.
Benzyl: SESCF gives the opposite assignment for atoms 1 and 3;
 TAUHF gives the opposite assignment for atoms 2 and 4.
Azulene: Huckel, McLachlan, SESCF, UHF give opposite assignments for
atoms 2 and 9.

Most of these discrepancies correspond to those pogitions, which are
not related by symmetry, but have the same spin density when calculated
by the Huckel method.

It is significaﬁt that the AUHF, UHFF,SCFCI and MCSCF methods
are always in qualitative agreement. " In view of this obsexrvation,
the fact that UHF calculations are much'quicker to perform for large
molecular systems than SCFCI or MCSCF calculationms, ana the excellent
agreement between the éomplete CI calculation and the UHF method for
pentadienyl (a), it is concluded that the UHF methods have distinct
" advantages and are a£/1east as reliable as other approxim%te practical

methods.
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THE AB - INITIO UNRESTRICTED HARTREE FOCK METHODS

A reasonable extension of the independent particle
model, i.e. Restricted Hartree Fock (RHF), but still within
the f'ramework of a 1 determinent approximation is the
Unrestricted Hartree Fock method (UHF), However the N
particle Wevefunction that is produced by optimizing the
single determinent is not generally an eigenfunction of the
total spin angular momenta operator S2. This approximate
wavefunction can though be expressed as a linear sum of

wavefunctions corresponding to pure spin states,

L
thff‘ox (\"" N) = %:OC'S-&M ‘Xsfm k‘----N)

where s= p=q; P = number of electrons with alpha spin, and

q = number of electrons with beta spin,

and S2.7Y sem = (s+m) (s+m+l))(g;m

and hence it is poésible to project out the pure spin wavefunction
of interest, by the use of an annihilatiop operatorl. It has

been shown however that it is sufficient to annihilate only the
major unwanted spin component®to obtain a wavefunction that
represents a pure spin state to a fairly good degree of approxi-
mation. This procedure is known as the Unrestricted Hartree _

Fock Method After Annihilation (UHFAA ).

Theoretical results can be calculatedwhich are reasonable
when compared to experimental values, thesecan be computed by
an Ab - Initio method when the above UHFAA procedure is followed} 7

provided that



(1) The atomic orbitalsﬂ.i(r) (based on atomic centrc
i) are expressed as an optimised linear combinations
of gaussigﬂ functions,ti.e.
Q) = 2 Cij & unere the coefficients Cij
3 are optimised C
(11) when Q{(r) refers to a hydrogen atom the exponént
&{1is optimised,
and ‘
(1iii) The geometry of the system is optimised, i.e.
bond angles and bond lengths are varied to give
the energetically lowest molecular configuration.‘
These provisions are not arbitary since if isotropic
hyperfine coupling constants are to be calculated from spin
densities at the nuclei the wavefunction should describe the
electron densities of the nuclei adequately. The obvious
choice is to use SCF atomic orbitals, which are expressed for
convenience as a linear combination of gaussian functions to
facilitate the evaluatign of the mu1ticeﬁtfe two electron
repulsion integraié. Since the hydrogen 1ls orbital contains
electrons which areAbofh valence and inner shell electrons
this orbital requires optimising. In turn the geometry will
effect the hydrogen 1ls orbital, hence the hydrogen isotopic
coupling constant; considerably and so this requires optimising.
The variation of the SCF atomic orbitals for heavy atoms is
much more difficulf and thus this sort of optimisation is not

attempted, nor is the bond length varied between heavy atoms.

Instead of representing each SCF atomic orbital of the

minimal basis set by a linear combination of gaussian functions,

? - 2.2 -



more flexibility is obtained by "uncontracting" these represen- - .
tations, i.e. each SCF atomic orbital is replaced by a number
of oi'bitals each one being a simple gaussian function. Altern-
atively partially contracted gaussian expansions can be used.®
The object of these modifications is to introduce flexibility
into the calculation by allowing the orbitals to distort on
‘molecular formation. Unfortunately this greater flexibility
gives rise to an increase in spin contamination in certain cases.
In order to restrict spin contamination it has been suggested
elsewhere? that, at least for semi-emipirical calculations, it
is feasible to minimise a function of the type

FE + (1 -¢) £52>
where E can be Ejyp or Enpn (AaA = UuFAR)
and £ $2> can be <§3>u“ or {52 Janean

For Ab Initio calculations the use of Eqg 1is un-

realistic regarding computer time and so the function

€ = KEg., + (1-9) s Dune was minimised.
This function can be written as '
£ = oL?_TrP (h +36%*) + Trq (h+l{Gs“>3 "
+(1-9) i’.‘;.(p-q)?‘ +“2‘(p+q) - Tr PSQS}
So t t wv
ere o Ba 3§ (% + Qlnm - pu QT
. Se u ve t tyq 2V t w
[ Z\ SL(P¢+ Q. drt - Q\rsrt}
\A\‘E V!L
‘ rt = v
o S Q“(Q)Q Lr‘),)"l(-“" Qf(‘})&h(r;) At\ arz_

h is the representation of the one electron hamiltonian on the
non-orthogonal atomic orbital basis i(l;_(r)’k ,

. P and @ are the respective represertations of the first order
density matrices of the p alpha and g beta spin electrons,

"and S is the overlap matrix associated with the basis of atomic

-—
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orbitals {q (,33 .
The first order change in 8 is
SE = o 1 Tr SP. (h +0%) + TrdQ (h +a%)]
- (1-9) i'l‘r (§P sqs) - Tr (8§ SPs )
from-which the 'best' changes in the matrices P and Q
~i.e. those that cause & to decrease most,. afe given by the
'aiagonalisatioﬁ of -
v¥*= o (h +G") - (1-9)84s
and V¢ g (h + G%*) - (1 -¢-) S P S respectively.

This minimisation scheme shows éome similarities to the

elegant method of Segall®

Calculations were carried out on the hydroxyl and
cyanide radicals as described in the following section.
The major contaminating spin component in the UHF wave
functions for these radicals is the quartet state, hence in
the application of UHFAA method it is this component which

is annihilated,

Results
1, HYDROXYL RADICAL
}* (a) using contracted set of gaussian functions

(b) using uncontracted set of gaussian functions

The calculation was carried out using various bond
lengths and orbital exponents for the hydrogenlike wavefunction
in order that an optimised description of the atomic orbitals
be deduced, The variation of the oxygen atomic orbitals

Cw.r.t, orbital exponent and bond length) was not attempted.

- 2.4 - | :‘



TN

In figure I, E (of the radical) is plotted as a function

RA
of the bond distance Con for various values of the orbital
exponent on the hydrogen atomic orbital, The results aré also

shown in table I,

The value of ( S° R“for this calculation was found to
be very near 0,75 ( to 1 place in 107 ) and thus no limitation
on the spin contamination was necessary, however in the
calculation using an uncontracted set of gaussians for the
hydrogen atomic orbital spin contamination was found, and hence
the constraining procedure was used, i.e, minimisation of

the function £ for various values of d~, the results of which

are shown in Table II, figures II, and III,

2. CYANIDE RADICAL
with (a) contracted set of gaussian functions
(b) uncontracted set of gaussian functions
Both of these cases showed considerasble spin contamination
and thus the constraining procedure was applied to try and
reduce the amount of contaminating spin component in the
computed wave functions; the results of these calculétions
are presented in Tables III and IV; and figures IV, V, VI and
VII,

Discussion

Even though the molecular wave-function computed from
the contracted set of gaussians for the hydroxyl radical showed
little sign of spin contamination, the oxygen hyperfine constant,
Q,is low in magnitude coﬁpared with the experimental value, No
doubt the origin of this discrepancy is inherent in the UHFAA

method and this view is substantiated by the more elaborate

- 2.5 -



Table 1. - Experimental and Theoretical Results for the OH Radical. owH% those calculations

near the bond lehgth that winimises the energy for a given hydrogen orbital exponent are listed.

Method Hydrogen orbital Bond length Energy (a.u.) after Hyperfine Couplin
exponent (a.u.) annihilation Constant (gauss
. mO mm
Expt. gas phase _ . 1.83u2t+ -75.780 * _ -30,75'3 -26,715
“Expt. in ice | o | , . -23.3+416
Expt. in ice R -23,241,517
Expt. in CaSO, . -25.2+1.,118
Expt. in LiSO, | : -23,3+1.31°
UHFAA 1.2 2.0 ~75.36592 -8.49 -18,72
UHFAA 1.3 1.9 -75.37180 ~9.45 -17.79
UHFAA 1.3 2.0 ~75.37072 - =8.,53  -21.31
UHFAA 1.4 1.85 -75.37L417 ~9.52 -18.49
UHFAA 1. 1.9 ~75.37453 -9.16  -19.88
UHFAA 1.45 1.85 ~75.37469 -9.31 ~19.40
UHFAA 1.45 1.9 ~75.37u43 -8.98 -20.78
UHFAA 1.5 1.85 -75.37433 -9.07 -20,22

UHPAA 1.45% 1.85 ~75.5T47h =9.32 ~20.51

¥ using 10 s-type gaussian expansion2?,
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0.90

0.85

0.80°

0.75

0.70

Table 2.

-E

75.39321
75.39318
75.39313
75.39307
75.39301
75.3929L

75.39288

m.”m“mm
75.39417
quwumwwo
wmyumum@
qmwuwump

75.39337

75.3932L

75.39288

{s%)
. 75360

. 75241

.75173

. 75131

. 75079

. 75063

A mNme
. 75000
. 75000
75000
. 75000
rqmooo_
. 75000

. 75000

o an

-16.56

-14.86
-13.18
-11.57
-10.03
~8.56

-7.18

m%mHoN%H Radical Uncontracted Gaussian Basis

H aa

=14 .46
-11.88
-10,02
:m.mH.
=7.49
-6.55

'wﬂﬂm

-48.94

-43.96

=39.02

=34.27

-29.72

-25.40

-21.30

-44.18
-36.20
-30.46

-26.14

- =22.,69

-17.41



FIGURE 1.

Summary of the calculations on the OH radical.
Variatin of total energy after annihilation
with bond length for the values of the
hydrogen atom orbital exponent ,a,indicatede.

——————— Estimated minimum total energy after
annihilation as a function of bond length.

—e=e—e—» Lstimated variation of the hydrogen isotropic

hyperfine coupling 6onstant with bond lengthe.
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FIGURE TVO.

a) Variation of minimum energy with change of .

b) Variation of <5‘,~7 value with change of a.

HYDROXYL RADICAL UNCONTRACTED BASIS.
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1.0
0.975
0.95
0.90
0.85
0.80
0.75
0.70
0.60
p.50
0.30
0.10

Table u .

-E

92.06131
92,05897
92.,05542
92.,05169
92.05011
92.0492L
92.04868
92,04826
92.,04767
92.0L72Y4
92,04662
92.04615

Q%mﬁwmm Radical, Contracted Gaussian Basis

“Baa

92.08598
92.06954
92.,06001
92,05329
92,05101
92,04985
92,04911
9204859
92,04,786
92.,04735
92.0L665
92.04615

A
c

377.4
342.,0
315.3
292.,7
285.8

283,8

283.8

284.6

287.4
290,3
296.0
300.5

Ay

-20,83

-16.29
-13,26

~10.24

-8.52
-7.26
-6.23
~5.35
~3.92
~2,81
-1.,18

-0,05

.PO aa

339.2
331.7
318.7
303.6
297.9
295 .6
294,.8
29L.7
29514
296.5
299.0
301.2

>z aa

-6,18
-4 .67
-3.83
-3.01

-=2,50

-2,11
-1.79
~1.51
-1.04
-0.67
-0,12

0.27

8%

1.11825
0.91809
0.82197
0.77104
0.75951
0.75531
0.75333
0.75223
0.75110
0.75057
0.75013
0,75001

<5z

0.83559
0.76687
0.75305
0.75028
0.75006
0.75002
0.75001
0.75000
0.75000
0.75000
0.75000
0.75000



FIGURE FOUR.

a) change of minimum energy with variation of «.
b) Change of {S*)with variation of a.

1

‘CYANIDE RADICAL UNCONTRAGCTED BASIS.
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FIGURE FIVE,

curve (a) and (c¢) are related to higher valued
axes.

Curves (b) and (d) to lowered valued axes.
Curve a)s= Qg

Curve b)i= Op

.Curve_c):' Qe aa

Curve d)e= Q\, o~

CYANIDE RADICAL CONTRACTED BASIS.
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FIGURE SIX,

a) Change of minimum energy with variation of «.

b) Change of {S¥)with variation of a.

CYANIDE RADICAL UNCONTRACTED BASIS.



FIGURE SEVEN,

Curves (a) and (c¢) relate to the higher valued

axise.
Curves (b) and (.o) to the lowered valued axis.
a)e= Qe
b)e= Opy
| ?)_'-_' Qeqn
d)o" Qﬂ““

CYANIDE RADICAL UNCONTRACTED BASIS.
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Table L.

.

92.,17162
92,16436
92.15921
92,15706
92.,15589
92,1551l
92,15461
92,15387
92,15261

. 92.15204

Cyanide Radical, Uncontracted Gaussian Basis

“Eoa

mMVMOH::
mmquoum
92.16118

'92,15811

92,15658
92,1556l
92.15498
92.15409
wmemmmE
92.1520)

A
c

491.1
LI7.4
385.3
373.8
369.0
366.9
366,2
366,5
371.6
373.3

Ax
-20,20
-8,38
3,87
~1.88
~0.70

0.10
ormm_
1.46
2.53
2,96

A
c aa

409.6
391
376.2
368.5
365.0
363.3
362.6
3624
365.3
366.2

,bzwm
-3.90
0,24
1.46
2,00
2,3L
2.58
2.77
3.04
3.47
3.62

s®D
1.,19518
0.84852
0.77815
0.76239
0.75677
0.75420
0.75274
0.75132
0.75016
0.75001

< 7na

.87855

. 75575
. 75049
. 75010
.75003
. 75001
. 75001
. 75000
. 75000

. 75000
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APPENDIX ONE




The stationary points of the equation

Q(x) (TR %) [(xT %) Al-1
where R is a fixed pxp matrix , X a variable column
vector and §(X) is a scalar function,
are s.t. the vectors X at these points are orthonormal
eigenvectors of H .
The above ,equation__ Al-1l could be written in Di_rac‘
notation as —G(x) = Xlatxy /<Xl><>
If the projection matrix P is defined as | X D{ x| XX

8.1, P2 P i.e. DXAXE I x) o 1xD¢xt (Xlx) x¥ %

X% (x1x>  dxixd>
then it projects vectors onto the vector x -

i

The function QCX) can be written in terms of P as
Q(P) Te PR = ‘Tcixx Al = ;RXX - ch'>
Then the value of P at the stationary point of £ Ced
are projection matrices that project onto orthonormal
eigenvectors of R,

If we then define a fixed l.,c, of p;:'ojection matrices

assoc:.ated with the orthonormal eigenvectors of R i.e.

ch\s = i‘c-?e ; Pe. = WNT

[

where the set %\j ’k are the orthonormal eigenvectors
of R,

e, is only a projection matrix if all C\ either

=1 .or 0.

The Trf,=p ,and the eigenvectors of P, are the
.orthonormal vectors ‘i\ﬁ;k;,;\...f,where the eigenvalue
associated with 9;is Cy i.e. DY = Ci.\o Lor Lrteem
Then -€( ) is also a stationary point of the function _((‘(?)

-Al,1l-
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\

with value Zi.‘ -? C PEL ) _ §

If we apply the constraints©=f and Trf =1 to the
variation of the functiong(ﬂonly p stationary points
are found which are the projection matrices associated
with the eigenvectors R ;however if" we do not enforce
these constraints enumerable statibnary points are found.
The matrlces corresponding to these stationary points
all have the the same eigenvectors as F\ .Thué all
matricesQQ that are stationary points of{ commute with
R (as matrices with the same eigenvectors commute):
As commuting matrices are simultaneously diagonisable

all such solutions Px are simultaneously diagonal with

A .

-Al,2-
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SIMPLEX METHOD OF LINEAR PROGRAMMING,

As many text books on the general theory exist
(as given in the references in the introduction) this
appendix only describes the Linear Program written
by myself,
The general problem is to maximise the function
€ = cfx A2-1

where C,+ is a 1xN row vec'térr c'.orit'aiAni‘ng 'the'OBJ‘ECT'

FUNCTION _ coefficients {Ci)i,,.,Of the_BASIC VARIABLES
iX'\‘& trmean €Xpressed as the variable Nxl column vector

X,

subject to the constraints
R.X £ 7Y A2-2
X 7 o A2-3
( X being the Nx1 null vector),
Where A is a MxN matrix containing the constraining
coefficients,and Y is a Mx1 column vector containing
the constraint limits,
If any constraints are of the form
R X 2 'j, A2-L
(R is a RxN block of the constraining matrix R and
¥, a 1xR block of Y )
they are .replaced by
-8,.X £, A2-5
- 80 as ‘to bring them into standerd form,
If the minimum of the function & is required,

+
minus the maximum of the function -~C. X is found,

~-A2,1~-



+
i.e if £ = c.X
then min £ = -max(-¢ ). A2-6
The_SIMPLEX method implicitly expresses the
H ' ot -
problem in the form [Q ,IM‘_\.[ X Xm—l 3 j
where [\q' ‘_{M} is the matrix T(e_» -, - —

MoA IML

) Xutt
! ] )2'
the variables etYm.------X,MM.g are called _SLACK VARIABLES

e e oo

‘and [ X} XW) the vector

¢
and Xq,. &ives a measure of the violation,or near
A}
violation of the i*constraint R .X ¢ ¥

! ) .,
if the constraint is violated sz_do(as F’lm.X+Xn+~.= hH )e

If the 1 tw constraining limit is negative ,ARTIFICIAL

VARIABIES  are added to the problem and the i*%

constraining equation is redefined as
3
- gc‘n- X - Xq £ \3'1. A2-7
and the object function as '
p
+
E=c. X‘MZiRci\-X+Xq;‘3L} A2-8
(3
where M is an arbitrary large positive number and XQL
are the e artificial variables corresponding to the
constraining limits ML that are negative,

The initial FEASIBIE solution is

_X = 'e) | (null vector [N+P]x1l)
le. € = 0+MA Y A2-10

with slack variables ¢

Nl

A2-11

X"‘xj

-A2,2~
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The non zero variables are called BASIC ,the zero variables

NON BASIC

The simplex tableaux.starts at.this solution . implicitly

and is of the form.:—

N+P N
» 2, ol PIVOTING ABOUT R

n

For all members of
- the tableaux, = . . .
Uai= RUe - Ts)/ R
Except for elements
in the column or row
of R.

U, -new element in U

W
D
—4[—-——-—-—r70
'
|
< L—-—cé—lm

position,

Wo ~0l1d element in U

-C ’ & position., . o |
. (Initially £=WM2 YL ).

The next feasible solution that is more positive than

the initial is arrived at (if it exists) by choosing
the most negative value in the -C row,say the Lth
column, then forming "t;;he ratios %i]ﬁ?and finding

Min (\51!a‘f>for L= ‘:\", e

when 9‘? > o

The value of i for which this is so ,say K, then defines

the element of QA on which we PIVOT i,e,the element F—\L

w
' ¢
The elements of - C (denoted by C ) then become
L ¢ 2 R" .
ci= - .(__\tv where G # L A2-12
A '

and A2~13

L L
= - c ‘
=

=A2, 3~



the elements of 3 become
Bit= ¥ - %K(Fktlpﬁ,k} Lk A2-1lL
and Yy = W« [nk A2-15
the elements of B become

AL i= R - B (A% RY ) fer Liyre A2-16

3 3
Rut=RylpY% Lo \# L A2-17
AT = - AL RY% G Law  A218
A% = ‘/mY | 22-19

The value of the object function becomes (where the

values of R,¥ and C are the ones before transformation)

&= &-Mx. ¢ ns A2-20

which never decreases the value of

Iterations continue until one of the following three

conditions are satisfied’—

1, AllC'sare% 0, and no artificial variables are non
zero basic variables. |
Solution has then been reached arld the maximum value

of the object function is the current value of §, .

2, If all o‘;v.o and there is a non zero artificial basic
variable then the constraints of the problem are
inconsistent and there is no solution,

3, There is no Ri%0, the value of & is then unlimited,

and the solution is UNBOUNDED ,

Initially the function & is expressed entirely in
terms of non basic variables and the slack variables,

that have values given by the column Y (i.e.Xau=3i)

-A2 L4~



form a basic solution, By pivoting about H'& the slack

variable Xn.« becomes non basic and the variable X.(which
might be artificial) becomes basic with a value of Y

(after pivoting). If Wi (say) throughout the iterative

process the variable X L never becomes basic and in |
the final solution has the value zero,

By recording the nature of'thevbasig and non basie
variables throughout the final values in the\ﬂ column
can be assigned to object funétion variables,artificiel
variables,or slack variables,

If there is no unique Min(“i}asg)for Lile.m at
some stage of the process ,i,e, say that
(3Lulﬂ%1 are all equal for R=z=.....r¢

and.i(n T set of integers befween oo MA
then Min (Rig [\:\‘-;,J Le © XLRX e veees F
(where j=1,then2, then 3 ,,.etc, until a unique minimal
ratio has been obtained)
determines ‘g and thus which ratio Ekaato choose and
hence the pivot row . "=
This method ensures that cycling will not occuf in
the iterative process,

Following is a listing of the Simplex procedure
and the associated procedure for the addition of
artificial variables (viz. Procedure NEG),which was
‘designed for parametric linear programming,i.e.after

the object function has been maximised new values of

the constrianing coefficients can be'calculated

~A2,5-



(using the optimum values of the variables):and the
artificial variables redefined, taking into account
the initial transformations associated with the first

up of the artificial variables,

A2, 6-



"PROCEDURE" NEG(NG,S,A,C,Y,EE,MM,NC);
"COMMENT" DESIGNED FOR RECURSIVE uSE,FOR 1 ST ITERATION S=1 THEN
AFTER S=2;

"COMMENT" NG IS THE NUMBER OF NEGATIVE CONSTRAINING VALUES;
"REAL" EE; '
"INTEGER" NG,S,MM;

"ARRAY" A,C,Y;

" INTEGER" '"'ARRAY" NC;

"BEGIN"

"IFI NG HNEH o "mﬂ

"BEG IN" o

"REAL" Y1,Y2;

"INTEGER" I,J,K,K1,N1

"SWITCH" CLOUDY:=X1,X2;

"GO TO" CLOUDY[S];

X2

N1 :=N=NG;

"FOR" I:=1 "STEP" 1 "UNTIL" N1 llwl
"BEGIN"

Y1:=0

“"FOR" J:=1 "STEP" 1 "uNTIL" NG '"DQ"
"BEGIN"

K:=NC[J];

Y1:=-A[K,I]+Y1;

"END";

C[I]:=C[I]-10000%Y1;

"ENDII;

Y2 :=0;

"FOR" J:=1 "STEP" 1 lluNTIL" NG llwl L Lo
"BEGIN"

K:=NC[J]; ,

Y2:=Y2-Y[K];

"END";

EE:=EE+10000*Y2;

"GO TO" X3

X1:

J:=0:

“FOR" I:=1 "STEP" 1 "uNTIL" M "DO"
"IF'' Y[I]<-1%,-6 "THEN"

"BEGIN"

Je=J+1"

NC[J]:=1I;

"END"; ' e

Y"FOR" I:=1 "STEP" 1 "UNTIL' M "'DQO"
"FOR" J:=N-NG+1 "STEP' 1 "UNTIL" N “DO"
Al1,J]:=0 : e
N1 :=N=-NG;

"FOR" I:=1 "STEP" 1 "UNTIL" N1 "DOQ"
"BEGIN"

Y1:=

“FOR" J:=1 "STEP" 1 "uNTIL" NG "DO"
"BEGIN"

K:=NC[J];

Y1:=A[K,I]+Y1;

."END";.



C[17:=C[1]-10000%*Y1;

"ENI)";

Y2:=0;

"FOR" J:=1 '"STEP" 1 “UNTIL' N& "“DO"
"BEGIN"

K:=NC[J];

Y2:=Y2+Y[K];

"END';

EE :=EE+10000%*Y2;

“FOR" I:=1 "STEP' 1 "uNTIL" NG "wl
"BEGIN"

J:=NC[I];

Y[J1:==Y[J];

K1 :=0;

"FUR" K:=N'NG+1 "STEP" 1 "UNTIL" N llmﬂ
"BEGIN"

Kl :=Kl+1;

“IF"' Ki1-1I "THEN" A[J,K]:=-1;

"EN'D"; :

"FOR" K:=1 "STEP" 1 "UNTIL" N'l llmﬂ
A[J,K]:=-A[J,K];

"END";

"FO_R" I:=N-NG+1 "STEP" 1 "UNTIL" N "DO"
Cc[1]:=-10000;

"EN'DH;

X3:"END'* OF NEG;



"PROCEDURE" SIMPLEX(A,Y,C,EE,M,N,NG,X,MM);

""COMMENT"

SIMPLEX MAXIMIZES EE-C*X (C[1XN],X[NX1]) SUBJECT TO THE CONSTRAINTS A*X'1E'Y
(A[MXN],Y[MX1]) ,AND THE NON-NEGATIVE CONDITIONS X "GE" O ..eeecease

(IN THE TABLEAU C IS REPLACED BY -C),
IF A SUB CONSTRAINT MATRIX SATISFIES B*X "GE" Y THEN IT BECOMES -B*X "LE'-Y
FOR A MINIMIZATION PROBLEM EE=C*X,,..~-MAX[-C*X] IS FOUND
A- IS THE ARRAY OF CONSTRAINT COEFFICIENTS.
Y-THE CONSTRAINING VALUES,
C- THE OBJECT FUNCTION.
X-FINAL VALUES OF THE VARIABILES, -
EE-THE VALUE OF THE OBJECT FUNCTION,
MM-1 FOR MAXIMISATION ,-1 FOR MINIMISATION,
(MM--1 IF -MAX[-C*X] IS REQUIRED, MM=1 IF MAX[C*X] IS REQUIRED).
M-THE NO. OF CONSTRAINTS.
N-THE TOTAL NO, OF VARIABLES (ARTIFICIAL +BASIC).
NG-THE NO, OF ARTIFICIAL VARIABILES;
"VALUE" A,Y;
“REAL' EE;
"INTBGER" M,N,NG,MM
"ARRAY" A,Y,C,X;
"BEGIN"
"INTEGER" I,J,K,L,IT,N1;
"INTEGER" I1,J1;
"REAL" BL,AL:
"“ARRAY" B[1:M];
"INTEGER" '"ARRAY" XI[1:N],YI[1:M];
"INTEGER" "ARRAY" P[6:7];
Pl[6]:=0"
P[7]:=N;
"FOR" I:=1 "STEP" 1 "uNTIL"™ N "DO" C[I]:=-C[I];
N1 :=N=NG;
"FOR" I:=1 "“STEP" 1 "uNTIL'" N "DO" XI[I]:
"FOR" I:=1 “STEP" 1 "uNTIL" M "“DO" YI[I]:
IT:=0:
SPROUT(M,N,A,P,6);
PVOUT(N,C);
PVOUT(M, Y) ;
XLl :AL:=0;
"FOR" I:=1 "STEP" 1 "uNTIL" M "DO"
Y[I7:=""IF" Y[I]=0 "THEN" 1%,-10 "ELSE" Y[1];
IT:=IT+1;
"FOR" I:=1 "STEP" 1 "UNTIL" N "DQ"
"IF" C[IJ<AL “THEN" .
"BEG IN"' .
AL:=C[I];
:=I;
"END";
"IF" AL=0 "THEN" "GO TO" XI2;
"FOR" I:=1 "STEP" 1 "UNPIL" M "DO"
"IF' A[I,L]>1%,-9 "THEN" B[I]:=Y[I]/A[I,L] "ELSE" B[I]:=-1
BL:=100000:
Il:=
"FOR" I:=1 "STEP" 1 "UNTIL" M llmll
IIIF" B[I] llGEﬂ 0 "AND" B[I] "I.E" BL llmnﬂ
"BEGIN"



I1:=I1+1

"IF' I1-1 "OR" B[I]<BL "THEN"

" BEG IN"

K:=I;

BL:=B[1];

"END"

"R SE!

“FOR' J1:=1 '"STEP" 1 "UNTIL" N "DQO"
"I A[1,J11/A[1,L]<A[K,J1]1/A[K,L] "THEN" "CO TO" XL5
"ELSE" "IF' A[I,J1]/A[I,L]>A[K,J1]1/A[K,L] "THEN" "GO TO" XI65;
"GO 'IU' xm; i
XL5:K:=I;

XIB:"END";

"IF BL=100000 "THEN" "GO TO" XL3
"IF" YI[K]=0 "THEN"

"BEGIN"

"IF' XI[L]=0 ''THEN"

"BEGIN"

YI[K]:=L;

XI[L1:=-1;

YEND'

"ELSE" llIFn XI[L] "NE" _1 "THEN"
"BEGIN'"

YI[K]:=XI[L];

XI[L1:=-1;

Y END"

END!

"ELSE"

"BEGIN"

"IF" XI1[L]=0 '""THEN"

""BEG IN"

XI[L]:=YI[K];

YI[K]:=L;

YEND'

"ELSE” "IF" XI[L]=-1 "THEN"
""BEGIN"

X1[L):=YI[K];

YI[K]:=0;

"END!

"ELSE"

"BEG IN"

J:=YI[K];

YI[K]:=XI[L];

XI[L]:=J;

"END";

"’EN])";

EE:=EE-Y[K]*C[L]/A[K,L];

"FOR" I:=1 NSTEPII 1 "U.NTIL" M "Dd'
IIIF" I "NE" K "THEN"
Y[13:=Y[11-A[I,LI*Y[K]/A[K,L];
Y[K]:=Y[K]/A[K,L];

"FOR" J:=1 "STEP" 1 "uNTIL" N "DO"
MIpN 3 MNEM 1, WTHEN"
C[JJ:=C[J]1-C[LI*A[K,J]/A[K,L];
C{Ll:=-C[L]/A[K,L];

"FOR" 1:=1 "“STEP" 1 "UNTIL" M ''DO"
"FOR" J:=1 "STEP" 1 'V'\.INTIL" N llDOn
"IF" 1 "NE" K llmul J "NE" L "THEN"
A[1,5]:=A[1,J1-A[1,L]*A[K,J1/ALK,L];
“"FOR" 1:=1 "STEP" 1 "uNTIL" N “DO"
TE T “NE" I, "THEN"
A[K,1]:=A[K,I]/A[K,L];



"FOR" I:=1 "STEP" 1 "UNTIL' M "DO"

"IF' I "NE" K llmNﬂ
A[1,L):=-Al1,L]/A[K,L];

A[K,L]:=1/A[K,L];

"PRINT" ““12°",SAMELINE,EE,K,L;

"GO TO" XLi;

XL2 : N1 :=N-NG

"FOR" I:=1 "STEP" 1 "uNTIL" N1 "DO" X[I]:=0;
"FOR" I:=1 “STEP' 1 "uNTIL' M "DO"

nIFﬂ YI[I] "N-EH 0 "THEN"

"BEGIN"

"IF' YI[I] "LE" N1 “THEN" X[YI[I]]:=Y[I] "ELSE"
"BEGIN"

"IF" Y[I]>1%,,-9 "THEN" "GO TO' ALARM;

"END'';

"END";

EE :=MM*EE:

s LXN

"pRINT" ““12", SOLUTION FOUND';

"PRINT" “°127°,SAMELINE, ITERATION=",IT;
"PRINT" ’’127",SAMELINE, VALUE OF FUNCTION=",EE;
"PRINT" ““L5";

"FOR'" I:=1 “STEP" 1 "uNTIL" N1 “DO"
"pPRINT" ““12°% ,SAMELINE, VARIABLE',I, =",FREEPOINT(10),X[1];
PVOUT(M,Y);

"GO TO" XIA;

XL3:"PRINT" ~“12°,SOLUTION uNBOUNDED;

"GO TO" XIL10;

ALARM:"PRINT" ““12%° l'CONSTRAINTS ARE INCONSISTENT THUS
THERE IS NO SOLUTION ;

STOP;

XL10:

X14 :"END" OF SIMPLEX;



Procedures SPROUT and PVOUT are print out routines for

a MxN matrix A and M or N dimensional vectors respectively,



APPENDIX THREE




SPACES WITH NON UNIT METRIC,

All the vector,functional and tensor spaces discussed
elsewhere in this thesis apply to spaces whose metric
is uniform and equal to unity.However if we to generalise
to spaces where this is not the case we must explicitly
take into account the metric of the space,

The metrlc of a space can be expressed as the

matrlx S where the elements of S are def‘lned

as SJ;_ = <QL(\)\0~:‘L\7> for F(,H) Fewn,

)
The inner product of any element of the dual spaces

F(u) and ch W, r" t. the non orthogonal basis {Q;,m.k
of Fm) and {Q {n} of th is given by

.t-
[XK‘XJ <Xu\S\X+>’-‘ X . % of XK.S-XL
where Ky € Fomy X") XK e FW |

and[ J denotes scalar product in a space with non
unit metric,

Obviously in the case S = T
[xulx ] = dxelTwlutY = Ldxuelx"D
i.e. it becomes the scalar product as defined before
for spaces defined on a orthonormal basis,

When (XAS‘)("?:%ifor a set of vectors KL= \..... M.
Wwe say that the vectors X and %" are orthonormal
w.r.,t., the non orthogonal basis i.e., the set of vectors
are O orthonormal,

The eigenvalue problem expressed in terms of matrices
belonging to such a non orthogonal space ,constrained

s.t. the eigenvectors be O orthonormal is written as

-A3.1-



M.V = SVD
where ™M is the matrix we wish to obtain the eigenvalues

of V the eigenvectors of M arranged as columns,

’

and D the diagonal matrix of eigenvalues,
tee. (s*m)V
viz, the eigenvalues and eigenvectors of (S"M)are found
- and(S'M) is diagonal in the basis of these vVectors,
Also we can write for any particular eigenvalﬁe

D = T VT y® Cstmy
where V"'q is the i th column orV .

CHANGE OF BASIS,

If we transform the non orthonormal basisiﬁi'(nlof
£™+to a orthonormal basis Si_c' m} of % we see that the
transformation is given by O" ‘W = 2 (1 Y e d 3
where S-'I"is the matrix s,t. SJZIS-'%S- and S the
metric of the Stc(‘m bgsis. We can write the transformation

in a super vector notation

where S0 = (c'w...... s G) i.,e.Tow vecto;o |

a sz (a'w. 'C\“(tﬂ with components 0"'.‘(‘3,0:‘-0\_
thus Gy = G- co. % "
The relationship between any function & £ gnd its
representative vectoreF on the {u‘m’s basis can be
written in this notation as K = A, X
and on the ic-imkbasis as XU = TW, K

The metric matrix of the SWwbasis can be written

.~

as Xc' @).gwdr,and the metmc matrix of the Quwbasis as Sqm Q(.\\ A‘- =

-A3,2=-



7 . + ~y * o My ety
4As TWFAWS Wwe can write Sg_(\\_o_'(.\aﬂ_;gs 20.(\), aws .1-&&'.'-" q 6. r KR

which indeed shows that () is a orthonormal basis for
F‘“).Tht? relationship between the representations of functions

on the two different bases 1S then given by

QU Xa = TW.Xe = AT Ko

) /, v
.o_-,Xo.=S,,zX.c‘, S and , XS"v:v %L X“ o
The relationship between matrices on the two different -
bases is given by Ma.Xa= Ve (Xa o e F*on Quw) bases)
. =l = v ) - 1.
« ® MQ‘% tX(r:%LBQ‘ > o S,"MQSI:XG":\C
- - v
Yo Me = M S and Mo = 97 M O™

Now if we wish to solve the eigenvalue problem

(w.r,t,QW) basis of F*) 5 'HeCo = CaEa

we can either find the eigenvectors of & HW,directly

and thus find Cg4 w.r.t. the @) basis of F(,ws'.t. C,:_ S. Q-Q-.-L
where Co contains the eigenvectors of S"Hain columhs,

or transform the equation to the 6f'thonorma1 basis O W)
viz, finding the eigenvectors of

2 (S H) O™ = ST HL T T Mo

an equivalence we note with care as Hg is not the
representation of Ho on the S basis,

Thus we obtain the solutions of He Co = Co€o

and to transform Co to the QL0 basis we have
"C-o. '-'-%J”’Ca' and Ea = S Co S-‘IL = e
(thus we drop the subscript for € )

Co  is then the matrix of eigenvectors of S Ha .

N . . ¢ ) c.:)‘- Lt e <
ow if we define P_ = o.C_ Ve can write ES = Tr Po. R
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\

and thus P&  is a density matrix of the i th state

on the €W basis,

el T -l . . - *‘5
£ |
if we define ("; = :)Q:) then the representation

of the density matrix P'.‘ on the QW) basis is P;, S

and Ei = T¢ P;S% Hk- TrPo. Ha

We can think of S Reand PQ Q as the metric corrected

representations of the Hamiltonian and the density

operator of the i th state on the QW) basis of g,

The actual representations being Po} and Ha but due

.to the non unit metric are only relative representatioz.ls. .
We note that S % PY ¢ = P Q . %"‘?h S

and also that %V”\—\s g% = W

TRANSFORMATIONS IN TENSOR PRODUCT SPACES.

The relationshlp between the bases EC\ e a (?-ﬁ 9
which can be written as &) gawm ,and o) 86;53‘).. :Q R £
is given by CWecoc = (argaw)d. %-'lz.® S
Also the relationship between the bases of the exterior

and symmetric product spaces are of the form

-C
(S A ) = (At aaa) ($7Ag™bases of A F 5

Cow v er1) = (amvauncs vs Ybases of V> FO

and hence the corresponding transformations for tensors

c 2 oW -
D2 F A F(M’o\né V:-. v ““f

-A3, L~



APPENDIX FOUR.




General mathematical notation tends to be a bit
meaningless unless concrete examples,of a simple nature,
can be visualized when one meets many dimensional usage
of the notation,In this appendix we explicitly deal |
with tensor,symmetric and external products of functions
and functional representations that form second rank

tensors and their rfej.ationship to each other,

1, TENSOR_PRODUCT,

-~

of basis of F (zuy to form a basis of &, F

Czmy
Any function € Flapgyo2R be represented in F,  as a
. 8
vector \Zn;‘th components iC\u} 02 leanes 2t s.t.
- S s .
Q(.\) = 2.\ QK w“(\)
. i
where iw.‘_ QD} LTl 20 forms a basis for Fc.zu\ .

This can be represented as a scalar product of Qy with

the 'super column vector' defined with elements WLw.

leee Ly = ol 3

w : =
Similarly any two variable function e@zg‘z“c‘gx)zm be represented
as the scalar product of a tensorg@zpu“)and a basis

'super tensor' WL ® wo(2)

i.e. Q(sz.) = ( O;; 0\?..) . _

wl(:.).msm = (wsaok

2 EXTERIOR PRODUCT. : ) (‘2."3 W)

The exterior product of two basis functions is

(retaining. n’ormalisé&:ion)
: oy ‘ |
Wil A Wy = = § Liwie — uoacmw;\mk .
\YZ C <A

-Al 1=



and any antisymmetric two variable function < ANY FQ.LM‘@
can be expressed as & scalar product of a tensor ¢ /\z_ ‘:le)
and the basis 'super tensor' SO
'EaQ\z.) = Coxnapd) (Lom;\wu\

K

elements of ayaq, are L g oL ) N

jathiale g3 (QKA ) d = ;- (O\L“Q‘,- QKQ:_B
. .
62

and ofF WM ALY v

(wmnwuﬂ “ 0“ (UD mwdm - > ‘\3
thus  Lociay <

= @)

5 Cad c,\ . )

"‘3 WO~ Qu Q D (uogmm‘)m w\\‘-‘iwg(l))
%Z cuq LW () - LQKQ._lDA\z.)w;m ZQKQ uo‘.mmau)»fﬁ o o “.\“’“*‘3

(note the changes in some of the summatlon subscrlpts)

z 7—? (°‘KQ - Qu ald w;mmém
3. SYRMETRIC PRODUCT.

Similarly to before f.,(m = (oo Q“VQ“‘“)(W(:}VL{X }
\. 1)

.
L]
.

| .
where the elements are (C\ v 5 —N
wva) ZMCJ)( u.Q -\'QKQ )

-—‘——-"'-—
end J‘,_';:'g:)\ (w;mwsm + w;mwsm)
M((S) is the multiplicitly of the sequence 1ij,

viz, if i=] thenwap—z " while if 1_3m 1,

Thus .Q,(.,_) = Z‘ ZN(‘)) (Q“C\ -\-QKQ Bszmelmw‘mmAu))

1§3
%)
A
T o 00, oLy U} Lz Z‘ o z ¢
:mu) " N L TN D uQ Wiyt + ‘1““‘33 uu;wimmsu\
N o
vl ‘_ ."

? 2\\4(.“) Qu 0\; UD..L\B\A 3"‘3
A8
N 2-323 Q“C\ WL Q‘\wsk")*ZQKQL\A&)\AA\u} a%\'er ‘\‘u‘mv\gm'\-o account
- i:i Y VA ! M) =2.
- "Z. 0L Al raya; twilow; ).
2 1008 rakal]Litow; b



If we then add &_(m and {‘s(m ie.

\ . . . . . N . . ‘ ' .
NOEANOE %}}Z Lakal-alad « ool + Qi&ﬂ‘ﬂlm%l’-ﬁ
(-5 . v
\ \ . i
= 20200l WL L)L} ()
4
- Z 0% QL WLOWiR)
”
\)

(oweal). (L) @ W)

= QC\‘:.)
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