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Abstract. In recent years, there has been an explosion of interest in
succinct data structures, which store the given data in compact or com-
pressed formats and answer queries on the data rapidly while it is still
in its compressed format. Our focus in this talk is to introduce encod-
ing data structures. Encoding data structures consider the data together
with the queries and aim to store only as much information about the
data as is needed to store the queries. Once this is done, the original data
can be deleted. In many cases, one can obtain space-efficient encoding
data structures even when the original data is incompressible.

1 Introduction

The need for performing complex processing on ever-larger volumes of data has
led to the re-evaluation of the space usage of data structures. Whereas in classical
data structures, a linear space usage, namely using O(n) words of space, is
considered to be optimal, this is often too much for very large data. For example,
a suffix tree on a string of n characters from a fixed alphabet requires Θ(n) words.
A usual assumption is that a computer word must be of length Ω(log n) bits, so
that one can work with numbers such as the input size n, and be able to address
enough memory to hold the input. Thus, a suffix tree requires Θ(n log n) bits
of memory, while the input requires only O(n) bits. This asymptotic blow-up
also manifests itself in practice: even a even a highly optimized implementation
of a suffix tree requires 20n bytes in the worst case [15] to index a string of n
bytes. This level of internal memory usage is unacceptable if we wish to index
gigabytes or terabytes of string data.

In response to this issue, there has been a great deal of research into succinct
and compressed data structures [2] building upon the early work of Jacobson
[12] and contemporaries. In succinct data structures, we view the given instance
x of the data on which we wish to build a data structure as coming from a set S
of objects, and the aim is to represent x using space as close to the information-
theoretic bound of dlog2 |S|e bits as possible. In compressed data structures, we
postulate a probability distribution on S and aim to represent x using as close
to the Shannon bound of dlog2 1/Pr(x)e bits as possible.

However, there are cases where the succinct approach does not offer any
asymptotic improvements. Consider the well-known range maximum query prob-
lem, which is, given a static array A[1..n], to pre-process A to answer queries:

RMQ(l, r): return maxl≤i≤r A[i].



Assume, for simplicity, that A contains a permutation of {1, . . . , n}. Observe
that since RMQ(i, i) queries can be used to reconstruct A, any data structure
for answering RMQ on A must contain all the information contained in A, and
hence use Ω(n log n) bits.

In order to get around this, we modify the RMQ slightly:

RMQ(l, r): return arg maxl≤i≤r A[i].

In other words, we only seek the index in the range {l, . . . , r} where the maxi-
mum value among A[l], . . . , A[r] lies. In many applications of the RMQ problem,
knowing the index where the maximum value lies is sufficient. With this mod-
ified version, it is no longer possible to reconstruct A is by performing RMQs.
For example, if n = 3 then the arrays A = (1, 3, 2) and A′ = (2, 3, 1) will give
exactly the same answer to any RMQ operation, and the space lower bound of
Ω(n log n) bits no longer applies.

2 Encoding Data Structures

We now define some terminology regarding encoding data structures.

Effective entropy. Given a set of objects S, and a set of queries Q, consider the
equivalence class C on S induced by Q, where two objects from S are equivalent
if they provide the same answer to all queries in Q. We define the quantity
dlog2 |C|e bits to be the effective entropy of S with respect to Q. In case it is
possible to reconstruct the given object x ∈ S by means of the queries Q, we
have |C| = |S| and there is no advantage to be gained. However, if |C| � |S|,
as is sometimes the case, then there can be substantial savings. For example, it
is known [7] that for the RMQ problem, |C| ≤ 4n � n! = |S|, so the empirical
entropy of the class of arrays A containing permutations, with respect to RMQ, is
only about 2n bits, as opposed to the entropy of the arrays A which is ∼ n log n
bits. In what follows, we will abbreviate “the effective entropy of S with respect
to Q” as “the effective entropy of Q.”
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Fig. 1. Schematic illustation of the preprocessing steps in an encoding data
structure.



Encoding and Encoding Data Structure. Given an object x ∈ S, instead of storing
x directly, we can store a representation of the equivalence class y ∈ C that
x belongs to. By the definition of C, queries can be answered correctly using
y, rather than x; we call y an encoding of x. Note that since all queries can
be answered using y, there is no need to store x, and it can be deleted, as
depicted diagrammatically in Fig 1. The encoding y can then be converted into
an encoding data structure that not only answers queries correctly but rapidly.
Ideally the space usage of this data structure should be (1 + o(1)) log2 |C| bits.

Expected effective entropy. One can also define the expected empirical entropy
of a class of objects S with respect to Q: postulate a distribution on S, which
induces a distribution on C. The effective empirical entropy is then defined as∑
y∈C Pr(y) · log2 1/Pr(y). An encoding that aims to achieve the expected effec-

tive entropy then tries to represent an encoding y using as close to log2 1/Pr(y)
bits as possible.

Minimal Encodings. As stated above, it is assumed that there is an effective
characterization of the equivalence class C induced on S by Q, and that given
an input x ∈ S, it is possible to constructively and fairly quickly find a y ∈ C
to represent x. We will henceforth call such encodings minimal encodings. A
property of minimal encodings is that the encoding only contains the information
about x that could be inferred via queries in Q, and an encoding data structure
that is built upon y has the same property, provided the pre-processing does not
refer to the input x. Characterizing the C that leads to a minimal encoding can
be a non-trivial enumeration task, leading to objects studied by combinatorial
mathematicians such as Baxter permutations [9] and Schröder trees [6].

Minimality is, however, a stringent requirement, often an element from a set
E that is larger than C is used to represent the given input x. Provided that
log2 |E| = o(log2(|S|)) we will still consider this to be an encoding.

3 Results on Encoding Data Structures

We now discuss some recent results on encoding data structures.

3.1 Range Statistics on 1D-Arrays

Range Maximum Queries. For the RMQ problem defined above, the non-encoding
solution [8] is obtained via the Cartesian tree [17], a binary tree on n nodes. Fis-
cher and Heun [7] observed that the Cartesian tree gives a 1-1 correspondence
between binary trees on n nodes and equivalence classes for the RMQ problem,
thus giving a minimal encoding for RMQ. Since there are 1

2n+1

(
2n
n

)
binary trees

on n + 1 nodes, the effective entropy works out to be 2n − O(log n) bits, and
Fischer and Heun gave a 2n+o(n)-bit data structure that answers RMQ in O(1)
time1. Davoodi et al. [4,3] gave alternative 2n+ o(n)-bit data structures.

1 This result, as do all results in this abstract, use the word RAM model with word
size Θ(logn) bits.



The expected effective entropy (for uniform random permutations in A) of
RMQ is approximately 1.736n bits [10]. Davoodi et al. [3] gave an encoding data
structure that answers RMQ in O(1) time, using 1.919n+ o(n) bits on average.

Range Top-k and Range Selection We are given an array A[1..n] that contains a
permutation of {1, . . . , n} and an integer k specified at pre-processing time, and
need to answer the query:

top-k-pos(l, r): return positions of the k largest values in A[l..r].

This is a generalization of the RMQ problem, which is the case k = 1. Grossi
et al. [11] showed that any encoding must have size Ω(n log k) bits and gave an
encoding data structure that uses O(n log k) bits and answers queries in O(k)
time. For the case k = 2, Davoodi et al. [3] gave a minimal encoding, but were
unable to obtain from this a closed-form expression for the empirical entropy of
the top-2 problem. They showed that empirical entropy is at least 2.656n bits
by a computational case analysis, and gave a data structure that took at most
3.272n+ o(n) bits and answered top-2 queries in O(1) time.

Recently, Gawrychowski and Nicholson [9] gave a different encoding for the
top-k problem. Using their encoding, they were able to obtain tight upper and
lower bounds of 1

k+1nH( 1
k+1 ) and (1 − o(1)) 1

k+1nH( 1
k+1 ) bits on the effective

entropy for all values of k. Here H(x) = x log2(1/x)+(1−x) log2 1/(1−x) for any
0 ≤ x ≤ 1. For k = 2, this gives the encoding complexity of the top-2 problem
to be approximately 2.755n bits. However, it is not clear that their encoding is
minimal, and they do not give an encoding data structure that answers top-k-pos
queries rapidly.

The range selection problem is as follows. We are again given an array A[1..n]
that contains a permutation of {1, . . . , n} and an integer k specified at pre-
processing time, and need to answer the query

select(i, l, r): return the position of the i-th largest value in A[l..r], for any i ≤ k.

Clearly, since by repeated select operations, we can obtain the top-k in a given
range, the effective entropy of range selection is no lower than that of the top-
k problem. Navarro et al. [16] gave an encoding that takes O(n log k) bits of
space, which is asymptotically optimal, and answers queries in optimal O(1 +
log i/ log log n) time.

Range Majority. We are given an array A[1..n] that contains (wlog) values from
{1, . . . , n}, and a number 0 < τ ≤ 1/2, specified at pre-processing time. We wish
to answer the following query:

majorityτ (l, r): If some value occurs at least τ(r− l+ 1) times in A[l..r], return
any index i ∈ {l, . . . , r} such that A[i] contains this value. If no value occurs
with this frequency, return null.

Navarro and Thankachan show that the encoding complexity isΩ(τ log(1/τ)n)
bits and give a data structure that takes O((n/τ) log∗ n) bits of space and an-
swers queries in O(log n) time.



Range Maximum-segment Sum. We are given an array A[1..n] that contains
positive and negative numbers. We wish to answer the following query:

RMSS(l, r): Return l′, r′, l ≤ l′ ≤ r′ ≤ r such that
∑r′

i=l′ A[i] is maximised.

Nicholson and Gawrychowski [9] showed that an encoding using Θ(n) bits
can be used to answer such queries in O(1) time.

3.2 2D Range Maximum Queries

The input to this problem is a two dimensional m × n array A, containing a
permutation of {1, . . . , N} where N = m · n. Assume that m ≤ n. We wish to
answer the following query:

RMQ(q): where q = [i1 · · · i2] × [j1 · · · j2] returns the position of the maximum
element in the query range, i.e., RMQ(q) = argmax(i,j)∈qA[i, j].

Brodal et al. [1], following on the work of Demaine et al. [5] showed that the
encoding complexity must be Ω(N logm) bits. Brodal et al. [1] later gave an
encoding of size O(N logm) bits, but this encoding does not yield a fast data
structure. Golin et al. [10] showed that the expected effective entropy (assuming a
random permutation in A) is O(N) bits and gave a constant-time data structure
with this space usage. Finally, for the case m = 2, Golin et al. gave a minimal
encoding using 5n − O(log n) bits. They also gave a data structure that takes
(5 + ε)n+ o(n) bits, for any 0 < ε ≤ 1 and answers queries in O(1/ε) time.

3.3 Nearest Larger Values

Again, given an array A[1..n] containing (not necessarily distinct) values from
{1, . . . , n}, we wish to answer the following query:

BNLV(i): return j > i such that A[j] > A[i] and j − i is minimized, and j′ < i
such that A[j′] > A[i] and i− j′ is minimized.

Fischer [6] gave a minimal encoding for this problem that required at most 2.54n
bits, and gave a corresponding data structure that answers queries in O(1) time.
The two-dimensional version of this problem, where A is an n × n matrix, was
recently considered by Jayapaul et al. [13] and Jo et al. [14]. The latter authors
gave an asymptotically optimal encoding data structure using O(n2) bits that
answers queries in O(1) time.

4 Conclusion

We have introduced the topic of encoding data structures. This topic is recently
gaining interest, not only as a way to obtain more space-efficient data structures,
but also due to the interesting combinatorial questions that arise. As can be seen



even at this early stage, the tight space restrictions of encodings sometimes make
it challenging to create efficient data structures with these space bounds. The
topic is wide open – any data structuring question can be cast into the encoding
framework, provided only that the queries considered do not allow the input to
be reconstructed completely, no matter how many queries are asked of the data
structure.
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