
“SekerciMmnp” — 2015/3/23 — 11:06 — page 96 — #1
✐

✐

✐

✐

✐

✐

✐

✐

Math. Model. Nat. Phenom.

Vol. 10, No. 2, 2015, pp. 96–114

DOI: 10.1051/mmnp/201510207

Mathematical Modelling of Spatiotemporal

Dynamics of Oxygen in a Plankton System

Y. Sekerci, S. Petrovskii ∗

Department of Mathematics, University of Leicester,University Road, Leicester LE1 7RH, U.K.

Abstract. Oxygen production due to phytoplankton photosynthesis is a crucial phenomenon
underlying the dynamics of marine ecosystems. However, most of the existing literature focus
on other aspects of the plankton community functioning, thus leaving the issue of the coupled
oxygen-plankton dynamics understudied. In this paper, we consider a generic model of the
oxygen-phytoplankton-zooplankton dynamics to make an insight into the basic properties of the
plankton-oxygen interactions. The model is analyzed both analytically and numerically. We
first consider the nonspatial model and show that it predicts possible oxygen depletion under
certain environmental conditions. We then consider the spatially explicit model and show that it
exhibits a rich variety of spatiotemporal patterns including travelling fronts of oxygen depletion,
dynamical stabilization of unstable equilibrium and spatiotemporal chaos.
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1. Introduction

About 70 per cent of the earth’s surface is covered by the oceans [13]. Plankton are floating organ-
isms of many different phyla living in the pelagial of the oceans. Their functional classification is based
on trophic level, size, and distribution. Autotrophs, i.e., primary producers, constitute phytoplankton,
whereas heterotrophs, i.e., consumers, include bacterioplankton and zooplankton. Like terrestrial plants,
phytoplankton contain chlorophyll. Correspondingly, phytoplankton consists of photosynthetic organ-
isms, usually single celled, and they are responsible for the oxygen production in the world’s oceans.
Phytoplankton is estimated to be responsible for at least one half of the total photosynthetic activity on
Earth, thereby accounting considerably for the production of the atmospheric oxygen [11,26].

Dynamics of oxygen production due to phytoplankton photosynthetic activity has long been a focus of
research, both in field measurements and in laboratory. The earliest measurement of oxygen production
(dated back to almost 90 years ago) was made by determining changes in oxygen concentration in bottles
submerged in the water by using Winkler techniques [9]. In his classical book, Harris [11] considered the
connection between growth rate of oxygen production and photosynthesis, as photosynthesis constitutes
the main source of energy accessible to the cells. Paasche [28] showed that the concentration of oxygen
in the ocean is due to the photosynthetic activity of phytoplankton, which is mainly responsible for the
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photosynthetic process in ocean. Phytoplankton therefore play an essential role in maintaining life on
Earth in terms of oxygen production [26] but it also responsible for food production in marine ecosystem
[5]. Indeed, the aquatic food chain is based on the plankton community.

Note that, whilst phytoplankton is a major oxygen producer, both phyto- and zooplankton as well as
macrophytes are also oxygen consumers [23], in particular through the decomposition process of marine
sediment in bottom of the ocean. The importance of plankton decomposition process in relation to
oxygen balance in aquatic ecosystems is discussed in [41]. In addition to what is happening in the pelagic
zone, marine sediments are formed by dead algae and macrophytes. These particles sink to the bottom
of the ocean and are exposed to a biochemical process. Large amounts of dissolved oxygen are utilized by
these biochemical processes [7,12,33,36,39]. Sediment decomposition process needs oxygen and dissolved
oxygen is utilized for this process. This, in turn, can cause the ocean’s dissolved oxygen concentration to
become low.

Along with the experimental studies, mathematical modelling has been recognized as a powerful theo-
retical tool to study plankton dynamics. There is considerable literature concerned with various aspects
of plankton dynamics in space and time. Conceptual prey-predator-type models to describe the phyto-
plankton and zooplankton interaction in marine ecosystems subject to turbulent mixing were considered
in much detail in [4,16,20,21,31] but with no attention to the oxygen production. In another mathemat-
ical study, Edwards and Brindley [7] investigated the dynamics of a coupled plankton-nutrients system,
but did not pay any attention to their possible relation to dissolved oxygen. There are relatively few
papers where oxygen production is considered explicitly [2,22–24] but these papers leave out of the scope
some important features of plankton dynamics such as, for instance, the pronounced heterogeneity of its
spatial distribution (known as plankton patchiness). In particular, Marchettini et al. [22] studied the
tropic dynamics by developing a mathematical model of biochemical processes in a lagoon ecosystem.
They considered the dissolved oxygen concentration in a multi-component system. In another modelling
study, Allegretto et al. [2] showed the existence of periodic solutions in Italian coastal lagoons. A nonlin-
ear model accounting for the interplay between the physical and chemical processes in coastal ecosystems
was considered by Mocenni [24]; however, their study did not address relation between the plankton pop-
ulation and oxygen concentration. An algae-oxygen model has been proposed and analyzed by Misra [23]
subject to the effect of only ‘exogenous’ factors (such as light, wind intensity, temperature, phosphorus,
eutrophication, etc), hence leaving the internal plankton-oxygen dynamics out of the focus.

We therefore observe that, in spite of a vast literature related to the marine ecosystems modelling, the
dynamics of the dissolved oxygen concentration as an essential component of a plankton system has not
been studied in sufficient detail. Meanwhile, this issue is obviously of significant practical and theoretical
importance. Correspondingly, the aim of this paper is to consider the effect of the phyto-zooplankton
(prey-predator) interactions on the dynamics of the dissolved oxygen. In its turn, this requires a good
understanding of the properties of the baseline two-component oxygen-phytoplankton system.

In view of the above, the paper is structured as follows. In the next section, a new mathematical
model of oxygen-phytoplankton dynamics is proposed and analyzed. In Section 3, we extend our model
to include the zooplankton. In Sections 4 and 5, the properties of the three-component system are studied
by extensive numerical simulations both in spatial and nonspatial models to reveal rich spatiotemporal
dynamics including chaos and travelling fronts of extinction. In Section 6, the ecological relevance and
potential importance of our findings are discussed.

2. The baseline model

We begin with a simple conceptual model that only takes into account the temporal dynamics of the
oxygen itself and the phytoplankton as its main producer:

dc(t)

dt
= Af(c)u−mc, (2.1)
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du(t)

dt
= g(c, u)u. (2.2)

Here c and u are the concentration of the dissolved oxygen and the phytoplankton density, respectively,
at time t, f is the amount of oxygen produced per unit time and per unit phytoplankton mass, g is the
per capita phytoplankton growth rate, A is a coefficient that can take into account the effect of relevant
environmental factors, and the term mc takes into account oxygen losses, e.g. due to its diffusion to the
atmosphere, plankton breathing, etc. Note that Eq. (2.1) is linear with respect to u, and indeed we are
not aware about any evidence that the photosynthesis rate can depend on phytoplankton density. On
the contrary, Eq. (2.2) should normally be nonlinear with respect to u (hence the dependence of g on u)
as the high phytoplankton density is known to damp its growth, e.g. due to self shading and/or nutrient
depletion.

In order to understand what can be the properties of functions f and g, we have to look more closely at
the oxygen production and consumption. Consider f(c) first. Oxygen is produced inside phytoplankton
cells in photosynthesis and then diffuse through the cell membrane into the surrounding water. Diffusion
flux always directed from areas with higher concentration of the diffusing substance to the areas with
lower ones; the larger is the difference between the concentrations, the larger is the flux (cf. the Fick
law). Therefore, for the same rate of photosynthesis, the amount of oxygen that gets through the cell
membrane will be the larger the lower is the oxygen concentration in the surrounding water. Therefore, f
should be a monotonously decreasing function of c. We further assume that the oxygen flux through the
cell membrane tends to zero when the oxygen concentration in the water is very large, i.e., in physical
terms, is close to its saturating value. The above features are qualitatively taken into account by the
following parametrization:

f(c) = 1− c

c+ c0
, (2.3)

where c0 is thus the half-saturation constant.
Considering phytoplankton multiplication, we assume that g(c) = α(c) − γu where the first term

describes the phytoplankton linear growth and the second term account for intraspecific competition for
resources. Eq. (2.2) for the phytoplankton growth is therefore essentially the logistic growth equation
where 1/γ plays the role of the carrying capacity, which we assume does not depend on c. However, the
linear growth rate α should depends on c, which can be seem from the following argument. Phytoplankton
produce oxygen in photosynthesis during the daytime, but it needs oxygen for breathing during the
night; therefore, a low oxygen concentration is unfavorable for phytoplankton and is likely to depress its
reproduction. On the other hand, a phytoplankton cell cannot take more oxygen than it needs. Hence
α should be monotonously increasing function of c tending to a constant value for c → ∞. The simplest
parametrization for α is then given by the Monod function, so that for g(c, u) we obtain:

g(c, u) =
Bc

c+ c1
− γu, (2.4)

where c1 is the half-saturation constant and B is the phytoplankton maximum per capita growth rate.
With (2.3–2.4), Eqs. (2.1–2.2) take the following form:

dc

dt
= A

(

1− c

c+ c0

)

u−mc, (2.5)

du

dt
=

(

Bc

c+ c1
− γu

)

u. (2.6)

The system (2.5–2.6) contains six parameters; however, their number can be reduced by choosing
dimensionless variables as follows:

t′ = tm, c′ =
c

c0
, u′ =

γu

m
,
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and the new parameters accordingly as

B̂ =
B

m
, Â =

A

c0γ
and ĉ =

c1
c0

.

For convenience, we now simplify the notations by omitting the primes and hats, i.e. by changing
t′ → t, c′ → c, u′ → u, Â → A and B̂ → B and ĉ → c1. Eqs. (2.5–2.6) then take the following form:

dc

dt
= A

(

1− c

c+ 1

)

u− c ≡ f(c, u), (2.7)

du

dt
=

(

Bc

c+ c1
− u

)

u ≡ g(c, u), (2.8)

where all variables and parameters are now dimensionless.
The next step is to reveal the existence of the equilibria (steady states), as given by the non-negative

solutions of the following system:
f(c, u) = 0, g(c, u) = 0.

Biologically meaningful system equilibria are non-negative intersection points of oxygen zero-growth
isocline and phytoplankton zero-growth isocline. The shape of these (null-)isoclines is shown in Fig. 1.
The first isocline (i.e. for oxygen growth) is given by the curve ũ = c̃

A
(c̃ + 1) and the second isocline

(i.e. for phytoplankton growth) is given by ũ = 0 and c̃ = ũc̃1
B−ũ

. Correspondingly, Eqs. (2.7) and (2.8)
have at most two non-negative solutions. One is extinction state (0, 0) and the other is coexistence state
(c̃, ũ). The extinction state exists for all parameters values. As for the coexistence state, as we will show
it below, it only exists under certain conditions.
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Figure 1. The (null-)isoclines of the oxygen-phytoplankton system (2.7–2.8). Black
curve shows the oxygen isocline for A = 0.4 and c1 = 1; red curves show the phytoplank-
ton isocline for B = 3, B = 4 and B = 4.5, from bottom to top.

The steady state values c̃ and ũ are the solutions of the following system:

A

(

1− c̃

c̃+ 1

)

ũ − c̃ = 0, (2.9)

(

Bc̃

c̃+ c1
− ũ

)

ũ = 0, (2.10)
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from which the equations for the isoclines can be obtained, respectively, as

ũ =
c̃

A
(c̃+ 1) (2.11)

and

ũ =
Bc̃

c̃+ c1
. (2.12)

The corresponding curves are shown in Fig. 1.
Note that Eq. (2.12) can be resolved with regard to c̃ as follows:

c̃ =
ũc1

B − ũ
. (2.13)

Substituting (2.13) in equation (2.11), the following quadratic equation is obtained for ũ:

Aũ2 + (−2AB − c21 + c1)ũ+AB2 − c1B = 0, (2.14)

so that its solution is given by

ũ =
−σ ±

√
σ2 − 4Aκ

2A
and c̃ =

ũc1
B − ũ

(2.15)

where
σ = −2AB − c21 + c1 and κ = AB2 − c1B. (2.16)

It is readily seen that a unique positive root exists if the following conditions are satisfied. Consider

ũ =
−σ −

√
σ2 − 4Aκ

2A
> 0, (2.17)

then
σ2 − 4Aκ ≥ 0, σ < 0, (2.18)

and
−σ −

√

σ2 − 4Aκ > 0,

so that
0 > −4Aκ =⇒ κ > 0 =⇒ AB > c1. (2.19)

Therefore,

ũ =
−σ −

√
σ2 − 4Aκ

2A
> 0 for AB > c1. (2.20)

Thus, using the expression (2.17) for ũ, we have arrived to condition (2.20). We mention here that the
choice of the other root instead of (2.17) results in ũ < 0 and hence it is ecologically meaningless.

Note that the shape of the second isocline, as given by Eq. (2.12) or (2.13), depends on parameter B
and that taking sufficiently small values of B eventually results in the disappearance of the positive steady
state (see the succession of red curves in Fig. 1) so that the only remaining equilibrium is extinction. From
the geometric argument, it is readily seen that the positive steady state exists if and only if the slope of
the oxygen isocline at the origin is less than the slope of the phytoplankton isocline. From Eqs. (2.11) and
(2.12), we obtain that the isoclines’ slope is 1/A and B/c1, respectively. Correspondingly, the condition
of their intersection is

1

A
<

B

c1
, so that AB > c1, (2.21)

which obviously coincides with (2.20). We mention here that condition AB > c1 has a clear biological
interpretation. Recall that A quantifies the rate of oxygen production. Therefore, condition (2.21) (or
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(2.20)) means that, since oxygen is a vital resource, its production must be high enough in order to
support the phytoplankton existence.

As for the stability of the steady states, it is straightforward to see (e.g. by considering the direction of
the flow in different regions of the phase plane) that the coexistence state (c̃, ũ) is stable for all parameter
values when it is feasible, i.e. is situated in the first quarter of the plane. In that case, the extinction
state (0, 0) is unstable and hence (c̃, ũ) is the global attractor. When the coexistence state is not feasible,
then the extinction state is stable and acts as the global attractor.

3. The ‘advanced’ three-component model

The baseline oxygen-phytoplankton model from the previous section can be made biologically more
realistic by taking into account zooplankton. Indeed, zooplankton is the main consumer of phytoplankton
and it is well known that its effect can change the system’s properties significantly, usually making the
dynamics more complex, cf. [7,8,18]. In the model below, we assume that the phyto-zooplankton trophic
interaction is described by the standard prey-predator model with the functional response of Holling type
II. The corresponding model is described by the following differential equations:

dc

dt
= A

(

1− c

c+ 1

)

u− c ≡ f(c, u, v), (3.1)

du

dt
=

(

Bc

c+ c1
− u

)

u− uv

u+ h
≡ g(c, u, v), (3.2)

dv

dt
=

(

βuv

u+ h

)

− µv ≡ l(c, u, v), (3.3)

(in dimensionless variables) where v is the zooplankton density. The third term of Eq. (3.2) is the grazing
of zooplankton on phytoplankton, where the coefficient h is the half saturation density. The first term
of Eq. (3.3) represents the growth rate of zooplankton due to predation where β is the (dimensionless)
maximum per capita growth rate of zooplankton and µ is the natural mortality. Note that, for the sake
of simplicity, in Eq. (3.1) we have neglected the oxygen consumption due to the zooplankton breathing,
hence assuming that the zooplankton density is not very high.

3.1. Equilibrium analysis

The nonspatial three-component system (3.1–3.3) has at most three equilibria.

1. The trivial equilibrium E1 = (0, 0, 0) corresponding to extinction. It is readily seen that this equilibrium
exists always, regardless what the parameter values are.

2. The semi-trivial equilibrium E2 = (c̃, ũ, 0). Once v = 0, the system (3.1–3.3) is reduced to the
oxygen-phytoplankton system (2.7–2.8); therefore, the results obtained in Section 2 readily apply. In
particular, the steady state values c̃ and ũ are given by Eqs. (2.11–2.13), and the condition of the
equilibrium existence is given by the related condition Eq. (2.20).

3. The positive (coexistence) equilibrium E3 = (c̄, ū, v̄). This equilibrium exits under certain conditions
that are obtained below.

The steady state values c̄, ū and v̄ are the solutions of the following system:

A

(

1− c̄

c̄+ 1

)

ū− c̄ = 0, (3.4)

(

Bc̄

c̄+ c1
− ū

)

ū− ūv̄

ū+ h
= 0, (3.5)

βūv̄

ū+ h
− µv̄ = 0, (3.6)
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that can be solved semi-explicitly as follows:

ū =
µh

β − µ
, c̄ =

−1 +
√
1 + 4Aū

2
, v̄ = (ū+ h)

(

Bc̄

c̄+ c1
− ū

)

(3.7)

(where we have omitted the second root for c̄ because it is always negative and hence biologically mean-
ingless).

It is then readily seen that all the steady state values (3.7) are positive under the following conditions:

β > µ,
√
1 + 4Aū > 1 and

Bc̄

c̄+ c1
− ū > 0, (3.8)

which thus gives the conditions of E3 existence. Since all the parameters in (3.8) are positive due to
their biological meaning, the second condition in (3.8) holds identically; however, the first and third ones
impose nontrivial restrictions on the range of biologically meaningful parameter values.

3.2. Stability analysis

Now we are going to discuss the stability of the steady states E1, E2 and E3. For this reason, we calculate
the Jacobian matrix of the system (3.4)-(3.6):

A =









− Au
(1+c)2 − 1; A(1− c

1+c
); 0;

Bc1u
(c+c1)2

; Bc
c+c1

− 2u− vh
(u+h)2 ; − u

u+h
;

0; βvh
(u+h)2 ;

βu
u+h

− µ;









. (3.9)

For each of the steady states, the eigenvalues are the solutions of the characteristic equation:

det(Ai − λI) = 0, (3.10)

where I is the unit matrix and Ai is the matrix (3.9) with the elements calculated at the steady state
Ei, i = 1, 2, 3. Below we give a brief summary of the results, details of the calculations can be found in
Appendix.

– Extinction state E1

The eigenvalues of matrix A1 are −µ, −1 and 0. The fact that one of the eigenvalues is zero tells that
the linear stability analysis is not informative. Generally speaking, in this case, one has to perform a
higher order stability analysis to determine the stability of the equilibrium, e.g. by applying the Hartman-
Grobman theorem [10, 15]. Alternatively, however, in order to avoid tedious analytical calculations, we
can check the stability by numerical simulations.

– Zooplankton-free, oxygen-phytoplankton state E2

The eigenvalues of matrix A2 are the solutions of the following characteristic equation:

[

(

− Aũ

(1 + c̃)2
− 1− λ

)(

Bc̃

c̃+ c1
− 2ũ− λ

)

− A

1 + c̃

Bc1ũ

(c̃+ c1)2

]

(

βũ

ũ+ h
− µ− λ

)

= 0, (3.11)

where c̃ and ũ are given by Eqs. (2.13) and (2.17).
The analytical solution of Eq. (3.11) is bulky and hence we do not show it here for the sake of brevity

(but see Appendix for more details). Figure 2 shows each of the eigenvalues λ1, λ2 and λ3 as a function
on the controlling parameter A for two hypothetical values c1. It is readily seen that equilibrium E2 can
be stable or unstable. For example, for c1 = 0.4, E2 is stable for A = 0.42 but it is a saddle point for
A = 0.5.
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Figure 2. Bifurcation diagram for the zooplankton-free state E2 for (a) c1 = 0.4 and
(b) c1 = 0.7. The vertical line shows the feasibility condition, for the values of A on the
left of the line E2 does not exist.

– Oxygen-phyto-zooplankton coexistence state E3

For this equilibrium, the eigenvalues of the corresponding matrix A3 are the solutions of the following
characteristic equation:

(

βū

ū+ h
− µ− λ

)

[

(

− Aū

(1 + c̄)2
− 1− λ

)(

Bc̄

c̄+ c1
− 2ū− v̄h

(ū+ h)2
− λ

)

− A

1 + c̄

(

Bc1ū

(c̄+ c1)2

)

]

− βūv̄h

(ū+ h)3

(

Aū

(1 + c̄)2
+ 1 + λ

)

= 0. (3.12)

The analytical solution of Eq. (3.12) is extremely bulky; see Appendix for details. Figure 3 shows
Reλ for each of the eigenvalues λ1, λ2 and λ3 as a function on the controlling parameter A for two
hypothetical values c1. Note that in this case two of the eigenvalues appear to be complex-conjugate,
so that Reλ2 = Reλ3. Of the two different real parts, λ1 is distinctly negative (see the solid curve in
Fig. 3) whilst Reλ2 = Reλ3 is very small (for the given parameter set), positive for c1 = 0.4 (Fig. 3a)
and negative for c1 = 0.7 (Fig. 3b).

4. Numerical simulations I: temporal dynamics

In this section, we perform numerical simulations of oxygen-phytoplankton-zooplankton nonspatial system
(3.1–3.3). Understanding of the temporal dynamics creates a convenient framework for the understanding
of the complex dynamics of the spatio-temporal system. In all our numerical simulations shown in this
section, we fix parameters at some hypothetical values as β = 1, µ = 0.5 and h = 0.1, and vary A and c1
in a certain range. Our particular interest is to the effect of changes in parameter A as it may, in term
of the real-world plankton system, account for the effect of environmental changes.

Fig. 4 shows the oxygen concentration and the phyto- and zooplankton densities versus time obtained
for c1 = 0.8 and two different values of A. In the case of A = 0.3 (Fig. 4a), all components go extinct
in the large-time limit. This is not surprising as it is readily seen that, for these parameter values, the
conditions (2.20) and (3.8) do not hold and hence only the extinction steady state exists. However, for
A = 1 (Fig. 4b), conditions (3.8) for the coexistence state existence hold (but the conditions (2.20) do
not) so that, in the large-time limit, the densities converge to some positive steady state values (although
v̄ appears to be quite small in this case).
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Figure 3. Bifurcation diagram for the oxygen-phyto-zooplankton coexistence state E3

for (a) c1 = 0.4 and (b) c1 = 0.7. The vertical line shows the feasibility condition, for
the values of A on the left of the line E2 does not exist.
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Figure 4. Effect of changes in parameter A. The density of oxygen, phytoplankton and
zooplankton against time obtained for parameter values (a) A = 0.3, c1 = 0.8 and (b)
A = 1, c1 = 0.8. The initial conditions are c0 = 0.0292, u0 = 0.1, v0 = 0.01. Other
parameters are given in the text.

These simple results have important biological meaning. Once the oxygen production rate (as quan-
tified by parameter A) becomes low, e.g. as a result of environmental changes, the available amount of
oxygen may be not sufficient to support life of the plankton community, which results is the plankton
extinction.

On a more technical note, we mention here that not only the extinction/persistence issue but also the
rate of convergence can differ greatly for different parameter values. Figure 5 shows the simulation results
obtained for A = 1 and c1 = 0.1. Obviously, all the system component go extinct in the course of time.
However, we notice that, whilst for the parameters of Fig. 4 the convergence occurs over the time scale
of 103, for the parameters of Fig. 5 the convergence occurs 100 times faster.

Apart from the existence/extinction change in the system behavior, the effect of changes in parameter
A may have a somewhat more subtle effect on the stability of the system. Fig. 6 shows the oxygen
concentration and the phyto- zooplankton densities versus time obtained for the same value of c1 = 0.7
and two different values of A. For A = 0.9 (Fig. 6a), the densities eventually converge to the steady state
values after a sequence of damping oscillations, which obviously corresponds to E3 being a stable focus.
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Figure 5. Oxygen, phyto- and zooplankton densities over time simulated for parameters
A = 1, and c1 = 0.1, other parameters are the same as in the previous figure. The initial
conditions are c0 = 0.5, u0 = 0.5 and v0 = 0.5.

However, the situation is different for A = 1 (Fig. 6b) where the system eventually develops periodic
oscillations. This change in the system’s properties is in full agreement with our analysis of the steady
state stability undertaken in Section 3.1 (see also Appendix); indeed, the Hopf bifurcation occur when A
changes from 0.9 to 1.

An interesting succession of dynamical regimes observed for a sequence of increasing values of A is
shown in Fig. 7. Figure 7a obtained for A = 0.41 shows that oxygen and plankton densities converge to
the zooplankton-free steady state E2. Note that the initial zooplankton density drops very fast (so that
the corresponding curve in Fig. 7a at this resolution almost coincides with the vertical axis).

For A = 0.5 (Fig. 7b), the system dynamics follows a long-living transient. Over the first stage of
the dynamics (up to t ≈ 1000), the densities apparently converge to the zooplankton-free steady state.
However, this state appears to be a saddle rather than a stable equilibrium. After staying in its vicinity
for a considerable time (roughly, between t = 400 and t = 1000), the trajectory then shoots away to
the vicinity of E3 (which, for these parameter values, is a stable focus) so that the densities eventually
converge to their steady state values c̄, ū and v̄.
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Figure 6. Effect of changes in parameter A. The density of oxygen, phytoplankton and
zooplankton versus time obtained for (a) A = 0.9, c1 = 0.7 and (b) A = 1, c1 = 0.7.
In both cases, the initial conditions are c0 = 0.0916, u0 = 0.1 and v0 = 0.0031. Other
parameters are given in the text (see the first paragraph of Section 4).
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Figure 7. Effect of changes in parameter A. The density of oxygen, phytoplankton and
zooplankton versus time obtained for (a) A = 0.41, (b) A = 0.5, (c) A = 0.6 and (d)
A = 0.7. In all cases c1 = 0.4, other parameters are the same as in the previous figures.
The initial conditions are c0 = 0.06, u0 = 0.1, v0 = 0.05.

The Hopf bifurcation occurs between A = 0.5 and A = 0.6, so that for A = 0.6 (Fig. 7c) the system
dynamics is periodical with the densities obviously following the stable limit cycle. A further increase in
A leads to an increase in the size of the limit cycle and to an increase in the period of oscillations; see
Fig. 7d obtained for A = 0.7.

In conclusion to this section, we mention that the system exhibit a similar succession of dynamical
regimes in response to a change in parameter c1; in particular, an increase in c1 may result in the loss of
stability of the coexistence state E3 and the emergence of periodical oscillations. We do not show these
simulations results here for the sake of brevity.

5. Numerical simulations II: spatial dynamics

Now we are going to consider the properties of the oxygen-plankton system in space. For this purpose, we
consider a spatially explicit extension of the model (3.1–3.3) which is described by the following system
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of reaction-diffusion equations:

∂c

∂t
= DT

∂2c

∂x2
+A

(

1− c

c+ 1

)

u − c, (5.1)

∂u

∂t
= DT

∂2u

∂x2
+

(

Bc

c+ c1
− u

)

u− uv

u+ h
, (5.2)

∂v

∂t
= DT

∂2v

∂x2
+

(

βuv

u+ h

)

− µv. (5.3)

Here c = c(x, t) is the concentrations of oxygen and u = u(x, t) and v = v(x, t) are the densities of phyto-
and zooplankton at time t and position x, and DT is the coefficient of the turbulent diffusion [25,27].

We mention here that, in reality, the transport of oxygen in the sea water takes place due to the
combined action of the molecular and turbulent diffusion, so that the coefficient in Eq. (5.1) should
actually be DT +D0 rather than just DT , where D0 is the molecular diffusion coefficient. However, on the
spatial scales relevant to the plankton dynamics (i.e. 10−1 to 105 meters) the rate of molecular diffusion is
known to be several orders of magnitude less than the that of the turbulent diffusion. Hence, D0 ≪ DT

and DT + D0 ≈ DT . Similarly, the transport of zooplankton results from the interplay between the
turbulent diffusion and the self-movement of the zooplankton organisms. However, the mixing due to the
self-movement of zooplankton (which we assume to be random in space and described by the biodiffusion
coefficient Dv) appears to be much less compared to the turbulent mixing [27], i.e. Dv ≪ DT , so that
DT +Dv ≈ DT .

We also mention here that, having considered appropriate scaling of the spatial coordinates as x →
x′ = x

√

m/DT , cf. the lines after Eqs. (2.5–2.6), the coefficient DT will disappear from the equations.
Correspondingly, below we consider Eqs. (5.1–5.3) to be dimensionless by setting DT = 1. Also, we fix
some of parameters (β = 1, µ = 0.5 and h = 0.1) and focus on the effect of variations in A and c1.

Equations (5.1–5.3) are considered in a finite domain 0 < x < L where parameter L is the domain
length. At the domain boundaries, the zero-flux boundary condition is imposed.

The choice of the initial conditions is a subtle issue as different initial conditions may result in very dif-
ferent spatiotemporal dynamics [21]. In this paper, we consider the initial species distribution describing
a zooplankton patch in a space with uniformly distributed oxygen and phytoplankton:

c(x, 0) = c0, (5.4)

u(x, 0) = u0, (5.5)

v(x, 0) = v0 for |xi| < ǫ, otherwise v(x, 0) = 0, (5.6)

where c0, u0 and v0 are thus the initial densities and ǫ is the patch diameter. The results shown below
are obtained for ǫ = 100.

Equations (5.1–5.3) are solved numerically using the finite difference method. The mesh steps are
chosen as △t = 0.01 and △x = 0.5 and it was checked that these values are sufficiently small to avoid
any significant numerical artifacts.

Note that the insight into the properties of the nonspatial system that we made in Sections 2 and 3
creates a useful framework for the understanding of the properties of the spatiotemporal system (5.1–5.3).
In particular, as we have observed in our numerical simulations (not shown here for the sake of brevity),
if the conditions (3.8) for the existence of the positive steady state E3 do not hold but the condition
(2.20) for the existence of the zooplankton-free equilibrium E2 hold, zooplankton eventually goes extinct
over the whole space and the phytoplankton density u and the oxygen concentration c converge, in the
course of time, to the spatially uniform distribution c(x, t) ≡ c̃ and u(x, t) ≡ ũ. In case the condition
(2.20) does not hold either, then all three components eventually converge to zero everywhere in space.

However, we want to emphasize that the effect of space often appears to be difficult to predict basing
on the properties of the nonspatial system only. In particular, it may happen that the species extinction
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Figure 8. Distribution of oxygen (blue), phytoplankton (green) and zooplankton (black)
over space at t = 100 (dotted line), t = 200 (dashed line) and t = 300 (solid line) obtained
for parameters A = 1 and c1 = 0.1 and the initial conditions (5.4– 5.6), other parameters
are given in the text.
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Figure 9. Snapshots of the density distribution over space for oxygen (blue), phyto-
plankton (green) and zooplankton (black) at t = 3000 (dashed curves) and t = 5000
(solid curves) obtained for (a) A = 0.9, c1 = 0.7 and (b) A = 1, c1 = 0.7. The initial
conditions are c0 = 0.0916, u0 = 0.1 and v0 = 0.0031.

can follow an interesting scenario. As an example, Fig. 8 shows the evolution of the species spatial
distribution over time obtained for the same parameter values as Fig. 5. As it should be expected, in the
large-time limit the system goes extinct; however, at an intermediate time, the initial distribution evolves
to a travelling wave. The distribution of oxygen and phytoplankton forms a travelling front separating
the area where these quantities are approximately at their steady state values c(x, t) = c̃ and u(x, t) = ũ
(on the right of the front) from the area where these quantities have gone extinct (on the left of the front).
The zooplankton density forms a narrow peak at the position of the front. This solution of the model
(5.1–5.3) apparently describes an interesting ecological situation. There is not enough oxygen anywhere
in the system to support a stable existence of zooplankton; however, zooplankton can survive transiently
(and over a relatively long time) at the interface between the area of partial depletion of oxygen and the
area with no oxygen.

Figure 9 presents the simulation results in the spatial system (5.1–5.3) obtained for the parameters
corresponding to Fig. 6. In particular, in Fig. 9a the coexistence state is a stable focus (the corresponding
nonspatial dynamics is shown in Fig. 6a). It is readily seen that, in this case, the intermediate-time
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solution is given by an oscillating travelling front connecting the two steady states, i.e. the zooplankton-
free state E2 (on the right of the front) and the coexistence state E3 (on the left of the front). The front
propagates to the right so that, in the large-time limit, the species densities converge to the spatially
uniform distribution c(x, t) = c̄, u(x, t) = ū, v(x, t) = v̄.
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Figure 10. Distribution of oxygen (blue), phytoplankton (green) and zooplankton
(black) over space at (a) t = 3000 and (b) t = 5000 obtained for A = 0.6 and c1 = 0.4
with the initial conditions c0 = 0.06, u0 = 0.1 and v0 = 0.05; see (5.4– 5.6). Other
parameters are given in the text, see the beginning of Section 5.
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Figure 11. The density of oxygen (blue), phytoplankton (green) and zooplankton
(black) over space at (a) t = 3000 (b) t = 5000 obtained for other given parameter
values A = 0.7, c1 = 0.4 and initial conditions are the same for (a) and (b) as (5.4– 5.6)
with c0 = 0.06, u0 = 0.1 and v0 = 0.05.

In Fig. 9b, the parameters are beyond the Hopf bifurcation so that the nonspatial system becomes
oscillatory (see Fig. 6b). In this case, the spatial species distribution has somewhat counter-intuitive
properties. A part of the spatial solution forms, similarly to the above, an oscillating travelling front
connecting E2 on the right and E3 on the left. However, the coexistence state E3 is unstable and
therefore cannot persist indefinitely. As the oscillating travelling front propagates to the right, far behind
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the front, i.e. behind the unstable plateau, irregular oscillations eventually develop; see the left-hand
end of Fig. 6b. In the large-time limit, the irregular spatiotemporal oscillations eventually occupy the
whole domain (not shown here). The system dynamics thus follow the generic scenario well-known for
other reaction-diffusion systems, i.e., the onset of chaos in the wake of the front preceded by the so called
dynamical stabilization of unstable equilibrium [19,30,32,35].

The existence of travelling front connecting E2 to E3 is not a general property of the system (5.1–5.3)
though. The unstable plateau does not always exists and, alternatively, the spatially uniform distribution
of oxygen and phytoplankton (corresponding to the zooplankton-free state E2) may give way to a band of
regular spatial oscillations of varying amplitude; see Fig. 10 obtained for parameters where the nonspatial
system is oscillatory. The band of regular spatial oscillations is eventually displaced by the chaotic
spatiotemporal oscillations which, in the course of time, occupy the whole domain.

We mention here that the onset of spatiotemporal chaos in the system (5.1–5.3) is, in case the corre-
sponding nonspatial system is oscillatory, a common property. A general tendency that we have observed
in our simulations is that the spatial oscillations become more and more irregular with an increase in A
(keeping other parameters fixed), i.e. when the point in the parameter plane moves further away from
the Hopf bifurcation curve. An example of this situation is shown in Fig. 11.

6. Summary and concluding remarks

Peculiarities of plankton dynamics in marine ecosystems have been a focus of significant interest and
intense research for several decades. A considerable progress has been made in the understanding of
factors and mechanisms underlying a variety of plankton phenomena, and there exist vast literature
covering almost every aspect of the plankton research. However, there is at least one aspect that has
been rather poorly investigated. Admittedly, plankton is not only the base of the ocean food chain
(which is often mentioned as a practical reason justifying the effort behind scientific studies), it is also
responsible for the production of about two thirds of the atmospheric oxygen. Surprisingly, there are
very few studies directly concerned with the dynamics of the oxygen-plankton coupling. In spite of its
obvious importance, this issue remains clearly overlooked both in theoretical and field studies.

In this paper, we developed a conceptual three-component mathematical model of the oxygen-phyto-
zooplankton system. The model consists of three ordinary differential equations. We first considered
the nonspatial version of the model which, in real-world terms, corresponds to a well-mixed system with
spatially uniform distribution of species. The properties of the model have been studied both analytically
and by simulations. In particular, we found analytical conditions for the existence of a (unique) positive
equilibrium corresponding to the coexistence of all three components. In ecological terms, parameter
values corresponding to the existence of the positive equilibrium may be regarded as safe, whilst the
disappearance of this steady state should be regarded as an ecological disaster resulting in mass extinction
of the plankton species.

We then considered a spatially explicit extension of our model which takes into account the transport
of plankton and oxygen by the turbulent diffusion. The model is described by a system of three partial
differential equations of reaction-diffusion type. The properties of the system were studied by extensive
numerical simulations. We have shown that the model exhibits rich spatiotemporal dynamics, in partic-
ular, resulting in travelling fronts and spatiotemporal chaos. The observed properties of the system are
therefore reminiscent of the dynamics of other ecologically relevant reaction-diffusion systems, e.g. see
[21,40], which helps to verify the model properties and to interpret the results.

Perhaps the most interesting property of our model is that phytoplankton is predicted to survive only
if the rate of oxygen production is above a certain critical value; see condition (2.20). Since the rate of
oxygen production may be expected to depend on the properties of the environment, it makes our model
a convenient and relevant theoretical tool that can be used for the purposes of nature conservation and
marine ecosystems management. This will become a focus of our future research.
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Appendix

The linearized system’s matrix is as follows:

A =









− Au
(1+c)2 − 1; A(1− c

1+c
); 0;

Bc1u
(c+c1)2

; Bc
c+c1

− 2u− vh
(u+h)2 ; − u

u+h
;

0; βvh
(u+h)2 ;

βu
u+h

− µ;









. (6.1)

– Extinction steady state: E1 = (0, 0, 0).

Matrix (6.1) takes the following form:

det(A(0,0,0) − λI) =

∣

∣

∣

∣

∣

∣

−1− λ; A; 0;
0; −λ; 0;
0; 0; −µ− λ;

∣

∣

∣

∣

∣

∣

= 0,

so that o the characteristic equation is defined by

⇒ (−µ− λ)(−λ)(−1− λ) = 0. (6.2)

From Eq. (6.2), λ1 = −µ, λ2 = 0 and λ3 = −1. Therefore, the origin has two negative real eigenvalues
and one zero eigenvalue.

– Zooplankton-free steady state: E2 = (c̃, ũ, 0).

The corresponding matrix is:

det(A(c̃,ũ,0) − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

− Aũ
(1+c̃)2 − 1− λ; A(1− c̃

1+c̃
); 0;

Bc1ũ
(c̃+c1)2

; Bc̃
c̃+c1

− 2ũ− λ; − ũ
ũ+h

;

0; 0; βũ
ũ+h

− µ− λ;

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

so that

det(A(c̃,ũ,0) − λI) =

[

(

− Aũ

(1 + c̃)2
− 1− λ

)(

Bc̃

c̃+ c1
− 2ũ− λ

)

− A

1 + c̃

Bc1ũ

(c̃+ c1)2

]

(

βũ

ũ+ h
− µ− λ

)

= 0, (6.3)

where ũ and c̃ defined in Eqs.(2.11) and (2.13).

λ1 =
βũ

ũ+ h
− µ λ2,3 =

−ρ±
√

ρ2 − 4∆

2
(6.4)

where

ρ =
Aũ

(1 + c̃)2
− Bc̃

c̃+ c1
+ 2ũ+ 1 (6.5)

∆ =
2Aũ2

(1 + c̃)2
− ABũc̃

(1 + c̃)2(c̃+ c1)
− Bc̃

c̃+ c1
− ABc1ũ

(1 + c̃)(c̃+ c1)2
+ 2ũ (6.6)
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– Coexistence steady state: E3 = (c̄, ū, v̄).

det(A(c̄,ū,v̄) − λI) =

∣

∣

∣

∣

∣

∣

∣

∣

− Aū
(1+c̄)2 − 1− λ; A(1− c̄

1+c̄
); 0

Bc1ū
(c̄+c1)2

; Bc̄
c̄+c1

− 2ū− v̄h
(ū+h)2 − λ; − ū

ū+h
;

0; βv̄h
(ū+h)2 ;

βū
ū+h

− µ− λ;

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

so that

det(A(c̄,ū,v̄) − λI) =
βūv̄h

(ū+ h)3

(

− Aū

(1 + c̄)2
− 1− λ

)

(6.7)

+

(

βū

ū+ h
− µ− λ

)

[

(

− Aū

(1 + c̄)2
− 1− λ

)(

Bc̄

c̄+ c1
− 2ū

− v̄h

(ū+ h)2
− λ

)

− A

1 + c̄
· Bc1ū

(c̄+ c1)2

]

= 0,

where c̄, ū and v̄ defined by Eqs. (3.7).
Let

φ =
βū

ū+ h
− µ− Aū

(1 + c̄)2
− 1 +

Bc̄

c̄+ c1
− 2ū− v̄h

(ū+ h)2
,

ε =
Aβū2

(1 + c̄)2(ū+ h)
+

βū

ū+ h
− βBūc̄

(c̄+ c1)(ū+ h)
+

2ū2β

ū+ h
− Aūµ

(1 + c̄)2
− µ

+
Bc̄µ

c̄+ c1
− 2ūµ− v̄hµ

(ū+ h)2
+

ABūc̄

(1 + c̄)2(c̄+ c1)
− 2Aū2

(1 + c̄)2
− Aūv̄h

(1 + c̄)2(ū+ h)2

+
Bc̄

c̄+ c1
− 2ū− v̄h

(ū+ h)2
+

ABūc1
(1 + c̄)(c̄+ c1)2

,

and

ρ = − Aβū2v̄h

(ū+ h)3(1 + c̄)2
− βūv̄h

(ū+ h)3
− ABβū2c̄

(1 + c̄)2(c̄+ c1)(ū+ h)
+

2Aū3β

(1 + c̄)2(ū+ h)

+
Aβū2v̄h

(1 + c̄)2(ū+ h)3
− Bβūc̄

(c̄+ c1)(ū+ h)
+

2βū2

ū+ h
+

βūv̄h

(ū+ h)3

− ABβū2c1
(1 + c̄)(c̄+ c1)2(ū+ h)

+
ABūc̄µ

(1 + c̄)2(c̄+ c1)
− 2Aū2µ

(1 + c̄)2
− Aūv̄hµ

(1 + c̄)2(ū+ h)2

+
Bc̄µ

c̄+ c1
− 2ūµ− v̄hµ

(ū+ h)2
+

ABc1ūµ

(1 + c̄)(c̄+ c1)2
.

Then the eigenvalues of system (6.7) are the solutions of the following cubic equation:

λ3 − φλ2 − ελ− ρ = 0, (6.8)

The roots of equation (6.8) are:

λ1 =
φ

3
+

2
1

3 (−φ2 − 3ε)

3(−27ρ− 2φ3 − 9φε+ 3
√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1

3

(6.9)

− (−27ρ− 2φ3 − 9φǫ+ 3
√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1

3

3 · 2 1

3
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λ2 =
φ

3
− (1 + i

√
3)(−φ2 − 3ε)

3 · 2 2

3 (−27ρ− 2φ3 − 9φε+ 3
√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1

3

(6.10)

+
(1− i

√
3)(−27ρ− 2φ3 − 9φε+ 3

√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1

3

6 · 2 1

3

λ3 =
φ

3
− (1− i

√
3)(−φ2 − 3ε)

3 · 2 2

3 (−27ρ− 2φ3 − 9φε+ 3
√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1

3

(6.11)

+
(1 + i

√
3)(−27ρ− 2φ3 − 9φε+ 3

√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1

3

6 · 2 1

3

Therefore, the equilibrium (c̄, ū, v̄) has one real and two complex eigenvalues; hence, it is a mixed
focus-type equilibrium.
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