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Summary

Although there has been extensive investigation of the creep behaviour
of structures subjected to steady loads and isothermal conditions, the
behaviour when temperatures vary both spatially and with time has received
relatively little attention. Numerical solutions are extremely difficult
to produce for time varying stress and appropriate constitutive relation-
ships have yet to be evolved.

The thesis is divided into two sections both of which are concerned
with structural creep behaviour under time-constant appliedlloads:

In the first section the behaviour of a few simple structures are
investigated for spatially varying temperature fields which remain constant
in time. Adopting an appropriate form of Norton's constitutive relation-
ship it is shown that the stationary deformation of the structure may be
related to a single reference material}test conducted at a reference
stress and a reference temperature, which is independent of material con-
stants, thereby providing a generalisation of the reference stress
technique used for isothermal conditions. Experiments on a simple beam
structure are described which confirm that a good>corre1ation between the
structural behaviour and uniaxial reference test behaviour exists. In all
cases considered the reference temperature remains close tb the lowest
temperature in the structure indicating that locally high temperatures may
sometimes be tolerated without excessive structural deformation.

In the second section the creep behaviour of a parallel two-bar
structure and a uniform plate subjected to cyclic histories of temperature
is analysed by means of a method of structural analysis which arises from
éertain bounding theorems. It is shown that these bounding theorems can
describe thermal-creep interaction extremely well and general modes of
creep behaviour are discernable when the non-linear viscous, strain-

hardening or Bailey-Orowan constitutive relationships are adopted.
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beformation méps that relate structural behaviour to a material parameter
B are described and in certain circumstances a reference stress ﬁayvbe
defined which is independent of other material parameters. This result
indicates that a reference stress approach is applicable to variable
temperature problems, but that the reference value depends upon thé. range
of values of this quantity B8 . In order to substantiate the theoretical
assumptions a preliminary experimental investigation of the two-bar
structure subjected to cyclic histories of temperature is described. Tests
using aluminium specimens indicate that a residual stress field is set up
that varies quite slowly in time and remains effectively coﬁstant after a
few cycles. It is found that the strain-hardening constitutive relation-

ship provides a best fit to the structural behaviour.
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Chapter 1

Description of the Contents of the Thesis

. Some eiements of power plant components as well as many other
struétures are subjected to the application of some form of loading cycle
during operation. This may take the form of thermal loads, a variation
of imposed forces and displacements or a combination of these. The
interaction bétween the non-linear creep response of the material and the
presence of both spatially and time varying temperature fields is a
problem the analysis of which remains amongst the more intractabie problems
of structural mechanics. Temperature enters into the problem at a material
level by producing temperature dependent changes in material behaviour and
at a structural level by thermal expansions causing incompatible volume
changes which in turn produce thermal stress. Either one or both of these
effects are ignored in many of published creep analyses and the relevance of
such calculations remains difficult to assess in general terms.

In this thesis the results of a theoretical and experimental study on
the creep of structures subjected to spatially- and time-varying tempera-
ture fields are reported. Attention is confined to problems with steady
“applied loads and it is assumed that stréins due to time-independent
plastic deformation are small. Where calculations are given the material
properties, unless stated otherwise, are those applicable to commercially
pure aluminium, the material used in the experimental tests. The choice
of this material was motivated by the need to provide a reasonably real-
istic and representative material model of some aspects of the creep
behaviour-of structural steels at elevated temperatures without recourse
to high temperature testing and the associated problems usually incurred.
The stress-strain curve for aluminium at and above room temperature is
very similar to those of some steels at elevated temperatures and for this

reason, besides being relatively inexpensive and easily available, has
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been used extensively by the Creep Laboratory in creep teétsl

In Chapter 2, a description of the numerous approaches to the problem
of creep in metallic structures is given. Both micro- and macro-aspects
are examined in order to illustrate the complex nature of creep deforma-
tion-processes; The'creep constitutive equations adopted in this thesis
and the reasons for their adoption are also given.

Chapter 3.is concerned with the role of stationary.state solutions iﬁ
the analysis of creeping structureé and the manner in which time constant
temperature gradients modify the isothermal stress distributions and
deformations. An alternative method‘of'obtaining approximate stationary
solutions is also described.

The development over recent years of the reference stress technique
for estimating deformation of creeping structures is reviewed in Chapter
4 together with methods of obtainingAapproximate reference values.
Adopting an appropriate form of Norton's law it is shown that the stationary
soiutions to structures with time constant temperature gradients can be
related to a material reference test, conducted at a reference stress and
a reference température which is independent of the material constants.

It is shown that solutions using an approximate method may be similarly

‘expressed. A sequence of experiments on a simple beam structure, Chapter

5, indicates that.the'correlation between structural behaviour and
material tests can provide an acceptable design method.

Chapter 6 attempts to shed some light on the various important aspects
of thermal-creep interaction for cyclic histories of temperature by
means of a method of structural analysis which arises from certain bounding
theorems. In a number of paperé (1,2,3) a theory was derived for a non-
iinear viscous material which allows the evaluation of upper and lower
bounds on the enérgy dissipated in a cyclically loaded structure.  These
solutions correspond to the exact solution when the cycle time is either

very short (upper bound) or very long (lower bound) compared with a

-
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’ éharacteristié time scale of the average deformation rate. This
reference time scale may be taken as the time for the creep straih,lin

the steady state, to be equal to the elastic strain at either an average
or maximum stress in the structure (1). Consideration of typical time
scales indicates that in most applications cycle time may be consiaered
to be very short and hence the upper bound solution may be expected to
provide a representative and realistic solution which closely approximates
the actual solution. A full description of these arguments may be found
in the references cited above.

In Chapter 7 the solutions of Chapter 6 for a two-bar structure and
- a thick plate are presented in the form of deformation maps. A material
parameter B 1is introduced in terms of which a reference stress may be
defined which is independent of other material parameters. This result
indicates that a reference stress approach can be used for cyclically
loaded creeping structures provided the appropriate value of B can be
evaluated.

In ordef to confirm the validity of the concepts previously discussed,
_Chapter 8 describes the experimental simulation of the two-bar model and
the results compared with theory. A full description of the desién and
development of the test rig is given in Chapter 10.

Finally, the thesis is concluded in Chapter 9 with a discussion of
the theoretical and experimental results contained therein and suggestions

for further research.
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Chapter 2

Creep Deformation of Metallic Structures

2.1. The Creep Curve.

Since the recognition of creep as a problem in the design of
engineering components the uniaxial creep test has been, and is likely to
remain, the most important means of providing creep data. The informa-
tion gained from this test reveals, in a simplified way, how a given
material will act under different combinations of loading and tempera-
ture. Most frequently the creep test is performed at constant tempera-
ture and constant load. Although the measurement of creep resistance
is quite simple in theory, in practice it requires considerablé labora-
tory equipment.

Deformation data is usually presented in terms of a strain, measured
over a gauge length, at various times. This gives a creep curve which
generally takes the form shown schematically in Figure 2.1(a). The
essential features may be summarisedvas consisting of a number of stages:
an instantaneous extension; a transient (or primary) creep of decreasingv
rate; a steady-state (or secondary) creep, approximately linear with time;
and an accelerating (tertiary) stage leading up to final fracture. The
increasing rate of deformation in the third stage is partly a geometric
effect not a material property. When constant stress, in contrast to
constant load, tests are performed it is frequently found that no region
of accelerated creep rate occurs and the curve remains approximately
linear with time to fracture, Figure 2.1(b). Accelerated creep is found,
however, ih constant stress tests where metallurgical changes occur in the
metal.

The degree to which the regions of the creep curve are distinguishable
depends strongly on the applied stress, the temperature and the duration of

the test. The strain represented by Zo occurs practically instantaneously



on application of load. Even though the applied stress may berwell below
'the yield stress of the matérial, not‘all the instantaneous strain isb
recoverable on removal of load. The total strain consists of a recbver-
able strain (elastic), a strain recoverable with time (anelaétic) and a
non-recoverable strain (plastic).

Primary creep is a period of predominantly transient creep in which
the creep resistance of the material increases by virtue of its own
deformation. This strain-hardening is due to the increase in dislocation
density increasing the flow stress of the material. —Secondary creep is a
period of nearly constant creep rate which results from a balance between
the competing processes of strain-hardening and recovery. Recovery is
the stress activated or thermal activated process by which a méterial may
revert to a strain free state. The average value of the creep rate
during secondary creep is termed the minimum creep rate. Third stage or
tertiary creep is a region of rapidly increasing creep rate leading to
fracture. Of the many analytical and experimental theories developed to

explain the factors controlling tertiary creep, few have produced any

(4)

- general conclusions. Of particular note is the work of Nemy and Rhines",

and Hoff(s) who investigated the two most possible reasons for the
existence of a tertiary stageg namely, a change in the structure of the
metal itself, leading to a change in its response to loading, and secondly,
a reduction in the cross-section of thelmetal résﬁlting in a higher

applied stress.

2.2, Metallurgical Aspects of Creep.

The phenomenon of creep deformation is due to several metallurgical -
processes, involving dislocation movement, vacancy diffusion and void
formation. These processes are assisted by the thermal excitation of

atoms aiding the movement of imperfections responsible for plastic flow.



The effect of the thermal agitation of atoms on the process of creep can
be simply illustrated by consideration of a metal undergoing deformation.
During elastic deformation the applied stress is in effect dilating the
metal lattice; during plastic flow the metal lattice of groups of atoms
become highly distorted and the movement of dislocations and
imperfections becomes more difficult, since the glide planes on which
dislocations move are not continuous through the material. Dislocations
become ’'piled-up’ at these barriers and the stress for continued plastic
flow increases 1in consequence. However, 1f thermal energy were available
to aid an imperfection to overcome a barrier, additional plastic deforma-
tion would occur. Since the transfer of thermal energy from atom to atom
is non-uniform, the laws of probability determine whether or not a dis-
location is given sufficient additional energy for motion to occur. This
type of deformation is, therefore, time-dependent.

Creep deformation, despite being a thermally-activated process, can
occur over the whole temperature range of the metallic solid state. For
metals commonly used in engineering construction, creep is significant
only at temperatures above 0.38"" where 87" is the melting temperature
in degrees Kelvin of the basic metal. However, for some metals, alumin-
ium and lead are excellent examples, significant creep can occur at room
temperature. The creep behaviour is affected strongly by temperature
and depends particularly on the ratio of the test temperature to the
melting temperature of the metal or alloy. Thus room temperature may be
a relatively low temperature for the creep of steel but a high temperature
for creep in lead. For a constant ratio - that 1is, the same
homologous temperature - Andradefound that it is possible to obtain
similar creep curves for steel and lead by properly adjusting the applied
stress. It is sufficient at this point to realize that the applicability
of creep-time relations that define the creep curve should be discussed in

terms of the homologous temperature.
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2.2.1. Logarithmic Creep (0O - 0.36

Creep is only possible because obstacles to deformation can be over-
come by the combined action of thermal agitation énd stress. At the
lower end of the temperature scale recovery processes which are not
thermally activated play important roles. Logarithmic creep occurs at
low temperatures and stresses and is believed to be a true exhaustion
process in which the rate determining step is the éctivation energy to
move a dislocation. On the initial application of stress, the disloca-
tions with the lowest activation energy move first to produce an initial
creep strain. As these easy-to-move disloéations are exhausted, cfeep
can only continue by the movement of dislocatinns of higher activation
energy. Therefore, the activation energy for the process continuously
increases, and the creep rate decreases. Theoretical treatments of
exhaustion creep that result in a iogarithmic equation have been proposed

by Mott and Nabarro(7), Cottrell(s) (9).

, and McLean
Deviations from the logarithmic form occur towards O.SSMP where the
creep rate declines less rapidly with time than the logarithmic function

suggests. Evidently some recovery which is probably due to cross slip

takes place and partly offsets the strain-hardening.

2.2.2. Recovery Creep (0.3 - O.QGMP)

At these higher temperatures the increased thermal activation allows
a continual recovery of the material from the strain-hardened stétes
encountered in the lowér temperature logarithmic creep range. There are
two types of theory which have been used to describe creep deformation in
the recovery range and both types are mainly concerned with steady state
creep. One theory is a direct application of reaction rate theory to

some slip process that is deemed to be the rate controlling event(lo) and
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the other (11,12,13)

assumes that creep deformation is the result of
strain-hardening being continuously annealed out by recovery mechanisms.
According to this theory, in the steady state creep c¢ondition, strain-
hardening must be exactly balanced by recovery to maintain a constant

mechanical state in which the flow stress o . remains invariant with time.

This can be stated in mathematical terms by

3) .. . (30 _
do = (55} dr + {55} dt =0, A _ (2.1)
dr
where E{ = H " (2.2)

In this expression Q 1is the rate of recovery given by

and H is the‘strain—hardening coefficient given by

tTo]
H = 3T

Expression 2.1 , commonly known as the Bailey-Orowan equation, has been

(13)

tested experimentally by Mitra and McLean on aluminium and nickel
specimens. | The results support the recovery theory against a slip type
theory provided the stfain-hardening coefficient was measured on creep
tested specimens. In addition it was also shown that the strain-hardening
coefficient increaseé several fold during primary creep and that the stress
'sensitivity of ereep rate is mainly due to the influence of stress on the
rate of recovery, which.itself is understandable in terms of dislocation

- network theory.

The-steady state region of deformation is normally observed only at or

above 0.46 at lower temperatures the creep rate continuously declines.

Mp
At higher temperatures there is full recovery because climb by vacancy
diffusion becomes possible, edge dislocations can also be eliminated at a

perceptible rate and a steady state of deformation is reached when strain-

hardening and recovery become equal in rate.



2.2.3. Diffusion Creep (0.9 - 16Mp)

If a polycrystalline aggregate is subjected to a small tensile sfress
"at elevated temperatures, deformation is often achieved by the stress
directed diffusion of vacancies. The process is known as diffusion or
Nabafro—Herring(7’14) creep.

During deformation, high angle grain boundaries that are normal to
the stress axis emit vacancies, whereas boundaries that are parallel to
this axis absorb vacancies, thereby achieving creep strain in a direction
parallel to the stress axis. The creep rate can be calculated absolutely
since the parameters involved, namely the diffusion coefficient, the grain
size and the atomic size, are known quantities. McLean states that
diffusion creep rate is a linear function of the applied stress, unlike
dislocation creep at high'temperature which is much more sensitive to
stress. Diffusion creep therefore predominates over dislocation creep
at very low stresses and consequently, it is only observed near the

melting point, since at Very low stress a high temperature is needed to

cause a measurable creep rate.

2.3. Phenomenological Approach to Creep Deformation.

The physical theories of creep can in many cases give a qualitative
explanation of observed behaviour, but if is imposgible to expect that a
" quantitative description can be successfully achieved by means of physical
models which are always to some degree phenomenological. Consequently
the mechanics of creep are not usually based upon creep expressions derived
from metal physics. Nonetheless, an understanding of miéroscopic material
behaviour is useful in ensuring that simplified methods are used in the
correct context.

The phenomenological approach to the creep deformétion of metals has

received considerable attention and the relevant literature is extensive.

2.6 .
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(15)

Many excellent articles have been written including those by Van Leeuwen s

(16) a7 (18). In the following sections a

Finnie , Marriott and Kennedy
number of creep theories are given. It is not intended to comment in
- detail on individual theories but simply to draw attention to certain sig-

nificant features of the group as a whole.

2.3.1, Creep Laws for Constant Stress.

A tensile specimen under constant stress deforms in a manner that may

be described By a general function of the form
e = f(o,t,0) . ' (2.3)

In a phenomenological approach a useful first approximation is to re-express

this function by separating variables such that
€ = fl(o).fz(t).fs(e) . (2.4)

The separation of the stress and time functions, fl(c) and fz(t) has been

implicit_in'most creep theories and appears to be generally accepted.
(a) Stress Function  f1(o):

The most commonly used forms of fl(c) are given below.

Norton1%) £,(0) = k0"

McVetty (20 £,(0) = k, sinh(o/c)
Soderberg 21 £, (o) . klexp(a/a) - 1]
porn??) £,(0) = k, exp(c/o)
Garofalo (%) £,(0) = kg [sinh(o/o_) 1"

where ki are material constants.
- The most extensive treatment of stress dependence appears to be confined

to the secondary creep range. Dorn has shown that at high stress levels the



éxponential'function‘provides a best fit to experimental data whilst at
lower levels Nortonb law provides a closer approximation, Leckie et.a1ﬁ24)
have shown experimentally that when constant temperature uniakial creep
data is plotted as a log stress against 1og steady state strain rate the
linear region defined by Norton's law is separated from the region‘defined
by Dorn's expression by a stress of magnitude n/(n+l) 5& where E; is the
yield stress of the material. Garofalo's expression is proposed to cover
both stress regimes,but in view of the simplicity of Norton's power law

and its homogeneity with stress, it is less often used. Further, for

proportional load changes, Norton's law provides stress distributions that

are independent of the magnitude of load.

(b) Time Function fz(t):

The task of describing the time dependence of creep in a material
displaying a high degree of structural change with time is difficult except
by extensive curve fitting procedures. Used with care and within the
context of their derivétion the following time functions have been found

of use:

Bailey (%) £,(t) =B, t" 1/3 <m <1/2
Andrade ®) £,() = (1 + B¢/ %) [exp(B 1) - 1]
Mcvetty (20 £,(t) = B,[1 - exp(-B,t)] + Bt

where Bi are constants for a given stress and temperature.

(c) Temperature Function fs(e):

i

Experimental evidence strongly indicates that a temperature function

of the form
£,(0) = C exp(-AH/R8)

can provide an adequate description of the variation of creep behaviour
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with temperature. In this expression C 1is a constant, R is the
yniversal gas constant and AH is the activation energy for the
controlling creep process. Since creef involves thermally activated
processes changes in AH are usually associated with changes in the
creep mechanisms. Fof most metals at temperatures in the range 0.2 to
O.SBij, AH shows some dependence on both stress and temperature,
although in practice this variation is of the order of 20 per cent of
‘the value for temperatures above 0.56MP where AH correlates closely
with the activation energy for self-diffusion. Below O.ZeMPthermally
activated creep mechanisms become less rate controlling and AH rapidly
declines. Some typical values of AH in the range 0.2 - O.SBMP are
given in Table 2.1, Although there is a wide variation in values of "AH
for pure metals, the variation amongst different alloys of the same base
metal is usually small for temperatures greatér than O.46MP.

In this thesis, as stated earlier, a series of experiments conducted
on pure aluminium specimens will be described. %herefore to assure con-
tinuity all theoretical calculations, unless stated otherwise, assume
material parameters which are consistent with this material. An extensive

investigation by Sherby(26)

et. al, into the variation of the activation
energy with temperature for pure aluminium provides-valuable information

6n this material. His results are given graphically in Figure 2.2 from
~which it can be seen that for 0.256MP 86 < O.459MP, AH 1is approximately

113 kJ/mole and for 6 > 0.456,, » AH equals 140 kJ/mole.

(d) Constitutive Relationship.

In the following chapters it will be assumed that the constitutive

relationship for constant stress uniaxial creep is given by,

) \
. [T o [3 (- H] [T @s)
o 0- 0 ° .




at temperature

is the creep strain resulting from a stress

where
o and to is some time measure,
Alternatively equation 2.5 may be re-expressed as
e(t) = k*a%$xp(-AH/RO) .t"™ (2.6)
where
"o " 4, exp(AH/R6%).["]
~0 o
The steady state creep rate de/d(t") may be written as either
E = k o" exp(-AH/RO) (2.7)
n
E MNa1 [AH fl
or ot 1o | [ - ] € 3)
0 L oJd L 0

Creep Laws for Time Varying Stress

2.3.2.
(2.5).

Several proposals have been made to generalise equation

The two most widely used hypothetical material models are the time-hardening

and strain-hardening laws. They represent idealized material behaviour and
However they do

ignore such effects as creep hesitation and recovery.

provide a useful insight into real material behaviour and within their
Their

limits can provide useful information on structural creep behaviour.

mathematical forms for isothermal conditions are:

The time hardening law.

(a)
m-1



(b) The strain hardening law.
o;
where S.. 1s the stress deviator, and
iJ
fa_(©)}1" =T s...( (t)
e z 1ij ij
{e Cct)}i» A (t) E__ (t)
e = e, .
c 0 17 XJ

2.4. Creep Deformation of Structures.

The derivation of the mechanical equations of creep is a highly
complicated process. Various generalizations of the basic equations
are readily realized but the use of complex equations increases the
difficulty of determining the coefficients or functions they contain
from the usual limited experimental data. It then becomes difficult
to extract any detailed or comprehensible qualitative pictures or to
deduce any practical conclusions that are of use in design.

Structural analysis using constitutive relationships that closely
fit observed material behaviour consists essentially of the solution of
a set of non-linear differential equations with non-constant coefficients.
Several techniques of solution are now well established £27 QSl. However
the material model adopted is limited in several respects. Firstly,
plastic and creep effects can be expected to interact and initial
prestraining can be expected to influence the subsequent creep performance
of the material. Secondly there 1is no hypothetical constitutive creep
relationship that adequately predicts behaviour due to time varying stresl”™""”
Anisotropic behaviour and the Bauschinger effect are frequently neglected’
in material models.

Although computing power is available to permit the step-wise integra-
tion (with respect to time) of such problems the lack of adequate constitu-

tive laws leaves such solutions open to question.



2.12

Several workers(so’zl’sz) have approached fhe problem from a different
direction. A simple material model was initially adopted and structural
behavi?ur for the hypothetical material then examined to determine what
parameters are important and what creep tests are required to enable realis-
tic but admittedly approximate predictions of structural behaviour to be
made. A related field has been the derivation and application of energy
theorems for structures composed of certain material models(33’34’35’36’371
Some of these theorems are basically extensions of the extremum principle
(38)

for elastic continua and have been progressivly extended to encompass

a wider class of material models and more general classes of loading.

2.4.1, Deformation due to Secondary Creep.

It has bgen observed(34)

that a suitable simplification to the esti-
mation of the creep deformation of structures subjected to steady loads

is that both elastic and primary creep deformations are small compared with
secondary creep deformations. Hoffcsg) considered secondary creep in the
absence of elastic effects and argued that this was justified for structures
in which the creep strain was of the order of 1% since the maximum elastic
strain was of the order of 0.1% . The stress distribution can then be
considered invariant with time and the well known theorems of minimum total
energy and minimum complementary energy can be applied as if to a non-

- linear elastic material to obtain bounds on the energy dissipation in the

structure.

A uniaxial creep law of the form
e =ko. ] (2.11)

permits useful theoretical simplification and in many situations a precise

(33,40)

knowledge of n 1is not required. Calladine and Drucker showed

that the energy dissipation in a minimum weight structure can be expressed
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in a form invariant mith n and that iittle vamiation with n may occur
"in spite of departure from the minimum condition". However, Cailadiné41)
obtained solutions to a uniformly stretched plate containing a central hole
and concluded that there exists an approximatéiy linear relationship
between energy dissipation rate and 1/n , and between stress concentration
factor and 1/n . Therefore for complex structureswhere only the elastic,
(n=1) , and plastic (n==) solutions are known approximate solutions can
be found for a structure composed of a material for which 1 < n < =,

Anderson et al(so) (31)

and Marriott and Leckie considered the defor-
mation rate of beams composed of a material where n was itself some
function of stress, and suggested that the assumption of a creep law of the
form given by equation (2.5) Qould allow sufficiently accurate estimation
of the deformation rate providing the creep test was performed at a
- "representative stress', i.e. providing the cfeep test data was obtained at
a suitable lemel the variation of n. with o 1is not important in practice.
The work of Mackenzie(42) and later that of Sim(43) demonstrated that
the creep deformation rate of various structures can be estimated from the
creep data obtained from a single creep test at a 'reference stress'
without precise knowledge of the stress index n . This work will be

further discussed in Chapter 4.

The concept of a reference stress based on the energy dissipated in

(44) (45)

the,stationary state has been usefully extended by Leckie and Williams

The outcmme of these ideas has been a procedure for obtaining an
acceptable estimation of structural performance from a minimum of information
on the material behavimur. In the above references only isothermal

conditions have been considered whereas in most engineering structures few.

truly isothermal conditions are present.
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2.,4,2, Creep due to Variable Loading.

The lack of adequate constitutive relationships for.time yarying
stress reduce considerably the worth of any calculations for variable
loading. However many situations involving variable loading are periodic
and as such afford some simplification of the probleﬁ.

(

Ponter 1,37) has derived work bounds for structures composed of time-

hardening Maxwell material and subjected to variable loading. The

._theorems provide a generalization to the theorems derived by Martin(46)
. ) ' . (34 )
.and Leckie and Mart1n€ ) The bounds provide a measure of the stress re-

distribution occurring and are therefore indicative of situations where
a reference stress approach may be used with confidence.

(2)

Bounds computed on the energy dissipatioﬁ when the material has
attained a cyclic state provide two extreme states when the cycle time is
either large or small compared with a characteristic time of-the‘material.
Recently Ponter and Williams have derived sufficient conditions that the
bound will be optimal with respect to the stress field, the computation
of which involvés a structural problem comparable in complexity with the
steady state éolutions.

In situatibﬁs wﬁere the effects of stress redistribution are found to
5e small or a design based on an upper bound remains acceptable, William§45)
stateé.that the fime;hérdening result can be applied to structures composed
of maferials with related éoﬁstitutive relationships whose creep law for
time varying streés is unknown, by applying a weighting factor obtained
from a single cyclic sfress cfeep test.

When stress redistribution effects are known to be significant and
an elastic/creep calculation is required, a weighted time-hardening calcu-
lation is employed(45). As before, the weighting factors are obtained
from a single cyclic creep test. The creep law for time varying stress is

not required and difficulties frequently experienced when other hypothetical

creep laws are used are avoided.



vt | Croep Mesivation

Aluminium. 113.1
Al1-1.6% Mg Alloy. 149.7

0.05% C.Steel. 256.2

1.15% C.Steel. 257.8
Mo-Stainless Steel, 314.1
Fe-27.8% Al Alloy. 276.3
Ni-20% Cr-23% 347.5-523.4
Ti-1.5% Al Alloy,

Table 2.1. Creep activation energies for some metals
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ChaEter 3

Stationary Creep of Structures Subjected to

Time-Independent Temperature Gradients

3.1. Introduction.

The stationary state analysis has assumed a major role in the
solution of éreep problems and there has been much interest shown in the
properties of stationary state solutions. However it is noticeable
that although there exist numerous stationary state solutions to a
variety of structures they are virtually all concerned with isothermal
conditions.

In this chapter the effect of spatially varying temperatufes on the
stationary stress distributioné and deformations of some sample structures
will be shown. It is.found that even quite small temperature gradients
have a considerable effect on the stress distributions and that many
features of isothermal creep are greatly influehced. Leckie and Pontegis)

and Ponter(se)

have shown that the plastic limit solution can provide a
tolerable upper béund,on deformation for isothermal conditions.  Where
temperature grédient; are present this solution does not provide an
acceptable estimate for n < 11 but always provides the asymptotic solu-
tion és n->e, | Thefefore, for these cases a plastic solution is
defiﬁed corresponding to é yield stress dependent on both temperature and
stress index. Tﬁis solution provides an intermediate plastic solution
‘which the actual solufion apﬁroaches for moderate values of n .
| The influence of stress redistribution on structural deformation and
tﬁe.relevance of the stationary state analysis will be discussed.
Solutions are given to three sample problems: a beam under pure

bending, a parallel two-bar structure and a propped cantilever beam.
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3.2. Stress Redistribution due to Steady Loading.

39 . . . . . ‘ -
(39) considered stress redistribution in a structure composed

Hoff
of a Maxwell material undergoing éecondary creep and showed that the
stress field in the structure asymptotes to a steady-state. This result

was generalised by Hult(47)

to embrace much more complex creep laws such
as those given by equations 2.9 and 2.10. He termed the stress field
- that is approached asymptotically, the stationarystate. At the station-
ary state, the elastic strains remain constant in time and make no contri-
bution to the subsequent strain rates. The total deformation is made up
of an initial elastic deformation, deformation accumulated in the stress
redistribution process and deformation at the stationary state. The
effect of stress redistribution is that the total deformation is in excess
of that which is obtained if the elastic and stationary-state deformations
were simply added (Figure 3.1).

Several attempfs have been made to estimate the additional deformation

(31)

due to stress redistribution. Marriott and Leckie made some critical
creep calculations on a variefy of simple structures under isothermal
conditions. They concentrated on the time-haréening constitutive:-law and
although they recognised that it is physically the least realistic of the
available creep laws they were able to show that the 'energy' consumed by
a structure in changing over from an initial stress distribution to the
stationary state stress distribution is small compared to the elastic
energy of the structure or at worst of the same order of magnitude. They-
' also showed that for the structures studied the overall creep deformation
did not differ significantly and the stress histories were also similar,
for both the time-hardening and strain-hardening laws. Thé work of
Marriott and Leckie(SI) has been consolidated in general tefﬁs by Leckie
(34)

and Martin . They showed that structures composed of a time-hardening

Maxwell material converge monotonically to the stationary state which is
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also that for which energy dissipation rate is a minimum, a result consis-
tent with the theorem of minimum complementary energy. Leckie and Martin
were able to show.that at large times the total work done by the external
forces'éan be bounded from above by the expression
t . t
' J PUdt < (n+2) (E°-E°) + J dt Jko Pl e(v)av (3.1)
o o v S

In this relationship, E° is the elastic infernal energy associated
with the stationary stress cs,E°< is the internal elastic energy on first
loading, and the double integral is the creep energy-dissipation corres-
ponding to the stationary stress solution. Consequently the term (n+2)
(ES-EO) represents an upper bound of the additional energy dissipated during
stress redistribution. They obtained values of (ES-EO)/Eo for different
structures and concluded that the energy dissipation due to stress redistri-
bution was of the same order as the initial elastic strain energy and
éon&equently the assumption by many workers that redistributign effects can
.be neglected is largely justified.

Stress redistribution in the presence of non-uniform temperature dis-
tributions has been investigated by Barnes et 31(48). They simulated
experimentally the stress redistribution occurring in a simple redundant
structure comprising of three parallel bars joined at their ends by rigid
members. Redistribution of load was observed for several initial stress
distributions and temperature differences. The authors concluded that the
fully redistributéd stresses were always more uniform than the initial
thermal stresses appropriate to the same temperature difference, the final
states of stress were insensitive to the initial stress states, and that
the strain-hardening constitutive relationship provided useful descriptions
of stress and strain historiesvduring redistribution.

In most circumstances stress redistribution effects are small, the

additional deformation being of the order of the initial elastic deformation,

and therefore can be neglected in design.
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/ Ip many design situations the stationary state solution may be
difficult to obtain or even unobtainable but an approximate solution such
as the plastic limit state may well be available. Leckie and Ponter(49)
have extended many of the theorems of perfect plasticity and their
corollaries to include the effects of creép. They computed upper bounds

on deformation by making use of the limit state solutions and showed that

. the bounds so obtained can be acceptable and of use to the designer.

3.3, Stress Redistribution Times.

For design purposes the time to attain the stationary state is
seldom required to be known with extreme accuracy, only whether the redis-
tribution time is large compared with the period of component loading.

(50)

Calladine , on the basis of certain simple calculations, proposed
that since the stationary state is approached asymptotically the
stress redistribution time be given by the time required for

o(tlo) - os = (c-os)/lo

A

where t10 is the time required, o is the stationary stress and o
is the initial elastic stress.

The approximate relationship quantifying t10 derived by Calladine

*
t =———2'3t
10 n

where t* is the timé taken for the creep strain to be equal to the elastic
strain when maintained at a constant stress of magnitude equal to the
'stationary state value.

The above expression is claimed to give an overestimate of the stress

redistribution time for larger values of n and the quotient (o -os)/os



| Values of nt O/t* for different structures have been obtained by
Sim(43). He compared these results with 2.3 and showed that tﬁey'were

in close agreement for the range of structures considered with the

exception of thick shells subjected to internal pressure where the value

of ntlo/t* can rise to 7.9. |

Calladine;s formula is applicable to any structure but requires a

‘'knowledge of both the initial elastic stress distribution and the stationary
state stress distribution together with creep data from a test at the
appropriate stress level. |

(51)

Bill and Mackenzie expressed the stress redistribution time in
terms of the ratio of creep strain at time t 0’ due to some reference
: 1

stress to the corresponding elastic strain. They showed that by a

Op >
suitable choice of OR their measure of stress redistribution time could
be made sensibly independent of n . They also observed that the values

of OR' obtained did not differ significantly from reference stresses
obtained for estimating deformation due to stationary creep. Thus provi-
.ding tlo is known for one value of n it should be possible to make
acceptable .estimates of t10 for other values of n .

Both Bill and Mackenzie,and Calladine were concerned with stress
redistribution times in structures composed of time-hardening material.

(31)

Marriott and Leckie report that redistribution times for structures
composed of strain-hardening material are significantly longer than corres-
ponding values for a time-hardening material. Some recent results by

Williams 4>

also support this. These results are not unexpected, since
structures composed ofimaterial obeying creep laws other than time-
hardening, will be stiffer in the sense that stress redistribution effects,
when considered from the micro-structure aspect, will increase thé state
variables of the material at a faster rate than would occur at the

stationary state. A structure composed of a time-hardening material is

not affected by stress redistribution effects in the same manner since by



definition it is only dependent on time. The structure will therefore
have no memory of the redistribution process.

Some recent work by Megahed(sz)

using the time-hardening law has

shown that for a two-bar structure. similar to that considered by Williams
under isothermal conditions,Calladine's method provides a conservative
estimate of t1 for n > 3. For non-isothermal conditions with a

'step change in load and temperature occurring simultaneously, results
pbtained by step-by-step calculations indicate that redistribution times
are considerably longer than those predicted by Calladine. In comparison,
much smaller values are calculated for a step change in load on the fully
redistributed non-isothermal structure.

It may be argued heuristically that in a structure where changes in
lpad and temperature occur simultaneously the interaction between the applied
and thermal stresses ?ay be expected to produce values of t10 greater
than those for a fully-redistributed non-isothermal structure subjected to
an equivalent load change where the only effect of temperature is to produce
a 'softening' of the material.

The general effect of a temperature field oh a fully-redistributed
non-isothermal structure is to decrease the redistribution time for further
loading.in the sense that since creep is highly temperature dependent local
creep strains may be accumulated at a greater rate.thereby modifying the
stress distribution.

From the review given i£ can be seen that stress redistribution times
can be very dependent upon the constitutive equation for time.varying stress
and since no satisfactory generalisation of equation 2.5 is available at

present, the only method of obtaining such times is by experiment.
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3.4. Stationary State Creep of Some Simple Structures.

This section is concerned with creep; elastic, and time-independent
plastic deforma;iéns are not considered. Stress distributions are |
therefore stationary (steady-state) distributions. The constitutive
relationship 2.7 1is adopted and in the solutions presented the activation
energy for creep, AH , was taken as 113 KJ/mole with the lowest tempera-
“ture in each example, & , being 300°K . (8H correlates with 6,, for
pure aluminium.)

It may be noted that many calculations were performed using different
values of both AH and 6 , and it was found that the principal features
of the solutions aré relatively independent of these quantities.,

The complete solutions to the three examples are given in Section 10.3.

(a) Beam in Pure Bending

A uniform beam of rectangular cross-section, width b and depth d ,
is subjected to constant end moments M and a linear temperature gradient
through the depth. (A situation that occurs if the beam sides are
insulated.) At any section distance y from £he lower edge the tempera-

ture is given by

o(y) = [(92—91) %ﬁ* 91] .

where 6, and 0; are the temperatures at the upper>and lower surfaces

respectively.

The axial strain- e(y) at a distance y from the lower surface is

e(y) k(y+¢d) ,

. and

e(y) = k(y+¢d) ,

where k denotes the curvature of the centroidal axis.



The stationary state moment-curvature rate relationship may be

expressed
q
. _k|2M .
K = d [:'b—dz] IB . | (3.2)

where IB is evaluated from conditions of equilibrium and compatibility:

1 y , -
IB = { 2 [ (x+¢) nxexp[AH/nRe(x)]dx} y

: o
and ' x = y/d .

The stationary stress distribution depends upon the activation energy,

the temperature difference (6,-6;) , and the stress index n ;

n
oG = [Geor, exp(AH/ma(x))]1 ER (5.3)

The other variables éo > O and eo .only affect the curvature rate.
In Figure 3.4 the stationary stress distributions for isothermal
conditions are shown for 1 < n < 11 . Two well known features are immed-
iately evideﬁt; the variation between the n =1 solution (analogous to
the linear elastic case) and the n— = solution (analogous to the rigid
perfectly plastic case) for intermediate values of n and the existence
of two points symmetrically placed about the neutral axis where the’stresses
vary only slightly with n . These positions were réferred to by Marriott

(31)

and Leckie as 'skeletal' points and their associated stresses as
'skeletal' stresses. These will be further discussed in the following
chapter.

In Fig.3.5 the stress distributions are shown for a temperature
difference (63-6;) =ci2°K. It can be seen that for this fairly small
temperature difference the isothermal picture has been substantially dis-
turbed. No clearly defined skeletal points are present and the transition
from n=1 to n =11 possessés entirely different characteristics to the

isothermal case. The n =1 case remains analogous to a linear elastic

solution but with a Young's Modulus which varies through the depth of the
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beam (i.e. with temperature). For larger values of n the solution

asymptotes to the homogeneous perfectly plastic solution (shown as a

broken 1line). This can be seen by rearranging equation 2.8 into the form
'n
o € "AH fl 1/
o £ ®*P R le " 8 J 3.4)
0 0 0J

As n w , provided kinematic conditions demand that &/E* remains finite,
then o/o” ->1 , the condition associated with the perfectly plastic
solution. Thus the variation of stress with creep index spans the range
between a non-homogeneous linear elastic solution and the homogeneous rigid
perfectly plastic solution.

In Fig.3.6 the stress distributions for a much larger temperature
difference (82-81) = 60°K are presented. IThe n =1 case can be seen to
be highly variable especially near the cooler side, and for n = 11 the

AN}

solution differs considerably from the n case, whereas for isothermal
conditions the n = 11 and n-— solutions are virtually identical. For
even larger temperatures differences the difference between these two

solutions becomes more marked. The reason for this is that for large

temperature differences the exponential term in equation 3.4 has not become

constant at n = 11 although the first term (é&/e~/* closely approaches
unity. This suggests an intermediate stress profile of the form
a i 1
= 3.5
0 P ar (9 - 92 (3.5)
o 0 I

which corresponds to a plastic solution with a spatially varying yield stress
dependent upon n . The stress profile obtained from equation 3.5 is shown
as a broken line in Fig.3.6 and is seen to closely approximate the solution
for n = 11 . This 'plastic' solution will be further discussed in
section 3.5.
. (33) . . . . . .

Calladine investigated means of estimating the maximum stress in a

structure without performing a non-linear analysis. He observed that

there existed,for a variety of simple structures under isothermal conditions.
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& linear relationship between the maximum stress and the reciprocal of
the stfess index. Therefore,providing the n =1 and n-» = solutiohs
are obtainéble, thé maximum stress for intermediate values of n can be
gained from a linear interpolation between these two solutions. In
Fig.3.7 the maximum stress, which is always compressive is plotted
against 1/n for a range of values of (65-6,). It can clearly be seen
that a linear interpolation between the n = 1, non-homogeneous linear
‘elastic solution and the n—>« solution is liable to be considerably in
error since the variation is far from linear except for the isothermal
solution. However for this structure a linear interpolation provides a
conservative estimate of the maximum stresses occurring. From Fig.3.8
it is seen that whereas the maximum compressive stress showsa monotonic
change with increasing 6, the maxihum tensile stress achieves a minimum
value at a small value of 6, and again Calladine's linear interpolation

provides a conservative result.

(b) Two-bar Structure.

Consider the two-bar structure shown in Fig.3.2. It was argued in
reference (45) that this structure was representative in some respects of
many siﬁple structures. In the example éhosen the bar lengths are in the
ratio of 4:1 and have equal cross-sectional areas.

Using the constitutive relationship 2.7, and from considerations of
equilibrium and compatibility of displacements,the stress in each bar was
evaluated for a range of values of n and a range of values of the temper-

. ature difference (0-6;)°K where 6, and 6; are the temperatures of
the longer and shorter bar respectively.

In Fig.3.9 the variation of maximum stress with 1/n for three cases
is presented and as expected, always occur in the shorter bar. It can be

readily seen that when isothermal conditions prevail the maximum deviation
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of the solution from a straight line is at most 2% and Calladine's
linear interpolation provides good predictions over the range of n .
For a small change in temperatures (65-8;) = 10°K it is seen that a
linear interpoldtion would be much in error. This deviation increases
rapidly with én increasing temperature difference. The n'; 1 cases

still remain analogous to linear elastic solutions, but as in the beam

~problem, having Young's moduli varying as a function of the temperature

difference. As expected, for large values of n ‘the solutions tend
toward the homogeneous,rigid/perfectly plastic solution. In the extreme
cases where the temperature differénces are so large és to make the stiff-
ness of the hotter bar small, the structure appears to behave as a single
bar at the lower temperature. Even in this case the solution will
asymptote to the homogeneous plastic solution as n = < but its approach
occurs at very large values of n .

Wﬁen the shorter bar is at the higher temperature the variation of
maximum stress with 1/n , Fig.3.10, does not show a monotonic change
with increasing temperature. Howevér in both cases a linear interpola-
tion provides a non-conservative result.

This changgAin behaviour may be more easily understood frém considera-
tion of Fig.3.11 which identifie§ the interaction between the stationary
state stresses derived.fEOm equilibrium and compatibility conditions.

Line S;S; represents stationary state stresses obtained from the equili-
brium condition and aﬁy liné from the origin represents states of stress
which satisfy compafibility. . The point of intersection represents
éllowable states of stress within the structure. The solutions presented
are for n = 3, but similar éolutions may be obtained for other values of
ﬁ . Any point on the line between S3 and S; represents allowable
stafes of stress for an increasing temperature difference when the higher
temperature acts on the longer bar, and similarly any point between S3 and

S,  represents states of stress when the higher temperature acts on the
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Shorter bar. PointA S3 represents the isothermal solution.

Within region S3S; the maximum stress occurs oﬁ the shorter bar and
is always larger than the maximum isothermal stress,i.e. there is a mono-
tonic change in maximum stress with increasing temperature difference.
However this ié not the case within region S3S, where it is seen that the
maximum stress is less than the isothermal value. Between S3 and Sg
(03=02=P/2A) the maximum stress occurs on the hotter bar. At Ss both
bars carry equal loads although the temperature of the shorter bar is
7.4°K higher than the longer bar. Further increase in temperature
increases the stress on the shorter bar but this stres$ does not equal the
maximum isothermal value (0.6 P/A) until the temperature difference 15.3°K
is reached (point Sy). Within.region SyS2 increasing temperature
difference again provides a monotonic change in maximum stress.

For a two-bar structure with bars of equal length points Sj3 and Sg
coincide and the maximum stress always changes monotonically with increasing

temperature difference.

(c) Propped Cantilever Subjected to Central Load.

The geométric configuration is shown in Fig.3.3. A uniform rectan-
gular section beam of length £ is simply supported at one end and encastré
at the other with a point load acting laterally at the centre of span. A
linearly varying temperature distribution has its maximum value at the
encastrée end and the temperature is assumed to be constant through any section.

A momenq/curvature rate relationship consistent with equation 2.7 is
given by

Ee W e[ L.} e

g (Mo exP[R eo"e] y
The problem was solved numerically using a virtual work method which is
described in Section 10.3. As the problem involves only a single redundancy,

the moment distribution is of the form
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M(x) = Pmj; + Fmjp

where m; denotes the moment due to a unit central load écting upon a
gimply supported beam and my the reactive bending moment due to a unit
load acting at the tip of a cantilever of length &

The variétion of bending moment with temperature and n may be
adequately described by the prop reaétion F . In Fig.3.12 variation of
'F/P .with 1/n is shown for a range of values of the temperature gradient
(62-61)/61 where 6, and 6; are the temperatures at the encastre end
and simply supported end respectively. . The observed behaviour shows
similar tendencies to that exhibited by both the beam and tﬁo—bar structure.
It is seen that for all values of 65, , as n becomes large, F/P asymp-
totes toward the limit n -+ < corresponding to the homogeneous perfectly
. plastic case. For the larger values 6f 6, , the n -« solution is
only approached for very large values of n > 20 , whereas for smaller values
of 6, the approach is more gradual.

The effect of an increase in temperature differénce on the n =1
solution_is to decrease the stiffness of the encastre end and F/P - 0.5 ,
the simply supported case. As in the previous examples the variation of
F/P is far from linear and a iinear interpolation of F/P with 1/n is

clearly non-conservative.

3.5. An Upper Bound on Stationary State Solutions.

Where analytical solutions are not easily obtainable Ponter and
Leckie(49) have discussed the application of energy methods to provide
bounds on the deformation of isothermal creeping structures. It was shown
that a tolerable upper bound on\deformation could be obtained from know-
ledge of the plastic limit state solution and in this section the effect
of spatially varying temperatures on these solutions will be discussed.

The theory (35,54) remains formally unaltered but as has been shown in
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éhe beam example the ﬁse of the limit state solutién (n—>=) does not
providé an acceptably accurate estimate of the stress distribution for
values of n < li when non—i;othermal conditions are present. A 'plastic’
solution corresponding to a yiéld stress dependent upon both temperature

~ and stress indéx will be defined that provides an intermediate plastic
solution which the stationary state solution approaches for moderate values

'of n .

3.5.1. Energy Theorem.

On the basis of the assumed properties of the material it has been

d(35) that the contribution of the plastic strains to the deformed

deduce
shape of a structure are likely to be small provided the loading is kept
below the value n/(n+l) of the limit load PL .

Assume a body of volume V and surface S subjected to applied load
Pi over part of the surface ST. and zero displacements over the remainder.
In the stationary state the displécement rates of thé body may be found

directly by'assdming ¢ , and may be bounded from above by

. . - C * '
I PiUidS_s J D (oij)dV (3.7)

S
. . T _
where Dc(c) denotes the rate of creep energy dissipation associated with

the stress o.
A ' MR
The stress field oij may be any equilibrium stress field in

equilibrium with P, which satisfies the yield condition

f('(ﬂl}l—)' O"L'-)) < 0. ‘ (3.8)

' *
Note that the restriction (3.8) requires oij to lie within a surface

geometrically similar to the yield surface in stress space and scaled by
a factor n/(n+l).

Corresponding to a given Pi , a plastic limit load P? exists where
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Pi = XP;‘. The conditions of inequality (3.8) are then satisfied by
'y '
oij = Xoij provided X < n/(n+l) , where oga denotes the limit stress

state at plastic collapse.

For a structure where allrpoints of the structure are at a state of

plastic yield ét collapse, XUL remains on a surface of constant .6c and
Jspiﬁi <V bc(xay) | | | (3.9)
‘where E} denotes the uniaxial yield stress.

'Thus inequality (3.9) provides a bound on the total energy dissipation
rate in terms of the limit load and data from a single uniaxial test, a
result which provides a simple calculation to allow arconservative estimate
of structural creep deformation. Comparison of these estimates with theory
and experiment are to be found in referencés (45) and (49). The accuracy of

these simple estimates are greatest for larger values of n where the creep

- solution closely approximates the limit state solution.

3.5.2. Application to Beam under Flexure.

It was shown in Fig.3.4 that the perfectly flastic solution provides a
limit state on the stress distribution and closély approximates the n = 11
case. In this particular case the bound on curvature rate, QL » provided by
inequality (3.9) overestimates the ekact value Kk by at most 26% in the
range 3 < n < 11 . Such a discrepancy in curvature rété corresponds to a
change in applied moment of at most 8% , or , a}ternatively, a change in
depth of the beam of 4%

For non-isothermal conditions, Fig.3.5, it was seen that the approach
to tﬁe limit state solution only occurs at large values of n > 11 , It
was suggested that an intermediate plastic state equation (3.5) provides a
better approximation of the stress distributions for n ¢ 11... The stress
profiles corresponding to this plastic solution are shown in fig.S.lS and

are seen to closely approximate the actual stresses. The bound formed by
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l .
substituting this solution into inequality (3.9) gives a moment-curvature

rate relationship of the form

A n

.k 2m

t <3 2
1

J exp [AH/nR6 (x) ]dx

¢

U .
Iy B

where IU =

B 1 -
z“{[ x.exp [AH/nRe (x) 1dx - [

(o] - o

n+l
x.exp [AH/nR6 (x) ]dx}

In Table 3.1 a comparison is made of the curvature rates obtained
from the intermediate plastic solution with those obtained from the exact
stationary state sﬁlution for 65 = 360°K . A similar compérison of the
bound given by the plastic solution using a constant yield stress and
temperatures through the depth is also included. The intermediate
plastic solution clearly provides a close estimate of the exact deformation
but it is more difficult to obtain than the liﬁit state solution. However,
it does provide a reasonably accurate bound on non-isothermal structural
behaviour for this problem. The application to more.complex structures

requires to be investigated.



K K
1 2.25 23.
3 1.55 14.
5 1.40 14.
7 1.36 14.
9 1.33 13.
11 1.30 13.

Table 3.1

Comparison of Curvature Rates

S :
Q OF <kH:<

@ Elastic displacement

2 K : Exact Solution.
5 . .
Intermediate Plastic

2 Solution.
0 .. .

k : Limit State Solution.
7
6

for 02 = 360°K

eejé&

Displacement due to stress redistribution

£(®

Pig 31 Effect of stress redistribution
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Fig32 Two-bor structure

Fig 3-3 Propped cantilever
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ChaEter 4

A Reference Stress-Reference Temperature Technique

for Structures Subjected to Steady Loads

4.1. Introduction

In creep design one major problem is the lack of precise knowledge of
material behaviour at temperature and under long term loading. An
attractive means of directly utilizing experimental creep data in conjunc-
tion with an analytical treatment of a design pfoblemAis to use a reference
stress technique. This technique is based on the observation that it is
often possible, using traditional analytical procedures in conjunction with
a power function constitufive equation, to determine a stress at which the
creep rates obtained from a tensile test will be proportional to component
displacement rates. Such an approach avoids the need for defining the
details of material behaviour since this would be included in the tensile
creep data. The reference stress also guides the experimental work by
indicating in what stress range the tests are to be performed.

In this chapter a reference stress technique originally proposed by

(42) will be extended to include the effects of non-uniform tem-

Mackenzie
perature distributions. It will be shown that under isothermal conditions
there is a single reference stress which has an aséociated creep deformation
in proportion to the deformation occurring in a structure at stationary
state conditions. Since the reference stress is based on the stress and
strain rate distributions at the stationary state it may be expected that
the reference stress is unaffected by an initial temperatﬁre gradient in the
structure. However, stationary creep rates are strongly dependent on
temperature and the specification of only a reference stress provides

insufficient information where spatially varying temperature distributions

are present. The question arises as to at what temperature should a creep
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test be conducted so as to be able to predict correctly the stationary state
?ehaviour of the structure according-td a reference stress approach. In
section 4.3 a reference temperature technique is defined and applied to
some simple structures subjected to steady loads and spatially varying
temperature fields. The technique is also applied to the modified limit
state solution previously discussed in Chapter 3, and it will be shown that
the reference values obtained provide an acceptable bound on structural
behaviour for design purposes. |

In the following section the development of 'exact' and approximate
methods of obtaining reference stresses are discussed. The reference stress
technique has been discussed in many papers and different structures are

treated, e.g. SSderberg(ZI), Anderson et a1 (%) (43) .n4

(55)

, Mackenzie, Sim
Marriott It is the intention of this section to include some of the
information to be found in these references and to review the additional

literature subsequently published.

4.2. The Development of Reference Stress Techniques.

4.2.1. Exact Reference Stress Techniques.

(21)

Soderberg in 1941 made an early éttempt to relate component

behaviour to the behaviour of a single tensile test. From a steady state

analysis of creep in thick tubes subjected to internal pressure, P , he

calculated a reference stress given by
o, = 0.87 — P , (4.1)

where T denotes mean radius and h wall thickness.

The corresponding deformation is given by
€ = 0.87 e(oR) » (4.2)

where e(oR) is the creep strain in a tensile test at a stress of op and
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€n is the creep strain at the mean radiusi

Another early use of a reference test was in the approximate solution
of transient creep in beam sections made of polymeric material(56). This
~Schulte achieved by noting a point within the cross-section at which
elastic and stationary stresses were coincident. By assuming constant
stress at this point, and performing a creep test at that stress it was
possible to make accurate predictions of beam deflections.

The first paper to treat the reference stress as a general principle
was the contribution by Anderson et a1(30) in 1962. They considered the
deformation rate of beams composedbof a material where the stress index n
was itself some function of stress and suggested that a sufficiently
accurate estimation of deformation rate could be obtained from a creep test
at a 'represenfative stress'. In other words, providing the creep test
data was obtained at a suitable stress level the variation of n with o
was not important in practice.

Marriott and Leckie(sl) defined points in a structure where the stresses
are almost invarient with time as 'skeletal points' and their associated
stresses as"skeletal stresses'. They argued that since the stationary

~ state deformation-rate'in the structure was directly proportional to the
stationary creep strain rate at any point in the structure, an acceptable
estimate of the creeb deformation would be obtainable from creep data
derived‘from.a creep test at the 'skeletal stress'. This idea is simiiar
to that of Anderson et al since in both cases the 'skeletal stress' and
.'representafive stress' were obtained by inspection. For the structures
considered by Marriott and Leckie deformation due to redistribution of
stress was small, and the appro*imate deformation given by addihg the
stationary state deformation, obtained from a test at the 'skeletal stress',
to the initial elastic deformation.

Mackenzie(42) has devised a more systematic method of extracting an

appropriate 'reference stress' from consideration of the normalised
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deformation rate in the stationary state. He considered 5 selection

of standard structures and assuming a Norton type creep law, compared the
deformation rate for some value of n to the corresponding rate for
n=1. He was then able to find a 'reference stress' such that the
normalised deformation rate was equal to unity. For these structures it
was found that a suitable choice of reference stress allowed the stationary
state deformation rate of a structure to be predicted within approximately
10 per cent using only the data from a single tensile test. Mackenzie
gives a physical interfretation to his method by noting that the position
of the 'skeletal point' coincides‘with the position at which the stress in
the stationary state is independent of the value of n and therefore

the reference stress technique should give acceptable estimations of
deformation for structures composed of materials where n is stress dep-
endent. This is consistent with the observations of Calladine and

Drucker(ss)

_mentiéned previously in Chapter 2.

A serious limitation to Mackenzie's technique is that it is limited
to structures for which analytical expressions for stationary state
deformatioﬁ rates .are available whereas for many structures of practical
interest such solutiohs are unobtainable. Fortunately, as will be shown
later, the extensioﬁ of this technique to include some of the fheorems of
plasticity is reasoﬁably straightforward.

'Leckie(44)

improved the method of obtaining the reference stress
suggested by Mackenzie and showed that by equating the initial elastic
strain energy and the energy dissipated in the stationary state for the
particuiar structure with the corresponding quantities for a uniaxial
tensile specimen the value of the reference stress can be determined.
This method can be illustrated by considering the claséic example of a

beam of rectangular section under flexure. The moment-curvature

expression is given by
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. n .
K= K + (2nn+1) 2n+1 (;—n—c;];T;l—) Mn fz(t) (4-3)

assuming that terms due to stress redistribution can be neglected.
Leckie has shown that it is convenient to express the above results

in terms of a single uniaxial specimen of volume Ybdl and subjected to a

oR i= B@; , | (4.4)

stress

then the corresponding strain is
e = ¢M + k(j@%)n.f(t) (4.5)
R ~ Ebd3 bd :
An energy balance per unit length of beam is given by
¢bd0ReR = Mk (4.6)

Equating the elastic and creep energy components of the structure,

and uniaxial specimen yields

¢ - [2n+1]"/(’”1) 2 =12 @.7)
= 7, ¥ = 7 .
n 3t/ (n-1) f |
From these results the expression for k becomes
- 12 .
K = @a- €R . (4.8)

The curvature « ° is obtained from the above expression by finding
the strain €R associated with the stress Op * For a given value of n ,
¢ can be calculated from equation (4.7) and the corresponding tensile test
conducted at the stress given by equation (4.4). The value of ¢ for the
beam is almost independent of n  and an exact knowledge of n is not
required if ¢ is assumed to be 4.1 . |

A method for deriving reference stresses from numerical solutions has

(43)

been devised by Sim and is as follows:

Any creep deflection U can be expressed as
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U= U(kon , dimensions) f5(t) . (4.9)
This expression can be non-dimensionalised by
. — n
U= (ko™ . %}t ) . g(dimensions) . U [(g) ] R (4.10)

where U is a function of loading and linear dimensions, £,(t) is a

time function for the creep curve and g 1is purely a function of dimensions.
n ‘ '

The function ﬁ.[cgg ] is a non-dimensional deflection to be determined

by the numerical analysis.

In general U varies with n and the degree of variation differs
according to o .  When plotted on semi-log paper the variation of U
with n 1is approximately linear and the particular value of o~ which

results in zero slope is the desired reference stress o, since the

R
deflection U will then be insensitive to n . Only two computations
are required to find op - Putting
Op = ¢ o (4.11)
where ¢‘ 'is some ratio to be determined. Substitute from (4.11) to

(4.10) noting that 'ﬁ' is an n-degree homogeneous function 6f o}

_ o] _ 4n=f o :
- ﬁ[(;_; ] - ¢ U[(o_) ] , (4.12)
A R
By computing ﬁtc/d’)n ‘using an arbitrary choice of o', Sim chose

two values of n , for example n; and np , and equated

- - m - n2
Ul(o/op) 1 =Tllo/op) 1 . - (4.13)

This equality gives

. M2 . ny 1/(nz-ny)
¢ = {U[(o/c ) 1/U[(c/0) 1} . (4.14)

Sim found that reference stresses that are least sensitive to n can

be calculated by equating non-dimensional deflections for two n-values



jother than n =1 . The range of insensitivity of referencé stresses
calculated in this mahner was found to differ from one structure to
another but over the range of n ,_reference values obtained between n
equals 3 to 9 were reasonably constant.

In the techniques described references stresses were derived from a
constitutive law of the n power form. The main advantage of this
form is its relatife simplicity in analytical treatment. Since the
reference parameters have appeared to be only 'weakly' dependent on n ,
this behaviour can be taken as an indication of the reference stress
being independent of the creep law. The desirability of showing this

analytically was pointed out by Marriott(ss).

(58) , who applied the

Some work on this has been done by Fairbairn
reference stress obtained from Norton's law to thick-walled tubes in
bending, where the tubes were made of materials following different creep
laws. For both circular and elliptical section tubes it was shown that
a reference stress derived from Norton's law used in conjunction with
either exponential or hyperbolic sine forms of creep law produced estimates
of bending ﬁoments.to within 2 per cent of analytically derived values.

(59)

These results are similar to those obtained by Johnsson who derived a
reference stress and scaling factor for a general two-parameter creep law.
He demonstratéd thaf for a beam under flexure and a two-bar structure the
reférehce parameters derived from Norton's law are also applicable for-a

(20) (22) type creep law and that the resulting errors in

Prandtl or Dorn
deformation rate are within a range fully acceptable from a design point of
view. The use of a Norton type creep law to provide a theoretical
simplification to more comple# creep laws would seem well justified.

The extension of the above techniques to identify reference temperatures

for conditions where temperature gradients are present has received little

attention. To the author's knowledge, the only attempt to rectify this has
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been made by Sim(60). He has extended his anaiytical procedhre to provide
g means of identifying reference temperatures for thick cylinders and
spheres subjected to internal pressures and a negative temperature gradient
in the radial direction. The only differencg in the analysis is caused
by the introduction of an exponential temperature term otherwise the
procedure remains unaltered. By definition the reference temperatures and
reference stresses are located at the same dimensionless radius within the
thickness of the wall. . No real cbnclusions may be deduced from this
technique since there exists no experimental verification, or application

to other structures.

4.2.2, Approximate Estimates of Reference Stresses.

A drawback of the reference stress technique is the effort required
to calculate reference values in anything but trivial examples. If an
order of magnitude check is only required, even an approximation to the
reference stress is as useful as the exact value. Several workers,
notably Leckie, Ponter and Sim have shown in their numerous publications
that results from the theorems of perfect plasticity can prove useful in
determining reference values. It has been proposed that for a structure
éubjected to an applied load P , a reference stress may be given by the
expreséion .

Op = P/PL gy ’ _ . (4.15)

where PL is the ultimate load for the structure and 5; is the yield
stress.  Sim has shown that the correlation between the reference values
obtained using equation (4.15) and those using finite n creep solutions
is good for a spinﬁing disc,and a cylinder and sphere under internal

pressure. By utilising the results of perfect plasticity, reference

stresses can be determined with reasonable accuracy. However, a knowledge
\
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of GR

structural deformation. As a minimum the dimensionless parameter used

[
by Sim to relate the structural and uniaxial deformation requires to be

is in itself insufficient to allow predictions to be made of

known and cannot be determined using only the plasticity theorems.

The work conducted by Leckie and Ponter hés shown thaf equation (4.15)
may be used in conjunction with the results of a steady-state creep calcula-
tion to give an upper bound on structural behéviour.

In addifion, by its form, equation (4.15) implies that the results
of a short-time (elastic-plastic) test on a structure may be used to predict
the long time (elastic-plastic-creep) behaviour of the structure. Such
an approach is particularly attractive for structures which because of their
asymmetry or other factors are not amenable to analysis. By conducting a
short-time test on such a structure and comparing it to the results of a
tensile test conducted at a comparable strain rate on a specimen of the
structural material the parameters necessary for use in a reference stress
approach can be evaluated. Knowing these parameters, ‘the creep deforma-
tion of the sfructure may be predicted if the creep strain-time response
associated with th¢ reference stress is‘known.

Some experimental results that-support the above approach'have been

(57) (49) (45)

reported by Sim and Penny s Leckie and Ponter and Williams and

good agreement between experimental and theoretical predictions found.

4.3. Analyses of Some Simple Structures

4.3.1. Reference Values for Steady Loading.

It has been shown in the'precéding sections the manner in which
reference stresses have been obtained for structures under isothermal
conditions. In the following examples the reference stress approach

(42)

suggested by Mackenzie will be extended to define reference tempera-

“tures.  The structures considered are; the classic example of a beam under
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flexure, a propped cantilever beam and the creep bending of straight tubes

which has recently aroused interest(ss).

(a) Beam under Flexure.

The stationary curvature rate-moment relationship for the flexure

problem may be written in the form

n
g = k| 2M I (4.16)
" d |bdZ B
where IB is given by
1 ' - R
1/n n
IB = |12 (¢+x) .x.exp{AH/nRe (x) }dx : (4.17)
: . .
In the isothermal case IB reduces to
n .
1, = 2|22/ exp(aH/R.) (4.18)
B n i '
where Bi is the constant temperature.
The moment—;urvature rate relationship (4.16) may be rewritten
IB
K = TT'é(G)’ ) (4.19)

by direct use of.the uniaxial creép strain rate equation with o = (2M/bd2).
Thus the curvature faté may be calculated from the strain rate derived from
a uniaxial test conducted at a stress o providing the stress index n is
known. A referen;e stress that is independent of n requires that the

.

function IB be also independent. Such a reference stress may be

evaluated by introducing a multiplier A so that equation (4.16) becomes

, S _
. k 2M n
K = a1 [W:I ( IB) . (4.20)
A value of A may now be found such that (x“IB) remains insensitive

to n . The exact value of A depends on the procedure adopted and in

the following calculation values of (AnIB) are equated for n = 3 and
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n =11 . This gives a value of A = 0.498 and a variation of (AnIB)
with n shown in Table 4.1.

If.')‘nIB = 3.16 is selected, the mid-surface curvature rate is given

by

. 3.16 . ' | o
K = =9— e(oR), (4.21)

where é(oR) is the uniaxial creep strain rate corresponding to the

reference stress Op = 4,01 M/bd?.
This reference stress lies close to the upper bound reference stress
of Ponter and Leckie(35’49),
0’=—M—.g :ﬂ,
R ML y bd?

where ML denotes the limit load corresponding to a homogeneous yield

stress ©
4
The maximum error incurred in selection of either the maximum or minimum

value of A"I_ is of the order of one per cent. Thus for a beam of given

B

dimensions, b and d , and subjected to end moments M , the deformation

may be related to the strain rate of a uniaxial test at a stress o_ by

R

equation (4.21) and the value of Kk obtained will be within one per cent of

the actual curvature rate whatever the value of n within the range
3<n<1l

Tb_evaluate the problem when non-isothermal conditions are present it is

required that in the limit the non-isothermal solutions reduce to the iso-

thermal case such that the reference temperature obtained equals the iso-

“thermal value, 91 . ' The method used to determine the reference values

assumes a knowledge of the isothermal reference stress.
Under steady state thermal conditions the isothermal reference stress

is adopted and
n I

‘= 3.16 % [4};32"‘] L.

3.16(4.01)

| (4.22)
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{
ihis ensures that under isothermal conditions
I

B
3.16(4.01)"

exp(-2H/RO,) . | (4.23)

A‘reference temperature’ 6 may be defined by

| N |
§ = AH/R zn[é;léié:gll—i (4.24)
B

which is consistent with the isothermal case. However it is found that

6 varies as a function of n and clearly this definition of a reference
ternperokuce is deficient. A further multiplier u is introduced which makes

8 equal for n=3 and n =11 and

& =.§i%9 K(uop)™ exp(-aH/R8 ) . (4.25)

where BR is a reference temperature independent of n and defined by

n
6y = AH/R zn[3°16(§'°1“) ] (4.26)
B
The curvature rate expression
n
., _ 3.16 ,14.01uM
k= =9 k[ bdz] exp(—AH/ReR) (4.27)
may be re-expressed as
3.16 . .
= =3~ &(uop,0p) (4.28)

where é(ucR,eR) is the uniaxial creep strain rate corresponding to a

uniaxial test at a modified isothermal reference stress, HOp and a uniform

reference temperature .eR .
The effectiveness of the above procedure may be judged by evaluating

values of eR(ez,el) at different values of n since by the procedure

adopted it is only exact for n =3 and n =11 .

| The results in Table 4.2 are for a‘linear temperature gradient through

the beam depth and a lower surface temperature 6; = 300°K . The creep

activation energy is taken as 113 KJ/mole .
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are remarkably insensitive to n .
|

! R

As values of eR are higher for intermediate values of n a ‘'conservative'

estimate of & may be obtained by selection of the maximum value as the

It is seen that the values of 6

reference temperature.

R

that the variation remains close to linear over a range of 62 . This

In Fig.4.1 the variation of 6, with 6, is shown and it can be seen

implies that the position of the reference temperature remains fixed and

indepeﬂ&ént of é2 . It méy be.noted that this position is not close to
‘any of thé points where the stress profiles approach each other.

In Fig.4.2 the variation of wuag with 6, is shown. The value of
¥ remains reasonably close to unity for quite 1arge'temperature differ-

ences. For example u = 0.958 for (0,-6;) = 120°K .

(b) Tube under Flexure.

The stationary state curvature rate for a straight tube of circular

section subjected to end moments M is given by

n

. k M i
¢l - #:29
o s)
where 2ro is the external diameter,
z=u/2 1 2h+1 n+l -n
IT = [ J J T (sin z) exp[AH/nRe(rﬂdzdr] , (4.30)
Z=0 ri/rO ' :
T is a dimensionless radius and T; is the internal radius. The

temperature at any point in the surface of the tube is defined by 6(;5.
A full analysis is given in section 10.3.
For isothermal conditions a reference stress may be obtained by a

procedure similar to that for the beam problem and the curvature rate given

by
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3 R 4)\1 :

The variation of A and A'I, with r./r, is shown in Figs.4.3

and 4.4. For any given value of ri/r0 the maximum difference in

AnIT is less than one per cent. Some typical values are shown in Table

4.3,

Figs. 4.3 and 4.4 therefbre-provide simple design charts for célcula—
ting the éurvature rate for any thickness of tube using the appropriate
tensile data;

Spence has examined the creep bending of curved pipes and used

energy methods together with thin shell theory, tb obtain lower(63) and

6 .
upper (64) bounds on curvature rates. He obtained a reference stress

.oké given by

_ M _ -1
oRs = 1.019 T3 (1 riz/ro?) 1+ ri/ro) . (4.32)

In the Fig.4.5 reference values previously obtained are replotted as

...
log( %103 against "ri/ro for convenience. The broken line represents

Spence's solution. For values of r;/r > 0.5 the solutions are equivalent
but at lower values they diverge and Spence's solution forms an upper bound.

. L - - 3 ’ = 3
For example at ri/r0 0.1, o 0.75 M/r’ and o 0.95 M/r° .

R R
S

An upper bound on the reference stress derived from the rigid perfectly

plastic solution is given by

u | M Tyt
op =o.75;;-3 (1 -;o-) (4.33)

and provides a solution that closely approximates the exact solution to

within 0.5 per cent for all values of ri/rO .

In the non-isothermal case with a temperature gradient through the

tube the moment-curvature rate may be written
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n .
. _ }_(E_ uM .
K = p [Zi;jﬂ exp(-AH/ReR) (4.34)
"o o :
where T represents the isothermal value of AnIT for a given ri/r0 and
‘ C n .~: .
6_ = AH/R &n [—Ji—] . (4.35)
R 10
T -
such that 6, 1is virtually independent of n for 3 < n g 11

R

For steady heat flow the temperature at radius T is given by
log(r.ro/ri)

0(r) = 6, + 108(1’0/1'13

{01-92} (4.;6)

where 62 and>61 are internal and external temperatures respectively.
Consider, as an example, a tube with ri/r8=? 0.5, 8, = 350°K and
6; = 300°K .
The values of A and L are obtained from Figs. 4.3 and 4.4 at
Ari/ro = 0.5 ,'(i.e. A =0.29, £ = 1.66) , and the isothermal reference

stress is given by

y

OR = 0.86 }-—3 (4.37)
0

. 1.66 , :

and : R = — e(cR). | (4.38)

0
Solution of the problem gives u = 0.94 and the variation of GR
with n shown in Table 4.4. If it is assumed that 6, = 311.2°K , the

curvature rate derived from equation 4.34 and the curvature rate derived from

. T L ~
K = ;;- e(ucR,eR), (4.39)
differ by at most 4 per cent.

In Figs. 4.6 and 4.7 the variation of u and 6, with ri/ro are

R
shown for a range of 6,. The use of these figures together with the iso-=
thermal charts provide the constants to enable the curvature rate to be

defined in terms of the reference values for the necessary restricted range

of parameters.
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In Fig.4.8 the position of the reference femperature is plotted
against 6, for a range of ri/ro . It is seen that whereas inASim's
procedure the reference temperature remains at a fixed positién regardless
of the magnitude of the temperature gradient, in this method the position

varies as some function of 65 .

(c) Propped Cantilever Beam.

The creep energy dissipation rate for a propped cantilever beam

subjected to a point load at the centre of span can be calculated from
g A

b = Mkdx ' ' (4.40)

o
where x is the distance along the beam and

£ = k M" exp(-AH/RO(x)) (4.41)

The single redundancy is taken as the prop reaction at the simply
supported end and the problem solved for the deflection rate 6 ﬁnder the
applied load by numerical integration. This is fully described in
section 10.3.

In the isothermal case computation gives
U= 0.0468 22 k(M) . ' - (4.42)

where the reference moment MR is

M, = PL/6.757 . . (4.43)
Equation (4.43) is exact for n =3 and 11 , and is approximately

10 per cent conservative on deflection rate for n = 7 . | |
The prdpped cantilever is of rectangular section, width b and depth

d , and the above equation can thus be expressed in terms of a reference

stress by direct use of
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Then

- 22,
U =0.148 7 é(op) , (4.44)

where

op = 0.593 P2/bd2.

In the problem with a temperature gradient along the propped cantilever,

Fig.3.3, reference values may be derived using the same procedure as in the

problems already discussed and a deflection rate obtained in the form

U = 0.0468 kzZ(uMR)exp(-AH/ReR) ,  (4.45)
where
0.0468,"
0. = AH/R zn[—J———-ﬂ—] (4.46)
R Toc .

The reference stress eR reduces to ei for isothermal conditions.

The displacement rate is given in terms of a uniaxial creep strain rate by

y 22, :
U = 0.148 3 e(uoR,eR). | (4.47)

providing there is no temperature gradient through the section.

In Table 4.5 the computed results for a propped cantilever with a
negative temperature gradient along the beam length, as iﬂ Chapter 3, are
given. The temperature at the simply supported end is constant at
8; = 300°K and the maximum-tempefature 8, acts at the encastré end.

These values provide defqrmatidn rates within 15 per cent of the
exact solution and therefore it would appear that this procedure used to
determine the réference quantities is less satisfactory for this statically

indeterminate beam problem.
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4.3.2. Approximate Reference Values.

It has been shown that use of a rigid perfectly plastic solution
provides reasonably accurate predicfions of stationary state deformation
rates for structures under isothermal conditions. However, under non-
isothermal conditions this solution provides a highly conservative bound
and a closer approximation may be oﬁtained if the yield stress is assumed
to be a function 6f temperature. The function adopted is the intermediate

plastic solution previously discussed in Chapter 3,
o CAH (1 1y
g = 0'0 exp ’ﬁ' (—e- - '6;') . . (4.48)

o_ .
y
As in the previous section, reference values will be calculated using

Under isothermal conditions o = oo >

the procedure previously adopted for the beam and propped cantilever

examples.

(a) Beam under Flexure.

An upper bound on the stationary state curvature rate obtained from a

" stress function of the form (4.48) is given by

n

G 1 (4.49)

ol

K <

where YI; is derived from conditions of compatibility and equilibrium -

(section 10.3).

In the isothermal case
+1
_exp(-AH/Rei) (4.50)

and

. 4 . u . '
£ < a—e(oR,ei) : 7 (4.51)
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I

with
0'l.l__4 =£-6;
R ~ bd? M Y :

In this example the multiplier A introduced is unity since f; is

independent of n .

To evaluate the problem when non-isothermal conditions are present it
is required as in the exact analysié, that in the limit the non-isothermal
sblutions should reduce to the isothermal case such that the reference values
obtained are equivalent to the isothermal values. As in the exact solution

a further multiplier u 1is introduced so that

. 4 u _u _
K < E-e(uoR ,eR ) » . (4.52)
where :
u 4" ,
6~ = AH/R &n [—} . (4.53)
R I u
B .
The variation of 6. with n is tabulated in Table 4.6 for a range

R

of values of 05, and as in the exact solution the percentage variation is
small. |

In Table 4.7 the reference values obtained from the above intermediate
plastic solution and those of the exact solution (section 4.3) are tabulated.
It is seen that the intermediate plastic solution provides a good approxima-

tion to the exact reference values.

(b) Propped Cantilever Beam.

The structure is jidentical to that considered in section 4.3.1. The

upper bound inequality (3.9) achieves the form

Us ke 0" T, | - (4.54)

where -I;C is obtained from the creep energy dissipation rate assuming a

yield moment of the form
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M= M exp[-ﬁ%— (% - %)} . - (4.55)

In the isothermal case the procedure yields A = 6.75 and a varia-

tion of AnI;C» given in Table 4.8. Inequality (4.54) may be rewritten
_ 2 s emt :
U < 0.047 ¢ K(MR,ei) (4.56)

. -_ Pg
where MR T3

to a moment MR and isothermal temperature ei

~and k(MR,ei) is- the creep curvature rate corresponding

For a temperature gradient aiong the length of the propped cantilever

the central deflection rate is given by

u

U < 0.047 22 k(uM;,eR ) (4.57)

and the variation of u and or with 6, given in Table 4.9.

This table can be compared directly with Table 4.5 where it is seen
that the higher reference temperature obtained in the approximate analysis
yields a lower u thereby tending to equalise the creep rates towards

those of the exact solution. For 62 = 420°K the difference between the

two solutions is approximately 30 per cent.

4.4, Discussion.

The calculations presented show that reference stresses and reference
temperétures can be found fbr‘structures subjected to temperature gradients.
The reference values are however slightly less accurate than those for iso-
"thermal conditions. The method adopted in both the 'exact'.and approximate
solutions require calculation of the isothermal reference stress op
This is then modified by a quantity u which provides a reduction in OR

such that at 6, the normalised creep strains are equal for n = 3 and

R

n =11 . It is found that the reference temperature is always closer to

the minimum temperature and therefore if design were based on the isothermal
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feference stress and the maximum temperature, the resulting deformation
rate would be highly conservative. A knowledge of the deform#tion in
terms of the reference values clearly provides a considerable advantage
over isothgfmal'solutions. |
The suggested technique appears to require an exact knowledge of the
temperature dependence of creep through the activation energy AH , and
therefore the reference temperatures obtained are ndt reference quantities
as defined in the true original sense. Numerous calculations were per-
formed with different values of AH and 6; and it was found that in the
examplés given, a variation of 30 per cent in AH produced_a variation

in 6, of less than 4 per cent. It would appear that 6, is only

R

slightly dependent on AH and 6p can therefore be considered a 'true'

R

reference temperature.

The potentially most useful applicatién of the reference stress/
temperature approach is for structures which are subjected to variable
loads and temperatures. The advantage of a reference stress/temperature
approach in such cases is that the predictions of the creep behaviour of a
structure may be based directly on cfeep strain-time data obtained from a
simple test conducted on a specimen of the material loaded by the reference
stress, uoR(t) , and the refefence temperature eR(t). Implicit in such
"an approach is the recognition that the main uncertainty about predicting
the creep behaviour of structures under variable loading is the material
creep behaviour. By basing the predictions of the structure's behaviour
directly on test data the uncertainties inﬁolved in trying to analytically
define the material creep behaviour are avoided. The results presented
in this chapter may be used for variable load/temperature problems providing

ratchetting effects are either avoided or taken into account.



n AnIB
3-13.144
5 |3.156
7 13.163
9 |3.157
11{3.144
Table 4.1
Variation of AnIB with n for a beam under flexure
n eR (300) eR (360) eR (420) SR (480)
3 300.0 328.6 351.6 370.9
5 300.0 328.7 352.4 371.8
7 300.0 328.7 352.8 372.4
9 300.0 328.6 352.2 371.6
11 | 300.0 328.6 351.6 370.9
Table 4.2

Variation of reference temperature with n for a beam with 6,

300°K

Variation of anT with n for a tube of ratio of radii ri/fo

n ri/r0=0.1 ri/rOfO.S ri/ro=0.9
31 1.792 1.650 1.382
5 1.807 1.660 1.388
17 1.807 1.660 1.388
9 1.801 1.656 1.386
11 1.792 1.650 1.382
Table 4.3
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eR K
310.9
311.6
311.6
311.3
310.9

=]

——
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Table 4.4

Variation of GR with n for the tube with 6,=350°K and ri/ro=0.5

8,°K{ wu | 6,°K

300| 1.00| 300
360 0.98| 337.1
420 0.97| 375.3
480 0.95 | 417.2

Table 4.5

Variation of p and eR with 6, for the propped cantilever

n {0,=300{ 6,=360| 6,=420| 68,=480

3 300 330.3 355.0 373.5

5 300 329.9( 356,0| 377.3

7 | 300 329.9 355.7 376.5

9 300 . 330.1 355.3 374.9

11 | 300 330.3| 355.0| 373.5
Table 4.6

u

R With n for the beam under flexure

Variation of 6




Exact Soln. Intermediate
6, |6, Soln.
uo_bd? po_bd?
R 0 R 0
M R M R
300300 4.0 300 4.0 300
3601300, 4.0 328.6 4.0 330.3
420|300 3.8 351.6 3.9 356.0
480 (300 3.6 370.9 3.7 377.3
Table 4.7

Comparison of exact and approximate reference values

0.047
0.043
0.042
0.044
0.047

O gUVTw

—
[

Table 4.8

Variation of A" ng_ with n for the propped cantilever

. under isothermal conditions

u
A 92 u eR
300 1 300

360}.98/338.4
420(.93}379.2
4801.88/424.1

Table 4.9

Variation of u and 6&1 with 65 for the propped cantilever
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Chapter 5

Some Results of Testing a Simple Structure

Subjected to a Temperature Gradient and Steady Loads

5.1. Introduction. ,

To verify the use of the reference stress, reference temperature
technique described in Chapter 4, a series of experiments were conducted
on propped cantilever beams subjected to constant loads and a temperature
gradient.  The results are compared with predictions based on uniaxial
data obtained at the reference temperatﬁre.

(

Sim and Penny 57)have reported some results on testing pure aluminium
beams and circular plates subjected to cbnstant loading during creep.
The room temperature test results were compared with predictions based on
a reference stress approach and showed close agreement. This is not
surprising since the tests were conducted at load levels where the applied
loads P < n/(n+1).PL and consequently the influence of plastic strains
on the overall déformation was small. ~ This can be illustrated from the
results pf the tesfs on beams under flexure where the maximum outer fibre
stress was of thé ordér of 15000'1b/in2 . Since the yield stress of
fhe material is approximately 16000 1b/in2 the ratio of the maximum
applied moment to'fhe moment to cause plastic collapse M/ML = 0,63 and
fherefore, as n=4 for this‘ﬁaterial at room temperature, the contribution
of plastic strains'to the overall deformation is likely to be small for
MM, < 0.8 . |

| Leckie and Ponter(4%) and Williams(45) have reported tests on pure
aluminium and aluminium alloy RR58 portal frames under both steady and
variable loads. Reference stresse:czzrived from a knowledge of the limit

state solution and uniaxial tests at the appropriate stress levels were

performed. It was shown that the analytically predicted deformation
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TYates were in close agreement with those gained experimentally even when
loads on the structure were > n/(n+l).PL and large plastic strains were
present.

The above tests were all conducted under isothermal conditions and
to the author's knowledge there appears to have been no attempts to perform
similar experiments on structures where temperature gradients are present.

Some experiments on this will now be described.

5.2, Test Rig.

The test rig, Figure 5.1, was conséructed of welded steel channel to
form a rigid frame. This was mounted on rubber pads to both eliminate
any laboratory vibrations and to allow level adjustment. The frame was
designed to accommodate beams. 12 in . long, 0.25 in . thick by 0.37S.in“.
deep which were the maximum size that could be machined from the material
available.

The beam was simply supported at one end by a knife-edge resting on
roller bearings which in turn rested on a flat ground surface of a thick
supporting plate. This supporting plate was connected to the main frame
by adjustable legs to allow fine level adjustment.

The encastre end conditionvwas provided by a split cylindrical stain-
less steel clamp rigidly bolted to the vertical surface of the main frame.
Bolts passing vertically through the clamp held the beam specimen rigid in
the mounting. A furnace consisting of two tubular heating elements wound
on the clamp provided specimen heating and in order to minimise heat loss
the complete unit was encased in an asbestos insulating jacket.

The vertical loads at the centre of the beam length were applied by
a weight hanger system, Dead weights were lowered onto a loading stirrup
by a screw jack driven by a constant speed electric motor. The weights

were supported by a hollow cylinder attached to the top of the screw jack.



The inside of the cylinder was such that the load stirrup and disk could
haﬂg inside it with the weights supported above the disk. Therefofe when
the cylinder was lowered, the weights were left on the load disk. The
load could be removed in the same way. This system gave a constant and
repeatable rate of loading. The furnace temperature was controlled by a
Eurotherm Temperature Controller Unit using a thermocouple as a sensor.
The Chromel/Alumel thermocouple was 'peened' into the surface of the beam
at the clamped support. Using this system temperature was maintained to
within i_%°C of the set value. Additional thermocouples placed at
discrete points along the beam allowed continuous monitoring of the beam
temperature.

Measurements were made of the central vertical deflection and the
vertical deflection at the knife edge by L.V.D.T's (Linear Variable Differ-

ential Transformers) with a resolution of 5 x 10_5 in-.

5.3. Description of Tests.

5.3.1. SBecimens.

The beam specimens were machined from commercially pure aluminium sheet
in half-hard condition with the direction of rolling along the longitudinal
axis. The choice of material has been discussed previously and the uniaxial

tensile test results are given in Chapter 10 section 10.2.

5.3.2, Test Temperature.

The beam was held at.a constant temperature of 150°C at the encastre
end with a temperature distribution of an exponéntial form, Figure 5.2
occurring along the beam length. Variation of temperature with time was
better than i_%°C and the temperature difference across any section was

negligible.
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The criteria used in evaluating a suitable maximum temperature were
that for the form of temperature gradient obtained, the value of the
temperature at any point along the beam length was sufficiently high to
ensure that a true steady state creep rate was achieved since at room
temperature the material exhibits logarithmic creep but also that the
temperature was not so high that the problems usually associated with high
temperéture creep testing occurred. Also within the range 100 - 150°C
the creep activation energy for pure aluminium is reasonably constant

although as was shown earlier the reference values are reasonably in- -

sensitive to AH .

5.3,3, Limit Load Tests.

Limit load tests were conducted after allowing the beams to 'soak'
for approximately twenty-four hours at temperature for steady state
conditions to be attained. The 1imit load was determined by applying a
monotonically increasing load P to the weight hanger. The central
deflection and the deflection at the knife edge were measured for each
increment of load. » The whole test was.only of a few minutes duration

ensuring that the beam behaviour was sensibly time—independent.'

A series of'six limit load tests were performed. A typical loadl
central_deflection_purve'is shown in Figure 5.3.from which it is seen that
the 1limit load, PL,’ is approximately 73 1lb-, The vertical deflection
at the knife edge was 10"3 iﬁi. and this 'settlement' was not considered

_further.

5.3.4, Creep Tests.

A number of creep tests at constant load were performed at a sequence
of values of P/PL . Each beam,as in the limit load tests, was given a
twenty-four hour temperature 'soak' before the commencement of a test. Test

duration was typically - 800 hours.



The central &eflection-time curve shown iﬁ Figure 5.4 was obtained
from a test at P/PL = 0.7. Normally the region of constant creép rate-
was achieved approximately 200 hours after the commencement of the test
and the average displacement rates measured within the interval 350 -
550 hours. The résulting average displacement rates-load curve is_sh§Wn
plotted on log-log axes in Figure 5.5 as the unbroken line, The broken
line éurve in the above figure was obtained from a limited number of room
temperature tests conducted during the test rig development stage and is

shown for comparison.

5.4. Reference Values.

Since the temperature gradient along the beam length in the experi-
ments does not comply with the.linear gradient assumed in the example of
Chapter 4 relevant calculations were performed to evaluate the reference
values.

The reference temperature obtained from a stationary state analysis
for the experimental temperature gradient and assuming AH = 113 kJ/mole
is 100°C . A twenty-five per variation in AH either side of this
value changed the reference témperature by +.2 per cent,

By a similar analysis to that given for the theoretical example the

central deflection rate U may be expressed in terms of a uniaxial strain

rate by
©0.14822
U=—="73— ¢log,0)
where % =9 in. , d'= 0,375 in., UR\srelated to the appiied load ‘ey
Pg
OR — 0.600 W‘ >

and b = 0.25 in..
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Similarly an upper bound on deflection rate is obtained using the

intermediate plastic solution and is given by

u

'u_ 0.19122 . u
U = —q s(oR ,SR )
u_ PQ, u_ o
where OR = 0.64 baz and OR = 101°C,

5.5. Discussion of the Results.

The displacement rates obtained from the reference values and the
uniaxial data (section 10.2) are virtually indistinguishable for the above
two solutions so no attempt to discuss the results in individual terms
will be made.

The results obtained from the reference approach are shown by crosses
on Fig.5.5 for both the room temperature and 150°C displacement rate-load
curves. Both these curves are remarkedly free from scatter with the
exception of one result which was discarded. The transition of the curves
from a virtual straight line at lower loads to a more rapidly rising curve
is seen to occur at P = n/(n+1)PL as predicted by Leckie and Ponter.

The agreement between the experimental results and the analytical predictions
is good for this simple structure but whether a similar result‘would be
achieved for more complex structures remains to be investigated. From
comparison of the isothermal and non-isothermal curves it would appear that
the reference stress, reference temperature approach is capable of providing
good predictions on stationary state displacement rates to a similar degree

of accuracy as for isothermal conditions.
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ChaEter 6

Creep of Structures Subjected to Cyclic Temperatures

6.1. Introduction.

Many structural components subjected to both thermal and mechanical
loading in addition usually suffer time-independent deformations which
may or may not be excessive. Howéver the interaction between the non-
linear creep response of the material and the presence of varying
temperature fields is a problem the analysis of which remains amongst
the more intractable problems of structural mechanics.

In principle methods of calculation are available which can be used
to determine stress and strain histories in time;dependent structures
subjected to variable loading when isothermal conditions are present.
Unfortunately the lack of realistic constitutive equations for time-
varying stress limit these methods to problems of steady loading. It
has been shown that for structures subjected to steady loads and temper-
ature distriﬁutions the reference stress/temperature concept can be
particularly useful in predicting structural behaviour. This concept may
also be used to estimate deformation for proportional loading providing
stress redistribution effects are small. A relevant theoretical study

(37) who has obtained bounds on the creep

has béen reported'by Ponter
energy dissipation when the structure is composed of time-hardening
material. The bounds are extremely useful in determining whether stress
fedistribution effects are significant. If the bounds show that stress
redistribution effects are small then the use of the reference stress
technique is justified, but when stress redistribution effects become
promineﬁt then another procedure is necessary for a more general class of

materials. Williams(45) has proposed a method of solution for estimating

creep deformation due to proportional cyclic loading. The method relies



oﬁ the use of an equivalent steady stresg obtained from a cyclic stress
€reep test and the creep law for timec-varying stress is thereforeAnot
required.

Solutions to the problem when both variable load and temperature
histories are present is virtually impossible and it is quite possible
that in the event of realistic constitutive relationships becoming
availéble it would not be easy to use in computer calculafions. Many
situations involving variable loading are periodic and as such afford some
simplification of the problem. . Calculations have been performed for a
thick tube subjected to cyclic historiesAof pressure and temperature, by
Frederick, Chubb and Bromley(65). The value of such calculations depends
upon the adequacy of the constitutive equation for time-varying stress.

Some theoretical results, recently derived by Ponter(66)

, may provide
a more detailed understanding of thermal/creep interaction. He considered
é structure composed of an elastic/time hardening/creeping/plastic material
which was subjected to a history of applied loading, applied displacement
and inelastic strain. A number of theoretical results were derived
which included bounds on the energy dissipated by the material in the forma-
tion of inelastic (creep and plastic) strains for load levels below the
plastic shake-down limit. The analysis indicated that under cyclic
histories of load the bounds provided two extreme modes of behaviour
involving the creep energy dissipation associated with two equilibrium
‘historiesof stress. The bounding solutions are relatively simple to
compute and are such that the time integration of the material behaviour is
effectively uncoupled from the solution of the spatial continuum problem.
Examples of the application of these bounds to some simple structures and .
comparisons with experiments are discussed in (2,49).

The two equilib?ium histories of stress correspond to the actual behav-
iour of the structure when the cycle time is considered to be very long or

very short compared with a characteristic time of the material at some mean



stress level. These two stress distributions give the asymétotic stress
histories and provide the corresponding average displacement rates of the
- structure. The bounds will be discussed in more detail in section 6.3
but it may be mentioned iﬁ passing that consideration of time scales

(45,51) indicate that cycle times

involved in many practical creep problems
are generally very short compared with characteristic material times and

the upper bound solution is likely to approximate the true state of affairs.
Therefore the two stress histories given by this theory and the corres-
ponding displacements they predict are likely to provide a strong indication
of the behaviour of the structure for finite cycle times and indicate the
relative importance of the various phenomena involved.

In the following section stress redistribution due to cyclic loading
will be briefiy discussed followed by a section describing the energy
dissipation bounds in detail. It will then be shown that the pertinent
phenomenon which occurs due to variable cyclic temperature may be exhibited
by computing bounding solutions to two structural problems. These will be
discussed under specific load and temperature histories that illustrate
simple patterns of behaviour. In Chapter 7 these patterns of'behaviour
will be‘incorporated into design charts for the problems under generalised
temperature historigs. The first problem investigated is the parallel
two-bar structure, subjected to constant applied loads and a variable
temperature history. This structure is perhaps the simplest redundaﬁf
structure imaginable and was chosen for the following reasons: in reference
(48) it was argued that this structure was representative in some respects
of manyAsimple structures, severe thermal ratchetting effects are produced
by small temperature changes and since it is a simple structure that
illustrates thermal creep interactions particularly well, has been simulated

experimentally. Details of the experimental test rig and test results are

_given in Chapters 8 and 10.



The second problem is technologically more interesting; the creep of
a plate subjected to constant biaxial loads and surface temperatures that
vary in time. Some aspects of this problem have already been considered

(3)

by Ponter and Leckie .

6.2, Stress Redistribution due to Cyclic Loading.

A steady state of cyclic stress is defined as a state in which the
stresses before and after the application of a loading cycle are the same,
i.e. the repeatéd application of a loading cycle produces no net change in
stress. Frederick and Armstrong(67) demonstrated that a body composed of

elastic-perfectly plastic or elastic-creeping material whose strain rate is

given by v
e, b (!
4y 3 e 7 -
2 =3 oll sij(t) (6.1)
-0 (o]

and subjected to cyclic loading approached a cyclic history of stress as
time increased, although they were unable to characterise this cyclic state

(

more specifically. Martin and Williams 68) discussed the existence of an
extremum principle for structures composed of a time-dependent stable dissi-
pative material subjected to cyclic loading and were able to show that
such a principle provides alternative arguments to éstablish the convergence
- to a unique state of stress. |

(37)

Ponter provides an extension to the theorem of Frederick and

Armstrong to structures composed of materials whose creep law is of the form

&y lo (03"}

ij _ 3 e ' t ,

.2 o 5;5(8) f(;;% (6.2)
o (o] '

provided such a state of stress exists.
It has been shown that under conditions of steady -loading creeping
structures suffer stress redistribution until the stationary state is

attained. The convergence to the cyclic state of stress is analogous to
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{
the stress redistribution process and the cyclic state corresponds directly
to the stationary state under steady loading. Since the stationary state
is associated with the minimum energy dissipation rate it may be assumed
‘that the cyclic state similarly minimises the energy dissipation rate per

(

cycle. However, Martin and Williams 68) have shown that the functional
that is minimised is not the energy dissipation per cycle but a weighted
integral of this quantity, of which they were unable to provide any physical

interpretation.

6.3. Energy Dissipation Bounds for Cyclic Loading.

The theorems described in this section are due to Ponter(1’2’36’37)

and are based on a material model which was described briefly in Chapter 3.
Consider a body with volume V and surfacesf S . The surface is
subjected to applied loads P, (xk,t) over part ST , and applied displace-

ments Ui (xk,t) over the remainder, Su . Within the volume a state of
stress exists.which has the value of Pij(xk’o) at time t =0 . A
known history of'inelastic strains Aiijk,t) are induced by a temperature
4 field e(xk,t) or by some other externally applied agencies.

The strains'induéed in the body are assumed to be sufficiently small
fbr the classical assumptions of infinitesimal continuum mechanics to
, remain'yalid. Tﬁé total strain accumulated at time t , zij(t) , consists

of four components,

z‘ij = eij + Eij + pij + Aij7 (6.3)

where eij’ Eij and pij denote the elastic, creep and plastic strains
respectively.
The elastic component, e.. , is related to the stress by a general

1)
linear relationship,

c

®ij T “ijke kg (6.4)

where Cijkl' denotes the elastic constant tensor which is positive-
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‘definite and fully symmetric.

The creep strains are given by

bn+1(°' )y & ]
. 3 k2 0
“ij © 30 { n+ 1 }—n (6.5)

o
(o)

where § denotes a homogeneous function of degree one in , and éo

%2

denotes a uniaxial creep strain rate corresponding to the uniaxial constant

stress o . The rate of creep energy dissipation, D¢ , is given by
I . ¢n+1( ) Eg‘ (6.6)
= %35%5 T %’ "n '
o

The plastic strains pij are given by a perfectly plastic model

associated with a convex yield function f(ckl) =0,

L 8f . s af
ij - W30, £=0, %3 0., - ©
1) 1)
. Y
Pij = 0 s £<0, S35 %o (6.7)
1]

As in the previous chapters the functional dependence of eo(t) upon
6 assumes the form
¢ (1)

n
o

= k exp{-AH/RO(t)}

The linear elastic stress distribution for the stated problem is

denoted by oij and a related stress history o;j is defined by
* - - .
A (x5t % (xq,t) + Pij (x,) (6.8)

where ng denotes an arbitrary time constant residual stress field in
guilibrium with zero applied loads on ST . The stress history may be
recognised as that associated with the lower bound shakedown theorems.

The energy dissipated due to the formation of inelastic strains within

the time 0 < t < At is given by
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At ' ’.
Sl ' -At - 2. ’ ’
WO J J Uij(zij eij)dth (6.9)
o V

where WoAt denotes a work quantity associated purely with inelastic
strains.
(37) .
Ponter has shown that upper and lower bounds on the quantity

»

WoAt are given by

At At
J I 6c(oi§)dth < w;At < (+1){E(0)-E(At)} + I I 6c(o;j)dth. (6.10)
o V o Vv

The stationarf state creep solution cij is defined as the solution
to the stated problem under the assgmption eij = pij = Aij = 0 and Ui =0
on Su . Therefore Gij provides the purely viscous §olution with rigid
supports (Ui'= 0) . The temperature field enters into the problem only
through the functional dependence of éo upon 6 .
The total complementary elastic strain energy quantity, E(t) , is
defined as
E(t) = 3 Jcijkz(%j ()5 )0, (£)-py )V (6.11)
: ) Ry

where pij(t) =:_cij(t) - ;ij(t) , the instantaneous residual sfress field.
The quantity E(o)  is known if af t = 0 the structure is in the unstressed
state and E(t) may be removed without violating the inequality.

When the structure is subjected to cyclic loads, i.e. Pi’ Ui and 0
are all cyclic with pefiod At , it was shown in (1) that the stress
distribution asymptétes to a cyclic state (provided such a state exists)
with period At and that the total inelastic and elastic work (excluding

the work done by the thermal strain Aij) may be bounded by the creep

s s . . . * s
energy dissipation associated with oij and oij

L [ [, s - _u
W= [ J D (o} ) dVdt < < j j D, (o;)dvdt = W (6.12)

o V oV

wAt
o

where wﬁt denotes the total work done by the applied loads minus the work



done by thermally induced strains

At At . _ ,
Wit o j J o..(L. .-A,.)dvdt = J [ p.U,dsSdt (6.13)
o ~ijt"ij ij ii :

o V o ST ’

As the work depends upon the magnitude of the stress and not the sign,
the difference between the two bounds provides a measure of the average
deviation of the stress from 0;3 , the purely viscous solution.

The stress distributions are subject to the yield conditions(4g),

s n+l *
f(cij) £ 0 and (f{;;—&. oij) < 0, (6.14)

The latter condition implies that the upper bound may be evaluated provided
the applied loads Pi(t) are such that (2513 Pi(t) does not cause
incremental plastic collapse whereas the lower bound maf be computed
provided Pi(t) does not cause instantaneous plastic collapse.

-Ponter, on the computation‘of optimal upper bounds, has shown that the

residual stress field 5;5 which minimized the upper bound W' made the

accumulated creep strain over a cycle
' At
A%, . = | e, .dt ' (6.15)
3 ij ] . ..

Kinematically admissable, and was uniquely defined by this condition. The
optimal stress field E&j so formed provides a displacement field AUilJ
from Aueij which may be interpreted as the asymptotic state which occurs
when the cycle time At is small compared with a characteristic time of
the material (which may be defined as the time to accumulate creep strain
equal to the elastic strain at a mean stress (1,39)) . The displacement
field associated with the optimal upper bound can be interpreted as the
limiting case as the cycle time tends to zero. Under such circumstances
the creep strains accumulated over a cycle are small compared with the
changes in elastic strains, and stress redistribution is therefore occurring

continuously with the result that any consequent ratchetting effects are
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maximised(l).

" On the other hand, the lower bound solution, 0;; , -provides, by
definition, a kinematically admissible strain rate field é;;(Okz) from
which can be derived a displacement rate field Asﬁi and the corresponding
displacement ALUi accumulated over a cycle. This solution corresponds’

" to a situation when the cycle time is very long and perturbations due to
changes in thermal loading and changes in elastic strains make a negligible
contribution to the total deformation of the body. The implications are
that stress redistribution is occurring for only'a small part of the time
and stress redistribution effects are correspondingly small.

The plastic strains enter into the proBlem merely as yield restraints
upon the stress fields and the analysis will indicate the range of loading
for which plaétic straining will occur. In general a stress history of
~the form o;j is possible providing the loads are less than n/(n+l) of a
plastic shakedown state as the experimental investigatidn of Williams(45)
tended to confirm.

The tw§ solutions sz and o;; provide bounds which describe
extreme modes of behaviour which may occur in the sense signified by ine-
quality (6.12). - The relative values of the upper and lower bounds on the
work indicate the sénsitivity of the structure to cycle time and the corres-
ponding displécemenf fields indicate the two extremes of structural
‘ behaviéur. The lower bound solution corresponds to the most widely used
solution for this type.of problem and can be seen to always underestimate
the energy dissipated within the body. Conclusions reached by Williams and
Leddxgsz) tend to indicate that the upper bound solution may be expected‘

to closely approximate the actual behaviour for many structures, as typical

cycle times are short compared with the total lifetime of the structure.
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6.4. The Analysis of Example Problems.

In the following problems the material properties chosen are those
of a typical 816-type stainless steel. The relevant values are listed
in Table 6.1. In practice several materials may have similar time-
independent properties but with differing values of the stress index.
Therefore all results were obtained for n = 3, 7 and 11‘ with the
intention of providing as many aspects of thermal creep interaction as
possible within the limits of the theory.

Unless otherwise specified all résults are normaliéed with respect
to the maximum thermo-elastic stresses and a mean temperature ®n defined

in the text.

6.4.1. The Two-bar Structure Problemn.

The two-bar structure shown in Fig.6.1 has bars of equal length and
equal cross sectional area which are restrained to remain of equal length.
A steady load P is appliéd and the bars subjected to a cyclic history of
temperature; '

The temperature history chosen is shown in Fig.6.2 where bar 1 is
maintained at a constant mean temperature 'Bc while bar 2 is subjected
to a variable temperature which fluctuates between the limits ec + A8
'Changes in temperature are considered to take place sufficiently slowly for
thermal transients to be negligible.

Assuming each bar to be unit cross-sectional area, the stress distri-

* .
bution 0.4 for the upper bound assuming zero plasticity effects is given

by
* P 9 . . ,
o, = 5-:-0i +p i=1,2 (6.16)

6 . . . . .
where o, 1is the isotropic thermo-elastic stress due to thermal expansion

~alone,

For the upper bound it is required that the creep rates of each bar,
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{

€1 and é, , shall be kinematically admissable when integrated over a

cycle of stress history. The accumulated displacement per cycle is then
, At At ,
u Lo X ., *
AU™ = 2 J €(oy)dt = 2-{ €(o,)dt (6.17)
o o ’

The residual stress p 1is determined from equation 6.17 in terms of

aut as P and oe are known. The solution is then obtained by
j solving the compatibility conditioniby a Newton-Raphson procedure.

The lower bound stress distribution is simply the stationary state

solution for the temperature distribution in each part of the cycle. The

corresponding displacement per cycle is given by

At At
L ., S ., S :
AU” = 2 j é(o])dt = 2 J &(o5)dt (6.18)
o s : ‘

6.4.2. Solutions to the Two-bar Structure.

The fixed temperature ec was taken as 800°K and in the first set
of bounds increments of temperature A6 were selected to give the ratio of
the thermo-elastic stress to the yield stress, 06/5; , a range of values.

In thé'firstuset of calculations the applied load was maiptained
‘steady at P = LE& (assﬁming each par to be of unit area) and the effects
of temperature upon the_material properties removed by identifying AH = O .
The ratio of the uppef to the lower work bounds and corresponding ratio of
displacéments are shown in Table 6.2 for a sequence of values of A8 fdr
n=3, 7and 11 . . For any given value of n , the ratio of the wérk bounds
.and the ratio of displacements increase rapidly with increasing A48 . For
example at A = 40°K , 06 = 0.2 P the difference in the work bounds
corresponds to a change in the épplied load of 20 , 30 and 35 per cent for
n =23, 7 and 11 respectively. The difference between the work bounds
corresponds to the energy dissipation due to the effects of thermal ratch-

etting and therefore this solution predicts an increase in thermal ratchetting

if either n or A6 , or both of these increase.
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The caicﬁlations were repeated including tﬁe effects of temperatﬁre
on material behaviour. The resulting work and displacement ratios are
given in Table 6. 3. It can be readily seen that this set of solutions
possess entirely different characteristics to those obtained for AH = O .
In this case the bounds lie reasonably close together and do not show a
monotonic change with increasing 46 . For n = 3 the ratio of tﬁé work
‘bounds are close to unity for all values of A8 , and for n = 7 the bounds
achieve a maximum value then decrease. These fgsults clearly show an
effect of the stress index on structural behaviour. This will be more
easily seen in Chapter 7.

The reason for the marked change in behaviour that occurs between the
two sets of solutions can be explained in terms of the stress histories.

In Fig.6.7 the stress historieé are presented for AH = O and AH = 342 KJ/
mole with n =7 and A8 = 30°K . The upper bound o;j appears as full
lines and the lower bound 053 as broken lines. In this example the
equivalent applied stress is approximately four times larger than the thermal
stress.

When AH = O it can be seen that whereas the upper bound stress
history is dependent on the temperature history, the lower bound solution is
directly related to the magnitude of the applied load only. The stress
histories do not approach each other during any part of the cycle and conse-
quently since the lower bound solution provides the absolute minimum energy
dissipétion for any equilibrium stress field, the upper bound prediéts large
thermal ratchetting effects. However, when AH # O the stress distribu-
tions lie close together during the first part of the cycle when the hiéher
temperature acts. During the second part of the cycle they are distinctly”
different. In the lower bound solution compatibility conditions demand
that both bars rémain of equal length during each part of the cycle and as
creep rates are exponentially related to temperature, (i.e. small changes in

temperature cause large changes in creep rates) this condition can only be
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SAtisfied by the maximum stress occurring on the cooler bar during each.
part of the cycle. Consequently as the creep rates are higher during
the first part of the cycle the total deformation is dominated by the
deformation accumulated during this period. The optimal upper bougd
involves a residual stress field that minimises the energy dissipation
and since most energy dissipation occurs during this dominant period the
upper ﬁound stress distribution approaches that of the lower bound. |
~Therefore the inclusion of the variation of material behaviour with tem-
perature in the problem appears to reduce the statical indeterminancy
caused by thermal expansion and thus vrovide a reduction in thermal ratch-
etting effects.

In order to prévide some simplification of the problem a fixed thermal
history is considered. The lower bound solutions are then dependent only
upon the magnitude of the applied loads and similarly the upper bound is
dependent on the ratio of the applied loads to the thermal load.

Both the values of the work bounds in inequality 6.12 and the
corresponding displacements per cycle auY  and AUL were computed for a
sequence of values of P and n . The results are normalised with respect
to W(qe , em) and AU(ge s em) the work and displacements computed on the
assumption that the thermal stress oe and temperature eﬁ occur on both

bars during a cycle. The mean temperature em is. defined by

exp{—AH/Rem} = %[exp{-ZAH/R(26C+A6)} + exp{—ZAH/RLZGC—Ae)}.

The results for A8 = 47°K , o = 0.25 5; and 6, = 800°K are

presented in Figs. 6.8 to 6.13 as the full lines. The dashed lines
correspond to the solutions for AH = O . The solutions for AH # O
indicate that for any given value of the applied load the differences
between the boﬁnds increase with increasing n . The corresponding displace-
ments show a marked change with the value of n ; for n = 3 the upper

bound displacement is always less than that of the lower bound whilst for
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n =7 or 11 the upper bound predicts the larger displacement. However
the results show that for all values of n similar features are exhibited;
at large values of P the differences between the bounds become small and
in the limit are zero. At lower vélues, the bounds rapidly diverge and
the upper work bound tends towards the value associated with zero displace-
ment per cycle, although the lower bound predicts a non-zero positive
aisplacement at this value of the applied load. The upper work bound
then increases with further decreases in load and the cdrresponding dis-
placements are non-zero and negative. In this region the thermal-creep
interaction produces a net reduction in the lengths of the bars.

The effects of thermal creep interactién can be seen more clearly
from the stress histories presented in Fig.6.14 for n = 7 . The upper
bound O;j appears as the full lines, the lower bound o:j as the broken
linés and the thermo-elastic solution as the chain lines. At large values
of the applied load, thermal ratchetting has little effect on the overall
creep deformation and the stress histories predicted from the two bounds
coincide. In this region 96 per cent of the total energy dissipation
and total deformation occurs during the first part of the cycle when the
creep rates are higher.

The stress history shown in Fig.6.14a corresponds to a work ratio of
‘ 1.03 and a displacement ratio of 1.002 . Even though the thermo-elastic
stress is approximately 30 per cent of the applied stress only 3 per cent
of the energy dissipation is associated with thermal ratchetting. In this
. solution the thermo-elastic stress history is.close to the lower bound
solution during the second period of the cycle but since kinematic conditions
demand that the corresponding creep strain rates when integrated over a cycle
produce the same deformation in each bar the resulting residual stress field
removes part of the load from the most severely loaded member during the
first part of the cycle and increases the severity on the higher loaded bar

during the second part of the cycle. Most of the increased statical
\,
\

Y
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indeterminancy due to thermal expansion is offset by the rapid variation of
material behaviour with temperature and the total energy dissipation and
deformation continue to be dominated.by the energy dissipation and defor-
mation occurring in the first part of the cycle but to a slightly lesser
degree.

‘ Wﬁen'the bounds are reasbnably close together the characteristic
featuré of the problem appe;rs to be a period of high stress on the bar at
constant temperature when the higher temperature acts followed by a period of
high stress on the opposite bar when the cooler temperatufe acts.

As the applied load decreases the thermal ratchetting effect becomes
more dominant. The stress histories do not approach each other during any
part of cycle and stress on the.cooler bars continues to increase. Like-
wise the contribution to the total energy dissipation and the total defor-
mation from the second part of the cycle continues to increase. It is
seen from Figs., 6.14b and 6.14c that as P decreases the stress on bar 1
eventually becomes compressive. At P = 0.5 3; the total energy dissipation
becomes dominated by the energy dissipation of the cooler bar during the
second part of the cycle and the overall-deformation becomes small. In
:Fig.6.15 the stress histories that correspond to zero displacemeht per cycle
are shown. The stress on bar 1. coincides with the thermo-elastic
solution and the streés pﬁ bar 2 1is compressive during the first part of
the cycle. The strain rates,éorresponding to these stress histories when
integrated over a cycle'give ;ise to equal and opposite displacements on
4Aeach bar during the first and second half of the cycle. The energy dissi-

pation is associated with thermal cycling alone.



6.4.3. The Plate Problem.

Consider the problem of a plate. Fig.6.3 of thickness 2h subjected
to a uniform state of mean stress ("™ with respect to a fixed axis
in the plane of the plates central surface, which result from a stress
field > Oy(z) through the plate thickness.

The plate is subjected to a cyclic varying temperature field which
has the form shown in Fig.6.4 where the lower side of plate z = -h 1is at
a temperature 0i(t) and the upper side z = h at a temperature o2 (t)

As in the previous example changes 1in temperatureare considered to take
place sufficientlyslowly forthermal transientstobe negligible, so that

the temperature distribution through the plate is linear and given by

01 . 02 01 - 02 -
e(z,t) = ¢ y-) h
It is assumed that the surfaces x = constant and y = constant

suffer only rigid body displacement and thereby simulate the condition which

occurs, for example, in a thin walled tube under internal or external

pressure (pX = 2p ) or a sphere under internal or external pressure
(Px = Py) -
The stress distribution for the upper bound can be written
) v a s
a = a
x A x T By

Oy = Py+ Oy + Py (6-19)

6 6
where ax and ay are the thermo-elastic stresses in the x and -
directions, and equilibrium of the residual stress field (. , P ) require
Yy

X

that

p dz = p dz =0 . (6.20)

The creep strain component is assumed to obey a Von Mises flow rule obtained

by substituting
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e :
9oy =(7 555535
into equation 6.5 to obtain
n-1
2

. _ 3.3 -
&5 = i-k(2 Skzskz) 535 ©xp(-AH/Re) o (6.21)

where

- 1
=0 -3 [}

Sij % % 13%kk

The creep strain rates in the x and y directions are therefore given by

B n-1
k .2 2 2
¢, =5 (o2-0 0 +02) (Zcx—oy)exp(—AH/Re)
n-1
k (2 2 2
ey = 5—(oy—oxoy+ox) (20x-0y)exp(—AH/R9) . (6.22)

The upper work bound requires that éx and ‘éy shall be kinematically

admissable when integrated over a cycle of stress history. If AUE and

AU; denote the accumulated displacements per unit width of plate then;

At
aP = | e (o ,00dt (6.23)
x - Ex ox,oy) , .

4
At
AuY J" (6 .o )dt (6.24)
= € . .
y y x'y '
(o]

These two equations determine px(z) and py(z) in terms of AU:

and AUY as 06 , oe s P and p_ are known.
y X y

X y A
The procedure adopted for the solution to the problem was as follows:
For selected values of AUE and AU; equations 6.23 and 6.24 were
-solved for P+ Py and py + py at a sequence of stations through the
plate thickness, by a Newton-Raphson procedure. The yalue of Py and py
were then found by integration of the computed values, making use of the
residual stress field equilibrium equations 6.20 .

In terms of the temperature history a mean température 0 is

defined as
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exp(-AH/Rém) = %{exp(ZAH/R(611+621)) + exp(ZAH/R(612+62é))]

The mean temperature is the constant temperature which produces the
same accumulated strain per cycle as the temperature history on the central

surface z =0 .

.'6.4.4. The Plate Solutions.

(69?70) in a study on nuclear reactor fuel can problems has

' Bree
obtained approximate criteria for the onset of ratchetting and plastic
cycling in thin-walled tubes and shélls subjected to constant internal
pressure PR and variable temperature A8 between the inner and outer
walls. In the absence of creep the stress strain law was assumed to have
the form shown in Fig.6.5 where 3} is the yield stress. This simple
uniaxial stress model of the fuel can was used in the case of non-work
hardening to provide the resulting strain behaviour presented in Fig.6.6
that is solely dependent on the stress regimes. In this diagram the
axes are defined by |

R

_ P
P, =g and o

]

For loading histories that fall within the area marked E the response of
the structure is purély,elastic. For operating conditioné in the area

Py certain parts of the structure suffer alternating plasticity and in
regions S; and Sy the fesponse of the structure is purely elastic after
~initial yielding during the first cycle of load applicatidn. This condi-
tion is referred to as the shakedown condition and whilst Sy and So

both define operating conditioﬁs for shakedown,the permanent residual stress

groups in each area differ from one another. The lines oe = Zoy and

p, * /4 = 5& define the shakedown limit.

In the first set of solutions the temperature history is the same as

used by Ponter and Leckie () where
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‘ 911 = 912 = 621 = 723°K N 922 856°K

and the maximum thermo-elastic stress oe = G& .

Work bounds-and associated displacements per cycie AUi and AUi

were computed for a sequence of values of Py assuming AUy =0. ' The
sequence of yalues of Py corresponds to the line 00' in Fig.6.6. As

~ the shakedown solution corresponds to the largest load for which a solution
of the form G;j exists for f(c;j) < 0 , the upper bound may be computed
only within a region formed by the shakedown limit surface scaled by a
factor n/n+l . This is shown for an arbitrary n as the broken line in
Fig.6.6. The results were normalised with respect to W(cg,em) and
AUx(oe,em) the work and displacements computed on the assumption that the
stress 06 and £emperature 6, occur through the thickness of the plate
during a complete cycle.

The non-dimensional work bounds are shown in Figs.6.16, 6.17 and 6.18
and the associated displacements in Figs. 6.19, 6.20 and 6.21 for values of
the stress index equal to 3 , 7 and 11 respectively. The results derived
for n = 7 duplicate the results obtained by Ponter and Leckie. The
assumption that the value of the stress index remains constant over this
temperature range provides a simplification of the problem since in practice
the stress index appears to be highly sensitive to temperature. A
necessary precaution in predicting the structural résponse to the applied
loads is to, in addition, investigate the behaviour for the two extreme
values of n wusually encountered in engineering materiais i.e. n=3 and

'n =11 . This clearly provides a complete spectrum of behaviouf that can
be predicted within the sense signified by the bounding solution.

It is seen that the bounding solutions to the plate problem exhibit '
similar features to those obtained to the two-bar structure. At larger
values of Py and for all values of n the difference between the work

bounds becomes small. As the stress index increases the difference
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Fetween the bounds also increases, thus the percentage of the total energy
dissipation that is associated with thermal ratchetting effects also
increases. The stress distribution of Py and py corresponding to

P, = 0.64 are shown in Figs.6.22, 6.23 and 6.24 where the upper bound

*
o.. appears as the full lines, An important and distinct feature of

1]

these profiles is that they are close to each other during the périod when
the higher temperature acts and on-the cooler side of the plate. At
other positions and times the streéses do not approach each other. The
reason for this behaviour as in the previous problem is that when the
effects of stress redistribution due to the thermal stress are small in
comparison to the applied loads the upper and lower work bounds become
equal. In the lower bound solution the energy ‘dissipation is dominated
by the stresses in this region beéause of the rapid variation of material
behaviour with temperature and consequently the contribution to the total
deformation from the first part of the cycle is considerably less than the
contribution from the second part of the cycle when the creep rates are
higher. The optimal upper bound involves a residual stress field that
makes the inelastic energy dissipation a minimum and since most of the
energy dissipation occurs during this dominant region and time'the stresses
may be expected to lie close to>£he lower bound solution which provides the
absolute minimum-enérgy.dissipation rate for any equilibrium stress field.
It is seen that the stress profiles show a marked sensitivity to the value
of the stress index. |

For smaller values of Py the work bounds and associated displace-
ments, as in the two-bar problem, diverge and the upper work bound tends
towards a value associated with thé thermal cycling alone. The stress
pfofiles corresponding to a small value of the applied load, P, = 0.2 ce,
are shown in Figs.6.25, 6.26 and 6.27 for n = 3 , 7 and 11 respectively.

For n = 3 the ratio of the work bounds is approximately 4 and the upper

and lower bound stress profiles still show a tendency to follow one another
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during the hotter part of the cycle. However as n increases the two
stress histories diverge and do not approach each other for any part of
the cycle. Therefore there exists no dominant time interval during
which the majority of the deformation can be accumulated. In this region
the thermal load is large compared with the applied load and the deforma-
tion becomes dominated by the deformation assoéiated with the thermal stress
field. As the applied load approaches zero the displacements per cycle
derived from the lower work bound also approach zero, but in the upper
bound case, zero displacement corresponds to a small non-zero value of Py
At this value the upper work bound attains a minimum value. Further
decrease in the applied load increases the energy dissipation and the dis-
placement per cycle becomes negative. At Py =-0 the upper work bound
equals the energy dissipation associated with thermal cycling alone.

In the two-bar problem the effect on the work bounds of neglecting
the variation of material behaviour with temperature indicated that large
ratéhetting effects occur. Similarly; to assess the effect in this
problem the calculations were repeated with AH = O . The thermal

expansion terms were included and the creep rate scaled so that
k = exp(fAH/Rem)

,The‘resulting work and displacement bounds are shown as dotted lines
in Fig$.6.16 to 6.21. The difference between the upper and lower work
bounds is again seen to have'increased ;onsiderably for any given value of
n. The reason for this increased rafchetting effect may be understood
from the stress histories involved which are shown in Fig.6.28, for n = 3
and P, = 0.6 oe . The uppér boﬁnd solution appears as a full line, As
nb thermal softening effects are included there exists no dominant time
interval or locations and the stress histories do not approach each other
for any part of the cycle. As in the two-bar probiem the effect of

thermal softening appears therefore to reduce the statical indeterminancy
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of the structure and thus reduce the ratchetting effects. The exclusion

6f thermal softening results in very non-conservative displacemeht
predictions and erroneous stress histories.

The preceding solutions to the plate problem have been obtaiped
under conditions of plane strain. In order to gain an overall aséessment
of the Structural behaviour under some arbitrary load system the effects
of various applied stress systems (Px’py) were investigated.  Contours
of constant work W' and WL were computed for an arbitrary work value
of W/Wﬂoe,em) = 3 x 10—3, Contours corresponding to this value are shown
in Fig.6.29 for n =3 and 11 . The lower work bound in each case forms
an ellipsoidal curve symmetrically placed about the line Py = py . In
addition the major and minor axes intersect at P, = py = 0 and in the
limit the work contour WL = 0 reduces to this point. The upper bound
contour oﬁ the other hand exhibits a sensitivity to the sign of the applied
stress resultant. It was shown for AUy =A0 that the work value was non-
zero and positive for zero displacement per cycle. The calculations reveal
that zero displacements and hence minimum energy dissipation correspond to
a positive applied load shown as point P for the three values of n . It
may be noted that the values of P, = py at point P differ for eéch value

of n. The displacements corresponding to the work contours are shown

in Fig.6.30. The contour corresponding to the lower work bounds in each

case forms an ellipsoidal curve symmetric about both AUy = AUx and

AUy = - AU, and the upper bound contour forms a closed curve symmetrically
placed about AUy = AUx . The reason for the lower bound solution
providing displacement§ greater than those of the upper bound solution may

be explained simply by the fact that since the magnitude of any stress system
is greater for any given work quantity in the lower bound case and there is
no energy dissipation associated‘with thermal ratchetting effects, the

displacements must therefore be correspondingly higher.
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If the work bounds alone are considered the most severe difference
between the upper and lower bound stress resultant occurs when P, = py < 0.
However, in terms of the displacements the most severe situation occurs
when py = - Py for both P, < 0 and P, > 0. _ The displacement vectors
are in the same direction as the applied stress vectors and it can be seen
that the most severe stress situation in terms of the work quantities
producés the least severe situation in terms of displacements.

It must be remembered that the diagfams represent contours of constant
non-dimensional quantities and the absolute values are dependent on n and

in these circumstances it is difficult to distinguish between individual

features corresponding to any given value of n .

6.5. Discussion.

The solutions presented for the plate problem have shown that many
of the feafures observed in the two-bar structure also pertain to this

ey

problem. It has been shown that the upper bound solution probably corres-
ponds to the actual solution that occurs in practice in cases of variable
loading under isothermal conditions. This may also be true of cyclic
temperature conditions although no formal proof is offered and the exact
conditions when this may be assumed remains open to question.

It has been shown that the deviation of the upper bound from the
steady state lower bound solution is sufficiently pronounced to require
inclusion in désign calculations and that the lower bound is clearly non-

" conservative. If the effects of temperature on material behaviour is
excluded the resulting solutions produce highly non-conservative displacements
and erroneous stress histories.

The upper bound solution provides a clear picture of the variation of

stress during the cycle and the characteristic feature of the plate problem

appears to be a period of high stress at a lower temperature followed by a
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lower stress at the higher temperature. The two-bar structure represents
‘a more severely loaded structure and from the results it is difficult to
identify a characteris?ic feature. This will be discussed further in
Chapter 7.

The final aspect is the variation of the bounds with the value of
the streés index.  Distinct behaviour patterns dependent on n have been
shownAand therefore unless, under such situations, prediction of structural

behaviour that is independent of n can be found, a knowledge of the exact

value is required.
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Youngs Modulus 2 x 1071b/in?
Poisso ns' Ratio - 0.3
Yield Stress 2.1 x 1031b/in?

Coefficient of Expansion | 3.3 x 107 /°x

Creep Activation Energy 342 KJ/mole

Table 6.1

Material Properties of 816-type Stainless Steel




ao | au%/aut  wd/wt

o| 1.000| 1.000

10| 1.033| 1.066

- 20| 1.132| 1.265
n=3 30| 1.296 | 1.602
1 40| 1.527| 2.084

50| 1.823| 2.722

60| 2.185 | 3.527

70| 2.613| 4.516
ao | au¥/aul  wh/wh

o| 1.000]| 1.000

10| 1.235| 1.316

20| 1.989 | 2.366

n=7 30| 3.422| 4.476
' 40| 5.805 | 8.227

50| 9.541 | 14.535

60| 15.192 | 24,740

70 | 23.503 | 40.738

po | au¥/aul wé/wt

o| 1.000| 1.000

10| 1.644| 1.785

20| 4.090| 4.931

n = 11 30| 10.113 | 13.286
40| 23.493 | 33.336

50| 51.426 | 78.362

60 ]106.859 {174.026

70 (212.147 |367.718

Table 6.2

Ratio of Bounds for the Two-bar Structure with AH=0

6.26



n=3

n=7

n=11
Ratio of

Bounds

for the Two-bar Structure with AH#O

o | au¥/aul wo/wt
o| 1.000{ 1.000
10| 1.001|1.001°
20| 1.001 | 1.001
30 | 0.998 | 1.001
40 | 0.995 | 1.001
50| 0.993{ 1.001
60 | 0.992 | 1.002
70 | 0.990 | 1.002
s | au¥/aut WOt
o| 1.000 | 1.000
10| 1.048|1.087
20| 1.144 | 1.267
30 | 1.209 | 1.409
40 | 1.216 | 1.463
50| 1.183|1.439
60| 1.136 |1.372
70 | 1.093 | 1.288
o | au¥/aut wh/wl
0| 1.000{1.000
10| 1.268]1.353
20| 1.901 |2.241
30 | 2.649 | 3.419
40 | 3.343 | 4.681
50| 3.864 | 5.829
60| 4.1516.702
70| 4.181 | 7.188
Table 6.3
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ChaEter 7

Deformation Maps and a Material Related Parameter

for Structures Subjected to Cyclic Temperatures

7.1. Introduction.

Conventional computing methods may be used to evaluate cyclic
stationary state solutions. However, such methods usually incur large
computing costs and are thus unsuitable for general design purposes. An
alternative approach has been discussed in the preceding chapter and, as
such, offers a simplified understanding of the complex effects of cyclic
temperature histories on structures undergoing creep. The solutions
obtained provide an indication that the comparatively simple calculations
involved in the bounding theorems may provide a most suitable means of
obtaining relevant design information.

In this chapter it will be shown that the solutions obtained from
these bounding theorems can be presented in the form of deformation maps.
When a non-linear viscous constitutive relationship is used, separate
regions of behaviour that coincide with distinct ranges of stress and tem-
perature are clearly distinguishable. These regions may be understood
as resulting from the dominance of the stresses which occur during that part
of the cycle when either the stress is largest or the highest temperature
acts. The degree of severity of stress redistribution may be understood
from those regions where the rapid cycling solutions (upper bound) differ
from the-slow cycling (lower bound) solutions. It is shown that the
solutions can be expressed in terms of a material parameter B which
allows the structural behaviour to be related to uniaxial behaviour by
appropriate choice of reference stresses and reference temperatures. There-
fore, a reference stress/temperature approach may be applicable to cycli-

cally varying temperature problems with, however, the relevant reference
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values being dependent on the value of B .

d(71) using both the

Similar bounding calculations have been performe
%train-hardening and Bailey-Orowan constitutive equations in order to see
if cdmparable regions of behaviour are discernable. It was found that
the solutions using the strain-hardening model exhibit similar patterns of
behaviour to those of the non-linear viscous model, but those of the Bailey-
Orowan model are distinctly different due to the presence of recovery.

This difference occurs because the Bailey-Orowan model predicts a much
greater strain rate for a history of loading where a high stress at low
temperature is followed by a lower stress at a higher temperature, than do
the other models.

The structural examples analysed in this chapter aré those previously
described in Chapter 6. In both problems the load and temperature histor-
ies are of a similar form to those previously employed and the general
theoretical approach remains unchanged. However in the plate problem,
two load cases are examined: The first case assumes that deformation in
the y direction is fully restrained i.e. AUy = 0 , whilst in the second
case the deformations in both directions.are equa; i.e. AUx = AUY . In
both cases positive and negative applied loads are considered. As in
Chapter 6 the solutions are concerned solely with the interaction between
elastic and creep strains. The effects of plasticity and incremental
collapse mechanisms are not considered.

In the following section a physical interpretation of the material para-
meter B 1is given, and in section 7.3 details of the construction of the
displacement maps are described. Secfions 7.4 and 7.5 describe the dis-
placement maps for the two examples assuming a non-linear viscous behaviour.
In sections 7.6.1 and 7.6.2 the strain-hardening model and the Bailey-
Orowan model are briefly discussed in relation to the two-bar structure.

The complete theory is well documented in references (72, 73, 74, 75) and

the inclusion of these models is necessary as an aid to a more fuller
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understanding of the experimental results described in the next chapter.
i

7.2. Material Parameter B .

In the two-bar structure and plate problem the ratio of the cyclic
stationary state deformations, U = AUﬁ/AUL , 1s dependent upon the
paraméters 0/0e , n and B . The quantity o/ce is the ratio of
the average appliedstress, due to the applied load, to the maximum thermo-
elastic streés occurring during a cycle of the loading history.

The material parameter, B , is defined by

2vA6
n

B =

where 246 is the difference between the maximum temperature (ec + AB) and
the minimum temperature (ec - AB) occurring during a cycle of the temperature
history. The physical intefpretation of B arises from the relationship
between the creep rates which occur at (Bc + A8) and (ec - A0) . Providing
changes in temperature are sufficiently small, the constitutive equation may

be written as

€=k o exp (- é%iJ = ko™ exp[y(6-8)] , (7.1)
c .
whére ‘ k’ = k exp [- é%i) and vy = - ég% . (7.2)
c C

If constant stress uniaxial tests are conducted at the two temperatures,
then raising the temperature from (ec—Ae) to (6c+Ae) will increase the
creep rate. Referring to Fig.7.1 suppose the same increase in creep rate
is caused by maintaining the temperature at (ec-Ae) but increasing the

stress to xo , then
. . » n
€ = k (x0) exp(-yA8) = k o exp(yad) . (7.3)

Rearrangement of equation 7.3 gives B = loge X . Therefore, on a
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~ uniaxial plot-of log é against log o at constant temperature, B corres-
ponds to the distance between the lines representing the creep behaviour
at the two temperatures. The parameter B therefore provides a measure
of the change in stress required tq make the creep rates equal, and reflects

the temperature sensitivity of the material behaviour.

7.3. Map Construction.

The construction of the displacement maps involved computing upper and
lower bounds on the creep energy dissipation at a sequence of values of
0/0e for a range of values Qf 8 and n . In practice the calculatioﬁs
were performed at three values of AH (114, 250 and 342 KJ/mole) and a
range of values of ec and A6 for n =3, 5and 7 . The resulting
data was processed by the University computer to produce values of U ,

6 , B, n, AH,Gc and A6 . These values when plotted on a two-

ofo
dimensional space with o/cre as the ordinates and B8 as the abscissas
form contours of constant U .

In both problems the regions of interest are found to lie within the

]

range 0 < B<$6 with -1 € 0/0 £ 1 for the plate and O < c/oe' £ 2.5

for the two-bar structure.

7.4. Two-bar Structure: Non-linear Viscous Material

When the cycle time At 1is small in comparison with a characteristic
material time the rapid cycling solution (upper bound) is given by
equation (6.17). On the other hand when At is large the resulting work
bound, equation (6.18), is a lower bound on the creep energy dissipation.
Contours of constant U = _AUu/AUL are shown in Fig.7.2 for n = 3
where it is seen that the deformation map can be subdivided into three
distinct regions. In Region 1, U » 1 and the difference between the -

bounds achieves high values for relatively small changes in either vc/ce
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or B . Therefore the rapid cycling solution predicts a considerable
£ncrea5e in displacement rates for small cycle times. Region 2
corresponds to U =1 where both the rapid cycling solutions and slow
cycling solutions provide near identical displacement rates. Since the
lower bound solution is independent of the magnitude of the thermal stress
then so is the upper bound solution. In Region 3, U< 1 and the
rapid cycling solution yields a lower displacement rate than the correspon-
ding slow cycling solution. If is seen that for any value of B , as
o/'de decreases, U << 1 until a value is attained at which U =0 .
Although at this value the slow cycling solution remains positive and finite,
~ the rapid cyéling solution predicts equal but opposite displacements during
the first and second parts of the cycle yielding a net displacement equal
to zero. Further decrease in o/oe results in the rapid cycling solution
producing a net negative displacement over a cycle; i.e. creep deformation
produces shortening of the bars.

The general arrangément of the displacement contours is not entirely
unexpected since it was noted in Chapter 6 that the elastic-creep interac-
tibns occurring are highly sensitive to both the relative magnitudes of the
thermal and applied stresses and to the corresponding temperature history.
From consideration of fixed temperature histories (i.e. B = constant) it
was shown that as o/ce decreased, the energy dissipation bounds and corres-
ponding displacements diverged with the lower bound solution reducing to
zero displacement at zero applied load whilst the upper bound remained
finite and negative. Therefore the effect of the temperature history on
the rapid cycling solution is to produce a net négative displacement over
a cycle. In the limit the B axis corresponds to U = - = ,

Thg manner in which the solutions approach this value was found to be
dependent on the value of A6 (i.e. B) adopted, and this is clearly illus-
trated by the map. For example at larger values of B > 2.5 the rapid

cycling solution always predicts a displacement rate less than that
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predicted by the slow cycling solution and, consequently as' c/oe
decréases, U alsordecreases. However, for B < 1.8 .an entirely
different>regime exists with the difference in the bounds rapidly
increasing with decreasing c/oe , This continues until U achieves
a maximum at a small va1u¢ of o/oe and thereafter rapidly decreasing
until U = - «» is attained. For 1.8 < B'< 2.5 the two regimes inter-
act and ‘the behaviour becomes less defined. |

The loading hiétories considered in Chapter 6 are shown as the broken
linuson_Fig.7.2. Line AA” corresponds to the first case considered with
.n=3, AH= 342 KJ/mole and A6 = 40, 50, 60 and 70°k. Line BB~
corresponds to the fixed temperature history A6 = 47°K and AH = 342 KJ/mole
discussed in the second part of section 6.4.2.

The behéviour within the three regions may be understoodvin terms of

simple stress histories, and each region is now discussed in turn.

Region 1, U > 1. In this region, which corresponds to smaller values

of B the most severe increase in displacement rate occurs for small cycle

times.  Consider the extreme case when B = O , i.e. the creep rate inde-
pendenf of température. The rapid cycling solution is self-evident and
is shown in Fig.7.4. The residual stress p, equals zero and effectively

. . 0
all the deformation occurs when the stress is largest and equal to o + o .

If the creep strain that occurs when the stresses are at the lower vaiues
is complétely ignored the resulting values of U are shown as the broken
lines in Fig.7.2. It is clearly seen that these lines closely approxi-
mate thé complete solution throughout this region. Hence the deformation
is effectively equal to that of the‘structure subjected to a constant load
P = 2A(0 + Oe) with half the cycle time and a temperature distribution

01 = 8,, 02 = 6. - 48 followed by a lower of zero applied load over tﬁe
femainder of the cycle. This approximation is least accurate near the

boundary between Region 1 and Region 3 where extremely rapid changes

in AUY occur.
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Region 2, U = 1. This region correspond§ approximately to B > 2 and.
c/oe > 1, Since U 1is close to unity, the rapid cycling solutions and .
slow cycling solutions are virtually identicai in their evaluation of dis-
placement rate. As B  is large, the creep rates during the first part
of the cycle when the higher témperature acts provides the major csntribu—
tion to the total diSplacément. Even though the temperature on bar 1
remains constant and tﬁe stress reduces during the second part of the
cycle the large value of B8 eﬁsures that the stresses during the first
part of the cycle provide the larger creep rates. In the rapid cycling
solution the stress history is virtually identical to the slow cycling
solution and, Similarly, the contribution of the creep strains during the
second part of the cycle to the total deformation is negligible. There-
fore in this region the deformation may be assumed to be equal to one half
of that which would occuf if the condition of the first part of the cycle
remained constant over the complete cycle. Hence the reference stress
lies close to o and the reference temperature lies between ec and
0 + A6,

Cc

Region 3, U < 1. This region corresponds to o/oe < 1 with contours

of U becoming independent of B for larger values of B . If the case
when B8 1is large is considered, the behaviour may be more easily under-
stood. From consideration of the stress history shown in Fig.7.5 it is
seen that during the first part of the cycle the stress in bar 2 becomes
small and either positive or negative since p = (oe-o) . During the
second part of the cycle although o, = 206 , since the average temperature
is much lower the creep rate is again very small. Hence the deformation
»is governed by the stress on bar 1 which changes from 20 to v2(c-ce)
and as the teﬁpera;ure on this bar remains constant at 0 = GQ the dis-
placement rate is independent of B . When o/ce = 0.5 the net

" accumulation of strain over a cycle in the rapid cycling solution is zero.



Therefore for 0.5 o/oe <1.0,1>U>0 'and for O < o/oe < 0.5,

U < 0. In this latter case the displacement rate evaluated from the rapid
“icycling solution is of opposite direction to the applied load P and in
order to maintain a zero displacement rate,a load equivalent to o= 0.50e
is required. The lower bound solutions are also independent of 8 fér
large values of B as all the deformation occurs during the first hélf of
the cycle when 02 =0 and o; = 26° . | |

The rapid transition from Region 1 to Region 3 lies close to the

origin of Fig.7.2.. As AUL is a function of o and B solely, AUL
cﬁanges extremely rapidly for small changes of o/oe . The transition line
corresponds to U = 0- which arises when o, fluctuates between ‘:_q

It is clearly demonstrated that these simple solution regimes are
separated by regions in which fairly rapid transitions from one regime to
another occur. For larger values of n a similar piéture emerges except
that the regions become more distinct with the transitions occupying a
smaller area of the diagram.  These transition regions are defined by
contours of U close to unity and it is seen from Fig.7.3 that when
contours of U = 0,99 and U= 1.01 are plottéd for n=3, 5 and 7
they are reasonably close together. For U=0 the contours as expected
are identical. Contours of Uv= 50 are also included to demonstrate
that within the regions (with the exception of Region 2) the value of U
remains dependent on n although the stresseg are still governed by the
calculations described above.

It is therefore seen that within Regions 1 and 2 the rapid cycling
~ solution may be correlated with the same structure subjected to constant
loads at constant temperatures. For Region 1 the relevanf applied load
is P =2 (o+oe) with 8; = Gc‘ and 6, = Bc - Ae. In Region 2 , the
relevant values are P = 20 with 6; =8, and 63 = ec + A8.  Therefore

these loading histories can be correlated with a constant reference stress

and reference temperature as described in Chapter 4. In Region 3 a



I ,
variable stress history fluctuating between 20 and 2(0-06) at

temperature 6 = ec defines tﬁe displacement'rate.

To form a more complete so}ution to the problem it is necessary to
consider the creep energy dissipation. If this quantity is denoted by
WY and WL for the upper and lower work bounds respectively, then
contours of W = Wu/wL can be plotted on the coordinate axes defined.
In Fig.7.6 éontours of W that correspond to the displacement map, Fig;/

7.2, are presented. In this diagram, unlike contours of U, W shows

a monotonic change with c/oe. Since both_bwu and WL are finite

and positive, with the exception of the lower bound, wL s When o/oe= o,
and WL is by definition the absolute minimum for any staticélly
admissable stress history, then W may be expected to decrease as o/ce
increases, i.e. as c/oe increases the creep energy dissipation associated
with thermal ratchetting decreases and hence the corresponding displacements
become more equal. Similarly, if o/oe remains constant W decreases
with increasing B8 . i.e. increasing B effectively increases the temper-
ature difference and increased thermal softening therefore offset the
thermal ratchetting. For values of o/oe <1.0adB>3, W bgcomes

independent of B. Further, by comparison of Figs.7.6 and 7.2, at any

W, U in this region is unique whereas for B < 3, U is dependent on B.

7.5. The Plate Problem: Non-linear Viscous Material.

The displacement map for the stressed plate subjected to a uniform
state of positive-(tenSile) meaﬁ stress (px,py) and creep index n = 3 are
presented in Figs.7.9 and 7.10 for AUy =0 and AU* = AUy'respeptively.
The vertical stress axis is defined as previously but with the
applied stress in both cases equal to Py - For negative (compressive)
mean stress (-px,-py) the corresponding maps assume the form shown in

Figs.7.11 and 7.12,
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The contours corresponding to the positive mean stress cases cleaily
show similar features to those of the two—barvstructure. Howevér,_when
;he negative mean stresses act the displacement maps are substantially
~different with the contours exhibiting a monotonic change with px(oe
and no distinct regions of behaviour.

For larger n values the contours for the positive states of mean
stress are remarkably similér.. Since the transitions between the
regions, whose notation and general description follows that of section
7.4, are defined by contours close to unity, contours of U = 0.99 and

U=1.01 are shown for n = 3, 5 and 7 in Figs.7.13 and 7.14 for
_ AUy =0 and AUx = AU& respectively.  In both cases the contours for

the three n values lie close together and for U = O are indistinguish-

able. However, within Region 1 contours of U =5 shows that U
still retains somé sensitivity to n .

Té understand the behavibur within each of the four regions, each
region with stress histories typical of that region will be discussed in
turn. Particular attention is given to the AUy =0 case which was
dealt with in some detail in the previous chaptér but the general features
described Qill be seén to be generally admissable to the AUx = AUy case.

As in the previous example, Region 1 is confined to smaller values
of B where the most severe increases in displacement rate occur for short
cycle times. | The load cases described in Chapter 6 are containéd within
this regidn and are represented on Fig.7.9 as points A, B and C for
B=0,8=0.8 (n=11) and B =1.26 (n=7) respectively with px/oe - 0.6.
The B = 2.96 (n=3) case is represented by point D which is within
Region 2 where U =1 . These four cases will be used to illustrate
typical stress distributions ﬁithin these regions and also the transition
from Region 1 to Region 2 . The distributions of stress corresponding
to A,B, C and D are presented in Figs.6.28, 6.24, 6.25 and 6.22 .

These have been individually described previously. However, the parameter
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.B ailows the solutions to be described independeﬁtly of n and thus the

individual beﬁaviour can be studied in terms of the regions of the displacement
map.

It is seen that as B increases from zero the distributions of stress
change markedly. When B = O the upper and lower bound stresses a%e
distinctly different and db not approach each other during any parts of the
cycle. The effect of an incfease in B 1is to cause the stress distributions
occurring during the second part of the cycle, when the average temperature
is higher, to move closer together on the cooler side of the plate. This
progressive change in the stress distribution continues as B changes and
cuiminates in the stress distribution of point D where U =1 and the
stresses during the second part of the cycle are.virtually indistinguishable,
although those occurring during the first part remain totally different.

The B =0 and B = 2.95 cases thereforé provide, in a sense, two
extreme caées of behaviour. In the latter case, when the creep rate varies
with temperature, the dominant period occurs during the second part of the
cycle when the average creep rate is highéf and thus the total deformation is
dominated by the deformation that occurs during this part of thé cycle.- As
B decreaseg, thermal softening effects also decrease, the stresses diverge
and this period becomes less dominant. Similarly’as B decreases, U
increases and in the extreme case when B = O , no dominant period appears to
exist.

It may be noted that for any.finite B , the stress profiles are always
closest together during the second part of the cycle and on the cooler side of
the plate; a feature previously noted in Chapter 6.

In the AUx = AUy case, similar load cases to the above are dénoted by .
points A”“, B, C”, and D” on Fig.7.10. The corresponding distributions of
stress are shown in Figs.7.15, 7.16, 71.7 and 7.18. The general description
given for the AUy = 0 case applies equally well to this example with the
exception that the stresses in the x and y directions are identical in

either bound.
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In.Region" 3 values of U are less than ﬁnity and become independent |
of B fof larger values of B. _If px/ce is reduced at constaﬁt B from'
the condition of Region 1 , U tends to zero. At U = 0 the average
displacement rate in the rapid cycling solution is zero although the slow
cycling solution remains positive and finite for all positive appliéd loads.
Further reduction in px/oe pfoduces, in the rapid cycling so;ution,'
increasing average displacements in the negative direction, (i.e. the plate
contracts) whilst the lower bound slow cycling solution rapidly approaches
zero and thus large negative values of U result. In the limit when
px/06=0, a¥ =0 and U= - w.

For negative applied loads (px/oe < 0) the contours shown in Figs.7.3!(
and 7.12 result. These may be described as Region 4 where as
px/oe-+—l » U>1 . Typical distributions of stress that result as px/oe
reduces from Region 1 to Region 4 at constant B are shown in Figs.7.19,
7.20, 7.21 and 7.22 for AUy = 0 and B = 4.11. When AUx = AUy similar
stress distributions occur but as in the positive applied load cases
cx/oe = oylcre .

It is seen for all of the applied load cases the stress distributions
arising from the upper and lower bounds in the first part of the cyéle are.
totally dissimilar although the upper bound stress distributions do not
differ too greatly in form. On the other hand the upper bound stress
distributions show a distinct variation in form for px/oe < 0 . For small
values of px/ce , U large and negative, the stresses are closest together
during the second part of the cycle on the hotter side of the plate whereas
for positive applied loads they lie closest together on the cooler side.
However as U + 1 , as in the positive applied load cases, the distributions
of stress during the ﬁecond part of the cycle tend to become identical.

In section 7.4 it was demonstrated that the solutions to the cyclic
temperature problem could be understood in terms of simple stress and temper-

ature histories. In this problem where highly complex residual stress
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fields arise all attempts to express Regions 1 , 3 and 4 in terms of
appropriate constant loads and temperatures have been unsuccessful.
However since the upper énd lower bound stresses in Region 2 are identical
during the second part of the cycle when the majority of the creep strains
are accumulated, the steady state solution is therefore sufficient to
describe the creep behaviour. From these readily obtained solutions rep-
resentative stresses and temperatures cén be obtained and the displacement
rates are then equivalent to these values acting for half the cycle time.

In the case when B = 0 and AUxA= AUy an appropriate residual stress
- field has been obtained. This is presented in Fig.7.23 and is a function.
of the thermoelastic stress only. " The resulting stress history for
px/o6 = 0.6 1is shown in Fig.7.24 and is seen to approximate the distribu-
tion of stress‘shown in Fig.7.15 which was obtained humerically. If it is
assumed that creep strains occur only during that region where

. 0 . .
O =p,*+O /4 then the resulting displacement rate corresponds to a constant

stress’ Py * 06/4 acting over half the original cycle time. From the
creep rate equation (6.21)
n+l
Attt x 6,,.n [3 2 )
X =5 {PX + 0°/4}" {Z} | (7.4)
n+l
st k.. [3) :

and F = 7 (px) {Zﬁ (7.5)

Therefore contours of constant U intersect the px/oe axis

according to

It is found that if this equation is evaluated for n = 3 , the
appropriate values of U virtually coincide with those gained numerically.
In the case when AUy = 0 this residual stress field appears to

correspond to the stress history in the x direction and the relevant
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applied load is (px + 06/4) acting for half the cycle time. In the vy
direction the residual stress field remains unidentified although a
tentative investigation suggests that a similar but scaled form exists.

This problem remains to be further investigated.

7.6.1. Two-Bar Structure: Strain-Hardening Model.

Primary creep may be described by the time hardeningAequation

n+1 :
e.. =p 2 48 }>tm : (7.7)

ij ~ " oa n+l
4

" where B denotes a constant and m a time constant which in aécordance
with experiment is often given the value m = 1/3 . The corresponding

creep rate is given by

3 6n+1 n-1 '
elj = B '%_; el }mt . (7.8)

If it is assumed that the state of the material is described by the
accumulated creep strain eij , then a strain hardening relationship is
formed by eliminating t between the above two equations to yield in the

uniaxial case

e - apt/m p/m (D /m | (7.9)

For constant stress commencing at t = O when the creep strain € = O,
s '

" (7.10)

e(t) = Bo" t
It is assumed that B = B'exﬁy(e-eo).
The rapid cycling solution is given in reference (72) by
u At ‘
AU f1 1/m . .n/m m-1 '
3t S\t j B | (o+p) dt}r mt (7.11)
' o

A

where p and o have the same meaning as before.

As in the non-linear viscous case, p becomes determinate
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from the compétibility condifion AU? = AUE over a cycle. In fact the
calculations are identical if n/m is substituted for n and Aﬁ/m_
" substituted for AH .

There exists no lower bound solution as such but for the purpose of
providing a normalization similar to the previous case, the solution was
computed so that the integrand of (7.11) remains equal in each bar during
0 < t < At. This solution corresponds to assuming that the cycle time is
sufficiently long for stress redistribution to occur at each instant within
the cfcle but that the average creep fate is calculated assuming that,
from the point of view of the constitutive relationship, the cycling is
rapid. This solution has no direct physical meaning but will reduce to
the solution arising from equation (7.11) if fhe conditions of Region 2
occur.

The displacements predicted by these two methods are denoted by

auY

and AUL and ;heir ratio by U .

It is found that the solutions so generated havé patterns of behaviour
very similar to those of the viscous material. The boundaries of the
regions are shown in Fig.7.7 and are seen to be similar to those of Fig.7.2.
There are however differences in the values of U as the relationship
(7.11) provides a higher value of the creep rate under varying stress,
when compared with constant stréss maintained at the maximuﬁ value than
does the viscous relationship. The stress histories themselves, however,
are vefy similar and are divided into the same sub-regions.

Therefore the behaviour of the viscous material and the strain hard-

ening material are very similar when described in this way, and the same

reference stress histories are relevant.
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7.6.2. Two-Bar Structure: Bailey-Orowan Model.

This constitutive relationship includes the effect of thermal recovery.
The relevant theory is described in references (73,74).
; The state of the material is described by an internal flow stress s

which increases due to strain hardening and decreases due to thermal

~ softening.

§ = H(s)[¢] - Qs) S (712)

where H(s) and Q(s) are coefficients of strain hardening and thermal

. recovery respectively. The creep rate € is given by

¢ = SIGN()£(|o] - $) (7.13)
where f(lo] -s) =0 , lo] <s
(7.14)
>0 , o] =5
Stationary creep occurs when |o| = s and therefore
¢ = SI6N(o) Q(lo])/H([o]). o (7.15)
n-o

Assuming Q(s) = kls and H(s) =_1/kzsa yields Norton flow

¢ =kk lo|™ SIGN(o) : (7.16)

This model differs from both the viscous relationship and the strain
hardening model by possessing thermal softening. When |o| < s , then
$§ = - Q(s) and s decreases with time. If the stress is éuddenly

increased, $ = & and plastic strains occur according to

& = H(|o])e . (7.17)
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.Thus for a cycle 6f stress, both plastic and creep strains occur.
In'common with the viscous material, an upper bound on the energy dissipa-
tion in a structure composed of theAmaterial corresponds to_assuming
that the cycle time is short compared with a characteristic material time.
The stress history is given by o = ; + p and the accumulation of strain

over a cycle is given by

At n 1 o

e SIGN (o(to))lo(to)l ZE-J k exp(y(e-eo))dt (7.18)
where tO is the instant during the cycle When Icl achieves its maximum
value. Hence the average strain rate is the same as if o = o(to) occurs
throughout the cycle. The model predicts the same creep rate as the

viscous relationship for constant stress but, due to the presence of
recovery, a greater creep rate for any other stress history.

The lower work bound is identical to that described in section 7.4 and
the ratio of displacements pfedicted by these two bounding solutions may be
directly compared.

The average displacement rate predicted from the upper work bound is
the same as if a constant applied load -P = 2A(0+ce) were appliéd through-
out the cycle with one bar maintained at 6; = 6 and the other at 6, = 67

where
eXpy(e’—eo) = %—(exp(yAe) + exp(-yAd)). : (7,19)

In Fig.7.8 contours of éonstant U are shown for n = 3 . The above
solution is appropriate in Region 1, but in Region 2, loo| achieves its
maximum value when oy = :_Ge and p = -0 . The average cieep rate in
bar 2 thus becomes indeterminaterand becomes determined by the stress
history o; . In bar 1 , the stress fluctuates between 20 + ce and
20 _'09 and hence the average displacement rate is the same as if a constant
applied load of P = 2A (o+ce) were maintained and béth bars were at 6 = 6 .

(o]

It is seen that the behaviour shown in Fig.7.8 is entirely different to
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that shown in either Fig.7.7.or Fig.7.2. No reverse creep occurs and
the ratio U remains at high values for large B as recoverf inéreases.
Effectively the Region 1 of Fig.7.2 now dominates a larger area of the
diagram.

These caiculations &emonstfate that when temperatures vary r;pidly
between two limits, the streﬁs history in the cyclic state fluctuates
between a higher stress at a lower temperature and a lower stress at a
higher'temperature. The rate of deformation is strongly governed by
the ambunt of recovery which occursbduring the_ﬁigh temperature period.
To the author's knowledge no experiments have been conducted under these

conditions.
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Chapter 8

An Experimental Study on the Two-Bar Structure

Subjected to Cyclic Histories of Temperature

8.1. Introduction.

An important aspect of the response of a metallic structure subjected
to cyclic loading and a superimposed mean load is its capacity for
progressive strain accumulation. The concept of a cyclic stationary state
and the phenomenon of cyclic dependent creep has aroused interestin recent
years.

In the preceding chapters the concept of the-cyclic stationary state
has been examined theoretically and the solutions to two examples related
to a material parameter B8 . These studies have also shown that under
cyclic hiétories of temperature the directions in which the creep strains
are accumulated in relation to the steady applied loads are a function of
the parameters, .o /cye , Band n . Since the behaviour of many real
materials are so complex that the physical and metallurgical processes
~ involved are not_fully'understood: the theoretical deformation érocesses
are, at best, only approximations; So, although computer codes manipulate
and deliver numbers,vthe models on which they are based may differ in their
behaviour from the real materials to such an extent that, for certain
‘loading histories, the results may be erroneous and misleading.

The main objective in this chapter is to describe a series of experi-
mental tests that were conducted to provide an assessment of the various
assumptions made in the analysés of Chapters 6 and 7 and also to compare
the predictions of displacement rate with those observed. The tests were
conducted on a simulated two-bar model subjected to cyclic histories of
temperature and steady applied loads. This structure was chosen as a model

for two simple reasons: in the first instance it is probably the simplest
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| {
redundant structure imaginable and secondly, it is also one of the few
redundant structures available in which it is possible to measure,
experimentally, not only the deformation duriﬁg creep but also the stress
sharing conditions. |

(48)

Previously, Barnes et al simulated the two bar sfructure experi-
mentélly by means of two linked uniaxial tensile creep test machines
holding specimens of Nimonic Alloy 90. They observed the redistribution
of load that occurred for several initial stress conditibns at different
temperatures within the range 800-900°C, and in each case the results
were compared with calculations based on creep strain data obtained from
constant stress tests. These short term tests were extended further by
Bullard and Clifton(7§) to variable conditions of total load and temper-
ature. However, to the author's knowledge the behaviour of the two-bar
model under cyclic histories of temperature has not been investigated.

In the following sections details of the experiments are given and

the results compared with previously obtained uniaxial data.

8.2. Experimental Equipment.

The details of the experimental apparatus are reviewed only briefly,
as a more complete description is given in Chapter 10,section 10.1.

Basically, the apparatus consisted of two identical modified uniaxial
tensile test machine load strings, with their individual extensometers and
furnaces, arranged in pafallel and mounted in a frame of welded construc-
tion. The total load on the test specimens was provided by two fluid
filled drums connected by plastic tubing through a reversible peristaltic
pump, thus forming a closed system. This allowed the individual load on
each specimen to be varied although the total‘load remained constant. A

schematic diagram of the apparatus is shown in Fig.8.1.



The pefiStaltic pump used for fluid transfer was controlled by the
difference between the readings of sensitive extensometers mounted on
~each specimen. In this way the extension of each fest specimen was
maintained as nearly as possible equal to that of the other, thereby
satisfying conditions of compatibilitf. Therefore if the extension of
bar 1 increased above that of bar 2 , the pump was activated to trans-
fer fluid from the drum loading bar 1 to that of bar 2 and vice-versa,
thereby restoring 'equilibrium' of the system. . The sensitivity of the
control device was such that the strains differed by ét most 10'4 % strain.
Specimen loads were measured by high output strain gauged load cells.
A cyclic temperature history was achieved by enclosing one specimen,
“bar lA, within a furnace, of low thermal inertia, which was controlled
to remain constant at different temperatures for periods of 12 hours,
i.e. a cycle time of 24 hours. Thé other specimen, bar 2 , was main-
tained at constant temperature.
For technical reasons it was found more convenient to operate with

the temperature histories;

0y = 6.+ 80 0<tsAt/2
01 = 6, , MtJ2 st < bt (8.1)
62 = 0 0<tg At

and At = 24 hrs.

A facility in the control device allowed simulation of thermal
expansions electronically so that the case B = O could be achieved, i.e.
thermal expansion occurs but there is no resulting change in temperature

dependent properties.
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8.3, Test Conditions.

All the tests were conducted on specimens machined ffom the same-
commercially pure aluminium as used in the constant load tests described
in Chapter 5. Since the steady state uniaxial creep data obtained.at a
series of constant stresses and constant temperatures (section 10.2),
indicates that this material exhibits consistent creep behaviour it was
considered well suited for an initial experimental investigation.

The test specimens were manufactured folloWing the procedure given in
section 10.2.4. and the rigid setting-up procedure describéd was strictly
followed.

The experiments were conducted between room temperature, 20°C, and
150°C with several different combinations of 0. and A6 . Over this
temperature range the creep behaviour of aluminium is thought  to correlate
most closely with tﬁe strain-hardening hypothesis and this was, to a large
extent, borne out by the experiments. As recovery creep, which forms the
basis of the Bailey-Orowan model, is associated with temperatures in excess
of 0.4 of the melting temperature, in degrees Kelvin, the creep acceleration
observed in the theoretical study was not expected.

Before describing the test§ themselves, the strain-hardening theoretical
conclusions which are relevant to the temperature history 8.1 is first

reviewed.

8.4. Strain-Hardening Model.

For a history of stress and temperature (o),6;) followed by (o02,82)
for equal time intervals, the rapid cycling strain-hardening average creep-

rate is given by equation 7.11 which may be written in the form

%i_ - te)™ s @™ot ' (8.2)

where



n m-1
Boj mt s

(41
[
"

n m-1
Boz mt .

and S €2

Hence €; and €, are the creep rates at time t for constant stress
énd temperature tests at (0;,9;) and (02,05) Trespectively. Thé most
important feature of equation 8.2 is that the value of Ae/At 1is nearly
equal to the larger of €&, and &, . For example, if €, = 0.5 ¢; and
m ;93, then Ae/At = 1.04_é1'0.5m , and €; may be effectively ignored.
As a result the regions in Fig.7.7 are very distinct from each other and
the solutions corresponding to region 1 and region 2 (see Fig.7.2)
may be described in simple térms.

In region 1 the dominant strain rates occur when the stresses are
largest which, in both bars for the temperature history of equation 8.1,
occurs when the temperatures are 0 = ec . Assuming the strain rates during
the other halves of the cycle are negligible (i.e. when 6; = 6_ + A6 ,

C

0<tgAt/2 and 63

ec, At/2 < t < At) then the stress histories are

o = o -0%2 , 0<t <At/

op = o ®/2 LoMt/2stsnt (8.3)
aﬁd

o2 = 0 + 09/2 R 0<tg At/2

g = aq - oé/Z , At/2 <t g At (8.4)

where o is the average applied stress.

The theory therefore predicts that the two specimens will creep, at a
given time, at a rate which is 0.5" of the creep rate of a specimen held-
at a constant temperature ec and subjected to a constant streés g + 06/2
from time t = 0 . This assumes that the creep rates.at o - 06/2 at 8,

and ec + A6 make negligible contribution. Therefore if appropriate

14
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! values are taken from the experimental results, this may be'confirmed.
by the creep rates obtained from the uniaxial data.
Wifh the éxception of two tests, which were unsuccessful attempts
to simulate the conditions_of region 2 , all the tests conform to the
conditions of region 1 , therefore the straip-hardening theory will not

be extended to cover region 2 .,

8.5. Experimental Tests and Compafison of Results with Theory.

The two-bar test machine has been used for approximately twenty

tests that included several combinations of temperature difference and

~ mean stress. Several of these tests were conducted while the standard
of the apparatus was being improved and consequéntly a number of results
have pfoved unsatisfactory. As a.result of ekperience during these
tests several ﬁodifications were carried out and these are given in the
section on apparatus development in section 10.1. Some tests were also
abandoned due to mechanical and electrical failures of various components.
However ten>experiments have provided acceptable results and six of these
tests will be described he?e. Some tests were repeated to check the

: reprodﬁcibility'of‘fesults and these were found to be acceptable and well

vwithin the experimental error usually associated with creep testing.

'In Table 8.1 experimental conditions of six tests are given. The
thermal stresses quoted wéré evaluatéd on the assumption that
E =9 x 10° 1b/in? and the coefficient of thermal expansion = 26 x 10-6/°C.
In test 5 the thermél expansions were iﬁduced electronically and both
specimens remained at 20°C throughout the test.

The values of the material parameter B were calculated from the
constant load uniaxial creep data (section 10.2). It is clear from this
data that B 1is a stress dependent quantity, yielding smaller values at
higher stresses and, therefore, the values quoted are average values over

the range of stresses which occur in the test.



The initial stress difference on the bars was theoretically zero.‘
However, in practice due to the slight differences in the measured
Jamount of liquid in each drum, stress differences of the order of 20 1b/in?
were detected on load-up. These differences were, however, quickly
’rectified by the control system satisfying the compatibility condition..

All tests were conducted with a cyclic temperature history of périod

24 hrs. and were allowed to continue for 400-500 hrs.

Tests 1, 2, 3 and 5.

In Fig.8.2 a typical temperature-time graph is shown. Thié plot is
the temperature history of test 2 and illuﬁtrates the long term stability
of the furnace and temperature control system. In all tests the maximum
temperature occurring in a cycle was applied approximately twenty minutes
from the application of load after any small stress redistribution had
ceased (i.e. both bars were creeping at the same rate and no transfer of
load was occurring). In tests where the temperature ec -was above rdom
“temperature (20°C) both specimens were alloweq to attaih their steady
temperature for approximately 12 hrs. before the commencement of the
test.

Some transient phenomena occurred due to thermal iag of the furnace

'and the steady temperatures were achieved within i%.— 2 hours after the
temperature change was signalled. Although the transient may appear to
be of short duration, it will be shown to have a significant effect upon
theinterpretationof’the results.

The plot of temperature against time, Fig.8.2, was.oBtained from data
collected at hourly intervals by the laboratory data logger system, and .
whilst it clearly shows -the long term stability of the heating system it
does not show any short term instabilities. Chart recorders we?evused to

continuously ‘monitor thermocouple as well as load cell outputs to provide

a record of any short term fluctuations. In the lower portion of Fig.8.3
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the Chromel/Alumel thermocouple output corresponding to the fifth cycle
of Fig.8.2 is shown. | It is clearly seen that when the temperature
change is signalled the furnace system provides a progressive smooth
rise in temperature with no discernable overshoot. Likewise, the fan
assisted cooling curve shows no undershoot and reaches the lower equili-
brium temperature in approximately 23 hrs. During this test no large
short term fluctuations in temperature are observed, although from
inspection of digital data, fluctuations of the order 1_%°C occurred.

In Figs.8.4 and 8.5 the variation of stress with timé for the 'hotter'
bar are shown for tests 1 and 3 respectively. From these stress
histpries it appears that the stresses during the constant temperature
periods are far from constant. However, the behaviour displayed is
not that whicﬁ actually‘ ocqurred but is an undesirable feature of the
switching devices employed in the data logger system interfering with the
load cellloutput. In practice the stresses remain stable as can be
judged from the chart recorder output shown in Fig.8.7. (This corresponds
to the fifth cycle of Test 3). The large 'spikes' on this plot and that
of Fig.8.3,.occurring hourly, are interference from the déta logger system
as it scans through ifs selected’channels, the high frequency signals are
due to the pump confrol system and also to other electronic equipment
* located in thé labofatory. These unwanted interferences still persist
even after much of. the équipment was extensively shielded and is an obﬁious
problem when such sensitive instrumentation is used.

The stress histories of Figs.8.4 and 8.5 do, however, appear to closely
conform to the concept of a constant fesidual stress field. After the
first.few cycles the stress histories remain stable and cyclic, oscillating
between two fixed limits. The strain-time graph, Fig.8.6, on the other
hand, does not achieve a constant stationary state displaéemeht rate until

far more cycles have been accumulated. The general form of the curve still



follows the form of the constant stress behaviour with a preliminary pfimarx
portion prior to a steady creep rate being achieved. The différence
between stress limits in Figs.8.4 and 8.5 is theoretically equal to the
thermal stress o® , but experimentally these values are found to be much
smaller. In Table 8.2 the experimental values, row (a) are compared with
the theoretical values, row (b), and their ratio is given in row (c).

It is seen that the experimental thermal stress is only 64% to 77% 6f
that expected theoretically. The reason for this is difficult to discern
from tests 1, 2 and 3 but can be more clearly seen from Test 5 .

Ih Test 5 the thermal expansion was simulated electronically by
applying an additional voltage equivalent to the thermal expansion to the
extensometer output of done bar. The control system interprets this voltage
as an extension of the bar and immediately signals the pump to transfer
liquid to the other drum i.e. increasing the creep rate of this bar, until
compatibility is again restored. In this test the thermal expansion is
therefore induced instantaneously whereas in the preceding tests it occurred
over the period of the temperature transient. However, fhere still remains
a transient load as the pump required a finite time in which to transfer
load. The stre;s history corresponding to this test is shown in Fig.8.8
and again conforms to the concept of a cyclic state. Immediately after
the simulated temperature change a peak in stress is observed which rapidly
declines to a loker value which then,.in the cyclic state, changes slowly.
This phenomenon is caused by a creep strain which occurs over a short time
interval. Further, over a complete cycle of the temperature history it
appears to provide no nét accumulation of strain and is apparently an
anelastic strain which acts rather in the manner of a delayed elastic strain.
If the stress histories of Figs.8.3 and 8.7 are examined closelyrit is seen
to occur to a less marked effect. The stresses appear to 'overshoot'
their equilibrium values and then slowly reach equilibrium. It appears

that this 'delayed' strain is relatively insensitive to temperature, giving
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a similar magnitude of effect inrboth'tests 1 and 2.

In rows (d) and te) of Table 8.2 the average experimental stresses
are given and in rows (f) and (g) the predicted values from equations 8.3
and 8.4 are given. The theoretical values satisfactorily bracket the
obserfed values and despite the discrepancy in the thermal stresses give
a good prediction of observed behaviour. In row (h), the predicted
exper}mental creep rates are compared with the observed values, and are
within the range of expected experimental error.. The experimental creep
rates were taken as the average creep réte; within the time interval
300-500 hrs. and the constant stress rates over the same time interval
were used in calculating the theoretical values. It is worth noting
that tests 1 and 5 yielded the same value of the creep rate, whieh in
accordance wifh the theory, shows.that the effect of tehperature on the
material has had no effect on the creep rate. Further, the creep rates
predicted and recorded tend to be greater than those which are required
in design. |

The remaining two experiments (4a) and (4b) were conducted under more
severe conditions and were intended to simulate the conditions of region
-2, where the deformation is dominated by creep strains occurring during the
v'first part of the cycle. The tests were identical and gave near identical
creep rates But although the cyclic stress histories were similar, apprec-
iab1e~differences are apparent.  The strain-time and o stress hisf-
~ ories are shown in Fige.8.9'and 8.10 and details of the experimental
results given in Table 8.3.

In-Fig.8.9 it is seen that the creep rates during the-first part of
the cycle are far greater thaﬁ during the second part, and thus conforms
to the condition of Region 2 . For o = 9000 1b/in? the stationary
state solution corresponding to the first part of the cycle was evaluated
directly from the material data yielding o; = 6000 1b/in? and

o& = 12000 1b/in2. (Due to scatter in the data values were rounded off
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to the nearest 1000 1b/in2.) The theoretical stress history for Region
2 type behaviour is given in column (a), rows (f) and (g) of Table 8.3.
Dne to the theoretical value of oe_ being 14,660 1b/in?, the stresses
predicted for the second half of the cycle, o; = 20,280 1b/in? and

gy = - 2660 1b/in® are unreasonable since the yield stness at room temper-
ature is in the vicinity of 16000 1b/in?. Therefore, plastic strains
must be occurring during each cycle and this aspect of these tests take
them outside the range of applicability of the theory.

The experimental thermal stress lies close to 8000 1b/in2 in both
tests and the ratios of experimental to theoretical oe are 0.56 ‘and
0.52, (row (c) of Table 8.3). If the experimental oe is adopted in
the theory then the resultant stress history is that given in column (b),
row (f) and (g). This closely follows the observed history. The
creep strain rate predicted from this stress history (row (h)) yields
9.10’“% strain/hr. which is appreciably below the observed value of
3 x 10—3% strain/hr. However if it is assumed that Region 1 type
behaviour is occurring then the stress history given in column (c), TOWS
(£f) and (gj is obtained. This history gives an excessively high creep
rate in'excesskpf 1062% strain/hr. as the maximum stresses are again
above yield. | |

The resnlts-of-these two tests may be explained thus: fhe condition
normaliy corresponds to that of Region 1 , but plastic straining occuis
" at the beginning of thé second part of the cycle introducing a high strain
rate. The history of o¢; is shown in Fig.8.10 for test 4a and possesses
some interesting features. During the first part of the cycle appreciable
stress redistribution occurs nnd tne apparent ce increases over a number
nf cycles presumably due to plastic strain hardening. Although the
tests are outside the applicability of the theory, it is clear that the
répid cycling solution indicates that plastic straining occurs. Further,

the creep strain rates which occurred and were predicted would, in design
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terms, be considered excessive and hopefully avoided since a creep strain
rate of 3 x 10-3% strain/hr. corresponds to 26% strain/year. Normal

~design work would be in the region of 1% strain/year.

8.6. Discussion.

The experiments descfibed have simulated the two bar structure in
which redistribution of stress can be caused by creep. It has been
established that for constant applied loads and cyclic histories of
temperature there exists, as predicted by the theory, a constant residual
stress field and further, the strain histories presented show that cyclic
stationary states are achieved after relatively few cycles. From the
theory postulated in Chapters 6 and 7 a useful description of the stress
and strain histories can be obtained from calculations applying constant
stress creep data according to the strain hardening hypothesis providing

the appropriate stress regime in which the structure is operating is known.
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[ [ . 2 6* e*
" Test ec( C)| 46(°C) | o (1b/in%) o ok B

No. (theoretical)

| 20 | 40 5733 4510 1.27 0.5

2 100 50 6300 5640 1.12 0.7

3 100 50 5100 5640 0.90 0.7
4a 20 130 9000 14,660 0.61 1.4
4b 20 130 9000 14,660 0.61 1.4
5t 20 40 5850 4510 1.27 | 0.0

* -
oe calculated assuming E = 9.10% psi and o = 23 x 10 6/°C .

In Test 5 the thermal expansions were induced electronically.

Table 8.1 Test Conditions




Test
Number 1- 2 3 >
E"Perl’ge“tal 3140 . 4240 3590 3480
[e)
Theoretical :
S0 4510 5640 5640 4510
0
Ratio T, 0.70 0.70 0.64 0.77
c .
0<t g At/2] 3660 4180 2410 4550
. o)
2 | At T 0 6012 8024
= |5 < teat 6860 841
z
g
S5 lo<ts<at/2| 8000 8460 7830 7155
(48]
= 02
| At —
T tgoat 4570 4210 4270 3680
o< tgat/2] 238 3480 2280 3595
-
2 |4 <t et | 7980 9120 7920 8105
=
5
2 [0stsay2| 798 9120 7920 8105
[6a)]
= 02
%t— stst 2380 3480 2280 3595
_5 N -4 -
Exp. 3.2 10| 2.4 100" 1.1 107" | 3.5 10
CreeE Rate
% Strain/hr. ‘
Theory 2.10° | 2.5 107" 1.3 107% |2. 107°

In Test 5 , thermal expansion was simulated electronically.

All stress are in 1b/in2.

Stress Histories and Creep Rates for Tests 1, 2, 3 and 5

Table 8.2

8.14



Test 4a 4b
Number
Experimental
oe 8300 7580
Theoretical
Oe* 14660 14660
oe
Ratio I, 0.56 0.52
o
0 t< At/2 3540 . 6130
o)
2: —
E |4 < teat 11790 13720
m
=
% 0O tg At/2 14280 11960
[o W)
o 02
BEets at 5940 4390
(a) (b) (c)
0 tg At/2 6000 6000 1670
5 .
a b
3] %Es t < At | 20660 | 12000 16330
i3
8 0< tg At/2 (12000 12000 16330
= o
At
7?-5 t < At -2660 4000 1670
Exp. 3.04 10 3. 10
‘Creep Rate 4
% Strain/hr. (b) 9. 10
Theory (c) > 10'2
Table 8.3

Stress Histories and Creep Rates for Tests 4a and 4b
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Chapter 9

Discussion and Conclusions

The calculations descfibed provide a fifst step fowards‘an
understanding of the complex effects of variable temperature on creeping
structures. An attempt has been made to describe the'principal features
of structural creep behaviour and to identify the material test
. parameters which are likely to be most useful in providing an estimate
of creep deformation. It is found that referencé stress technqiues
coupled with bounding methods based on idealized material models provide
a rapid means of assessing structural performance.

A techniqué is established for predicting stationary state
deformation rates of a creeping structure, subjected to time constant
‘temperature g;adients, from a single uniaxial test conducted at a
reference stress and a reference temperature. By relating the prediction
_of struétural behaviour directly to test data the uncertainties involved
in the mathematicél definition of material creep behaviour are avoided.
The potentially most useful application of the reference stress/reference
temperature technique is for structures subjected to variable loads and
variable temperatures. When cyclic histories of temperature occur the
bounding solutions may be expressed in terms of a material parameter B
which effectively couples structural behaviour to material behaviour.

It is found that distinct regions of behaviour displaying the effzcts of
stress redistribution processes can be described in terms of =

together with the appropriate reference stress and reference temperature.
Using this method the statiomary state deformation rate of a structure
subjected to a cyclic history of temperature can be obtained from a
constant load uniaxial test conducted at thc reference stress and

reference temperature.

9.1




~

The results of the experiments conducted on aluminium'beam 
structures subject to constant load and thermal gradient correlate with
uniaxial data obtained at thé“réfgrence temperature and 1end support to
the reference stress/referénce témperature technique. Experiments on a
simulated two-bar . structure were designed so that an assessment of the
" behaviour of structures under cyclic histories of temperature could be
made. Although the temperature historiés differ in detail from those
assumed in the theory it is clearly shown that there exists time constant
residual stress fields. Furthermore the stress histories used in upper
bound calculation are achieved within the first few cycles. for a wide
range of average strain rates. Recovery does occur but appears to be
somewhat less than predicted by the Bailey-Orowan model. A useful
description of the cyclic stress and strain histories can be obtained by
applying constant stress creep data according to the strain-hardening |

model providing the value of the material constant P is known.



- o : Chapter 10
AEBendices

10.1. Two-Bar Uniaxial Tensile Testing Machine

One of the main problems in the field of engineering structures in
which creep occurs is that of extending basic (constant stress) creep
data to situations in which the stresses are known to vary owing to the
mutual constraint (compatibility) between components or regions. The
two-bar model system is probably the simplest redundant structure
available and is one of the few redundant structures in which it is
possible to measure experimentally, not only the deformation during creep,
but also the stress sharing conditions. The two conditions to be

satisfied in the experimental simulation of the two-bar system are:

(i) The total load in the 'parallel creep' system must
remain constant, although the proportions borne by

the two components may vary with time.

(ii) The extensions of the two components must remain equal

with time.

It was clearly impracticable to set up the physical equivalent of
the two-bar system and to expect to control their individual temperatures
over the whole of their lengths if truly rigid end members were to be
used. Nor would it be possible to measure individual stresses in such
an arrangement. The éolution was to build a machine on the lines

(48) (77). Both workers have used

suggested by Barnes et al and Lomax
coupled standard uniaxial creep testing machines to provide simulation of
the two-bar system but in view of the 'inherent' difficulties usually
encountered in creep testing this idea was dismissed and a multi-specimen
machine designed.

Excessive variation in certain independent test parameters (e.g.
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témperature) may alone be sufficient to lead tOVSErious loss in precision
-and providé'creep data having a large scatter band but additionally, CTross
interference between apparently minor variations among depenéent variables
"(e.g. heat flow and stress distribution as functions of spécimen geometry)
may produce equally significant discrepancies. Penny and Leckie 68), fbr
instance, have drawn attention to the fact that material data scatter can
arise from two quite distinct sources, viz. intrinsic variations in
material properties and inadequate control of test conditions. They
suggest that, given the high precision control qf temperature, etc.
(normally better than the 1imits required by B.S.3500) and with careful
design to reduce non-axiality of loading, the second source of scatter is
virtually eliminated. An extensive investigation into the effects of
bending on the tensile test has been presented recently by Schmieder(79).
This includes assessments of earlier contributions made by Jones and Brown

(80 (81)

, and Penny

Where appropriate, the recommendations made by
Schmieder are incorporated into the machine,

The geﬁeral arrangement of the machine is shown in Figures 10.1 and
10.2, It comprises of a welded construction main frame, two individual
load trains with specimens and extensometers, and an electronically.
controlled loading system with the facility for continuously varying the
loads on each specimen. Two tubular eleptrical resistance furnaces of

low thermal inertia provide heating of the specimens.

Subsequent sections describe each part of the machine in turn.

10.1.1. Main Frame and Components

The general requirements of a creep testing machine having desirable
squat and massive proportions are to some extent compromised by the
requirements of specimen heating,.extensometry, load cell provision and
accessibility. = In this machine thg two individual load trains are incor-
porated into a rigid main frame that is both compact and economical to

build, but more importantly allows all location faces to be precision
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machined in one operation. The machine follows conventional uniaxial
machine manufacturing practice with 3in. steel tubes for the columﬁs and
lin. steel plate for the base and top and bottom location plates.

As the tests to be conducted in the machine were to include variable
temperature tests, the overall lengths of the load trains are kept ;s short
as possible in order that thermal expansion effects on lever beam rotation
are small but not too short that the condition of constant load is violated.

The relationships between the basic dimensions of the loading system
were determined from consideration of the simplified system shown in
Figure 10.3. It can be shown by taking moments about O that the speci-

men load, P , and the applied load, W , are related by

. Wb Cos ¢
~ a Cos (£-n)

If n is small relative to £ then the lever ratio b/a is
independent of the angular rotation £ of the beam. It may also be shown

that the rotation, n , of the specimen load train is given by

_ -1{(1 - Cost)
n - fen [(h/a + Sine:):l."

Therefore, providing h/a 1is maintained large relative to uﬁity and
the angular rotation £ , does not exceed about five degrees, n is
maintained small relative to £ . In addition it was desired that for a
temperature change of 400°C on the load train, a lever beam rotation of
the order of one degree was tolerable. The final dimensions of h = 33in,
and a = 2in. adequately satisfy these requirements.

With the load tr;ins being shorter than in conventional uniaxial
machines and load levels considerably smaller than in conventional uniaxial
creep tests great emphasis has been put on the elimination of non-axial
strains on the specimens. Non-a*ialify of loading distorts the strain
field and results in bending stresses being superimposed on the required
mean axial stress. Under such conditions, a randomness in measured

strains and rupture lives can be expected.
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The lever beams are supported on pinned knife bearings bolted in the
top plate. The main reactions act along the longitudinal axes of the
columns and thus sensibly prevent rotation about the fixed base centre line.

The elements of the universal block system can be seen in the photo-
graph of the assembled load train shown in Figure 10.4. All components
including the external joints and pull rods are precision machined to
better than + 0.0005in.

Specimen load measurement is accomplished through measured deflection
of stiff proof rings incorporated in the base of each load string. By
boring pin link holes at right angles to each other, the proof rings also
act as the base universal joint. These are connected by manually adjustable
collars mounted on thrust bearings to the load train reaction base and

thereby allow levelling of the lever beams during tests.

10.1.2. Specimens.

Standard circular section uniaxial tensile test specimens are of the
type recommended by Penny et al machined to the dimensions of Figure 10.5.
The protrusions machined at each end of the gauge length accurately define
the gauge length and provide location for the extensometer clamps.

Repeatability of specimen manufacture is assuréd by closely following
the metal cutting techniques detailed in section 10.2.4. on uniaxial tensile

testing.

10.1.3. Extensometer.

The measurement of displacements under cyclic temperature conditions
is difficult because of expansion and contraction of the extensometer system
dﬁring temperature changes. The system adopted on the two-bar machine,
Figure 10.4, is similar to that used for normal uniaxial tensile machines,
except that the four vertical rods are machined from Invar 36 which has a
coefficient of expansion of < 10_6// deg.C. and enables displacements of

the aluminium specimens to be measured within 6 per cent of the actual
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values without resorting to costly equipment.

The output from each L.V.D.T. (Linear Variable Differential Trans-
former) 1is 100 mV/thou and in order to increase the sensitivity of the
system and provide a check on axiality of loading, two L.V.D.T's are
incorporated in each extensometer. The combined sensitivity of the system
is 5 X 10 "in. over a linear range of 0.2in. The transducers are series
coupled and the voltage output connected to the load control system.

Tappings are provided to allow individual L.V.D.T. voltages to be recorded.

Micrometer heads incorporated in the extensometer base clamps allows
the initial voltage output from each pair of L.V.D.T's to be equalized.

This 1is a requirement of the control system.

10.1.4. Specimen Heating and Temperature Control.

Each specimen is heated by a tubular three-zone electrical resistance
furnace of low thermal inertia which allows both rapid heat-up and cool-down.
Overall temperature control is affected by means of a Eurotherm Proportional
Temperature Controller firing an independent thyristor unit in the power
supply to the furnace. Controlled heating rates and a certain amount of
overshoot suppression are provided by derivative and integral control
facilities built into the controller. The sensing device is a welded
Chromel/Alumel thermo-couple strapped to the centre section of the specimen
gauge length.

To eliminate any temperature gradient along the specimen, the furnace
windings are connected as three distinct =zones. It is possible to 'trim'
the proportions of the total power to each zone by variable autotransformers,
the settings being indicated on the separate controls on the side panels.

Two reference thermocouples embedded in the specimen protrusions allow
monitoring of the temperature gradient.

A fan bolted to a central port hole in the furnace side forces air at
ambient temperature over the furnace windings and test specimen to give rapid

reductions in temperature. The duration of fan operation is adjustable
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ahd controlled by an electronic timer.

Thermal cycling with period of four to fifty hours is achiéved by a
programmable master timer system operating a set of relays to which are
connected the temperature control unit, the fan-timer system, the control
thermocouple and an adjustable constant voltage source. At all times thé
temperature control unit is set to the maximum desired temperature. During
the hotter part of the thermal cycle, the control thermocouple is directly -
linked via a relay,to the temperature control unit and the set temperature
is held. During the change from the hotter to the cooler part of the
cycle, the timer system switches the constant voltage source in series with
the control thermoéouple and provides power to the fan which rapidly reduces
the temperature. The constant voltage is equivalent to the difference in
thermocouple output at the desired higher and lower temperatures of the
cycle and therefore increases the control voltage to the temperature con-
troller. The controller then switches off the supply to the furnace and
as the specimen cools the control signal decreases until the combined signal
equals the original control signal. At this point the fan is switched off
and the temperature is controlled at this lower value. During heat-up the
constant voltage source is faken out of circuit and the control thefmocouple
is again directly linked to the temperature controller, which then switches
full power to the furnace until the control thermocouple output equals the
set value. In this manner controlled thermal cycling is achieved.

At all temperatures up to a maximum of 400°C the temperature
gradient along the specimen is less than %FC, the maximum overshoot is
approximately 5°C , aﬁd undershoot is negligible. It would be possible
to remove the temperature overshoot by lowering the thermal inertia of the

System, but doing so would produce long term temperature instability.



10.7

10.1.5. Loading System

The load acting on each creep test specimen is provided bf a drum
capable of Holding up to 10 gal. of liquid. The actual weight of the
drum is counter-balanced, so that with a leverratio of 10:1 , a full drum
exerts a puil on the specimen of approximately 1000 1b. Provision is
made for adding additional tare weights if needed. Flexible pipes
connected via a reversible peristaltic pump allows liquid to be transferred
from one drum to the other. The direction and rate of flow of liquid is
~ controlled by the control system and is a function of the L.V.T.D's output.

Measurement of the loads acting at any instant of time is achieved
by calibrated load cells in the load train base and additionally by sensi-
tive load cells connected between the lever arms and drums.. These high
resolution load cells have a linear response over the ranée 0-200 1b. with
a change of 0.01 1b. being detected.

“The liquid is an undiluted anti-freeze solution (glycol) chosen
because it is readily available and to counteract any possibility of corrosion
in the system. As the machine is in a laboratory environment where large
changes in humidity cannot be catered for, glycol offers a cheap alternative
to water.

Cyclic loading is achieved by attéching dead weiéhts and load hangers
to the base of the drum and bolting motorized jacks, controlled‘from the

programmable timer, to the loading platform.

10.1.6. The Control System.

The pfimary function of the control system is to compare the voltage
outputs from the two L.V.D.T. extensometer systems and to arrange'for the
pump to provide flow of liquid in the desired direction so that compatibility
conditions remain satisfied.

A block wiring diagram of the control system is shown in Figure 10.6.

Since the voltage output from each extensometer system varies from
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-10V to +10V d.c. and in order to avoid control instability about the null
point, the control system proVides a 10V d.c. offset effectively trans-
ferring the linear range to 0-20V d.c. To provide impedance matching
each output is connected in series with é matching amplifier (IC1 and IC2).

The compatibility condition is satisfied by reversing the sign of
one pair of L.V.D.T's output and then feeding the two signals (one positive,
one negative) into a differential amplifier (IC3). The output of IC3
drives two comparators (IC4 and IC5) which are tiiggered by positive or
negative demand. If the magnitudes of each extensometer system signals
are equal, there is no demand. The comparators drive reed relays which in
tufn drive heavier relays which energise the pump motor to provide flow of
liquid in the appropriate direction.

The band level at which the reed relays are triggered is adjusted to
a differential of + 1mV which corresponds to a specimen displacement of
+5«x 10_6 in. At such small voltage levels, large random voltage spikes
can be detected and in order to prevent simultaneous energization df the
two heavy outfut‘relays an interlock device is fitted.

As a‘result“of experience during.the first few tests it was found
that as the apparatus was so sensitive to very small changes invdisplacement,
pump ‘hunting’ éccurred. This is overcome by incbrporating small electro-
nic timers with a ;ime delay of two seconds into the system. Thus the
system only operates if the demand signal occurs for longer than two seconds.
This produces a highly sensifive stable system that operates the pump con-

_ tinuously when either total lqad or températures are changing and inter-
mittently at other times.

Additional provision is made in the control system to simulate thermal
éxpansions electronically by switching in the appropriate voltage steps in

series with the L.V.D.T. outputs.
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10.1.7. Recording Equipment.

Chart recorders provide a visual display of voltagés corresponding
to extensometer displacements, specimen loads and temperatures. In
addition, this information is also recorded, at hourly intervals, by a
Solartron D.T.U. Data'Logger system on punched paper tape. The information
from fhese tapes is processed by I.B.M. computer with graph plotting facil-

ities. Appropriate voltage-time graphs can then be obtained as desired.

10.1.8. Bending Tests.

A proving set of time-independent bending tests were conducted in the
machine using standard mild steel uniaxial specimens and dead weight loads.
Bending is defined as the difference of two diamefrically opposite surface
stréins divided by their sum and was measured at a sequence of temperatures
up to 250°C by electrical resistance strain gauges bonded to the specimen
sides at the centre of the gauge length. -

The bend test results obtained at room temperature, showﬁ in Figure
10.7, are sigﬁificantly better, especially at low load levels, than those

reported by Penny and Leckie(78). Similar.results were obtained at the
higher témperatufes aﬁd are due primarily to the accurately machined and

assembled load train components and also great care in the setting-up

procedure.
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10.2. Uniaxial Tensile Tests.

The collection of fundamental creep data for a single engineering
material is a time consuming and expénsive operation. Exploration of
creep behaviour at successive.temperature levels requires evaluation of
both thermal and stress fields within the specimen geometry, selection of
appropriate heating methods and assessment of precision of measurement
under thermal and mechanical transients.

In the following sections the experimental testing techniques used
in the evaluation of the uniaxial creep behéviour of commercially pure

aluminium will be described.

10.2.1. Uniaxial Testing Machine.-

The creep tests were conducted in standard uniaxial creep testing
machines similar to that shown in Figure 10.8 incorporating knife edge
pivots and a lever system with a 10:1 ratio. The machines were mounted
on anti-vibration pads to minimise vibration effects and the use of
accurately machihed universal joints in ‘the loading train ensured axiality
- of loadipg. .Greaf care in centering the specimens to within 0.0005 ins.
in the universal’Blocks minimised -any bending effects.

Specimen load was measured using a strain gauged load cell connected
in series with thélloading train. The loads provided by tare weights, were
applied at a constant rate.by.a screw jack system driven by an electric motor
through a reductioﬁ gearbox.

For tests carriéd out at temperature the specimen and loading train
was surrounded by a three zone electrical resistance tubulér furnace.
Individual control of the power input to the three zones allowed temperature
gradients of less than %fc over the entire specimen gauge length to be
obtained. The overall temperature, controlled by a C.N.S. proportional
controller, using, as a sensor, a platinum resistance thermometer embedded

; o
in the furnace windings, was maintained to within i_%-C of the desired
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value. Chromel/Alurnel thermocouples embedded in the specimens allowed
monitoring of specimen temperature.

Wherever possible experimental measurements were represented by
electrical signals. These included outputs from displacement transducers,
load cells, and strain gauges. In all cases, d.c. systems were used
because of their convenience.

The main recording system was a Solatron Digital Logging system
capable of recording changes of 1 x 10 »~ volts. In addition to this system

several chart recorders were also used.

10.2.2. Material.

The material selected for testing was a half-hard commercially pure
aluminium in sheet form 0.25ins. thick. All the specimens were obtained
from one sheet thereby providing material repeatability that is otherwise
difficult to obtain with a commercial purity material.

The degree of anisotropy exhibited by the material in the longitudinal
(rolling) and transverse (non-rolling) direction has been shown"""" to be
approximately five per cent on steady state creep strain rates. This has

been supported by a limited number of creep tests performed at room temper-

ature by the author.

10.2.3. Specimens.

Two types of specimens were used to investigate the uniaxial creep
behaviour of the material. As the material was only available in sheet form,
both types of specimen were machined with their longitudinal axes parallel
to the rolling direction in order to reduce the effects of anistropy.

The first type was a rectangular section sheet specimen. This
standard specimen, shown in Figure 10.9 has a two inch gauge length, 0.25ins.
X 0.375 ins. in section. Strains were measured with either electrical res-
istance strain gauges bonded to the centre of the gauge length sides or

alternatively by an extensometer system. Basically the extensometer consists
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of four relatively rigid rods clamped to the specimen by machined heads and
attached to a sensing linear variable differential transformer, (L.V.D.T.),
Figure 10.11. Each head, cruciform in plan view, is in two parts and is
clamped to the specimen by tightening connecting bolts, contact with the
specimen being made by hardened points. Relative movement of the heads
transfers a relative displacement to the L.V.D.T.. With a gauge length
of 1.50ins., 6 x 10_6 per cent strain could be detected. This system was
employed for tests conducted at temperatures where the feliability of
available strain gauges was in doubt and also for room temperature tests
whilst the second type of specimen was being developed. Additionally,
this system has the advantage that measurements can be made by the L.V.D.T.
at a position suitably removed from the furnace. -
The second type of specimen was designed to make the task of creep
data collection less time consuming. Much energy was devoted to the
design and development of a specimen capable of yielding in one creep test
the equivalent information gained from three tests conducted at different
stress levels, This idea was feasible since only steady state creep rates
were of interest. The triple-section specimen shown in Figure 10.10 is
the result of an exhaustive program of photoelastic analyses. The original
design criteria were that in order to ease the process of manufacture,
overall dimensions and locating holes should be the same as in the standard
sheet specimen; stress concentration arising from the transition between
gauge lengths should not cause premature failure, and finally a region of
pure tension extending to 0.2ins. either side of the centre of the gauge
length to accommodate 0.25ins. electrical resistance strain gauges was
required. The triple section sheet specimen which satisfies these criteria
hés three 0.75ins. parallel sided gauge lengths of widths 0.375, 0.300 and

0.250 inches giving stress levels in the ratio 1:1.25 : 1.5 respectively.
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10.2.4. Specimen Manufacture

In order to reduce the amount of scatter in results obtained from
creep tests, the repeatibility of specimen machining is important. In all
of the specimens machined, metal cutfing techniques which take small rapid
cuts were employed. By using these techniques the regions of material
adjacent to the machining cuts which were influenced by plastic straining
were contained within a localised region. The specimens were first marked
out and then cut 0.1 in. oversize. The circular gfipping holes were then
accurately drilled and bored to size on a jig boring machine. These holes
also provided the specimen location on a purpose built machining jig. The
overall length and width of the specimen was then machined to size. Finally
the gauge lengths were accurately milled using a side cutter eitﬁer side of

the centre line to final size.

10.2.5. Isothermal Uniaxial Tests and Results.

In all the tests performed the specimens received a twenty-four hour

temperature 'soak' before commencement of the test.

Short Term Tests.

A series of uniaxial 1limit load tests were performed to evaluate the
variation of the time-independent material properties with temperature.
The tests were carried out on the standard single gauge length specimens at
a sequence of temperatures between room temperature and 250°C . As the
strains to be measured were outside the range applicable to the available
strain gauges the L.V.D.T. extensometer system was used. During the
eighteen limit load tests performed this system has proved uttérly reliable.
Each test was completed within a few minutes thereby ensuring that the
material behaviour Qas sensibly time-independent.

Typical examples of the stress strain plots obtained are presented in

Figure 10.12. Three tests were conducted at each temperature level and

variation of less than 0.5 per cent on 0.2 per cent proof stress was
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observed. Over the temperature range at which.the tests were conducted
the variation of .0.2 per cent proof stress with temperature appears
approximately linear, Figure 10.13 . The elastic moduli on the other
hand remained approximately constant at 9 x 106.1b/in2 within the temper-
ature range RT—lSOqC . Above 150°C the value decreased rapidly being

6 x 10° 1b/in® at 250°C .

CreeE Tests.

A series of creep tests at constant load were performed for various
values of the applied loads at a sequence of temperature levels (20,100,125,
150 and 200°C). The normal test duration was 600 hours.

With regard to the experimental technique it is worth recording that
approximately 95 per cent of the tests performed using Both types of
specimen provided useful results. This was due primarily to a rigid setting
up procedure being adhered to during the testing program. Most failures were
attributable to malfunctions of strain gauges and recording equipment.  Some
problems with temperature control were also experienced.

At temperatures above 150°C and for the stress levels (> 4000 lb/inz)
of interest when this testing program was carried out no clearly defined
steady-state behaviour was observed, the méterial exhibiting only regions of
primary and tertiary creep. This behaviour is outside the context of this
thesis and was not considered further.

The results of the tests conducted at room tempe?éture (20°C) showed
that the material exhibits logarithmic creep. As there was novsteady—state
region average creep strain rates were taken over the time period 300 - 550
hours and the plot of log °/. strain rate against log sfress obtained is
shown in Figure 10.14.

As a check on the straiﬁ measurement devices three tests were conducted

using the standard sheet specimens to which both the L.V.D.T. extensometry and

strain gauges were attached. No marked difference between the resulting

average creep strain - time curves was detected. In addition the results
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obtained using the triple section specimens were repeatable and well within
the scatter band usually associated with creep testing. The plots of log
°/o strain rate against log stress obtained from the tests conducted at
100, 125, and 150°C are shown in Figures 10.15, 1Q.16 apd 10.17. It was
found that at these temperatures the material attained steady-state creep

rates‘approximately 200 hours after the application of load.

10.2.6. Discussion of Results.

The room tempefature results, Figure 10.14, show that the value of
the stresé index .n remains constant at 3.9 up to a stress of 12,800 lb/in2
and thereafter incréases rapidly becoming infinitely large at the yield
stress (16,000 lb/inz). This is in accordance with the results of Leckie

(24) who applied the structural theorem of Ponterr37)

et al to a polycryst-
alline aggregate considered as a multi-component structure. They concluded
that the plastic contribution to the total deformation is unlikely to be
significant until the applied stress is n/(n + 1) of the yield stress.
‘Therefore the strain rate should not increase significantly until the stress
n/(n + 1)3y = 12,800 lb/in2 is reached. This stress level is in agreement
with the experimental results. The steeply rising portion of the curve
between 12 - 14,000 lb/in2 may be approXimated by a straight line éorres—
ponding to a stress index equal to 18 . Thus it is seen that at room
temperature the material behaviour is sensitive to the value of the appiied
stress and the benefits of a reference stress approach fo structural defor-
mation can be appreciated.

It was found that in the creep tests performed above:approximately
13,500 lb/in2 quite large instantaneous plastic strains relative to the
creep strains occurred. Below 7000 lb/in2 the creep strains were of the
order 0-02°/, for 200 hours testing and it was difficult to maintain
standards of accuracy when dealing with such small strains.

The results of the tests conducted at temperature show that as the

temperature increases the transition between the two previous approximately
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linear regions becomes less easily defined, and the creep rates at any given
stress are correspondingly higher. Between 5000 and 10,000 lb/in2 the
stgeply rising portion of the curves become approximately linear with a
stress index that increases appropriately. It was found that above
approximately 0.8Gy creep rupture occurred within-thé first 100 hours and
no discernable steady-state behaviour was observed. Even at these rela-
tively high stresses it was found that the instantaneous plastic strains
were small in comparison with the elastic strains.

At low values of the applied stress the gradient of the curves show
a rapid change and tend towards unit& when linear visCous.;reep becomes
operative. Some support of this is provided by the deformation-mechanism
maps of Ashby(sz). He presents a map for.pure_aluminium_from which it is
evident that for temperatures above 60°C and stress levels below approx-
imately 4000 lb/in2 ,n~>1.,

It is seen from the results that the material behaviour is highly
dependent upon both stress and temperature and that the simple constitutive
relationship given by a Norton-type law is clearly deficient. However for

these reasons it provides an extreme test for the reference stress, reference

temperature approach to the creep deformation of structures.
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10.3. Derivation of Stationary State Deformation Rates.

10.3.1. Beam under Flexure.

Beam of rectangular ]

section, width b and depth d M\ -———TF““ M
" | l oyl Iy

d , subjected to end moments

. ~—b—
M and a temperature

>\

gradient 6(y) , through the N

thickness.

Exact Solution.

The creep strain rate at distance y from the lower edge is given

€(y) = k(y + ¢d) o 1051

where |¢d| denotes the position of the neutral axis from the lower edge,

K the curvature rate and
. n
€ = ko exp(-AH/R®).

From equilibrium conditions with zero axial loads

1 1/n

(o + x) exp(AH/nRB(x))dx = O , ’ i0.3.2.
o

and the moment of the stresses must equal the applied moment
1 .
M= o.x dx , 10.3.3.

o
where x = y/d .

Equality 10.3.2. yields the value of ¢ and equation 10.3.1. substi-
tuted into equation 10.3.3. gives

. n
K = %-[3@%] I ' 10.3.4.
bd :
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where

-n

1 _ A
IB = [ 2 J (o + x)l/n X exp AH/nRe(x)dx] . . ‘_ 10.3.5.
o ,

A value of IB was obtained by solving equation 10.3.2. for ¢

using a Newton-Raphson method and thence by e?aluating equation 10.3.5.

For isothermal conditions ¢ = - 5 and IB reduces to
_ 2n+1
IB = 2 { 0 }> / exp(AH/RGi).

The stress field is given by

) 1/n oM ’
o(x) = [(¢+x)IB exp (AH/R6 (x)) ] EEE- . 10.3.6.

Approximate Solution

Assume a stress function of the form
‘o(x) = o exp {AH/nR6(x)}.
o

From equilibrium conditions with zero axial loads gives

¢ 1 .
Iexp[AH/nRB(x)]dx‘— ’ exp{AH/nRB(x)]dx = O 10.3.7
Y ¢
and
1 ¢
2 = x exp[AH/nR6 (x)]dx - x exp[AH/nR6 (x) ]dx 10.3.8.
bd % '
¢ (o}
The bound on curvature rate is given by
- n
&< E.[j@i] ¢
d bd2 B
where :
exp [AH/nR6 (x) ]dx
u o ' : .
IB = ] . 3 - n+l 10.3.9.
l x exp[AH/nRe (x)dx - [ x exp[AH/nR6 (x)dx

¢ [o]
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10.3.2. Tube under Flexure

For a tube of circular section internal
and external radii, T, and T, respectively, d
the temperature at any point in the section is
given by | ‘ , ' 6,

log(;'ro/ri)

o(r) = 6, + , (6, - 9,)
2 log(rO/ri) 1 2

where 6, and 6, are the internal and external temperatures.

Area of element dA = rdrdz and distance of centroid_of element from

the neutral axis x = r sinz.

Creep strain rate & = ko' /exp[AH/nR6] and since &(x) = &x

o(x) = E—xlln exp AH/nR8 (x) 10.3.10

Then equating internal and external moments

A

-~ 3n+l 1/n 2n+1 n+l
M= l xgdA = 4 T, n. E) I r " (sinz) n exp[AH/nRe(;)]d;Hz 10.3.11
s+l 1/n 27721 ana n+l
M=4r n [15) J I T ™ (sinz) " exp[AH/nR6(T)]drdz 10.3.12
z=0 rl/ro
. n
Therefore K ='—E- [—BLz] g
ro 4r
o
wh z=1/2 1 -
where =% 2n+1 n+l
I.= r " (sinz) n exp[AH/nRe(;)]drdz 10.3.13.

z=o0 r./T
0 r1/ o
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10.3.3. Two-bar Structure

From conditions of equilibrium

and compatibility of displacements

.the stress in each bar is given by

‘ 61 = [%] I%én/exp(AH/nRel)

[/1 /1 121101101
2

and I 1 /n ' . : e

10, = [%] [—%E} exp(AH/nRGZ) §£§

for the shorter and longer bar . ‘l_
' P,U

respectiveiy.

The quantity I is given by

TB

4/exp(AH/R92) _ : :
I = : 10.3.14

TB ) n
' 1/n AH | 1 1
e R o 5] ]

. n
The displacement rate U = k& [%] ITB . ' 10.3.15

10.3.4. Propped Cantilever Beam.

A uniform rectangular beam of length £ is simply supported at one
end and encastre at the other. (Figure 3.3). A point load acts laterally
at the centre of span and a temperature field 6(x) occurs along the
beam's length. It is assumed that the temperature through any section

remains constant.

Exact Solution

The example involves a single redundancy and has a moment distribution

of the form,
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M= Pn + Fﬁ,
1 .4

where my denotes a moment distribution due to a unit load acting at the
centre of a simply supported beam and m, a reactive moment distribution
due to a unit load acting at the tip of a cantilever of length & .

From consideration of the creep energy dissipation rate expression
D, = | MKdx, 10.3.16
=, 2 V

a moment curvature rate relationship of the form

¢ = KM"/exp(AH/RS) , . 10.3.17

and assuming a dummy load acting at x = %—= 1 , the reactive component F

can be evaluated from

2 _ . n
[(1-?) §+§ (1-x) |/ exp(aH/Re(x))dx
A .
1.
1 .. —n+l 4 R — -
+ | (1-x) (5 + ﬁ'] / exp(AH/R6(x))dx = O . 10.3.18
) .
2

The moment distribution is then fully described and the displacement

rate at x = 2/2 evaluated using equation 10.3.16 in the form
' - : 2

“PU =k Mn+l/exp[AH/Re(x)]dx 110.3.19

(o)

Approximate Solution.

Assume a temperature dependent plastic bending moment is given by

MH (1 1
M| =M exp [ﬁ [5 - 30)] 10.3.20

The plastic limit state solution for this yield condition involves the values

of the bending moment, M , at x =0 and x = £2/2 where plastic hinges
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occur. By assuming such a hinge mechanism and equating internal and

external work rates the plastic collapse load is given by

M+ 2M | 10.3.21

p =2
L ¢ X=0 x=2/2
where
AH 1 1
Mo = Mo &P R 76 " 5.
. =0 (o)
and
AH- 1 1
M_,,,=M exp |= § — - —
x=2/2 o nR 6x=2/2 eo

Taking moments about x = 0 yields a value of the reaction F as

P . P
x=8/2 L _ L 10.3.22

+ M
X=0 x=2/2 2 + exp %%_ - 1 ; 1
X=0 x=2/2

Hence the limit state solution is given in terms of the temperatures

M

M

at x =0 and x = 2/2 and is independent of the temperature elsewhere in
the beam. The bound however depends upon the temperature distribution

and achieves the form
A

: * n+1
PU « [ k M (x) /exp [AH/RO (x) ]dx 10.3.23

o . v
where k = KO/M;l exp(-AH/Reo) and U is the displacement at x = 2/2.

*
The moment distribution M (x) is formed by the super-position of the
moment distribution due to P and F assuming no support at x = £ where
these quantities are given by dropping the suffix L in equations 10.3.21

and 10.3.22.
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Fig 10 8 Unioxial creep machine



Fig 10 9 Standard rectangular uniaxial tensile specimen

Fig 10-10 Triple-section uniaxial tensile specimen
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A THEORETICAL AND EXPERIMENTAL INVESTIGATION
OF CREEP PROBLEMS WITH VARIABLE TEMPER.ATURE

A.R.S. PONTER and M.H. WALTER

Department o f Engineering,
University o fLeicester, Leicester LEI 7RH, United Kingdom

SUMMARY

Although there has been extensive investigation of the creep behaviour of structures which
are subject to isothermal conditions and constant load, the behaviour when temperatures vary
spatially and both load and temperature vary with time has received relatively little attention.
Numerical solutions are extremely difilcult to'produce under these circumstances and appro-
priate- constitutive relationships have yet to be evolved.

This paper attempts to delineate the principal features of the behaviour when load level
are maintained at those appropriate to many design situations and when the tempemture and
loading historiés are cyciic with relatively short cycle times. We are concerned with structures
which accumulate creep strains of less than 1% per year and have cycle times of the order
of a few days at most.

In the first section the behaviour of a few simple structures are investigated for spatially
varying temperature fields which remain constant in trine. Adopting an appropriate form of
Norton’s Law we show that the deformation of the structure may be related to a single refer-
ence material test conducted at a reference stress and a reference temperature, which is inde-
pendent of material constants, thereby providing a generalization of the reference stress
method for isothermal structures. A sequence of experiments on a simple beam structure in-
dicates that the co-relation between structural behaviour and material tests provides an accep-
tably accurate design method. In all cases considered the reference temperature remains close
to the lowest temperature in the structure indicating that locally high temperature may some-
times be tolerated without excessive structural deformation.

The last section discussed a preliminary experimental investigation of a two-bar structure
subject to variable temperature. It is shown that the residual stress field varies quite slowly in
time and remains efTectively constant af'ter a few cycles. The theoretical consequences of the
result are discussed and it is shown that constitutive relationships with differing physical as-
sumptions can yield quite sharply contrasting deformation rates.

The results cf the paper show that the behaviour of structures subject to a time constant
temperature distribution may be related to material behaviour without difficulty. Whe.n tem-
perature and load vary with time, the more important feature of the structural behaviour may
)¢ understood, although certain features of the material behaviour remain ill-defined.
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1.. Introduction

The analysis of the creep deformation behaviour of structures subject to variable
loading and temperature remains amongst the least tractable problems of structural
mechanics. A number of phenomena interact with each other. Changes in temperature
induce thermal expansion and have an ill-defined effect upon the material behaviour. The
continuum problem requires the evaluation of a continuously varying stress history. Even
when computed to an acceptable accuracy such solutions remains only as ac-urate as that
of the constitutive relationship.

This paper attempts to shed some light on the importance of these various effects by
the analysis of a very simple two bar structure, by means of a method of structural
analysis which arises from certain bounding theorems. In a number of previous papers
[1,2,3] a theory was derived for a non-linear viscous material which allows the evaluation
of upper and lower bounds on the energy dissipated in a cyclically loaded structure. These
solutions correspond to the exact solution when the cycle time is either very short (upper
bound) or very long (lower bound) compared with a characteristic time scale of the average
deformation rate. This reference time scale may be taken as the time for the creep strain,
in the steady state, to be equal to the elastic strain at either an average or maximum
stress in the structure [1]. Consideration cf typical time scales indicates that in most
applications cycle time may be considered to be wvery short and hence the upper bound
solution may be expected to provide a relevant solution which should closely approximate
the exact solution. A full description of these arguments may be found in the references
cited above.

If we accept the relevance of the upper bound solution, we may compute corresponding
solutions for any constitutive relationship, and this theory is described in reference [4).
Here we compute these rapid cycling solutions for three constitutive relationships, non-
linear viscous, strain hardening and the Bailey-Orowan model. The objective is to see if
any general modes of behaviour are discernable, he find that the solution for the viscous
and strain hardening materials exhibit similar behaviour. For distant ranges of stress
and temperature the solution may be understood as resulting from the dominance of the
strains occurring during either that part of the cycle when the stress is greatest or
when the temperature is greatest. A material parameter 6 is introduced in temrms of which
regions may be defined where a reference stress may be defined which is independent of
other material parameters. This result indicates that a reference stress approach is
applicable to variable temperature problems, but that the relevant reference stress depends
upon the range of values of this quantity 6.

However when the solution for the Bailey-Orowan model is investigated, no such
regions occur and a distinctly different pattern of deformation is exhibited due to the
presence of recovery. This difference occurs as the model predicts a much greater strain
rate for a history of stress and temperature which involves a high stress at a lower
temperature followed by a low stress at a high temperature.

Experiments on the simulation of a two-bar model involving a coupled pair of uniaxial
testing machines are described in the full paper. Tests on aluminium indicate that the
rapid cycle solution is achieved within a few cycles, and that recovery is present, but of
a magnitude which is much less than that predicted by the Bailey-Orowan model.
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2. The Two-Bar Structure
Consider the model exhibited in Fig. 1. Two bars of equal initial length are
restrained to remain of equal length under the action of a constant load P « Zo*A, where
A denotes the cross-sectional area of each bar. One bar remains at a constant temperature
whereas the second bar is subject to a temperature history
+ 4 9 , 0$t”~ At/J

S. = Bo - Ae- , flt/i
The thermo-elastic solution is given by

0l= Chp - ? o= t< Af/fi
A= O JI
o. - Of o. 1
01 = cr-
where = EaA6/2 and a and E denotes the coefficient of linear expansion and Youngs

modulus respectively.
Consider a non-linear viscous material,

é vV Vv , vV o(<r, fe OHII?0) (1)

where k denotes a material constant, ji an odd integer, AH an activation energy and R the
universal gas constant. For sufficiently small changes in 0 we may write

V— k O'% (c[&—&0)* €)

k'— cwl
When the cycle time At is small, the cyclic solution is given by

P ) P

where p denotes a constant residual stress which is determinate from the compatibility
condition over a cycle

@

where I denotes the length of the bars, and AU" the displacement accumulated over a cycle.
When At is very large, the instantaneous solution becomes the steady state solution
given by

ie. yid,-86) = Joe - &)

The accumulated displacement over a cycle is given by,

= I vcit = I 't
* Jo Jo
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It may easily be shown that the ratio IMu"/AU” is dependent upon three parameters, o*/o*,
n and
e = g Yae-
. 6

The physical meaning of g arises from the relationship between the creep rates which occur
at - A0 and 0* + A0. Consider tests conducted at these two temperatures. Raising the
temperature from 0 - A0 to 0" + A6 will increase the creep rate. Suppose the same increase
in creep rate is caused by maintaining the temperature at 0 - A0 but increasing the stress
to Xo. Then

Hence b =tnX. In a graph of tn v against Inoat constant 0 then S becames the distance
between the lines corresponding to the two temperatures, as shown in Fig. 2.

In Fig. 3 contours of constant U=AU"/AU* are exhibited for n = 3 and a range of
values of a*/o*’ and 6. It can be seen that the contours exhibit four distinct regions which
we will discuss in turn.

Region 1.U > 1. In this region, which corresponds to smaller values of 6, the most
severe increase in displacement rate is shown for small cycle times. Consider the extreme
case when 6=0, i.e. the creep rate independent of temperatu-e. The rapid cycling solution
is self-evident and is shown in Fig. 4(a). Effectively all the defonpation occurs when
the stress is largest and equal to o* + o* and p = 0. If we completely ignore the creep
strain which occurs when the stresses have their lower values and evaluate u we obtain the
dashed line shown in Fig. 3. It clearly can be seen that these lines closely approximate
the exact solution throughout this region. Hence the deformation is effectively equal to
that ofthe structure subject to a constant load P = 2A(a® + o) with half the cycle time
and temperature 0 = 6 - A0, 02= 0%, followed by a lower or zero applied load over the
remainder of the cycle. This approximation is least accurate near the boundary between
Region 1 and Region 3.

Region 2. U = 1. This region corresponds approximately to 6 > 2and 04/0% > 1.

As u is near unity thenthe slowand rapid cyclingsolutions are nearly identical in their
prediction of displacement rate. As 6 is large then the creep rates during the first part
of the cycle when the highest temperature occurs provides the major contribution to the
displacement. In bar 1, although the temperature remains constant the stress reduces during
At/2 < t <At. In bar 2 the stress increases but the temperature reduces and the large
value of 6 ensures that the creep rates in 0 < t < AT/2 dominates. In fact, in the rapid
cycling solution the stresses are virtually identical to those of the slow cycling solution
during 0 < t < At/2 and the contribution fram the second half of the cycle is negligible,
resulting in a value of u close to unity. In this region the deformation may be assumed to
be equal to one half of that which would occur if the condition of the first part of the
cycle remained constant in time.

Region 3.U < 1. This region corresponds to 0*/0” < I and lines of constant u
become independent of B for large® . If we consider the case when 6 is very large the
behaviour may easily be understood. During 0 < t < At/2, o" becames very small (p= 07+0%)
and either negative or positive, and during At/2 < t < At although = 20" as 0 =0"-A0
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the creep rate is small. Hence the deformation is governed by o* which changes from 2cp to
2(0 -o"). As 6 = 6* in this bar the displacement rate is independent of g. P'hen 0*/0%=0.5
the net accumulation of strain is zero. Hence for 1 < a p/o* < 0.5, 1 >U > 0 and for

0.5 < Op/o* < 0 then U < 0. 1In this latter case the displacement rate in the rapid cycle
solution is of opposite sign to the applied load o , and a load of = 0.So* is required
to maintain zero displacement rate.

It canclearly be seen that these simple solution regions arequite distinct and
are separated by regions inwhich fairly rapid transition occurs. The most marked
transition occurs near the origin of Fig. 3where large changes in U occur for small changes
in o /o*. For larger values of n a similarpicture emerges except that the regions became
more distinct, the transitions occupying a smaller area of the diagram. These transitional
regions are defined by the contours of U of values close to unity. In Fig. 5 contours of
U= 0.99 andl.01 are shown for n = 3, S and 7, and they are seen to be very close to
each other. ForU = 0.00 the contours are indistinguishable. Contours for U = SO are also
included to demonstrate that within the regions (with the exception of Region 2) the value
of U is dependent of n, but the stresses are governed by the calculation described above.

We see therefore that within Regions 1 and 2 the rapid cycling solution may be co-related
with the behaviour of the same structure subject to constant load and constant temperature.
For Region 1 the relevant applied load is P= 2A(0pt+ o*) with 0* = 8~-68 and "2~%o’
Region 2, P = 2Aa* and 6”= 8~+68 and 82=8". Tliese situations may themselves be co-related
with a constant reference and temperature history, as described by Ponter and Walter [S].
In Region 3, a variable stress history, fluctuating between 20p and 2(0%-0%) at temperature
8=6 , defines the displacement rate.

3. Strain Hardening

In this section we describe a similar analysis for a strain hardening material.
Consider the uniaxial stiain hardening model

For constant stress commencing at t=0 when v=0
6 0% t rg= Yi8-8c.)

In accordance with experiment we take m = 1/3. The rapid cycling solution is given by [*+]
| A V!
= /" (0]

where 6 and p have the same meaning as in the time hardening case. Again p becomes deter-
minate from the condition that Av/At shall be equal in the two bars. 1In fact the
calculation for p becomes identical to the time hardening case with n/m substituted for n
and AH/n substituted for AH.

There exist no lower bound solution, but for purposes of providing a normalization
camparable with the time hardening case,the solution was camputed so that the integrand of
(7) remains equal in each bar during 0 < t < At. This solution corresponds to assuming
that the cycle time is sufficiently long for redistribution to occur at each instant
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within the cycle but that the average creep rate is calculated assuming that, from the point
of view of the constitutive relationship, the cycling is rapid. This solution has no
direct physical meaning but will reduce to the solution arising fram equation (7) if the
conditions of Region 2 occur.

The displacements predicted by these two methods are denoted by and Al/* and
their ratio by U.

. We find that the solutions so generated have a behaviour whichi? very similar to
that of viscous material and corresponds to the conditions described above. The boundary
lines of the regions are shown in Fig. 6, and are seen to be very similar to these in the
viscous case Fig. 5. There are however differences in the values of u as the relationship
(6) provides a higher value of the creep rate under varying stress, when compared with
constant stress maintained at the maximum value than does the viscous relationship. The
stress histories themselves are however very similar and are divided into the same sub-
regions.

We conclude therefore that the behaviour of a viscous material and a strain
hardening material are very similar when described in this way, and the same reference
stress histories are relevant.

4. Bailey-Orowan Theory

This tneory is described in references [6]. The state of the material is described
by an internal flow stress s which increases due to strain hardening and decreases due to
thermal softening,

(i)

where h(s) and r(s) are coefficients of strain hardening and thermal softening respectively.
The creep rate V is given by,

/y - 1a! - S)

where j*O0o|-0 ~ O ,  lol S

A~ 0 iIH-".

Stationary state creep occurs when |o| = s and hence

Assuming r(s) = “n-a h(s) = 1/k2 s° yields Noiton's flow
ifr— iij/xio-) b.fci/ap , -
This model differs from both the viscous relationship, equation (1) and strain
hardening, equation (6), by possessing thermal softening. K>?n |o| < s, then s = «r(s)

and s decreases in time. If the stress is now suddenly increased, s = 6 and plastic strains
occur according to

For a cycle of stress, both plastic and creep strains occur. But in common with the viscous
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relationship, an upper bound on the energy dissipation in a body of the material corresponds
to assuming that the cycle time is very short campared with characteristic material tines
[6]. The stress history is given by o = 6 ¢ p , and the accumulation of strain over a
cycle is given by

where t* is the instant during the cycle when |o| achieves its maximum value. Hence the
average strain rate is thesame as if a = o(t") throughout the cycle. Themodel predicts
the same creep rate as theviscous relationship(l) for constant stress and a greater

creep rate for any other stress history, the increase being due to the presence of recovery
in the model.

The lower work bound is identical to that of viscous relationship, equation (1),
described in Section (2), and the ratio of the displ,acements predicted by these two
bounding solutions, U, may therefore be directly compared with the results in Section (2).

It can easily be shown that the upper bound average displacement rate of the two
bar model is the same as if a constant applied load P = 2A(o +0") were applied throughout,
the cycle, with one bar maintained at and the other at 8+=6 where

(Yf9 - 00)) = f (yAW - irAr ]

In Fig. 7 contours of constant u are shown for n = 3. This solution is appropriate
in Region 1, but in Region 2 |o"| achieves its maximum value when =z and pz-o*. The
average creep rate in bar 1 becomes indeterminate and becomes determined by the stress
history oy In bar 2, the stress fluctuates between 2ap+0€ and Zap—ot and hence the
displacement rate is the same as if a constant applied load of P = 2A(0p + o”) were
maintained and both bars were at temperature 8 = 8*.

The behaviour shown in Fig. 7 is entirely different to that shown in either
Figs. 3, 5 or 6. No reverse creep occurs and the ratio U remains at high values for large 6 ,
as recovery increases. Effectively the Region 1 of Fig. 3 now dominates a larger area of
the diagram.

Tijese calculations demonstrate a central problem of this type of calculation. When
temperatures vary rapidly between two limits, the stress history, in the cyclic state,
fluctuates between a higher stress at a lower temperature and a lower stress at a higher
temperature. The rate of deformation is strongly governed by the amount of recovery which
occurs during the high temperature period. To the authors knowledge no experiments have
been conducted under these conditions.

In the full paper, experiments on a simulated two bar structure are described
which allows some assessment of the behaviour of aluminium under these conditions. The
temperature histories differ in detail from those assumed in Section 2 and the experiment!
were conducted -i Region 1 of both Fig. 3 and Fig. 7. The”e experiments indicate the
following:
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1) The stress histories of the upper bound solution are achieved within a few cycles
of 24 hours duration over a range of average strain rates.

2) Recovery does occur, but it appears to be somewhat less than that predicted by the
Bailey-Orowan model.
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