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Abstract 1 

The global peat carbon pool exceeds that of global vegetation and is similar to the current 2 

atmospheric carbon pool. Because fire is increasingly appreciated as a threat to peatlands 3 

and their carbon stocks, here we review the controls on and effects of peat fires across 4 

biomes. Peat fires are dominated by smouldering combustion, which ignites more easily 5 

than flaming combustion and persists in wet conditions. In undisturbed peatlands, most of 6 

the peat C stock typically is protected from smouldering, and resistance to fire has 7 

increased peat carbon storage in boreal and tropical regions over long time scales. 8 

However, drying as a result of climate change and anthropogenic activity lowers the 9 

peatland water table and increases the frequency and extent of peat fires. The combustion 10 

of deep peat affects older soil carbon that has not been part of the active carbon cycle for 11 

centuries to millennia, and will dictate the importance of peat fire emissions to the carbon 12 

cycle and feedbacks to the climate.  13 



 3 

Peatlands are ecosystems that accumulate thick organic soil layers because of a long-term 14 

imbalance in which plant production exceeds decomposition throughout the entire 15 

organic soil column (Figure 1). Peatlands cover only about 2-3% of the Earth’s land 16 

surface, but store around 25% of the world’s soil carbon (C)1. They are most abundant at 17 

northern high latitudes (Figure 2A), where they cover approximately 4,000,000 km2 of 18 

land1 and store an estimated 500 - 600 Gt (Gt = 1015) C. Tropical peatlands store an 19 

additional ~100 Gt C across 400,000 km2, primarily in Southeast Asia1,2. Hence the 20 

global peat C pool exceeds that of global vegetation (~560 Gt C) and may be of similar 21 

magnitude to the atmospheric C pool (~850 Gt C)3. 22 

 Peat is defined as an organic soil composed of partially decayed plant remains 23 

with less than 20-35% mineral content. Slow decomposition rates created by anaerobic 24 

conditions are viewed as a necessary condition for peatland development4. Plant remains 25 

are deposited into the upper peat layer, which often is located above the mean water table 26 

for at least part of the year, and undergoes aerobic decomposition. Remaining organic 27 

matter is buried and transferred to the saturated peat layer below the water table where 28 

decomposition is minimal. Thus, water table depth is a key regulator of peatland 29 

decomposition and peat accumulation rates. If warming or disturbance lowers the water 30 

table in peatlands, removal of anaerobic constraints on decomposition will stimulate loss 31 

of peat carbon to the atmosphere5. A lower water table also will stimulate the loss of peat 32 

carbon via combustion during wildfires2,6, which we discuss in more detail in the sections 33 

below. 34 

 35 

Peatland vulnerability to burning 36 
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 Due to high moisture contents, the bulk of peat soils in pristine peatlands are 37 

naturally protected from burning, which facilitates the accumulation of peat over 38 

centuries to millennia in both boreal and tropical settings7,8. In contrast, while a shallow 39 

peat layer accumulates in many well-drained boreal forests, these soil organic layers are 40 

typically consumed during wildfires, resulting in negligible soil C accumulation across 41 

multiple fire cycles9.  42 

 As with all wildland fires, peatlands burn when an ignition event occurs in the 43 

presence of fuel and the right conditions to support combustion. In low biomass systems, 44 

such as grasslands, fuel load availability and continuity controls fire spread.  However, in 45 

high biomass systems such as peatlands, fires are controlled by heat transfer10 and water 46 

content11. Peat fires generally are dominated by smouldering combustion12, a flameless 47 

form of combustion that occurs more readily than flaming combustion10. Smouldering 48 

fires can persist under low temperatures, high moisture content and low oxygen 49 

concentrations13 and as a result can burn for long periods (e.g. weeks, months) despite 50 

rain events or changes in fire weather12. While fast moving flaming fires can travel over 51 

10 km h–1, the rate of spread of smouldering can be as slow as 0.5 m per week14. 52 

Smouldering and flaming combustion during wildfires often are coupled. For example, 53 

smoldering peat can provide a pathway to a flaming fire even if the heat sources (embers 54 

or lightning) are too weak to ignite a flame directly.  55 

 In general, the peat C stock is protected from deep smouldering because of 56 

hydrologic self-regulation in peatlands15,16. The high porosity and storativity (storage 57 

coefficient) of surface peat layers minimizes water table variability and helps peatlands to 58 

maintain conditions too wet to sustain smouldering. If surface peat does dry and become 59 
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flammable, wet dense organic layers found deeper in the peat profile typically serve as a 60 

fire barrier. However, when natural or anthropogenic disturbances interfere with 61 

hydrologic self-regulation and allow further drying, deep peat becomes vulnerable to 62 

more frequent or more severe burning.   63 

 Across some boreal regions, particularly continental North America, mean annual 64 

burn area has more than doubled in the past several decades, associated at least in part 65 

with regional warming17,18. Even during severe fire years, burning in undisturbed boreal 66 

peatlands typically is limited to the upper 10-20 cm of peat19,20. Forestry, agriculture, peat 67 

harvesting, and road construction in boreal regions all lead to peatland drainage, which 68 

can greatly exacerbate the burning of peat. Experimental drainage of a Canadian fen 69 

increased fire emissions nine-fold, resulting in release of more than 450 years' worth of 70 

peat accumulation during a single fire6. 71 

 In the tropics, abundant and regular rainfall combined with a humid understory 72 

microclimate ensures that water inputs usually exceed evapotranspiration losses from 73 

peatlands, maintaining high peat moisture21. As a result, tropical swamps in their natural 74 

state are fire resistant owing to moist microclimate and low-flammability soils. Prior to 75 

large-scale settlement and agricultural conversion of peatlands, only occasional fires were 76 

detected on peatlands in Southeast Asia, even during drought spells, and with a sufficient 77 

time between fires to allow recovery of forest cover22. Human activities in the tropics, 78 

including plantation development, agriculture, and logging, have made peatlands more 79 

vulnerable to burning23. For example, disturbed peatlands in Southeast Asia are fire-prone 80 

owing to the high amount of dry, flammable materials and the lower humidity that results 81 

from a reduced tree canopy. Additionally, increased human access and activities increase 82 
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the number of accidental or intentional fire ignitions. As a result, drained tropical peats 83 

tend to burn extensively. Fires consumed peat up to depths of 50 cm during the ENSO 84 

events of 1997/98 and 200624,25. Drainage and logging in tropical peatlands also has 85 

shortened fire frequencies, and repeated burning has further reduced the peatland carbon 86 

stock26.  87 

 88 

Fire and ecological feedbacks  89 

Due to fire resistance, fire has not played a significant historic role in the ecology of 90 

tropical peatlands. In contrast, wildfire plays an important role in the functioning of 91 

undisturbed boreal peatlands. Fire in boreal peatlands initiates plant successional change, 92 

increases soil temperatures, and increases nutrient availability similarly to burning in 93 

other ecosystems27,28. Heterogeneous patterns in the combustion of peat promote 94 

biodiversity by supporting the establishment of more species-rich pioneer plant 95 

communities27. Spatial variation in combustion also influences the undulating hummocks 96 

and hollows that characterize the ground surface of most northern peatlands. In part 97 

because of the water use strategies of Sphagnum (peat mosses), hummock peat has 98 

greater water holding capacity and burns less extensively than peat in hollows, which 99 

reinforces these microtopographic features28,29.  100 

 Deeper burning of peat resulting from water table drawdown has consequences 101 

for post-fire ecosystem function and succession in both boreal and tropical regions. 102 

Although energy release from flaming fires is more intense than smouldering, active 103 

flaming produces high temperatures at the ground surface for only a brief period of time, 104 

with minimal heating of even shallow soil layers31. The longer duration of smouldering 105 
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transfers more heat to surrounding soils and plants than active flaming. As a result, 106 

smouldering fires transfer heat deeper into the soil, and can lead to extensive fuel 107 

consumption that can be two orders of magnitude larger than that in flaming fires12.  108 

Increased smouldering of deeper peat as a result of water table drawdown will increase 109 

damage to heat-sensitive plant roots and microorganisms such as ectomycorrhizae and 110 

bacteria32,33. These altered fire effects are likely to be more long-lived in disturbed 111 

peatlands. Post-fire succession can cause disturbed boreal and tropical peatlands to shift 112 

from nonflammable to more flammable fuel types, increasing fire risk26. These post-fire 113 

shifts also are indicative of a loss of hydrological regulation in these systems, which 114 

likely cause a diminishment of peat accumulation even in the absence of repeated fires. 115 

 116 

Carbon emissions from peatland burning 117 

 Due to the accumulation of peat and their role as a persistent global sink of 118 

atmospheric CO2 throughout the Holocene, peatlands have had a net cooling effect on the 119 

Earth's climate34. This is despite the fact that these systems also serve as a source of 120 

methane34, which is produced by microbes under anaerobic conditions. However, 121 

increased soil C losses from disturbed peatlands may have significant climate impacts in 122 

the future35. From an atmospheric viewpoint, fires in undisturbed peatlands are most 123 

likely to be CO2 neutral because the combustion of surface peat influences carbon that is 124 

cycling rapidly (i.e., combusted carbon is quickly re-sequestered by recovering 125 

vegetation). This type of burning results in a near zero effect on atmospheric carbon over 126 

time scales of decades to centuries36. However, the combustion of deep peat has the 127 

potential to affect older soil carbon that has not been part of the active carbon cycle for 128 
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centuries to millennia. If increases in fire frequency or burn severity lead to deeper 129 

burning in peatlands, these fires will no longer be carbon neutral, at least on time scales 130 

of centuries to millennia. 131 

 Perhaps as a harbinger of future emissions, widespread and deep burning peat 132 

fires in Indonesia in 1997 and 1998 released approximately 0.95 Gt of carbon24,37, 133 

equivalent to ~ 15 % of global fossil fuel emissions at that time. Peat fire emissions also 134 

have indirect climate impacts. Smoke produced by peat smouldering leads to regional 135 

haze and reduced light levels, which suppresses plant CO2 uptake39. Smoke from peat 136 

fires could have more widespread influences, such as on marine ecosystems40. 137 

Smouldering is known to produce larger emissions of CO and CH4, volatile organic 138 

compounds, polyaromatic hydrocarbons, and particulate matter than flaming combustion. 139 

For example, tropical peat fires emit as much as three to six times more particulate matter 140 

than grassland, forest, or plantation fires per unit carbon combusted8. An understanding 141 

of the contribution of aerosols from biomass burning to radiative forcing in general is 142 

limited3, and the lack of attention to aerosols from peat fires creates a striking knowledge 143 

gap with respect to future global climate change41. The quantity of peat fire-derived 144 

emissions and the amounts emitted under different flaming and smouldering phases is 145 

poorly understood12 and represent important areas of future research.  146 

 At regional to global scales, estimates of fire C emissions usually are derived 147 

from coarse-scale models, typically at spatial resolutions of 0.50° or 0.25° (Figure 2), that 148 

have not been specifically designed to estimate peatland fire emissions. Peatlands 149 

themselves are difficult to map42, and as a result there are few remote sensing products 150 

that allow for spatially explicit assessments of peatland abundance or the effects of 151 
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wildfire on peatland carbon dynamics. Smouldering fires also are inherently difficult to 152 

detect with spatial data such as thermal anomaly maps, which often are used in wildfire 153 

detection43. For these reasons, estimates of fire carbon emissions depend on rough 154 

indications of fire frequencies (Figure 2) and cannot resolve the high spatial variability 155 

typically associated with peatland fire dynamics. Despite these uncertainties, it is clear 156 

that peat fires have the potential to contribute significantly to global emissions of 157 

greenhouse gases.  158 

 159 

Current and future risks of peat fires 160 

 This review has highlighted a number of important areas in which tropical and 161 

boreal peatlands differ in fire vulnerability. Low latitude peatlands, like those of 162 

Indonesia, Malaysia, Peru, Brazil, and the Caribbean region, are juxtaposed with densely 163 

populated urban areas. In these regions, drainage due to anthropogenic activities and 164 

increased frequency of human-caused ignitions has converted many peatlands from fire-165 

resistant to fire-prone systems. In contrast, drier soils and increased lightning ignitions as 166 

a result of a warming climate are the most important factors increasing the likelihood of 167 

northern high latitude peat fires. The role of expanding human populations in this region 168 

is not well understood. Independent of these anthropogenic factors, it seems likely that 169 

future climate will increase the vulnerability of peatlands to fire at a global scale. In 170 

virtually all areas where peatlands are abundant, relative humidity is expected to decrease 171 

during the burning season (Figure 2C), which may increase the likelihood of peat fires.  172 

 Our synthesis of the current state of knowledge on peatland ecosystem carbon 173 

fluxes indicates that losses via fire can exceed those due to enhanced decomposition in 174 
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disturbed boreal and tropical peatlands (Figure 1). Climatic or anthropogenic drying of 175 

peatlands enhances microbial decomposition of organic soils and stimulates fire activity. 176 

While drying in some boreal peatlands will stimulate tree growth and enhance total 177 

vegetation C uptake, reduced moss productivity combined with a more frequent and 178 

severe fire regime will diminish peat accumulation and long-term C storage. In the 179 

tropics, anthropogenic drainage and deforestation reduces the vegetation carbon sink and 180 

shifts vegetation towards more flammable fuels. Drying in peatlands also increases the 181 

depth of belowground fuel combustion, releasing carbon that has been stored in soils for 182 

centuries to millennia to the atmosphere, thus creating a positive feedback to the climate 183 

system (Figure 1). These conclusions are limited by the current state of research, but 184 

clearly point to the importance of fire to future peatland carbon balance. 185 

 The past decade of geoscience research has greatly improved our understanding of 186 

the controls on peat fires, their effects on ecosystems, and feedbacks to climate. Increases 187 

in peat fires also have landscape and health consequences that extend beyond the 188 

geosciences. Because smouldering peat fires are difficult to suppress, land managers will 189 

require new tools to respond to extreme fire danger situations in areas where peatlands 190 

are prone to burning. Peat fire emissions cause diminished air quality44, resulting in 191 

respiratory disease and human mortality45-47. In some cases, fire can cause a long-term 192 

change in the environment, e.g. the thawing of the underlying frozen ground in 193 

permafrost peatlands, the initiation of extensive peat erosion in upland temperate 194 

peatlands48 or replacement of biodiverse forested peatlands in SE Asia by species-poor 195 

herbaceous communities26. If these changes enhance peat drying and lead to the 196 

accumulation of flammable fuels, they will increase fire frequencies and lead to even 197 
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more severe burning of peat. Alternatively, if vegetation regrowth decreases insolation 198 

and wind penetrance, increases in local humidity could reduce peatland fire risk.  199 

Similarly, a reduction in woody fuels in favor of sparse, discontinuous vegetation could 200 

limit the spread of wildland fires in peatlands. Due to these uncertainties, there is a need 201 

for studies that address the ecology of peat fires, and the role of peat fires in long-term 202 

Earth System processes.  203 
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Figure Legends 379 

Figure 1. Drying and fires increase peat carbon loss to the atmosphere. Changes in 380 

ecosystem carbon stocks in response to fire and drying scenarios in (A) North American 381 

continental boreal peatlands, and (B) SE Asian swamps.  Ecosystem carbon balance is the 382 

difference between net CO2 uptake by plants (NPP) and CO2 loss to the atmosphere 383 

through decomposition (Rh) and combustion (C). In undisturbed peatlands, peat 384 

accumulates because the vegetation carbon sink exceeds soil carbon losses throughout the 385 

entire peat column.  Drying associated with climate warming or human activities can 386 

influence peatland carbon balance by altering plant carbon uptake or losses such as 387 

decomposition (Rh) and combustion (C). Changes in the amount of belowground fuels 388 

with drying or drainage is denoted by the red line.  Arrows depict the direction of carbon 389 

transfer, with the length of the arrows indicating the magnitude of changes in flux over a 390 

100-year period relative to the undisturbed state. Cooling effects on climate are shown by 391 

blue arrows; warming effects by red arrows. 392 

 393 

Figure 2. Fire and climate dynamics in peatlands. (A) Global peatland abundance 394 

based on multiple data sources49, (B) average fire return intervals based on satellite 395 

derived burned area50 in 0.25 × 0.25° grid cells coinciding with the peatland abundance 396 

data, and (C) average change in relative humidity in the peatland grid cells based on the 397 

multi-model mean CMIP5 climate projections (http://cmip-pcmdi.llnl.gov/cmip5/) in 398 

2081-2100 compared to 1991-2010.  In all panels, insets show an enlargement of SE Asia 399 

for visual purposes. 400 
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