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Abstract

Animal movement is often modelled on an individual level using simulated ran-
dom walks. In such applications it is preferable that the properties of these
random walks remain consistent when the choice of time is changed (time scale
invariance). While this property is well understood in unbounded space, it has
not been studied in detail for random walks in a confined domain. In this work
we undertake an investigation of time scale invariance of the drift and diffu-
sion rates of Brownian random walks subject to one of four simple boundary
conditions. We find that time scale invariance is lost when the boundary con-
dition is non-conservative, that is when movement (or individuals) is discarded
due to boundary encounters. Where possible analytical results are used to de-
scribe the limits of the time scaling process. Numerical results are then used to
characterise the intermediate behaviour.

Keywords: random walks, time scale invariance, self similarity, confined space

1. Introduction1

Movement is always present in wild populations. Even species which are2

usually individually immobile, such as plants or sessile animals, have some means3

of dispersal in space, i.e. seed dispersal or a motile life stage. Naturally this4

movement can have significant effects on population dynamics, particularly if5

movement mediates interactions, such as predation, between species [1, 2, 3, 4,6

5]. Consequently it is beneficial, where possible, to incorporate the effects of7

movement into mathematical models of populations.8

One approach to modelling movement attempts to account for all stimuli9

that may influence an individual’s behaviour [6, 7]. These models can be quite10

complex and may require detailed information about the individual’s environ-11

ment [8]. As such they are typically used to simulate individual movement12

tracks rather than population level behaviour. For studies of whole populations13
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(consisting of large numbers of individuals) simpler approaches, describing av-1

erage rather than specific behaviour i.e. mean field models, are usually needed.2

The diffusion equation is perhaps the most commonly used mean field model3

[2, 9].4

The microscopic theory connecting these approaches is the framework of5

random walks [10]; for example, the diffusion equation describes the behaviour6

of the simplest random walk, Brownian motion. By approximating movement7

by random walks, with known parameters, it is possible to extract the generic8

effects of movement. For example, a dispersal rate for the population can be de-9

rived and used to parameterise diffusion-reaction equations to model spatiotem-10

poral population dynamics [3, 11]. Optimal foraging patterns and encounter11

rates, with predators or traps, (even in relatively complex environments) have12

been studied in a similar way [12, 13, 14, 15].13

Many random walk models are implemented in discrete time, that is each14

step takes a finite, non-zero period of time, ∆t. It is clearly preferable that the15

generic properties of the random walk be insensitive to this parameter (scale16

invariance). Random walks generated by stable distributions have this property17

in unbounded space [16]. However, despite the ubiquity of boundaries in nature,18

the effects of time scaling in confined space have not been extensively studied.19

The only previous study on this subject that we are aware of [17] considers20

a model system which is not related to animal movement. It demonstrates21

that random walks with identical characteristics in unbounded space behave22

measurably differently in a bounded space.23

In this paper we undertake a more detailed study of this phenomenon using24

the drift and diffusion rates of individuals performing a Brownian walk in a25

bounded space. Section 2 introduces a model framework for individual move-26

ment in a bounded space and particularly focuses on how boundaries may be27

implemented. In a one dimensional system the effects of these boundaries can28

be described analytically in certain limiting cases. This is discussed in detail29

in Section 3. Intermediate cases are investigated using numerical simulations.30

These results are extended to more realistic two dimensional geometries in Sec-31

tion 4. Finally Section 5 summarises these results and discusses their wider32

relevance.33

2. Random walks in a bounded space34

The size of individuals, relative to the typical dispersal distances, is usu-35

ally negligible. Consequently we treat an individual’s position as a point,36

R(t) = (x, y), and its movement path as a continuous, curvilinear, track in37

space. However it is relatively rare for individuals to be monitored in anything38

approaching real time. Instead an individual’s location may be recorded on an39

hourly, or even daily, basis depending on the species traits. Thus the true path is40

approximated by a series of line segments ({∆ri}), Fig. 1, each representing dis-41

placement in a fixed time period, ∆t [2]. Typically the movement represented by42

each line segment arises from responses to a multitude of stimuli. Consequently,43

even if these responses are deterministic, the combined response is likely to be44
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Figure 1: Discretisation of a continuous path using line segments. An individual’s position,
denoted by R(t), changes, over a period ∆t, by a line segment, ∆r.

complicated. It is for problems of this type, replacing a complicated determin-1

istic description with a simpler probabilistic one, that statistical mechanics was2

developed [18]. Thus we simulate movement paths, at a given sampling rate,3

as random walks by drawing these line segments from a suitably parameterised4

probability distribution. We will consider Brownian random walks, generated5

by line segments with normally distributed components, i.e. in two dimensions6

∆r = (∆x,∆y) with ∆x,∆y ∼ N (0, σ2).7

In this work we are particularly interested in the average movement be-8

haviour of a population of identical individuals performing the same movement9

pattern. This is typically characterised by two processes: drift, a movement10

biased in a particular direction, and diffusion, the spread of the population in11

space, cf [10]. The rates of these processes can be calculated from the mean and12

mean square displacements of the individuals as follows. The mean displacement13

is given by:14

〈∆R(t)〉 =
√
µ2
x + µ2

y, (1)

where µx and µy are the mean displacements in the x and y directions respec-15

tively. That is:16

µx =

∫∫

Ω

(x− x0)g(x, y)dxdy, (2)

where g(x, y) is the position probability density function (pdf) of the population17

and Ω is the (two dimensional) domain in which the individuals move (µy is18

defined analogously). The mean square displacement is given by:19

〈
∆R2(t)

〉
=

∫∫

Ω

(√
(x− x0)2 + (y − y0)2

)2

g(x, y)dxdy. (3)

The drift rate, A, and the diffusion coefficient, D, in a two dimensional space20

are related to these properties as follows [19]:21

A =
〈∆R(t)〉

t
, D =

〈
∆R2(t)

〉
−
〈
∆R1(t)

〉2

4t
. (4)
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Figure 2: Sketch of the effect of encountering a boundary. A line segment which crosses the
boundary is split into two segments, movement prior to the boundary encounter and movement
after this event. The bold arrows show possible movement directions after the encounter.

In unbounded space a Brownian random walk has no drift, A = 0, and1

second moment given by
〈
∆R2(t)

〉
= 2nσ2, where n = t/∆t and σ2 is the2

variance of the underlying distribution. Thus the diffusion coefficient is:3

D =
σ2

2∆t
. (5)

This relationship allows us to rescale the random walk while preserving D. For4

an alternative time scale, ∆̃t = a∆t, we obtain the same dispersal rate by taking5

σ̃2 = aσ2.6

However, when an individual encounters a boundary, its movement is mod-7

ified by that encounter, see Fig. 2. For instance, a barrier which the individual8

cannot cross, requires that the individual remain within the domain. This in-9

teraction clearly reduces the total displacement of that individual and thus its10

effective speed. Alternatively, encountering a trap will cause the individual to11

be removed from the population. In this case its movement should no longer12

contribute to the overall dispersal of the population.13

Moreover, the impact of these boundaries may not remain the same under14

the time-scaling process outlined above. For a relatively coarse time scale, with15

associated relatively large σ2, each encounter with a boundary must necessarily16

introduce a significant change to the behaviour of that individual. For much finer17

time scales, with concomitantly smaller σ2 values, the impact of any individual18

encounter should result in a smaller alteration in individual movement.19

The two boundary types above correspond to simple Dirichlet and Neumann20

boundary conditions (cf. [2, 20]). A boundary which removes an individual from21

the population can be regarded as an absorbing boundary at which the popula-22

tion goes to zero (a Dirichlet condition). Such a boundary can be implemented23

in the random walk framework by discarding individuals which encounter it.24

An impenetrable barrier is represented by a no-flux condition (a Neumann con-25

dition). The most common implementation of this boundary condition in the26
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Figure 3: Sketch of different types of boundary effects. Details of these boundary types can
be found in the text.

random walk framework treats the individual’s movement after the encounter1

as if it were perfectly reflected in the boundary, see, for example, [2]. A natural2

extension of this model considers an inelastic reflection, where the individual3

loses energy in the encounter and thus does not rebound so far as in the first4

case. In its most extreme form this results in the individual simply stopping at5

the boundary where the encounter took place. These models treat cases where6

the individual has no knowledge of the boundary. An alternative is to model7

the case where the individuals know the location of the boundary and choose8

not to cross it [21]. This is achieved by selecting steps that remain within the9

domain. These different types of boundary encounter are sketched in Figure 3.10

3. Behaviour of populations on a bounded line11

In the previous section we discussed how the proximity of a population to12

a boundary may affect its rate of dispersal. In this section we aim to make13

these intuitive ideas more quantitative. While real populations are typically14

able to move in at least two dimensions, we initially restrict our attention to15

populations constrained to move in a single dimension. In particular, individuals16

are assumed to exist on a half line, 0 ≤ x < ∞, with either an impenetrable or17

an absorbing boundary at x = 0.18

We consider random walks of duration t (without loss of generality t = 1)19

consisting of a finite number of steps of constant duration, ∆t ∈ (0, 1]. It is20

then clear that there are two limiting cases of the time-scaling process; referred21

to as the one step limit and the infinite step limit. The one step limit22

corresponds to taking ∆t = t = 1, and is the coarsest possible random walk23

as it contains a single step. Naturally the infinite step limit, obtained as24

∆t → 0, is a smooth random walk which contains an infinite number of steps.25

It is relatively straightforward to derive the mean and variance of Brownian26

random walks analytically for these limiting cases.27

In particular, the final position, x1, of an individual, released at x0, is char-28

acterised by a probability density function (pdf). For a single step random walk29
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one step limit pdf (x ≥ 0)
(i) reflective f ′

r = f(x1;x0, σ
2) + f(−x1;x0, σ

2) [2]

(ii) stop-go f ′
s =

{
1
2

(
1− erf

(
x0√
2σ2

))
δ(x) x1 = 0

f(x1;x0, σ
2) x1 > 0

(iii) no-go f ′
n = 2f(x1;x0, σ

2)/
(
1 + erf

(
x0√
2σ2

))
[21]

(iv) absorbing f ′
a = 2f(x1;x0, σ

2)/
(
1 + erf

(
x0√
2σ2

))

infinite step limit pdf (x ≥ 0)

(v) impenetrable f
(∞)
i = f(x1;x0, 2Dt) + f(−x1;x0, 2Dt) [20, 22]

(vi) absorbing f
(∞)
a = (f(x1;x0, 2Dt)− f(−x1;x0, 2Dt))/ erf

(
x0√
4Dt

)
[20, 22]

Table 1: Probability density functions for Brownian random walks on the half line. Note that
f refers to Eq. (6).

this pdf can be obtained by applying the chosen boundary condition to the step1

length distribution used. For random walks with multiple steps deriving the2

pdf of the final position in this way becomes increasingly difficult as more steps3

are added, i.e. as ∆t decreases, see Appendix A. However, in the infinite step4

limit we satisfy the conditions used when deriving the mean field approximation5

of this system, i.e. the diffusion equation. A pdf for the position of a walker,6

u(x, t), can then be obtained by solving this equation subject to appropriate7

initial and boundary conditions. Having obtained such a pdf the mean and8

variance for any given release point, x0, can be found as discussed in Section 2.9

These limiting cases provide a structure for the time-scaling process. How-10

ever to completely understand its effects on random walks we must also consider11

intermediate choices of ∆t. Since the position pdfs in these cases can be quite12

complex they are analysed with numerical simulations rather than analytically.13

We begin by considering the effects of an impenetrable boundary.14

3.1. Effects of an impenetrable boundary15

As noted in Section 2 there are several ways to implement an impenetrable16

boundary: individuals may bounce off the boundary (a reflective boundary);17

they may stop temporarily at the boundary (a stop-go boundary); or they18

may only choose steps that remain within the domain (a no-go boundary). In19

the infinite step limit, as ∆t → 0, we would expect any differences between these20

cases to disappear allowing a simple no-flux Neumann condition, ∂u
∂x

∣∣
x=0

= 021

for t > 0, to be used.22

For the one step limit we must find the pdf describing the position of an23

individual after a single step. As noted above, in unbounded space this is24

simply x1 ∼ N (x0, σ
2). In particular, the probability that a position x1 is25
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attained given a start position of x0 is given by [2]:1

P(x1 | x0) = f(x1;x0, σ
2) =

1√
2πσ2

exp

(
− (x1 − x0)

2

2σ2

)
. (6)

In the bounded domain, the tail, x1 < 0, cannot occur; the boundary condition2

used determines how steps from this tail are returned to the domain. The3

reflective boundary is the most straightforward, the negative tail is simply folded4

back into the domain. For the stop-go boundary such steps are treated as if they5

end at the boundary. Thus the probability density at the boundary is set equal6

to probability density in the tail. Finally, for the no-go boundary, we select7

steps that remain within the boundary. This amounts to discarding steps in the8

negative tail and rescaling the pdf so that its total density is 1. This is achieved9

by dividing by the probability density remaining within the domain. The pdfs10

describing the effects of these boundary conditions, analogous to Eq. (6), can11

be found in Table 1 (rows (i)-(iii)).12

For the infinite step limit, the pdf is a solution of the diffusion equation:13

∂u

∂t
= D

∂2u

∂x2
, (7)

for a point source initial condition and as such a Green’s function. The (well-14

known) solution for a no-flux boundary condition is given in Table 1 (row (v))15

in terms of Eq. (6) to aid comparison. Recalling Eq. (5), and that ∆t = 1 in the16

one step limit, we have D = σ2/2. Substituting this expression for D and t = 117

into this pdf yields the pdf for the one step limit with a reflective boundary,18

Table 1 (rows (i)). Thus the behaviour of these two cases is identical.19

The mean and variance of these distributions can be obtained straightfor-20

wardly by standard techniques so we omit the details of their derivation. The21

resulting functions are given in Table 2 and they are plotted against the release22

point, x0, in Fig. 4A-B. We observe first that, in all cases, individuals released23

close to the boundary exhibit a non-zero drift (i.e. mean) away from it. As24

the release point is moved away from the boundary this drift decays monoton-25

ically and becomes indistinguishable from zero (the drift for a Brownian walk26

in unbounded space) for x0 > 3.5. Similarly, individuals released close to the27

boundary have a relatively small diffusion rate (i.e. variance) which increases28

monotonically to become indistinguishable from one, again the value that is29

obtained in unbounded space, at the same distance from the boundary.30

We have already noted that the behaviour of these random walks in the infi-31

nite step limit does not depend on how the boundary is implemented. Further-32

more for the reflective boundary the behaviour in the one step limit is identical33

to that in the infinite step limit (Curve 1 in Fig. 4). This suggests that, in this34

case, temporal rescaling of the random walk has no impact on the movement35

characteristics of individuals. In contrast, the behaviour in one step limit for36

the stop-go and no-go boundaries (Curves 2 and 3 respectively) differs from that37

obtained in the infinite step limit. In particular, the stop-go boundary induces38

about half as much drift in the one step limit compared to the infinite step limit39
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property cases function (x0 ≥ 0)

mean (i), (v)
√

2σ2

π
exp

(
−x2

0

2σ2

)
− x0

(
1− erf

(
x0√
2σ2

))
[23]

(ii)
√

σ2

2π exp
(

−x2

0

2σ2

)
− x0

2

(
1− erf

(
x0√
2σ2

))

(iii), (iv)
√

2σ2

π
exp

(
−x2

0

2σ2

)
/
(
1 + erf

(
x0√
2σ2

))

(vi) x0

(
1/ erf

(
x0√
2σ2

)
− 1

)

variance (i), (v) σ2
(
1− 2

π
exp

(
−x0

σ2

))
−
√

8σ2x2

0

π
exp

(
−x2

0

2σ2

)
erf

(
x0√
2σ2

)
+ x2

0

(
1− erf2

(
x0√
2σ2

))
[23]

(ii) σ2

2

(
1 + erf

(
x0√
2σ2

)
− 1

π
exp

(
−x0

σ2

))
−
√

σ2x2

0

2π exp
(

−x2

0

2σ2

)
erf

(
x0√
2σ2

)
+

x2

0

4

(
1− erf2

(
x0√
2σ2

))

(iii), (iv) σ2

(
1− 2

π
exp

(
−x2

0

σ2

)
/
(
1 + erf

(
x0√
2σ2

))2
)
−
√

2σ2x2

0

π
exp

(
−x2

0

2σ2

)
/
(
1 + erf

(
x0√
2σ2

))

(vi) σ2 + x2
0

(
1− 1/ erf2

(
x0√
2σ2

))
+

√
2σ2x2

0

π
exp

(
−x2

0

2σ2

)
/ erf

(
x0√
2σ2

)

Table 2: Mean and variance of pdfs (denoted by Roman numerals) in Table 1. The functions for the infinite step limit (cases (v) and (vi)) can be
converted to their diffusion forms by taking σ2 = 2Dt.
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Figure 4: Plots of mean (A, E) and variance (B, C, D, F) profiles for individuals subject to
an impenetrable boundary. Solid curves labelled 1 correspond to the infinite step limit and
the one step limit for the reflective boundary. Solid curves labelled 2 or 3 correspond to the
one step limit for stop-go or no-go boundary conditions respectively. The dashed reference
line shows the variance that would be obtained in unbounded space. The remaining curves
(symbols) were obtained numerically using the following ∆t values: 1 - ×, 0.5 - +, 0.25 - ◦,
0.125 - ∗, 0.0625 - �, 0.001 - ⋄, for a reflective (C), stop-go (D) or no-go (E-F) boundary.
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and has a convex rather than sigmoidal diffusion profile. The no-go boundary1

induces more drift in this limit than in the infinite step limit and has a lower2

curvature diffusion profile. Thus it is natural to investigate how these profiles3

change for intermediate values of ∆t.4

The analytical approach used to obtain these profiles for the one step limit5

can be extended to deal with intermediate values of ∆t, see Appendix A. How-6

ever this analysis becomes increasingly complex as more steps are added to the7

random walk, so we use a numerical approach here. An individual was initially8

placed at a point, x0, on the half line, H . The positions taken by this individual,9

over a time period of one time unit, were then generated using random numbers10

drawn from a normal distribution, N∆t = N (0, 1/∆t). (Note that this choice of11

distribution ensures that all random walks have the same effective speed, D.)12

If an individual crossed the boundary, reaching a position −x, the appropri-13

ate boundary condition was applied. In particular for a reflective boundary it14

was placed at x, for a stop-go boundary it was placed at the boundary, and15

for a no-go boundary an alternative step was generated (accepting only steps16

that produced a final position within the domain). The mean and variance of17

the displacement, from x0, of individuals was computed on completion of their18

random walk. The mean squared displacement at a point was estimated from19

repeated (a total of 100000) simulations of individuals (with steps drawn from20

the same normal distribution) released at that point. Six time scales were used,21

∆t ∈ {1, 0.5, 0.25, 0.125, 0.0625, 0.001}. Resulting profiles for an array of release22

points 0.1 units apart are plotted in Fig. 4C-F.23

As we expected the drift (not shown) and diffusion (Fig. 4C) for the reflective24

boundary are independent of ∆t. For all choices of ∆t considered the values25

calculated lie on, or close to, the solutions obtained from the limiting cases.26

(In fact this can be readily proven analytically, see Appendix Appendix A.)27

Variations from these solutions can reasonably be ascribed to the stochastic28

method used to obtain these intermediate values. For the stop-go and no-go29

boundaries we obtain similarly good agreement between the simulated profiles30

for ∆t = 1 and ∆t = 0.001 and the corresponding limiting cases, Fig. 4D-F.31

For the stop-go boundary the intermediate curves appear to shift monotonically32

between the two limiting cases of the diffusion profile, we see in Fig. 4D that33

the symbols all tend to appear in the same order (except where the limiting34

cases are very close together). A similar pattern (not shown) was observed for35

the drift profiles and for the no-go boundary for release points far from the36

boundary, Fig. 4E-F. However for release points close to a no-go boundary the37

pattern changes. This is most clearly seen from the drift profiles, Fig. 4E. Here,38

for x0 < 0.5, decreasing ∆t initially increases the drift relative to that obtained39

in the one step limit. As ∆t decreases further the drift peaks (for any given40

release point) and then decreases towards the value obtained in the infinite step41

limit. For the diffusion profiles, Fig. 4F, this pattern appears to persist further42

from the boundary, up to x0 = 1.2, but it is less clear since the limiting cases43

are relatively close together.44

We now undertake a similar analysis replacing the impenetrable boundary45

used here with an absorbing boundary.46
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3.2. Effects of an absorbing boundary1

Individuals which encounter an absorbing boundary are removed from the2

domain. In the infinite step limit this is modelled by a Dirichlet condition,3

u(0, t) = 0 for t > 0.4

As in the previous section, we determine the position pdf for the one step5

limit by modifying Eq. (6) to take into account how positions x < 0 are treated6

by the absorbing boundary condition. Individuals encountering this bound-7

ary are removed from the population, terminating the random walk, effectively8

discarding these positions. Note that this means that the probability of remain-9

ing within the domain is less than one. However, since we only compute the10

displacement of individuals remaining in the domain, we effectively rescale the11

probability densities of positions within the domain by the probability of remain-12

ing within the domain. Thus the pdf obtained, Table 1 (row iv), is equivalent13

to that obtained for the no-go boundary condition although the mechanism by14

which it is obtained is subtly different. Note that for ∆t < 1 the pdfs obtained15

in these two cases are different, Appendix A. Similarly, for infinite step limit16

the pdf is a Green’s function for Eq. (7) and is again well-known, Table 1 (row17

vi).18

The mean and variance of these pdfs are given in Table 2 and plotted in19

Fig. 5A-B. The drift and diffusion profiles for the absorbing boundary exhibit20

similar characteristics to those obtained for the impenetrable boundary. In21

particular the drift profiles are monotone decreasing, the diffusion profiles are22

monotone increasing, and all profiles become indistinguishable from the values23

obtained in unbounded space for x0 > 3.5. As for the stop-go and no-go bound-24

ary conditions the limiting cases behave differently. For example, close to the25

boundary the drift and diffusion are larger in the infinite step limit (Curve 2)26

than in the one step limit (Curve 1).27

As for the impenetrable boundary the limiting cases provide only a partial28

characterisation of the effect of the choice of time scale. Thus we investigate29

intermediate values of ∆t using numerical simulations. The technical details of30

these simulations are as described in Section 3.1, with the exception of treat-31

ment of the boundary. As noted above individuals that encounter an absorbing32

boundary are removed from the population. This is implemented by terminating33

random walks that cross the boundary and not including them in calculations of34

displacement. Note that this means the profiles are typically computed from less35

than the full 100000 individuals released at each point. The resulting variance36

profiles are plotted in Fig. 5C.37

Once again we find that simulated results for the extreme values of ∆t (1.038

and 0.001) are close to the respective limiting cases. Furthermore, the inter-39

mediate mean (not shown) and variance profiles appear to move monotonically40

between the limiting cases in much the same way as they do for the stop-go41

boundary.42

This characterisation of mean and variance profiles confirms that the pres-43

ence of boundaries does indeed change the way random walks scale with their44

time step. In the following section we discuss the mechanisms causing this45

behaviour.46
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Figure 5: Plots of mean (A) and variance (B, C) profiles for individuals subject to an ab-
sorbing boundary. Solid curves labelled 1 or 2 correspond to the one step or infinite step
limits respectively. The dashed reference line shows the variance that would be obtained
in unbounded space. The remaining curves (symbols) were obtained numerically using the
following ∆t values: 1 - ×, 0.5 - +, 0.25 - ◦, 0.125 - ∗, 0.0625 - �, 0.001 - ⋄.
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3.3. Interpretation and discussion of results1

Our results so far are as follows:2

1. Proximity to a boundary induces a drift away from that boundary and3

reduces the diffusion rate relative to that which would be obtained in4

unbounded space.5

2. Nonetheless time scale invariance of the drift and diffusion rates can be6

preserved for the reflective implementation of the impenetrable boundary.7

3. For the stop-go, no-go and absorbing boundary conditions time scale in-8

variance of these properties is lost, at least if Eq. (5) is used.9

We observed in Section 2 that any given encounter with an impenetrable10

boundary would reduce the displacement of the individual involved. However,11

with respect to the average movement characteristics of the individual, this12

has an effect which may appear unintuitive. In particular, while individuals13

near such a boundary diffuse relatively slowly they also appear, on average, to14

move away from the boundary in a directed manner. This can be explained15

by considering the relative amount of space to either side of the individual’s16

release point, cf [24]. Individuals released close to the boundary are more likely17

to end their random walk further from the boundary than where they started18

than vice versa because the amount of space, x0, between their release point and19

the boundary (the confined side) is relatively small. This accounts for the20

observed drift away from the boundary. Similarly, because these individuals tend21

to move in one direction, the amount they spread out, another interpretation22

of the diffusion rate, is reduced. As the space on the confined side increases the23

probability that an individual will end its movement in this region increases and24

thus the drift and diffusion rates become closer to what would be found in an25

unbounded space.26

For the reflective implementation of this boundary the choice of ∆t has no27

effect. This is not the case for the stop-go and no-go boundary conditions where28

the drift and diffusion rates depend on this value. These differences can be29

explained by in terms of the confinement effects described above. Consider first30

one step random walks (∆t = 1) for release points close to reflective or stop-go31

boundaries. In order for an individual’s final position to be on the confined side32

for the reflective boundary it must make a step towards the boundary of length33

less than two times x0. A longer step results in the individual being reflected34

past its start point. In contrast, since an individual stops when it encounters a35

stop-go boundary, any step towards the boundary leaves the individual on the36

confined side for this boundary. Thus for this ∆t individuals are more likely37

to end their movement on the confined side for the stop-go boundary than for38

the reflective boundary; thus the drift for the stop-go boundary is lower. The39

diffusion rate is also reduced for such release points since a large number of40

individuals ≈ 50% end their movement in the same place, i.e. on the boundary,41

further reducing the spread that can be attained. However as x0 increases, the42

diffusion rate increases faster for the stop-go boundary than for the reflective43

boundary. This is because for the reflective boundary individuals are more likely44

13



to be distributed throughout the confined side, while for the stop-go boundary1

many individuals end their movement at the extreme edge of this space (i.e.2

the boundary). This tends to exaggerate the spread for the stop-go boundary3

relative to the reflective boundary.4

The effects of the no-go boundary can be analysed in the same way. In par-5

ticular, for this boundary an individual’s final position will be on the confined6

side only if it makes a step towards the boundary of length less than x0, since7

longer steps are discarded. Except for release points on the boundary, the prob-8

ability of this is lower than for the reflective boundary, where steps of length9

less than 2x0 achieve the same effect. Thus the drift for the no-go boundary10

is higher (except at the boundary) than for the reflective boundary. This re-11

duced probability of ending movement on the confined side also impacts the12

diffusion rate. When the confined side is small the spread that can be attained13

in this region is relatively small. Thus a higher spread is observed for the no-go14

boundary, relative to the reflective boundary, since fewer individuals end their15

movement in this area. However, this spread is biased towards the unconfined16

side. As the release point is moved away from the boundary the confined side17

becomes bigger, allowing a higher spread to be achieved by distributing evenly18

on both sides of the boundary. This results in the no-go boundary producing a19

lower diffusion rate for intermediate release points than the reflective boundary.20

As ∆t decreases the number of steps in the random walk increases and21

the length of individual steps decreases. Thus the truncation of a given step22

by an encounter with a stop-go boundary is smaller or, in other words, the23

inelasticity of this boundary is reduced. Similarly it becomes less likely that a24

given step would encounter a no-go boundary and thus be discarded in favour25

of a step which did not encounter the boundary. Thus as ∆t decreases the26

mechanistic differences in effect of the stop-go and no-go boundaries relative to27

the reflective boundary decrease and so the drift and diffusion rates for these28

boundaries become more similar.29

A loss of time scale invariance is also observed for the absorbing boundary30

condition. In this case, however, this is not just an effect of the relative sizes31

of the confined and unconfined sides of the domain, but also the probability of32

encountering the boundary during a given random walk, see Fig. 3.3. In the one33

step and infinite step limits these probabilities are given by (1−erf(x0/
√
2σ2))/234

and 1 − erf(x0/
√
4Dt) respectively. For a one step random walk an individual35

has a single chance to encounter the boundary, equal to the probability that the36

step taken is towards the boundary and is greater that x0. Since individuals that37

encounter this boundary do not contribute to the drift and diffusion rates, this38

results in the same relative probabilities of ending movement on the confined39

and unconfined sides of the domain as for the no-go boundary. Thus, for a one40

step random walk, the drift and diffusion profiles are the same for these two41

boundary types.42

However as ∆t decreases the number of steps, and hence the number of op-43

portunities for an individual to encounter the boundary, increases. This causes44

the probability of such an encounter to increase, this can be seen quite clearly in45

Fig. 3.3B . Note though, that this probability is still related to the individual’s46
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Figure 6: Plots of the probability of leaving the domain against position of release (A) and time
(B). Solid curves correspond to the one step (1) and infinite step (2) limits. The remaining
curves (symbols) were obtained numerically using the following ∆t values: 1 - ×, 0.5 - +, 0.25
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proximity to the boundary, an individual close to the boundary is more likely1

to encounter it that an individual far from it. These factors combine to cause2

the probability of an individual not encountering the boundary but remaining3

close to it to decrease as ∆t decreases thus causing the drift to increase. For4

release points close to the boundary this also results in an increased spread and5

hence diffusion rate, as many walks which would have relatively low spread are6

eliminated by boundary encounters. However, as x0 increases the displacement7

of random walks that encounter the boundary increase. The loss of these walks8

with relatively high spread causes the diffusion rate to grow relatively slows as9

x0 increases.10

Loss of time scale invariance appears to be associated with boundary con-11

ditions which require that some component of the random walk be discarded.12

The stop-go, no-go, and absorbing boundary conditions discard movement dis-13

tance, movement steps or individuals respectively when the boundary would be14

crossed. In contrast, the reflective boundary condition preserves both movement15

(by transferring it back into the domain) and individuals and displays time scale16

invariance.17

While this one dimensional analysis provides an interesting insight into the18

behaviour of individuals near a boundary, in nature individuals are rarely con-19

strained to a single dimension. In the following section we show that these20

results generalise to a two dimensional domain.21

4. Behaviour of populations in two dimensional geometries22

We have found that, in proximity to a boundary, the movement characteris-23

tics of a population of random walkers varies from that obtained in unbounded24

15



space. Furthermore it appears that loss of time scale invariance is associated1

with boundary conditions which are non-conservative, see Section 3.3. However2

our work to this point has been restricted to a simple, but unrealistic, one di-3

mensional space. In practice individuals will usually be able to move in an, at4

least, two dimensional space. The numerical approach used in Sections 3.1 and5

3.2 can be readily generalised to handle this problem.6

Note that in this two dimensional setting, the shape of the boundary, in addi-7

tion to the type of boundary condition applied, may have an effect on behaviour.8

We consider three basic cases: (1) a half plane H = [0,∞) × R, analogous to9

the half line used in Section 3; (2) a finite domain F = [−L,L]× [−L,L], corre-10

sponding to a habitat which individuals cannot leave; and (3) an infinite domain11

with an internal boundary I = R
2/[−l, l]×[−l, l], corresponding to an effectively12

unlimited habitat which contains a region which individuals cannot enter. The13

second two domains contain different types of corners, concave or convex, which14

we can reasonably expect to impact individual movement differently.15

4.1. Decomposition into a sum of one dimensional measures16

The drift and diffusion rates in a two dimensional geometry can be calculated17

by the same methods as were used in Section 3. In general, however, deriving18

analytical solutions to integrals in two dimensions is much more difficult than in19

one dimension, except for certain special cases. One special case, that of a mul-20

tiplicatively separable function u(x, y) = X(x)Y (y), in a rectangular domain,21

is useful for the first two geometries that we consider. The integral of such a22

function, in such a domain can be written as a product of the integrals of the23

individual functions:24

∫∫

Ω

u(x, y)dydx =

∫

Ωx

X(x)dx ·
∫

Ωy

Y (y)dy, (8)

since these individual functions are constant with respect to the other variable,25

see for example [25].26

If the x and y components of a two dimensional random walk are indepen-27

dent then P((x1, y1)|(x0, y0)) = P(x1|x0)P(y1|y0). Thus the pdf of this random28

walk can be written as the product of the pdfs of the x and y components,29

g(x, y) = gx(x)gy(y), and so it multiplicatively separable. (Note that when the30

diffusion equation can be solved by separation of variables the resulting pdf is31

automatically separable.) Thus the mean square displacement, Eq. (3), of such32

a random walk becomes:33

〈
∆R2(t)

〉
=

∫

Ωx

(x−x0)
2gx(x)dx·

∫

Ωy

gy(y)dy+

∫

Ωx

gx(x)dx·
∫

Ωy

(y−y0)
2gy(y)dy.

(9)
By definition the integral of a pdf over the entirety of its domain is one so this34

expression reduces to the sum of the mean square displacements in the x and y35

directions:36

〈
∆R2(t)

〉
=

∫

Ωx

(x − x0)
2gx(x)dx +

∫

Ωy

(y − y0)
2gy(y)dy. (10)
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Furthermore, for a random walk with independent components, the drifts, µx1

and µy, are exactly the drifts in the x and y directions, i.e.:2

µx =

∫∫

Ω

(x− x0)g(x, y)dxdy =

∫

Ωx

(x − x0)gxdx · 1. (11)

Thus the mean and variance of such a random walk are exactly the sum of the3

mean and variance of its components [26].4

4.2. Individuals on a half plane5

The half plane closely resembles the half line, in that an individual’s prox-6

imity to the boundary is determined entirely by its position in the x dimension.7

However the additional freedom of movement, allowed by the y dimension, does8

affect the drift and diffusion rates. We consider random walks with x and y9

components distributed normally with variance 1.0. Variance profiles from sim-10

ulated random walks, with ∆t ∈ {1, 0.5, 0.25, 0.125, 0.0625, 0.001} as in Section11

3, are plotted for each of the boundary conditions in Fig. 7A-D.12

For the reflective, no-go, and absorbing boundary conditions the x and y13

components of the random walk are independent; that is, for individuals that14

remain in the domain, the length of steps in the x or y direction have no effect15

on the lengths of steps in the other direction. In particular their pdfs can be16

written as f ′
2d,type(x, y) = f ′

type(x)f(y), where type is r, n, or a for the reflec-17

tive, no-go, or absorbing boundary conditions respectively. Consequently, as18

discussed in Section 4.1, the mean and variance for random walks subject to19

these boundary conditions can be obtained by summation of the mean and vari-20

ance of the respective components. Since the y component of the random walk21

is unbounded it contributes drift and diffusion rates of zero and one respectively.22

The mean and variance of the x component of the random walk is the same as23

would be obtained in a one dimensional space. The numerical results are in24

good agreement with variance profiles generated from this decomposition, see25

Fig. 7A,C-D.26

Individuals encountering a stop-go boundary stop at the point where the en-27

counter occurs. The y component of such individuals’ position is determined by28

the angle of the step ∆r which causes the encounter. Since this angle is depen-29

dent on both x and y the components of the random walk are not independent30

in this case. Consequently the variance profile generated by the decomposition31

above produces a significant over-estimate of the diffusion rate attained by in-32

dividuals subject to this boundary condition, see Fig. 7B. A modification to the33

stop-go boundary, stopping the individual’s movement in the x direction but34

not in the y direction when the encounter occurs, restores the independence35

of the two components. For this modification the numerical results correspond36

well to the limiting case obtained via this decomposition, see Fig. 8.37

As noted previously in the infinite step limit we can obtain the pdfs by solv-38

ing the diffusion equation. For this geometry, and the Neumann and Dirichlet39

conditions used in Section 3, these solutions are known [20] and are separable.40

(Note that the solution for the Neumann boundary is identical to the pdf for the41
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Figure 7: Variance profiles for individuals in the half plane for an impenetrable (A-C) or
absorbing (D) boundary. Solid curves were obtained analytically from decomposition into the
1d limiting cases; numbering is consistent with Fig. 4 for A-C and Fig. 5 for D. The dashed
reference line shows the variance that would be obtained in unbounded space. The remaining
curves (symbols) were obtained numerically using the following ∆t values: 1 - ×, 0.5 - +, 0.25
- ◦, 0.125 - ∗, 0.0625 - �, 0.001 - ⋄, for a reflective (A), stop-go (B), no-go (C), or absorbing
(D) boundary.
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reflective boundary.) Thus the mean and variance profiles can be obtained by1

decomposition into one dimensional components as above. Once again the nu-2

merical results for ∆t = 0.001 are in good agreement with the variance profiles3

obtained via this decomposition, see Figs. 7A-D and 8.4

Finally we observe that the transition between the limiting cases of the time5

scaling process is unaffected by the shift to a two dimensional geometry. That6

is, for the stop-go and absorbing boundaries the transition is monotonic, while7

for the no-go boundary it is not.8

We can reasonably expect that the time scaling behaviour described here9

will be preserved in some regions of a domain with sufficiently long straight10

boundaries. We have observed so far that drift and diffusion rates become11

indistinguishable from those obtained in unbounded space for release points12

sufficiently far from a single boundary. In the same way we would expect that13

individuals released close to one boundary but sufficiently far from any other14

boundaries would behave approximately as described here. However for release15

points near the corners of a domain, or between two parallel boundaries that16

are close together, we must account for the effects of both boundaries. In the17

following section we consider the square domain, F , described above.18

4.3. Individuals in a square finite domain19

The independence (or otherwise) of the x and y components of random20

walks is unaffected by the change from the half plane to the finite domain,21

F5 = [−5, 5] × [−5, 5]. Thus it is possible to express both of the infinite step22

limits and the one step limits for the reflective, no-go, and absorbing boundaries23

as decompositions into one dimensional cases. However, rather than derive the24

19
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plotted in D. Note that the one step limit for the stop-go boundary was obtained numerically.
(Color online.)

appropriate one dimensional results for a finite domain, we instead approximate1

these limiting cases from the results obtained for a semi-finite domain in Sec-2

tion 31. Given that the mean and variance for release points further than 3.53

units from any of these boundaries are indistinguishable from those obtained in4

unbounded space this is a reasonable approximation. Furthermore the result-5

ing approximate limiting cases of the variance, Fig. 9A,C-D, were found to be6

in good agreement with numerical results. A variance profile for the stop-go7

boundary in the one step limit was calculated numerically, see Fig. 9B.8

The variance profiles for the limiting cases, Fig. 9, display certain common9

1Pdfs for the one step limit can be obtained by an extension of the method presented in
Section 3. The appropriate pdfs for the infinite step limit are already known [27] and have
been used to compute the moments of the displacement for more complex cases than are
considered here [28, 29].
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Figure 11: Sketch of path near a concave corner. Note that while the actual path never
crosses the boundary the y-component does. Thus the effects of the boundary cannot be
applied independently to x and y components.

characteristics. Firstly they are symmetric in the x and y axes and as such1

we only plot the upper right quadrant of F . Secondly, the variance returns2

to two, the value obtained in unbounded space, in the centre of the domain,3

[−2, 2] × [−2, 2]. Finally, the variance is reduced along the boundaries of the4

domain, i.e. y = 5, and attains its minimum in the (convex) corners of the5

domain i.e. at (5, 5). We note that, as we expected, in the centres of the outer6

boundaries, i.e. [0, 1.5]× [0, 5], the variances obtained are indistinguishable from7

those obtained on the half plane, see above. The similarities between profiles,8

and indeed the differences between them, follow naturally from the similarities9

and differences between the one dimensional profiles.10

Variance profiles for intermediate values of ∆t have similar general properties11

to those above, becoming more similar to the infinite step limits, i.e. Fig. 9A,D,12

as ∆t decreases. Instead of plotting full profiles for these transitional cases, we13

plot a cross-section of the variance profiles (fixing y0 = 4.9) for each boundary14

type, see Fig. 10A-D. For the reflective boundary, Fig. 10A, the limiting cases15

are the same and there is no transition between them. For the no-go and16

absorbing boundaries, Fig. 10C-D respectively, we observe that the limiting17

profiles shift relative to each other. For example, the variances are not equal18

for x0 ∈ [0, 1.5] where the boundary at x = 5 has minimal effect; thus this is19

clearly an effect of the other boundary at y = 5. In the intermediate region,20

x0 ∈ [2.5, 4.5], where this shift brings the limiting cases closer together, the21

transition for the absorbing boundary is not monotone, a clear difference from22

the behaviour observed in the semi-finite cases. Finally note that the transition23

for the stop-go boundary, Fig. 10, is relatively slow; even for ∆t = 0.001 the24

variance profile has not yet reached infinite step limit.25

Having investigated the time scaling behaviour within the corner of a convex26

domain we now move on to consider how it changes near the corners of a concave27

domain.28

22



4.4. Individuals in an infinite domain with internal boundary1

In the previous section we showed that individuals in a finite domain behave2

as if on a half plane if close to only one boundary. In the region close to two3

boundaries, inside a convex corner, the boundaries have a more extreme effect4

on behaviour but these effects remain qualitatively similar to those obtained5

on H . In this section we consider how the corners of a concave, rather than6

convex, domain influence individual behaviour. Note that, in this case, the7

domain is not rectangular, so the decomposition described in Section 4.1 does8

not apply. In addition, it can readily be shown that the x and y components,9

at least of discrete random walks, are not independent for any of the boundary10

conditions considered, see sketch in Fig. 11. This significantly complicates any11

analytical calculation of the mean and variance of random walks subject to12

these boundary conditions. As such we make use of simulated random walks,13

in this case in the domain I1 = R
2/[−1, 1] × [−1, 1], and consider a subset of14

release points, [0, 5]× [0, 5]∪I1. (Note that while we limit the number of release15

points, the only constraint on movement is imposed by the internal boundary.)16

Variance profiles obtained for two values of ∆t, 1 and 0.0625, are plotted in17

Fig. 12.18

In this domain, unlike all others considered, the mean (not shown) and19

variance (Fig. 12A-B) profiles for the reflective boundary are not time scale20

invariant. In the one step limit the variance is significantly less that 2, the value21

obtained in unbounded space, along the entirety of the boundary edge, while22

for ∆t = 0.0625 it is only reduced significantly in the centre of the boundary.23

Note that even here the reduction is less than is observed in the one step limit.24

Furthermore, in the one step limit, the variance profile appears to be split by25

narrow regions along the diagonals x = y and x = −y where the variance26

is approximately 2 irrespective of distance from the boundary. Note that these27

regions are relatively close to the (concave) corners of the boundary. For smaller28

values of ∆t the variance profile becomes more homogeneous in this region.29

The variance profiles for the stop-go and no-go boundaries, Fig. 12C-D and30

E-F respectively, follow the patterns that we have observed previously. In the31

one step limit, the stop-go boundary induces a bigger decrease in the variance32

than the reflective boundary and the effect of the boundary decreases similarly33

as the distance between the release point and the boundary increases. The effect34

of the no-go boundary is similar in size to that of the reflective boundary close35

to the boundary, but it initially decreases more quickly. For these boundary36

conditions there is no inhomogeneity along the diagonals of the domain. For37

∆t = 0.0625 the profiles for these boundaries are similar, although not identical,38

to that for the reflective boundary at the same ∆t. The variances are generally39

lower for the stop-go boundary and higher for the no-go boundary.40

As we would expect the variance profile for absorbing boundary, Fig. 12G,41

is indistinguishable from that for the no-go boundary in the one step limit. For42

∆t = 0.0625, the profile, Fig. 12H, is relatively homogeneous showing a gradual43

increase in the variance from about 1.8 units near the boundary to 2 units far44

from the boundary. There are small regions of lower variance, ≈ 1.7 units,45
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around the x and y axes, extending from the centres of the boundaries, and a1

small region of higher variance, ≈ 1.9 units, near the (concave) corners of the2

boundary.3

As in the previous section we examine the intermediate values of ∆t in more4

detail by taking cross-sections through the variance profiles, in this case at5

y0 = 1.1, plotted in Fig. 13A-D. In each case we see that the variance increases6

along the boundary y = 1, i.e. for x0 ∈ [0, 1], drops briefly just beyond the7

corner with the boundary x = 1, i.e. for x0 < 2, before increasing again for8

release points further from the boundary. There is no particularly evident loss9

of monotonicity in the transition processes although we should note that, for the10

no-go boundary, the variances obtained near y = 1 for ∆t = 0.0625 are smaller11

than those obtained for the reflective boundary. Hence, assuming that the no-go12

variance profile will converge to that for the reflective boundary (as it does in13

every other case) the complete process will necessarily be non-monotonic.14

Note that, for x > 1.5, the cross-section of the variance profile for the re-15

flective boundary is effectively time scale invariant. The biggest differences in16

variance between time scales appear to occur just before the (concave) corner at17

(1, 1) is reached. We would expect that, for a sufficiently large internal bound-18

ary, the variance profile would return to that obtained in the semi-finite domain19

and thus that time scale invariance would be restored. To investigate how far20

this effect of the concave corner can extend we simulated random walks in a do-21

main with a larger internal boundary, I5 = R
2/[−5, 5]× [−5, 5]. A cross-section,22

for y0 = 5.1, of the variance profiles in this domain is plotted in Fig. 14. In23

the single step limit the effect of the concave corner at (5, 5) is observed only24

relatively close to it (x0 > 4.5). As ∆t decreases this effect spreads back along25

the boundary eventually effecting x0 > 3 for ∆t = 0.001. For smaller x0 time26

scale invariance is restored in all cases.27

26



This interesting result concludes our study of two dimensional domains. In1

the following section we discuss the wider context of these results.2

5. Discussion and conclusions3

When modelling ecological movement using random walks it is generally4

beneficial to choose a random walk that produces behaviour which can be made5

independent of the choice of time scale. The framework required to do this in6

unbounded space is well established. However, the effects of boundaries on time7

scaling behaviour is relatively unexplored. In this work we have investigated how8

different boundary conditions affect time scale invariance of the mean squared9

displacement of Brownian random walks. Our key results are as follows:10

1. Loss of time scale invariance is typically associated with non-conservative11

boundary conditions, that is, those boundary conditions which cause some12

part of the random walk to be discarded.13

2. It is possible to determine whether time scale invariance will be lost by14

considering two relatively simple limiting cases in a one dimensional (sub)-15

system. Exact solutions for these limiting cases can be determined using16

analysis of the pdf generating the random walk and the diffusion equation.17

3. These one dimensional results can be extended directly to two dimensional18

systems where the components of the random walk remain independent19

when subject to a boundary encounter and the domain itself is rectangular.20

In such cases the drift and diffusion rates are obtained by summing those21

obtained in a one dimensional system. Where these conditions are not met22

a formal two dimensional analysis is required and the time scale invariance23

of even the conservative, reflective, boundary condition can be lost.24

4. The drift and diffusion rates close to an absorbing boundary increase as25

the random walk used becomes finer. As discussed in Section 3.3 this26

phenomenon results from an increased chance to leave the domain for27

smoother random walks.28

In the majority of cases where time-scale invariance is lost the drift and dif-29

fusion rates for intermediate values of ∆t shift monotonically from one limiting30

case to the other. Where this is the case it may be possible to approximate the31

intermediate profiles by taking a suitably weighted average of the limiting cases.32

Typically this transition is not monotone when the limiting cases are relatively33

close together for a large range of release points and intersect somewhere in this34

range. In such cases, the mean and variance profiles pass through the infinite35

step limit as ∆t decreases before converging back to it, cf Figs. 4E-F and 10C-D.36

A weighted average is clearly not appropriate in such cases, but given that the37

process remains relatively simple some mathematical description of the process38

should be possible. Investigation of these possibilities provides one potential39

avenue for further work in this area.40

In a broader context, we should ask whether the observed loss of time scale41

invariance has an impact on a longer time scale. Models of individual movement42
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will rarely only consider a single unit of time, and consequently relatively long1

random walks will typically be used. One might assume that this allows all2

such models to be treated as if in the diffusion limit, thus circumventing this3

problem.4

One application of the random walk framework is in the analysis of pest in-5

sect trap counts [14, 30]. The cummulative number of individuals trapped from6

a population performing a Brownian random walk can be simulated numeri-7

cally or predicted from the diffusion equation. Trajectories of these cummula-8

tive trap counts obtained for the range of ∆t values used throughout this work9

(∆t = {1.0, 0.5, 0.25, 0.125, 0.0625}) differ from that obtained from the diffusion10

solution and each other, Fig. 15, despite having the same dispersal rate D. All11

of these random walks contain at least 100 steps so it is clear that the effects of12

loss of time scale invariance do not disappear for long random walks.13

In conjunction with point 4) above, this long term effect of time scale on14

interactions with an absorbing boundary is particularly important in the con-15

text of climate change and habitat fragmentation. The effect of dispersal out16

of shrinking habitats on a population’s dynamics have been a topic of much17

recent research, see for example [31, 32]. Models of the problem make use of18

dispersal kernels which vary with spatial position. When designing these ker-19

nels, or parameterising them from data, the interaction between the time scale20

of the individual’s movement and the effect of the boundary must be taken into21

account.22

Mean field approximations, such as the diffusion equation, are very useful23

tools for the study of dispersing populations as they provide a direct link between24

model dynamics and parameters, see for example [3]. However, where time scale25

invariance is lost, they only exactly describe a limiting case of the movement26

28



behaviour, i.e. where ∆t → 0. Where this condition does not apply, say for1

a movement model with a correlation between subsequent steps (such as the2

Correlated RandomWalk [33]) which becomes Brownian only for relatively large3

∆t, a correction must be applied to the solution of the mean field equation. This4

work provides the basis on which such a correction technique can be developed.5

Empirical studies of animal movement often make use of random walk mod-6

els. Where the domain of movement is confined the boundary effects outlined7

in this paper will, naturally, influence any estimates of the drift and diffusion8

rates of individuals. Indeed Giuggioli et al. show how these estimates may be9

affected by the size of a finite domain with impenetrable boundaries for smooth10

random walks [28]. Of course, as this work has shown, the size of the domain11

is not the only factor which influences such estimates. Where the movement12

of individuals is most naturally approximated by a discrete random walk, or if,13

as above, a correlated random walk should be used, the time scale of the walk14

becomes an important factor. In such cases it may be possible to estimate the15

natural time scale of the animal movement by comparing estimates of drift and16

diffusion rates in confined and unconfined domains.17
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Figure A.16: Mean square displacement profiles for two step random walks. Solid curves
obtained by numerical evaluation of the position pdf obtained by convolution, details in the
text. The remaining curves are as described in the figures in Section 3. (a) With a stop-go
boundary; (b) With an absorbing boundary.

Appendix A. Analytical derivation of pdfs for intermediate ∆t in 1D1

It is possible to extend the method used to obtain the profiles for one step2

limit, see Section 3, to other values of ∆t. The position pdf for these cases can3

be derived by inductive convolution of the appropriate kernel, i.e.:4

f (n)(x1;x0, σ
2) =

∫ ∞

0

f∗(x1; y, ·)f (n−1)(y;x0, ·)dy, (A.1)

where f∗ denotes f (1) and y is a dummy variable. For the Neumann boundary5

condition the kernel is simply the position pdf for the corresponding boundary6

condition, taking into account the need to rescale the standard deviation. Thus7

for the reflective boundary condition we take f∗ = f ′
r(x1;x0, σ

2/2). The position8

pdf (considering only possible positions) for the second step is then:9

f (2)(x1;x0, σ
2) =

∫ ∞

0

f ′
r(x1; y,

σ2

2 )f ′
r(y;x0,

σ2

2 )dy. (A.2)

In this case a closed form of the right hand side can be found as follows. We10

begin by substituting in the definition of f ′
r, Table 1(i), and multiplying out11

terms to obtain:12

f (2)(x1;x0, σ
2) =

∫ ∞

0

fx1,yfy,x0
+ fx1,yf−y,x0

+ f−x1,yfy,x0
+ f−x1,yf−y,x0

dy,

(A.3)
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where fa,b denotes f(a; b, σ
2/2). Collecting the first and fourth terms and noting

that (−x+ y)2 = (−y + x)2 we see that:

∫ ∞

0

fx1,yfy,x0
+ f−x1,yf−y,x0

dy =

∫ ∞

0

fx1,yfy,x0
+ fx1,−yf−y,x0

dy, (A.4)

=

∫ ∞

0

fx1,yfy,x0
dy +

∫ 0

−∞
fx1,yfy,x0

dy, (A.5)

=

∫ ∞

−∞
fx1,yfy,x0

dy. (A.6)

But it is known that the convolution of two Gaussian functions (on R) produces1

another Gaussian function with variance equal to the sum of the variances of2

the original function, thus:3

∫ ∞

0

fx1,yfy,x0
+ f−x1,yf−y,x0

dy = f(x1;x0, 2
σ2

2 ) = f(x1;x0, σ
2). (A.7)

By a similar sequence of manipulations we can also obtain:4

∫ ∞

0

fx1,yf−y,x0
+ f−x1,yfy,x0

dy = f(−x1;x0, 2
σ2

2 ) = f(−x1;x0, σ
2). (A.8)

So Eq. (A.2) becomes:5

f (2)(x1;x0, σ
2) = f(x1;x0, σ

2) + f(−x1;x0, σ
2), (A.9)

which is exactly f ′
r(x1;x0;σ

2). This proves analytically that the reflective im-6

plementation of the impenetrable boundary condition preserves time scale in-7

variance.8

For the stop-go boundary condition it is not typically possible to obtain a9

convenient closed form of the convolution. Nonetheless it is possible to evalu-10

ate it numerically, see Fig. A.16(a). The no-go and absorbing boundaries are11

identical in the one step limit. However for random walks with more steps they12

behave differently. This arises because in for the no-go boundary individuals13

always remain within the domain, while for the absorbing boundary individu-14

als are removed at each time step and an average is taken over the individuals15

remaining. Thus the correction factor converting the function obtained into a16

proper pdf is applied only after the final time step. Taking f∗ = f ′
n = f ′

a results17

in the appropriate pdf for the no-go boundary. For the absorbing boundary we18

take:19

f∗(x1;x0,
σ2

n
) =

{
f(x1;x0,

σ2

n
) x1 > 0

0 x1 ≤ 0
, (A.10)

and apply the correction factor, α(x0) = 1/
∫∞
0

f (n)(x1;x0, σ
2), to f (n). Again20

it is typically impossible to obtain closed forms of the resulting position pdf but21

numerical solutions can be obtained, see Fig. A.16(b) for an example using the22

absorbing boundary condition.23
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