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Abstract

We investigate the effect of the choice of parameterisation of meta-analytic models and related uncertainty

on the validation of surrogate endpoints. Different meta-analytical approaches take into account different

levels of uncertainty which may impact on the accuracy of the predictions of treatment effect on the target

outcome from the treatment effect on a surrogate endpoint obtained from these models. A range of

Bayesian as well as frequentist meta-analytical methods are implemented using illustrative examples in

relapsing–remitting multiple sclerosis, where the treatment effect on disability worsening is the primary

outcome of interest in healthcare evaluation, while the effect on relapse rate is considered as a potential

surrogate to the effect on disability progression, and in gastric cancer, where the disease-free survival has

been shown to be a good surrogate endpoint to the overall survival. Sensitivity analysis was carried out to

assess the impact of distributional assumptions on the predictions. Also, sensitivity to modelling assumptions

and performance of the models were investigated by simulation. Although different methods can predict

mean true outcome almost equally well, inclusion of uncertainty around all relevant parameters of the model

may lead to less certain and hence more conservative predictions. When investigating endpoints as

candidate surrogate outcomes, a careful choice of the meta-analytical approach has to be made. Models

underestimating the uncertainty of available evidence may lead to overoptimistic predictions which can then

have an effect on decisions made based on such predictions.
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1 Introduction

Biomarkers and surrogate endpoints are increasingly being investigated as candidate endpoints in
clinical trials where measuring a primary outcome of interest may be too costly, too difficult or
require a long follow-up time. Use of surrogate endpoints in clinical trial design has advantages in
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overcoming these difficulties by choosing more convenient, cheaper or shorter term endpoints. Such
endpoints are also becoming increasingly important in health technology assessment (HTA) and in
particular in the early stages of drug development when conditional licensing based on a biomarker
takes place and evidence on treatment effectiveness on a target outcome may be limited. Suitable
methods need to be identified that would incorporate data on surrogate outcomes most efficiently in
evidence synthesis as part of HTA.

Validating candidate outcomes as surrogate endpoints to target outcomes requires the correlation
between the candidate endpoint and the target outcome on the individual level as well as the
correlation between the treatment effect measured by the surrogate endpoint and the treatment
effect measured by the target outcome to be established.1 Methods for evaluating surrogacy on
the individual level include, for example, Prentice’s criteria,2 proportion of treatment explained3

and adjusted association (between the endpoints adjusted for the treatment).4 For the evaluation to
be valid in a general context of a particular disease area, it needs to be performed on a number of
studies rather than based on a single trial. Meta-analysis serves the purpose of combining evidence
from a number of trials and also provides a convenient tool for evaluating the association between
treatment effects on the surrogate and final outcome on the study level. A number of meta-analytical
methods have been proposed that aim to validate such surrogate endpoints.1,5,6 For example,
Daniels and Hughes proposed a Bayesian model for a joint synthesis of correlated outcomes,
focused on summary data where partially available patient data can contribute to determining the
within-study correlation.6 Buyse et al., on the other hand, designed a frequentist meta-analytic
model based on patient-level data from a number of studies in the form of a mixed effects model
with two measures of surrogacy derived: on the patient level and the study level.5 Part of the
validation process, beyond establishing the correlations on both levels, involves investigating
whether the treatment effect measured by the target outcome can be predicted from the treatment
effect measured by the surrogate endpoint (from a model built based on treatment effect on both
outcomes measured in historical trials) by comparing the predicted effect with the observed effect on
a target endpoint in a validation study. Methods used for prediction include linear regression (for
example proposed by Buyse et al. to predict the log hazard ratio measured by overall survival from
the log hazard ratio measured by progression-free survival in colorectal cancer7), weighted linear
regression (for example by Sormani et al.8 in a study in relapsing–remitting multiple sclerosis
(RRMS)), error-in-variables regression methods1 (for example used by Burzykowski et al. in
metastatic breast cancer study9 or Oba et al. in gastric cancer study10), meta-regression (for
example used by Gabler et al. investigating 6min walk distance as a surrogate endpoint to
development of clinical events in pulmonary arterial hypertension11), or bivariate meta-analysis
methods, such as by Daniels and Hughes in a Bayesian framework developed to evaluate CD4
cell count as a candidate surrogate endpoint for the treatment effect on the development of AIDS
or death.6

Different meta-analytical approaches take into account different levels of uncertainty which may
impact on the accuracy of the validation and predictions. The aim of this study was to investigate the
effect of the choice of parameterisation of meta-analytic models and related uncertainty (that these
models allow to incorporate) on the predictions obtained from those models. Bayesian methods are
most suitable for this purpose as they are flexible in modelling the uncertainty. This study is
concerned with predictive models for normally distributed treatment effects that are based on the
summary data only. A range of Bayesian meta-analytical methods (using summary data) is
implemented in order to investigate the impact of the choice of a model and level of uncertainty
on the model predictions. When simple meta-regression is used to validate a candidate surrogate
endpoint, the treatment effect on such an endpoint is included in the model as a covariate and hence
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is incorporated with no uncertainty, while the effect of treatment on each endpoint, including the
surrogate, is in fact measured with error. Two approaches to meta-regression (described in Section
3.1) are investigated here: a standard use of mean trend with fixed coefficients estimated from the
fixed effects meta-regression model (FEMR) and a random effects approach where between-study
variability is taken into account when making predictions. In contrast to the meta-regression, the
model proposed by Daniels and Hughes6 (described in Section 3.2) includes the treatment effect on
the surrogate endpoint with uncertainty by modelling it as a response (rather than a covariate).
Alternatively this can be achieved using bivariate meta-analytic methods12–14 (Sections 3.3 and 3.4)
which allow one to simultaneously model the estimates of treatment effects on both the surrogate
and the final endpoint by taking into account the between- and within-study correlations. Models
are implemented using WinBUGS.15 While, as noted above, Bayesian methods are most suited to
flexibly model the uncertainty, similar differences in the way uncertainty is taken into account and
the impact of it on predictions can be also demonstrated using frequentist methods. We illustrate this
by the use of meta-regression and bivariate meta-analysis in Stata.16

In the remainder of this paper, illustrative examples in RRMS and gastric cancer are introduced
in Section 2, followed by the details of each model described in the Bayesian framework in Section 3,
with additional details of the use of frequentist methods in Section 3.7 and methods for surrogate
endpoint validation and model comparison in Section 3.8. Results are then presented and differences
between the models discussed in Section 4 which are complemented by a simulation study in Section
5 aiming to test the performance of each method and its sensitivity to the distributional assumptions.
The paper is concluded by a discussion section. WinBUGS coding for each of the models, R code for
the simulation and Stata code for the frequentist approach are included in Appendix 1.

2 Illustrative examples

2.1 Multiple sclerosis

Sormani et al.8 showed that in studies investigating treatment effect in patients with multiple
sclerosis, the treatment effect on relapse rate can potentially be used as a surrogate endpoint to
the treatment effect on the disability progression rate. We use data from this study as an illustrative
example to investigate the effect of the choice of modelling technique and corresponding level of
uncertainty which is allowed to be included in each of the models. We refer to these data as the
‘Sormani data’ in the remainder of this paper.

The annualised relapse rate ratio, the ratio between the relapse rate in the experimental and the
control arms, was used as the summary estimate of the treatment effect on relapses (the surrogate
endpoint measuring the treatment effect). The disability progression rate ratio, the ratio between the
proportion of patients with a disability progression in the experimental and the control arms at year
2 (or at year 3 for trials of longer follow-up time which do not report the outcome at year 2), was
used as the summary estimate of the treatment effect on disability progression, which was the target
endpoint. Details of the specific treatment regimens are included in Table 1. Figure 1 shows data on
both outcomes graphically, revealing similar heterogeneity patterns between the studies for both
outcomes, implying a strong correlation between the effects on these outcomes. The studies are
grouped as placebo-controlled and active-treatment-controlled.

2.2 Gastric cancer

Oba et al.10 investigated disease-free survival (DFS) as a surrogate endpoint for the overall survival
(OS) in patients with curative gastric cancer. The study included randomised clinical trials that
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compared adjuvant chemotherapy with surgery alone. DFS was defined as the time to cancer
recurrence, second cancer or death from any cause. DFS and OS hazard ratios were estimated
with five years of follow-up.

We use data from Oba et al.10 as a second illustrative example to investigate the effect of the
choice of a modelling technique and corresponding level of uncertainty on predictions. Data are
presented in detail in Table 2 and graphically in Figure 2. We refer to these data as the ‘Oba data’
in the remainder of this paper. As in Oba et al, the studies are grouped as historical and validation
studies. They are used in two sets of validation analyses, the cross-validation by taking out the
effect on OS from one study at a time (this effect is predicted from DFS and the model based on the
data on both outcomes from the remaining historical trials) and external validation where
predictions are made for each of the validation trials using a model developed based on data
from all the historical trials. As can be seen in Figure 2, the effects on DFS and OS have similar
heterogeneity patterns between the studies suggesting a strong association between the effects on
those outcomes.

Table 1. Studies in the ‘Sormani data’ reporting the annualised relapse rate ratio and the disability progression rate

ratio.

Study Contrast Number Follow-up

Annualised

relapse

Disability

progression

of patients (months) rate ratio rate ratio

Paty (1) 1993 IFNbeta-1b 1.6 MIU vs PBO 248 24 0.92 (0.82, 1.03) 1.00 (0.67, 1.49)

Paty (2) 1993 IFNbeta-1b 8 MIU vs PBO 247 24 0.66 (0.58, 0.75) 0.71 (0.46, 1.12)

Miligan 1994 Methylprednisolone vs PBO 26 24 0.81 (0.50, 1.30) 1.14 (0.26, 5.03)

Johnson 1995 GA vs PBO 251 24 0.71 (0.61, 0.82) 0.88 (0.57, 1.35)

Jacobs 1996 IFNbeta-1a 6 MIU vs PBO 172 24 0.68 (0.57, 0.81) 0.63 (0.38, 1.04)

Fazekas 1997 IVIg vs PBO 150 24 0.41 (0.34, 0.49) 0.70 (0.36, 1.35)

Millefiorini 1997 Mitoxantrone vs PBO 51 24 0.34 (0.24, 0.47) 0.19 (0.05, 0.78)

Achiron 1998 IVIg vs PBO 40 24 0.37 (0.27, 0.52) 0.82 (0.19, 3.50)

Li (1) 1998 IFNbeta1a 22 lg vs PBO 376 24 0.71 (0.64, 0.78) 0.81 (0.61, 1.08)

Li (2) 1998 IFNbeta1a 44 lg vs PBO 371 24 0.68 (0.62, 0.75) 0.73 (0.54, 0.99)

Baumhackl 2005 Hydrolytic enzymes vs PBO 306 24 0.85 (0.74, 0.97) 1.08 (0.74, 1.57)

Polman 2006 NAT vs PBO 942 24 0.32 (0.29, 0.36) 0.59 (0.46, 0.75)

Comi (1) 2009 Cladribine 3.5 mg/kg vs PBO 870 24 0.42 (0.36, 0.49) 0.69 (0.52, 0.93)

Comi (2) 2009 Cladribine 5.25 mg/kg vs PBO 893 24 0.45 (0.39, 0.52) 0.73 (0.55, 0.97)

Sorensen 2009 IFNbeta-1a and oral methylprednisolone 130 24 0.37 (0.27, 0.50) 0.64 (0.32, 1.28)

vs IFNbeta-1a and PBO

Clanet 2002 IFNbeta-1a 60 lg vs 30lg 802 36 1.05 (0.99, 1.12) 1.00 (0.84, 1.20)

Durelli 2002 IFNbeta1b vs IFNbeta1a 188 24 0.71 (0.59, 0.86) 0.43 (0.24, 0.78)

Rudick 2006 NATþ IFNbeta-1a vs IFNbeta-1a 1171 24 0.45 (0.41, 0.49) 0.79 (0.65, 0.96)

Coles (1) 2008 ALE 12 mg vs IFNbeta-1a 223 36 0.31 (0.24, 0.40) 0.35 (0.16, 0.73)

Coles (2) 2008 ALE 24 mg vs IFNbeta-1a 221 36 0.22 (0.16, 0.30) 0.38 (0.19, 0.76)

Mikol 2008 IFNbeta vs GA 764 24 1.03 (0.90, 1.17) 1.34 (0.88, 2.06)

Havrdova (1) 2009 IFNbeta-1a 30 lg plus AZA 50 mg 118 24 0.87 (0.73, 1.04) 1.23 (0.58, 2.62)

vs IFNbeta-1a 30 lg

Havrdova (2) 2009 IFNbeta-1a 30 lg IM plus AZA 50 mg plus 123 24 0.70 (0.58, 0.85) 1.04 (0.48, 2.27)

prednisone 10 mg vs IFNbeta-1a 30 lg

O’Connor (1) 2009 IFNbeta-1b 250 lg vs GA 1345 24 1.06 (0.97, 1.16) 1.05 (0.84, 1.31)

O’Connor (2) 2009 IFNbeta-1b 500 lg vs GA 1347 24 0.97 (0.88, 1.06) 1.10 (0.88, 1.37)

AZA: azathioprine; GA: glatiramer acetate; IFNb: interferon-b; IVIg: IV immunoglobulin; PBO: placebo.
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3 Methods for evaluating surrogate endpoints

In this section, the technical details of the meta-analytic models are listed with emphasis on the use
of such methods to predict a treatment effect measured by a target outcome of interest from the
effect measured by a surrogate endpoint. The prediction is based on the association between the
treatment effects on the two outcomes evaluated by a model developed based on the data in a
‘training set’, usually data from historical studies available for both outcomes from which a
model ‘learns’ the relationship between them.

The methods in a Bayesian framework are described in Sections 3.1 to 3.4. To investigate the
impact of the choice of parameterisation on the uncertainty around the predicted effects, we start
with the simplest model allowing for a minimum variability, the FEMR. We then increase the
allowed variability in the model by the use of random effects meta-regression (REMR) and
further by introducing bivariate meta-analytic models which allow for the measurement error of

Figure 1. Summary of the ‘Sormani data’.
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the treatment effect on the surrogate endpoint. Sensitivity analyses to prior distributions and the
distributional assumptions are discussed in Sections 3.5 and 3.6, respectively. Some frequentist
approaches are then discussed in Section 3.7. Strategies for the validation of surrogate endpoints
and model comparison are described in Section 3.8.

3.1 Meta-regression

3.1.1 Fixed-effects meta-regression

Linear or weighted regression models have been used to evaluate surrogate endpoints with regard to
predictions,7,8 by including the treatment effect on a surrogate endpoint in the meta-analysis as a
covariate. In the meta-analytic context, this approach can be described by the FEMR which in the
Bayesian framework for normally distributed outcomes has the form

Y2i � Nð�2i, �
2
2iÞ

�2i ¼ �0 þ �1Y1i
ð1Þ

with prior distributions �0, �1 � Nð0:0, 1000000Þ. Y1i and Y2i are the estimates of the treatment
effects on the surrogate and the final outcomes, respectively, with standard deviation �2i
corresponding to the effect on the final outcome in each study i. The normally distributed effects

Table 2. Studies in the ‘Oba data’ reporting the hazard ratio measured by the disease-free survival (DFS) and overall

survival (OS).

Study
Number of patients

Follow-up DFS OS

Chemotherapy Surgery (years) HR (95% CI) HR (95% CI)

Historical trials

FFCD-8801 133 136 8.1 0.83 (0.61, 1.12) 0.84 (0.62, 1.14)

NSAS-GC 95 95 6.0 0.49 (0.29, 0.83) 0.51 (0.29, 0.90)

JCOG-9206-1 128 124 5.9 0.62 (0.33, 1.17) 0.60 (0.31, 1.17)

JCOG-8801 272 264 6.7 0.79 (0.52, 1.20) 0.82 (0.53, 1.26)

SWOG-7804 107 112 16.6 0.88 (0.66, 1.17) 0.93 (0.70, 1.24)

EORCT-40813 152 154 6.5 0.76 (0.57, 1.01) 0.85 (0.64, 1.13)

Tsavaris 44 44 4.9 0.55 (0.34, 0.89) 0.55 (0.33, 0.90)

ICCG-1/81 133 148 13 0.87 (0.65, 1.16) 0.85 (0.64, 1.13)

ITMO 135 136 6.2 0.90 (0.65, 1.24) 0.98 (0.70, 1.37)

GITSG-8174 90 88 12.1 0.73 (0.52, 1.02) 0.74 (0.53, 1.04)

NCTTG-794151 62 64 15.6 0.95 (0.64, 1.41) 1.02 (0.69, 1.51)

ECCOG-EST3275 91 89 16.5 0.89 (0.64, 1.23) 0.94 (0.68, 1.30)

EORTC-40905 103 103 7.0 0.88 (0.60, 1.29) 0.93 (0.64, 1.36)

ICCG 89 97 6.9 1.05 (0.74, 1.48) 1.05 (0.74, 1.49)

Validation trials

A-Cirera 520 515 2.8 0.55 (0.36, 0.84) 0.60 (0.39, 0.93)

B-CLASSIC 76 72 3.1 0.56 (0.44, 0.72) 0.72 (0.52, 1.00)

E-GOIM-9602 112 113 5.0 0.88 (0.66, 1.17) 0.91 (0.69, 1.21)

F-GOIRC 130 128 6.1 0.92 (0.65, 1.30) 0.90 (0.64, 1.26)

Details of chemotherapy regimens can be found in the supplementary material of Oba et al.10
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Y2i estimate underlying true effects l2i. The intercept k0 and slope k1 define the relationship between
the effects on the two outcomes.

Having estimated the parameters k0 and k1, this model can be used to predict the treatment effect
on the target outcome based on the observed treatment effect on the surrogate endpoint. If for a new
study j, the observed treatment effect on the surrogate outcome is Y1j then, based on model (1),
prediction is made using the regression equation

�̂2j ¼ �0 þ �1Y1j: ð2Þ

In this model, uncertainty around the predicted effect on the target outcome is related to the
uncertainty around the intercept k0, whereas the treatment effect on the surrogate endpoint is treated
as a fixed covariate.

Figure 2. Summary of the ‘Oba data’.
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3.1.2 Random effects meta-regression

A REMR model can be used to evaluate surrogate endpoints.17 The model allows for between-study
variability by assuming that the treatment effects Y2i estimate different underlying true effects l2i

(regardless of the value of the covariate) in each study i. In a Bayesian framework, meta-regression
can be formulated as in Sutton and Abrams18 in the following way using the random effects approach

Y2i � Nð�2i, �
2
2iÞ

�2i ¼ �0i þ �1Y1i

�0i � Nð�, 2Þ ð3Þ

where Y1i are the summary measures of the treatment effect on the candidate surrogate outcome and
Y2i represent the summary measures of the treatment effect on the target outcome with corresponding
standard deviations �2i from each study i. The normally distributed Y2i are estimates of the underlying
true effects l2i. The k0i are the true effects at value zero of the treatment effect on the surrogate
endpoint and they follow a common Normal distribution with mean b and standard deviation  ,
representing the between-study heterogeneity. The regression coefficient k1 represents the relationship
between the treatment effects on the target and the surrogate outcomes. In this Bayesian framework,
all parameters are given prior distributions: � � Nð0:0, 1000Þ, �1 � Nð0:0, 1000000Þ and
 � Nð0, 100ÞIð0, Þ (a half-normal distribution truncated at zero).

The prediction can be made by

�̂2j ¼ �0j þ �1Y1j, ð4Þ

where k0j is obtained from the model, by the use of the Markov chain Monte Carlo (MCMC)
simulation, with data that include the new study, but the target outcome is coded as missing (NA
in WinBUGS).

An alternative approach is also possible by centring the values of the effect on the surrogate, Y1i.
In this case, the interpretation would change and the intercept would represent the true treatment
effect on the final outcome at the average value of the effect on the surrogate endpoint. This
approach could have an advantage when external information is available to construct an
informative prior distribution to be placed on the intercept. Also, the centring of the effect on the
surrogate may help to reduce the autocorrelation when conducting the MCMC simulation.
However, for the purpose of predicting the effect for a new study, which is central to the
evaluation of surrogate endpoints, the effect would have to be ‘un-centred’.

WinBUGS code corresponding to this model is included in Appendix 1.1.

3.2 Meta-analysis by Daniels and Hughes

In a model proposed by Daniels and Hughes,6 the estimates of the treatment effects measured by the
surrogate endpoint Y1i and the target outcome Y2i are assumed to come from a bivariate normal
distribution and they estimate the underlying true effects on the surrogate and target outcomes l1i

and l2i, respectively, from each study i with corresponding within-study standard deviations �1i and
�2i and within-study correlation �wi

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,

�21i �1i�2i�wi

�1i�2i�wi �22i

 ! !

�2ij�1i � Nð�0 þ �1�1i, 
2Þ, ð5Þ

8 Statistical Methods in Medical Research 0(0)

 by guest on August 17, 2015smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


where the underlying true effects l1i measured by the surrogate endpoint are assumed to be
fixed effects and to have a linear relationship with the true effect on the target outcome l2i.
Prior distributions are given to all parameters: �1i � Nð0, 1000Þ, �0 � Nð0:0, 1000Þ, �1 �
Nð0:0, 1000Þ,  � Nð0, 100ÞIð0, Þ.

In this model, estimates of the treatment effects on both the target as well as the surrogate
endpoints are treated as response variables and therefore the uncertainty around the treatment
effect on the surrogate outcome is taken into account in this model. If for a study j the observed
treatment effect on the surrogate outcome is Y1j, then the treatment effect on the target outcome Y2j

can be predicted from the model by assuming that this outcome is missing at random. By assuming
that the two effects are correlated and follow a common bivariate distribution, the missing effect (on
the target outcome in this case) is estimated automatically by the MCMC simulation, from the
model which takes into account the correlation between the effects on the two outcomes. WinBUGS
code for this model is listed in Appendix 1.2.

3.3 Bivariate random effects meta-analysis (BRMA)

Bivariate meta-analytic methods have been proposed for joint modelling of correlated outcomes12,19

and included approaches in a Bayesian framework.20,21 BRMA is discussed here in the form
described by van Houwelingen et al.12 and Riley et al.,13 where estimates of treatment effect on
both outcomes Y1i and Y2i are assumed to be normally distributed

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,�i

� �
, �i ¼

�21i �1i�2i�wi
�1i�2i�wi �22i

� �
ð6Þ

�1i

�2i

� �
�MVN

�1
�2

� �
,T

� �
, T ¼

�21 �1�2�b
�1�2�b �22

� �
: ð7Þ

In this model, the treatment effect on the surrogate endpoint Y1i and the treatment effect on the
target outcome Y2i are assumed to estimate the correlated true effects l1i and l2i with corresponding

within-study variances �21i and �
2
2i of the estimates and the within-study correlation �wi between

them. These true study-level effects follow a bivariate normal distribution with means �1,�2ð Þ,

between-study variances �21 and �22 and a between-study correlation �b in this hierarchical

framework. Equation (6) represents the within-study model and equation (7) is the between-study
model. To implement the model in the Bayesian framework, prior distributions are placed
on the between-study covariance matrix using the inverse Wishart distribution

T�1 �Wishart
��

1 0
0 1

�
, 3
�
where the degrees of freedom parameter was set to 3 (the dimension

of the matrix plus 1) to induce a uniform prior distribution for the between-study correlation �b.
22

Non-informative prior distributions are placed on the within-study correlations using uniform
distributions �wi � Uð�1, 1Þ and on the mean effects �1,2 � Nð0, 10000Þ.

As in the model (5) by Daniels and Hughes, the treatment effect on the target outcome in a study j
can be predicted from the treatment effect on the surrogate endpoint observed by this study, by
assuming that the effect on the target outcome is missing at random and assuming exchangeability of
the treatment effects. In contrast to model (5), the BRMA model allows an estimation of the pooled
effects measured by both outcomes (rather than only the pooled effect of the target endpoint in
equation (5) which is only possible when centring the effect on the surrogate outcome on the mean).
Although the ability to estimate the pooled effect does not impact on the validation process, it can be
advantageous when modelling treatment effects on surrogate and target outcomes jointly to combine
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all available evidence in the assessment of the effectiveness. However, to make it possible, stronger
distributional assumptions about the true effects are made in this model in comparison with model
(5). WinBUGS code for this model is listed in Appendix 1.3.

3.4 BRMA in product normal formulation (BRMA PNF)

The BRMA models (6) and (7) can be parameterised in an alternative form where instead of placing
a prior distribution on the between-study covariance matrix as a whole, the between-study model (7)
is represented in the PNF14,23 (a product of univariate conditional normal distributions), whereas
the within-study model remains the same

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,�i

� �
, �i ¼

�21i �1i�2i�wi
�1i�2i�wi �22i

� �
ð8Þ

�1i � Nð�1, 
2
1Þ

�2ij�1i � Nð�2i, 
2
2Þ

�2i ¼ �0 þ �1�1i:

8<
: ð9Þ

As for the BRMA model, Y1i and Y2i are the estimates of the treatment effects measured by
the surrogate and target endpoints, respectively, and the l1i and l2i are the true effects in the
population which are correlated and modelled here through a linear relationship. Prior distributions
are placed on the following parameters: �wi � Uð�1, 1Þ, �0 � Nð0:0, 1000Þ, �1 � Nð0:0, 1000Þ,

 1 � Nð0, 100ÞIð0, Þ,  2 � Nð0, 100ÞIð0, Þ, �b � Uð�1, 1Þ. The between-study variances are �21 ¼  
2
1

and �22 ¼  
2
2 þ �

2
21 

2
1 and hence the implied prior distribution is placed on �1 ¼

 2

 1

�bffiffiffiffiffiffiffiffiffiffiffiffi
1�ð�bÞ

2
p .14

The PNF provides better control over the prior distributions placed on specific parameters of the
model (compared to BRMA with Wishart prior distribution), helping to ensure that they are non-
informative when this is required or allowing for informative prior distributions, based on external
evidence, to be placed directly on the desirable parameters of the model.14 WinBUGS code
corresponding to this model is included in Appendix 1.4.

3.5 Sensitivity analysis: Prior distributions

When investigating the impact of parameterisation and the related uncertainty on the precision of
the predicted estimates, we carried out sensitivity analysis using a range of prior distributions for the
heterogeneity parameters ( in meta-regression and model by Daniels and Hughes and  1,2 in
BRMA (PNF)). The following distributions were included:

. Prior I:  � Nð0, 100ÞIð0, Þ

. Prior II:  � Nð0, 10ÞIð0, Þ

. Prior III: 1
 2 � Gammað0:001, 0:001Þ

. Prior IV:  � Uniformð0, 2Þ.

Other examples of non-informative prior distributions can be found in the simulation study
by Lambert et al.24 Sensitivity analysis was also carried out to investigate the impact of the
choice of the parameters of the inverse Wishart prior distribution on the implied prior
distributions for the heterogeneity parameters (while maintaining the implied uniform prior
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distribution on the between-study correlation). Wishart prior distributions with the following
parameters were tested:

. Wishart A: T�1 �Wishart
��

1 0
0 1

�
, 3
�

. Wishart B: T�1 �Wishart
��

0:1 0
0 0:1

�
, 3
�
.

Figure 3 shows the prior distributions for the standard deviations overlayed (distributions I, II
and IV used directly and distributions obtained from priors III, Wishart A and B by transformation
on the standard deviation scale). Prior distributions I–III have large variances and hence are non-
informative. The uniform prior distribution IV is locally non-informative on the scale of the
modelled data. The implied prior distributions on the standard deviations obtained from the
Wishart distributions placed on the between-study precision matrix are both quite informative (as
mentioned above, the corresponding implied distribution on the between-study correlation is
uniform on the range of values between –1 and 1).

3.6 Sensitivity analysis: Relaxing the normality assumption

The methods considered here are models with random effects to reflect the assumption that the
modelled treatment effects are different between the studies. The differences in the effects may be due
to the varying populations, different treatments under investigation in those studies or perhaps
heterogeneity in the definitions of the outcomes.25 Typically, the normal distribution of the
between-study random effects is assumed to reflect the similarity of the effects. The assumption
that the true treatment effects on both outcomes (such as log relative risk and log rate ratio for
the example in RRMS or log hazard ratio on OS and DFS in gastric cancer) are normally distributed
may, however, not always be reasonable. When dealing with departures from normality of the
modelled data, this assumption can lead to limitations of modelling and restricted inferences.26

For example, as discussed by Marshall and Spiegelhalter, inadequate use of normality
assumption about the random effects may lead to ‘overshrinkage’ of the true effects and hence to
misleading inferences.27

One way of relaxing this assumption is to use a t-distribution as recommended, for example, by
Lee and Thompson26 or Smith et al.28 In contrast to the normal distribution, the t-distribution gives
more weight in the tails which is more likely to be better at modelling extreme effects such as
outlying observations.27 We apply the t-distribution to the random effect in the BRMA model by
adapting its PNF form. In the product of t-distributions formulation (PTDF), the between-study
model can be formulated as

�1i � tð�1, 	1, df Þ
�2ij�1i � tð�2i, 	2, df Þ
�2i ¼ �0 þ �1�1i:

8<
: ð10Þ

with prior distributions placed on the parameters, �0, �1 � Nð0:0, 1000Þ and �1 � Nð0:0, 1000Þ.
Placing non-informative prior distributions on the between-study standard deviations
corresponding to the true effects l1i and l2i, �1 � Nð0, 100ÞIð0, Þ and �2 � Nð0, 100ÞIð0, Þ gives
implied prior distributions on the corresponding parameters, 	1 ¼ ð�

2�
1 ðdf� 2ÞÞ=df

and 	2 ¼ ð�
2�
2 ðdf� 2ÞÞ=df. WinBUGS code corresponding to this model is included in Appendix 1.5.
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3.7 Frequentist approaches

The above models for evaluation of surrogate endpoints differ in the way they take into account the
uncertainty around the model parameters. The Bayesian framework gives a flexible environment for
modelling of uncertainty. Some of the models, however, can be also implemented in a frequentist
approach using software such as, for example, Stata. To compare the different degrees of uncertainty
allowed by different frequentist models, two models are compared here: the meta-regression and the
bivariate meta-analysis.

3.7.1 Meta-regression

Suppose Y1i is the estimate of the treatment effect on the candidate surrogate outcome and Y2i

represents the estimate of the treatment effect on the target outcome with corresponding within-
study variance v2i in study i (i ¼ 1, . . . , n). In the frequentist framework, meta-regression for the
association between the effects on the surrogate and the target endpoints can be written following
the formulation by Sharp29 in the following form

Y2 � NðY1j,VÞ ð11Þ

where Y2 ¼ ðY21, . . . ,Y2nÞ
T is the n� 1 vector of the treatment effect on the final outcome and Y1 is

the n� 2 design matrix with ith row ð1,Y1iÞ, j ¼ ð�0, �1Þ
T is the vector of parameters and V is a

Figure 3. Prior distributions for the standard deviations used in the sensitivity analysis.
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diagonal n� n variance matrix with ith diagonal element v2i þ �
2, where the s2 represents the

between-study variability for the random effects model. Maximum likelihood methods are used to
estimate the parameters j and s2 and in Stata this can be achieved by using the command metareg.
The predictions are made using the linear predictor, and in Stata using the post-estimation
command predict.

3.7.2 Bivariate meta-analysis

As in the Bayesian framework, the random effects bivariate meta-analysis can be described in the
hierarchical framework

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,Ri

� �
, Ri ¼

�21i �1i�2i�wi
�1i�2i�wi �22i

� �
ð12Þ

�1i

�2i

� �
�MVN

�1
�2

� �
,T

� �
, T ¼

�21 �1�2�b
�1�2�b �22

� �
: ð13Þ

with the treatment effect on the surrogate endpoint Y1i and the treatment effect on the target
outcome Y2i in each study i and corresponding within-study variances of the estimates �21i and �

2
2i

and the within-study correlation �wi between them. The correlated true effects l1i and l2i follow
bivariate normal distribution with means �1,�2ð Þ, between-study variances �21 and �

2
2 and a between-

study correlation �b. In Stata, the model can be implemented using the command mvmeta.30 In the
Bayesian framework, the predicted estimates for the final endpoint assumed missing at random are
obtained from a MCMC simulation. Here, we obtain the estimate of the true effect on the final
outcome for study j as follows

EðljjYj, b,TÞ ¼ bþ Rj þ T
� ��1

T Yj � b
� �

ð14Þ

varðljjYj, b,TÞ ¼ Rj þ T
� ��1

T Rj, ð15Þ

where Yj, lj and b are two-dimensional vectors and Rj and T are 2� 2 matrices.
Stata code for the model predictions using the meta-regression and the BRMA is included in

Appendix 1.6.

3.8 Cross-validation procedure and model comparison

Evaluation of surrogate endpoints on the study level, assessing whether the treatment effect
on the final outcome can be predicted from the treatment effect on the surrogate endpoint, can
be carried out by the take-one-out approach in the cross-validation procedure, as described by
Daniels and Hughes.6 This procedure aims to establish goodness of fit of the meta-analytic
prediction model. In each study the effect on the final outcome is assumed unknown (in one
study at a time) and it is then predicted from the effect on the surrogate endpoint, conditional on
the data on the treatment effects on both outcomes from the remaining studies and the parameters of
the model.

Ultimately we want to draw inferences about predicting the true effect on the final outcome l2j in
a future study j. However, in a real data scenario (as opposed to simulated data) we do not know
what the true effect is. Hence for the purpose of the cross-validation, we predict the ‘observed
estimate’ Ŷ2j. For this purpose, we assume �2j known and hence effectively only the true effect l2j

is predicted. We then check if the observed value of Y2j falls within the predicted interval of Ŷ2j with
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the standard deviation equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�22j þ varð�̂2jjY1j, �1j,Y1ð�j Þ,Y2ð�j ÞÞ

q
, where Y1ð�j Þ and Y2ð�j Þ denote

the data from the remaining studies without the validation study j.
To investigate the impact of the uncertainty on predictions, we compare the models with respect

to the predicted intervals. To compare how the choice of parameterisation affects the uncertainty of

predictions, we compare the widths of the intervals of the predicted Ŷ2j and predicted true effects �̂2j

across the models. To do so, we summarise the ratios wŶ2j
=wY2j

of the widths of the intervals for Ŷ2j

to the widths of the intervals for Y2j to investigate how this varies across the models and the ratios
w�̂CM

2j
=w�̂FEMR

2j
of the widths of the predicted true effects �̂2j from each current model (CM) to the

width of the predicted interval for �̂2j obtained from the FEMR.

4 Results

4.1 Results from Bayesian models: multiple sclerosis

To compare the models, in the first instance the estimates of the pooled effects on both outcomes, the
relapse rate ratio and the disability progression rate ratio, were obtained from all the models. Due to
the large heterogeneity of the control arm between the studies (and the fact that an intervention
which is a control arm in one study may be an experimental arm in the other) only placebo-
controlled studies were included in this particular estimation. The inclusion of all studies would
not give clinically interpretable results and in order to combine evidence from all the trials in a
sensible way, a network meta-analysis would need to be conducted which is beyond the scope of this
paper. Note that the whole data set (including both placebo- and active-controlled trials) is used for
the remaining analyses that focus on the predictions for the purpose of evaluation of surrogate
endpoints. The results shown in Table 3 are for the comparison of models only. Both forms of
BRMA allowed for the estimation of the pooled effect of both outcomes, in contrast to meta-
regression and model by Daniels and Hughes which allowed estimation of the pooled effect on
the disability progression only. The pooled effect measured by the surrogate endpoint, relapse
rate ratio, was the same using both forms of BRMA. The point estimate of the pooled effect
measured by the target endpoint, the disability progression rate ratio, was the same for all
models but obtained with different precisions from different models. The largest uncertainty
around the estimate was obtained from the BRMA model with the Wishart A prior distribution
placed on the between-study precision matrix. Effectiveness estimates of the highest precision were

Table 3. Summary results for placebo-controlled studies for the treatment effects on the risk of disability

progression and relapse rate ratio.

Relapse incidence rate ratio Disability relative risk

Model Mean 95% CrI �1
a (sd) Mean 95% CrI  2 (sd) s2 (sd)

REMR 0.75b [0.67; 0.84] 0.07 (0.06)

D&Hc 0.75b [0.66; 0.84] 0.07 (0.06)

BRMA 0.57 [0.44; 0.72] 0.44 (0.09) 0.75 [0.58; 0.95] 0.38 (0.09)

BRMA PNF 0.57 [0.46; 0.70] 0.36 (0.09) 0.75 [0.65; 0.87] 0.10 (0.06) 0.15 (0.08)

a 1 ¼ �1 in BRMA PNF.
bObtained by centring the effects on surrogate endpoint on the mean.
cD&H refers to the model by Daniels & Hughes.
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obtained from the meta-regression and the model by Daniels and Hughes. Relatively high precision
of the pooled effect was also obtained from BRMA PNF.

All four models were then applied to make predictions in a cross-validation procedure. The
treatment effect on the final outcome (disease progression rate ratio) in the 25 studies was

Table 4. Predictions obtained from all models for all studies in the ‘Sormani data’.

Disability progression rate ratio, mean (95% CrI)

Paty (1) Paty (2) Miligan Johnson Jacobs/Simon

Observed 1.00 (0.67, 1.49) 0.71 (0.45, 1.12) 1.14 (0.26, 5.03) 0.88 (0.57, 1.35) 0.63 (0.38, 1.05)

Meta-regression (FE) 0.99 (0.66, 1.48) 0.84 (0.53, 1.33) 0.93 (0.21, 4.11) 0.87 (0.56, 1.35) 0.85 (0.51, 1.42)

Meta-regression (RE) 0.99 (0.64, 1.53) 0.84 (0.52, 1.35) 0.92 (0.21, 4.13) 0.87 (0.54, 1.38) 0.85 (0.50, 1.45)

Daniels & Hughes 0.99 (0.63, 1.54) 0.84 (0.51, 1.37) 0.93 (0.20, 4.31) 0.87 (0.54, 1.41) 0.85 (0.50, 1.46)

BRMA (Wishart) 1.00 (0.47, 2.13) 0.81 (0.39, 1.68) 0.83 (0.16, 4.29) 0.81 (0.36, 1.82) 0.82 (0.36, 1.87)

BRMA (PNF) 0.97 (0.60, 1.57) 0.83 (0.49, 1.40) 0.86 (0.19, 3.95) 0.86 (0.52, 1.42) 0.83 (0.47, 1.48)

Fazekas Millefiorini Achiron Li (1) Li (2)

Observed 0.70 (0.36, 1.35) 0.19 (0.05, 0.79) 0.82 (0.19, 3.50) 0.81 (0.61, 1.08) 0.73 (0.54, 0.99)

Meta-regression (FE) 0.66 (0.34, 1.29) 0.61 (0.14, 2.55) 0.63 (0.15, 2.69) 0.87 (0.65, 1.17) 0.86 (0.63, 1.17)

Meta-regression (RE) 0.65 (0.33, 1.30) 0.60 (0.14, 2.53) 0.62 (0.14, 2.67) 0.87 (0.62, 1.21) 0.85 (0.60, 1.20)

Daniels & Hughes 0.65 (0.32, 1.32) 0.60 (0.14, 2.60) 0.62 (0.14, 2.73) 0.87 (0.62, 1.22) 0.86 (0.60, 1.23)

BRMA (Wishart) 0.70 (0.28, 1.76) 0.65 (0.14, 3.16) 0.64 (0.13, 3.16) 0.85 (0.43, 1.68) 0.84 (0.39, 1.79)

BRMA (PNF) 0.67 (0.33, 1.38) 0.65 (0.15, 2.81) 0.67 (0.15, 2.97) 0.86 (0.58, 1.25) 0.84 (0.57, 1.24)

Clanet Durelli Baumhackl Polman Rudick

Observed 1.00 (0.83, 1.20) 0.43 (0.24, 0.78) 1.08 (0.74, 1.57) 0.59 (0.46, 0.75) 0.79 (0.65, 0.96)

Meta-regression (FE) 1.08 (0.87, 1.34) 0.88 (0.48, 1.59)* 0.94 (0.64, 1.39) 0.58 (0.43, 0.78) 0.66 (0.53, 0.83)

Meta-regression (RE) 1.08 (0.82, 1.43) 0.87 (0.48, 1.61)* 0.94 (0.62, 1.43) 0.57 (0.40, 0.80) 0.66 (0.51, 0.86)

Daniels & Hughes 1.10 (0.84, 1.44) 0.88 (0.47, 1.64)* 0.94 (0.60, 1.46) 0.57 (0.39, 0.82) 0.66 (0.51, 0.87)

BRMA (Wishart) 1.04 (0.60, 1.79) 0.84 (0.35, 2.01) 0.91 (0.42, 1.95) 0.56 (0.27, 1.15) 0.69 (0.30, 1.59)

BRMA (PNF) 1.07 (0.77, 1.48) 0.85 (0.45, 1.61)* 0.91 (0.58, 1.44) 0.57 (0.37, 0.88) 0.67 (0.48, 0.94)

Coles (1) Coles (2) Mikol Comi (1) Comi (2)

Observed 0.35 (0.16, 0.74) 0.38 (0.19, 0.77) 1.34 (0.88, 2.06) 0.69 (0.52, 0.93) 0.73 (0.55, 0.97)

Meta-regression (FE) 0.58 (0.27, 1.26) 0.49 (0.24, 1.01) 1.03 (0.66, 1.60) 0.66 (0.48, 0.91) 0.69 (0.51, 0.93)

Meta-regression (RE) 0.58 (0.26, 1.26) 0.48 (0.23, 1.01) 1.03 (0.65, 1.63) 0.65 (0.46, 0.93) 0.68 (0.48, 0.95)

Daniels & Hughes 0.58 (0.26, 1.30) 0.49 (0.23, 1.05) 1.04 (0.64, 1.69) 0.64(0.42, 0.99) 0.67 (0.45, 1.00)

BRMA (Wishart) 0.64 (0.23, 1.75) 0.60 (0.22, 1.58) 0.92 (0.43, 1.97) 0.59 (0.28, 1.22) 0.71 (0.30, 1.67)

BRMA (PNF) 0.63 (0.28, 1.41) 0.55 (0.25, 1.21) 0.97 (0.59, 1.59) 0.68 (0.45, 1.04) 0.69 (0.46, 1.05)

Havrdova (1) Havrdova (2) Sorensen O’Connor (1) O’Connor (2)

Observed 1.23 (0.58, 2.62) 1.04 (0.48, 2.27) 0.64 (0.32, 1.28) 1.05 (0.84, 1.31) 1.10 (0.88, 1.37)

Meta-regression (FE) 0.96 (0.45, 2.05) 0.86 (0.39, 1.88) 0.63 (0.31, 1.27) 1.06 (0.83, 1.37) 1.00 (0.78, 1.27)

Meta-regression (RE) 0.96 (0.44, 2.07) 0.86 (0.39, 1.89) 0.62 (0.30, 1.27) 1.07 (0.78, 1.45) 1.00 (0.75, 1.34)

Daniels & Hughes 0.96 (0.43, 2.10) 0.86 (0.38, 1.92) 0.62 (0.29, 1.31) 1.06 (0.79, 1.42) 0.99 (0.75, 1.32)

BRMA (Wishart) 0.93 (0.34, 2.51) 0.81 (0.30, 2.19) 0.63 (0.24, 1.65) 0.84 (0.43, 1.65) 0.95 (0.48, 1.87)

BRMA (PNF) 0.93 (0.42, 2.07) 0.84 (0.37, 1.92) 0.66 (0.31, 1.42) 1.01 (0.70, 1.47) 0.98 (0.68, 1.39)
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assumed unknown (in one study at a time which in that case became a validation study) and then
predicted from the surrogate endpoint (relapse rate ratio) by each model.

Table 4 lists all the predictions made by all of the models for all of the studies (using prior
distribution I for the heterogeneity parameter and Wishart A for the between-study precision
matrix). For most studies, all models gave predicted Ŷ2j with intervals containing the
corresponding observed estimates, except for one study by Durelli for which only the interval
obtained from BRMA with Wishart prior B contained the observed estimate of the treatment
effect. Most intervals obtained from BRMA with Wishart prior A were largely inflated apart
from the interval in study by Miligan which was the smallest study with largest intervals for the
treatment effects on both outcomes.

The discrepancies between the observed and predicted values were obtained for all studies (by
taking the absolute difference between the observed estimate of the treatment effect and the
predicted effect) and summarised in Table 5, which also summarises the degree of uncertainty
around the predicted estimate compared to the uncertainty around the observed value (by
calculating the ratio wŶ2j

=wY2j
of the length of the 95% predicted interval to the length of the

95% confidence interval of the observed estimate, shown in the second to last column of the
table). Note that the intervals of the predicted Ŷ2j were inflated compared to those corresponding
to the observed effects Y2j due to the additional between-study variability. To compare uncertainty
of predicted true effects across models, ratio w�̂CM

2j
=w�̂FEMR

2j
of the length of the 95% credible interval

around �̂2j obtained from the CM to the length of that interval from the FEMR was calculated and
presented in the last column of Table 5.

The accuracy of predictions for the point estimate was similar across models, but the uncertainty
around the predicted effects varied depending on the parameterisation. Using the meta-regression

Table 5. Results of the comparison of the models for predicting the treatment effect on disability progression from

the treatment effect on relapse rate.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂CM
2j
=w�̂FEMR

2j

Model Prior Median (range) Median (range) Median (range)

FEMR 0.16 (0.01, 1.16) 1.02 (1.00, 1.21)

REMR I 0.15 (0.01, 1.15) 1.07 (1.00, 1.54) 1.96 (1.36, 2.56)

REMR II 0.16 (0.01, 1.15) 1.07 (1.01, 1.52) 1.95 (1.34, 2.53)

REMR III 0.15 (0.01, 1.15) 1.07 (1.01, 1.51) 1.91 (1.36, 2.43)

REMR IV 0.16 (0.01, 1.15) 1.07 (1.01, 1.51) 1.93 (1.37, 2.58)

Daniels & Hughes I 0.16 (0.01, 1.15) 1.11 (1.02, 1.50) 2.44 (1.65, 5.14)

Daniels & Hughes II 0.17 (0.02, 1.16) 1.11 (1.02, 1.56) 2.28 (1.62, 5.78)

Daniels & Hughes III 0.16 (0.01, 1.15) 1.11 (1.02, 1.59) 2.43 (1.61, 5.15)

Daniels & Hughes IV 0.16 (0.01, 1.16) 1.11 (1.02, 1.45) 2.43 (1.51, 5.11)

BRMA PNF I 0.14 (0.02, 1.23) 1.16 (1.02, 1.83) 2.95 (1.95, 4.85)

BRMA PNF II 0.16 (0.01, 1.23) 1.18 (1.02, 1.73) 2.88 (2.02, 4.68)

BRMA PNF III 0.15 (0.00, 1.23) 1.11 (1.02, 1.52) 2.26 (1.45, 4.48)

BRMA PNF IV 0.15 (0.01, 1.24) 1.17 (1.02, 1.86) 2.90 (1.74, 4.92)

BRMA Wishart A 0.16 (0.00, 1.24) 1.78 (1.10, 4.27) 7.00 (3.48, 10.07)

BRMA Wishart B 0.13 (0.00, 1.23) 1.23 (1.03, 1.95) 3.28 (2.09, 5.60)

CM: current model in each row.
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equation (2) the effect on the target outcome was predicted with much increased precision compared
to other models. For example, when using prior distribution I the interval for the predicted true
effect �̂2j from the REMR was almost twice as wide (on log relative risk scale) compared to the
interval obtained from the FEMR. The results obtained from the models by Daniels and Hughes
and BRMA PNF were much more conservative with moderately reduced precision (with intervals,
respectively, 2.44 and 2.95 times wider than those obtained from the FEMR). When applying the
BRMA model with a Wishart prior distribution, the results were sensitive to the parameters of the
prior distribution. In the case of Wishart A distribution with identity matrix, the predicted intervals
were largely inflated (most likely due to implied prior distributions on the between-study variances
not being suitably non-informative). Using the Wishart B prior distribution led to predictions
comparable to those obtained from BRMA PNF with slightly more inflated intervals. The use of
the REMR approach, as in equation (4), resulted in increased uncertainty around the predicted
effect on the disability progression (compared to predictions obtained when using the FEMR
approach) of similar magnitude to the results obtained from models by Daniels and Hughes and
BRMA PNF. This uncertainty in the predictions obtained from REMR can be related to the
number of studies in the set or the level of the between-study heterogeneity and hence precision
can be gained when using a larger set of studies. The same scenario applies to some extent to other
models as well. This is mostly the case for the model by Daniels and Hughes which has a form
similar to the REMR, but in addition the uncertainty in this model is related to the uncertainty
around the effect on the surrogate endpoint, while this is not the case when using meta-regression
which includes the effect on surrogate endpoint as a fixed covariate. Similarly, BRMA PNF gives
predictions with uncertainty related to both the size and heterogeneity of the data set (as well as the
uncertainty around the effect on the surrogate outcome); however, perhaps less so because of strong
distributional assumptions about the between-study heterogeneity which leads to a greater effect of
‘borrowing of strength’ across the studies and the outcomes. Sensitivity analysis in relation to the
choice of the prior distribution placed on the standard deviations ( in the meta-regression and
model by Daniels and Huhges, and  1 and  2 in the BRMA PNF) was carried out as described in
Section 3.5. The sensitivity analyses using prior distributions I–IV gave very similar results as can be
seen in Table 5. As mentioned above, predictions were sensitive to the parameters of the Wishart
prior distribution.

The results suggest that prediction of true effects obtained from the FEMR (and potentially also
REMR) can be overly optimistic and artificially precise, likely with intervals not containing the true
value, due to underestimated between-study variability and the measurement error corresponding to
the treatment effect on the surrogate endpoint (relapse rate ratio in this case). However, the success
of the prediction may also be affected by the strong assumptions about the distribution of the data
made in the models, such as for example exchangeability assumption in BRMA PNF. To investigate
this further, a simulation study was conducted which is presented in Section 5.

4.1.1 Discussion of the results for RRMS

Based on our results we cannot conclude that relapse rate is a good surrogate for disability
progression as the prediction did not give good results for all of the studies (it failed for the
study by Durelli using all methods apart from the BRMA with Wishart prior (A) which largely
inflated the variance of predictions). The study by Durelli differs from the rest of the set in that the
effect on the disability progression is much larger than the effect on the relapse rate, with the ratio of
the relative effects on those outcomes (the effect on progression to the effect on relapse) equal to 0.6.
In most of the remaining studies, this ratio is usually higher than 1.0 (it ranges between 0.94 and
2.16) owing to the fact that disability progression is a longer term outcome and the effect measured
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on this outcome at the same follow-up time as the effect on the relapse rate will be less due to
relatively few events occurring for this outcome on this time scale. The only other study with that
ratio below one was the study by Millefiorini, with the ratio of 0.56. The cross-validation did not fail
for this study likely because it is a small study with estimates of the treatment effects on both
outcomes having large variances (included in the predicted intervals for the cross-validation).

In the Millefiorini study, the patients were relatively young compared to the other studies with a
relatively high baseline disability score which can explain the extreme treatment effect on disability
of the mitoxantrone relative to the effect of the placebo. The baseline relapse rate was more
representative of other studies and hence the effect on this outcome was less extreme (albeit still
substantial). There does not seem to be anything, however, in the population of the study by
Durelli that would explain the opposite relationship in the magnitude of the effects on the two
outcomes. The patients were slightly older compared to other studies and the average baseline
disability score was relatively low. This may suggest that the treatment effect on annualised
relapse rate may not be a perfect predictor of the effect on the disability progression rate.
However, the predictions overwhelmingly worked for the remaining studies which would
encourage further research. Note that the effect on the final outcome in the data set investigated
here is measured at the same time point as the effect on the surrogate endpoint. Since the disability
progression is considered a long-term endpoint, when measured early it is measured with a relatively
large uncertainty due to low number of events. Further research is required to establish whether
the relapse rate is a good surrogate endpoint and in particular an early marker of disability
progression. Such further research should include disability progression reported later compared
to relapse rate, but potentially also consider both outcomes on alternative scales such as the hazard
ratio for the time to disability progression. Sormani et al. already point out the limitations of using
the summary data alone to evaluate the surrogate outcomes. To properly establish the surrogacy,
outcomes on an individual level need to be investigated ideally based on data from all of the clinical
trials.

4.2 Results from Bayesian models: Gastric cancer

As in the case of RRMS, in the first instance pooled effects were obtained using the historical trials
data set to compare the models. The data were then used to perform the cross-validation of the
surrogate endpoints. ‘Oba data’ also included another group of studies, the validation trials, which
were then used for external validation. Pooled effects obtained from all of the models are shown in
Table 6 for comparison. As noted in the previous section on RRMS, only the two forms of BRMA
allowed for the estimation of the pooled treatment effects on both outcomes. The pooled effect
measured by the surrogate endpoint, DFS, had higher uncertainty in BRMA Wishart (A) model
compared to BRMA PNF model. The point estimate of the pooled treatment effect measured by the
target endpoint, OS, was similar for all models. Moreover, all models gave estimates with similar
precisions except for the BRMA model with inverse Wishart (A) prior which resulted in estimates
with a remarkably higher uncertainty.

When applying the four models to cross-validation, the effect on OS in the historical studies was
assumed unknown (in one study at a time which in that case became a validation study) and then
predicted from the effect on DFS by each model. The predicted effects on OS with corresponding
intervals obtained for each historical study from each model are presented in Table 7 along with the
predictions obtained for the validation studies. For one study (B-CLASSIC), the predicted effects on
OS obtained from both meta-regression models were statistically significant while the observed effect
was only borderline significant (predictions marked in bold font). This could be interpreted to be due
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Table 7. Predictions obtained from all models for all studies in the ‘Oba data’.

Overall survival, mean (95% CrI)

Historical trials

FFCD-8801 NSAS-GC JCOG-9206-1 JCOG-8801 SWOG-7804

Observed 0.84 (0.62, 1.14) 0.51 (0.29, 0.90) 0.60 (0.31, 1.18) 0.82 (0.54, 1.27) 0.93 (0.70, 1.24)

Meta-regression 0.87 (0.63, 1.19) 0.50 (0.25, 1.01) 0.65 (0.32, 1.30) 0.82 (0.53, 1.27) 0.91 (0.67, 1.24)

Meta-regression 2 0.86 (0.61, 1.23) 0.50 (0.24, 1.03) 0.64 (0.31, 1.31) 0.82 (0.52, 1.30) 0.91 (0.65, 1.28)

Daniels & Hughes 0.86 (0.55, 1.33) 0.62 (0.30, 1.31) 0.73 (0.32, 1.67) 0.85 (0.48, 1.51) 0.90 (0.60, 1.33)

BRMA (Wishart) 0.90 (0.45, 1.80) 0.84 (0.32, 2.17) 0.82 (0.31, 2.16) 0.72 (0.30, 1.74) 0.84 (0.39, 1.82)

BRMA (PNF) 0.87 (0.61, 1.25) 0.87 (0.48, 1.57) 0.87 (0.43, 1.72) 0.88 (0.56, 1.38) 0.86 (0.60, 1.21)

EORTC-40813 Tsavaris ICCG-1/81 ITMO GITSG-8174

Observed 0.85 (0.64, 1.14) 0.55 (0.33, 0.89) 0.85 (0.64, 1.13) 0.98 (0.70, 1.37) 0.74 (0.53, 1.04)

Meta-regression 0.78 (0.57, 1.06) 0.58 (0.32, 1.03) 0.91 (0.67, 1.24) 0.93 (0.65, 1.33) 0.76 (0.53, 1.09)

Meta-regression 2 0.78 (0.56, 1.10) 0.57 (0.31, 1.05) 0.91 (0.65, 1.28) 0.93 (0.64, 1.36) 0.76 (0.52, 1.12)

Daniels & Hughes 0.79 (0.52, 1.19) 0.67 (0.35, 1.32) 0.91 (0.59, 1.40) 0.92 (0.59, 1.44) 0.78 (0.49, 1.25)

BRMA (Wishart) 0.81 (0.41, 1.63) 0.81 (0.33, 1.97) 0.88 (0.39, 1.97) 0.87 (0.35, 2.16) 0.83 (0.38, 1.80)

BRMA (PNF) 0.86 (0.62, 1.21) 0.87 (0.51, 1.46) 0.87 (0.62, 1.22) 0.87 (0.61, 1.24) 0.87 (0.60, 1.27)

NCTTG-794151 ECCOG-EST3275 EORTC-40905 ICCG

Observed 1.02 (0.69, 1.51) 0.94 (0.68, 1.30) 0.93 (0.64, 1.37) 1.05 (0.74, 1.49)

Meta-regression 0.99 (0.65, 1.49) 0.92 (0.66, 1.30) 0.91 (0.62, 1.36) 1.11 (0.74, 1.66)

Meta-regression 2 0.99 (0.64, 1.53) 0.93 (0.64, 1.34) 0.91 (0.60, 1.39) 1.11 (0.72, 1.71)

Daniels & Hughes 0.95 (0.55, 1.64) 0.91 (0.57, 1.44) 0.89 (0.53, 1.50) 0.99 (0.62, 1.59)

BRMA (Wishart) 0.87 (0.38, 2.02) 0.80 (0.38, 1.70) 0.92 (0.42, 2.01) 0.89 (0.42, 1.92)

BRMA (PNF) 0.86 (0.56, 1.32) 0.86 (0.59, 1.24) 0.87 (0.56, 1.33) 0.86 (0.59, 1.25)

Validation trials

A-cirera B-CLASSIC E-GOIM-9602 F-GOIRC

Observed 0.60 (0.39, 0.93) 0.72 (0.52, 1.00) 0.91 (0.69, 1.21) 0.90 (0.64, 1.26)

Meta-regression 0.57 (0.34, 0.94) 0.58 (0.38, 0.88) 0.92 (0.68, 1.23) 0.96 (0.67, 1.37)

Meta-regression 2 0.57 (0.34, 0.96) 0.58 (0.37, 0.89) 0.92 (0.66, 1.27) 0.96 (0.65, 1.40)

Daniels & Hughes 0.62 (0.33, 1.16) 0.62 (0.38, 1.02) 0.90 (0.61, 1.32) 0.93 (0.59, 1.48)

BRMA (Wishart) 0.79 (0.32, 1.94) 0.70 (0.32, 1.55) 0.84 (0.41 1.73) 0.80 (0.34, 1.84)

BRMA (PNF) 0.86 (0.54, 1.36) 0.80 (0.53, 1.20) 0.87 (0.63, 1.20) 0.87 (0.60, 1.26)

Table 6. Summary results for treatment effect on overall survival and disease-free survival.

Disease-free survival Overall survival

Model Mean 95% CrI �1ðsd Þ
a Mean 95% CrI  2 (sd) s2 (sd)

REMR 0.81b [0.73; 0.90] 0.05 (0.04)

D&Hc 0.82b [0.74; 0.91] 0.05 (0.04)

BRMA 0.84 [0.67; 1.02] 0.35 (0.08) 0.80 [0.64; 0.98] 0.35 (0.07)

BRMA PNF 0.87 [0.79; 0.95] 0.05 (0.04) 0.84 [0.76; 0.91] 0.04 (0.04) 0.05 (0.05)

a 1 ¼ �1 in BRMA PNF.
bObtained by centring the effects on surrogate endpoint on the mean.
cD&H refers to the model by Daniels & Hughes.
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to the fact that the effect on DFS is likely to be measured with higher precision due to a larger
number of events observed on this outcome compared to OS. Therefore, when predicting the
treatment effect on OS from the effect on DFS, higher precision can be expected. However, it
occurred only when using meta-regression, not when using other methods, and hence was likely
due to underestimated uncertainty by not including measurement error corresponding to the
treatment effect on DFS when making the predictions. As in the RRMS example, most intervals
obtained from BRMA with Wishart prior A were largely inflated.

Discrepancies between observed and predicted estimates of the treatment effect on OS,
summarised by the absolute difference and the ratio of the width of the predicted interval wŶ2j

to
the width of the interval corresponding to the observed estimate wY2j

, are presented in Table 8
(column three and second to last, respectively). The absolute discrepancies were highest when
using bivariate meta-analysis (both PNF and Wishart), which may suggest that the
exchangeability assumption about the true treatment effects was too strong for these data. As
expected, the predicted intervals of Ŷ2j are inflated (compared to the intervals of Y2j) due to the
between-study variability in addition to the sampling variance. Intervals from the model by Daniels
and Hughes were wider compared to those obtained from the REMR, likely due to the measurement
error around the treatment effect on the surrogate endpoint (DFS in this case) taken into account in
this model. This is also seen in the ratios of the widths of the predicted intervals of the true effects
obtained from each model w�̂CM

2j
to the width of the predicted interval w�̂FEMR

2j
obtained from the

FEMR (last column in Table 8) which suggests that predictive intervals obtained from the FEMR
may be underestimated due to the ignored uncertainty. This is further investigated by a simulation
study in Section 5. The results are in agreement with those obtained for the RRMS example in
Section 4.1. However, unlike in the example in RRMS, the predicted intervals obtained from BRMA
PNF are narrower compared to those obtained from the model by Daniels and Hughes. The
inclusion of measurement error around the treatment effect on the surrogate endpoint is balanced

Table 8. Results of the comparison of the models for predicting the treatment effect on OS from the treatment

effect on DFS.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂CM
2j
=w�̂FEMR

2j

Model Prior Median (range) Median (range) Median (range)

FEMR 0.03 (0.00, 0.09) 1.06 (1.03, 1.23)

REMR I 0.03 (0.00, 0.08) 1.15 (1.07, 1.27) 1.59 (1.11, 1.76)

REMR II 0.03 (0.00, 0.09) 1.15 (1.07, 1.27) 1.60 (1.10, 1.78)

REMR III 0.03 (0.00, 0.09) 1.15 (1.07, 1.27) 1.61 (1.15, 1.77)

REMR IV 0.03 (0.00, 0.09) 1.15 (1.07, 1.26) 1.59 (1.08, 1.73)

Daniels & Hughes I 0.06 (0.02, 0.20) 1.38 (1.23, 1.52) 2.70 (1.15, 3.89)

Daniels & Hughes II 0.05 (0.03, 0.18) 1.39 (1.24, 1.48) 2.58 (1.38, 3.79)

Daniels & Hughes III 0.05 (0.01, 0.17) 1.36 (1.28, 1.43) 2.68 (1.15, 3.96)

Daniels & Hughes IV 0.06 (0.01, 0.21) 1.37 (1.19, 1.46) 2.64 (1.25, 3.13)

BRMA PNF I 0.11 (0.01, 0.53) 1.10 (1.03, 1.22) 1.46 (0.47, 1.95)

BRMA PNF II 0.11 (0.01, 0.53) 1.11 (1.03, 1.18) 1.57 (0.43, 1.83)

BRMA PNF III 0.11 (0.01, 0.52) 1.14 (1.05, 1.24) 1.75 (0.51, 2.07)

BRMA PNF IV 0.10 (0.01, 0.53) 1.10 (1.03, 1.18) 1.48 (0.47, 1.81)

BRMA Wishart A 0.12 (0.01, 0.49) 2.24 (1.44, 2.83) 5.97 (2.17, 8.44)

BRMA Wishart B 0.11 (0.01, 0.49) 1.37 (1.11, 1.55) 2.85 (0.89, 3.60)
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by the ‘borrowing of strength’ across studies by the exchangeability assumption which in this case is
likely to cause ‘overshrinkage’, as discussed in Section 3.6. This is consistent with the absolute
discrepancies being larger when using the BRMA models compared to, for example, the model
by Daniels and Hughes which does not make the assumption of the exchangeability. As already
noted in Section 4.1, this issue is explored by the simulation in Section 5. The BRMA with inverse
Wishart prior distribution gave much inflated intervals for Wishart A, but not for Wishart B prior
distribution which confirms the sensitivity of the results to the parameters of the Wishart
distribution as already observed in the RRMS example. Sensitivity analyses in relation to the
choice of the prior distribution placed on the standard deviations ( in the meta-regression and
model by Daniels and Huhges, and  1 and  2 in the BRMA PNF) were carried out as described in
Section 3.5. The sensitivity analyses using prior distributions I–IV gave very similar results as can be
seen in Table 8.

4.2.1 Discussion of the results for gastric cancer

The cross-validation of the predictions of the treatment effect on the OS from the effect on the DFS
confirmed the results of Oba et al. recommending that DFS is a good surrogate endpoint for OS in
patients with curable gastric cancer. One of the limitations of this case study was the absence of any
delay between the measurement of the effect on the surrogate endpoint and the final outcome.
Ideally, one would be interested in establishing whether DFS measured early could be used to
predict long-term OS in the new trials. Sensitivity analysis conducted by Oba et al. was
inconclusive whether or not the treatment effect on DFS measured as early as at two years of
follow-up can be a good predictor of the treatment effect on OS estimated with five years of
follow-up.10

4.3 Results of sensitivity analysis with t-distribution

As discussed in Section 3.6, sensitivity analysis was carried out to investigate the effect of the
distributional assumptions by using the t-distribution on the random effect. Tables 9 and 10 show
results of applying the PTDF model to the ‘Sormani data’ for the example in RRMS. Sensitivity
analyses were carried out by varying the degrees of freedom parameter using values 4, 15 and 30.
The results are presented alongside those obtained from BRMA PNF with comparable prior
distributions (the same prior distributions as for PTDF in Section 3.6). The models with the
t-distribution gave very similar results across all values for the degrees of freedom parameter and
also when compared to the results obtained from BRMA PNF. The only noticeable, but still very
small, difference was for the model with df¼ 4 where the uncertainty around the pooled effect on
relapse rate was slightly higher and the estimate of the heterogeneity parameter for the effect on this
endpoint was also higher and with higher uncertainty (results in Table 9). All models gave very
similar discrepancies in terms of the absolute difference and the ratios of the widths of the intervals
comparing predicted and observed effects, wŶ2j

=wY2j
, and the widths of the intervals of the predicted

true effects from PTDF models compared to the predicted intervals from BRMA PNF, w�̂PTDF
2j

=w�̂PNF
2j

as shown in Table 10. Consistently with the results in Table 9, the intervals obtained from PTDF
model with df¼ 4 were slightly wider compared to those obtained from BRMA PNF and PTDF
with df¼ 15 or 30.

As it can be seen in Tables 11 and 12, the results from the models applied to the ‘Oba data’ for the
example in gastric cancer were also very similar across the range of values of the degrees of freedom.
Median interval ratio comparing the predicted to the observed effects was highest for df¼ 4, but still
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comparable with the results corresponding to other parameters and those from BRMA PNF.
Predicted intervals of the true effects from PTDF model with df¼ 4 were wider than those
obtained from BRMA PNF, with the median ratio of the widths w�̂PTDF

2j
=w�̂PNF

2j
¼ 1:06, but less so

when df¼ 15 or 30 as expected. All predictions for both data sets are included in Tables A 2.1 and
A 2.2 in Appendix 2. The results were similar to those obtained from the BRMA PNF model leading
to the same conclusions.

4.4 Results from the frequentist models

Table 13 shows the discrepancies between the predicted and observed values of the effect on the final
outcome (in terms of the median absolute difference between the estimates and the median ratio of

Table 10. Results of the comparison of the models for predicting the treatment effect on the risk of disability

progression from the treatment effect on relapse rate in RRMS, using models with t-distributions and BRMA PNF for

comparison.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂PTDF
2j
=w�̂PNF

2j

Model Median (range) Median (range) Median (range)

BRMA PNF 0.16 (0.01, 1.22) 1.10 (1.02, 1.58)

BRMA PTDF (4 df) 0.16 (0.01, 1.22) 1.12 (1.02, 1.64) 1.04 (0.97, 1.15)

BRMA PTDF (15 df) 0.16 (0.01, 1.21) 1.10 (1.02, 1.57) 1.01 (0.96, 1.06)

BRMA PTDF (30 df) 0.16 (0.00, 1.22) 1.11 (1.02, 1.55) 1.01 (0.97, 1.08)

Table 11. Summary results for treatment effects on overall survival and disease-free survival RRMS, using models

with t-distributions and BRMA PNF for comparison.

Disease-free survival Overall survival

Model Mean (SD) 95% CrI  1 Mean (SD) 95% CrI  2

BRMA PNF 0.83 (0.04) [0.76; 0.92] 0.03 (0.04) 0.87 (0.04) [0.79; 0.95] 0.05 (0.04)

BRMA PTDF (4 df) 0.83 (0.04) [0.76; 0.91] 0.03 (0.05) 0.87 (0.04) [0.79; 0.94] 0.05 (0.05)

BRMA PTDF (15 df) 0.83 (0.04) [0.76; 0.90] 0.03 (0.05) 0.86 (0.04) [0.79; 0.94] 0.05 (0.04)

BRMA PTDF (30 df) 0.83 (0.04) [0.76; 0.90] 0.03 (0.04) 0.86 (0.04) [0.79; 0.94] 0.05 (0.04)

Table 9. Summary results for placebo-controlled studies for the treatment effects on the risk of disability

progression and the relapse rate ratio in RRMS, using models with t-distributions and BRMA PNF for comparison.

Relapse incidence rate ratio Disability relative risk

Model Mean (SD) 95% CrI  1 Mean (SD) 95% CrI  2

BRMA PNF 0.57 (0.06) [0.46; 0.70] 0.37 (0.09) 0.75 (0.05) [0.67; 0.86] 0.07 (0.06)

BRMA PTDF (4 df) 0.58 (0.07) [0.46; 0.72] 0.47 (0.14) 0.75 (0.05) [0.66; 0.85] 0.08 (0.07)

BRMA PTDF (15 df) 0.57 (0.06) [0.45; 0.71] 0.39 (0.10) 0.75 (0.05) [0.66; 0.85] 0.08 (0.06)

BRMA PTDF (30 df) 0.57 (0.06) [0.45; 0.71] 0.38 (0.10) 0.75 (0.05) [0.67; 0.85] 0.07 (0.06)
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the width of the 95% predicted interval to the width of the 95% confidence interval corresponding to
the observed effect) for the ‘Sormani data’ and the ‘Oba data’. The absolute discrepancies are
comparable with those obtained from the Bayesian models. The effect of the model choice on the
uncertainty of predictions is represented by the ratios w�̂BRMA

2j
=w�̂FEMR

2j
of the width of the predicted

intervals for the true effects obtained from the BRMA model to the interval obtained from the
FEMR. The differences in the width of the predicted intervals between the models are consistent
with the conclusions from the Bayesian analysis; the predictive interval is inflated when using
BRMA (with the median ratio w�̂BRMA

2j
=w�̂FEMR

2j
¼ 1:69 in the RRMS example and

Table 13. Results of the comparison of the frequentist models for predicting the treatment effect on disability

progression from treatment effect on relapse in RRMS and the treatment effect on OS from the treatment effect on

DFS in gastric cancer.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂BRMA
2j
=w�̂FEMR

2j

Model Median (range) Median (range) Median (range)

RRMS

FEMR 0.16 (0.01, 1.16) 1.02 (1.00, 1.21)

BRMA 0.16 (0.00, 1.24) 1.06 (1.06, 1.12) 1.69 (0.52, 4.90)

Gastric cancer

FEMR 0.04 (0.00, 0.09) 1.08 (1.03, 1.25)

BRMA 0.10 (0.02, 0.52) 1.10 (1.01, 1.15) 1.41 (0.20, 1.71)

Table 14. Comparison of the performance of the models in terms of the coverage of the predictive interval.

Average performance of credible interval

Model d¼ 0 
 ¼ 1 1 
 ¼ 2 1 
 ¼ 3 1 
 ¼ 5 1

FEMR 39% 41% 49% 56% 60%

REMR 95% 93% 93% 92% 90%

Daniels & Hughes 95% 94% 95% 94% 93%

BRMA (Wishart) 97% 96% 96% 94% 90%

BRMA (PNF) 96% 95% 93% 91% 85%

BRMA PTDF (4 df) 96% 95% 96% 95% 95%

Table 12. Results of the comparison of the models for predicting treatment effect on OS from treatment effect on

DFS, using models with t-distributions and BRMA PNF for comparison.

Absolute discrepancy w
Ŷ2j
=wY2j

w�̂PTDF
2j
=w�̂PNF

2j

Model Median (range) Median (range) Median (range)

BRMA PNF 0.11 (0.02, 0.52) 1.18 (1.05, 1.27)

BRMA PTDF (4 df) 0.11 (0.02, 0.52) 1.21 (1.06, 1.34) 1.06 (0.98, 1.19)

BRMA PTDF (15 df) 0.11 (0.01, 0.52) 1.17 (1.04, 1.27) 1.00 (0.93, 1.10)

BRMA PTDF (30 df) 0.11 (0.01, 0.52) 1.17 (1.05, 1.29) 1.01 (0.92, 1.08)
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w�̂BRMA
2j

=w�̂FEMR
2j
¼ 1:41 for gastric cancer data) which allows the inclusion of the uncertainty on the

effects on both outcomes alongside all other parameters.

Tables A 3.1 and A 3.2 in Appendix 3 list predicted estimates on the final outcome (disability
progression in RRMS and OS in gastric cancer). When using meta-regression, the predictions were
obtained with reduced intervals (compared to the intervals corresponding to those obtained from
BRMA). As in the Bayesian analysis, predicted interval for one study (B-CLASSIC) in the example
in gastric cancer indicated significant effect (numbers in bold) when using FEMR (but not BRMA)
while the observed effect was only borderline significant. Note that in the frequentist analysis, the
within-study correlation is fixed (instead of the prior distributions in the Bayesian analysis). The
results in Tables 13, A 3.1 and A 3.2 were obtained from models with �wi¼ 0.5. Sensitivity analysis
using correlations �wi ¼ 0, 0:25, 0:75 gave very similar results.

5 Simulation

The models considered in this paper allow for different level of uncertainty on the parameters and
use different degree of distributional assumptions, both of which can impact on the accuracy of
predictions. The models by Daniels and Hughes and the BRMA PNF seemed to predict the
treatment effect on the target outcome equally well, giving conservative predictions (in
comparison with meta-regression) because uncertainty around all the model parameters is taken
into account, but not with overly inflated intervals. The two models, however, use a different degree
of distributional assumptions. Considering, for example, a scenario where a new study may measure
a treatment effect much larger compared to the effect observed in the historical studies (training set),
the assumption in the BRMA PNF (about the true effects measured by both outcomes coming from
a common distribution) may be too strong. Sensitivity to this assumption along with the
performance of all the models is tested here by a simulation.

5.1 Methods

To carry out the simulation, data were simulated for both the validation studies as well as the
‘training set’ to ensure the control over the distributional assumptions of the data (the ‘Sormani
data’ did not satisfy the assumption of normality well). Simulation of the validation data and the
training set data was conducted using the BRMA PNF model (8) and (9) in a number of scenarios
where the mean of the effect in the validation set is shifted by d relative to the mean of the training set

Y1i

Y2i

� �
�MVN

�1i

�2i

� �
,�i

� �
, �i ¼

�21i �1i�2i�wi
�1i�2i�wi �22i

� �
ð16Þ

�1i � Nð�1 þ 
, 
2
1Þ

�2ij�1i � Nð�2i, 
2
2Þ

�2i ¼ �0 þ �1�1i:

8<
: ð17Þ

using a range of values of ds: 0,  1, 2 1, 3 1 and 5 1. The higher the d the more different the ‘new
study’ is with respect to the training set. Parameters for the simulation were obtained by fitting the
model to the ‘Sormani data’ which gave  1 ¼ 0:36,  2 ¼ 0:15, �1 ¼ �0:5253, �0 ¼ 0:01 and
k1¼ 0.4793. The within-study correlations �wi were sampled from a uniform distribution
with limits obtained from the confidence interval of the mean of estimated within-study
correlations, �wi � U ð�0:11, 0:186Þ. The within-study variances were generated by sampling the
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corresponding precisions (inverse variances) from the gamma distribution; �1i ¼ 1=P1i and
�2i ¼ 1=P2i, P1i � �ð�1, �1Þ, P2i � �ð�2, �2Þ, where a1 and a2 are the shape parameters and �1 and
�2 the scale parameters, which were obtained using the method of moments: EðP1,2Þ ¼ �1,2=1,2,
VðP1,2Þ ¼ �1,2=

2
1,2, where 1,2 ¼ 1=�1,2 is a rate parameter. By summarising the inverse variances

from the ‘Sormani data’, the following parameters were obtained: EðP1Þ ¼ 112:6,
EðP2Þ ¼ 32:2, VðP1Þ ¼ 11172:49, VðP2Þ ¼ 1062:76, giving the following shape and rate
parameters: a1¼ 1.13, 1 ¼ 0:01, �2 ¼ 0:97 and 2 ¼ 0:03. Because of the structure of the gamma
distribution, some of the simulated precisions were very close to zero, resulting in very large
variances. This led to some problems with the estimation. To overcome this issue, a constraint
was placed on the simulated value of the precision by discarding the precisions resulting in
variances larger than 3 (this number was taken as an arbitrary cut off, large enough to be much
larger than the variances in the ‘Sormani data’ and hence including all plausible variances in the
population but small enough not to produce problems with the estimation). The number of
participants in each study was drawn from a uniform distribution with limits 25 and 100 (giving
sample sizes of the studies comparable to those in the ‘Sormani data’).

Each model was fitted by adding a validation study to the training set (one at a time) assuming
the effect on the target outcome (disability progression) unknown (coded as NA), which was
then predicted by each model from the effect on the relapse rate given for this study.
The predicted true effect �̂2 was compared with the simulated ‘observed’ true effect l2 by
checking if the credible interval of the predicted effect on the target outcome contained the
observed mean effect. The whole process was repeated 1000 times and the percentage of predicted
outcomes whose credible intervals covered the observed value was reported as the average
performance of the credible interval of the model. The R code used to simulate the data is
included in Appendix 1.7.

5.2 Results

Table 14 lists the average performances of predicted credible interval for each model and for the
range of values of d. Moving the ‘new study’ (validation study) away from the ‘training set’ (by
increasing the d) resulted in reduced performance of the BRMA PNF, while the model by Daniels
and Hughes preformed better (due to the lack of the strong distributional assumption of
exchangeability of the true effects made in the BRMA PNF). Performance of BRMA PTDF
remained unchanged due to the t-distribution being better at modelling extreme effects, as noted
in Section 3.6.

BRMA model with the Wishart prior distribution showed slightly too large performance for d¼ 0
which was related to the overly inflated predictive intervals. FEMR performed least well due to the
artificially reduced uncertainty by ignoring the estimation error of the treatment effect on the
surrogate endpoint. In this case, the performance seems to increase with the validation set
moving away from the training set which is due to the predicted interval expanding as we move
further away from the data, as in linear regression.

6 Discussion

When investigating endpoints as candidate surrogate outcomes, a careful choice of the meta-
analytical approach has to be made. The level of uncertainty taken into account by the model
can impact on the precision of the predictions of the true effect on the final outcome �̂2j from the
effect on the surrogate endpoint. Models underestimating uncertainty, such as FEMR can lead to
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overly precise predictions of the treatment effect on the final outcome in a new study. Reduced
uncertainty around predicted treatment effect on a target endpoint may give the illusion that this is a
desirable effect of a larger number of events measured on the shorter term surrogate endpoint, whilst
in fact this may be due to ignoring uncertainty and in the case of some models between-study
variability. Models underestimating the uncertainty of available evidence may lead to over-
optimistic predictions which can then have an effect on decisions made based on such predictions,
i.e. underpowered clinical trials or unrealistic cost-effectiveness outcomes.

In the models by Daniels and Hughes and BRMAs, the treatment effect on the surrogate
endpoint is treated as a response variable and its uncertainty is taken into account in the model
in contrast to the meta-regression model where the effect on the surrogate was a fixed covariate.
BRMA with the inverse Wishart prior distribution on the between-study covariance matrix seems an
unreliable approach because it does not allow the analyst to easily control the prior distributions on
the specific elements of the covariance matrix. Results obtained from the model are sensitive to the
parameters of the Wishart distribution. For example, setting parameters of the Wishart distribution
that lead to a desirable non-informative uniform distribution induced on the between-study
correlation can give undesirably informative prior distributions for the between-study standard
deviations, which depending on the parameters can lead to inflated intervals for pooled or
predicted estimates. For the illustrative examples considered here, this led to the inflation of the
uncertainty around the predicted target outcome when using the Wishart distribution with the
identity matrix and degrees of freedom equal to three. The BRMA PNF and Daniels–Hughes
models predict the target outcome better, but make different distributional assumptions that need
to be considered when making a choice between these methods. While the Daniels–Hughes model
makes less strong distributional assumptions and may perform better when the new study differs
from the historical data in the meta-analysis data set, the BRMA PNF has an advantage over it by
allowing the estimation of pooled effects for both outcomes when combining data reported on one
or both of them, which can be desirable when the pooled effectiveness estimates are of interest as is
often the case in HTA. In circumstances when the distributional assumptions are plausible in
BRMA PNF, this model has an additional advantage of allowing the analyst to incorporate
external information (based on external evidence or expert opinions) in the form of informative
prior distributions with the potential to reduce uncertainty around the estimate of interest.14,31

When using meta-analytic methods to predict the treatment effect on a target outcome of interest
from the treatment effect measured by a surrogate endpoint, modelling assumptions need to be
considered alongside the uncertainty, particularly around the surrogate endpoint. While Bayesian
methods allow for a great flexibility in modelling uncertainty, the frequentist methods have also been
used to account for the uncertainty around the surrogate endpoint by using an error-in-variables
linear regression model,9,10 which is an alternative for analysts with a preference for a frequentist
approach. We have illustrated the importance of uncertainty by using frequentist methods of meta-
regression and bivariate meta-analysis.

In this paper, to investigate the impact of uncertainty on predictions, we focused on a number of
different parameterisations of normally distributed effects. The assumption of normality is not always
reasonable and when it is not, alternative approaches need to be investigated. In our further work (to
be published elsewhere) we investigate, for example, modelling of relapse rate using a Poisson
distribution and the relative risk of disability progression by assuming that outcomes come from
Binomial distribution. Meta-analytic methods using these type of outcomes have already been
proposed, for example by Stijnen et al. who propose binomial-normal and Poisson-normal
bivariate model (with binomial or Poisson distributions for the within-study variability).32 We have
investigated the normality assumption on the random effect by sensitivity analysis where we replaced
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the normal distribution with the t-distribution. This approach has the limitation of only improving the
modelling when there are more data in the tails (such as outlying observations) that a normal
distribution would not capture properly. If the distribution of the data is, for example, bimodal or
skewed, other approaches can be investigated such as a convolution of normal distributions33 or
skewed t-distribution as proposed by Lee and Thompson.26 The issue of non-normality of the
random effect has been discussed by Higgins et al.,25 who also review non-parametric alternatives
of the meta-analytic methods that can be applied to the non-normally distributed effects (such as non-
parametric maximum likelihood procedures34–37 and Bayesian semiparametric random-effects
distributions based on Dirichlet process priors38–40). However, as Higgins et al. discuss, although
the methods have the ability to incorporate outliers, they are not suitable for making predictions
due to the unusual shape of the discrete distributions. As such, they are unlikely to be suitable for the
purpose of evaluating surrogate endpoints where predictions are of crucial importance.

The methods discussed in this paper do not fully cover all aspects of the surrogate evaluation
process. As already mentioned in Section 1, the individual level association between outcomes
needs to be explored and to do so, individual patient data is required on a number (preferably all)
of the studies included in the meta-analysis. Although this was beyond the scope of this paper, the
availability of individual level data could help to model uncertainty. For example, individual data
can be used to obtain the within-study correlation between the treatment effects. Daniels and
Hughes have used individual level data from a subset of studies in their meta-analysis to obtain
the correlation between the treatment effects by bootstrapping6 while Bujkiewicz et al. performed
a double bootstrap analysis on individual level data from a single study to obtain the correlation
between the treatment effects in the form of an empirical distribution.14 A range of methods for
obtaining the within-study correlation from individual level data was explored by Riley et al. who
used a joint linear regression for multiple continuous outcomes and bootstrapping methods for a
range of other outcomes.41 The availability of individual level data can also be desirable when
taking into account the information on covariates which in the aggregate form is subject to
ecological bias. When investigating surrogacy, the inclusion of covariates could help explain
some heterogeneity or explore the effect of baseline risk. Further research is required to explore
the advantages of individual level data in modelling uncertainty and exploring the impact of
covariates.
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Appendix 1

Appendix 1.1. WinBUGS code: Random effects meta-regression

model{

for (i in 1:num) {

prec2[i]<-1/pow(se[i],2)
Y2[i] � dnorm(mu2[i], prec2[i])

mu2[i]<-lambda0[i]þlambda1*(Y1[i]-mean(Y1[]))
lambda0[i] �dnorm(beta,prec1)

}

beta �dnorm(0.0, 0.001)

lambda1 � dnorm(0.0,1.0E-6)

psi �dnorm(0,0.01)I(0,)

psi.sq<-psi*psi
prec1<-1/psi.sq
y2.uncent<-beta-lambda1*mean(X[])
mean2<-exp(beta)
new.y2<-y2.uncentþlambda1*new.log.y1
new.exp.y2<-exp(new.y2)
}

Appendix 1.2. WinBUGS code: Daniels and Hughes model

model{

# within study precision matrices

for (i in 1:num) {

rho_w[i] � dunif(-1,1)

prec_w[i,1:2,1:2]<-inverse(delta[i,1:2,1:2])
#covariance matrix for the j-th study

delta[i,1,1]<-var[i,1]/n[i,1]
delta[i,2,2]<-var[i,2]/n[i,2]
delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]

}

# Random effects model

for (i in 1:num) {

Y[i,1:2] �dmnorm(mu[i,1:2], prec_w[i,1:2,1:2])

mu[i,1] �dnorm(0,1.0E-3)

mu[i,2] �dnorm(edss[i],prec_dis)

edss[i]<-lambda0þlambda1*(mu[i,1] - mean(mu[,1]))
}

psi �dnorm(0,0.01)I(0,)

psi.sq<-psi*psi
prec_dis<-1/psi.sq
lambda0 �dnorm(0.0, 1.0E-3)

lambda1 �dnorm(0.0, 1.0E-3)

# estimates:
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mean.log.dis<-lambda0
sd.log.dis<-sqrt(psi.sq)
mean.dis<-exp(mean.log.dis)
}

Appendix 1.3. WinBUGS code: BRMA model with Wishart prior distribution

model{

#within study precision matrices

for (i in 1:num) {

rho_w[i] �dunif(-1,1)

prec_w[i,1:2,1:2]<-inverse(delta[i,1:2,1:2])
#covariance matrix for the j-th study

delta[i,1,1]<-var[i,1]/n[i,1]
delta[i,2,2]<-var[i,2]/n[i,2]
delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]

}

# Random effects model

for (i in 1:num) {

Y[i,1:2] �dmnorm(mu[i,1:2], prec_w[i,1:2,1:2])

mu[i,1:2] �dmnorm(beta[1:2],prec_b[1:2,1:2])

}

for (j in 1:2) {

beta[j] �dnorm(0.0,1.0E-4)

}

prec_b[1:2,1:2] �dwish(Q[,],3)

cov_b[1:2,1:2]<-inverse(prec_b[,])
# estimates:

mean.log.rel<-beta[1]
mean.log.dis<-beta[2]
sd.log.dis<-sqrt(cov_b[2,2])
sd.log.rel<-sqrt(cov_b[1,1])
corr.dis.rel<-cov_b[1,2]/(sd.log.dis*sd.log.rel)
psi.sq<-cov_b[2,2]*(1-corr.dis.rel*corr.dis.rel)
}

Appendix 1.4. WinBUGS code: BRMA model in the product normal
formulation

model{

# within study precision matrices

for (i in 1:num) {

rho_w[i] �dunif(-1,1)

prec_w[i,1:2,1:2]<-inverse(delta[i,1:2,1:2])
#covariance matrix for the j-th study

delta[i,1,1]<-var[i,1]/n[i,1]
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delta[i,2,2]<-var[i,2]/n[i,2]
delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]

}

# Random effects model

for (i in 1:num) {

Y[i,1:2] �dmnorm(mu[i,1:2], prec_w[i,1:2,1:2])

# product normal formulation for the between study part:
mu[i,1] �dnorm(rel,prec_rel)

mu[i,2] �dnorm(edss[i],prec_dis)

edss[i]<-lambda0þlambda1*mu[i,1] }

rel �dnorm(0.0, 0.001)

gam_rel �dnorm(0,0.01)I(0,)

gam_dis �dnorm(0,0.01)I(0,)

gam_rel.sq<-gam_rel*gam_rel
gam_dis.sq<-gam_dis*gam_dis
prec_rel<-1/gam_rel.sq
prec_dis<-1/gam_dis.sq
lambda0 �dnorm(0.0, 1.0E-3)

# prior between study correlations:

corr.dis.rel �dunif(-1,1)

# implied prior for lambda
lambda1<-(gam_dis/gam_rel)*(corr.dis.rel/sqrt(1-corr.dis.rel*corr.dis.rel))
# estimates:

mean.log.rel<-rel
mean.log.dis<-lambda0þ lambda1 * mean.log.rel

sd.log.rel<-gam_rel
sd.log.dis<-sqrt(gam_dis.sqþgam_rel.sq*pow(lambda1,2))
mean.rel<-exp(mean.log.rel)
mean.dis<-exp(mean.log.dis)
}

Appendix 1.5. WinBUGS code: BRMA model in the product of
t-distributions formulation

model{

# within study precision matrices

for (i in 1:num) {

rho_w[i] �dunif(-1,1)

prec_w[i,1:2,1:2]<-inverse(delta[i,1:2,1:2])
#covariance matrix for the j-th study

delta[i,1,1]<-var[i,1]/n[i,1]
delta[i,2,2]<-var[i,2]/n[i,2]
delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i]
}

# Random effects model
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for (i in 1:num) {

Y[i,1:2] �dmnorm(mu[i,1:2], prec_w[i,1:2,1:2])

# product of t-distributions formulation for the between study part:
mu[i,1] �dt(rel,prec_rel,d)

mu[i,2] �dt(edss[i],prec_dis,d)

# edss[i]<-lambda0þlambda1*mu[i,1]
edss[i]<-lambda0þlambda1*(mu[i,1]- mean(mu[,1])) #when centered

}

rel �dnorm(0.0, 0.001)

gam_rel �dnorm(0,0.01)I(0,)

gam_dis �dnorm(0,0.01)I(0,)

gam_rel.sq<-gam_rel*gam_rel
gam_dis.sq<-gam_dis*gam_dis
prec_rel<-d / (gam_rel.sq * (d - 2))

prec_dis<-d / (gam_dis.sq * (d - 2))

lambda0 �dnorm(0.0, 1.0E-3)

lambda1 �dnorm(0.0, 1.0E-3)

# prior between study correlations:

corr.dis.rel �dunif(-1,1)

# estimates:

mean.log.rel<-rel
# mean.log.dis<-lambda0þ lambda1 * mean.log.rel

mean.log.dis<-lambda0 #when centered

mean.rel<-exp(mean.log.rel)
mean.dis<-exp(mean.log.dis)
}

Appendix 1.6. Stata code for meta-regression and BRMA

Columns in the data contain treatment effects y1 and y2 (here on log scale) with

corresponding standard errors se1 and se2.

forvalues k¼1/25 {

use MSdata.dta, clear

gen b1¼y1

gen b2¼y2

gen se2n¼se2

egen id¼seq()

replace b2¼. if id¼¼‘k’

replace se2¼. if id¼¼‘k’

gen S11¼se1^2

gen S22¼se2^2

gen S12¼se1*se2*0.5

replace b2¼ 0 if b2¼¼.

replace S22¼ 10000 if S22¼¼.

replace S12¼ 0 if S12¼¼.

*** mvmeta ***

mvmeta b S, mm keepmat(y S)
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*** prediction ***

* set up

mat mu¼ e(b)

mat Sigma¼ e(Sigma)

* do calculations as matrices

forvalues i¼1/25 {

mat eb‘i’¼ muþ (y‘i’-mu) * syminv(S‘i’þ Sigma) * Sigma

mat vb‘i’¼ Sigma * syminv(S‘i’þ Sigma) * S‘i’

}

* store as variables

forvalues r¼1/2 {

qui gen eb‘r’¼.

qui gen vb‘r’¼.

forvalues i¼1/25 {

qui replace eb‘r’¼ eb‘i’[1,‘¼‘r’’] in ‘i’

qui replace vb‘r’¼ vb‘i’[1,‘¼‘r’’] in ‘i’

}

}

gen lci2¼eb2-1.96*sqrt(se2n*se2nþvb2)

gen uci2¼eb2þ 1.96*sqrt(se2n*se2nþvb2)

gen pb2¼exp(eb2)

gen plci2¼exp(lci2)

gen puci2¼exp(uci2)

*** meta-regression ***

metareg b2 b1, wsse(se2)

predict pb2r, xb

predict pse2r, stdp

gen epb2r¼exp(pb2r)

gen plci2r¼exp(pb2r-1.96*sqrt(pse2r*pse2rþse2n*se2n))

gen puci2r¼exp(pb2rþ1.96*sqrt(pse2r*pse2rþse2n*se2n))

}

Appendix 1.7. R code for the simulation

sd1<-0.36
sd2<-0.15
eta1<- -0.5253

lambda0<- 0.0101

lambda1<- 0.4793

shift<-0
delta<-sd1*shift
sh2<-0.97
rt2<-0.03
sc2<-1/rt2
sh1<-1.13
rt1<-0.01
sc1<-1/rt1
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rho.min<- -0.11

rho.max<- 0.186

var.pop.rel<-2.2
var.pop.dis<-17.2
m1<-m2<-rho<-n1<-n2<-s1<-s2<-var1<-var2<-prec1<-prec2<-matrix(,10)
sigma< - array(matrix(0,2,2),10)

y.val<-matrix(,10,2)
for (i in 1:10){

ll<-5
while (ll>0) {

m1[i]<-rnorm(1,eta1þdelta,sd1)
m2[i]<-rnorm(1,lambda0þlambda1*m1[i],sd2)
rho[i]<-runif(1,rho.min,rho.max)
prec1[i]<-rgamma(1,shape¼sh1,scale¼ sc1)

prec2[i]<-rgamma(1,shape¼sh2,scale¼ sc2)

var1[i]<-1/prec1[i]
var2[i]<-1/prec2[i]
s1[i]<-sqrt(var1[i])
s2[i]<-sqrt(var2[i])
n1[i]<-round(runif(1,25,1000))
n2[i]<-n1[i]
sigma<- matrix(c(var1[i],s1[i]*s2[i]*rho[i],s1[i]*s2[i]*rho[i],var2[i]),2,2)

y.val[i,]<-mvrnorm(n¼1, c(m1[i],m2[i]), sigma)

l1<-(s1[i]>3.0)
l2<-(s2[i]>3.0)
ll<-l1þl2
}

}
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Appendix 2 Predictions from sensitivity analysis using t-distribution

Table A 2.1. Predictions obtained from BRMA PTDF models (and BRMA PNF for comparison) for all studies in the

‘Sormani data’.

Disability progression rate ratio, mean (95% CrI)

Paty (1) Paty (2) Miligan Johnson Jacobs/Simon

Observed 1.00 (0.67, 1.49) 0.71 (0.45, 1.12) 1.14 (0.26, 5.03) 0.88 (0.57, 1.35) 0.63 (0.38, 1.05)

BRMA PNF 0.98 (0.63, 1.53) 0.83 (0.51, 1.36) 0.86 (0.19, 3.96) 0.86 (0.54, 1.39) 0.85 (0.49, 1.47)

BRMA PTDF (4 df) 0.98 (0.62, 1.55) 0.83 (0.51, 1.37) 0.86 (0.19, 3.97) 0.86 (0.53, 1.39) 0.85 (0.49, 1.47)

BRMA PTDF (15 df) 0.98 (0.63, 1.53) 0.84 (0.51, 1.36) 0.88 (0.19, 4.05) 0.86 (0.53, 1.39) 0.85 (0.49, 1.46)

BRMA PTDF (30 df) 0.98 (0.63, 1.53) 0.84 (0.51, 1.36) 0.87 (0.19, 4.01) 0.86 (0.53, 1.39) 0.84 (0.49, 1.46)

Fazekas Millefiorini Achiron Li (1) Li (2)

Observed 0.70 (0.36, 1.35) 0.19 (0.05, 0.79) 0.82 (0.19, 3.50) 0.81 (0.61, 1.08) 0.73 (0.54, 0.99)

BRMA PNF 0.66 (0.33, 1.33) 0.64 (0.15, 2.75) 0.65 (0.15, 2.86) 0.87 (0.62, 1.23) 0.85 (0.60, 1.21)

BRMA PTDF (4 df) 0.66 (0.32, 1.35) 0.64 (0.15, 2.77) 0.66 (0.15, 2.94) 0.87 (0.61, 1.23) 0.86 (0.60, 1.23)

BRMA PTDF (15 df) 0.66 (0.33, 1.33) 0.64 (0.15, 2.74) 0.66 (0.16, 2.89) 0.87 (0.62, 1.23) 0.85 (0.60, 1.21)

BRMA PTDF (30 df) 0.66 (0.33, 1.34) 0.64 (0.15, 2.75) 0.66 (0.15, 2.88) 0.87 (0.61, 1.22) 0.85 (0.60, 1.21)

Clanet Durelli Baumhackl Polman Rudick

Observed 1.00 (0.83, 1.20) 0.43 (0.24, 0.78) 1.07 (0.74, 1.57) 0.59 (0.46, 0.75) 0.79 (0.65, 0.96)

BRMA PNF 1.09 (0.82, 1.45) 0.87 (0.47, 1.63)* 0.94 (0.61, 1.43) 0.57 (0.40, 0.82) 0.66 (0.50, 0.87)

BRMA PTDF (4 df) 1.08 (0.81, 1.45) 0.87 (0.46, 1.62)* 0.93 (0.60, 1.45) 0.57 (0.39, 0.83) 0.66 (0.50, 0.88)

BRMA PTDF (15 df) 1.08 (0.81, 1.44) 0.87 (0.46, 1.62)* 0.93 (0.61, 1.43) 0.57 (0.39, 0.82) 0.66 (0.50, 0.87)

BRMA PTDF (30 df) 1.08 (0.82, 1.43) 0.87 (0.46, 1.62)* 0.94 (0.61, 1.44) 0.57 (0.39, 0.82) 0.66 (0.50, 0.87)

Coles (1) Coles (2) Mikol Comi (1) Comi (2)

Observed 0.35 (0.16, 0.74) 0.38 (0.19, 0.77) 1.34 (0.88, 2.06) 0.69 (0.52, 0.93) 0.73 (0.55, 0.97)

BRMA PNF 0.61 (0.27, 1.35) 0.53 (0.25, 1.12) 1.01 (0.62, 1.64) 0.66 (0.45, 0.96) 0.68 (0.47, 0.98)

BRMA PTDF (4 df) 0.60 (0.27, 1.36) 0.52 (0.24, 1.14) 1.01 (0.61, 1.64) 0.66 (0.45, 0.97) 0.68 (0.47, 0.99)

BRMA PTDF (15 df) 0.61 (0.27, 1.35) 0.53 (0.25, 1.14) 1.00 (0.62, 1.62) 0.66 (0.45, 0.96) 0.68 (0.47, 0.98)

BRMA PTDF (30 df) 0.60 (0.27, 1.35) 0.53 (0.25, 1.13) 1.01 (0.62, 1.63) 0.66 (0.45, 0.96) 0.68 (0.48, 0.98)

Havrdova (1) Havrdova (2) Sorensen O’Connor (1) O’Connor (2)

Observed 1.23 (0.58, 2.62) 1.04 (0.48, 2.67) 0.64 (0.32, 1.28) 1.05 (0.84, 1.31) 1.10 (0.88, 1.37)

BRMA PNF 0.95 (0.43, 2.08) 0.85 (0.38, 1.90) 0.65 (0.31, 1.37) 1.06 (0.77, 1.45) 1.00 (0.74, 1.35)

BRMA PTDF (4 df) 0.94 (0.43, 2.06) 0.85 (0.38, 1.90) 0.66 (0.31, 1.40) 1.06 (0.76, 1.49) 0.99 (0.73, 1.35)

BRMA PTDF (15 df) 0.95 (0.43, 2.08) 0.85 (0.38, 1.90) 0.65 (0.31, 1.43) 1.06 (0.77, 1.46) 1.00 (0.73, 1.35)

BRMA PTDF (30 df) 0.94 (0.43, 2.06) 0.85 (0.38, 1.90) 0.65 (0.31, 1.44) 1.06 (0.77, 1.45) 0.99 (0.74, 1.34)
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Table A 2.2. Predictions obtained from BRMA PTDF models (and BRMA PNF for comparison) for all studies in the

‘Oba data’.

Overall survival, mean (95% CrI)

Historical trials

FFCD-8801 NSAS-GC JCOG-9206-1 JCOG-8801 SWOG-7804

Observed 0.84 (0.62, 1.14) 0.51 (0.29, 0.90) 0.60 (0.31, 1.18) 0.82 (0.54, 1.27) 0.93 (0.70, 1.24)

BRMA PNF 0.87 (0.60, 1.26) 0.86 (0.47, 1.57) 0.87 (0.43, 1.75) 0.87 (0.54, 1.39) 0.86 (0.60, 1.24)

BRMA PTDF (4 df) 0.87 (0.59, 1.27) 0.86 (0.46, 1.60) 0.87 (0.43, 1.77) 0.87 (0.53, 1.43) 0.86 (0.60, 1.25)

BRMA PTDF (15 df) 0.87 (0.60, 1.27) 0.86 (0.47, 1.58) 0.87 (0.43, 1.75) 0.86 (0.54, 1.40) 0.86 (0.60, 1.23)

BRMA PTDF (30 df) 0.87 (0.60, 1.27) 0.86 (0.46, 1.58) 0.87 (0.43, 1.76) 0.87 (0.54, 1.40) 0.86 (0.60, 1.23)

EORTC-40813 Tsavaris ICCG-1/81 ITMO GITSG-8174

Observed 0.85 (0.64, 1.14) 0.55 (0.33, 0.89) 0.85 (0.64, 1.13) 0.98 (0.70, 1.37) 0.74 (0.53, 1.04)

BRMA PNF 0.87 (0.61, 1.25) 0.86 (0.50, 1.48) 0.87 (0.61, 1.24) 0.86 (0.58, 1.28) 0.87 (0.58, 1.29)

BRMA PTDF (4 df) 0.86 (0.50, 1.25) 0.87 (0.50, 1.50) 0.87 (0.60, 1.28) 0.86 (0.57, 1.29) 0.86 (0.58, 1.29)

BRMA PTDF (15 df) 0.86 (0.60, 1.24) 0.86 (0.50, 1.48) 0.87 (0.61, 1.24) 0.86 (0.58, 1.28) 0.87 (0.58, 1.29)

BRMA PTDF (30 df) 0.86 (0.59, 1.24) 0.86 (0.50, 1.47) 0.87 (0.61, 1.24) 0.86 (0.58, 1.28) 0.86 (0.58, 1.29)

NCTTG-794151 ECCOG-EST3275 EORTC-40905 ICCG

Observed 1.02 (0.69, 1.51) 0.94 (0.68, 1.30) 0.93 (0.64, 1.37) 1.05 (0.74, 1.49)

BRMA PNF 0.86 (0.55, 1.34) 0.86 (0.58, 1.27) 0.86 (0.56, 1.33) 0.87 (0.58, 1.32)

BRMA PTDF (4 df) 0.86 (0.55, 1.37) 0.86 (0.58, 1.29) 0.87 (0.55, 1.37) 0.87 (0.57, 1.33)

BRMA PTDF (15 df) 0.86 (0.55, 1.35) 0.86 (0.58, 1.27) 0.86 (0.55, 1.34) 0.87 (0.58, 1.31)

BRMA PTDF (30 df) 0.86 (0.55, 1.35) 0.86 (0.58, 1.27) 0.86 (0.56, 1.34) 0.87 (0.58, 1.31)

Validation trials

A-cirera B-CLASSIC E-GOIM-9602 F-GOIRC

Observed 0.60 (0.39, 0.93) 0.72 (0.52, 1.00) 0.91 (0.69, 1.21) 0.90 (0.64, 1.26)

BRMA PNF 0.85 (0.52, 1.39) 0.77 (0.50, 1.19) 0.88 (0.62, 1.24) 0.87 (0.59, 1.29)

BRMA PTDF (4 df) 0.84 (0.51, 1.38) 0.74 (0.45, 1.21) 0.87 (0.61, 1.24) 0.87 (0.58, 1.30)

BRMA PTDF (15 df) 0.84 (0.51, 1.37) 0.76 (0.49, 1.15) 0.87 (0.62, 1.22) 0.87 (0.58, 1.30)

BRMA PTDF (30 df) 0.84 (0.52, 1.37) 0.76 (0.48, 1.20) 0.87 (0.63, 1.22) 0.87 (0.58, 1.29)
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Appendix 3 Predictions from the frequentist models

Table A 3.1. Predictions obtained from the two frequentist models for all studies in the ‘Sormani data’.

Disability progression rate ratio, mean (95% CrI)

Paty (1) Paty (2) Miligan Johnson Jacobs/Simon

Observed 1.00 (0.67, 1.49) 0.71 (0.45, 1.12) 1.14 (0.26, 5.03) 0.88 (0.57, 1.35) 0.63 (0.38, 1.05)

Meta-regression 0.99 (0.66, 1.48) 0.84 (0.53, 1.33) 0.93 (0.21, 4.11) 0.87 (0.56, 1.35) 0.85 (0.51, 1.42)

BRMA 0.99 (0.65, 1.50) 0.84 (0.52, 1.35) 0.87 (0.19, 4.05) 0.87 (0.55, 1.37) 0.85 (0.50, 1.45)

Fazekas Millefiorini Achiron Li (1) Li (2)

Observed 0.70 (0.36, 1.35) 0.19 (0.05, 0.79) 0.82 (0.19, 3.50) 0.81 (0.61, 1.08) 0.73 (0.54, 0.99)

Meta-regression 0.66 (0.34, 1.29) 0.61 (0.14, 2.55) 0.63 (0.15, 2.69) 0.87 (0.65, 1.17) 0.86 (0.63, 1.17)

BRMA 0.67 (0.34, 1.33) 0.65 (0.15, 2.80) 0.66 (0.15, 2.91) 0.87 (0.64, 1.18) 0.86 (0.62, 1.18)

Clanet Durelli Baumhackl Polman Rudick

Observed 1.00 (0.83, 1.20) 0.43 (0.24, 0.78) 1.07 (0.74, 1.57) 0.59 (0.46, 0.75) 0.79 (0.65, 0.96)

Meta-regression 1.08 (0.87, 1.34) 0.88 (0.48, 1.59)* 0.94 (0.64, 1.39) 0.58 (0.43, 0.78) 0.66 (0.55, 0.83)

BRMA 1.07 (0.88, 1.29) 0.87 (0.47, 1.62)* 0.94 (0.63, 1.41) 0.62 (0.48, 0.81) 0.66 (0.54, 0.82)

Coles (1) Coles (2) Mikol Comi (1) Comi (2)

Observed 0.35 (0.16, 0.74) 0.38 (0.19, 0.77) 1.34 (0.88, 2.06) 0.69 (0.52, 0.93) 0.73 (0.55, 0.97)

Meta-regression 0.58 (0.27, 1.26) 0.49 (0.24, 1.01) 1.03 (0.66, 1.60) 0.66 (0.48, 0.91) 0.69 (0.51, 0.93)

BRMA 0.62 (0.28, 1.37) 0.55 (0.27, 1.15) 1.01 (0.63, 1.60) 0.77 (0.48, 0.93) 0.69 (0.50, 0.95)

Havrdova (1) Havrdova (2) Sorensen O’Connor (1) O’Connor (2)

Observed 1.23 (0.58, 2.62) 1.04 (0.48, 2.67) 0.64 (0.32, 1.28) 1.05 (0.84, 1.31) 1.10 (0.88, 1.37)

Meta-regression 0.96 (0.45, 2.05) 0.86 (0.39, 1.88) 0.63 (0.31, 1.27) 1.06 (0.83, 1.37) 1.00 (0.78, 1.27)

BRMA 0.95 (0.44, 2.06) 0.86 (0.38, 1.90) 0.66 (0.31, 1.39) 1.06 (0.83, 1.35) 1.00 (0.78, 1.27)
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Table A 3.2. Predictions obtained from the two frequentist models for all studies in the ‘Oba data’.

Overall survival, mean (95% CrI)

Historical trials

FFCD-8801 NSAS-GC JCOG-9206-1 JCOG-8801 SWOG-7804

Observed 0.84 (0.62, 1.14) 0.51 (0.29, 0.90) 0.60 (0.31, 1.18) 0.82 (0.54, 1.27) 0.93 (0.70, 1.24)

Meta-regression 0.87 (0.63, 1.19) 0.50 (0.26, 0.97) 0.65 (0.33, 1.25) 0.82 (0.53, 1.26) 0.91 (0.67, 1.24)

BRMA 0.86 (0.62, 1.19) 0.86 (0.50, 1.47) 0.85 (0.45, 1.62) 0.85 (0.55, 1.32) 0.86 (0.63, 1.17)

EORTC-40813 Tsavaris ICCG-1/81 ITMO GITSG-8174

Observed 0.85 (0.64, 1.14) 0.55 (0.33, 0.89) 0.85 (0.64, 1.13) 0.98 (0.70, 1.37) 0.74 (0.53, 1.04)

Meta-regression 0.78 (0.57, 1.06) 0.58 (0.33, 1.02) 0.91 (0.67, 1.24) 0.93 (0.66, 1.31) 0.76 (0.53, 1.09)

BRMA 0.84 (0.61, 1.14) 0.85 (0.52, 1.40) 0.87 (0.63, 1.19) 0.86 (0.61, 1.20) 0.85 (0.59, 1.21)

NCTTG-794151 ECCOG-EST3275 EORTC-40905 ICCG

Observed 1.02 (0.69, 1.51) 0.94 (0.68, 1.30) 0.93 (0.64, 1.37) 1.05 (0.74, 1.49)

Meta-regression 0.99 (0.65, 1.49) 0.93 (0.66, 1.31) 0.92 (0.62, 1.36) 1.11 (0.75, 1.66)

BRMA 0.86 (0.57, 1.29) 0.86 (0.61, 1.22) 0.86 (0.57, 1.28) 0.86 (0.60, 1.23)

Validation trials

A-cirera B-CLASSIC E-GOIM-9602 F-GOIRC

Observed 0.60 (0.39, 0.93) 0.72 (0.52, 1.00) 0.91 (0.69, 1.21) 0.90 (0.64, 1.26)

Meta-regression 0.57 (0.35, 0.93) 0.58 (0.41, 0.82) 0.92 (0.68, 1.24) 0.96 (0.67, 1.38)

BRMA 0.82 (0.52, 1.27) 0.79 (0.60, 1.05) 0.86 (0.64, 1.17) 0.87 (0.60, 1.25)
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