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Introduction

p73 is a p53-related transcription factor with fundamental roles 
in development,1-4 tumor suppression5-11 and senescence.12-23 
Transcription from two different promoters on the TRp73 gene 
results in generation of TAp73 and ΔNp73 isoforms with oppos-
ing pro- and anti-apoptotic functions.24-28 Although p73 shares 
tumor-suppression functions with p53,29-44 it plays some very dis-
tinctive roles in development.45-47 Mice lacking p73 show neuro-
degeneration, defects in pheromone detection as well as chronic 
infection and inflammation that lead to a shorter lifespan.3 In 
vivo studies demonstrated that more than 70% of mice lacking 
TAp73 develop tumors.48 On the other hand, ΔNp73 isoforms 
are known to exhibit dominant-negative activity toward the 
tumor-suppressor functions of both TAp73 and p53 and also act 
as a negative regulator of DNA damage response.27,49-53 Besides, 
ΔNp73 interferes with many developmental programs, such as 
the myogenic differentiation program.54 Moreover, both TAp73 
and ΔNp73 KO models show mild degenerative phenotypes, 
underlying the importance of p73 in brain development.48,55-60 

p73 is a p53 family transcription factor. Due to the presence in the 5' flanking region of two promoters, there are two 
N-terminal variants, TAp73, which retains a fully active transactivation domain (TA), and ΔNp73, in which the N terminus 
is truncated. In addition, extensive 3' splicing gives rise to at least seven distinctive isoforms; TAp73-selective knockout 
highlights its role as a regulator of cell death, senescence and tumor suppressor. ΔNp73-selective knockout, on the 
other hand, highlights anti-apoptotic function of ΔNp73 and its involvement in DNA damage response. In this work, 
we investigated the expression pattern of murine p73 C-terminal isoforms. By using a RT-PCR approach, we were able 
to detect mRNAs of all the C-terminal isoforms described in humans. We characterized their in vivo expression profile in 
mouse organs and in different mouse developmental stages. Finally, we investigated p73 C-terminal expression profile 
following DNA damage, ex vivo after primary cultures treatment and in vivo after systemic administration of cytotoxic 
compounds. Overall, our study first elucidates spatio-temporal expression of mouse p73 isoforms and provides novel 
insights on their expression-switch under triggered conditions.
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This scenario becomes even more complex by focusing on the C 
terminus, where many splicing events occur, giving rise to at least 
seven different isoforms.61 p73α is the only one that contains a 
fully functional sterile alpha motif (SAM), which has been 
described as a putative protein-protein interaction domain.62-64 
TAp73γ rises from alternative splicing at exon 11 and p73δ, 
missing exon 11, 12 and 13.65 Although p73γ retains all the 
exons coding for SAM domain, the splicing event at exon 11 
produces a shift of the reading frame, leading to a premature 
STOP codon.65 Stimulation of human peripheral blood led to 
identification of two additional isoforms, p73ε and p73ζ, with 
p73ε lacking exon 11 and 13 and p73ζ excluding exons 11 and 
12.66 Elucidation of p73ζ isoform clarifies that this splicing vari-
ant includes most of the SAM domain, although it misses a 
hydrophobic residue that seems to be fundamental for stability 
and consequent domain functionality.66 Similar observation was 
pointed out in this study, regarding the isoform p73ε. In this 
case, the deletion covers the first three amino acids of an α-helix, 
negatively influencing proper folding of the domain. Even if 
p73γ encodes for all the exons involved in the SAM domain, due 
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of them was much weaker than others (Fig. 1B). To overcome 
this problem and to further prove the existence of all isoforms, 
we performed a PCR using isoform-specific primers designed 
at the specific exon-exon junctions. Through this strategy, we 
generated a specific PCR for each C-terminal splicing variant. 
As shown in Figure 1C, all the isoforms were easily detected. 
Identity of the isoforms was further confirmed by DNA sequenc-
ing on PCR products.

Analysis of organ-specific expression of mouse p73 
C-terminal isoforms. The expression of human p73 variants has 
been characterized in different tissues and cell lines.65,66,70,71 Since 
the expression pattern in the mouse has still not been investi-
gated, we analyzed different organs using the same strategy used 
in Figure 1B and performing PCR in saturating conditions (40 
cycles) in order to detect all possible isoforms. We found out that 
C-terminal variants of p73 are expressed in all the organs tested, 
even if at different levels, with p73α being the most abundant 
(Fig. 2). Since we detected also products at unexpected mobility 
shifts, we sequenced all of them, but we failed to identify brand 
new isoforms, while we confirmed presence of all the variants 
previously described in human.

Analysis of isoforms expression at different developmental 
stages. We then focused on expression upon different devel-
opmental stages, since p73 seems to be a key regulator in this 
process.60,72-75 We started from embryonic up to adult stages 
(2-mo-old). In this case, we performed a semi-quantitative 
RT-PCR (30 cycles). Quantification was done in relationship 
with starting levels (E12). Also in this system, p73α was the 
most abundant isoform, even if it did not undergo major changes, 
while p73ζ, but also to a smaller extent, p73ε and p73δ, were 
upregulated over time (Fig. 3A and B). p73γ, on the other hand, 
was downregulated during development (Fig. 3A and B). We also 
monitored levels of TAp73 (25 cycles) and ΔNp73 (30 cycles); we 
determined that TAp73 was more abundant than ΔNp73, even 
if, on the other hand, there was no significant regulation during 
development of any of the N-terminal variants (Fig. 3A and C). 
This type of analysis also revealed other migrating bands at unex-
pected sizes (Fig. 3A), which were sequenced, but revealed to be 
not specific.

Analysis of isoforms expression upon DNA damage in vitro. 
Since p73 is induced upon DNA damage and its loss confers 
resistance to cell death,48,76-78 we checked whether cytotoxic drug 
treatments, with cisplatin79,80 or etoposide,81-84 affected expression 
levels of C-terminal isoforms in the N2a cell line. In semi-quan-
titative RT-PCR, α-isoform results slightly increased, while p73β 
and p73ζ appeared strongly decreased (Fig. 4A–C). In another 
system instead, the expression levels of the isoforms varied 
slightly. Indeed, in spleen-derived primary splenocytes, p73γ and 
p73ε were the two most upregulated isoforms upon DNA dam-
age, while p73ζ was downregulated, consistently with the results 
in N2a cells (Fig. 5A and B). In this scenario, we also monitored 
levels of N-terminal isoforms. TA levels at 24 h were lower than 
untreated cells, while ΔN levels were comparable between treated 
vs. untreated at 24 h. Levels of TA and ΔN were lower at 24 h 
than at 6 h, probably due to ongoing massive apoptotic events, as 
demonstrated by PARP cleavage85-89 (Fig. S1).

to the splicing at exon 11, the open reading frame is different.65,67 
Here, we investigated the tissue spatiotemporal expression profile 
of all p73 isoforms in mice and their expression switch under 
stressed conditions.

Results

Identification of mouse p73 C-terminal isoforms. Figure 1A 
reports a schematic representation of the alternative splicing 
occurring in the C-terminal region of human p73 gene. Based 
on this, we tried to understand whether all the isoforms identi-
fied in human were also present in the mouse. There are com-
mercial antibodies available, sensitive enough to detect p73 and 
its N-terminal variants;68,69 however, these antibodies fail to dis-
criminate C-terminal isoforms at endogenous levels in the mouse. 
For this reason, we monitored mRNA levels. Organs from adult 
(2-mo-old) C57Bl/6 mice were collected and RNA was extracted. 
cDNA derived from kidney was then used for PCR in saturating 
conditions (40 cycles). PCR was performed by using forward and 
reverse primers designed, respectively, on exons 10 and 14. As an 
empty control we used RNase DNase-free water. We were able to 
detect all the isoforms, although the signal deriving from some 

Figure 1. C-terminal isoforms of p73. (A) Schematic representation of 
splicing of human C-terminal p73. (B) RNA from kidney of adult mouse 
was reversed transcribed and cDNA was amplified by PCR. Product was 
run on 10% acrylamide gel. All the isoforms identified in human were 
detected and distinguished for different nucleotide length. (C) cDNA 
derived from an adult mouse was also amplified using isoforms-specific 
primers for each specific splicing variants. PCR products were run on 
agarose gel. All experiments have been repeated at least three times. 
Ctrl, control (DNase RNase-free H2O).
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the lung, all the isoforms were induced (Fig. 6A–C), while in 
other organs, there were no detectable effects of p73 levels, 
such as in the heart (data not shown). Moreover, in other tis-
sues there were varying effects depending on the treatment that 
the animal received; in the spleen for example, etoposide was 
capable of inducing all isoforms (Fig. 6D and E), while cispla-
tin was causing a shift from α-isoform toward p73γ and p73δ 
(Fig. 6D and F).

Analysis of isoforms expression upon DNA damage in vivo. 
Finally, we investigated the effects on levels of p73 C-terminal 
isoforms in vivo upon DNA damage. We treated adult mice 
intra-peritoneally and analyzed levels of C-terminal isoforms 
20 h after treatment. We had different outcomes in relation-
ship to the tissue analyzed, probably due to the ability of the 
drug to reach different organs but most likely also depending 
on starting endogenous levels of p73. In some organs, such as in 

Figure 2. Organs-specific expression of p73 C-terminal isoforms. Screening of the isoform expression in organs of 2-mo-old mice. RT-PCR was per-
formed using primers that amplify all isoforms (exons 10–14, mp73-X10 FWD and mp73-X14 ReV). Samples were analyzed as in Figure 1B, and repre-
sentative result is depicted. experiments have been reproduced at least three times. Olfac. Bulb, olfactory bulb; ctrl, control.

Figure 3. expression of C-terminal isoforms during mouse development. Screening of the isoform expression during mouse development starting from 
embryonic stage e12, reaching adult (2 mo) age. Samples were analyzed as in Figure 1B and a representative result is depicted in (A). Semi-quantitative 
RT-PCR (30 cycles for C-terminal p73, 20 cycles for GAPDH) was performed and samples were run on a 10% acrylamide gel. Densitometry analysis was 
performed on at least three gels in order to quantify C-terminal isoforms levels (B) or TAp73 and ΔNp73 levels (C). experiments have been repeated at 
least three times. e, embryonic stage; P7, seventh day after birth; TA, TAp73; ΔN, ΔNp73; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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of these two models. For example, both TAp73-/- and ΔNp73-/- 
show mild neurological defects, while the full p73-/- displays a 
more penetrant phenotype; besides, the strong immunological 
defect found in the full p73-/- mice is absent in the TAp73-/- or 
ΔNp73-/-, leading to the conclusion that other factors might 
be involved. We may speculate that TAp73 and ΔNp73 could 
have overlapping functions that allow one isoform to overcome 
the absence of the other and vice versa. Moreover, C-terminal 
domains might play a role in this, since in the N-terminal KO 
models they were still expressed and functional in the remaining 
N-terminal isoform. As support to this theory, there is the pres-
ence of a sterile alpha motif (SAM) at the C terminus of p73. 
SAM domains are small putative protein-protein interaction 
domains,90 and in the mouse, this region overlaps exons 12–14 of 
p73;63 therefore, only α encodes a fully functional SAM domain 
and hypothetically could have an unique pool of interaction 
partners. Moreover, it has been shown that p73 SAM domain, 
but also the extreme C terminus, are able to regulate nega-
tively the transcriptional activity of the protein,91,92 while on the 
other hand, deletion of SAM domain and extreme C terminus 
enhances transactivation and DNA-binding activity but inhibits 
apoptosis.92 Thus, it is striking that in all the tissues analyzed, we 
identified α as the most abundant. It could possibly have some 
involvement with control of proliferation, since presence of a fully 
functional SAM domain apparently inhibits it. This could be an 
incredibly interesting and still not described aspect of control of 
p73. In fact, the p73β, rather than α, variant has an interesting 
potential to transactivate target genes.65 This similarity retains 
from p63, where the C-terminal domains (TI and SAM) have 
been proved to act as dominant transcription repression mod-
ules.93-99 Many mutations found in the AEC syndrome have been 
shown to destabilize or modify the structure of one of the helices 
of this region, leading to a loss of function and a consequent 
deregulation in transactivation and growth suppression.100-104 
These findings clearly state a connection between functionality 
of the SAM domain and AEC syndrome, opening possible new 
hints of investigation for its p73 homolog. In absence of triggers, 
the most preferred isoform transcribed could be p73α, due to 
its low transactivation potential, while upon a specific stimulus 
there could be a shift toward other isoforms, as we were able to 
highlight at developmental stages but also upon DNA damag-
ing agents. Another interesting new aspect was highlighted by 
our work: no striking differences between TAp73 and ΔNp73 
levels were detected during development or upon stresses. Instead 
C-terminal isoforms resulted to be tightly regulated; for exam-
ple, during development, p73ε, p73ζ and to a lesser extent p73δ, 
were specifically, induced while γ was downregulated. Also, upon 
DNA damage in vitro and in vivo, we highlighted specific regu-
lation of each isoform, suggesting that every C-terminal variant 
could play specific roles, possibly depending on the tissue or cell 
system analyzed. In line with this, interesting observations have 
been made on the C terminus of p63; in fact, mutations leading 
to premature stop codon in exon 14 of p63 are correlated with 
limb mammary syndrome and SHFM (split-hand-foot malfor-
mation).105-107 For these reasons, a further analysis should be done 
in order to clarify aspects regarding p73 functions correlated with 

Discussion

Here, we identified and characterized the tissue-specific expres-
sion of C-terminal isoforms of murine p73. This has been partly 
published regarding human p73, while investigation on its murine 
counterpart has been totally neglected. The isoform-specific KO 
mice models focused only on the characterization of p73 N ter-
minus.48,55,56 These tools yield a lot of insight into understanding 
functions and roles of the specific N-terminal isoforms of p73; 
however, they leave some unsolved questions, since not all the 
defects displayed by the full p73-/- mouse3 were represented in one 

Figure 4. C-terminal isoform expression upon DNA damage in vitro. 
N2a (neuroblastoma cell line) were treated with 1 μg/ml etoposide or 5 
μg/ml cisplatin, collected at the indicated time points and processed. 
Semi-quantitative RT-PCR (30 cycles for C-terminal p73, 20 cycles for 
GAPDH) was performed, and samples were run on a 10% acrylamide 
gel. A representative example (of at least three experiments) is depicted 
in (A). Densitometry analysis of at least three gels was achieved, relative 
to untreated cells, upon cisplatin treatment (B) or etoposide treatment 
(C). Cispl, cisplatin; eto, etoposide; untr., untreated; GAPDH, glyceralde-
hyde 3-phosphate dehydrogenase.
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has been suggested to play a role in regulation of transcription 
through lipid interaction.121-123 Studying interactions with new 
partners, with powerful techniques such as TAP tag124,125 or 
MAPPIT,126,127 could lead to some clarifications of p73’s still 
unknown functions, related, for example, to strong defects in 
brain and chronic inflammation.

To conclude, this work identifies the C-terminal isoforms 
transcribed in the mouse, upon endogenous and challenging con-
ditions. It underlines the extreme importance of studying these 
isoforms more in detail, since they could play a fundamental and 
still-not-investigated role in pathologies such as cancer, degenera-
tion and development.

its C terminus. Moreover, it is now becoming crucial to gener-
ate C-terminal isoform-specific KO models, which could also 
become powerful tools for studying potential human diseases 
correlated by p73 misfunctions, such as neurodegeneration108-113 
and cancer.34,114-120

Our work also underlined the incredible necessity of develop-
ing an antibody with enough sensitivity to detect endogenous 
p73 C-terminal isoforms, as well as an antibody specific for the 
SAM domain. This would open a wide range of new directions, 
including screening for interaction partners, due to the putative 
function of the SAM. It would be intriguing to investigate influ-
ences of the SAM on tetramerization of p73, since this domain 

Figure 5. C-terminal isoforms expression upon DNA damage in primary splenocytes. Primary splenocytes were treated with 1 μg/ml etoposide or 5 
μg/ml cisplatin, collected at the indicated time points and processed. Semi-quantitative RT-PCR (30 cycles for C-terminal p73, 20 cycles for GAPDH) 
was performed and samples were run on a 10% acrylamide gel. Representative result is depicted in (A). Densitometry analysis of at least three blots 
was achieved, relative to starting point (untreated, 6 h), to monitor C-terminal isoforms levels (B), TAp73 levels (C) and ΔNp73 levels (D) over time. Cispl, 
cisplatin; eto, etoposide; untr., untreated; TA, TAp73; ΔN, ΔNp73; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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Materials and Methods

Cells cultures, primary cells and reagents. Cells were cultured 
at 37°C in 5% CO

2
 in culture medium. N2a were purchased 

from ATCC (#CCL-131) and maintained in a mix of 45% 
DMEM high glucose, 45% Optimem (Gibco) and 10% fetal 
bovine serum, 250 mM L-glutamine, 1 U/ml penicillin/strep-
tomycin (all Gibco). Splenocytes were generated as already been 
described128 and cultured in RPMI 1640 medium (Gibco), sup-
plemented with 10% FCS, 250 mM L-glutamine, 50 mM 2-mer-
captoethanol, penicillin/streptomycin (1 U/ml), non-essential 
amino acids and 1 mM pyruvate (all Invitrogen).

Western blotting. Western blotting was performed as previ-
ously described.129 In brief, proteins were extracted with RIPA 

Figure 6. C-terminal isoforms expression upon DNA damage in vivo. C57Bl/6 mice (2-mo-old, n ≥ 6 per group) were treated i.p. with 10 mg/kg etopo-
side or 5 mg/kg cisplatin or with PBS (control group). Animals were sacrificed after 20 h and tissues were then processed. Semi-quantitative RT-PCR (24 
cycles for C-terminal p73, 20 cycles for GAPDH) was performed and samples were run on a 10% acrylamide gel. example of results deriving from lung is 
depicted in (A). Densitometry analysis of at least three blots was achieved, showing levels of C-terminal isoforms upon etoposide (B) or cisplatin treat-
ment (C). The same was done for the spleen (D) and quantification upon etoposide (E) or cisplatin (F) is shown. Cispl, cisplatin; eto, etoposide; untr., 
untreated; TA, TAp73; Δn, ΔNp73; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

buffer containing cocktail inhibitors (Roche), and concentration 
was determined using a Bradford dye-based assay (Biorad). Total 
protein (30 μg) was subjected to SDS-PAGE followed by immu-
noblotting with appropriate antibodies at the recommended 
dilutions. The blots were then incubated with peroxidase-
linked secondary antibodies followed by enhanced-chemilu-
minescent detection using Super Signal chemiluminescence kit 
(Thermo Scientific). Antibodies: mouse monoclonal anti PARP 
(1:1,000; Alexis), mouse monoclonal anti GAPDH (1:10,000; 
Sigma-Aldrich).

DNA damage in vivo. C57Bl/6 mice (2-mo-old) were injected 
i.p and sacrificed 20 h after treatment. Organs were collected 
and frozen on dry ice. Tissue homogenization was performed in 
750 μl of TRIzol using a tissue grinder (Precellys). Mice were 
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GG-3'
mp73-X14 REV 5'-GCA TTT CCG TGT GCG CCA C-3'
mp73-X12–14 REV 5'-GCC TCG TCA GGA CCT TGG 

G-3'
mp73-X13–14 REV 5'-CCT GAA GCA GAG CCA TGA 

CTG-3'

mTAp73 FWD 5'-GCA CCT ACT TTG ACC TCC CC-3'
mTAp73 REV 5'-GCA CTG CTG AGC AAA TTG AAC-3'
mDNp73 FWD 5'-ATG CTT TAC GTC GGT GAC CC-3'
mDNp73 REV 5'-GCA CTG CTG AGC AAA TTG AAC-3'
GAPDH FWD 5'-CAA GGT CAT CCA TGA CAA CTT 

TG-3'
GAPDH REV 5'-GTC CAC CAC CCT GTT GCT GTA 

G-3'
RT FWD and RT REV along with GAPDH FWD and 

REV were used to reverse transcribe cDNA. Primers mp73-X10 
FWD and mp73-X14 REV were used to amplify by PCR all 
C-terminal isoforms. Primers mp73-X10–11 FWD and mp73-
X13–14 REV were used to amplify p73α specifically. Primers 
mp73-X10–11 FWD and mp73-X12–14 REV were used to 
amplify p73β specifically. Primers mp73-X10–12 FWD and 
mp73-X13–14 REV were used to amplify p73γ specifically. 
Primers mp73-X10–12 FWD and mp73-X12–14 REV were 
used to amplify p73ε specifically. Primers mp73-X10–13 FWD 
and mp73-X14 REV were used to amplify p73ζ specifically. 
Primers mp73-X10–14 FWD and mp73-X14 REV were used to 
amplify p73δ specifically.
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