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Summary

Although there has been extensive investigation of the creep behaviour 

of structures subjected to steady loads and isothermal conditions, the 

behaviour when temperatures vary both spatially and with time has received 

relatively little attention. Numerical solutions are extremely difficult 

to produce for time varying stress and appropriate constitutive relation

ships have yet to be evolved.

The thesis is divided into two sections both of which are concerned 

with structural creep behaviour under time-constant applied loads:

In the first section the behaviour of a few simple structures are 

investigated for spatially varying temperature fields which remain constant 

in time. Adopting an appropriate form of Norton's constitutive relation

ship it is shown that the stationary deformation of the structure may be 

related to a single reference material test conducted at a reference 

stress and a reference temperature, which is independent of material con

stants, thereby providing a generalisation of the reference stress 

technique used for isothermal conditions. Experiments on a simple beam 

structure are described which confirm that a good correlation between the 

structural behaviour and uniaxial reference test behaviour exists. In all 

cases considered the reference temperature remains close to the lowest 

temperature in the structure indicating that locally high temperatures may 

sometimes be tolerated without excessive structural deformation.

In the second section the creep behaviour of a parallel two-bar 

structure and a uniform plate subjected to cyclic histories of temperature 

is analysed by means of a method of structural analysis which arises from 

certain bounding theorems. It is shown that these bounding theorems can 

describe thermal-creep interaction extremely well and general modes of 

creep behaviour are discernable when the non-linear viscous, strain- 

hardening or Bailey-Orowan constitutive relationships are adopted.
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Deformation maps that relate structural behaviour to a material parameter 

3 are described and in certain circumstances a reference stress may be 

defined which is independent of other material parameters. This result 

indicates that a reference stress approach is applicable to variable 

temperature problems, but that the reference value depends upon the range 

of values of this quantity 3 . In order to substantiate the theoretical 

assumptions a preliminary experimental investigation of the two-bar 

structure subjected to cyclic histories of temperature is described. Tests 

using aluminium specimens indicate that a residual stress field is set up 

that varies quite slowly in time and remains effectively constant after a 

few cycles. It is found that the strain-hardening constitutive relation

ship provides a best fit to the structural behaviour.
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Chapter 1
I

Description of the"Contents of the Thesis

Some elements of power plant components as well as many other 

structures are subjected to the application of some form of loading cycle 

during operation. This may take the form of thermal loads, a variation 

of imposed forces and displacements or a combination of these. The 

interaction between the non-linear creep response of the material and the 

presence of both spatially and time varying temperature fields is a 

problem the analysis of which remains amongst the more intractable problems 

of structural mechanics. Temperature enters into the problem at a material 

level by producing temperature dependent changes in material behaviour and 

at a structural level by thermal expansions causing incompatible volume 

changes which in turn produce thermal stress. Either one or both of these 

effects are ignored in many of published creep analyses and the relevance of 

such calculations remains difficult to assess in general terms.

In this thesis the results of a theoretical and experimental study on 

the creep of structures subjected to spatially- and time-varying tempera

ture fields are reported. Attention is confined to problems with steady 

applied loads and it is assumed that strains due to time-independent 

plastic deformation are small. Where calculations are given the material 

properties, unless stated otherwise, are those applicable to commercially 

pure aluminium, the material used in the experimental tests. The choice 

of this material was motivated by the need to provide a reasonably real

istic and representative material model of some aspects of the creep 

behaviour of structural steels at elevated temperatures without recourse 

to high temperature testing and the associated problems usually incurred.

The stress-strain curve for aluminium at and above room temperature is 

very similar to those of some steels at elevated temperatures and for this 

reason, besides being relatively inexpensive and easily available, has
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been used extensively by the Creep Laboratory in creep tests.

In Chapter 2, a description of the numerous approaches to the problem 

of creep in metallic structures is given. Both micro- and macro-aspects 

are examined in order to illustrate the complex nature of creep deforma

tion processes. The creep constitutive equations adopted in this thesis 

and the reasons for their adoption are also given.

Chapter 3 is concerned with the role of stationary state solutions in 

the analysis of creeping structures and the manner in which time constant 

temperature gradients modify the isothermal stress distributions and 

deformations. An alternative method of obtaining approximate stationary 

solutions is also described.

The development over recent years of the reference stress technique 

for estimating deformation of creeping structures is reviewed in Chapter 

4 together with methods of obtaining approximate reference values.

Adopting an appropriate form of Norton’s law it is shown that the stationary 

solutions to structures with time constant temperature gradients can be 

related to a material reference test, conducted at a reference stress and 

a reference temperature which is independent of the material constants.

It is shown that solutions using an approximate method may be similarly 

expressed. A sequence of experiments on a simple beam structure. Chapter 

5, indicates that the correlation between structural behaviour and 

material tests can provide an acceptable design method.

Chapter 6 attempts to shed some light on the various important aspects 

of thermal-creep interaction for cyclic histories of temperature by 

means of a method of structural analysis which arises from certain bounding 

theorems. In a number of papers (1,2,3) a theory was derived for a non

linear viscous material which allows the evaluation of upper and lower 

bounds on the energy dissipated in a cyclically loaded structure. These 

solutions correspond to the exact solution when the cycle time is either 

very short (upper bound) or very long (lower bound) compared with a
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characteristic time scale of the average deformation rate. This 

reference time scale may be taken as the time for the creep strain, in 

the steady state, to be equal to the elastic strain at either an average 

or maximum stress in the structure (1). Consideration of typical time 

scales indicates that in most applications cycle time may be considered 

to be very short and hence the upper bound solution may be expected to 

provide a representative and realistic solution which closely approximates 

the actual solution. A full description of these arguments may be found 

in the references cited above.

In Chapter 7 the solutions of Chapter 6 for a two-bar structure and 

a thick plate are presented in the form of deformation maps. A material 

parameter 3 is introduced in terms of which a reference stress may be 

defined which is independent of other material parameters. This result 

indicates that a reference stress approach can be used for cyclically 

loaded creeping structures provided the appropriate value of 3 can be 

evaluated.

In order to confirm the validity of the concepts previously discussed. 

Chapter 8 describes the experimental simulation of the two-bar model and 

the results compared with theory. A full description of the design and 

development of the test rig is given in Chapter 10.

Finally, the thesis is concluded in Chapter 9 with a discussion of 

the theoretical and experimental results contained therein and suggestions 

for further research.
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Chapter 2

Creep Deformation of Metallic Structures

2.1. The Creep Curve.

Since the recognition of creep as a problem in the design of

engineering components the uniaxial creep test has been, and is likely to

remain, the most important means of providing creep data. The informa

tion gained from this test reveals, in a simplified way, how a given

material will act under different combinations of loading and tempera

ture. Most frequently the creep test is performed at constant tempera

ture and constant load. Although the measurement of creep resistance 

is quite simple in theory, in practice it requires considerable labora

tory equipment.

Deformation data is usually presented in terms of a strain, measured 

over a gauge length, at various times. This gives a creep curve which 

generally takes the form shown schematically in Figure 2.1(a). The 

essential features may be summarised as consisting of a number of stages: 

an instantaneous extension; a transient (or primary) creep of decreasing 

rate; a steady-state (or secondary) creep, approximately linear with time; 

and an accelerating (tertiary) stage leading up to final fracture. The 

increasing rate of deformation in the third stage is partly a geometric 

effect not a material property. When constant stress, in contrast to 

constant load, tests are performed it is frequently found that no region 

of accelerated creep rate occurs and the curve remains approximately 

linear with time to fracture. Figure 2.1(b). Accelerated creep is found, 

however, in constant stress tests where metallurgical changes occur in the 

metal.

The degree to which the regions of the creep curve are distinguishable 

depends strongly on the applied stress, the temperature and the duration of 

the test. The strain represented by occurs practically instantaneously



on application of load. Even though the applied stress may be well below 

the yield stress of the material, not all the instantaneous strain is 

recoverable on removal of load. The total strain consists of a recover

able strain (elastic), a strain recoverable with time (anelastic) and a 

non-recoverable strain (plastic).

Primary creep is a period of predominantly transient creep in which 

the creep resistance of the material increases by virtue of its own 

deformation. This strain-hardening is due to the increase in dislocation 

density increasing the flow stress of the material. Secondary creep is a 

period of nearly constant creep rate which results from a balance between 

the competing processes of strain-hardening and recovery. Recovery is 

the stress activated or thermal activated process by which a material may 

revert to a strain free state. The average value of the creep rate 

during secondary creep is termed the minimum creep rate. Third stage or 

tertiary creep is a region of rapidly increasing creep rate leading to 

fracture. Of the many analytical and experimental theories developed to 

explain the factors controlling tertiary creep, few have produced any
(4)general conclusions. Of particular note is the work of Nemy and Rhines  ̂

and Hoff^^^ who investigated the two most possible reasons for the 

existence of a tertiary stage; namely, a change in the structure of the 

metal itself, leading to a change in its response to loading, and secondly, 

a reduction in the cross-section of the metal resulting in a higher 

applied stress.

2,2. Metallurgical Aspects of Creep.

The phenomenon of creep deformation is due to several metallurgical - 

processes, involving dislocation movement, vacancy diffusion and void 

formation. These processes are assisted by the thermal excitation of 

atoms aiding the movement of imperfections responsible for plastic flow.
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The effect of the thermal agitation of atoms on the process of creep can 

be simply illustrated by consideration of a metal undergoing deformation. 

During elastic deformation the applied stress is in effect dilating the 

metal lattice; during plastic flow the metal lattice of groups of atoms 

become highly distorted and the movement of dislocations and

imperfections becomes more difficult, since the glide planes on which 

dislocations move are not continuous through the material. Dislocations 

become ’piled-up’ at these barriers and the stress for continued plastic 

flow increases in consequence. However, if thermal energy were available 

to aid an imperfection to overcome a barrier, additional plastic deforma

tion would occur. Since the transfer of thermal energy from atom to atom 

is non-uniform, the laws of probability determine whether or not a dis

location is given sufficient additional energy for motion to occur. This 

type of deformation is, therefore, time-dependent.

Creep deformation, despite being a thermally-activated process, can 

occur over the whole temperature range of the metallic solid state. For 

metals commonly used in engineering construction, creep is significant 

only at temperatures above 0.38^^ where 8^^ is the melting temperature 

in degrees Kelvin of the basic metal. However, for some metals, alumin

ium and lead are excellent examples, significant creep can occur at room 

temperature. The creep behaviour is affected strongly by temperature 

and depends particularly on the ratio of the test temperature to the 

melting temperature of the metal or alloy. Thus room temperature may be 

a relatively low temperature for the creep of steel but a high temperature 

for creep in lead. For a constant ratio - that is, the same

homologous temperature - A n d r a d e f o u n d  that it is possible to obtain 

similar creep curves for steel and lead by properly adjusting the applied 

stress. It is sufficient at this point to realize that the applicability

of creep-time relations that define the creep curve should be discussed in 

terms of the homologous temperature.
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2.2.1. Logarithmic Creep (0 - O.30j^p)

Creep is only possible because obstacles to deformation can be over

come by the combined action of thermal agitation and stress. At the 

lower end of the temperature scale recovery processes which are not 

thermally activated play important roles. Logarithmic creep occurs at 

low temperatures and stresses and is believed to be a true exhaustion 

process in which the rate determining step is the activation energy to 

move a dislocation. On the initial application of stress, the disloca

tions with the lowest activation energy move first to produce an initial 

creep strain. As these easy-to-move dislocations are exhausted, creep 

can only continue by the movement of dislocations of higher activation 

energy. Therefore, the activation energy for the process continuously 

increases, and the creep rate decreases. Theoretical treatments of 

exhaustion creep that result in a logarithmic equation have been proposed 

by Mott and Nabarro^^^, Cottrell^^^, and M c L e a n .

Deviations from the logarithmic form occur towards 0.39j^p where the 

creep rate declines less rapidly with time than the logarithmic function 

suggests. Evidently some recovery which is probably due to cross slip 

takes place and partly offsets the strain-hardening.

2.2.2. Recovery Creep (0.3 - O.90j^p)

At these higher temperatures the increased thermal activation allows 

a continual recovery of the material from the strain-hardened states 

encountered in the lower temperature logarithmic creep range. There are 

two types of theory which have been used to describe creep deformation in 

the recovery range and both types are mainly concerned with steady state 

creep. One theory is a direct application of reaction rate theory to 

some slip process that is deemed to be the rate controlling e v e n t a n d
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the other assumes that creep deformation is the result of

strain-hardening being continuously annealed out by recovery mechanisms. 

According to this theory, in the steady state creep condition, strain- 

hardening must be exactly balanced by recovery to maintain a constant 

mechanical state in which the flow stress a remains invariant with time. 

This can be stated in mathematical terms by

do = ''ao
dz dr + ^  dt = 0 , (2.1)

where ^  " H ‘ (2.2)

In this expression Q is the rate of recovery given by

Q = - H  >

and H is the strain-hardening coefficient given by

" ■ I f -

Expression 2.1 , commonly known as the Bailey-Orowan equation, has been
{'13')tested experimentally by Mitra and McLean on aluminium and nickel 

specimens. The results support the recovery theory against a slip type 

theory provided the strain-hardening coefficient was measured on creep 

tested specimens. In addition it was also shown that the strain-hardening 

coefficient increases several fold during primary creep and that the stress 

sensitivity of creep rate is mainly due to the influence of stress on the 

rate of recovery, which itself is understandable in terms of dislocation 

network theory.

The steady state region of deformation is normally observed only at or 

above ; at lower temperatures the creep rate continuously declines.

At higher temperatures there is full recovery because climb by vacancy 

diffusion becomes possible, edge dislocations can also be eliminated at a 

perceptible rate and a steady state of deformation is reached when strain- 

hardening and recovery become equal in rate.



2 .6

2.2.3. Diffusion Creep (0.9 - 18^^)

If a polycrystalline aggregate is subjected to a small tensile stress 

at elevated temperatures, deformation is often achieved by the stress 

directed diffusion of vacancies. The process is known as diffusion or 

Nabarro-Herring^^*creep.

During deformation, high angle grain boundaries that are normal to 

the stress axis emit vacancies, whereas boundaries that are parallel to 

this axis absorb vacancies, thereby achieving creep strain in a direction 

parallel to the stress axis. The creep rate can be calculated absolutely 

since the parameters involved, namely the diffusion coefficient, the grain 

size and the atomic size, are known quantities. McLean states that 

diffusion creep rate is a linear function of the applied stress, unlike 

dislocation creep at high temperature which is much more sensitive to 

stress. Diffusion creep therefore predominates over dislocation creep 

at very low stresses and consequently, it is only observed near the 

melting point, since at very low stress a high temperature is needed to 

cause a measurable creep rate.

2.3. Phenomenological Approach to Creep Deformation.

The physical theories of creep can in many cases give a qualitative 

explanation of observed behaviour, but it is impossible to expect that a 

quantitative description can be successfully achieved by means of physical 

models which are always to some degree phenomenological. Consequently 

the mechanics of creep are not usually based upon creep expressions derived 

from metal physics. Nonetheless, an understanding of microscopic material 

behaviour is useful in ensuring that simplified methods are used in the 

correct context.

The phenomenological approach to the creep deformation of metals has 

received considerable attention and the relevant literature is extensive.
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Many excellent articles have been written including those by Van Leeuwen^^^^, 

Finnie^^^^, Marriott^^^^ and K e n n e d y ^ ^ . In the following sections a 

number of creep theories are given. It is not intended to comment in 

detail on individual theories but simply to draw attention to certain sig

nificant features of the group as a whole.

2.3.1. Creep Laws for Constant Stress.

A tensile specimen under constant stress deforms in a manner that may 

be described by a general function of the form

e = f(a,t,0) . (2.3)

In a' phenomenological approach a useful first approximation is to re-express

this function by separating variables such that

e = fj(a).f2(t).f^(0) . (2.4)

The separation of the stress and time functions, f^(o) and ̂2^^  ̂has been

implicit in most creep theories and appears to be generally accepted.

(a) Stress Function f^(a):

The most commonly used forms of f^(o) are given below.

N o r t o n f ^ ( o )  =

McVetty^^^^ f^(o) = k^ sinh(a/a^)

Soderberg^^^^ f^(a) = k^[exp(a/a^) - 1]

Dorn^^^) fj(a) = k^ exp(a/a^)

Garofalo^^^) f^(o) = k^[sinh(a/a^)

where k^ are material constants.

The most extensive treatment of stress dependence appears to be confined 

to the secondary creep range. Dorn has shown that at high stress levels the
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exponential function provides a best fit to experimental data whilst at
(24)lower levels Norton^ law provides a closer approximation. Leckie et. al. 

have shown experimentally that when constant temperature uniaxial creep 

data is plotted as a log stress against log steady state strain rate the 

linear region defined by Norton's law is separated from the region defined 

by Dorn's expression by a stress of magnitude n/(n+l) Oy where Oy is the 

yield stress of the material. Garofalo's expression is proposed to cover 

both stress regimes,but in view of the simplicity of Norton's power law 

and its homogeneity with stress, it is less often used. Further, for 

proportional load changes, Norton's law provides stress distributions that 

are independent of the magnitude of load.

(b) Time Function fgCt):

The task of describing the time dependence of creep in a material 

displaying a high degree of structural change with time is difficult except 

by extensive curve fitting procedures. Used with care and within the 

context of their derivation the following time functions have been found 

of use:

BaileyC^S) £^(t) = 1/3 < m < 1/2

Andrade (6) ^ . n +1/3f2(t) = (1 + B2t ) [exp(B^t) - 1]

McVetty^^^^ ^2^^^ “ ^4 (1 “ exp(-B^t)] + B^t

where B^ are constants for a given stress and temperature.

(c) Temperature Function f^CG):
I

Experimental evidence strongly indicates that a temperature function 

of the form

fg(8) = C exp(-AH/R0) 

can provide an adequate description of the variation of creep behaviour
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with temperature. In this expression C is a constant, R is the 

universal gas constant and AH is the activation energy for the 

controlling creep process. Since creep involves thermally activated 

processes changes in AH are usually associated with changes in the 

creep mechanisms. For most metals at temperatures in the range 0.2 to 

O.50j^p , AH shows some dependence on both stress and temperature, 

although in practice this variation is of the order of 20 per cent of 

the value for temperatures above O.50^p where AH correlates closely 

with the activation energy for self-diffusion. Below 0.20^^pthermally 

activated creep mechanisms become less rate controlling and AH rapidly 

declines. Some typical values of AH in the range 0.2 - O*50^^p are 

given in Table 2.1. Although there is a wide variation in values of AH 

for pure metals, the variation amongst different alloys of the same base

metal is usually small for temperatures greater than O.40j^p.

In this thesis, as stated earlier, a series of experiments conducted 

on pure aluminium specimens will be described. Therefore to assure con

tinuity all theoretical calculations, unless stated otherwise, assume 

material parameters which are consistent with this material. An extensive 

investigation by Sherby^^^^ et. al. into the variation of the activation 

energy with temperature for pure aluminium provides valuable information 

on this material. His results are given graphically in Figure 2.2 from 

which it can be seen that for O.250^^p < 0 < 0.458^p, AH is approximately

113 kJ/mole and for 0 > O.450^p , AH equals 140 kJ/mole.

(d) Constitutive Relationship.

In the following chapters it will be assumed that the constitutive 

relationship for constant stress uniaxial creep is given by.

g(t)
EO
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where is the creep strain resulting from a stress at temperature

and t is some time measure, o o
Alternatively equation 2.5 may be re-expressed as

e(t) = k^a%xp(-AH/R0). t"̂  . (2.6)

where

"o " 4 ,  exp(AH/R6^).[^] .
^O O

The steady state creep rate de/d(t^) may be written as either

E = k o" exp(-AH/R0) (2.7)

or
n

E r a 1 [AH fl
t -  =  I —  I l e -  -  9 )0 L oJ L O

(2.8)

2.3.2. Creep Laws for Time Varying Stress

Several proposals have been made to generalise equation (2.5).

The two most widely used hypothetical material models are the time-hardening 

and strain-hardening laws. They represent idealized material behaviour and 

ignore such effects as creep hesitation and recovery. However they do 

provide a useful insight into real material behaviour and within their 

limits can provide useful information on structural creep behaviour. Their 

mathematical forms for isothermal conditions are:

(a) The time hardening law.

êii 3 ^m-1
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(b) The strain hardening law.

o;
where s.. is the stress deviator, and iJ

{a (t)}^ = T  s. .(t) s .(t)e z ij ij

{e Ct)}^ =  ̂e,.(t) E (t)c O IJ XJ

2.4. Creep Deformation of Structures.

The derivation of the mechanical equations of creep is a highly 

complicated process. Various generalizations of the basic equations 

are readily realized but the use of complex equations increases the 

difficulty of determining the coefficients or functions they contain 

from the usual limited experimental data. It then becomes difficult 

to extract any detailed or comprehensible qualitative pictures or to 

deduce any practical conclusions that are of use in design.

Structural analysis using constitutive relationships that closely

fit observed material behaviour consists essentially of the solution of

a set of non-linear differential equations with non-constant coefficients.
f27 281Several techniques of solution are now well established * . However

the material model adopted is limited in several respects. Firstly, 

plastic and creep effects can be expected to interact and initial 

prestraining can be expected to influence the subsequent creep performance 

of the material. Secondly there is no hypothetical constitutive creep 

relationship that adequately predicts behaviour due to time varying stresl^^^ 

Anisotropic behaviour and the Bauschinger effect are frequently neglected' 

in material models.

Although computing power is available to permit the step-wise integra

tion (with respect to time) of such problems the lack of adequate constitu

tive laws leaves such solutions open to question.
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Several w o r k e r s h a v e  approached the problem from a different 

direction. A simple material model was initially adopted and structural 

behaviour for the hypothetical material then examined to determine what 

parameters are important and what creep tests are required to enable realis

tic but admittedly approximate predictions of structural behaviour to be 

made. A related field has been the derivation and application of energy 

theorems for structures composed of certain material models^^^*^^*^^'^^'^^^. 

Some of these theorems are basically extensions of the extremum principle 

for elastic continua^^^^ and have been progressivly extended to encompass 

a wider class of material models and more general classes of loading.

2.4.1. Deformation due to Secondary Creep.

(34)It has been observed that a suitable simplification to the esti

mation of the creep deformation of structures subjected to steady loads

is that both elastic and primary creep deformations are small compared with
(39)secondary creep deformations. Hoff considered secondary creep in the 

absence of elastic effects and argued that this was justified for structures 

in which the creep strain was of the order of 1% since the maximum elastic 

strain was of the order of 0.1% . The stress distribution can then be 

considered invariant with time and the well known theorems of minimum total 

energy and minimum complementary energy can be applied as if to a non

linear elastic material to obtain bounds on the energy dissipation in the 

structure.

A uniaxial creep law of the form

e = k a" C2.ll)

permits useful theoretical simplification and in many situations a precise 

knowledge of n is not required. Calladine and Drucker^^^'^^^ showed 

 ̂ that the energy dissipation in a minimum weight structure can be expressed
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in a form invariant with n and that little variation with n may occur 

"in spite of departure from the minimum condition". However, Calladine^^^^ 

obtained solutions to a uniformly stretched plate containing a central hole 

and concluded that there exists an approximately linear relationship 

between energy dissipation rate and 1/n , and between stress concentration 

factor and 1/n . Therefore for complex structures where only the elastic,

(n=l) , and plastic (n=<») solutions are known approximate solutions can 

be found for a structure composed of a material for which 1 < n < ».

Anderson et al^^^^ and Marriott and L e c k i e c o n s i d e r e d  the defor

mation rate of beams composed of a material where n was itself some 

function of stress, and suggested that the assumption of a creep law of the 

form given by equation (2.5) would allow sufficiently accurate estimation 

of the deformation rate providing the creep test was performed at a 

"representative stress", i.e. providing the creep test data was obtained at 

a suitable level the variation of n with a is not important in practice.

The work of M a c k e n z i e a n d  later that of Sim^^^^ demonstrated that 

the creep deformation rate of various structures can be estimated from the 

creep data obtained from a single creep test at a 'reference stress' 

without precise knowledge of the stress index n . This work will be

further discussed in Chapter 4.

The concept of a reference stress based on the energy dissipated in
(44) (45)the stationary state has been usefully extended by Leckie and Williams

The outcome of these ideas has been a procedure for obtaining an 

acceptable estimation of structural performance from a minimum of information 

on the material behaviour. In the above references only isothermal 

conditions have been considered whereas in most engineering structures few. 

truly isothermal conditions are present.
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2.4,2. Creep due to Variable Loading.

The lack of adequate constitutive relationships for time varying

stress reduce considerably the worth of any calculations for variable

loading. However many situations involving variable loading are periodic

and as such afford some simplification of the problem.

Ponter^^*^^^ has derived work bounds for structures composed of time-

hardening Maxwell material and subjected to variable loading. The

theorems provide a generalization to the theorems derived by Martin
(34)

and Leckie and Martin. The bounds provide a measure of the stress re

distribution occurring and are therefore indicative of situations where

a reference stress approach may be used with confidence.
(2)Bounds computed on the energy dissipation when the material has

attained a cyclic state provide two extreme states when the cycle time is

either large or small compared with a characteristic time of the material.

Recently Ponter and Williams have derived sufficient conditions that the

bound will be optimal with respect to the stress field, the computation

of which involves a structural problem comparable in complexity with the

steady state solutions.

In situations where the effects of stress redistribution are found to
(45)be small or a design based on an upper bound remains acceptable, Williams

states that the time-hardening result can be applied to structures composed

of materials with related constitutive relationships whose creep law for

time varying stress is unknown, by applying a weighting factor obtained

from a single cyclic stress creep test.

When stress redistribution effects are known to be significant and

an elastic/creep calculation is required, a weighted time-hardening calcu-
(45)lation is employed . As before, the weighting factors are obtained 

from a single cyclic creep test. The creep law for time varying stress is 

not required and difficulties frequently experienced when other hypothetical 

creep laws are used are avoided.



Metal Creep Activation 
Energy (kJ/mole)

Aluminium. 113.1
Al-1.6% Mg Alloy. 149.7
0.05% C.Steel. 256.2
1.15% C. Steel. 257.8
Mo-Stainless Steel. 314.1
Fe-27.8% A1 Alloy. 276.3
Ni-20% Cr-23% 347.5-523.4
Ti-1.5% A1 Alloy

Table 2.1. Creep activation energies for some metals
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Chapter 3

Stationary Creep of Structures Subjected to 

Time-Independent Temperature Gradients

3.1, Introduction.

The stationary state analysis has assumed a major role in the 

solution of creep problems and there has been much interest shown in the 

properties of stationary state solutions. However it is noticeable 

that although there exist numerous stationary state solutions to a 

variety of structures they are virtually all concerned with isothermal 

conditions.

In this chapter the effect of spatially varying temperatures on the 

stationary stress distributions and deformations of some sample structures 

will be shown. It is found that even quite small temperature gradients 

have a considerable effect on the stress distributions and that many 

features of isothermal creep are greatly influenced. Leckie and Ponte^^^^ 

and Ponter have shown that the plastic limit solution can provide a 

tolerable upper bound on deformation for isothermal conditions. Where 

temperature gradients are present this solution does not provide an 

acceptable estimate for n < 11 but always provides the asymptotic solu

tion as n -> «» . Therefore, for these cases a plastic solution is 

defined corresponding to a yield stress dependent on both temperature and 

stress index. This solution provides an intermediate plastic solution 

which the actual solution approaches for moderate values of n .

The influence of stress redistribution on structural deformation and 

the relevance of the stationary state analysis will be discussed.

Solutions are given to three sample problems: a beam under pure 

bending, a parallel two-bar structure and a propped cantilever beam.
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I .

3.2. Stress Redistribution due to Steady Loading.

(39)Hoff considered stress redistribution in a structure composed

of a Maxwell material undergoing secondary creep and showed that the

stress field in the structure asymptotes to a steady-state. This result
(47)was generalised by Huit to embrace much more complex creep laws such 

as those given by equations 2.9 and 2.10. He termed the stress field 

that is approached asymptotically, the stationary state. At the station

ary state, the elastic strains remain constant in time and make no contri

bution to the subsequent strain rates. The total deformation is made up 

of an initial elastic deformation, deformation accumulated in the stress 

redistribution process and deformation at the stationary state. The 

effect of stress redistribution is that the total deformation is in excess 

of that which is obtained if the elastic and stationary-state deformations 

were simply added (Figure 3.1).

Several attempts have been made to estimate the additional deformation
(31)due to stress redistribution. Marriott and Leckie made some critical

creep calculations on a variety of simple structures under isothermal

conditions. They concentrated on the time-hardening constitutive law and

although they recognised that it is physically the least realistic of the

available creep laws they were able to show that the ’energy' consumed by

a structure in changing over from an initial stress distribution to the

stationary state stress distribution is small compared to the elastic

energy of the structure or at worst of the same order of magnitude. They

also showed that for the structures studied the overall creep deformation

did not differ significantly and the stress histories were also similar,

for both the time-hardening and strain-hardening laws. The work of
(31)Marriott and Leckie has been consolidated in general terms by Leckie 

and M a r t i n . They showed that structures composed of a time-hardening 

Maxwell material converge monotonically to the stationary state which is
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also that for which energy dissipation rate is a minimum, a result consis

tent with the theorem of minimum complementary energy. Leckie and Martin 

were able to show that at large times the total work done by the external 

forces can be bounded from above by the expression 

ft .
PUdt < (n+2)(E^-E°) + f dT f ko "*^f(T)dV (3.1)

In this relationship, E^ is the elastic internal energy associated 

with the stationary stress Og,E° is the internal elastic energy on first 

loading, and the double integral is the creep energy-dissipation corres

ponding to the stationary stress solution. Consequently the term (n+2) 

(E^-E°) represents an upper bound of the additional energy dissipated during 

stress redistribution. They obtained values of (E^-E°)/E° for different 

structures and concluded that the energy dissipation due to stress redistri

bution was of the same order as the initial elastic strain energy and 

consequently the assumption by many workers that redistribution effects can 

be neglected is largely justified.

Stress redistribution in the presence of non-uniform temperature dis

tributions has been investigated by Barnes et al^^^^. They simulated 

experimentally the stress redistribution occurring in a simple redundant 

structure comprising of three parallel bars joined at their ends by rigid 

members. Redistribution of load was observed for several initial stress 

distributions and temperature differences. The authors concluded that the 

fully redistributed stresses were always more uniform than the initial 

thermal stresses appropriate to the same temperature difference, the final 

states of stress were insensitive to the initial stress states, and that 

the strain-hardening constitutive relationship provided useful descriptions 

of stress and strain histories during redistribution.

In most circumstances stress redistribution effects are small, the 

additional deformation being of the order of the initial elastic deformation, 

and therefore can be neglected in design.
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 ̂ In many design situations the stationary state solution may be 

difficult to obtain or even unobtainable but an approximate solution such 

as the plastic limit state may well be available. Leckie and Ponter 

have extended many of the theorems of perfect plasticity and their 

corollaries to include the effects of creep. They computed upper bounds 

on deformation by making use of the limit state solutions and showed that 

the bounds so obtained can be acceptable and of use to the designer.

3.3. Stress Redistribution Times.

For design purposes the time to attain the stationary state is 

seldom required to be known with extreme accuracy, only whether the redis

tribution time is large compared with the period of component loading.

Calladine^^^^, on the basis of certain simple calculations, proposed 

that since the stationary state is approached asymptotically the 

stress redistribution time be given by the time required for

a(t ) - 0 = (a-o )/1010 s s

where t^^ is the time required, is the stationary stress and a

is the initial elastic stress.

The approximate relationship quantifying t derived by Calladine

is

t
10 n

*
where t is the time taken for the creep strain to be equal to the elastic 

strain when maintained at a constant stress of magnitude equal to the 

stationary state value.

The above expression is claimed to give an overestimate of the stress 

redistribution time for larger values of n and the quotient (a -Og)/Og .
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*Values of nt /t for different structures have been obtained by 
10

(43)Sim . He compared these results with 2.3 and showed that they were

in close agreement for the range of structures considered with the

exception of thick shells subjected to internal pressure where the value 
*

of nt /t can rise to 7.9.
10

Calladine’s formula is applicable to any structure but requires a

knowledge of both the initial elastic stress distribution and the stationary

state stress distribution together with creep data from a test at the

appropriate stress level.

Bill and M a c k e n z i e e x p r e s s e d  the stress redistribution time in

terms of the ratio of creep strain at time t , due to some reference10
stress , to the corresponding elastic strain. They showed that by a 

suitable choice of their measure of stress redistribution time could

be made sensibly independent of n . They also observed that the values 

of obtained did not differ significantly from reference stresses

obtained for estimating deformation due to stationary creep. Thus provi

ding t is known for one value of n it should be possible to make

acceptable estimates of t for other values of n .
10

Both Bill and Mackenzie,and Calladine were concerned with stress

redistribution times in structures composed of time-hardening material.
(31)Marriott and Leckie report that redistribution times for structures

composed of strain-hardening material are significantly longer than corres

ponding values for a time-hardening material. Some recent results by
(45)Williams also support this. These results are not unexpected, since

structures composed of material obeying creep laws other than time- 

hardening, will be stiffer in the sense that stress redistribution effects, 

when considered from the micro-structure aspect, will increase the state 

variables of the material at a faster rate than would occur at the 

stationary state. A structure composed of a time-hardening material is 

not affected by stress redistribution effects in the same manner since by
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definition it is only dependent on time. The structure will therefore

have no memory of the redistribution process.
C52jSome recent work by Megahed using the time-hardening law has

shown that for a two-bar structure- similar to that considered by Williams

under isothermal conditions^Calladine's method provides a conservative

estimate of t for n > 3 . For non-isothermal conditions with a 
10

step change in load and temperature occurring simultaneously, results 

obtained by step-by-step calculations indicate that redistribution times 

are considerably longer than those predicted by Calladine. In comparison, 

much smaller values are calculated for a step change in load on the fully 

redistributed non-isothermal structure.

It may be argued heuristically that in a structure where changes in 

load and temperature occur simultaneously the interaction between the applied 

and thermal stresses may be expected to produce values of t greater 

than those for a fully-redistributed non-isothermal structure subjected to 

an equivalent load change where the only effect of temperature is to produce 

a ’softening* of the material.

The general effect of a temperature field on a fully-redistributed 

non-isothermal structure is to decrease the redistribution time for further 

loading in the sense that since creep is highly temperature dependent local 

creep strains may be accumulated at a greater rate thereby modifying the 

stress distribution.

From the review given it can be seen that stress redistribution times 

can be very dependent upon the constitutive equation for time varying stress 

and since no satisfactory generalisation of equation 2.5 is available at 

present, the only method of obtaining such times is by experiment.
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3.4. Stationary State Creep of Some Simple Structures.

This section is concerned with creep} elastic, and time-independent 

plastic deformations are not considered. Stress distributions are 

therefore stationary (steady-state) distributions. The constitutive 

relationship 2.7 is adopted and in the solutions presented the activation 

energy for creep, AH , was taken as 113 KJ/mole with the lowest tempera

ture in each example, 8̂  , being 300°K . (AH correlates with 0-j , for 

pure aluminium.)

It may be noted that many calculations were performed using different 

values of both AH and 0 , and it was found that the principal features 

of the solutions are relatively independent of these quantities.

The complete solutions to the three examples are given in Section 10.3,

(a) Beam in Pure Bending

A uniform beam of rectangular cross-section, width b and depth d , 

is subjected to constant end moments M and a linear temperature gradient 

through the depth. (A situation that occurs if the beam sides are 

insulated.) At any section distance y from the lower edge the tempera

ture is given by

0(y) - ^(02“6i) ^  + 0ij >

where 02 and 0  ̂ are the temperatures at the upper and lower surfaces 

respectively.

The axial strain e(y) at a distance y from the lower surface is

e(y) = K(y+*d) ,

and

ê(y) = K(y+*d) , 

where k denotes the curvature of the centroidal axis.
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The stationary state moment-curvature rate relationship may be 

expressed
n

Ig (3.2)

where Ig is evaluated from conditions of equilibrium and compatibility:

= | 2  IIb ”  1  2 I “ X exp[AH/nR0(x) ]dx^
o

and X = y/d .

The stationary stress distribution depends upon the activation energy, 

the temperature difference (02"®l) > and the stress index n ;

f/n[ T/ " -
(x+(j))Î  exp(AH/R0(x)) 2M

bd' (3.3)

The other variables ê , a and 0 only affect the curvature rate.o o o
In Figure 3.4 the stationary stress distributions for isothermal 

conditions are shown for 1 < n ^ 11 . Two well known features are immed

iately evident; the variation between the n = 1 solution (analogous to 

the linear elastic case) and the n-> «° solution (analogous to the rigid 

perfectly plastic case) for intermediate values of n and the existence 

of two points symmetrically placed about the neutral axis where the stresses

vary only slightly with n . These positions were referred to by Marriott 
(31)and Leckie as 'skeletal* points and their associated stresses as

'skeletal* stresses. These will be further discussed in the following 

chapter.

In Fig.3.5 the stress distributions are shown for a temperature 

difference (02-®i) = 12®K. It can be seen that for this fairly small 

temperature difference the isothermal picture has been substantially dis

turbed. No clearly defined skeletal points are present and the transition 

from n = 1 to n = 11 possesses entirely different characteristics to the 

isothermal case. The n = 1 case remains analogous to a linear elastic 

solution but with a Young's Modulus which varies through the depth of the
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beam (i.e. with temperature). For larger values of n the solution 

asymptotes to the homogeneous perfectly plastic solution (shown as a 

broken line). This can be seen by rearranging equation 2.8 into the form

(3.4)0 €
'n "ah f l 1 /

0
0

£0
exp nR le " 8 J0 J

As n w , provided kinematic conditions demand that ê/Ê^ remains finite, 

then o/o^ ->1 , the condition associated with the perfectly plastic 

solution. Thus the variation of stress with creep index spans the range 

between a non-homogeneous linear elastic solution and the homogeneous rigid 

perfectly plastic solution.

In Fig.3.6 the stress distributions for a much larger temperature 

difference (82-81) = 60°K are presented. Ihe n = 1 case can be seen to 

be highly variable especially near the cooler side, and for n = 11 the 

solution differs considerably from the n “ case, whereas for isothermal 

conditions the n = 11 and n — solutions are virtually identical. For 

even larger temperatures differences the difference between these two 

solutions becomes more marked. The reason for this is that for large 

temperature differences the exponential term in equation 3.4 has not become 

constant at n = 11 although the first term (é/è^/^ closely approaches 

unity. This suggests an intermediate stress profile of the form

a ri 1
0

= exp nR (9 - 9 ^
0 0 -I

(3.5)

which corresponds to a plastic solution with a spatially varying yield stress 

dependent upon n . The stress profile obtained from equation 3.5 is shown 

as a broken line in Fig.3.6 and is seen to closely approximate the solution 

for n = 11 . This 'plastic' solution will be further discussed in

section 3.5.
(53)Calladine investigated means of estimating the maximum stress in a 

structure without performing a non-linear analysis. He observed that 

there existed,for a variety of simple structures under isothermal conditions.
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à linear relationship between the maximum stress and the reciprocal of 

the stress index. Therefore,providing the n = 1 and n-*«> solutions

are obtainable, the maximum stress for intermediate values of n can be 

gained from a linear interpolation between these two solutions. In 

Fig.3.7 the maximum stress, which is always compressive is plotted 

against 1/n for a range of values of (62-01). It can clearly be seen 

that a linear interpolation between the n = 1 y non-homogeneous linear 

elastic solution and the n — solution is liable to be considerably in 

error since the variation is far from linear except for the isothermal 

solution. However for this structure a linear interpolation provides a 

conservative estimate of the maximum stresses occurring. From Fig.3.8 

it is seen that whereas the maximum compressive stress shows a monotonie 

change with increasing 82 the maximum tensile stress achieves a minimum 

value at a small value of 82 and again Calladine's linear interpolation 

provides a conservative result.

(b) Two-bar Structure.

Consider the two-bar structure shown in Fig.3.2. It was argued in 

reference (45) that this structure was representative in some respects of 

many simple structures. In the example chosen the bar lengths are in the 

ratio of 4:1 and have equal cross-sectional areas.

Using the constitutive relationship 2.7,and from considerations of 

equilibrium and compatibility of displacements,the stress in each bar was 

evaluated for a range of values of n and a range of values of the temper

ature difference (02-®i)°K where 82 and 8  ̂ are the temperatures of 

the longer and shorter bar respectively.

In Fig.3.9 the variation of maximum stress with 1/n for three cases 

'5 presented and as expected, always occur in the shorter bar. It can be 

readily seen that when isothermal conditions prevail the maximum deviation
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of the solution from a straight line is at most 2% and Calladine*s 

linear interpolation provides good predictions over the range of n .

For a small change in temperatures (02-0i) = 10°K it is seen that a 

linear interpolation would be much in error. This deviation increases 

rapidly with an increasing temperature difference. The n = 1 cases 

still remain analogous to linear elastic solutions, but as in the beam 

problem, having Young's moduli varying as a function of the temperature 

difference. As expected, for large values of n the solutions tend 

toward the homogeneous,rigid/perfectly plastic solution. In the extreme 

cases where the temperature differences are so large as to make the stiff

ness of the hotter bar small, the structure appears to behave as a single 

bar at the lower temperature. Even in this case the solution will 

asymptote to the homogeneous plastic solution as n -> «> but its approach 

occurs at very large values of n .

When the shorter bar is at the higher temperature the variation of

maximum stress with 1/n , Fig.3.10, does not show a monotonie change 

with increasing temperature. However in both cases a linear interpola

tion provides a non-conservative result.

This change, in behaviour may be more easily understood from considera

tion of Fig.3.11 which identifies the interaction between the stationary 

state stresses derived from equilibrium and compatibility conditions.

Line S1S2 represents stationary state stresses obtained from the equili

brium condition and any line from the origin represents states of stress 

which satisfy compatibility. The point of intersection represents

allowable states of stress within the structure. The solutions presented 

are for n = 3 , but similar solutions may be obtained for other values of

n . Any point on the line between S3 and represents allowable

states of stress for an increasing temperature difference when the higher 

temperature acts on the longer bar, and similarly any point between S3 and 

S2 represents states of stress when the higher temperature acts on the
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ihorter bar. Point S 3 represents the isothermal solution.

Within region S 3S 1 the maximum stress occurs on the shorter bar and 

is always larger than the maximum isothermal stress,i.e. there is a mono

tonie change in maximum stress with increasing temperature difference.

However this is not the case within region S 3 S4 where it is seen that the 

maximum stress is less than bhe isothermal value. Between S 3 and 8 5  

(oi=0 2 =P/2A) the maximum stress occurs on the hotter bar. At 8 5  both 

bars carry equal loads although the temperature of the shorter bar is 

7.4°K higher than the longer bar. Further increase in temperature 

increases the stress on the shorter bar but this stress does not equal the 

maximum isothermal value (0.6 P/A) until the temperature difference 15.3°K 

is reached (point 81+) . Within region 81+82 increasing temperature 

difference again provides a monotonie change in maximum stress.

For a two-bar structure with bars of equal length points 8 3  and 8 5  

coincide and the maximum stress always changes monotonically with increasing 

temperature difference.

(c) Propped Cantilever 8 ubjected to Central Load.

The geometric configuration is shown in Fig.3.3. A uniform rectan

gular section beam of length Z is simply supported at one end and encastré 

at the other with a point load acting laterally at the centre of span. A 

linearly varying temperature distribution has its maximum value at the 

encastre end and the temperature is assumed to be constant through any section

A moment/curvature rate relationship consistent with equation 2.7 is 

given by

........... (3.6)k [AH fl U
“  = W  exp - q)

o

TTie problem was solved numerically using a virtual work method which is 

described in 8 ection 10.3. As the problem involves only a single redundancy, 

the moment distribution is of the form
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M(x) = Pmi + Fm2

where mi denotes the moment due to a unit central load acting upon a 

simply supported beam and m2 the reactive bending moment due to a unit 

load acting at the tip of a cantilever of length Si .

The variation of bending moment with temperature and n may be 

adequately described by the prop reaction F . In Fig.3.12 variation of 

F/P , with 1/n is shown for a range of values of the temperature gradient 

(02- 0i)/0i where 02 and 01 are the temperatures at the encastre end 

and simply supported end respectively. The observed behaviour shows 

similar tendencies to that exhibited by both the beam and two-bar structure. 

It is seen that for all values of 02 , as n becomes large, F/P asymp

totes toward the limit n -»■ “ corresponding to the homogeneous perfectly 

plastic case. For the larger values of 02 , the n -> «> solution is 

only approached for very large values of n > 20 , whereas for smaller values 

of 02 the approach is more gradual.

The effect of an increase in temperature difference on the n = 1 

solution is to decrease the stiffness of the encastre end and F/P ->0.5 , 

the simply supported case. As in the previous examples the variation of 

F/P is far from linear and a linear interpolation of F/P with 1/n is 

clearly non-conservative.

3.5. An Upper Bound on Stationary State Solutions.

Where analytical solutions are not easily obtainable Ponter and 

L e c k i e h a v e  discussed the application of energy methods to provide 

bounds on the deformation of isothermal creeping structures. It was shown 

that a tolerable upper bound on deformation could be obtained from know

ledge of the plastic limit state solution and in this section the effect 

of spatially varying temperatures on these solutions will be discussed.

The theory (35,54) remains formally unaltered but as has been shown in
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{he beam example the use of the limit state solution does not

provide an acceptably accurate estimate of the stress distribution for 

values of n ^ 11 when non-isothermal conditions are present. A ’plastic’ 

solution corresponding to a yield stress dependent upon both temperature 

and stress index will be defined that provides an intermediate plastic 

solution which the stationary state solution approaches for moderate values 

of n .

3.5.1. Energy Theorem.

On the basis of the assumed properties of the material it has been 
(35)deduced that the contribution of the plastic strains to the deformed

shape of a structure are likely to be small provided the loading is kept 

below the value n/(n+l) of the limit load .

Assume a body of volume V and surface S subjected to applied load 

over part of the surface and zero displacements over the remainder,

In the stationary state the displacement rates of the body may be found 

directly by assuming t  , and may be bounded from above by

'T
where D (a) denotes the rate of creep energy dissipation associated with 

the stress a.
*The stress field may be any equilibrium stress field in

equilibrium with P^ which satisfies the yield condition

^ ° • (3 8)
*

Note that the restriction (3.8) requires to lie within a surface

geometrically similar to the yield surface in stress space and scaled by 

a factor n/(n+l).

Corresponding to a given P^ , a plastic limit load P^ exists where
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= X ? ^  . The conditions of inequality (3.8) are then satisfied by
* L La., = X o . .  provided X < n/(n+l) , where a., denotes the limit stressij ij ij

state at plastic collapse.

For a structure where all points of the structure are at a state of 

plastic yield at collapse, remains on a surface of constant and

. f P Ù < V D (Xo ) (3.9)
J&T y

where a denotes the uniaxial yield stress.y
Thus inequality (3.9) provides a bound on the total energy dissipation 

rate in terms of the limit load and data from a single uniaxial test, a 

result which provides a simple calculation to allow a conservative estimate 

of structural creep deformation. Comparison of these estimates with theory 

and experiment are to be found in references (45) and (49). The accuracy of 

these simple estimates are greatest for larger values of n where the creep 

solution closely approximates the limit state solution.

3.5.2. Application to Beam under Flexure.

It was shown in Fig.3.4 that the perfectly plastic solution provides a 

limit state on the stress distribution and closely approximates the n = 11 

case. In this particular case the bound on curvature rate, , provided by

inequality (3.9) overestimates the exact value k by at most 26% in the

range 3 < n < 11 . Such a discrepancy in curvature rate corresponds to a 

change in applied moment of at most 8% , or , alternatively, a change in 

depth of the beam of 4% .

For non-isothermal conditions. Fig.3.5, it was seen that the approach 

to the limit state solution only occurs at large values of n > 11 . It 

was suggested that an intermediate plastic state equation (3.5) provides a 

better approximation of the stress distributions for n < 11 . The stress

profiles corresponding to this plastic solution are shown in Fig.3.13 and 

are seen to closely approximate the actual stresses. The bound formed by
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I
substituting this solution into inequality (3.9) gives a moment-curvature 

rate relationship of the form

where =
y I exp[AH/nR6(x)]dx

= ------1--------- Iq------------ :----

< (3.10)
1

B f f l  [<l> ) " + !
2 < x.exp[AH/nR0(x) ]dx - I x. exp [AH/nR0 (x) ]dxj>

o o

In Table 3.1 a comparison is made of the curvature rates obtained 

from the intermediate plastic solution with those obtained from the exact 

stationary state solution for 02 = 360°K . A similar comparison of the 

bound given by the plastic solution using a constant yield stress and 

temperatures through the depth is also included. The intermediate 

plastic solution clearly provides a close estimate of the exact deformation 

but it is more difficult to obtain than the limit state solution. However, 

it does provide a reasonably accurate bound on non-isothermal structural 

behaviour for this problem. The application to more complex structures 

requires to be investigated.



n K K
1 2.25 23.2
3 1.55 14.5
5 1.40 14.2
7 1.36 14.0
9 1.33 13.7
11 1.30 13.6

K : Exact Solution.

: Intermediate Plastic 
Solution.

k : Limit State Solution.

Table 3.1

Comparison of Curvature Rates for 02 = 360°K

VË
Vu

JO
CL

û

eej&

Displacement due to stress redistribution

Elastic displacement

f(t)
Pig 31 Effect of stress redistribution



q

® — i

p;u
Fig 3 2 Two-bor structure

X=o

Fig 3-3 Propped cantilever



Depth d

-̂1 [ Isotherme I 
linear elastic 

so|n]

n-3

-06
n-ct>[f\iqi(j perfectly 

plastic sol' .̂]
- 0 4

-02

-  6
Stress

Fiq3 4 Stress distributions for isothermal conditions



Depth d

-0.8

n=Qp[ Isothermal 
rigid perfectly 
plastic sol?]

- 0 6

-Ov

-02n-i

bd^
Stress

Fig 3 5 Stress distributions-for non-isothermal conditions



zQ-r—̂

cr

•/»

m

rsi

CL

ÛL

"DCOu

uEi_
-jC

CO
_o

&)i_
C/0

rôo



4 0 -

3 0-

lO-

Isothermal 0 * 3 O O ° K

l O0 6 0 802 0 4

Fig 37  Variation of maximum bending stress with |/n



30 -

20-

lO-

1.00 60 2 0 4

Fiq3'8 Variation of maximum tensile bending stress with M)



l o -

Isof hermal

oo

0 7 -

0 - 6-

0  5 02 0 4 0 6 0.8O

Fig 3 9 Variat ion of maximum stress with l/n for 
the two-bor structure with the higher 

temperature on the longer bar



" / %
l O -

I sofhermal0  8-

0 -6 -

0 5 H
I O0  6 0 60 2 0  4O

Fig 3 1 0  Variotion of  maximum stress with %  for 
the two bar structure with the higher 
temperature on the shorter bar



,^=3IO°K

Increasing temp, difference Q , > 0 ^

increasing temp, difference Q >© ^

&/) 0  4-

e,=3 0 /K

Q=3I5*K
01 -320“K

0 2  0  4 0 6  0 8
Stress on bar 2

l O

Fig 311 Stationary state stress regimes for the 
two-bar structure



0=36O “K

G=330"K

0 4

OO

Isothermal

0 .3
I O0 6 0 802 0  4

Fig 312 Variation of support reaction with '/h 
fo r  the propped cantilever with linear 
temperature gradient



CL(ü
û

L O

co
-O

0>

ocg
o

a
0 E

1

-xjco

c
o
L.D
CL
EO
U
ro
cr



4 .1

Chapter 4

A Reference Stress-Reference Temperature Technique 

for Structures Subjected to Steady Loads

4.1. Introduction

In creep design one major problem is the lack of precise knowledge of 

material behaviour at temperature and under long term loading. An 

attractive means of directly utilizing experimental creep data in conjunc

tion with an analytical treatment of a design problem is to use a reference 

stress technique. This technique is based on the observation that it is 

often possible, using traditional analytical procedures in conjunction with 

a power function constitutive equation, to determine a stress at which the 

creep rates obtained from a tensile test will be proportional to component 

displacement rates. Such an approach avoids the need for defining the 

details of material behaviour since this would be included in the tensile 

creep data. The reference stress also guides the experimental work by 

indicating in what stress range the tests are to be performed.

In this chapter a reference stress technique originally proposed by 

M a c k e n z i e w i l l  be extended to include the effects of non-uniform tem

perature distributions. It will be shown that under isothermal conditions 

there is a single reference stress which has an associated creep deformation 

in proportion to the deformation occurring in a structure at stationary 

state conditions. Since the reference stress is based on the stress and 

strain rate distributions at the stationary state it may be expected that 

the reference stress is unaffected by an initial temperature gradient in the 

structure. However, stationary creep rates are strongly dependent on 

temperature and the specification of only a reference stress provides 

insufficient information where spatially varying temperature distributions 

are present. The question arises as to at what temperature should a creep
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test be conducted so as to be able to predict correctly the stationary state 

^ehaviour of the structure according to a reference stress approach. In 

section 4.3 a reference temperature technique is defined and applied to 

some simple structures subjected to steady loads and spatially varying 

temperature fields. The technique is also applied to the modified limit 

state solution previously discussed in Chapter 3, and it will be shown that 

the reference values obtained provide an acceptable bound on structural 

behaviour for design purposes.

In the following section the development of ’exact’ and approximate 

methods of obtaining reference stresses are discussed. The reference stress 

technique has been discussed in many papers and different structures are 

treated, e.g. SBderberg^^^^, Anderson et al^^^^, Mackenzie, Sim^^^^ and 

M a r r i o t t I t  is the intention of this section to include some of the 

information to be found in these references and to review the additional 

literature subsequently published.

4,2. The Development of Reference Stress Techniques.

4.2.1. Exact Reference Stress Techniques. 

f21̂Soderberg in 1941 made an early attempt to relate component 

behaviour to the behaviour of a single tensile test. From a steady state 

analysis of creep in thick tubes subjected to internal pressure, P , he 

calculated a reference stress given by

""m -0^ = 0.87 P , (4.1)

where r denotes mean radius and h wall thickness,m
The corresponding deformation is given by

= 0.87 eCOĵ ) , (4.2)

where E(oQ) is the creep strain in a tensile test at a stress of and
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e is the creep strain at the mean radius, m ^

Another early use of a reference test was in the approximate solution 

of transient creep in beam sections made of polymeric m a t e r i a l T h i s  

Schulte achieved by noting a point within the cross-section at which 

elastic and stationary stresses were coincident. By assuming constant 

stress at this point, and performing a creep test at that stress it was 

possible to make accurate predictions of beam deflections.

The first paper to treat the reference stress as a general principle

Was the contribution by Anderson et al^^^^ in 1962. They considered the

deformation rate of beams composed of a material where the stress index n

was itself some function of stress and suggested that a sufficiently

accurate estimation of deformation rate could be obtained from a creep test

at a ’representative stress’. In other words, providing the creep test

data was obtained at a suitable stress level the variation of n with a

was not important in practice.
C31)Marriott and Leckie defined points in a structure where the stresses 

are almost invariqnt with time as ’skeletal points’ and their associated 

stresses as ’skeletal stresses’. They argued that since the stationary 

state deformation rate in the structure was directly proportional to the 

stationary creep strain rate at any point in the structure, an acceptable 

estimate of the creep deformation would be obtainable from creep data 

derived from a creep test at the ’skeletal stress’. This idea is similar 

to that of Anderson et al since in both cases the ’skeletal stress’ and 

'representative stress’ were obtained by inspection. For the structures 

considered by Marriott and Leckie deformation due to redistribution of 

stress was small,and the approximate deformation given by adding the 

stationary state deformation, obtained from a test at the ’skeletal stress’, 

to the initial elastic deformation.

M a c k e n z i e h a s  devised a more systematic method of extracting an

appropriate ’reference stress’ from consideration of the normalised
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deformation rate in the stationary state. He considered a selection 

of standard structures and assuming a Norton type creep law, compared the 

deformation rate for some value of n to the corresponding rate for 

n = 1 . He was then able to find a ’reference stress’ such that the

normalised deformation rate was equal to unity. For these structures it

was found that a suitable choice of reference stress allowed the stationary 

state deformation rate of a structure to be predicted within approximately

10 per cent using only the data from a single tensile test. Mackenzie

gives a physical interpretation to his method by noting that the position 

of the ’skeletal point’ coincides with the position at which the stress in 

the stationary state is independent of the value of n and therefore 

the reference stress technique should give acceptable estimations of 

deformation for structures composed of materials where n is stress dep

endent. This is consistent with the observations of Calladine and 
(33)Drucker mentioned previously in Chapter 2.

A serious limitation to Mackenzie’s technique is that it is limited 

to structures for which analytical expressions for stationary state 

deformation rates are available whereas for many structures of practical 

interest such solutions are unobtainable. Fortunately, as will be shown 

later, the extension of this technique to include some of the theorems of 

plasticity is reasonably straightforward.

L e c k i e i m p r o v e d  the method of obtaining the reference stress 

suggested by Mackenzie and showed that by equating the initial elastic 

strain energy and the energy dissipated in the stationary state for the 

particular structure with the corresponding quantities for a uniaxial 

tensile specimen the value of the reference stress can be determined.

This method can be illustrated by considering the classic example of a 

beam of rectangular section under flexure. The moment-curvature

expression is given by
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K = K, + 2"+' M" f2(t) (4.3)
b d I

Assuming that terms due to stress redistribution can be neglected.

Leckie has shown that it is convenient to express the above results 

in terms of a single uniaxial specimen of volume i|)bdt and subjected to a 

stress
é u

'R °  ^  ' (4.4)

then the corresponding strain is

An energy balance per unit length of beam is given by

#bdo^E^ = Mtc (4.6)

Equating the elastic and creep energy components of the structure, 

and uniaxial specimen yields

r2n+l n/(n+i)  ̂ ^
> ^ ^  (4.7)3l/(n-l) > ^ p 2  

From these results the expression for k becomes

K = (4.8)

The curvature k is obtained from the above expression by finding

the strain E^ associated with the stress , For a given value of n ,

(j. can be calculated from equation (4.7) and the corresponding tensile test

conducted at the stress given by equation (4.4). The value of ^ for the

beam is almost independent of n and an exact knowledge of n is not

required if ^ is assumed to be 4.1 .

A method for deriving reference stresses from numerical solutions has 
(43)been devised by Sim and is as follows :

Any creep deflection U can be expressed as
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U = U(ka” , dimensions) f^Ct) (4.9)

This expression can be non-dimensionalised by

U = (ko ^) . £(p ) . g(dimensions) . U | | , (4.10)

where U is a function of loading and linear dimensions, f2(t) is a 

time function for the creep curve and g is purely a function of dimensions
_ |- ̂  n-i

The function U is a non-dimensional deflection to be determined

by the numerical analysis.

In general U varies with n and the degree of variation differs 

according to o . When plotted on semi-log paper the variation of U 

with n is approximately linear and the particular value of a which 

results in zero slope is the desired reference stress since the

deflection U will then be insensitive to n . Only two computations

are required to find . Putting

= ÿ" o ' (4.11)

where (f is some ratio to be determined. Substitute from (4.11) to

(4.10) noting that U is an n-degree homogeneous function of o

] " f " " ] - (4.12)

By computing U(a/a )^ using an arbitrary choice of a , Sim chose

two values of n , for example n^ and r i2 , and equated

U[(o/o^) ] = U[(o/o^) ] . (4.13)

This equality gives

_  , "2 _  , ni l/(n2-ni)
Ç = {U[(o/o ) ]/U[(a/a ) ]} . (4.14)

Sim found that reference stresses that are least sensitive to n can 

be calculated by equating non-dimensional deflections for two n-values
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pther than n = 1 . The range of insensitivity of reference stresses

calculated in this manner was found to differ from one structure to

another but over the range of n , reference values obtained between n

equals 3 to 9 were reasonably constant.

In the techniques described references stresses were derived from a

constitutive law of the n power form. The main advantage of this

form is its relative simplicity in analytical treatment. Since the

reference parameters have appeared to be only 'weakly* dependent on n ,

this behaviour can be taken as an indication of the reference stress

being independent of the creep law. The desirability of showing this
(55)analytically was pointed out by Marriott .

(5 8)Some work on this has been done by Fairbaim , who applied the

reference stress obtained from Norton's law to thick-walled tubes in

bending, where the tubes were made of materials following different creep

laws. For both circular and elliptical section tubes it was shown that

a reference stress derived from Norton's law used in conjunction with

either exponential or hyperbolic sine forms of creep law produced estimates

of bending moments to within 2 per cent of analytically derived values.
(59)TTiese results are similar to those obtained by Johnsson who derived a 

reference stress and scaling factor for a general two-parameter creep law.

He demonstrated that for a beam under flexure and a two-bar structure the 

reference parameters derived from Norton's law are also applicable for a 

Prandtl^^^^ or type creep law and that the resulting errors in

deformation rate are within a range fully acceptable from a design point of 

view. The use of a Norton type creep law to provide a theoretical 

simplification to more complex creep laws would seem well justified.

The extension of the above techniques to identify reference temperatures 

for conditions where temperature gradients are present has received little 

attention. To the author's knowledge, the only attempt to rectify this has
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been made by . He has extended his analytical procedure to provide

a means of identifying reference temperatures for thick cylinders and 

spheres subjected to internal pressures and a negative temperature gradient 

in the radial direction. The only difference in the analysis is caused 

by the introduction of an exponential temperature term otherwise the 

procedure remains unaltered. By definition the reference temperatures and 

reference stresses are located at the same dimensionless radius within the 

thickness of the wall. No real conclusions may be deduced from this 

technique since there exists no experimental verification, or application 

to other structures.

4.2.2. Approximate Estimates of Reference Stresses.

A drawback of the reference stress technique is the effort required 

to calculate reference values in anything but trivial examples. If an 

order of magnitude check is only required, even an approximation to the 

reference stress is as useful as the exact value. Several workers, 

notably Leckie, Ponter and Sim have shown in their numerous publications 

that results from the theorems of perfect plasticity can prove useful in 

determining reference values. It has been proposed that for a structure 

subjected to an applied load P , a reference stress may be given by the 

expression

*R = °y (4.15)

where P^ is the ultimate load for the structure and Oy is the yield 

stress. Sim has shown that the correlation between the reference values 

obtained using equation (4.15) and those using finite n creep solutions 

is good for a spinning disc,and a cylinder and sphere under internal 

pressure. By utilising the results of perfect plasticity,reference 

stresses can be determined with reasonable accuracy. However, a knowledge



4 .9

of o^ is in itself insufficient to allow predictions to be made of

structural deformation. As a minimum the dimensionless parameter used
/

by Sim to relate the structural and uniaxial deformation requires to be 

known and cannot be determined using only the plasticity theorems.

The work conducted by Leckie and Ponter has shown that equation (4.15) 

may be used in conjunction with the results of a steady-state creep calcula

tion to give an upper bound on structural behaviour.

In addition, by its form, equation (4.15) implies that the results 

of a short-time (elastic-plastic) test on a structure may be used to predict 

the long time (elastic-plastic-creep) behaviour of the structure. Such . 

an approach is particularly attractive for structures which because of their 

asymmetry or other factors are not amenable to analysis. By conducting a 

short-time test on such a structure and comparing it to the results of a 

tensile test conducted at a comparable strain rate on a specimen of the 

structural material the parameters necessary for use in a reference stress 

approach can be evaluated. Knowing these parameters, the creep deforma

tion of the structure may be predicted if the creep strain-time response 

associated with the reference stress is known.

Some experimental results that support the above approach have been 

reported by Sim and Penny^^^^, Leckie and Ponter^^^^ and W i l l i a m s a n d  

good agreement between experimental and theoretical predictions found.

4.3. Analyses of Some Simple Structures

4.3.1. Reference Values for Steady Loading.

It has been shown in the preceding sections the manner in which

reference stresses have been obtained for structures under isothermal

conditions. In the following examples the reference stress approach
(42)suggested by Mackenzie will be extended to define reference tempera

tures. The structures considered are; the classic example of a beam under
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flexure, a propped cantilever beam and the creep bending of straight tubes
f5 8)which has recently aroused interest

(a) Beam under Flexure.

The stationary curvature rate-moment relationship for the flexure 

problem may be written in the form
n

where Ig is given by
.1

(4.16)

Ig = ^jz(#+x) ^^.x.exp{AH/nR0(x)}dxj (4.17)

In the isothermal case Ig reduces to

IB = 2

n
2n+l“^ 1  / exp(AH/Re^) (4.18)

where 0  ̂ is the constant temperature.

The moment-curvature rate relationship (4.16) may be rewritten

K
K=-|-c(a), (4.19)

by direct use of the uniaxial creep strain rate equation with a = (2M/bd^). 

Thus the curvature rate may be calculated from the strain rate derived from 

a uniaxial test conducted at a stress a providing the stress index n is 

known. A reference stress that is independent of n requires that the 

function Ig be also independent. Such a reference stress may be 

evaluated by introducing a multplier X so that equation (4.16) becomes
n

k I 2M 
= d xbdZ- (x"lg). (4.20)

A value of X may now be found such that (X^^g) remains insensitive 

to n . The exact value of X depends on the procedure adopted and in 

the following calculation values of (X^Ig) are equated for n = 3 and
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n = 11 . This gives a value of X = 0.498 and a variation of (X^Tg)

with n shown in Table 4.1.

If X^I_ = 3.16 is selected, the mid-surface curvature rate is given

by
C = (4.21)

where c(o ) is the uniaxial creep strain rate corresponding to the 

reference stress a = 4.01 M/bd^.

This reference stress lies close to the upper bound reference stress 

of Ponter and Leckie^^^*^^^,

M —  4M 
*R = M[ *y = bd% '

where M^ denotes the limit load corresponding to a homogeneous yield 

stress ay
The maximum error incurred in selection of either the maximum or minimum 

value of X^^g is of the order of one per cent. Thus for a beam of given 

dimensions, b and d , and subjected to end moments M , the deformation 

may be related to the strain rate of a uniaxial test at a stress by

equation (4.21) and the value of k obtained will be within one per cent of 

the actual curvature rate whatever the value of n within the range 

3 < n < 11 .

To evaluate the problem when non-isothermal conditions are present it is 

required that in the limit the non-isothermal solutions reduce to the iso

thermal case such that the reference temperature obtained equals the iso

thermal value, 0^ . The method used to determine the reference values 

assumes a knowledge of the isothermal reference stress.

Under steady state thermal conditions the isothermal reference stress 

is adopted and

I

3.16(4.01)"
® (4.22)
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This ensures that under isothermal conditions

I

3.16(4.01)

A''reference temperature"* 0 may be defined by

6 = AH/R £nr-15(4.01)"^

® -  = exp(-AH/R0^) . (4.23)

{ - ■b
(4.24)

which is consistent with the isothermal case. However it is found that 

0 varies as a function of n and clearly this definition of a reference 

tc.r*N'̂ cr<KW<c. is deficient. A further multiplier y is introduced which makes 

0 equal for n = 3 and n = 11 and

K = k(yOg)^ exp(-AH/R0g) (4.25)

where 0^ is a reference temperature independent of n and defined by

9^ = AH/R )lnp _..1.6(4.01p) j (4.26)

The curvature rate expression
n

3.16 , r4.01yM' exp(-AH/R8^) (4.27)

may be re-expressed as

K = ^  (4.28)

where e(yOg,0Q) is the uniaxial creep strain rate corresponding to a 

uniaxial test at a modified isothermal reference stress, yo^ , and a uniform 

reference temperature 0^ .

The effectiveness of the above procedure may be judged by evaluating 

values of 0^(02,81) at different values of n since by the procedure

adopted it is only exact for n = 3 and n = 11 .

The results in Table 4.2 are for a linear temperature gradient through 

the beam depth and a lower surface temperature 0i = 300°K . The creep

activation energy is taken as 113 KJ/mole .
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It is seen that the values of 8 are remarkably insensitive to n .! KI
As values of 8^ are higher for intermediate values of n a 'conservative' 

estimate of k may be obtained by selection of the maximum value as the 

reference temperature.

In Fig.4.1 the variation of 0^ with 82 is shown and it can be seen

that the variation remains close to linear over a range of 02 • This 

implies that the position of the reference temperature remains fixed and

independent of 02 • It may be noted that this position is not close to 

any of the points where the stress profiles approach each other.

In Fig.4.2 the variation of yo^ with 02 is shown. The value of 

y remains reasonably close to unity for quite large temperature differ

ences. For example y = 0.958 for (82-81) = 120°K .

(b) Tube under Flexure.

The stationary state curvature rate for a straight tube of circular

section subjected to end moments M is given by
n

' 4  (4.29)
O L QJ

where 2r is the external diameter, o
z=ir/2 1 2n+l n+1

It - f j
-n_  n n _  _

r (sin z) exp[AH/nR0(r)]dzdr I , (4.30)
z=o r./r 1 o

r is a dimensionless radius and r^ is the internal radius. The 

temperature at any point in the surface of the tube is defined by 0(r).

A full analysis is given in section 10.3.

For isothermal conditions a reference stress may be obtained by a 

procedure similar to that for the beam problem and the curvature rate given 

by
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x"-I.
K = è(o^) . (4.31)

o

"here = [ ; ^
L o-J

The variation of X and X^I^ with r^/r^ is shown in Figs.4.3 

and 4.4. For any given value of r^/r^ the maximum difference in 

X^Iy is less than one per cent. Some typical values are shown in Table

4.3.

Figs. 4.3 and 4.4 therefore provide simple design charts for calcula

ting the curvature rate for any thickness of tube using the appropriate 

tensile data.

Spence has examined the creep bending of curved pipes and used 

energy methods together with thin shell theory, to obtain l o w e r a n d  

upper bounds on curvature rates. He obtained a reference stress

Og given by

cr̂  = 1.019 ^ 3  (1 - (1 + (4.32)
S O

In the Fig.4.5 reference values previously obtained are replotted as 
o^r^

log(-ijj— ) against r^/r^ for convenience. The broken line represents

Spence's solution. For values of r^/r^ > 0.5 the solutions are equivalent

but at lower values they diverge and Spence's solution forms an upper bound.

For example at r./r = 0.1, = 0.75 M/r ̂  and o_, = 0.95 M/r ̂  .■ 1 0  ' R o R^ o
An upper bound on the reference stress derived from the rigid perfectly 

plastic solution is given by

r. -1M
o o

a - 0.75 ^  (l - ^  (4.33)

and provides a solution that closely approximates the exact solution to 

within 0.5 per cent for all values of r^/r^ .

In the non-isothermal case with a temperature gradient through the 

tube the moment-curvature rate may be written
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n
K = Ç  [ ^ ]  exp(-AH/R6J (4.34)R'

where ç represents the isothermal value of for a given r^/r^ and

(4.35)0_ = AH/R An

such that 0 is virtually independent of n for 3 n 11 .

For steady heat flow the temperature at radius r is given by

_  log(r.r /r )
9(r) = 92 + ) (81-62) (4.36)

where 02 and 0% are internal and external temperatures respectively.

Consider, as an example, a tube with r j ^ / r 0.5 , 02 = 350°K and

01 = 300°K .

The values of X and ç are obtained from Figs. 4.3 and 4.4 at 

r^/r^ =0.5 , (i.e. X = 0.29, ç =  1.66) , and the isothermal reference 

stress is given by

= 0.86 ^  (4.37)
o

and K = e (a^). (4.38)
o

Solution of the problem gives y = 0.94 and the variation of 0̂  ̂

with n shown in Table 4.4. If it is assumed that 0^ = 311.2®K , the 

curvature rate derived from equation 4.34 and the curvature rate derived from

Ü: = ^  t(%OR.e%), (4.39)
o

differ by at most 4 per cent.

In Figs. 4.6 and 4.7 the variation of y and 0^ with r\/r^ are 

shown for a range of 02. The use of these figures together with the iso

thermal charts provide the constants to enable the curvature rate to be 

defined in terms of the reference values for the necessary restricted range 

of parameters.
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In Fig.4.8 the position of the reference temperature is plotted 

against 02 for a range of r^/r^ . It is seen that whereas in Sim's 

procedure the reference temperature remains at a fixed position regardless 

of the magnitude of the temperature gradient, in this method the position 

varies as some function of 02 .

(c) Propped Cantilever Beam.

The creep energy dissipation rate for a propped cantilever beam

subjected to a point load at the centre of span can be calculated from
A

D = c M<dx (4.40)

o
where x is the distance along the beam and

k = k exp(-AH/R0(x)) (4.41)

The single redundancy is taken as the prop reaction at the simply 

supported end and the problem solved for the deflection rate U under the 

applied load by numerical integration. This is fully described in 

section 10.3.

In the isothermal case computation gives

U = 0.0468 k(Mg) (4.42)

where the reference moment is

Mg = PA/6.757 (4.43)

Equation (4.43) is exact for n = 3 and 11 , and is approximately 

10 per cent conservative on deflection rate for n = 7 .

The propped cantilever is of rectangular section, width b and depth 

d , and the above equation can thus be expressed in terms of a reference 

stress by direct use of
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Then

”r
°R = 4.01 gz- •

where

U = 0.148 I è(aĵ ) . (4.44)

Og = 0.593 PA/bdZ.

In the problem with a temperature gradient along the propped cantilever. 

Fig.3.3, reference values may be derived using the same procedure as in the 

problems already discussed and a deflection rate obtained in the form

U = 0.0468 kA2(yMg)exp(-AH/R0g) , (4.45)

where

= AH/R An[- --̂/— 1 . (4.46)
 ̂ I P̂C JPC

The reference stress 0g reduces to 0^ for isothermal conditions.

The displacement rate is given in terms of a uniaxial creep strain rate by

U = 0.148 J  ê(wo%,8%) , (4.47)

providing there is no temperature gradient through the section.

In Table 4.5 the computed results for a propped cantilever with a 

negative temperature gradient along the beam length, as in Chapter 3, are 

given. The temperature at the simply supported end is constant at 

01 = 300°K and the maximum temperature 02 acts at the encastre end.

These values provide deformation rates within 15 per cent of the 

exact solution and therefore it would appear that this procedure used to 

determine the reference quantities is less satisfactory for this statically 

indeterminate beam problem.
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4.3.2. Approximate Reference Values.

It has been shown that use of a rigid perfectly plastic solution 

provides reasonably accurate predictions of stationary state deformation 

rates for structures under isothermal conditions. However, under non- 

isothermal conditions this solution provides a highly conservative bound 

and a closer approximation may be obtained if the yield stress is assumed 

to be a function of temperature. The function adopted is the intermediate 

plastic solution previously discussed in Chapter 3,

* = exp ' (4.48)

Under isothermal conditions a = a ao y
As in the previous section, reference values will be calculated using

the procedure previously adopted for the beam and propped cantilever

examples.

(a) Beam under Flexure.

An upper bound on the stationary state curvature rate obtained from a

stress function of the form (4.48) is given by

< < ?  , (4.49)

where Ig is derived from conditions of compatibility and equilibrium 

(section 10.3).

In the isothermal case

B

and

Ig = 4^^V exp(-AH/R0^) (4.50)

K < | ê ( o " e p  (4.51)
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with
u 4M M —

*R = *y -

In this example the multiplier X introduced is unity since is

independent of n .

To evaluate the problem when non-isothermal conditions are present it 

is required as in the exact analysis, that in the limit the non-isothermal 

solutions should reduce to the isothermal case such that the reference values 

obtained are equivalent to the isothermal values. As in the exact solution 

a further multiplier y is introduced so that

K < g  É(tio",e") (4.52)

where

[ g -0g = AH/R An 1 ^ 1  . (4.53)
B

The variation of 0^ with n is tabulated in Table 4.6 for a range 

of values of 02, and as in the exact solution the percentage variation is 

small.

In Table 4.7 the reference values obtained from the above intermediate 

plastic solution and those of the exact solution (section 4.3) are tabulated. 

It is seen that the intermediate plastic solution provides a good approxima

tion to the exact reference values.

(b) Propped Cantilever Beam.

The structure is identical to that considered in section 4.3.1. The 

upper bound inequality (3.9) achieves the form

U < k&2 (P£)" Ipg (4.54)

where 1^^ is obtained from the creep energy dissipation rate assuming a 

yield moment of the form
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“ = • (4-55)L o -I

In the isothermal case the procedure yields X = 6.75 and a varia

tion of X^I^^ given in Table 4.8. Inequality (4.54) may be rewritten

U < 0.047 k(Mg,0^) (4.56)

PAwhere M = y- and k(M ,0.) is the creep curvature rate corresponding K o . / K 1
to a moment Mg and isothermal temperature 0^ .

For a temperature gradient along the length of the propped cantilever 

the central deflection rate is given by

U < 0.047 K(pMp (4.57)

and the variation of y and 0g with 02 given in Table 4.9.

Hiis table can be compared directly with Table 4.5 where it is seen 

that the higher reference temperature obtained in the approximate analysis 

yields a lower y thereby tending to equalise the creep rates towards 

those of the exact solution. For 02 = 420°K the difference between the 

two solutions is approximately 30 per cent.

4.4. Discussion.

Hie calculations presented show that reference stresses and reference 

temperatures can be found for structures subjected to temperature gradients. 

The reference values are however slightly less accurate than those for iso

thermal conditions. The method adopted in both the 'exact* and approximate 

solutions require calculation of the isothermal reference stress Og .

This is then modified by a quantity y which provides a reduction in Og 

such that at 0g the normalised creep strains are equal for n = 3 and 

n = 11 . It is found that the reference temperature is always closer to 

the minimum temperature and therefore if design were based on the isothermal
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reference stress and the maximum temperature, the resulting deformation 

rate would be highly conservative. A knowledge of the deformation in 

terms of the reference values clearly provides a considerable advantage 

over isothermal solutions.

The suggested technique appears to require an exact knowledge of the 

temperature dependence of creep through the activation energy AH , and 

therefore the reference temperatures obtained are not reference quantities 

as defined in the true original sense. Numerous calculations were per

formed with different values of AH and Bj and it was found that in the 

examples given, a variation of 30 per cent in AH produced a variation 

in 6^ of less than 4 per cent. It would appear that 6^ is only 

slightly dependent on AH and 8^ can therefore be considered a 'true* 

reference temperature.

The potentially most useful application of the reference stress/ 

temperature approach is for structures which are subjected to variable 

loads and temperatures. The advantage of a reference stress/temperature 

approach in such cases is that the predictions of the creep behaviour of a 

structure may be based directly on creep strain-time data obtained from a 

simple test conducted on a specimen of the material loaded by the reference 

stress, yOj^Ct) , and the reference temperature • Implicit in such

an approach is the recognition that the main uncertainty about predicting . 

the creep behaviour of structures under variable loading is the material 

creep behaviour. By basing the predictions of the structure’s behaviour 

directly on test data the uncertainties involved in trying to analytically 

define the material creep behaviour are avoided. The results presented 

in this chapter may be used for variable load/temperature problems providing 

ratchetting effects are either avoided or taken into account.



n

3 3.144
5 3.156
7 3.163
9 3.157
11 3.144

Table 4.1

Variation of with n for a beam under flexure

n 6^ (300) 6^ (360) 8^ (420) 8^ (480)

3 300.0 328.6 351.6 370.9
5 300.0 328.7 352.4 371.8
7 300.0 328.7 352.8 372.4
9 300.0 328.6 352.2 371.6
11 300.0 328.6 351.6 370.9

Table 4.2

Variation of reference temperature with n for a beam with 8 % = 300°K

n r./r =0.1 1 0 r./r =0.5 1 0 r./r =0.9 1 o

3 1.792 1.650 1.382
5 1.807 1.660 1.388
7 1.807 1.660 1.388
9 1.801 1.656 1.386
11 1.792 1.650 1.382

Table 4.3
n.Variation of X with n for a tube of ratio of radii r./r 1 1 0



n

3 310.9
5 311.6
7 311.6
9 311.3
11 310.9

Table 4.4

Variation of 0_, with n for the tube with 0o=35O°K and r./r =0.5 R ^ 1 0

02°K y 0r °K

300
360
420
480

1.00
0.98
0.97
0.95

300
337.1 
375.3
417.2

Table 4.5

Variation of y and 0^ with 0£ for the propped cantilever

n 02=300 02=360 02=420 02=480

3 300 330.3 355.0 373.5
5 300 329.9 356.0 377.3
7 300 329.9 355.7 376.5
9 300 . 330.1 355.3 374.9
11 300 330.3 355.0 373.5

Table 4.6

Variation of with n for the beam under flexure
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Exact Soln. Intermediate
Soln.

yo^bd^
»R

yo^bd^
ORM M

300 300 4.0 300 4.0 300
360 300 4.0 328.6 4.0 330.3
420 300 3.8 351.6 3.9 356.0
480 300 3.6 370.9 3.7 377.3

Table 4.7

Comparison of exact and approximate reference values

n x"

3 0.047
5 0.043
7 0.042
9 0.044
11 0.047

Table 4.8

Variation of with n for the propped cantilever

under isothermal conditions

02 y

300 1 300
360 .98 338.4
420 .93 379.2
480 .88 424.1

Table 4.9

Variation of y and 8^ with 02 for the propped cantilever
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Chapter 5

Some Results of Testing a Simple Structure 

Subjected to a Temperature Gradient and Steady Loads

5,1. Introduction.

To verify the use of the reference stress, reference temperature

technique described in Chapter 4, a series of experiments were conducted

on propped cantilever beams subjected to constant loads and a temperature

gradient. The results are compared with predictions based on uniaxial

data obtained at the reference temperature.
C57jSim and Penny have reported some results on testing pure aluminium

beams and circular plates subjected to constant loading during creep.

The room temperature test results were compared with predictions based on

a reference stress approach and showed close agreement. This is not

surprising since the tests were conducted at load levels where the applied

loads P < n/(n+l).Pj^ and consequently the influence of plastic strains

on the overall deformation was small. This can be illustrated from the

results of the tests on beams under flexure where the maximum outer fibre
2stress was of the order of 15000 lb/in . Since the yield stress of

2the material is approximately 16000 lb/in the ratio of the maximum 

applied moment to the moment to cause plastic collapse M/M^ = 0.63 and 

therefore, as n=4 for this material at room temperature, the contribution 

of plastic strains to the overall deformation is likely to be small for 

M/M^ < 0.8 .
Leckie and Ponter^^^^ and W i l l i a m s h a v e  reported tests on pure 

aluminium and aluminium alloy RR58 portal frames under both steady and 

variable loads. Reference stresses'^derived from a knowledge of the limit 

state solution and uniaxial tests at the appropriate stress levels were 

performed. It was shown that the analytically predicted deformation
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fates were in close agreement with those gained experimentally even when 

loads on the structure were > n/(n+l).Pj^ and large plastic strains were 

present.

The above tests were all conducted under isothermal conditions and 

to the author's knowledge there appears to have been no attempts to perform 

similar experiments on structures where temperature gradients are present. 

Some experiments on this will now be described.

5.2. Test Rig.

The test rig, Figure 5.1, was constructed of welded steel channel to 

form a rigid frame. This was mounted on rubber pads to both eliminate 

any laboratory vibrations and to allow level adjustment. The frame was 

designed to accommodate beams 12 in . long, 0.25 in . thick by 0.375 in . 

deep which were the maximum size that could be machined from the material 

available.

The beam was simply supported at one end by a knife-edge resting on 

roller bearings which in turn rested on a flat ground surface of a thick 

supporting plate. This supporting plate was connected to the main frame 

by adjustable legs to allow fine level adjustment.

The encastre end condition was provided by a split cylindrical stain

less steel clamp rigidly bolted to the vertical surface of the main frame. 

Bolts passing vertically through the clamp held the beam specimen rigid in 

the mounting. A furnace consisting of two tubular heating elements wound 

on the clamp provided specimen heating and in order to minimise heat loss 

the complete unit was encased in an asbestos insulating jacket.

The vertical loads at the centre of the beam length were applied by 

a weight hanger system. Dead weights were lowered onto a loading stirrup 

by a screw jack driven by a constant speed electric motor. The weights 

were supported by a hollow cylinder attached to the top of the screw jack.
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The inside of the cylinder was such that the load stirrup and disk could 

hang inside it with the weights supported above the disk. Therefore when 

the cylinder was lowered, the weights were left on the load disk. The 

load could be removed in the same way. This system gave a constant and 

repeatable rate of loading. The furnace temperature was controlled by a 

Eurotherm Temperature Controller Unit using a thermocouple as a sensor.

The Chrome1/Alumel thermocouple was 'peened’ into the surface of the beam 

at the clamped support. Using this system temperature was maintained to 

within 5°C of the set value. Additional thermocouples placed at 

discrete points along the beam allowed continuous monitoring of the beam 

temperature.

Measurements were made of the central vertical deflection and the 

vertical deflection at the knife edge by L.V.D.T's (Linear Variable Differ

ential Transformers) with a resolution of 5 x 10 ^ in'.

5.3. Description of Tests.

5.3.1. Specimens.

The beam specimens were machined from commercially pure aluminium sheet 

in half-hard condition with the direction of rolling along the longitudinal 

axis. The choice of material has been discussed previously and the uniaxial 

tensile test results are given in Chapter 10 section 10.2.

5.3.2. Test Temperature.

The beam was held at a constant temperature of 150°C at the encastre 

end with a temperature distribution of an exponential form. Figure 5.2 

occurring along the beam length. Variation of temperature with time was 

better than ^  §°C and the temperature difference across any section was 

negligible.
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The criteria used in evaluating a suitable maximum temperature were 

that for the form of temperature gradient obtained, the value of the 

temperature at any point along the beam length was sufficiently high to 

ensure that a true steady state creep rate was achieved since at room 

temperature the material exhibits logarithmic creep but also that the 

temperature was not so high that the problems usually associated with high 

temperature creep testing occurred. Also within the range 100 - 150°C 

the creep activation energy for pure aluminium is reasonably constant 

although as was shown earlier the reference values are reasonably in

sensitive to AH . .

5.3.3. Limit Load Tests.

Limit load tests were conducted after allowing the beams to ’soak’ 

for approximately twenty-four hours at temperature for steady state 

conditions to be attained. The limit load was determined by applying a 

monotonically increasing load P to the weight hanger. The central 

deflection and the deflection at the knife edge were measured for each 

increment of load. The whole test was only of a few minutes duration 

ensuring that the beam behaviour was sensibly time-independent.

A series of six limit load tests were performed. A typical load/

central deflection curve is shown in Figure 5.3,from which it is seen that

the limit load, P^ , is approximately 73 lb \ The vertical deflection
- 3at the knife edge was 10 in . and this ’settlement’ was not considered 

further.

5.3.4. Creep Tests.

A number of creep tests at constant load were performed at a sequence 

of values of P/P^ . Each beam,as in the limit load tests, was given a 

twenty-four hour temperature ’soak’ before the commencement of a test. Test 

duration was typically 800 hours.
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The central deflection-time curve shown in Figure 5.4 was obtained 

from a test at P/P^ = 0.7. Normally the region of constant creep rate 

was achieved approximately 200 hours after the commencement of the test 

and the average displacement rates measured within the interval 350 - 

550 hours. The resulting average displacement rates-load curve is shown 

plotted on log-log axes in Figure 5.5 as the unbroken line. The broken 

line curve in the above figure was obtained from a limited number of room 

temperature tests conducted during the test rig development stage and is 

shown for comparison.

5.4. Reference Values.

Since the temperature gradient along the beam length in the experi

ments does not comply with the linear gradient assumed in the example of 

Chapter 4 relevant calculations were performed to evaluate the reference 

values.

The reference temperature obtained from a stationary state analysis 

for the experimental temperature gradient and assuming AH = 113 kJ/mole 

is 100°C . A twenty-five per variation in AH either side of this 

value changed the reference temperature by ^ , 2  per cent.

By a similar analysis to that given for the theoretical example the 

central deflection rate U may be expressed in terms of a uniaxial strain 

rate by

where % = 9 in. , d = 0.375 in., Oj^^«related to the applied load

= 0,600'R " " bd2 '

and b = 0.25 in .
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Similarly an upper bound on deflection rate is obtained using the 

intermediate plastic solution and is given by

where = 0.64 and 8 ^  = 101*C.

5.5. Discussion of the Results.

The displacement rates obtained from the reference values and the 

uniaxial data (section 10.2) are virtually indistinguishable for the above 

two solutions so no attempt to discuss the results in individual terms 

will be made.

The results obtained from the reference approach are shown by crosses 

on Fig.5.5 for both the room temperature and 150°C displacement rate-load 

curves. Both these curves are remarkedly free from scatter with the 

exception of one result which was discarded. The transition of the curves 

from a virtual straight line at lower loads to a more rapidly rising curve 

is seen to occur at P = n/(n+l)P^ as predicted by Leckie and Ponter.

The agreement between the experimental results and the analytical predictions 

is good for this simple structure but whether a similar result would be 

achieved for more complex structures remains to be investigated. From 

comparison of the isothermal and non-isothermal curves it would appear that 

the reference stress, reference temperature approach is capable of providing 

good predictions on stationary state displacement rates to a similar degree 

of accuracy as for isothermal conditions.



Fig 51 Photograph of fest rig
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Chapter 6

Creep of Structures Subjected to Cyclic Temperatures

6.1. Introduction.

Many structural components subjected to both thermal and mechanical 

loading in addition usually suffer time-independent deformations which 

may or may not be excessive. However the interaction between the non

linear creep response of the material and the presence of varying 

temperature fields is a problem the analysis of which remains amongst 

the more intractable problems of structural mechanics.

In principle methods of calculation are available which can be used 

to determine stress and strain histories in time-dependent structures 

subjected to variable loading when isothermal conditions are present. 

Unfortunately the lack of realistic constitutive equations for time- 

varying stress limit these methods to problems of steady loading. It 

has been shown that for structures subjected to steady loads and temper

ature distributions the reference stress/temperature concept can be 

particularly useful in predicting structural behaviour. This concept may 

also be used to estimate deformation for proportional loading providing

stress redistribution effects are small. A relevant theoretical study
r37jhas been reported by Ponter who has obtained bounds on the creep 

energy dissipation when the structure is composed of time-hardening 

material. The bounds are extremely useful in determining whether stress 

redistribution effects are significant. If the bounds show that stress

redistribution effects are small then the use of the reference stress 

technique is justified, but when stress redistribution effects become 

prominent then another procedure is necessary for a more general class of 

materials. W i l l i a m s h a s  proposed a method of solution for estimating 

creep deformation due to proportional cyclic loading. The method relies
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on the use of an equivalent steady stress obtained from a cyclic stress 

Creep test and the creep law for time-varying stress is therefore not 

required.

Solutions to the problem when both variable load and temperature 

histories are present is virtually impossible and it is quite possible 

that in the event of realistic constitutive relationships becoming 

available it would not be easy to use in computer calculations. Many 

situations involving variable loading are periodic and as such afford some 

simplification of the problem. Calculations have been performed for a 

thick tube subjected to cyclic histories of pressure and temperature, by 

Frederick, Chubb and Bromley^^^^. The value of such calculations depends 

upon the adequacy of the constitutive equation for time-varying stress.

Some theoretical results, recently derived by P o n t e r m a y  provide 

a more detailed understanding of thermal^creep interaction. He considered 

a structure composed of an elastic/time hardening/creeping/plastic material 

which was subjected to a history of applied loading, applied displacement 

and inelastic strain. A number of theoretical results were derived 

which included bounds on the energy dissipated by the material in the forma

tion of inelastic (creep and plastic) strains for load levels below the 

plastic shake-down limit. The analysis indicated that under cyclic 

histories of load the bounds provided two extreme modes of behaviour 

involving the creep energy dissipation associated with two equilibrium 

histories of stress. The bounding solutions are relatively simple to 

compute and are such that the time integration of the material behaviour is 

effectively uncoupled from the solution of the spatial continuum problem. 

Examples of the application of these bounds to some simple structures and . 

comparisons with experiments are discussed in (2,49).

The two equilibrium histories of stress correspond to the actual behav

iour of the structure when the cycle time is considered to be very long or 

very short compared with a characteristic time of the material at some mean
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stress level. These two stress distributions give the asymptotic stress 

histories and provide the corresponding average displacement rates of the 

structure. The bounds will be discussed in more detail in section 6.3 

but it may be mentioned in passing that consideration of time scales 

involved in many practical creep p r o b l e m s i n d i c a t e  that cycle times 

are generally very short compared with characteristic material times and 

the upper bound solution is likely to approximate the true state of affairs. 

Therefore the two stress histories given by this theory and the corres

ponding displacements they predict are likely to provide a strong indication 

of the behaviour of the structure for finite cycle times and indicate the 

relative importance of the various phenomena involved.

In the following section stress redistribution due to cyclic loading 

will be briefly discussed followed by a section describing the energy 

dissipation bounds in detail. It will then be shown that the pertinent 

phenomenon which occurs due to variable cyclic temperature may be exhibited 

by computing bounding solutions to two structural problems. These will be 

discussed under specific load and temperature histories that illustrate 

simple patterns of behaviour. In Chapter 7 these patterns of behaviour 

will be incorporated into design charts for the problems under generalised 

temperature histories. The first problem investigated is the parallel 

two-bar structure, subjected to constant applied loads and a variable 

temperature history. This structure is perhaps the simplest redundant 

structure imaginable and was chosen for the following reasons: in reference 

(48) it was argued that this structure was representative in some respects 

of many simple structures, severe thermal ratchetting effects are produced 

by small temperature changes and since it is a simple structure that 

illustrates thermal creep interactions particularly well, has been simulated 

experimentally. Details of the experimental test rig and test results are 

given in Chapters 8 and 10.
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The second problem is technologically more interesting; the creep of

a plate subjected to constant biaxial loads and surface temperatures that

vary in time. Some aspects of this problem have already been considered
(3)by Ponter and Leckie

6.2. Stress Redistribution due to Cyclic Loading.

A steady state of cyclic stress is defined as a state in which the 

stresses before and after the application of a loading cycle are the same, 

i.e. the repeated application of a loading cycle produces no net change in 

stress. Frederick and Armstrong^^^^ demonstrated that a body composed of 

elastic-perfectly plastic or elastic-creeping material whose strain rate is 

given by

s,,(t) (6.1)^  2 ij
o o

and subjected to cyclic loading approached a cyclic history of stress as 

time increased, although they were unable to characterise this cyclic state 

more specifically. Martin and W i l l i a m s d i s c u s s e d  the existence of an

extremum principle for structures composed of a time-dependent stable dissi

pative material subjected to cyclic loading and were able to show that

such a principle provides alternative arguments to establish the convergence 

to a unique state of stress.
('37')Ponter provides an extension to the theorem of Frederick and

Armstrong to structures composed of materials whose creep law is of the form

è. . ' {o (t)
■ ^ - - 1  n ĵCt) f(f) (6.2)

%  °

provided such a state of stress exists.

It has been shown that under conditions of steady loading creeping 

structures suffer stress redistribution until the stationary state is 

attained. The convergence to the cyclic state of stress is analogous to
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the stress redistribution process and the cyclic state corresponds directly 

to the stationary state under steady loading. Since the stationary state 

is associated with the minimum energy dissipation rate it may be assumed 

that the cyclic state similarly minimises the energy dissipation rate per 

cycle. However, Martin and W i l l i a m s h a v e  shown that the functional 

that is minimised is not the energy dissipation per cycle but a weighted 

integral of this quantity, of which they were unable to provide any physical 

interpretation.

6.3. Energy Dissipation Bounds for Cyclic Loading.

fX 2 36 37")The theorems described in this section are due to Ponter > » > J

and are based on a material model which was described briefly in Chapter 3.

Consider a body with volume V and surfaces S . The surface is 

subjected to applied loads P^ (x^,t) over part , and applied displace

ments U. (x, ,t) over the remainder, S . Within the volume a state of I K u
stress exists which has the value of at time t = 0 A

known history of inelastic strains A^^(Xj^,t) are induced by a temperature 

field G(x^,t) or by some other externally applied agencies.

The strains induced in the body are assumed to be sufficiently small 

for the classical assumptions of infinitesimal continuum mechanics to 

remain valid. The total strain accumulated at time t , Z^^(t) , consists

of four components,

Z.. = e.. + e.. + p . . + A. . , (6.3)

where e.., e. . and p.. denote the elastic, creep and plastic strains 
13 ij ^13

respectively.

The elastic component, e^^ , is related to the stress by a general 

linear relationship,

®ij = S j k i  °k£ . (6 4)

where C . „ denotes the elastic constant tensor which is positive- 
1 3 W,
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definite and fully symmetric.

The creep strains are given by
n+1,  ̂ .g  l < f i  ^

■  %

t  ̂   ̂ •
:u -'a

where $ denotes a homogeneous function of degree one in , and

denotes a uniaxial creep strain rate corresponding to the uniaxial constant
* Qstress cr̂  . The rate of creep energy dissipation, D , is given by

D %  a..êi. ^  (6.6)

The plastic strains p^^ are given by a perfectly plastic model 

associated with a convex yield function f(o^^) = 0 ,

P i j  =  H 3 ^ .  f  =  0 '  ° i j  3 5 7 .  =  0

p . .  = 0  , f ^ < 0 , 5 . .  ^ < 0  (6.7)

As in the previous chapters the functional dependence of c^Ct) upon

e assumes the form

ê (t)
= k exp{-AH/R0(t)}

o"o
The linear elastic stress distribution for the stated problem is

 ̂ *denoted by a.. and a related stress history a.. is defined by 13 13

a?j(Xk,t) = (6.8)

where p.. denotes an arbitrary time constant residual stress field in 13
equilibrium with zero applied loads on . The stress history may be 

recognised as that associated with the lower bound shakedown theorems.

The energy dissipated due to the formation of inelastic strains within

the time 0 $ t < At is given by
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At

C" = j 1 (6.9)
O V

"Atwhere denotes a work quantity associated purely with inelastic

strains.
(’37')Ponter has shown that upper and lower bounds on the quantity

-"At . -are given by

At At
I I D^(a^^)dVdt < c (n+l){E(o)-E(At)} + j j D^(a*^)dVdt. (6.10)
o V o V

The stationary state creep solution is defined as the solution

to the stated problem under the assumption e . . = p . .  = A.. = 0 and U. = 0  ^ ^ ij 1] 1] 1
on . Therefore provides the purely viscous solution with rigid

supports (U^ = 0) . The temperature field enters into the problem only 

through the functional dependence of upon 8 .

The total complementary elastic strain energy quantity, E(t) , is 

defined as

E(t) = i (6.11)
V

where P^j(t) = o\j(t) - o^j(t) , the instantaneous residual stress field. 

The quantity E(o) is known if at t = 0 the structure is in the unstressed 

state and E(t) may be removed without violating the inequality.

When the structure is subjected to cyclic loads, i.e. P^, and 0

are all cyclic with period At , it was shown in (1) that the stress 

distribution asymptotes to a cyclic state (provided such a state exists) 

with period At and that the total inelastic and elastic work (excluding 

the work done by the thermal strain A^^) may be bounded by the creep
* 5energy dissipation associate^, with and

At At
* f* < A1" * *D^(a..)dVdt < Wr < D (a. JdVdt = W (6.12). J o J J c ij

o V o V
W^ =

where denotes the total work done by the applied loads minus the work
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done by thermally induced strains '

At At
= I I CT..(E..-A..)dVdt = I P.Ù.dSdt (6.13)

o J J 1 ] 1 ] 1 ] . J 1  1
o V o S.J.

As the work depends upon the magnitude of the stress and not the sign, 

the difference between the two bounds provides a measure of the average 

deviation of the stress from o A  , the purely viscous solution.

The stress distributions are subject to the yield c o n d i t i o n s ,

f(o®) < 0 and O* ) < 0. (6.14)

The latter condition implies that the upper bound may be evaluated provided

the applied loads P\(t) are such that P^(t) does not cause

incremental plastic collapse whereas the lower bound may be computed

provided P\(t) does not cause instantaneous plastic collapse.

Ponter, on the computation of optimal upper bounds, has shown that the

residual stress field which minimized the upper bound made the

accumulated creep strain over a cycle
At

A^e.. = I é..dt , (6.15)
1 3  J i j

kinematically admissable, and was uniquely defined by this condition. The 

optimal stress field p^^ so formed provides a displacement field AU^ 

from A^c^j which may be interpreted as the asymptotic state which occurs 

when the cycle time At is small compared with a characteristic time of 

the material (which may be defined as the time to accumulate creep strain 

equal to the elastic strain at a mean stress (1,39)) . The displacement 

field associated with the optimal upper bound can be interpreted as the 

limiting case as the cycle time tends to zero. Under such circumstances 

the creep strains accumulated over a cycle are small compared with the 

changes in elastic strains, and stress redistribution is therefore occurring 

continuously with the result that any consequent ratchetting effects are
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m a x i m i s e d .

On the other hand, the lower bound solution, o A  ,.provides, by

definition, a kinematically admissible strain rate field ^^k&^ from

which can be derived a displacement rate field and the corresponding

displacement A^U^ accumulated over a cycle. This solution corresponds

to a situation when the cycle time is very long and perturbations due to

changes in thermal loading and changes in elastic strains make a negligible

contribution to the total deformation of the body. The implications are

that stress redistribution is occurring for only a small part of the time

and stress redistribution effects are correspondingly small.

The plastic strains enter into the problem merely as yield restraints

upon the stress fields and the analysis will indicate the range of loading

for which plastic straining will occur. In general a stress history of 
*

the form is possible providing the loads are less than n/(n+l) of a
C45)plastic shakedown state as the experimental investigation of Williams 

tended to confirm.
* sThe two solutions a.. and a.. provide bounds which describeij 1]

extreme modes of behaviour which may occur in the sense signified by ine

quality (6.12). The relative values of the upper and lower bounds on the 

work indicate the sensitivity of the structure to cycle time and the corres

ponding displacement fields indicate the two extremes of structural 

behaviour. The lower bound solution corresponds to the most widely used 

solution for this type of problem and can be seen to always underestimate

the energy dissipated within the body. Conclusions reached by Williams and 
(52^Leckie tend to indicate that the upper bound solution may be expected 

to closely approximate the actual behaviour for many structures, as typical 

cycle times are short compared with the total lifetime of the structure.
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6.4. The Analysis of Example Problems.

In the following problems the material properties chosen are those 

of a typical 816-type stainless steel. The relevant values are listed 

in Table 6.1. In practice several materials may have similar time- 

independent properties but with differing values of the stress index. 

Therefore all results were obtained for n = 3, 7 and 11 with the 

intention of providing as many aspects of thermal creep interaction as 

possible within the limits of the theory.

Unless otherwise specified all results are normalised with respect 

to the maximum thermo-elastic stresses and a mean temperature 0^ defined 

in the text.

6.4.1. The Two-bar Structure Problem.

The two-bar structure shown in Fig.6.1 has bars of equal length and 

equal cross sectional area which are restrained to remain of equal length.

A steady load P is applied and the bars subjected to a cyclic history of 

temperature.

The temperature history chosen is shown in Fig.6.2 where bar 1 is 

maintained at a constant mean temperature 0^ while bar 2 is subjected 

to a variable temperature which fluctuates between the limits 0^ A0 

Changes in temperature are considered to take place sufficiently slowly for 

thermal transients to be negligible.

Assuming each bar to be unit cross-sectional area, the stress distri- 
*

bution for the upper bound assuming zero plasticity effects is given

by

0. = ^  + o? + p i = 1,2 (6.16)1 z —  1 —

where a? is the isotropic thermo-elastic stress due to thermal expansion 

alone.

For the upper bound it is required that the creep rates of each bar.
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èi and Ê2 , shall be kinematically admissable when integrated over a

cycle of stress history. The accumulated displacement per cycle is then
At At

AU*'
o o

The residual stress p is determined from equation 6.17 in terms of

AC AC
j* = & j è(ai)dt = £ I efo^Jdt (6.17)

AU^ as P and are known. The solution is then obtained by

solving the compatibility condition by a Newton-Raphson procedure.

The lower bound stress distribution is simply the stationary state

solution for the temperature distribution in each part of the cycle. The

corresponding displacement per cycle is given by
At At

AU^ = I è(af)dt = I  I è(ai)dt (6.18)

6.4.2. Solutions to the Two-bar Structure.

The fixed temperature 0^ was taken as 800°K and in the first set 

of bounds increments of temperature A0 were selected to give the ratio of 

the thermo-elaStic stress to the yield stress, 0^/0^ , a range of values.

In the first set of calculations the applied load was maintained 

steady at P = (assuming each bar to be of unit area) and the effects 

of temperature upon the material properties removed by identifying AH = 0 . 

The ratio of the upper to the lower work bounds and corresponding ratio of 

displacements are shown in Table 6.2 for a sequence of values of A0 for 

n = 3 , 7 and 11 . For any given value of n , the ratio of the work bounds

and the ratio of displacements increase rapidly with increasing A0 . For

example at A0 = 40°K , 0̂  = 0.2 P the difference in the work bounds

corresponds to a change in the applied load of 20 , 30 and 35 per cent for

n = 3 , 7 and 11 respectively. The difference between the work bounds 

corresponds to the energy dissipation due to the effects of thermal ratch

etting and therefore this solution predicts an increase in thermal ratchetting 

if either n or A0 , or both of these increase.
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 ̂ The calculations were repeated including the effects of temperature 

on material behaviour. The resulting work and displacement ratios are 

given in Table 6.3. It can be readily seen that this set of solutions 

possess entirely different characteristics to those obtained for AH = 0 .

In this case the bounds lie reasonably close together and do not show a 

monotonie change with increasing A0 . For n = 3 the ratio of the work 

bounds are close to unity for all values of A0 , and for n = 7 the bounds 

achieve a maximum value then decrease. These results clearly show an 

effect of the stress index on structural behaviour. This will be more 

easily seen in Chapter 7.

The reason for the marked change in behaviour that occurs between the

two sets of solutions can be explained in terms of the stress histories.

In Fig.6.7 the stress histories are presented for AH = 0 and AH = 342 KJ/
*

mole with n = 7 and A0 = 30*K . The upper bound appears as full

lines and the lower bound as broken lines. In this example the

equivalent applied stress is approximately four times larger than the thermal 

stress.

When AH = 0 it can be seen that whereas the upper bound stress 

history is dependent on the temperature history, the lower bound solution is 

directly related to the magnitude of the applied load only. The stress 

histories do not approach each other during any part of the cycle and conse

quently since the lower bound solution provides the absolute minimum energy 

dissipation for any equilibrium stress field, the upper bound predicts large 

thermal ratchetting effects. However, when AH ^ 0 the stress distribu

tions lie close together during the first part of the cycle when the higher 

temperature acts. During the second part of the cycle they are distinctly' 

different. In the lower bound solution compatibility conditions demand 

that both bars remain of equal length during each part of the cycle and as 

creep rates are exponentially related to temperature, (i.e. small changes in 

temperature cause large changes in creep rates) this condition can only be
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satisfied by the maximum stress occurring on the cooler bar during each 

part of the cycle. Consequently as the creep rates are higher during 

the first part of the cycle the total deformation is dominated by the 

deformation accumulated during this period. The optimal upper bound 

involves a residual stress field that minimises the energy dissipation 

and since most energy dissipation occurs during this dominant period the 

upper bound stress distribution approaches that of the lower bound.

Therefore the inclusion of the variation of material behaviour with tem

perature in the problem appears to reduce the statical indeterminancy 

caused by thermal expansion and thus provide a reduction in thermal ratch

etting effects.

In order to provide some simplification of the problem a fixed thermal

history is considered. The lower bound solutions are then dependent only

upon the magnitude of the applied loads and similarly the upper bound is

dependent on the ratio of the applied loads to the thermal loadl

Both the values of the work bounds in inequality 6.12 and the

corresponding displacements per cycle AU^ and AU^ were computed for a

sequence of values of P and n . The results are normalised with respect 
6 6to W ((7 , 0^) and AU Co , 0^) the work and displacements computed on the

assumption that the thermal stress and temperature 0^ occur on both

bars during a cycle. The mean temperature 0^ is defined by

exp{-AH/R0^} = ^[exp{-2AH/RC20^+A0)} + exp{-2AH/RC20^-A0)}.

The results for A0 = 47*K , = 0.25 a and 0 = 800°K arey c
presented in Figs. 6.8 to 6.13 as the full lines. The dashed lines 

correspond to the solutions for AH = 0 . The solutions for AH ^ 0 

indicate that for any given value of the applied load the differences 

between the bounds increase with increasing n . The corresponding displace

ments show a marked change with the value of n ; for n = 3 the upper 

bound displacement is always less than that of the lower bound whilst for
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n = 7 or 11 the upper bound predicts the larger displacement. However 

tke results show that for all values of n similar features are exhibited; 

at large values of P the differences between the bounds become small and 

in the limit are zero. At lower values, the bounds rapidly diverge and 

the upper work bound tends towards the value associated with zero displace

ment per cycle, although the lower bound predicts a non-zero positive 

displacement at this value of the applied load. The upper work bound 

then increases with further decreases in load and the corresponding dis

placements are non-zero and negative. In this region the thermal-creep 

interaction produces a net reduction in the lengths of the bars.

The effects of thermal creep interaction can be seen more clearly

from the stress histories presented in Fig.6.14 for n = 7 . The upper
* sbound a.. appears as the full lines, the lower bound a.. as the brokenij ij

lines and the thermo-elastic solution as the chain lines. At large values 

of the applied load, thermal ratchetting has little effect on the overall 

creep deformation and the stress histories predicted from the two bounds 

coincide. In this region 96 per cent of the total energy dissipation 

and total deformation occurs during the first part of the cycle when the 

creep rates are higher.

The stress history shown in Fig.6.14a corresponds to a work ratio of 

1.03 and a displacement ratio of 1.002 . Even though the thermo-elastic 

stress is approximately 30 per cent of the applied stress only 3 per cent 

of the energy dissipation is associated with thermal ratchetting. In this 

solution the thermo-elastic stress history is close to the lower bound 

solution during the second period of the cycle but since kinematic conditions 

demand that the corresponding creep strain rates when integrated over a cycle 

produce the same deformation in each bar the resulting residual stress field 

removes part of the load from the most severely loaded member during the 

first part of the cycle and increases the severity on the higher loaded bar 

during the second part of the cycle. Most of the increased statix^al
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indeterminancy due to thermal expansion is offset by the rapid variation of 

material behaviour with temperature and the total energy dissipation and 

deformation continue to be dominated by the energy dissipation and defor

mation occurring in the first part of the cycle but to a slightly lesser 

degree.

When the bounds are reasonably close together the characteristic 

feature of the problem appears to be a period of high stress on the bar at 

constant temperature when the higher temperature acts followed by a period of 

high stress on the opposite bar when the cooler temperature acts.

As the applied load decreases the thermal ratchetting effect becomes 

more dominant. The stress histories do not approach each other during any 

part of cycle and stress on the cooler bars continues to increase. Like

wise the contribution to the total energy dissipation and the total defor

mation from the second part of the cycle continues to increase. It is 

seen from Figs. 6.14b and 6.14c that as P decreases the stress on bar 1 

eventually becomes compressive. At P = 0.5 the total energy dissipation 

becomes dominated by the energy dissipation of the cooler bar during the 

second part of the cycle and the overall deformation becomes small. In 

Fig.6.15 the stress histories that correspond to zero displacement per cycle 

are shown. The stress on bar 1 coincides with the thermo-elastic 

solution and the stress on bar 2 is compressive during the first part of 

the cycle. The strain rates corresponding to these stress histories when 

integrated over a cycle give rise to equal and opposite displacements on 

each bar during the first and second half of the cycle. The energy dissi

pation is associated with thermal cycling alone.
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6.4.3. The Plate Problem.
l

Consider the problem of a plate. Fig.6 . 3 of thickness 2h subjected

to a uniform state of mean stress (p^ , with respect to a fixed axis

in the plane of the plates central surface, which result from a stress

field > Oy(z) through the plate thickness.

The plate is subjected to a cyclic varying temperature field which

has the form shown in Fig.6.4 where the lower side of plate z = - h is at

a temperature 0i(t) and the upper side z = h at a temperature 0 2 (t) .

As in the previous example changes in temperature are considered to take

place sufficiently slowly for thermal transients to be negligible, so that

the temperature distribution through the plate is linear and given by

01 +  02 01 -  02 ^  

e (z , t )  = (— y - )  " h

It is assumed that the surfaces x = constant and y = constant

suffer only rigid body displacement and thereby simulate the condition which

occurs, for example, in a thin walled tube under internal or external

pressure (p = 2p ) or a sphere under internal or external pressure X y

(Px = Py) -
*

The stress distribution for the upper bound can be written

* 0a = p + a + pX ^x X ^x

Oy = Py + Oy + Py (6-19)

6 6where a and a are the thermo-elastic stresses in the x and y X y ■'
directions, and equilibrium of the residual stress field (p , p ) requireX y
that

p dz = p dz = 0 . (6.20)X } y
-h -h

The creep strain component is assumed to obey a Von Mises flow rule obtained 

by substituting
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into equation 6.5 to obtain
n-1

, ,,  ̂ 2
" T  ^(2 s^j exp(-AH/R8) (6.21)

where

®ij ° *ij ' 3 ®ij°kk

The creep strain rates in the x and y directions are therefore given by

n-1
2

è = ̂  (0^-0 a +a^) (2a -a )exp(-AH/R0)X 2  ̂ X X y y x y ^
n-1

2
é = ̂  (o^-a a +a^) (2a -a )exp(-AH/R0) (6.22)y 2  ̂y X y X x .

The upper work bound requires that and shall be kinematically

admissable when integrated over a cycle of stress history. If AU^ and 

AUy denote the accumulated displacements per unit width of plate then;

At
AU^ = I Ê (a*,a*)dt (6.23)X J X X y

o
At

AU^ = I Ê (a ,a )dt (6.24)y J y x' y"

These two equations determine and Py(z) in terms of AU^

and AU^ as a^ , a^ , p and p are known,y X y ^x ^y
The procedure adopted for the solution to the problem was as follows:

For selected values of AU^ and AU^ equations 6.23 and 6.24 were

solved for p^ + p^ and p^ + p^ at a sequence of stations through the 

plate thickness, by a Newton-Raphson procedure. The value of p^ and p^ 

were then found by integration of the computed values, making use of the 

residual stress field equilibrium equations 6.20 .

In terms of the temperature history a mean temperature 0^ is

defined as
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exp(-AH/R0^) = |-[expC2AH/R(0ii+02i)) + exp(2AH/R(0i2+022) ) 1

The mean temperature is the constant temperature which produces the 

same accumulated strain per cycle as the temperature history on the central 

surface z = 0 .

6.4.4. The Plate Solutions.

Bree^^^*^^^ in a study on nuclear reactor fuel can problems has 

obtained approximate criteria for the onset of ratchetting and plastic 

cycling in thin-walled tubes and shells subjected to constant internal 

pressure and variable temperature A0 between the inner and outer

walls. In the absence of creep the stress strain law was assumed to have 

the form shown in Fig.6.5 where is the yield stress. This simple

uniaxial stress model of the fuel can was used in the case of non-work

hardening to provide the resulting strain behaviour presented in Fig.6.6

that is solely dependent on the stress regimes. In this diagram the 

axés are defined by

pK 8

For loading histories that fall within the area marked E the response of 

the structure is purely elastic. For operating conditions in the area 

P% certain parts of the structure suffer alternating plasticity and in

regions Sj and S2 the response of the structure is purely elastic after

initial yielding during the first cycle of load application. This condi

tion is referred to as the shakedown condition and whilst S% and S2

both define operating conditions for shakedown,the permanent residual stress
0 —groups in each area differ from one another. The lines a = 2 a ^ and

0 _
p + a /4 = a define the shakedown limit.X y

In the first set of solutions the temperature history is the same as
f 3)used by Ponter and Leckie where
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011 = 012 = 021 = 723*K , 022 = 856°K

0 —and the maximum thermo-elastic stress a  = a  .
y

Work bounds and associated displacements per cycle AU^ and AU^

were computed for a sequence of values of p assuming AU = 0 . TheX y
sequence of values of p^ corresponds to the line 00’ in Fig.6.6. As

the shakedown solution corresponds to the largest load for which a solution
* *

of the form a.. exists for f(a,.) < 0 , the upper bound may be computed
1 3  1 3

only within a region formed by the shakedown limit surface scaled by a

factor n/n+1 . This is shown for an arbitrary n as the broken line in

Fig.6.6. The results were normalised with respect to W(a^,0^) and

AU^(a®,0^) the work and displacements computed on the assumption that the 
0 ^stress a and temperature 0^ occur through the thickness of the plate 

during a complete cycle.

The non-dimensional work bounds are shown in Figs.6.16, 6.17 and 6.18 

and the associated displacements in Figs. 6.19, 6.20 and 6.21 for values of

the stress index equal to 3 , 7  and 11 respectively. The results derived

for n = 7 duplicate the results obtained by Ponter and Leckie. The 

assumption that the value of the stress index remains constant over this 

temperature range provides a simplification of the problem since in practice 

the stress index appears to be highly sensitive to temperature. A 

necessary precaution in predicting the structural response to the applied 

loads is to, in addition, investigate the behaviour for the two extreme 

values of n usually encountered in engineering materials i.e. n = 3 and 

n = 11 . This clearly provides a complete spectrum of behaviour that can 

be predicted within the sense signified by the bounding solution.

It is seen that the bounding solutions to the plate problem exhibit 

similar features to those obtained to the two-bar structure. At larger 

values of p and for all values of n the difference between the work 

bounds becomes small. As the stress index increases the difference
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between the bounds also increases, thus the percentage of the total energy
I

dissipation that is associated with thermal ratchetting effects also

increases. The stress distribution of p^ and p̂ . corresponding to

p^ = 0.64 are shown in Figs.6.22, 6.23 and 6.24 where the upper bound 
*

appears as the full lines. An important and distinct feature of 

these profiles is that they are close to each other during the period when 

the higher temperature acts and on the cooler side of the plate. At 

other positions and times the stresses do not approach each other. The 

reason for this behaviour as in the previous problem is that when the 

effects of stress redistribution due to the thermal stress are small in 

comparison to the applied loads the upper and lower work bounds become 

equal. In the lower bound solution the energy dissipation is dominated 

by the stresses in this region because of the rapid variation of material 

behaviour with temperature and consequently the contribution to the total 

deformation from the first part of the cycle is considerably less than the 

contribution from the second part of the cycle when the creep rates are 

higher. The optimal upper bound involves a residual stress field that 

makes the inelastic energy dissipation a minimum and since most of the 

energy dissipation occurs during this dominant region and time the stresses 

may be expected to lie close to the lower bound solution which provides the 

absolute minimum energy dissipation rate for any equilibrium stress field. 

It is seen that the stress profiles show a marked sensitivity to the value 

of the stress index.

For smaller values of p^ the work bounds and associated displace

ments, as in the two-bar problem, diverge and the upper work bound tends 

towards a value associated with the thermal cycling alone. The stress
0

profiles corresponding to a small value of the applied load, p^ = 0.2 a , 

are shown in Figs.6.25, 6.26 and 6.27 for n = 3 , 7 and 11 respectively. 

For n = 3 the ratio of the work bounds is approximately 4 and the upper 

and lower bound stress profiles still show a tendency to follow one another
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during the hotter part of the cycle. However as n increases the two

stress histories diverge and do not approach each other for any part of 

the cycle. Therefore there exists no dominant time interval during 

which the majority of the deformation can be accumulated. In this region 

the thermal load is large compared with the applied load and the deforma

tion becomes dominated by the deformation associated with the thermal stress 

field. As the applied load approaches zero the displacements per cycle 

derived from the lower work bound also approach zero, but in the upper 

bound case, zero displacement corresponds to a small non-zero value of p^ . 

At this value the upper work bound attains a minimum value. Further

decrease in the applied load increases the energy dissipation and the dis

placement per cycle becomes negative. At p^ = 0 the upper work bound

equals the energy dissipation associated with thermal cycling alone.

In the two-bar problem the effect on the work bounds of neglecting 

the variation of material behaviour with temperature indicated that large 

ratchetting effects occur. Similarly, to assess the effect in this 

problem the calculations were repeated with AH = 0 . The thermal 

expansion terms were included and the creep rate scaled so that

k = 6xpC-AH/R9^)

The resulting work and displacement bounds are shown as dotted lines

in Figs.6.16 to 6.21. The difference between the upper and lower work

bounds is again seen to have increased considerably for any given value of

•n. The reason for this increased ratchetting effect may be understood

from the stress histories involved which are shown in Fig.6.28, for n = 3 
0and p^ = 0.6 a . The upper bound solution appears as a full line. As 

no thermal softening effects are included there exists no dominant time 

interval or locations and the stress histories do not approach each other 

for any part of the cycle. As in the two-bar problem the effect of 

thermal softening appears therefore to reduce the statical indeterminancy
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of the structure and thus reduce the ratchetting effects. The exclusion

of thermal softening results in very non-conservative displacement

predictions and erroneous stress histories.

The preceding solutions to the plate problem have been obtained

under conditions of plane strain. In order to gain an overall assessment

of the structural behaviour under some arbitrary load system the effects

of various applied stress systems (p ,p ) were investigated. ContoursX y
of constant work and were computed for an arbitrary work value

0 — 3of W/W(,a ,0^) = 3 X 10 . Contours corresponding to this value are shown

in Fig.6.29 for n = 3 and 11 . The lower work bound in each case forms

an ellipsoidal curve symmetrically placed about the line p = p . InX y
addition the major and minor axes intersect at p^ = p^ = 0 and in the 

limit the work contour = 0 reduces to this point. The upper bound 

contour on the other hand exhibits a sensitivity to the sign of the applied 

stress resultant. It was shown for AU = 0  that the work value was non-y
zero and positive for zero displacement per cycle. The calculations reveal 

that zero displacements and hence minimum energy dissipation correspond to 

a positive applied load shown as point P for the three values of n . It 

may be noted that the values of p^ = p^ at point P differ for each value 

of n . The displacements corresponding to the work contours are shown 

in Fig. 6 ̂,30. The contour corresponding to the lower work bounds in each

case forms an ellipsoidal curve symmetric about both AU = AU andy ^
AU^ = - AU^ , and the upper bound contour forms a closed curve symmetrically

placed about AÛ . = AU^ . The reason for the lower bound solution

providing displacements greater than those of the upper bound solution may 

be explained simply by the fact that since the magnitude of any stress system 

is greater for any given work quantity in the lower bound case and there is 

no energy dissipation associated with thermal ratchetting effects, the 

displacements must therefore be correspondingly higher.
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If the work bounds alone are considered the most severe difference

between the upper and lower bound stress resultant occurs when p = p < 0 .X y
However, in terms of the displacements the most severe situation occurs 

when Py = - for both p^ < 0 and p^ > 0. The displacement vectors 

are in the same direction as the applied stress vectors and it can be seen 

that the most severe stress situation in terms of the work quantities 

produces the least severe situation in terms of displacements.

It must be remembered that the diagrams represent contours of constant 

non-dimensional quantities and the absolute values are dependent on n and 

in these circumstances it is difficult to distinguish between individual 

features corresponding to any given value of n .

6.5. Discussion.

The solutions presented for the plate problem have shown that many 

of the features observed in the two-bar structure also pertain to this 

problem. It has been shown^^^ that the upper bound solution probably corres

ponds to the actual solution that occurs in practice in cases of variable 

loading under isothermal conditions. This may also be true of cyclic 

temperature conditions although no formal proof is offered and the exact 

conditions when this may be assumed remains open to question.

It has been shown that the deviation of the upper bound from the 

steady state lower bound solution is sufficiently pronounced to require 

inclusion in design calculations and that the lower bound is clearly non

conservative. If the effects of temperature on material behaviour is 

excluded the resulting solutions produce highly non-conservative displacements 

and erroneous stress histories.

The upper bound solution provides a clear picture of the variation of 

stress during the cycle and the characteristic feature of the plate problem 

appears to be a period of high stress at a lower temperature followed by a
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lower stress at the higher temperature. The two-bar structure represents 

a more severely loaded structure and from the results it is difficult to 

identify a characteristic feature. This will be discussed further in 

Chapter 7.

The final aspect is the variation of the bounds with the value of 

the stress index. Distinct behaviour patterns dependent on n have been 

shown and therefore unless, under such situations, prediction of structural 

behaviour that is independoit of n can be found, a knowledge of the exact 

value is required.
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Youngs Modulus 2 X lO^lb/in^
Poisso ns’ Ratio 0.3
Yield Stress 2.1 X lO^lb/in^
Coefficient of Expansion 3.3 X 10"^/°K
Creep Activation Energy 342 KJ/mole

Table 6.1

Material Properties of 816-type Stainless Steel
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n = 3

A0 AU^/AU^ W^/W^
0 1.000 1.000
10 1.033 1.066
20 1.132 1.265
30 1.296 1.602
40 . 1.527 2.084
50 1.823 2.722
60 2.185 3.527
70 2.613 4.516

n = 7

A0 AU^/AU^ W^/W^

0 1.000 1.000
10 1.235 1.316
20 1.989 2.366
30 3.422 4.476
40 5.805 8.227
50 9.541 14.535
60 15.192 24.740
70 23.503 40.738

n = 11

A0 AU^/AU^ W^/W^

0 1.000 1.000
10 1.644 1.785
20 4.090 4.931
30 10.113 13.266
40 23.493 33.336
50 51.426 78.362
60 106.859 174.026
70 212.147 367.718

Table 6.2

Ratio of Bounds for the Two-bar Structure with AH = 0



6.27

n = 3

A0 AU^/AU^ W^/W^

0 1.000 1.000
10 1.001 1.001
20 1.001 1.001
30 0.998 1.001
40 0.995 1.001
50 0.993 1.001
60 0.992 1.002
70 0.990 1.002

n = 7

A0 AU"/AU^

0 1.000 1.000
10 1.048 1.087
20 1.144 1.267
30 1.209 1.409
40 1.216 1.463
50 1.183 1.439
60 1.136 1.372
70 1.093 1.288

n = 11

A0 AU^/AU^ W^/W^

0 1.000 1.000
10 1.268 1.353
20 1.901 2.241
30 2.649 3.419
40 3.343 4.681
50 3.864 5.829
60 4.151 6.702
70 4.181 7.188

Table 6.3

Ratio of Bounds for the Two-bar Structure with AH 51̂ 0
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7.1

Chapter 7

Deformation Maps and a Material Related Parameter 

for Structures Subjected to Cyclic Temperatures

7.1. Introduction.

Conventional computing methods may be used to evaluate cyclic 

stationary state solutions. However, such methods usually incur large 

computing costs and are thus unsuitable for general design purposes. An 

alternative approach has been discussed in the preceding chapter and, as 

such, offers a simplified understanding of the complex effect^ of cyclic 

temperature histories on structures undergoing creep. The solutions 

obtained provide an indication that the comparatively simple calculations 

involved in the bounding theorems may provide a most suitable means of 

obtaining relevant design information.

In this chapter it will be shown that the solutions obtained from 

these bounding theorems can be presented in the form of deformation maps. 

When a non-linear viscous constitutive relationship is used, separate 

regions of behaviour that coincide with distinct ranges of stress and tem

perature are clearly distinguishable. These regions may be understood 

as resulting from the dominance of the stresses which occur during that part 

of the cycle when either the stress is largest or the highest temperature 

acts. The degree of severity of stress redistribution may be understood 

from those regions where the rapid cycling solutions (upper bound) differ 

from the slow cycling (lower bound) solutions. It is shown that the 

solutions can be expressed in terms of a material parameter 3 which 

allows the structural behaviour to be related to uniaxial behaviour by 

appropriate choice of reference stresses and reference temperatures. There

fore, a reference stress/temperature approach may be applicable to cycli

cally varying temperature problems with, however, the relevant reference
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values being dependent on the value of 3 .

Similar bounding calculations have been performed^^^^ using both the 

strain-hardening and Bailey-Orowan constitutive equations in order to see 

if comparable regions of behaviour are discernable. It was found that 

the solutions using the strain-hardening model exhibit similar patterns of 

behaviour to those of the non-linear viscous model, but those of the Bailey- 

Orowan model are distinctly different due to the presence of recovery.

This difference occurs because the Bailey-Orowan model predicts a much 

greater strain rate for a history of loading where a high stress at low 

temperature is followed by a lower stress at a higher temperature, than do 

the other models.

The structural examples analysed in this chapter are those previously 

described in Chapter 6. In both problems the load and temperature histor

ies are of a similar form to those previously employed and the general 

theoretical approach remains unchanged. However in the plate problem, 

two load cases are examined: The first case assumes that deformation in 

the y direction is fully restrained i.e. AU^ = 0 , whilst in the second

case the deformations in both directions are equal i.e. AU = AU . In^ X y
both cases positive and negative applied loads are considered. As in 

Chapter 6 the solutions are concerned solely with the interaction between 

elastic and creep strains. The effects of plasticity and incremental 

collapse mechanisms are not considered.

In the following section a physical interpretation of the material para

meter 3 is given, and in section 7.3 details of the construction of the 

displacement maps are described. Sections 7.4 and 7.5 describe the dis

placement maps for the two examples assuming a non-linear viscous behaviour. 

In sections 7.6.1 and 7.6.2 the strain-hardening model and the Bailey- 

Orowan model are briefly discussed in relation to the two-bar structure.

The complete theory is well documented in references (72, 73, 74, 75) and 

the inclusion of these models is necessary as an aid to a more fuller
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understanding of the experimental results described in the next chapter,

7.2. Material Parameter 3 .

In the two-bar structure and plate problem the ratio of the cyclic

stationary state deformations, U = AU^/aU^ , is dependent upon the
6 6 parameters o/o , n and 3 . The quantity o/o is the ratio of

the average applied stress, due to the applied load, to the maximum thermo

elastic stress occurring during a cycle of the loading history.

The material parameter, 3 , is defined by

e = ^  n

where 2A0 is the difference between the maximum temperature (0^ + A0) and 

the minimum temperature (0^ - A0) occurring during a cycle of the temperature 

history. The physical interpretation of 3 arises from the relationship 

between the creep rates which occur at (0^ + A0) and (0^ - A0) . Providing 

changes in temperature are sufficiently small, the constitutive equation may 

be written as

Ê = k o* exp (- = k exp[y(0-0^)] , (7.1)

where k = k exp (- and y  = - • (7.2)
c c

If constant stress uniaxial tests are conducted at the two temperatures, 

then raising the temperature from (0^-A0) to (0^+A0) will increase the 

creep rate. Referring to Fig.7.1 suppose the same increase in creep rate 

is caused by maintaining the temperature at (0^-A0) but increasing the 

stress to , then

ê = k (xo)^ exp(-yA0) = k expCyA0) . (7.3)

Rearrangement of equation 7.3 gives 3 = log^ x • Therefore, on a
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uniaxial plot of log ê against log a at constant temperature, 3 corres

ponds to the distance between the lines representing the creep behaviour 

at the two temperatures. The parameter 3 therefore provides a measure 

of the change in stress required to make the creep rates equal, and reflects 

the temperature sensitivity of the material behaviour.

7.3. Map Construction.

The construction of the displacement maps involved computing upper and

lower bounds on the creep energy dissipation at a sequence of values of

a/o^ for a range of values of 3 and n . In practice the calculations

were performed at three values of AH (114, 250 and 342 KJ/mole) and a

range of values of 0^ and A0 for n = 3, 5 and 7 . The resulting

data was processed by the University computer to produce values of U ,
6a/a , 3 , n , AH,0^ and A0 . These values when plotted on a two-

dimensional space with a/a^ as the ordinates and 3 as the abscissas 

form contours of constant U .

In both problems the regions of interest are found to lie within the 

range 0 ^  3 ^ 6  with -1 < a/a^ < 1 for the plate and 0 < a/a® < 2.5 

for the two-bar structure.

7.4. Two-bar Structure: Non-linear Viscous Material

When the cycle time At is small in comparison with a characteristic

material time the rapid cycling solution (upper bound) is given by

equation C6.17). On the other hand when At is large the resulting work

bound, equation C6.18), is a lower bound on the creep energy dissipation.

Contours of constant U = AU^/AU^ are shown in Fig.7.2 for n = 3

where it is seen that the deformation map can be subdivided into three

distinct regions. In Region 1 , U > I and the difference between the
0

bounds achieves high values for relatively small changes in either a/a
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or 3 . Therefore the rapid cycling solution predicts a considerable
I
increase in displacement rates for small cycle times. Region 2 

corresponds to U = 1 where both the rapid cycling solutions and slow 

cycling solutions provide near identical displacement rates. Since the 

lower bound solution is independent of the magnitude of the thermal stress 

then so is the upper bound solution. In Region 3 , U < 1 and the 

rapid cycling solution yields a lower displacement rate than the correspon

ding slow cycling solution. It is seen that for any value of 3 , as 

0 / 0^ decreases, U «  1 until a value is attained at which U = 0 . 

Although at this value the slow cycling solution remains positive and finite, 

the rapid cycling solution predicts equal but opposite displacements during 

the first and second parts of the cycle yielding a net displacement equal 

to zero, Further decrease in 0/ 0^ results in the rapid cycling solution 

producing a net negative displacement over a cycle; i.e. creep deformation 

produces shortening of the bars.

The general arrangement of the displacement contours is not entirely 

unexpected since it was noted in Chapter 6 that the elastic-creep interac

tions occurring are highly sensitive to both the relative magnitudes of the 

thermal and applied stresses and to the corresponding temperature history.

From consideration of fixed temperature histories (i.e. 3 = constant) it
0

was shown that as 0/0 decreased, the energy dissipation bounds and corres

ponding displacements diverged with the lower bound solution reducing to 

zero displacement at zero applied load whilst the upper bound remained 

finite and negative. Therefore the effect of the temperature history on 

the rapid cycling solution is to produce a net negative displacement over 

a cycle. In the limit the 3 axis corresponds to U = - <» .

The manner in which the solutions approach this value was found to be 

dependent on the value of A0 (i.e. 3) adopted, and this is clearly illus

trated by the map. For example at larger values of 3 >2.5 the rapid 

cycling solution always predicts a displacement rate less than that
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0
predicted by the slow cycling solution and, consequently as a/a

decreases, U also decreases. However, for 3 < 1.8 an entirely

different regime exists with the difference in the bounds rapidly
0

increasing with decreasing a/a , This continues until U achieves
0

a maximum at a small value of a/a and thereafter rapidly decreasing

until U = - ™ is attained. For 1.8 < 3 < 2.5 the two regimes inter

act and the behaviour becomes less defined.

The loading histories considered in Chapter 6 are shown as the broken 

li^eson Fig.7.2. Line AA^ corresponds to the first case considered with 

n = 3 , AH = 342 KJ/mole and A0 = 40, 50, 60 and 70°K. Line

corresponds to the fixed temperature history A0 = 47°K and AH = 342 KJ/mole 

discussed in the second part of section 6.4.2.

The behaviour within the three regions may be understood in terms of 

simple stress histories, and each region is now discussed in turn.

Region 1, U > 1 . In this region, which corresponds to smaller values 

of the most severe increase in displacement rate occurs for small cycle 

times. Consider the extreme case when 3 = 0 ,  i.e. the creep rate inde

pendent of température. The rapid cycling solution is self-evident and

is shown in Fig.7.4. The residual stress p , equals zero and effectively
0

all the deformation occurs when the stress is largest and equal to a + a . 

If the creep strain that occurs when the stresses are at the lower values 

is completely ignored the resulting values of U are shown as the broken 

lines in Fig.7.2. It is clearly seen that these lines closely approxi

mate the complete solution throughout this region. Hence the deformation

is effectively equal to that of the structure subjected to a constant load 
0P = 2A(o + a ) with half the cycle time and a temperature distribution 

01 = 0^, 02 = " A0 followed by a lower of zero applied load over the

remainder of the cycle. This approximation is least accurate near the 

boundary between Region 1 and Region 3 where extremely rapid changes 

in AU^ occur.
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Region 2, U = 1. This region corresponds approximately to 3 > 2 and 

o/o^ > 1. Since U is close to unity, the rapid cycling solutions and

slow cycling solutions are virtually identical in their evaluation of dis

placement rate. As 3 is large, the creep rates during the first part 

of the cycle when the higher temperature acts provides the major contribu

tion to the total displacement. Even though the temperature on bar 1 

remains constant and the stress reduces during the second part of the 

cycle the large value of 3 ensures that the stresses during the first 

part of the cycle provide the larger creep rates. In the rapid cycling 

solution the stress history is virtually identical to the slow cycling 

solution and, similarly, the contribution of the creep strains during the 

second part of the cycle to the total deformation is negligible. There

fore in this region the deformation may be assumed to be equal to one half 

of that which would occur if the condition of the first part of the cycle 

remained constant over the complete cycle. Hence the reference stress 

lies close to cr and the reference temperature lies between 0^ and

0 + A0.c

0
Region 3, U < 1. This region corresponds to a/a < 1 with contours 

of U becoming independent of 3 for larger values of 3 . If the case 

when 3 is large is considered, the behaviour may be more easily under

stood. From consideration of the stress history shown in Fig.7.5 it is

seen that during the first part of the cycle the stress in bar 2 becomes
0

small and either positive or negative since p = (a -a) . During the

second part of the cycle although 02 = 2a^ , since the average temperature

is much lower the creep rate is again very small. Hence the deformation

is governed by the stress on bar 1 which changes from 2a to 2Ca-a^)

and as the temperature on this bar remains constant at 0i = 6^ the dis-
0

placement rate is independent of 3 . When a/a =0.5 the net 

accumulation of strain over a cycle in the rapid cycling solution is zero.
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0 0 Therefore for 0.5 ^ a/a ^ 1.0 , 1 > U > 0 and for 0 < a/a ^ 0.5 ,

U < 0. In this latter case the displacement rate evaluated from the rapid

cycling solution is of opposite direction to the applied load P and in

order to maintain a zero displacement rate,a load equivalent to a = 0.5 a^

is required. The lower bound solutions are also independent of 3 for

large values of 3 as all the deformation occurs during the first half of
0

the cycle when 02 =0 and 0% = 2a

The rapid transition from Region 1 to Region 3 lies close to the

origin of Fig.7.2. As AU^ is a function of a and 3 solely, AU^
0

changes extremely rapidly for small changes of a/a . The transition line 

corresponds to U = 0 which arises when Oj fluctuates between _+ .

It is clearly demonstrated that these simple solution regimes are 

separated by regions in which fairly rapid transitions from one regime to 

another occur. For larger values of n a similar picture emerges except 

that the regions become more distinct with the transitions occupying a

smaller area of the diagram. These transition regions are defined by

contours of U close to unity and it is seen from Fig.7.3 that when

contours of U = 0.99 and U = 1.01 are plotted for n = 3 , 5 and 7

they are reasonably close together. For U = 0 the contours as expected

are identical. Contours of U = 50 are also included to demonstrate

that within the regions (with the exception of Region 2) the value of U

remains dependent on n although the stresses are still governed by the

calculations described above.

It is therefore seen that within Regions 1 and 2 the rapid cycling 

solution may be correlated with the same structure subjected to constant 

loads at constant temperatures. For Region 1 the relevant applied load 

is P = 2 (a+a^) with 0% = 0^ and 02 = 9^ - A0. In Region 2 , the 

relevant values are P = 2a with 0% = 0^ and 02 = 0^ + A0. Therefore 

these loading histories can be correlated with a constant reference stress 

and reference temperature as described in Chapter 4. In Region 3 a
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0variable stress history fluctuating between 2a and 2(a-a ) at

temperature 0 = 0 ^  defines the displacement rate.

To form a more complete solution to the problem it is necessary to

consider the creep energy dissipation. If this quantity is denoted by

and for the upper and lower work bounds respectively, then

contours of W = W^/W^ can be plotted on the coordinate axes defined.

In Fig.7.6 contours of W that correspond to the displacement map. Fig.

7.2, are presented. In this diagram, unlike contours of U , W shows

a monotonie change with a/a^. Since both and are finite
L 0and positive, with the exception of the lower bound, W , when a/a = 0, 

and is by definition the absolute minimum for any statically
0

admissable stress history, then W may be expected to decrease as a/a
0

increases, i.e. as a/a increases the creep energy dissipation associated 

with thermal ratchetting decreases and hence the corresponding displacements 

become more equal. Similarly, if a/a^ remains constant W decreases 

with increasing 3 . i.e. increasing 3 effectively increases the temper

ature difference and increased thermal softening therefore offset the 

thermal ratchetting. For values of o /o ^  < 1.0 and 3 > 3 , W becomes 

independent of 3. Further, by comparison of Figs.7.6 and 7.2, at any

W , U in this region is unique whereas for 3 < 3 , U is dependent on 3.

7.5. The Plate Problem: Non-linear Viscous Material.

The displacement map for the stressed plate subjected to a uniform

state of positive (tensile) mean stress (p ,p ) and creep index n = 3 areX y
presented in Figs. 7.9 and 7.10 for AÛ . = 0 and AU^ = AU^ respectively.

The vertical stress axis is defined as previously but with the

applied stress in both cases equal to p^ . For negative (compressive)

mean stress (-p ,-p ) the corresponding maps assume the form shown in X y
Figs.7.11 and 7.12.
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The contours corresponding to the positive mean stress cases clearly

show similar features to those of the two-bar structure. However, when

the negative mean stresses act the displacement maps are substantially
0

different with the contours exhibiting a monotonie change with p^/o 

and no distinct regions of behaviour.

For larger n values the contours for the positive states of mean

stress are remarkably similar. Since the transitions between the

regions, whose notation and general description follows that of section

7.4, are defined by contours close to unity, contours of U = 0.99 and 

U = 1.01 are shown for n = 3, 5 and 7 in Figs.7.13 and 7.14 for 

AU^ = 0 and AU^ = AU^ respectively. In both cases the contours for

the three n values lie close together and for U = 0 are indistinguish

able. However, within Region 1 contours of U = 5 shows that U 

still retains some sensitivity to n .

To understand the behaviour within each of the four regions, each 

region with stress histories typical of that region will be discussed in

turn. Particular attention is given to the AU^ = 0 case which was

dealt with in some detail in the previous chapter but the general features 

described will be seen to be generally admissable to the AU^ = AÛ , case.

As in the previous example. Region 1 is confined to smaller values 

of 3 where the most severe increases in displacement rate occur for short 

cycle times. The load cases described in Chapter 6 are contained within 

this region and are represented on Fig.7.9 as points A , B and C for 

3 = 0 ,  3 = 0.88 (n=ll) and 3 = 1.26 (n=7) respectively with p^/o^ = 0.6. 

The 3 = 2.96 (n=3) case is represented by point D which is within

Region 2 where U = 1 . These four cases will be used to illustrate .

typical stress distributions within these regions and also the transition 

from Region 1 to Region 2 . The distributions of stress corresponding 

to A , B , C and D are presented in Figs.6.28, 6.24, 6.25 and 6.22 . 

These have been individually described previously. However, the parameter
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3 allows the solutions to be described independently of n and thus the 

individual behaviour can be studied in terms of the regions of the displacement 

map.

It is seen that as 3 increases from zero the distributions of stress 

change markedly. When 3 = 0  the upper and lower bound stresses are 

distinctly different and do not approach each other during any parts of the 

cycle. The effect of an increase in 3 is to cause the stress distributions

occurring during the second part of the cycle, when the average temperature 

is higher, to move closer together on the cooler side of the plate. This 

progressive change in the stress distribution continues as 3 changes and 

culminates in the stress distribution of point D where U = 1 and the 

stresses during the second part of the cycle are virtually indistinguishable, 

although those occurring during the first part remain totally different.

The 3 = 0  and 3 = 2.95 cases therefore provide, in a sense, two 

extreme cases of behaviour. In the latter case, when the creep rate varies

with temperature, the dominant period occurs during the second part of the

cycle when the average creep rate is higher and thus the total deformation is 

dominated by the deformation that occurs during this part of the cycle. As 

3 decreases, thermal softening effects also decrease, the stresses diverge 

and this period becomes less dominant. Similarly as 3 decreases, U 

increases and in the extreme case when 3 = 0 , no dominant period appears to 

exist.

It may be noted that for any finite 3 , the stress profiles are always 

closest together during the second part of the cycle and on the cooler side of 

the plate; a feature previously noted in Chapter 6.

In the AU = AU case, similar load cases to the above are denoted by.X y
points k ' j  B^, C^, and on Fig.7.10. The corresponding distributions of 

stress are shown in Figs.7.15, 7.16, 71.7 and 7.18. The general description 

given for the AU^ = 0 case applies equally well to this example with the 

exception that the stresses in the x and y directions are identical in 

either bound.
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In Region 3 values of U are less than unity and become independent 

of 3 for larger values of 3. If p^/o^ is reduced at constant 3 from

the condition of Region 1 , U tends to zero. At U = 0 the average

displacement rate in the rapid cycling solution is zero although the slow 

cycling solution remains positive and finite for all positive applied loads. 

Further reduction in p^/o^ produces, in the rapid cycling solution, 

increasing average displacements in the negative direction, (i.e. the plate 

contracts) whilst the lower bound slow cycling solution rapidly approaches 

zero and thus large negative values of U result. In the limit when 

p /a^ = 0 , AU^ = 0 and U = - <».
0

For negative applied loads (p^/o < 0) the contours shown in Figs.7.1(

and 7.12 result. These may be described as Region 4 where as
6 6 p^/a -)■- 1 , U 1 . Typical distributions of stress that result as p^/o

reduces from Region 1 to Region 4 at constant 3 are shown in Figs.7.19,

7.20, 7.21 and 7.22 for AU = 0  and 3 = 4.11. When AU = AU similary X y
stress distributions occur but as in the positive applied load cases

,6 , 8 
O y j o  = Oy/ o  .

It is seen for all of the applied load cases the stress distributions

arising from the upper and lower bounds in the first part of the cycle are

totally dissimilar although the upper bound stress distributions do not

differ too greatly in form. On the other hand the upper bound stress
0

distributions show a distinct variation in form for p^/o < 0 . For small 
0

values of p^/o , U large and negative, the stresses are closest together 

during the second part of the cycle on the hotter side of the plate whereas 

for positive applied loads they lie closest together on the cooler side. 

However as U 1 , as in the positive applied load cases, the distributions 

of stress during the second part of the cycle tend to become identical.

In section 7.4 it was demonstrated that the solutions to the cyclic 

temperature problem could be understood in terms of simple stress and temper

ature histories. In this problem where highly complex residual stress
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fields arise all attempts to express Regions 1 , 3 and 4 in terms of 

appropriate constant loads and temperatures have been unsuccessful.

However since the upper and lower bound stresses in Region 2 are identical 

during the second part of the cycle when the majority of the creep strains 

are accumulated, the steady state solution is therefore sufficient to 

describe the creep behaviour. From these readily obtained solutions rep

resentative stresses and temperatures can be obtained and the displacement 

rates are then equivalent to these values acting for half the cycle time.

In the case when 3 = 0  and AU^ = AU^ an appropriate residual stress 

field has been obtained. This is presented in Fig.7.23 and is a function 

of the thermoelastic stress only. The resulting stress history for 

p^/o^ =0.6  is shown in Fig.7.24 and is seen to approximate the distribu

tion of stress shown in Fig.7.15 which was obtained numerically. If it is 

assumed that creep strains occur only during that region where

a = p^ + 0^/4 then the resulting displacement rate corresponds to a constant 
0

stress p^ + o /4 acting over half the original cycle time. From the 

creep rate equation (6.21)
n+1

,u
(7.4)

n+1

and ^  = ?  ( p j “ (7.5)It = I (Px)" {l}AU _ k ^n J31^

0Therefore contours of constant U intersect the p^/o axis

according to

It is found that if this equation is evaluated for n = 3 , the 

appropriate values of U virtually coincide with those gained numerically.

In the case when AU^ = 0 this residual, stress field appears to 

correspond to the stress history in the x direction and the relevant
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applied load is (p^ + o^/4) acting for half the cycle time. In the y 

direction the residual stress field remains unidentified although a 

tentative investigation suggests that a similar but scaled form exists. 

This problem remains to be further investigated.

7.6.1. Two-Bar Structure: Strain-Hardening Model.

Primary creep may be described by the time hardening equation

y

where B denotes a constant and m a time constant which in accordance 

with experiment is often given the value m = 1/3 . The corresponding 

creep rate is given by

_ jf"*'
ij " 3a

If it is assumed that the state of the material is described by the 

accumulated creep strain , then a strain hardening relationship is

formed by eliminating t between the above two equations to yield in the 

uniaxial case

ê = mB'/m a"/m . (7.9)

For constant stress commencing at t = 0 when the creep strain e = 0,
»

e(t) = Bo" . (7.10)

It is assumed that B = B^expY(0-0^).

The rapid cycling solution is given in reference (72) by
At

1ÜT = I (*+p)"/m dtj: mt"-' (7.11)
o

where p and a have the same meaning as before.

As in the non-linear viscous case, p becomes determinate



7.15

from the compatibility condition AU^ = AU^ over a cycle. In fact the 

calculations are identical if n/m is substituted for n and AH/m 

substituted for AH .

There exists no lower bound solution as such but for the purpose of 

providing a normalization similar to the previous case, the solution was 

computed so that the integrand of (7.11) remains equal in each bar during 

0 < t < At. This solution corresponds to assuming that the cycle time is 

sufficiently long for stress redistribution to occur at each instant within 

the cycle but that the average creep rate is calculated assuming that, 

from the point of view of the constitutive relationship, the cycling is 

rapid. This solution has no direct physical meaning but will reduce to 

the solution arising from equation (7.11) if the conditions of Region 2 

occur.

The displacements predicted by these two methods are denoted by 

AU^ and AU^ and their ratio by U .

It is found that the solutions so generated have patterns of behaviour 

very similar to those of the viscous material. The boundaries of the 

regions are shown in Fig.7.7 and are seen to be similar to those of Fig.7.2. 

There are however differences in the values of U as the relationship 

(7.11) provides a higher value of the creep rate under varying stress, 

when compared with constant stress maintained at the maximum value than 

does the viscous relationship. The stress histories themselves, however, 

are very similar and are divided into the same sub-regions.

Therefore the behaviour of the viscous material and the strain hard

ening material are very similar when described in this way, and the same 

reference stress histories are relevant.
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7.6.2. Two-Bar Structure: Bailey-Orowan Model.

This constitutive relationship includes the effect of thermal recovery,

The relevant theory is described in references (73,74).

 ̂ The state of the material is described by an internal flow stress s 

which increases due to strain hardening and decreases due to thermal 

softening.

s = H(s)|e| - Q(s) (7.12)

where H(s) and Q(s) are coefficients of strain hardening and thermal

recovery respectively. The creep rate ê is given by

ê = SIGN(a)f(|a| - s) (7.13)

where f ( l a | - s ) = 0  , |o| < s

1 1 ( 7 - 1 4 )> 0  , |a| = s

Stationary creep occurs when |a| = s and therefore

é = SIGN(a) Q(la|)/H(|a|). (7.15)

Assuming Q(s) = k^s^ ^ and H(s) = 1/k^s^ yields Norton flow

è = k^k^ |o|* SIGN(a) (7.16)

with

k^k^ = k^expY(O-0^) .

This model differs from both the viscous relationship and the strain 

hardening model by possessing thermal softening. When |o| < s , then 

s = - Q(s) and s decreases with time. If the stress is suddenly 

increased, s = ô and plastic strains occur according to

Ô = H(|a|)è . (7.17)
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Thus for a cycle of stress, both plastic and creep strains occur.

In common with the viscous material, an upper bound on the energy dissipa

tion in a structure composed of the material corresponds to assuming

that the cycle time is short compared with a characteristic material time.

The stress history is given by a = a + p and the accumulation of strain 

over a cycle is given by 

u
SIGN I k'exp(Y(8-8^))dt (7.18)

o
where t^ is the instant during the cycle When |a| achieves its maximum

value. Hence the average strain rate is the same as if a = o(tg) occurs

throughout the cycle. The model predicts the same creep rate as the

viscous relationship for constant stress but, due to the presence of

recovery, a greater creep rate for any other stress history.

The lower work bound is identical to that described in section 7.4 and

the ratio of displacements predicted by these two bounding solutions may be

directly compared.

The average displacement rate predicted from the upper work bound is
0the same as if a constant applied load P = 2A(a+a ) were applied through

out the cycle with one bar maintained at 0% = 0^ and the other at 0g = 8^

where

expY(0^-0^) = j  (expC yA Q ) + expC-YA0)). (7.19)

In Fig.7.8 contours of constant U are shown for n = 3 . The above

solution is appropriate in Region 1, but in Region 2, I02I achieves its
6maximum value when 02 = ^  * and p = - a . The average creep rate in

bar 2 thus becomes indeterminate and becomes determined by the stress

history 0  ̂ . In bar 1 , the stress fluctuates between 2a + a^ and 

2a - a^ and hence the average displacement rate is the same as if a constant 

applied load of P = 2A (a+a^) were maintained and both bars were at 0 = 0^.

It is seen that the behaviour shown in Fig.7.8 is entirely different to
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that shown in either Fig.7.7 or Fig.7.2. No reverse creep occurs and 

the ratio U remains at high values for large 3 as recovery increases. 

Effectively the Region 1 of Fig.7.2 now dominates a larger area of the 

diagram.

These calculations demonstrate that when temperatures vary rapidly 

between two limits, the stress history in the cyclic state fluctuates 

between a higher stress at a lower temperature and a lower stress at a 

higher temperature. The rate of deformation is strongly governed by 

the amount of recovery which occurs during the high temperature period.

To the author's knowledge no experiments have been conducted under these 

conditions.
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Chapter 8

An Experimental Study on the Two-Bar Structure 

Subjected to Cyclic Histories of Temperature

8.1. Introduction.

An important aspect of the response of a metallic structure subjected 

to cyclic loading and a superimposed mean load is its capacity for 

progressive strain accumulation. The concept of a cyclic stationary state 

and the phenomenon of cyclic dependent creep has aroused interest in recent 

years.

In the preceding chapters the concept of the cyclic stationary state 

has been examined theoretically and the solutions to two examples related 

to a material parameter 3 . These studies have also shown that under 

cyclic histories of temperature the directions in which the creep strains 

are accumulated in relation to the steady applied loads are a function of 

the parameters, a /a^ , 3 and n . Since the behaviour of many real

materials are so complex that the physical and metallurgical processes 

involved are not fully understood: the theoretical deformation processes 

are, at best, only approximations. So, although computer codes manipulate 

and deliver numbers, the models on which they are based may differ in their 

behaviour from the real materials to such an extent that, for certain 

loading histories, the results may be erroneous and misleading.

The main objective in this chapter is to describe a series of experi

mental tests that were conducted to provide an assessment of the various 

assumptions made in the analyses of Chapters 6 and 7 and also to compare 

the predictions of displacement rate with those observed. The tests were 

conducted on a simulated two-bar model subjected to cyclic histories of 

temperature and steady applied loads. This structure was chosen as a model 

for two simple reasons: in the first instance it is probably the simplest
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redundant structure imaginable and secondly, it is also one of the few 

redundant structures available in which it is possible to measure, 

experimentally, not only the deformation during creep but also the stress 

sharing conditions.

Previously, Bames et al^^^^ simulated the two bar structure experi

mentally by means of two linked uniaxial tensile creep test machines 

holding specimens of Nimonic Alloy 90. They observed the redistribution 

of load that occurred for several initial stress conditions at different 

temperatures within the range 800-900°C, and in each case the results 

were compared with calculations based on creep strain data obtained from 

constant stress tests. These short term tests were extended further by
r 761Bullard and Clifton to variable conditions of total load and temper

ature. However, to the author’s knowledge the behaviour of the two-bar 

model under cyclic histories of temperature has not been investigated.

In the following sections details of the experiments are given and 

the results compared with previously obtained uniaxial data.

8.2. Experimental Equipment.

The details of the experimental apparatus are reviewed only briefly, 

as a more complete description is given in Chapter 10,section 10.1.

Basically, the apparatus consisted of two identical modified uniaxial 

tensile test machine load strings, with their individual extensometers and 

furnaces, arranged in parallel and mounted in a frame of welded construc

tion. The total load on the test specimens was provided by two fluid 

filled drums connected by plastic tubing through a reversible peristaltic 

çump, thus forming a closed system. This allowed the individual load on 

each specimen to be varied although the total load remained constant. A 

schematic diagram of the apparatus is shown in Fig.8.1.
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The peristaltic pump used for fluid transfer was controlled by the 

difference between the readings of sensitive extensometers mounted on 

each specimen. In this way the extension of each test specimen was 

maintained as nearly as possible equal to that of the other, thereby 

satisfying conditions of compatibility. Therefore if the extension of 

bar 1 increased above that of bar 2 , the pump was activated to trans

fer fluid from the drum loading bar 1 to that of bar 2 and vice-versa, 

thereby restoring 'equilibrium' of the system. The sensitivity of the 

control device was such that the strains differed by at most 10 ^ % strain

Specimen loads were measured by high output strain gauged load cells.

A cyclic temperature history was achieved by enclosing one specimen, 

bar 1 , within a furnace, of low thermal inertia, which was controlled 

to remain constant at different temperatures for periods of 12 hours, 

i.e. a cycle time of 24 hours. The other specimen, bar 2 , was main

tained at constant temperature.

For technical reasons it was found more convenient to operate with 

the temperature histories;

01 = 0^ +  A0 , 0 ^ t ̂  At/2

0% = 0g , At/2 3 t < At (8.1)

02 = @2 0 < t < At

and At = 24 hrs.

A facility in the control device allowed simulation of thermal 

expansions electronically so that the case 0 = 0  could be achieved, i.e. 

thermal expansion occurs but there is no resulting change in temperature 

dependent properties.



\ 8.4

I
8.3. Test Conditions.

All the tests were conducted on specimens machined from the same 

commercially pure aluminium as used in the constant load tests described 

in Chapter 5. Since the steady state uniaxial creep data obtained at a 

series of constant stresses and constant temperatures (section 10.2), 

indicates that this material exhibits consistent creep behaviour it was 

considered well suited for an initial experimental investigation.

The test specimens were manufactured following the procedure given in 

section 10.2.4. and the rigid setting-up procedure described was strictly 

followed.

The experiments were conducted between room temperature, 20°C, and

150°C with several different combinations of 0 and A0 . Over thisc
temperature range the creep behaviour of aluminium is thought to correlate 

most closely with the strain-hardening hypothesis and this was, to a large 

extent, borne out by the experiments. As recovery creep, which forms the 

basis of the Bailey-Orowan model, is associated with temperatures in excess 

of 0.4 of the melting temperature, in degrees Kelvin, the creep acceleration 

observed in the theoretical study was not expected.

Before describing the tests themselves, the strain-hardening theoretical 

conclusions which are relevant to the temperature history 8.1 is first 

reviewed.

8.4. Strain-Hardening Model.

For a history of stress and temperature (pi,0i) followed by (02,62) 

for equal time intervals, the rapid cycling strain-hardening average creep- 

rate is given by equation 7.11 which may be written in the form

If = {(êi/” + (e z/*”}” O.s” (8.2)

where
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n n ^m-l Cl = Boi mt ,

, . „ n m-1and E2 = B02 mt

Hence êj and Ê2 are the creep rates at time t for constant stress 

and temperature tests at (oi,6i) and (02,82) respectively. The most 

important feature of equation 8 .2 is that the value of Ac/At is nearly 

equal to the larger of êj and &2 • For example, if Ê2 = 0.5 êi and 

m then Ac/At = 1.04 êi 0.5^ , and 62 may be effectively ignored.

As a result the regions in Fig.7.7 are very distinct from each other and 

the solutions corresponding to region 1 and region 2 (see Fig.7.2) 

may be described in simple terms.

In region 1 the dominant strain rates occur when the stresses are

largest which, in both bars for the temperature history of equation 8.1,

occurs when the temperatures are 0 = 0^. Assuming the strain rates during 

the other halves of the cycle are negligible (i.e. when 0% = 0^ + A0 ,

0 < t ^ At/2 and 02 = 8^, At/2 < t < At) then the stress histories are

Ol = a - o®/2 , 0 t ^ At/2

Ol = 0 + 0^/2 , At/2 ^ t ̂  At (8.3)

and

02 = o + 0^/2  ̂ 0 ^ t ^ At/2

02 c o - o®/2 , At/2 < t ^ At (8.4)

where a is the average applied stress.

The theory therefore predicts that the two specimens will creep, at a

given time, at a rate which is 0.5^ of the creep rate of a specimen held'
0

at a constant temperature 0^ and subjected to a constant stress o + o /2
0

from time t = 0 . This assumes that the creep rates at o - o /2 at 0^

and 0^ + A0 make negligible contribution. Therefore if appropriate
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values are taken from the experimental results, this may be confirmed 

by the creep rates obtained from the uniaxial data.

With the exception of two tests, which were unsuccessful attempts 

to simulate the conditions of region 2 , all the tests conform to the 

conditions of region 1 , therefore the strain-hardening theory will not 

be extended to cover region 2 .

8.5. Experimental Tests and Comparison of Results with Theory.

The two-bar test machine has been used for approximately twenty 

tests that included several combinations of temperature difference and 

mean stress. Several of these tests were conducted while the standard 

of the apparatus was being improved and consequently a number of results 

have proved unsatisfactory. As a result of experience during these 

tests several modifications were carried out and these are given in the 

section on apparatus development in section 10.1. Some tests were also 

abandoned due to mechanical and electrical failures of various components. 

However ten experiments have provided acceptable results and six of these 

tests will be described here. Some tests were repeated to check the 

reproducibility of results and these were found to be acceptable and well 

within the experimental error usually associated with creep testing.

In Table 8.1 experimental conditions of six tests are given. The

thermal stresses quoted were evaluated on the assumption that 

E = 9 X 10^ Ib/in^ and the coefficient of thermal expansion = 26 x 10 ^/®C, 

In test 5 the thermal expansions were induced electronically and both 

specimens remained at 20°C throughout the test.

The values of the material parameter 6 were calculated from the 

constant load uniaxial creep data (section 10.2). It is clear from this 

data that B is a stress dependent quantity, yielding smaller values at 

higher stresses and, therefore, the values quoted are average values over 

the range of stresses which occur in the test.
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The initial stress difference on the bars was theoretically zero. 

However, in practice due to the slight differences in the measured
I
amount of liquid in each drum, stress differences of the order of 20 Ib/in^ 

were detected on load-up. These differences were, however, quickly 

rectified by the control system satisfying the compatibility condition.

All tests were conducted with a cyclic temperature history of period 

24 hrs. and were allowed to continue for 400-500 hrs.

Tests 1, 2, 3 and 5.

In Fig.8.2 a typical temperature-time graph is shown. This plot is 

the temperature history of test 2 and illustrates the long term stability 

of the furnace and temperature control system. In all tests the maximum 

temperature occurring in a cycle was applied approximately twenty minutes 

from the application of load after any small stress redistribution had 

ceased (i.e. both bars were creeping at the same rate and no transfer of 

load was occurring). In tests where the temperature 0^ was above room 

temperature (20°C) both specimens were allowed to attain their steady 

temperature for approximately 12 hrs. before the commencement of the 

test.

Some transient phenomena occurred due to thermal lag of the furnace 

and the steady temperatures were achieved within l l  -  2 hours after the 

temperature change was signalled. Although the transient may appear to 

be of short duration, it will be shown to have a significant effect upon 

the interpretation of the results.

The plot of temperature against time. Fig.8.2, was obtained from data 

collected at hourly intervals by the laboratory data logger system, and 

whilst it clearly shows the long term stability of the heating system it 

does not show any short term instabilities. Chart recorders were used to 

continuously monitor thermocouple as well as load cell outputs to provide 

a record of any short term fluctuations. In the lower portion of Fig.8.3



8.8

the Chrome1/Alurne1 thermocouple output corresponding to the fifth cycle 

of Fig.8.2 is shown. It is clearly seen that when the temperature 

change is signalled the furnace system provides a progressive smooth 

rise in temperature with no discernable overshoot. Likewise, the fan 

assisted cooling curve shows no undershoot and reaches the lower equili

brium temperature in approximately 2 i hrs. During this test no large 

short term fluctuations in temperature are observed, although from 

inspection of digital data,fluctuations of the order ^  5°C occurred.

In Figs.8.4 and 8.5 the variation of stress with time for the ’hotter' 

bar are shown for tests 1 and 3 respectively. From these stress 

histories it appears that the stresses during the constant temperature 

periods are far from constant. However, the behaviour displayed is 

not that which actually occurred but is an undesirable feature of the 

switching devices employed in the data logger system interfering with the 

load cell output. In practice the stresses remain stable as can be 

judged from the chart recorder output shown in Fig.8.7. (This corresponds 

to the fifth cycle of Test 3). The large 'spikes' on this plot and that 

of Fig.8.3, occurring hourly, are interference from the data logger system 

as it scans through its selected channels, the high frequency signals are 

due to the pump control system and also to other electronic equipment 

located in the laboratory. These unwanted interferences still persist 

even after much of the equipment was extensively shielded and is an obvious 

problem when such sensitive instrumentation is used.

The stress histories of Figs.8.4 and 8.5 do, however, appear to closely 

conform to the concept of a constant residual stress field. After the 

first few cycles the stress histories remain stable and cyclic, oscillating 

between two fixed limits. The strain-time graph. Fig.8.6, on the other 

hand, does not achieve a constant stationary state displacement rate until 

far more cycles have been accumulated. The general form of the curve still
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follows the form of the constant stress behaviour with a preliminary primary 

portion prior to a steady creep rate being achieved. The difference 

between stress limits in Figs.8.4 and 8.5 is theoretically equal to the 

thermal stress , but experimentally these values are found to be much 

smaller. In Table 8.2 the experimental values, row (a) are compared with 

the theoretical values, row (b), and their ratio is given in row (c).

It is seen that the experimental thermal stress is only 64% to 77% of 

that expected theoretically. The reason for this is difficult to discern 

from tests 1, 2 and 3 but can be more clearly seen from Test 5 .

In Test 5 the thermal expansion was simulated electronically by 

applying an additional voltage equivalent to the thermal expansion to the 

extensometer output of ôhe bar. The control system interprets this voltage 

as an extension of the bar and immediately signals the pump to transfer 

liquid to the other drum i.e. increasing the creep rate of this bar, until 

compatibility is again restored. In this test the thermal expansion is 

therefore induced instantaneously whereas in the preceding tests it occurred 

over the period of the temperature transient. However, there still remains 

a transient load as the pump required a finite time in which to transfer 

load. The stress history corresponding to this test is shown in Fig.8.8 

and again conforms to the concept of a cyclic state. Immediately after 

the simulated temperature change a peak in stress is observed which rapidly 

declines to a lower value which then, in the cyclic state, changes slowly. 

This phenomenon is caused by a creep strain which occurs over a short time 

interval. Further, over a complete cycle of the temperature history it 

appears to provide no net accumulation of strain and is apparently an 

anelastic strain which acts rather in the manner of a delayed elastic strain. 

If the stress histories of Figs.8.3 and 8.7 are examined closely it is seen 

to occur to a less marked effect. The stresses appear to 'overshoot* 

their equilibrium values and then slowly reach equilibrium. It appears 

that this 'delayed' strain is relatively insensitive to temperature, giving
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a similar magnitude of effect in both tests 1 and 2 .

In rows (d) and (e) of Table 8.2 the average experimental stresses 

are given and in rows (f) and (g) the predicted values from equations 8.3 

and 8.4 are given. The theoretical values satisfactorily bracket the 

observed values and despite the discrepancy in the thermal stresses give 

a good prediction of observed behaviour. In row (h), the predicted 

experimental creep rates are compared with the observed values, and are 

within the range of expected experimental error. The experimental creep 

rates were taken as the average creep rates within the time interval 

300-500 hrs. and the constant stress rates over the same time interval 

were used in calculating the theoretical values. It is worth noting 

that tests 1 and 5 yielded the same value of the creep rate, which in 

accordance with the theory, shows that the effect of temperature on the 

material has had no effect on the creep rate. Further, the creep rates 

predicted and recorded tend to be greater than those which are required 

in design.

The remaining two experiments (4a) and (4b) were conducted under more 

severe conditions and were intended to simulate the conditions of region 

2, where the deformation is dominated by creep strains occurring during the 

first part of the cycle. The tests were identical and gave near identical 

creep rates but although the cyclic stress histories were similar, apprec

iable differences are apparent. The strain-time and stress hist

ories are shown in Figs.8.9 and 8.10 and details of the experimental 

results given in Table 8.3.

In Fig.8.9 it is seen that the creep rates during the first part of 

the cycle are far greater than during the second part, and thus conforms 

to the condition of Region 2 . For a = 9000 Ib/in^ the stationary 

state solution corresponding to the first part of the cycle was evaluated 

directly from the material data^yielding 0% = 6000 Ib/in^ and 

02 = 12000 Ib/in^. (Due to scatter in the data values were rounded off
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to the nearest 1000 Ib/in^.) The theoretical stress history for Region 

2 type behaviour is given in column (a), rows (f) and (g) of Table 8.3,

Due to the theoretical value of being 14,660 Ib/in^, the stresses

predicted for the second half of the cycle, = 20,280 Ib/in^ and

02 = - 2660 Ib/in^ are unreasonable since the yield stress at room temper

ature is in the vicinity of 16000 Ib/in^. Therefore, plastic strains 

must be occurring during each cycle and this aspect of these tests take 

them outside the range of applicability of the theory.

The experimental thermal stress lies close to 8000 Ib/in^ in both
0

tests and the ratios of experimental to theoretical o are 0.56 and
0

0.52, (row (c) of Table 8.3). If the experimental a is adopted in

the theory then the resultant stress history is that given in column (b),

row (f) and (g). This closely follows the observed history. The

creep strain rate predicted from this stress history (row (h)) yields

9.10" % strain/hr. which is appreciably below the observed value of 
- 33 X 10 % strain/hr. However if it is assumed that Region 1 type

behaviour is occurring then the stress history given in column (c), rows

(f) and (g) is obtained. This history gives an excessively high creep
. 2

rate in excess of 10 % strain/hr. as the maximum stresses are again

above yield.

The results of these two tests may be explained thus: the condition

normally corresponds to that of Region 1 , but plastic straining occurs

at the beginning of the second part of the cycle introducing a high strain

rate. The history of Oj is shown in Fig.8.10 for test 4a and possesses

some interesting features. During the first part of the cycle appreciable
0

stress redistribution occurs and the apparent a increases over a number 

of cycles presumably due to plastic strain hardening. Although the 

tests are outside the applicability of the theory, it is clear that the 

rapid cycling solution indicates that plastic straining occurs. Further, 

the creep strain rates which occurred and were predicted would, in design
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terms, be considered excessive and hopefully avoided since a creep strain 

irate of 3 x 1 0 " strain/hr. corresponds to 26% strain/year. Normal 

design work would be in the region of 1% strain/year.

8.6. Discussion.

The experiments described have simulated the two bar structure in 

which redistribution of stress can be caused by creep. It has been 

established that for constant applied loads and cyclic histories of 

temperature there exists, as predicted by the theory, a constant residual 

stress field and further, the strain histories presented show that cyclic 

stationary states are achieved after relatively few cycles. From the 

theory postulated in Chapters 6 and 7 a useful description of the stress 

and strain histories can be obtained from calculations applying constant 

stress creep data according to the strain hardening hypothesis providing 

the appropriate stress regime in which the structure is operating is known,
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Test
No.

A8(*C) a (Ib/in^) a®*
(theoretical)

a 6** e

1 20 40 5733 4510 1.27 0.5

2 100 50 6300 5640 1.12 0.7

3 100 SO 5100 5640 0.90 0.7

4a 20 130 9000 14,660 0.61 1.4

4b 20 130 9000 14,660 0.61 1.4

5* 20 40 5850 4510 1.27 0.0

calculated assuming E = 9.10^ psi and a = 23 x 10 ^/®C .

In Test 5 the thermal expansions were induced electronically,

Table 8.1 Test Conditions
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Test
Number 1 2 3 5

Experimental
a®

3140 . 4240 3590 3480 a

Theoretical
a»* 4510 5640 5640 4510 b

0
Ratio —Q-* 

o
0.70 0.70 0.64 0.77 c

0 < t  ̂At/2 3660 4180 2410 4550

i

Oi
At 6860 8410 6012 8024

d

1—1
Pi
ëXw

0 < t < At/2 
02 
t < At

8000

4570

8460

4210

7830

4270

7155

3680
e

0 < t < At/2 2380 3480 2280 3595

8 »—1

At --^  < t  ̂At 7980 9120 7920 8105
f

H
I
e

Ô < t < At/2 
02

7980 9120 7920 8105
g

^  ̂  t ^ t 2380 3480 2280 3595

Exp. 3.2 10"^ _42.4 10 -41.1 10 3.5 10"^
Creep Rate 
% Strain/hr.
Theory 2. 10"^ -42.5 10 1.3 10"^ 2. 10"^

h

In Test 5 , thermal expansion was simulated electronically, 

All stress are in Ib/in^.

Table 8.2

Stress Histories and Creep Rates for Tests 1, 2, 5 and 5
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Test 4a 4b
Number

Experimental
0

a 8300 7580 a

Theoretical
0*

0
14660 14660 b

0
Ratio

a
0 .56 0.52 c

0 ^  t <  At/2 3540 6130

g
1

—  ^  t ^  At 11790 13720

d

»—1 
Pi (Ua.
X
w

0 ^  t At/2 
02

14280 11960
e

<  t <  At 5940 4390

(a) (b) (c)
0 ^  t <  At/2 6000 6000 1670

£
â
t—iE-w

-y  ̂  t ^ At 20660 12000 16330
PiO
g

0 ^ t ^ At/2 
02

12000 12000 16330
g

^  ̂  t < At -2660 4000 1670

Exp. 3.04 10"3 3. 10"^
V,

Creep Rate 
% Strain/hr. (b) 9. 10"**
Theory (c) > 10"^

Table 8.3

Stress Histories and Creep Rates for Tests 4a and 4b
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Chapter 9 

Discussion and Conclusions

The calculations described provide a first step towards an 

understanding of the complex effects of variable temperature on creeping 

structures. An attempt has been made to describe the principal features 

of structural creep behaviour and to identify the material test 

parameters which are likely to be most useful in providing an estimate 

of creep deformation. It is found that reference stress technqiues 

coupled with bounding methods based on idealized material models provide 

a rapid means of assessing structural performance.

A technique is established for predicting stationary state 

deformation rates of a creeping structure, subjected to time constant 

temperature gradients, from a single uniaxial test conducted at a 

reference stress and a reference temperature. By relating the prediction 

of structural behaviour directly to test data the uncertainties involved 

in the mathematical definition of material creep behaviour are avoided. 

Ihe potentially most useful application of the reference stress^reference 

temperature technique is for structures subjected to variable loads and 

variable temperatures. When cyclic histories of temperature occur the 

bounding solutions may be expressed in terms of a material parameter p 

which effectively couples structural behaviour to material behaviour.

It is found that distinct regions of behaviour displaying the effects of 

stress redistribution processes can be described in terms of p  

together with the appropriate reference stress and reference temperature. 

Using this method the stationary state deformation rate of a structure 

subjected to a cyclic history of temperature can be obtained from a 

constant load uniaxial test conducted at the reference stress and 

reference temperature.
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The results of the experiments conducted on aluminium beam 

structures subject to constant load and thermal gradient correlate with 

uniaxial data obtained at the reference temperature and lend support to 

the reference stress/reference temperature technique. Experiments on a 

simulated two-bar structure were designed so that an assessment of the 

behaviour of structures under cyclic histories of temperature could be 

made. Although the temperature histories differ in detail from those 

assumed in the theory it is clearly shown that there exists time constant 

residual stress fields. Furthermore the stress histories used in upper 

bound calculation are achieved within the first few cycles for a wide 

range of average strain rates. Recovery does occur but appears to be 

somewhat less than predicted by the Bailey-Orowan model. A useful 

description of the cyclic stress and strain histories can be obtained by 

applying constant stress creep data according to the strain-hardening 

model providing the value of the material constant p  is known.
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Chapter 10 

Appendices

10,1. Two-Bar Uniaxial Tensile Testing Machine

One of the main problems in the field of engineering structures in 

which creep occurs is that of extending basic (constant stress) creep 

data to situations in which the stresses are known to vary owing to the 

mutual constraint (compatibility) between components or regions. The 

two-bar model system is probably the simplest redundant structure 

available and is one of the few redundant structures in which it is 

possible to measure experimentally, not only the deformation during creep, 

but also the stress sharing conditions. The two conditions to be 

satisfied in the experimental simulation of the two-bar system are:

(i) The total load in the 'parallel creep' system must 

remain constant, although the proportions borne by 

the two components may vary with time.

(ii) The extensions of the two components must remain equal 

with time.

It was clearly impracticable to set up the physical equivalent of 

the two-bar system and to expect to control their individual temperatures 

over the whole of their lengths if truly rigid end members were to be 

used. Nor would it be possible to measure individual stresses in such 

an arrangement. The solution was to build a machine on the lines 

suggested by Barnes et a l and L o m a x B o t h  workers have used 

coupled standard uniaxial creep testing machines to provide simulation of 

the two-bar system but in view of the 'inherent' difficulties usually 

encountered in creep testing this idea was dismissed and a multi-specimen 

machine designed.

Excessive variation in certain independent test parameters (e.g.
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temperature) may alone be sufficient to lead to serious loss in precision

and provide creep data having a large scatter band but additionally, cross

interference between apparently minor variations among dependent variables

(e.g. heat flow and stress distribution as functions of specimen geometry)
fto )may produce equally significant discrepancies. Penny and Leckie , for 

instance, have drawn attention to the fact that material data scatter can 

arise from two quite distinct sources, viz. intrinsic variations in 

material properties and inadequate control of test conditions. They 

suggest that, given the high precision control of temperature, etc. 

(normally better than the limits required by B.S.3500) and with careful 

design to reduce non-axiality of loading, the second source of scatter is 

virtually eliminated. An extensive investigation into the effects of 

bending on the tensile test has been presented recently by S c h m i e d e r . 

This includes assessments of earlier contributions made by Jones and Brown 

and Penny Where appropriate, the recommendations made by

Schmieder are incorporated into the machine.

The general arrangement of the machine is shown in Figures 10.1 and

10.2. It comprises of a welded construction main frame, two individual 

load trains with specimens and extensometers, and an electronically 

controlled loading system with the facility for continuously varying the 

loads on each specimen. Two tubular electrical resistance furnaces of 

low thermal inertia provide heating of the specimens.

Subsequent sections describe each part of the machine in turn.

10.1.1. Main Frame and Components

The general requirements of a creep testing machine having desirable 

squat and massive proportions are to some extent compromised by the 

requirements of specimen heating, extensometry, load cell provision and 

accessibility. In this machine the two individual load trains are incor

porated into a rigid main frame that is both compact and economical to 

build, but more importantly allows all location faces to be precision
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machined in one operation. The machine follows conventional uniaxial 

machine manufacturing practice with 3in. steel tubes for the columns and 

lin. steel plate for the base and top and bottom location plates.

As the tests to be conducted in the machine were to include variable

temperature tests, the overall lengths of the load trains are kept as short

as possible in order that thermal expansion effects on lever beam rotation 

are small but not too short that the condition of constant load is violated.

The relationships between the basic dimensions of the loading system 

were determined from consideration of the simplified system shown in 

Figure 10.3. It can be shown by taking moments about 0 that the speci

men load, P , and the applied load, W , are related by

Wb Cos KP = a Cos (ç-n)

If n is small relative to Ç then the lever ratio b/a is 

independent of the angular rotation Ç of the beam. It may also be shown 

that the rotation, n , of the specimen load train is given by

Therefore, providing h/a is maintained large relative to unity and 

the angular rotation  ̂ , does not exceed about five degrees, n is 

maintained small relative to C . In addition it was desired that for a 

temperature change of 400°C on the load train, a lever beam rotation of 

the order of one degree was tolerable. The final dimensions of h = 33in. 

and a = 2in. adequately satisfy these requirements.

With the load trains being shorter than in conventional uniaxial 

machines and load levels considerably smaller than in conventional uniaxial 

creep tests great emphasis has been put on the elimination of non-axial 

strains on the specimens. Non-axiality of loading distorts the strain 

field and results in bending stresses being superimposed on the required 

mean axial stress. Under such conditions, a randomness in measured 

strains and rupture lives can be expected.
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The lever beams are supported on pinned knife bearings bolted in the 

top plate. The main reactions act along the longitudinal axes of the 

columns and thus sensibly prevent rotation about the fixed base centre line.

The elements of the universal block system can be seen in the photo

graph of the assembled load train shown in Figure 10.4. All components 

including the external joints and pull rods are precision machined to 

better than _+ O.OOOSin.

Specimen load measurement is accomplished through measured deflection 

of stiff proof rings incorporated in the base of each load string. By 

boring pin link holes at right angles to each other, the proof rings also 

act as the base universal joint. These are connected by manually adjustable 

collars mounted on thrust bearings to the load train reaction base and 

thereby allow levelling of the lever beams during tests.

10.1.2. Specimens.

Standard circular section uniaxial tensile test specimens are of the 

type recommended by Penny et al machined to the dimensions of Figure 10.5.

The protrusions machined at each end of the gauge length accurately define 

the gauge length and provide location for the extensometer clamps.

Repeatability of specimen manufacture is assured by closely following 

the metal cutting techniques detailed in section 10.2.4. on uniaxial tensile 

testing.

10.1.3. Extensometer.

The measurement of displacements under cyclic temperature conditions 

is difficult because of expansion and contraction of the extensometer system 

during temperature changes. The system adopted on the two-bar machine. 

Figure 10.4, is similar to that used for normal uniaxial tensile machines, 

except that the four vertical rods are machined from Invar 36 which has a 

coefficient of expansion of < 10 deg.C. and enables displacements of 

the aluminium specimens to be measured within 6 per cent of the actual
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values without resorting to costly equipment.

The output from each L.V.D.T. (Linear Variable Differential Trans

former) is 100 mV/thou and in order to increase the sensitivity of the 

system and provide a check on axiality of loading, two L.V.D.T's are 

incorporated in each extensometer. The combined sensitivity of the system 

is 5 X 10 ^in. over a linear range of 0.2in. The transducers are series 

coupled and the voltage output connected to the load control system.

Tappings are provided to allow individual L.V.D.T. voltages to be recorded.

Micrometer heads incorporated in the extensometer base clamps allows 

the initial voltage output from each pair of L.V.D.T's to be equalized.

This is a requirement of the control system.

10.1.4. Specimen Heating and Temperature Control.

Each specimen is heated by a tubular three-zone electrical resistance 

furnace of low thermal inertia which allows both rapid heat-up and cool-down. 

Overall temperature control is affected by means of a Eurotherm Proportional 

Temperature Controller firing an independent thyristor unit in the power 

supply to the furnace. Controlled heating rates and a certain amount of 

overshoot suppression are provided by derivative and integral control 

facilities built into the controller. The sensing device is a welded 

Chromel/Alumel thermo-couple strapped to the centre section of the specimen 

gauge length.

To eliminate any temperature gradient along the specimen, the furnace 

windings are connected as three distinct zones. It is possible to 'trim' 

the proportions of the total power to each zone by variable autotransformers, 

the settings being indicated on the separate controls on the side panels.

Two reference thermocouples embedded in the specimen protrusions allow 

monitoring of the temperature gradient.

A fan bolted to a central port hole in the furnace side forces air at 

ambient temperature over the furnace windings and test specimen to give rapid 

reductions in temperature. The duration of fan operation is adjustable
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and controlled by an electronic timer.

Thermal cycling with period of four to fifty hours is achieved by a 

programmable master timer system operating a set of relays to which are 

connected the temperature control unit, the fan-timer system, the control 

thermocouple and an adjustable constant voltage source. At all times the 

temperature control unit is set to the maximum desired temperature. During 

the hotter part of the thermal cycle, the control thermocouple is directly 

linkec^ via a relay,to the temperature control unit and the set temperature 

is held. During the change from the hotter to the cooler part of the 

cycle, the timer system switches the constant voltage source in series with 

the control thermocouple and provides power to the fan which rapidly reduces 

the temperature. The constant voltage is equivalent to the difference in 

thermocouple output at the desired higher and lower temperatures of the 

cycle and therefore increases the control voltage to the temperature con

troller. The controller then switches off the supply to the furnace and 

as the specimen cools the control signal decreases until the combined signal 

equals the original control signal. At this point the fan is switched off 

and the temperature is controlled at this lower value. During heat-up the 

constant voltage source is taken out of circuit and the control thermocouple 

is again directly linked to the temperature controller, which then switches 

full power to the furnace until the control thermocouple output equals the 

set value. In this manner controlled thermal cycling is achieved.

At all temperatures up to a maximum of 400°C the temperature
1°gradient along the specimen is less than ^  C, the maximum overshoot is 

approximately 5°C , and undershoot is negligible. It would be possible 

to remove the temperature overshoot by lowering the thermal inertia of the 

system, but doing so would produce long term temperature instability.



10.7

10.1.5. Loading System

The load acting on each creep test specimen is provided by a drum 

capable of holding up to 10 gal. of liquid. The actual weight of the 

drum is counter-balanced, so that with a lever ratio of 10:1 , a full drum 

exerts a pull on the specimen of approximately 1000 lb. Provision is 

made for adding additional tare weights if needed. Flexible pipes 

connected via a reversible peristaltic pump allows liquid to be transferred 

from one drum to the other. The direction and rate of flow of liquid is 

controlled by the control system and is a function of the L.V.T.D’s output.

Measurement of the loads acting at any instant of time is achieved 

by calibrated load cells in the load train base and additionally by sensi

tive load cells connected between the lever arms and drums.. These high 

resolution load cells have a linear response over the range 0-200 lb. with 

a change of 0.01 lb. being detected.

The liquid is an undiluted anti-freeze solution (glycol) chosen 

because it is readily available and to counteract any possibility of corrosion 

in the system. As the machine is in a laboratory environment where large 

changes in humidity cannot be catered for, glycol offers a cheap alternative 

to water.

Cyclic loading is achieved by attaching dead weights and load hangers 

to the base of the drum and bolting motorized jacks, controlled from the 

programmable timer, to the loading platform.

10.1.6. The Control System.

The primary function of the control system is to compare the voltage 

outputs from the two L.V.D.T. extensometer systems and to arrange for the 

pump to provide flow of liquid in the desired direction so that compatibility 

conditions remain satisfied.

A block wiring diagram of the control system is shown in Figure 10.6.

Since the voltage output from each extensometer system varies from
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-lOV to +10V d.c. and in order to avoid control instability about the null 

point, the control system provides a lOV d.c. offset effectively trans

ferring the linear range to 0-20V d.c. To provide impedance matching 

each output is connected in series with a matching amplifier (ICI and IC2).

The compatibility condition is satisfied by reversing the sign of 

one pair of L.V.D.T's output and then feeding the two signals (one positive, 

one negative) into a differential amplifier (IC3). The output of IC3 

drives two comparators (IC4 and IC5) which are triggered by positive or 

negative demand. If the magnitudes of each extensometer system signals 

are equal, there is no demand. The comparators drive reed relays which in 

turn drive heavier relays which energise the pump motor to provide flow of 

liquid in the appropriate direction.

The band level at which the reed relays are triggered is adjusted to

a differential of _+ ImV which corresponds to a specimen displacement of 
-65 X 10 in. At such small voltage levels, large random voltage spikes 

can be detected and in order to prevent simultaneous energization of the 

two heavy output relays an interlock device is fitted.

As a result of experience during the first few tests it was found 

that as the apparatus was so sensitive to very small changes in displacement, 

pump 'hunting' occurred. This is overcome by incorporating small electro

nic timers with a time delay of two seconds into the system. Thus the 

system only operates if the demand signal occurs for longer than two seconds. 

This produces a highly sensitive stable system that operates the pump con

tinuously when either total load or temperatures are changing and inter

mittently at other times.

Additional provision is made in the control system to simulate thermal 

expansions electronically by switching in the appropriate voltage steps in 

series with the L.V.D.T. outputs.
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10.1.7. Recording Equipment.

Chart recorders provide a visual display of voltages corresponding 

to extensometer displacements, specimen loads and temperatures. In 

addition, this information is also recorded, at hourly intervals, by a 

Solartron D.T.U. Data Logger system on punched paper tape. The information 

from these tapes is processed by I.B.M. computer with graph plotting facil

ities. Appropriate voltage-time graphs can then be obtained as desired.

10.1.8. Bending Tests.

A proving set of time-independent bending tests were conducted in the

machine using standard mild steel uniaxial specimens and dead weight loads.

Bending is defined as the difference of two diametrically opposite surface

strains divided by their sum and was measured at a sequence of temperatures

up to 250°C by electrical resistance strain gauges bonded to the specimen

sides at the centre of the gauge length.

The bend test results obtained at room temperature, shown in Figure

10.7, are significantly better, especially at low load levels, than those
r 781reported by Penny and Leckie . Similar results were obtained at the 

higher temperatures and are due primarily to the accurately machined and 

assembled load train components and also great care in the setting-up 

procedure.
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10.2. Uniaxial Tensile Tests.

The collection of fundamental creep data for a single engineering 

material is a time consuming and expensive operation. Exploration of 

creep behaviour at successive temperature levels requires evaluation of 

both thermal and stress fields within the specimen geometry, selection of 

appropriate heating methods and assessment of precision of measurement 

under thermal and mechanical transients.

In the following sections the experimental testing techniques used 

in the evaluation of the uniaxial creep behaviour of commercially pure 

aluminium will be described.

10.2.1. Uniaxial Testing Machine.

The creep tests were conducted in standard uniaxial creep testing

machines similar to that shown in Figure 10.8 incorporating knife edge

pivots and a lever system with a 10:1 ratio. The machines were mounted

on anti-vibration pads to minimise vibration effects and the use of

accurately machined universal joints in the loading train ensured axiality

of loading. Great care in centering the specimens to within 0.0005 ins.

in the universal blocks minimised any bending effects.

Specimen load was measured using a strain gauged load cell connected

in series with the loading train. The loads provided by tare weights, were

applied at a constant rate by a screw jack system driven by an electric motor

through a reduction gearbox.

For tests carried out at temperature the specimen and loading train

was surrounded by a three zone electrical resistance tubular furnace.

Individual control of the power input to the three zones allowed temperature
1 °gradients of less than —  C over the entire specimen gauge length to be

obtained. The overall temperature, controlled by a C.N.S. proportional

controller, using, as a sensor, a platinum resistance thermometer embedded
1 °in the furnace windings, was maintained to within y  C of the desired
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value. Chrome1/Alurne1 thermocouples embedded in the specimens allowed

monitoring of specimen temperature.

Wherever possible experimental measurements were represented by 

electrical signals. These included outputs from displacement transducers, 

load cells, and strain gauges. In all cases, d.c. systems were used 

because of their convenience.

The main recording system was a Solatron Digital Logging system 

capable of recording changes of 1 x 10  ̂volts. In addition to this system 

several chart recorders were also used.

10.2.2. Material.

The material selected for testing was a half-hard commercially pure 

aluminium in sheet form 0.25ins. thick. All the specimens were obtained 

from one sheet thereby providing material repeatability that is otherwise 

difficult to obtain with a commercial purity material.

The degree of anisotropy exhibited by the material in the longitudinal 

(rolling) and transverse (non-rolling) direction has been shown^^^^ to be 

approximately five per cent on steady state creep strain rates. This has 

been supported by a limited number of creep tests performed at room temper

ature by the author.

10.2.3. Specimens.

Two types of specimens were used to investigate the uniaxial creep 

behaviour of the material. As the material was only available in sheet form, 

both types of specimen were machined with their longitudinal axes parallel 

to the rolling direction in order to reduce the effects of anistropy.

The first type was a rectangular section sheet specimen. This 

standard specimen, shown in Figure 10.9 has a two inch gauge length, 0.25ins.

X 0.375 ins. in section. Strains were measured with either electrical res

istance strain gauges bonded to the centre of the gauge length sides or 

alternatively by an extensometer system. Basically the extensometer consists
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of four relatively rigid rods clamped to the specimen by machined heads and 

attached to a sensing linear variable differential transformer, (L.V.D.T.), 

Figure 10.11. Each head, cruciform in plan view, is in two parts and is 

clamped to the specimen by tightening connecting bolts, contact with the 

specimen being made by hardened points. Relative movement of the heads 

transfers a relative displacement to the L.V.D.T.. With a gauge length 

of l.SOins., 6 X 10 ^ per cent strain could be detected. This system was 

employed for tests conducted at temperatures where the reliability of 

available strain gauges was in doubt and also for room temperature tests 

whilst the second type of specimen was being developed. Additionally, 

this system has the advantage that measurements can be made by the L.V.D.T. 

at a position suitably removed from the furnace.

The second type of specimen was designed to make the task of creep 

data collection less time consuming. Much energy was devoted to the 

design and development of a specimen capable of yielding in one creep test 

the equivalent information gained from three tests conducted at different 

stress levels. This idea was feasible since only steady state creep rates 

were of interest. The triple-section specimen shown in Figure 10.10 is 

the result of an exhaustive program of photoelastic analyses. The original 

design criteria were that in order to ease the process of manufacture, 

overall dimensions and locating holes should be the same as in the standard 

sheet specimen; stress concentration arising from the transition between 

gauge lengths should not cause premature failure, and finally a region of 

pure tension extending to 0.2ins. either side of the centre of the gauge 

length to accommodate 0.25ins. electrical resistance strain gauges was 

required. The triple section sheet specimen which satisfies these criteria 

has three 0.75ins. parallel sided gauge lengths of widths 0.375, 0.300 and 

0.250 inches giving stress levels in the ratio 1:1.25 : 1.5 respectively.
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10.2.4. Specimen Manufacture

In order to reduce the amount of scatter in results obtained from 

creep tests, the repeatibility of specimen machining is important. In all 

of the specimens machined, metal cutting techniques which take small rapid 

cuts were employed. By using these techniques the regions of material 

adjacent to the machining cuts which were influenced by plastic straining 

were contained within a localised region. The specimens were first marked 

out and then cut 0.1 in. oversize. The circular gripping holes were then 

accurately drilled and bored to size on a jig boring machine. These holes 

also provided the specimen location on a purpose built machining jig. The 

overall length and width of the specimen was then machined to size. Finally 

the gauge lengths were accurately milled using a side cutter either side of 

the centre line to final size.

10.2.5. Isothermal Uniaxial Tests and Results.

In all the tests performed the specimens received a twenty-four hour 

temperature 'soak' before commencement of the test.

Short Term Tests.

A series of uniaxial limit load tests were performed to evaluate the 

variation of the time-independent material properties with temperature.

The tests were carried out on the standard single gauge length specimens at 

a sequence of temperatures between room temperature and 250°C . As the 

strains to be measured were outside the range applicable to the available 

strain gauges the L.V.D.T. extensometer system was used. During the 

eighteen limit load tests performed this system has proved utterly reliable. 

Each test was completed within a few minutes thereby ensuring that the 

material behaviour was sensibly time-independent.

Typical examples of the stress strain plots obtained are presented in 

Figure 10.12. Three tests were conducted at each temperature level and 

variation of less than 0.5 per cent on 0.2 per cent proof stress was
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observed. Over the temperature range at which the tests were conducted

the variation of 0.2 per cent proof stress with temperature appears

approximately linear. Figure 10.13 . The elastic moduli on the other
6 2hand remained approximately constant at 9 x 10 lb/in within the temper-

o
ature range RT-150 C , Above 150°C the value decreased rapidly being 

6 X 10^ Ib/in^ at 250°C .

Creep Tests.

A series of creep tests at constant load were performed for various 

values of the applied loads at a sequence of temperature levels (20,100,125,

150 and 200°C). The normal test duration was 600 hours.

With regard to the experimental technique it is worth recording that 

approximately 95 per cent of the tests performed using both types of 

specimen provided useful results. This was due primarily to a rigid setting 

up procedure being adhered to during the testing program. Most failures were 

attributable to malfunctions of strain gauges and recording equipment. Some 

problems with temperature control were also experienced.
2At temperatures above 150°C and for the stress levels (> 4000 lb/in ) 

of interest when this testing program was carried out no clearly defined 

steady-state behaviour was observed, the material exhibiting only regions of 

primary and tertiary creep. This behaviour is outside the context of this 

thesis and was not considered further.

The results of the tests conducted at room temperature (20°C) showed 

that the material exhibits logarithmic creep. As there was no steady-state 

region average creep strain rates were taken over the time period 300 - 550 

hours and the plot of log °/o strain rate against log stress obtained is 

shown in Figure 10.14.

As a check on the strain measurement devices three tests were conducted 

using the standard sheet specimens to which both the L.V.D.T. extensometry and 

strain gauges were attached. No marked difference between the resulting 

average creep strain - time curves was detected. In addition the results
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obtained using the triple section specimens were repeatable and well within 

the scatter band usually associated with creep testing. The plots of log 

®/o strain rate against log stress obtained from the tests conducted at 

100, 125, and 150°C are shown in Figures 10.15, IQ.16 and 10.17. It was 

found that at these temperatures the material attained steady-state creep 

rates approximately 200 hours after the application of load.

10.2.6. Discussion of Results.

The room temperature results. Figure 10.14, show that the value of

the stress index n remains constant at 3.9 up to a stress of 12,800 lb/in

and thereafter increases rapidly becoming infinitely large at the yield
2stress (16,000 lb/in ). This is in accordance with the results of Leckie 

et al who applied the structural theorem of Ponter^^^^ to a polycryst

alline aggregate considered as a multi-component structure. They concluded 

that the plastic contribution to the total deformation is unlikely to be

significant until the applied stress is n/(n + 1) of the yield stress.

Therefore the strain rate should not increase significantly until the stress
2n/(n + l)ôy - 12,800 lb/in is reached. This stress level is in agreement

with the experimental results. The steeply rising portion of the curve
2between 12 - 14,000 lb/in may be approximated by a straight line corres

ponding to a stress index equal to 18 . Thus it is seen that at room 

temperature the material behaviour is sensitive to the value of the applied 

stress and the benefits of a reference stress approach to structural defor

mation can be appreciated.

It was found that in the creep tests performed above approximately 
213,500 lb/in quite large instantaneous plastic strains relative to the

2creep strains occurred. Below 7000 lb/in the creep strains were of the 

order 0*02®/© for 200 hours testing and it was difficult to maintain 

standards of accuracy when dealing with such small strains.

The results of the tests conducted at temperature show that as the 

temperature increases the transition between the two previous approximately
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linear regions becomes less easily defined, and the creep rates at any given
2stress are correspondingly higher. Between 5000 and 10,000 lb/in the 

steeply rising portion of the curves become approximately linear with a 

stress index that increases appropriately. It was found that above 

approximately O.Soy creep rupture occurred within the first 100 hours and 

no discernable steady-state behaviour was observed. Even at these rela

tively high stresses it was found that the instantaneous plastic strains 

were small in comparison with the elastic strains.

At low values of the applied stress the gradient of the curves show 

a rapid change and tend towards unity when linear viscous creep becomes

operative. Some support of this is provided by the deformation-mechanism 
(82 )maps of Ashby . He presents a map for pure aluminium from which it is 

evident that for temperatures above 60°C and stress levels below approx

imately 4000 Ib/in^ , n 1 .

It is seen from the results that the material behaviour is highly 

dependent upon both stress and temperature and that the simple constitutive 

relationship given by a Norton-type law is clearly deficient. However for 

these reasons it provides an extreme test for the reference stress, reference 

temperature approach to the creep deformation of structures.
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10.3. Derivation of Stationary State Deformation Rates

10.3.1. Beam under Flexure.

Beam of rectangular 

section, width b and depth 

d , subjected to end moments 

M and a temperature 

gradient 0(y) , through the 

thickness.

Exact Solution.

M

The creep strain rate at distance y

M

by

e(y) = K(y + (|)d) 10.3.1

where |#d| denotes the position of the neutral axis from the lower edge, 

K the curvature rate and

n
è = ko exp(-AH/R0).

From equilibrium conditions with zero axial loads

 ̂ 1/n
(4» + x) exp(AH/nR0(x))dx = 0 , 10.3.2

and the moment of the stresses must equal the applied moment
If

M = o.x dx , 10.3.3

where x = y/d .

Equality 10.3.2. yields the value of <f) and equation 10.3.1. substi

tuted into equation 10.3.3. gives

in2M
bd^J B 10.3.4
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where

= [
(4) + X exp AH/nRe(x)dx

T-n
10.3.5

A value of Ig was obtained by solving equation 10.3.2. for 4> 

using a Newton-Raphson method and thence by evaluating equation 10.3.5. 

For isothermal conditions 4» = - 5 and Ig reduces to

Ir = 2 I > / exp(AH/R0^) .

The stress field is given by

o(x) = [(4>+x)Ig exp(AH/R0(x)) ]
1/n 2M

bd'
10.3.6

Approximate Solution

Assume a stress function of the form

a(x) = a exp {AH/nR0(x)>. o

From equilibrium conditions with zero axial loads gives
4>
exp[AH/nR0(x)]dx - 

o

exp[AH/nR0(x)]dx = 0

4»
and

M
bd^a

X exp[AH/nR0(x)]dx - X exp[AH/nR0(x)]dx

4>

10.3.7

10.3.8

The bound on curvature rate is given by
n

2M
-bd/

where

u
exp[AH/nR0(x)]dx

"B - - 1• ' 4>
X exp[AH/nR0Cx)dx - X exp[AH/nR0(x)dx

-4> o -

n+1 10.3.9:
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10.3.2. Tube under Flexure

For a tube of circular section internal 

and external radii, r^ and r^ respectively, 

the temperature at any point in the section is 

given by

_ log(r r/r )
6(r) = 8 +  (0 . 0 )

logCr^rp

where 8^ and 8^ are the internal and external temperatures.

Area of element dA = rdrdz and distance of centroid of element from 

the neutral axis x = r sinz.

X

nCreep strain rate ê  = k a  /exp[AH/nR8] and since c(x) = k x

a(x) = Y  x^/^ exp AH/nR8(x) 10.3.10

Then equating internal and external moments

\  3n+l ï/n^
M = xadA = 4 r^ ^

2n+l n+1
r ^ (sinz) ^ exp[AH/nR8(r)]drdz 10.3.11

3n+l 1/n \  2n+l
M = 4 r n k

n+1
r ^ (sinz) ^ exp[AH/nR8(r')]drdz

z=o r./r 1 o

10.3.12

n
Therefore It .

where rZ=n/2 1 -n
2n+l

F  "
n+1

(sinz) ^ exp[AH/nR8(r)]drdz

- z=o r./r 1 o

10.3.13.
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From conditions of equilibrium 

and compatibility of displacements 

the stress in each bar is given by

I^g4exp(AH/nR0^)

and

= [g [¥]
1/n

expCAH/nRGg)

for the shorter and longer bar 

respectively.

The quantity is given by

4/exp(AH/R9 )
TB

0.

1 + 4^/^ exp AH
nR

The displacement rate U = k&
n

0, 0

TB '

2J

-, n

P,U

0-̂
oZ

10.3.14

10.3.15

10.3.4. Propped Cantilever Beam.

A uniform rectangular beam of length £ is simply supported at one 

end and encastre at the other. (Figure 3.3). A point load acts laterally 

at the centre of span and a temperature field 0(x) occurs along the 

beam’s length. It is assumed that the temperature through any section 

remains constant.

Exact Solution

The example involves a single redundancy and has a moment distribution 

of the form.
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M = Pm^ + Fm^

where denotes a moment distribution due to a unit load acting at the

centre of a simply supported beam and m2 a reactive moment distribution 

due to a unit load acting at the tip of a cantilever of length £ .

From consideration of the creep energy dissipation rate expression

D = c M Kdx , 10.3.16

a moment curvature rate relationship of the form

K = kM4exp(AH/R0) , 10.3.17

and assuming a dummy load acting at x = = 1 , the reactive component F

can be evaluated from
I

X F -
n

(l-x) I  + 1  (l-x) / exp(AH/R0(x))dx

0 -

(1-x)
n+1

( M Î / exp(AH/R0(x))dx = 0 10.3.18

The moment distribution is then fully described and the displacement

rate at x = £/2 evaluated using equation 10.3.16 in the form
2

PU = k M^*^/exp[AH/R0(x)]dx 10.3.19

Approximate Solution.

Assume a temperature dependent plastic bending moment is given by

[f (i - fJ]|M| = exp 10.3.20

The plastic limit state solution for this yield condition involves the values 

of the bending moment, M , at x = 0 and x = £/2 where plastic hinges
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occur. By assuming such a hinge mechanism and equating internal and 

external work rates the plastic collapse load is given by

2Mx=£/2l 10.3.21

where

and

M = M exp x=o o ^
AH
nR f 8 0x=o o

AH I 
ÏÏR ^ x=£/2

Taking moments about x = 0 yields a value of the reaction F as

P,^x=£/2 4
LF, =

2 + exp nR (^x=o ^ x = Z / 2 j

10.3.22

Hence the limit state solution is given in terms of the temperatures 

at X = 0 and x = £/2 and is independent of the temperature elsewhere in 

the beam. The bound however depends upon the temperature distribution 

and achieves the form

k M (x)^^^/exp[AH/R0(x)]dx 10.3.23

nwhere k = K^/M^ exp(-AH/R0^) and U is the displacement at x = Z / 2 .

*
The moment distribution M (x) is formed by the super-position of the 

moment distribution due to P and F assuming no support at x = £ where 

these quantities are given by dropping the suffix L in equations 10.3.21 

and 10.3.22.
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Fig lO 9 Standard rectangular uniaxial tensile specimen

Fig 10-10 Triple-section uniaxial tensile specimen
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SUMMARY
Although there has been extensive investigation of the creep behaviour of structures which 

are subject to isothermal conditions and constant load, the behaviour when temperatures vary 
spatially and both load and temperature vary with time has received relatively little attention. 
Numerical solutions are extremely difilcult to'produce under these circumstances and appro
priate- constitutive relationships have yet to be evolved.

This paper attempts to delineate the principal features of the behaviour when load level 
are maintained at those appropriate to many design situations and when the tempemture and 
loading historiés are cyciic with relatively short cycle times. We are concerned with structures 
which accumulate creep strains of less than 1 % per year and have cycle times of the order 
of a few days at most.

In the first section the behaviour of a few simple structures are investigated for spatially 
varying temperature fields which remain constant in trine. Adopting an appropriate form of 
Norton’s Law we show that the deformation of the structure may be related to a single refer
ence material test conducted at a reference stress and a reference temperature, which is inde
pendent of material constants, thereby providing a generalization of the reference stress 
method for isothermal structures. A sequence of experiments on a simple beam structure in
dicates that the co-relation between structural behaviour and material tests provides an accep
tably accurate design method. In all cases considered the reference temperature remains close 
to the lowest temperature in the structure indicating that locally high temperature may some
times be tolerated without excessive structural deformation.

The last section discussed a preliminary experimental investigation of a two-bar structure 
subject to variable temperature. It is shown that the residual stress field varies quite slowly in 
time and remains efTectively constant af'ter a few cycles. The theoretical consequences of the 
result are discussed and it is shown that constitutive relationships with differing physical as
sumptions can yield quite sharply contrasting deformation rates.

The results cf the paper show that the behaviour of structures subject to a time constant 
temperature distribution may be related to material behaviour without difficulty. Whe.n tem
perature and load vary with time, the more important feature of the structural behaviour may b e  understood, although certain features of the material behaviour remain ill-defined.
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1.. Introduction

The analysis of the creep deformation behaviour of structures subject to variable 
loading and temperature remains amongst the least tractable problems of structural 
mechanics. A number of phenomena interact with each other. Changes in temperature 
induce thermal expansion and have an ill-defined effect upon the material behaviour. The 
continuum problem requires the evaluation of a continuously varying stress history. Even 
when computed to an acceptable accuracy such solutions remains only as ac-urate as that 
of the constitutive relationship.

This paper attempts to shed some light on the importance of these various effects by 
the analysis of a very simple two bar structure, by means of a method of structural 
analysis which arises from certain bounding theorems. In a number of previous papers 
[1,2,3] a theory was derived for a non-linear viscous material which allows the evaluation 
of upper and lower bounds on the energy dissipated in a cyclically loaded structure. These 
solutions correspond to the exact solution when the cycle time is either very short (upper 
bound) or very long (lower bound) compared with a characteristic time scale of the average 
deformation rate. This reference time scale may be taken as the time for the creep strain, 
in the steady state, to be equal to the elastic strain at either an average or maximum 
stress in the structure [1]. Consideration cf typical time scales indicates that in most 
applications cycle time may be considered to be very short and hence the upper bound 
solution may be expected to provide a relevant solution which should closely approximate 
the exact solution. A full description of these arguments may be found in the references 
cited above.

If we accept the relevance of the upper bound solution, we may compute corresponding 
solutions for any constitutive relationship, and this theory is described in reference [4). 
Here we compute these rapid cycling solutions for three constitutive relationships, non
linear viscous, strain hardening and the Bailey-Orowan model. The objective is to see if 
any general modes of behaviour are discernable, he find that the solution for the viscous 
and strain hardening materials exhibit similar behaviour. For distant ranges of stress 
and temperature the solution may be understood as resulting from the dominance of the 
strains occurring during either that part of the cycle when the stress is greatest or 
when the temperature is greatest. A material parameter 6 is introduced in terms of which 
regions may be defined where a reference stress may be defined which is independent of 
other material parameters. This result indicates that a reference stress approach is 
applicable to variable temperature problems, but that the relevant reference stress depends 
upon the range of values of this quantity 6.

However when the solution for the Bailey-Orowan model is investigated, no such 
regions occur and a distinctly different pattern of deformation is exhibited due to the 
presence of recovery. This difference occurs as the model predicts a much greater strain 
rate for a history of stress and temperature which involves a high stress at a lower 
temperature followed by a low stress at a high temperature.

Experiments on the simulation of a two-bar model involving a coupled pair of uniaxial 
testing machines are described in the full paper. Tests on aluminium indicate that the 
rapid cycle solution is achieved within a few cycles, and that recovery is present, but of 
a magnitude which is much less than that predicted by the Bailey-Orowan model.
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2. The Two-Bar Structure

Consider the model exhibited in Fig. 1. Two bars of equal initial length are 
restrained to remain of equal length under the action of a constant load P •= Zô A, where 
A denotes the cross-sectional area of each bar. One bar remains at a constant temperature 

whereas the second bar is subject to a temperature history 
+ 4 9- , 0 $ t ^  At/J

S-. = Bo - Ae- , flt/i 
The thermo-elastic solution is given by

0*1 = CTp -  ? o -s. t < Afc/i
A = Ot J

o. - Of o. 101 = CTf -
where = EaA6/2 and a and E denotes the coefficient of linear expansion and Youngs 
modulus respectively.

Consider a non-linear viscous material,

é  -V V ,  V  ( < r ,  fe Û H / / ? 0 )  ( 1 )

where k denotes a material constant, j i an odd integer, AH an activation energy and R the 
universal gas constant. For sufficiently small changes in 0 we may write

V — k O’'*' (  c' [ & — &0 ) ̂ (2)

k'-- cwl
When the cycle time At is small, the cyclic solution is given by

P ) P
where p denotes a constant residual stress which is determinate from the compatibility 
condition over a cycle

(4)

where I denotes the length of the bars, and AU" the displacement accumulated over a cycle.
When At is very large, the instantaneous solution becomes the steady state solution 

given by

i e. yid,-8e) =  Joe -  8c, )

The accumulated displacement over a cycle is given by,

= I v,cit = I 'Cr̂ dt.* Jo Jo
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It may easily be shown that the ratio IMu"/AU^ is dependent upon three parameters, ô /ô , 
n and

e  = g Yae-
W . (5)

The physical meaning of g arises from the relationship between the creep rates which occur 
at - A0 and 0̂  + A0. Consider tests conducted at these two temperatures. Raising the 
temperature from 0̂  - A0 to 0̂  + A6 will increase the creep rate. Suppose the same increase 
in creep rate is caused by maintaining the temperature at 0̂  - A0 but increasing the stress 
to Xo. Then

Hence b = tn X. In a graph of tn v against In o at constant 0 then S becomes the distance 
between the lines corresponding to the two temperatures, as shown in Fig. 2.

In Fig. 3 contours of constant U=AU"/AÛ  are exhibited for n = 3 and a range of 
values of â /o*’ and 6. It can be seen that the contours exhibit four distinct regions which 
we will discuss in turn.

Region 1.U > 1. In this region, which corresponds to smaller values of 6, the most 
severe increase in displacement rate is shown for small cycle times. Consider the extreme 
case when 6=0, i.e. the creep rate independent of temperatu-e. The rapid cycling solution 
is self-evident and is shown in Fig. 4(a). Effectively all the defonpation occurs when 
the stress is largest and equal to ô  + ô  and p = 0. If we completely ignore the creep 
strain which occurs when the stresses have their lower values and evaluate u we obtain the 
dashed line shown in Fig. 3. It clearly can be seen that these lines closely approximate 
the exact solution throughout this region. Hence the deformation is effectively equal to 
that of the structure subject to a constant load P = 2A(a^ + o'̂) with half the cycle time
and temperature 0̂  = 6  ̂ - A0, 02 = 0̂ , followed by a lower or zero applied load over the
remainder of the cycle. This approximation is least accurate near the boundary between 
Region 1 and Region 3.

Region 2. U = 1. This region corresponds approximately to 6 > 2 and 0^/0  ̂> 1.
As u is near unity then the slow and rapid cycling solutions are nearly identical in their
prediction of displacement rate. As 6 is large then the creep rates during the first part 
of the cycle when the highest temperature occurs provides the major contribution to the 
displacement. In bar 1, although the temperature remains constant the stress reduces during 
At/2 < t < At. In bar 2 the stress increases but the temperature reduces and the large 
value of 6 ensures that the creep rates in 0 < t < AT/2 dominates. In fact, in the rapid 
cycling solution the stresses are virtually identical to those of the slow cycling solution 
during 0 < t < At/2 and the contribution from the second half of the cycle is negligible, 
resulting in a value of u close to unity. In this region the deformation may be assumed to 
be equal to one half of that which would occur if the condition of the first part of the 
cycle remained constant in time.

Region 3.U < 1. This region corresponds to 0̂ /0  ̂< I and lines of constant u 
become independent of B for large^ . If we consider the case when 6 is very large the 
behaviour may easily be understood. During 0 < t < At/2, ô  becomes very small (p= 0 +̂0 )̂ 
and either negative or positive, and during At/2 < t < At although = 2ô  as 0 =0̂ -A0
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the creep rate is small. Hence the deformation is governed by ô  which changes from 2cp to 
2(o -ô ). As 6 = 6  ̂in this bar the displacement rate is independent of g. ►'hen o^/o^=0.5 
the net accumulation of strain is zero. Hence for 1 < a p/ô  < 0.5, 1 > U > 0 and for 
0.5 < Op/ô  < 0 then U < 0. In this latter case the displacement rate in the rapid cycle 
solution is of opposite sign to the applied load o , and a load of = O.So^ is required 
to maintain zero displacement rate.

It can clearly be seen that these simple solution regions are quite distinct and
are separated by regions in which fairly rapid transition occurs. The most marked
transition occurs near the origin of Fig. 3 where large changes in U occur for small changes
in o /ô . For larger values of n a similar picture emerges except that the regions become
more distinct, the transitions occupying a smaller area of the diagram. These transitional 
regions are defined by the contours of U of values close to unity. In Fig. 5 contours of 
U = 0.99 and 1.01 are shown for n = 3, S and 7, and they are seen to be very close to
each other. For U = 0.00 the contours are indistinguishable. Contours for U = SO are also
included to demonstrate that within the regions (with the exception of Region 2) the value 
of U is dependent of n, but the stresses are governed by the calculation described above.
We see therefore that within Regions 1 and 2 the rapid cycling solution may be co-related 
with the behaviour of the same structure subject to constant load and constant temperature.
For Region 1 the relevant applied load is P = 2A(0p+ ô ) with 0̂  = 8^-68 and ^2~^o'

Region 2, P = 2A.a^ and 6 =̂ 8^+68 and 82=8 .̂ Tliese situations may themselves be co-related 
with a constant reference and temperature history, as described by Ponter and Walter [S].
In Region 3, a variable stress history, fluctuating between 20p and 2(0^-0 )̂ at temperature 
8=6 , defines the displacement rate.
3. Strain Hardening

In this section we describe a similar analysis for a strain hardening material. 
Consider the uniaxial stiain hardening model

For constant stress commencing at t=0 when v=0
6 o'*' t  ̂g = Yi8-8c.)

In accordance with experiment we take m = 1/3. The rapid cycling solution is given by [*+]

I ^ V ' - /». r "  (7)
where ô and p have the same meaning as in the time hardening case. Again p becomes deter
minate from the condition that Av/At shall be equal in the two bars. In fact the 
calculation for p becomes identical to the time hardening case with n/m substituted for n 
and AH/n substituted for AH.

There exist no lower bound solution, but for purposes of providing a normalization 
comparable with the time hardening case,the solution was computed so that the integrand of 
(7) remains equal in each bar during 0 < t < At. This solution corresponds to assuming 
that the cycle time is sufficiently long for redistribution to occur at each instant



— 6 —
L 5/8

within the cycle but that the average creep rate is calculated assuming that, from the point 
of view of the constitutive relationship, the cycling is rapid. This solution has no 
direct physical meaning but will reduce to the solution arising frcm equation (7) if the 
conditions of Region 2 occur.

The displacements predicted by these two methods are denoted by and Al/* and 
their ratio by U.

• We find that the solutions so generated have a behaviour which i? very similar to
that of viscous material and corresponds to the conditions described above. The boundary 
lines of the regions are shown in Fig. 6, and are seen to be very similar to these in the 
viscous case Fig. 5. There are however differences in the values of u as the relationship 
(6) provides a higher value of the creep rate under varying stress, when compared with 
constant stress maintained at the maximum value than does the viscous relationship. The 
stress histories themselves are however very similar and are divided into the same sub- 
regions.

We conclude therefore that the behaviour of a viscous material and a strain
hardening material are very similar when described in this way, and the same reference
stress histories are relevant.
4. Bailey-Orowan Theory

This tneory is described in references [6]. The state of the material is described 
by an internal flow stress s which increases due to strain hardening and decreases due to 
thermal softening,

(8J
where h(s) and r(s) are coefficients of strain hardening and thermal softening respectively. 
The creep rate V is given by,

/y - 1 a! - S )

where j*Oo|-0 ~  O , |ol S
^ O i ICrl - ̂  .

Stationary state creep occurs when |o| = s and hence 

Assuming r(s) = n̂-a h(s) = l/k2 s° yields Noiton's flow

i(r - iij/kio-) b. fci/ap , ^
This model differs from both the viscous relationship, equation (1) and strain 

hardening, equation (6), by possessing thermal softening. K>?n |o| < s, then s = r(s) 
and s decreases in time. If the stress is now suddenly increased, s = ô and plastic strains 
occur according to

c ~ i \  (lo-ll

For a cycle of stress, both plastic and creep strains occur. But in common with the viscous
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relationship, an upper bound on the energy dissipation in a body of the material corresponds 
to assuming that the cycle time is very short compared with characteristic material tines 
[6]. The stress history is given by o = ô ♦ p , and the accumulation of strain over a 
cycle is given by

where t̂  is the instant during the cycle when |o| achieves its maximum value. Hence the 
average strain rate is the same as if a = o(t̂ ) throughout the cycle. The model predicts
the same creep rate as the viscous relationship (1) for constant stress and a greater
creep rate for any other stress history, the increase being due to the presence of recovery 
in the model.

The lower work bound is identical to that of viscous relationship, equation (1), 
described in Section (2), and the ratio of the displ,acements predicted by these two 
bounding solutions, Ü, may therefore be directly compared with the results in Section (2).

It can easily be shown that the upper bound average displacement rate of the two
bar model is the same as if a constant applied load P = 2A(o +0 )̂ were applied throughout, 
the cycle, with one bar maintained at and the other at 8^=6 where

( Y f 9 -  0o)) = f  ( y A W  -+ ir'A ^  ]

In Fig. 7 contours of constant u are shown for n = 3. This solution is appropriate
in Region 1, but in Region 2 |ô | achieves its maximum value when = ± and pz-ô . The
average creep rate in bar 1 becomes indeterminate and becomes determined by the stress
history o_. In bar 2, the stress fluctuates between 2a +0  ̂and 2a -o. and hence the 2 p t p t
displacement rate is the same as if a constant applied load of P = 2A(0p + o^) were 
maintained and both bars were at temperature 8 = 8 .̂

The behaviour shown in Fig. 7 is entirely different to that shown in either 
Figs. 3, 5 or 6. No reverse creep occurs and the ratio U remains at high values for large 6 , 
as recovery increases. Effectively the Region 1 of Fig. 3 now dominates a larger area of 
the diagram.

Tiiese calculations demonstrate a central problem of this type of calculation. When 
temperatures vary rapidly between two limits, the stress history, in the cyclic state, 
fluctuates between a higher stress at a lower temperature and a lower stress at a higher 
temperature. The rate of deformation is strongly governed by the amount of recovery which 
occurs during the high temperature period. To the authors knowledge no experiments have 
been conducted under these conditions.

In the full paper, experiments on a simulated two bar structure are described 
which allows some assessment of the behaviour of aluminium under these conditions. The 
temperature histories differ in detail from those assumed in Section 2 and the experiment! 
were conducted -i Region 1 of both Fig. 3 and Fig. 7. The^e experiments indicate the 
following:
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1) The stress histories of the upper bound solution are achieved within a few cycles

of 24 hours duration over a range of average strain rates.

2) Recovery does occur, but it appears to be somewhat less than that predicted by the
Bailey-Orowan model.
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