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ABSTRACT 

Safety-critical systems – such as those used in the medical, automotive and 
aerospace fields – have a crucial dependence on the reliable functioning of one 
or more embedded processors.  In such systems, a co-operative software 
design methodology can be used to guarantee a high degree of reliability; when 
coupled with a time-triggered architecture, this methodology can result in robust 
and predictable systems with a comparatively simple software design, low 
operating system overhead, easier testability, greater certification support and 
tight jitter control.  

Nevertheless, the use of a co-operative design methodology is not always 
appropriate, since it may negatively affect system responsiveness and can add 
to the maintenance costs.  Many alternatives have been researched and 
implemented over the past few decades to address such concerns, albeit by 
compromising on some of the benefits this architecture provides. 

This thesis makes five main contributions to tackle the major obstacles to 
single-processor time-triggered co-operative designs: 

 it proposes and describes the implementation of a novel multi-core 
processor with two capable software scheduler implementations that 
allow application software to be designed as for a single-core system; 

 it describes the internalisation of these scheduler implementations into 
hardware which allows application software to use all available 
computing capacity; 

 it describes a hardware technique to eliminate the variations in starting 
times of application software, thereby increasing the stability of 
applications; 

 it describes the implementation of a hardware technique for sharing 
input/output resources amongst application software with increased 
determinism by leveraging the time-triggered nature of the underlying 
system;  

 it describes the implementation of a predictable processor that supports 
purely co-operative software and is suitable for the secondary cores on a 
multi-core design (due to its small size). 

Overall, the contributions of this thesis both increase system responsiveness 
and lessen the impact of seemingly innocuous maintenance activities. 
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Chapter 1 

Introduction 

―Simplicity is the ultimate sophistication‖ – so articulated Leonardo da Vinci 

(1452 – 1519), a sentiment later expressed by Albert Einstein with, ―Everything 

should be made as simple as possible, but no simpler!‖ (Einstein 1933). Yet, in 

our modern society technology gets ever more complex. In his acceptance 

speech for the 1980 ACM Turing Award, Hoare remarked that the price of 

reliability is the pursuit of utmost simplicity, and that it is a price most find ―hard 

to pay‖ (Hoare 1981). 

Consider the workflow of an average office worker whose day-to-day activities 

might involve data entry, envelope stuffing, sitting in meetings, etc. The simplest 

way to get through them is in a sequential, predefined manner (Sasso 1986; 

Schultz et al. 2003). Unfortunately, activities in a work day cannot be conducted 

sequentially due to competing requirements: meetings have to be arranged 

around all participants‘ schedules; the need to mail items arises at different 

points in the day; occurrence of emergencies and so on (Hudson et al. 2002). 

The worker must then jump from job to job to meet daily deadlines (Rouncejield 

et al. 1994). 

Consequently, simplicity is lost because of the change in mindset required by 

each job interruption (O‘Conaill et al. 1995; Schultz et al. 2003). This is in 

addition to the time required to prepare for and clean up after a job. For 

example, data entry would require pulling the keyboard closer and opening a 

spreadsheet program; envelope stuffing involves clearing space for papers, 
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envelopes and writing materials; meetings require walking to the meeting room 

and back; and so on. Increased interruptions lead to a loss in reliability due to 

variability in productivity and/or quality (Schultz et al. 2003; Roper et al. 2007; 

Haynes 2008) unless made up for during slack time (shortened lunch breaks, 

overtime, etc.) (Spira et al. 2005). 

Additionally, multiple workers doing the same job must also arrange their work 

times to avoid arguments over company resources. For example, to prevent 

queues at the printer, workers may arrange to do envelope stuffing at different 

times. (Gordon et al. 1997) 

A straightforward way to remedy the situation is to hire a worker for each job. 

However, this plainly costs the company in terms of salary even if productivity 

gains are made (Kim et al. 2004). On the other hand, a worker hired for a 

particular job does not have to be skilled to do every job and so could be paid 

less (Sasso 1986), perhaps resulting in a net salary decrease. The real solution, 

as it almost always is, is a compromise between the two extremes (Kremer et 

al. 1996). 

Henry Ford, whose efforts were “in the direction of simplicity” in order to provide 

―the very best service and the most convenient in use‖, pioneered by equalising 

and more than doubling daily wages and by employing workers according to 

their skill and physical handicaps; the former attracted the highest skill in the 

field and the latter increased production. His efforts also eliminated interruptions 

in the form of wasteful material and tool hunting with assembly lines. (Ford et al. 

1922) 
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The office situation has parallels in the field of computing where a personal 

computer, assuming it has only one ―brain‖ like an office with one worker, 

cannot nonchalantly spend five hours downloading a file before it allows a letter 

to be typed in a word processor. So the computer has to alternate very, very 

quickly between downloading the file and allowing the letter to be typed. Each 

alternation, like the office worker‘s preparation when interrupted, requires 

memory to be re-allocated and re-loaded, the appropriate computing 

instructions to be re-fetched, etc. Also, like the office printer, both of the 

computer jobs will be ―printing‖ to a common storage device and display device. 

In this thesis, a solution to this loss of reliability in the field of embedded 

computing is explored by the application of a proven methodology in order to 

maintain programming simplicity: the exploration being inspired by the recent 

and rapid adoption of multi-core technology (Borkar 2007) and by the statement 

that ―the simple and elegant systems tend to be easier and faster to design and 

get right, more efficient in execution, and much more reliable‖ (Dijkstra 1997). 

Colloquially, the task of keeping an office worker‘s jobs simple and interruption-

free (and hence reliable) is explored by hiring a superhuman worker with more 

than one brain.  

1.1 Embedded Computing 

In computer science, the field of embedded computing studies embedded 

processor cores. These are like their desktop and server variants in that their 

behaviour can be modified by software; but are different in that they have a 

longer life cycle, are designed for harsher environments and have lower power 

consumption. Embedded processor cores are often included with mechanical 
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and other parts, forming an embedded system, the forerunner to tomorrow‘s 

cyber-physical system (Lee 2009).  

―Embedded‖ is used to indicate that the presence of the system is unapparent 

to the end user rather than imposing constraints on physical size, though, 

undeniably, smaller sizes may facilitate the concealment. It also indicates that 

the system is part of a larger system or product whose primary functionality 

need not be as a computer, as in the case of an antilock braking system in a car 

(Pont 2002; Wolf 2002; Ganssle 2003). Such a system is designed to perform a 

small number of dedicated functions albeit with choices and different options, 

i.e. the end-user can make choices concerning functionality but cannot change 

the functionality of the system by adding/replacing software (Sachitanand 2002; 

Heath 2003). 

Embedded systems have proliferated into our daily lives, being present in 

televisions, cars, aircraft, Automated Teller Machines (ATMs), etc., and even in 

such mundane products as ovens, toasters and dishwashers. Soon even 

engineers will be hard put to identify embedded systems due to the 

improbability of being able to squeeze in all the required features and 

intelligence into tiny devices. This can be seen already in contactless payment 

cards (Olsen 2007) or in car tyres that communicate wirelessly with the vehicle 

about road conditions, tyre inflation, temperature, etc (Ergen et al. 2009). These 

systems will soon be woven into everything we touch, including fabrics (Kim et 

al. 2009).  

Already by 2000, 98% of the computing devices sold worldwide were embedded 

devices (Borriello et al. 2000). The number is expected to reach 16 billion for 
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this year (nearly 3 embedded devices per person on earth) and to exceed 40 

billion in 2020 (Helmerich et al. 2005; ARTEMIS SRAWG 2006). In addition, the 

global market is expected to increase from £63.3 billion in 2008 to an estimated 

£77.3 billion by the end of 2013 (Joshi 2009); and expenditure on software 

research and development is expected to increase from £47.9 billion in 2002 to 

£109.0 billion in 2015 (Helmerich et al. 2005; Alves 2007).  

1.2 Real-time embedded systems 

Embedded systems are frequently required to have real-time behaviour, that is, 

they have to produce an action in response to a stimulus within a specified time 

interval, independently of how quickly the action is performed (Buttazzo 2002a). 

Outside of this interval, the result, even if correct, is marginally or completely 

useless (Audsley et al. 1990). In safety-critical real-time systems, safe 

performance or operation is essential and errors or malfunctions arising due to 

the failure of real-time behaviour can result in death, injury or illness, major 

economic loss, mission failure, environmental damage or property damage 

(Dimond et al. 2002). This description clearly fits systems used in industrial 

automation, medical equipment, nuclear power plants, avionics and 

automobiles, amongst others (Redmill 1992; Profeta III et al. 1996). 

By their nature, safety-critical systems are expected to be as dependable as 

possible. Dependability is the trustworthiness of a computer system such that 

reliance can justifiably be placed on its behaviour (Laprie 1992) and subsumes 

reliability, availability, integrity, maintainability, etc. (Avižienis et al. 2004). It is 

an assessment shaped by social and psychological factors in addition to hard 

statistics. 
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This thesis concerns itself with two aspects of dependability in safety-critical 

systems; reliability, which is the ability to provide a required service, according 

to stated specifications, for a time under varying operating conditions (IEEE 

1990; Laprie 1992); and, maintainability, which is the ease with which 

modifications can be made to correct faults, improve performance or other 

attributes, or adapt to a changed environment (IEEE 1990). Maintainability, like 

reliability, assumes that the environmental conditions declared by the system 

specifications always holds and is differentiated from robustness which 

indicates tolerance to unexpected conditions (IEEE 1990). 

1.3 The time-triggered co-operative architecture 

Among the myriad of ways to build real-time systems (Fidge 2002; Sha et al. 

2004; Buttazzo 2005a), this thesis focuses on the simple, reliable time-triggered 

co-operative architecture (TTCA)  (Pont 2001). It has been found to be a good 

match for a wide range of applications, such as automotive applications 

(Ayavoo et al. 2004; Short et al. 2005), wireless (ECG) monitoring systems 

(Phatrapornnant et al. 2006), various control applications (Edwards et al. 2004; 

Key et al. 2004; Bautista et al. 2005; Nghiem et al. 2006), data acquisition 

systems, washing-machine control and monitoring of liquid flow rates (Pont 

2002). 

The co-operative nature of TTCA simplifies software development and 

facilitates more emphatic guarantees of the quality of interaction with the 

environment; both, of which make it a reliable architecture. But this nature is 

simultaneously a big impediment that necessitates an accurate estimation of 

software execution times. Software non-determinism (from branching, variable 
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number of iterations and dependence on environmental events) and hardware 

non-determinism (from caches, direct-memory-access) hinder such estimations.  

In addition, software that takes too long to execute can adversely affect system 

responsiveness, even if such software runs infrequently, e.g. software that runs 

every ten hours but takes two hours to execute stops the system from doing 

anything else for those two hours. This then imposes a severe constraint that all 

software must execute quickly in order to maintain system response times 

(Allworth 1981; Locke 1992). 

In most cases, execution time is not a single value, but a range. In such cases, 

TTCA exposes fragility if the upper bound of the range is too liberal; leading to 

an excessive waste of resources. Conversely, conservative estimates 

potentially throw the entire system off temporally. While techniques have been 

developed to deal with such failures, they can be counterproductive due to 

increased complexity and/or the introduction of unknown states into the system 

(Locke 1992; Kalinsky 2001; Hughes et al. 2008). 

TTCA has also been criticised for requiring exhaustive validation and testing 

during design and maintenance (Liu et al. 1995), both of which are time-

consuming and costly. However, given that the cost of unanticipated changes to 

software increases exponentially as systems age (Griswold et al. 1993), 

perhaps this extra scrutiny is a blessing in disguise. 

Another consequence of co-operative execution and software and hardware 

non-determinism is that only the software immediately after the triggering event 

can be guaranteed a start time with minimum variance. All other software is 
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affected by the cumulative variance of the execution times of all software that 

executed prior in the same occurrence of the triggering event (Kalinsky 2001). 

For these reasons, TTCA has been relegated as an ideal – suitable for only the 

simplest systems. For everything else, compromises have been made. 

Commercial system software vendors have also moved on, so that when 

building a new design or updating an old one, commercial off-the-shelf and 

standard operating systems are frequently adopted that do not support cyclic 

scheduling (Liu et al. 1995; Xu et al. 2000). 

1.4 Aims of the thesis 

The aims of this thesis are to increase the number of feasible variants of the 

single-processor time-triggered co-operative architecture (TTCA) and to 

increase the temporal quality (i.e. reliability) of responses of TTCA to 

environmental stimuli. Increasing the number of feasible variants decreases the 

chance that maintenance will result in an unfeasible design while the use of 

TTCA will reduce the amount of time needed to understand the program in the 

maintenance activity.  

These aims will be pursued by increasing the concurrency in the system whilst 

maintaining the design simplicity of software that expects a non-concurrent 

system. 

1.5 Scope 

This thesis possesses the following scope: 

 The techniques operate on one particular software processing core in a 

real-time system. Any other cores are considered together with the 
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environment of the system to form the environment of the core. The core 

may be the sole core in a processor or may be one of several (possibly 

heterogeneous) cores in a multi-core processor. 

 The software executing on the core is expected to run at a fixed rate, to 

complete execution before a certain time, to have a bounded execution 

time, and to behave in a highly predictable manner (Stankovic 1988; 

Stankovic et al. 1990; Spuri et al. 1995; Buttazzo 2005a). 

 The transformation under consideration in this thesis will result in the 

core being converted into a network of cores (Figure 1.1) changing 

neither the software application programming interface (API) nor the 

input/output (I/O) interface with other hardware.  

 

 

1.6 Key contributions 

This thesis makes the following contributions to increase the applicability of the 

time-triggered co-operative architecture: 

Figure 1.1: The transformation will replace a single-core processor with a multi-core one that 

preserves the I/O interface with other hardware and the software API. 

TTCA 
implementation 

Core 

Multi-core TTCA 
implementation 

Software Software 
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 The first contribution is a novel processor for single-processor TTCA 

designs that are either unfeasible or impractical due to the presence of 

software with heavy utilisation and the presence of non-harmonic 

relationships in software execution rates. This has been achieved by 

increasing the number of available processing elements, without 

affecting the application software design. This contribution also has the 

benefit of reducing the probability of defects being introduced by the 

maintenance of feasible single-processor TTCA designs. 

 The second contribution extends an existing TTCA hardware 

implementation to work with the new processor. This contribution results 

in a TTCA implementation that possesses zero scheduler overheads and 

the ability to execute heavily utilised or non-harmonically related 

software, in addition to better maintainability and a greater scope for 

future development. 

 The third contribution uses existing software techniques to infuse jitter 

reduction capabilities into the non-concurrent TTCA hardware 

implementation and the concurrent version from the previous 

contribution. This contribution results in a TTCA implementation with zero 

task release jitter in addition to zero scheduler overheads, the ability to 

execute heavily or non-harmonically utilised software, better 

maintainability and a greater scope for future development. 

 The fourth contribution is a hardware technique that allows peripherals to 

be accessed deterministically and concurrently without blocking whilst 

maintaining their consistency. This contribution eliminates the need for 
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the gateway tasks inherent in the TTCA implementations of the previous 

contributions. 

 The fifth contribution is a processor core for purely co-operative software 

that does not suffer from jitter or lengthened latency due to the interrupt 

servicing, while continuing to provide the system scheduler with flexibility 

in schedule creation and in the order in which tasks are dispatched. 

1.7 Thesis overview 

Chapter 2 provides an overview of the software architecture for real-time 

systems, such as scheduling and resource sharing. The task model used for the 

hard real-time systems under consideration in this thesis is also described along 

with an account of latency and jitter and the reason they may give rise to 

problems in a system. 

Chapter 3 provides an overview and execution model of TTCA along with the 

description of several software implementations and one hardware 

implementation. The problems that arise from use of TTCA are elaborated in 

Chapter 4 along with the solutions that have been proposed for these problems 

and the discrepancies that they possess. 

Chapter 5 presents a novel multi-core processor to alleviate the problems of 

single-processor TTCA designs. The chapter also describes the wait-free loop-

free inter-core communication scheme and the scheduler extensions that were 

made to allow standard TTCA application design to be used with the processor. 

Chapter 6 presents a case study that examines the maintenance effort required 

and the cost if a F16 flight system were initially deployed on a single-core 
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processor with an appropriate scheduler versus the multi-core processor 

described in Chapter 5. 

Next, Chapter 7 incorporates the scheduler extensions of the multi-core 

processor into an existing TTCA hardware implementation in a successful 

attempt at achieving zero scheduler overhead and zero task release jitter. 

Chapter 8 then presents a case study that examines the migration of an existing 

co-operative system with many small communicating tasks to the presented 

multi-core platform and the effects this has on the tasks‘ execution properties. 

Chapter 9 introduces a hardware technique to share resources that 

communicate with the environment, using a simple but novel technique to 

increase determinism in accessing these resources. 

Finally, Chapter 10 concludes with a final summary, with a discussion of 

limitations and with the consideration of future work that may be performed. 

1.8 Conclusions 

The intuitive notion that productivity is increased by concentrating on a single 

task is not only demonstrative in the work place but is also reflected in software 

design. Particularly, a software developer‘s development productivity increases 

if software is written in the co-operative manner of execution. In the safety-

critical field, co-operative execution can be coupled with the highly predictable 

time-triggered architecture to produce the time-triggered co-operative 

architecture (TTCA) that provides a simple and intuitive interface for application 

development.  
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Unfortunately, in the same way that an office worker is often impelled by daily 

deadlines to abandon simpler ways of working, so also is an embedded 

systems designer often impelled by real-time constraints to abandon a TTCA 

implementation. Alternative real-time designs are able to accommodate the 

constraints, but usually end up compromising on predictability or on the quality 

of environmental interactions or on the ease of application development.  

This thesis, then, presents research aimed at accommodating some of the 

stricter real-time constraints on TTCA – expanding the range of designs that 

can be built on this architecture. The next chapter will examine, in greater detail, 

how the software for real-time systems is constructed and the various design 

choices involved. 



 
 

Chapter 2 

Software architecture of real-time system 

schedulers 

2.1 Introduction 

In real-time computing, the correctness of a system depends both on the logical 

result of a computation and on the time at which the results are communicated 

to the environment (Stankovic 1988; Ramamritham et al. 1994). Besides 

requiring that the logical result be computed before it is communicated, real-

timeliness places no other constraint on the computation speed. Predictability is 

the foremost goal in these systems (Stankovic 1988; Stankovic et al. 1990; 

Buttazzo 2005a). These systems have a long life-cycle and a perennial uptime, 

i.e. no restarts are required unless necessitated by a maintenance or upgrade 

cycle (Koopman 1996). 

The software design for these systems is concerned with enforcing the real-time 

constraints on the scanning of sensors and on the driving of actuators (non-

reactive systems log data instead). The application design process leverages 

the support of a real-time operating system (RTOS) that may also: provide fault 

tolerance and distribution; and integrate time-constrained resource allocations 

and scheduling across a spectrum of resources, e.g. sensor processing, 

communications, etc. This chapter explores some of the design decisions of the 

RTOS components that manage the execution of application software and that 

manage the access to resources that connect to the environment. 
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The next two sections discuss the characteristics of a real-time system‘s 

interaction with its environment and the level of quality required from such 

interaction based on the system‘s classification. This is followed by a brief 

description of the hardware model of a typical real-time system and a more in-

depth software model. The last few sections briefly examine resource 

management and scheduling. 

2.2 Environmental interaction 

Every reactive real-time system may be considered a control system: the 

system measures one or more environmental properties and responds (via real-

time actions or responses) by algorithmically bringing one or more of these 

properties to desired states. The numerical or logical effects of the actions are 

constrained by the application design to an interval in which they must be used 

(the response interval) and to an interval in which the desired performance is 

obtained (the performance interval) as seen in Figure 2.1. The upper bound of 

the performance interval is the deadline of the response. (Audsley et al. 1990; 

Buttazzo 2005a)  

 

 
Figure 2.1: Effect of time on the quality of a real-time computation (Audsley et al. 1990) 
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It is quite common for the design of a real-time embedded response to have an 

infinitesimally small, fixed-position performance interval, implying that the 

response must be time deterministic i.e., for every timed input stream, a unique 

timed output stream will be provided (Henzinger et al. 2003; Kopetz 2008). In 

other words, the temporal and the logical properties of a response should be 

determinable in finite time through design analysis under all assumed 

conditions, i.e. that these properties should be predictable. 

In some literature, the desired time determinism is ambiguously referred to as 

―predictability‖ and determinism is just as ambiguously used to refer to the 

degree to which a system‘s exact execution sequence can be predicted ahead 

of time, i.e. execution determinism (Locke 1992; Stankovic et al. 1993; Bate 

1998). Execution determinism has been found sufficient, though not necessary, 

to achieve time determinism (Locke 1992; Stewart 2001; Henzinger 2008). On 

the other hand, undisclosed implementation details that affect observable 

system behaviour or observable implementation determinism is crucial for 

reliable behaviour and is often given the sole importance (Engel et al. 2004; 

Henzinger 2008). 

The range of the performance interval indicates the tolerated variance or jitter in 

the real-time action while the position of the response interval indicates the 

tolerated latency. Increases in the latency of responses inversely affect the 

system responsiveness and may degrade control performance and cause 

system instability (Kim et al. 1997). Depending on the application, jitter may also 

seriously impact performance: it may cause instability due to a variable 

sampling period (Locke 1992); it may introduce errors significant enough to 

render a sampled signal meaningless (Cottet et al. 1999); it may need to be 
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nearly eliminated for specialised I/O devices requiring precise timing 

relationships between inputs and outputs (Locke 1992); and, it may complicate 

and delay fault detection and recovery (Lin et al. 1996). For analytical purposes, 

in addition to the definition above, jitter can be defined as the unpredictable and 

irregular deviation in the latency of a response (Figure 2.2). 

 

In real-time computing systems latency and jitter may be caused by underlying 

hardware such as the oscillator hardware (Schossmaier et al. 1999), memory 

caches (Mueller et al. 1993; Basumallick et al. 1994; Schneider 2000), direct 

memory access hardware (Thiele et al. 2004; Pitter et al. 2007), variable event 

servicing times (Jeffay et al. 1993; Berg et al. 2004), etc. (Sanfridson 2000).  

Latency and jitter are key factors of the quality of the system response 

mentioned in the aims in Section 1.4. The tolerance to these factors varies 

depending on the application, for example, the jitter may be allowed to tend to 

the response interval or may be required to tend to zero. 

2.3 Classifications 

The intervals in Figure 2.1 can be used to make a few distinctions: for a hard 

real-time action, both the response and performance intervals are finite and 

usually the same, while for a soft real-time action, the response interval is 

Figure 2.2: Latency and jitter of a response 
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infinitely large1. A hard real-time action provides no value to a system when it 

fails to meet its deadline (Buttazzo 2005a) and is safety-critical when the failure 

can result in death, injury or illness, major economic loss, mission failure, 

environmental damage or property damage (Dimond et al. 2002). A firm real-

time action has a performance interval smaller than a finite response interval, 

tolerates responses anywhere in the response interval (with possible planned 

degraded performance) and cancels overly long calculations according to the 

dynamic quality requirements (Goossens et al. 1997; Laplante 2004). In spite of 

the type of action, a deadline always exists after which catastrophic, zero or 

mediocre performance is obtained.  

A real-time system is normally classified on the maximum criticality of its 

actions. That is, a real-time system performing even one hard real-time action is 

a hard real-time system even if it performs soft or firm real-time actions. A real-

time system may also have non-real-time software, for example, software that 

updates a display screen. 

Hard real-time systems include devices that must shut down costly transformers 

before lightning strikes in power lines destroy them (Engblom 2002); engine 

control units that prevent too early or too late a combustion which can either 

destroy the engine or result in lower fuel economy and power (Bober et al. 

2009); and other such control systems designed to expect determinism without 

which performance suffers degradation and may even lead to instability in the 

system (Marti et al. 2001). Soft real-time systems include DVD players, 

                                            

1
 Performance of soft real-time actions may degrade continuously outside the performance 

interval, even turning negative, but even so, the consequences will not be catastrophic. 
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multimedia systems, monitoring apparatuses, telecommunication networks, 

mobile robotics, etc. Firm real-time systems include video conferencing devices 

and some database management systems.  

2.4 Hardware model 

The embedded processor cores mentioned in Section 1.1 perform calculations 

and interact with the environment through helper non-programmable hardware 

cores (serial ports, analogue interfaces, etc.) called peripherals. They may be 

placed with these peripherals onto a single integrated-circuit die to form a 

microcontroller or placed alone to form a microprocessor; when placed into 

suitable packaging, a chip emerges. The terms microcontroller and 

microprocessor are, however, gradually being used less than the term system-

on-chip (SoC), owing to the scale of today‘s chips compared to the past 

(Bjerregaard et al. 2006). 

Real-time systems with multiple microcontrollers, i.e. distributed systems, are 

common in automotive systems where cars may have between 20 and 100 

electronic control units (Charette 2009; Ebert et al. 2009) and may even have 

two communication media (Turley 1999). However, they have their 

disadvantages such as an increased amount of hardware, wiring, points of 

failure, etc (Leen et al. 1999). Progressive miniaturisation, from multi-

processors to multi-chip modules to chip-level multi-processors (CMP), aimed to 

eliminate these disadvantages while also providing higher bandwidth, lower 

latency, greater energy efficiency and more reliable communication (Multicore 

Association 2008). There is also a drive to replace the electronic control units 

with CMPs (Bergenhem 2007; Obermaisser et al. 2009). 
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CMPs have also been termed multi-cores (Wolf et al. 2008), where what was 

previously termed a ―processor‖ is termed a ―core‖. ―Processor‖ may instead be 

used to group processors in a heterogeneous CMP so that the CMP can be 

referred to as containing homogeneous ―processors‖ which further contain 

heterogeneous ―cores‖ (Duller et al. 2005). A CMP with peripherals may still be 

referred to as a microcontroller (Martin 2009) but where the SoC terminology is 

prevalent and the cores especially heterogeneous, it is referred to as a multi-

processor system-on-chip (MPSoC) (Wolf et al. 2008). 

The early CMP designs were one integrated-circuit versions of the prevailing 

multi-processor designs of the time – the shared-memory multi-processors – 

and leveraged many of the same techniques (Peng et al. 2007). More recently, 

the number of processors found in such a design has increased into the tens 

and hundreds (Borkar 2007) and inter-core communication has shifted from 

simple interconnects to more complex networks on the chip (Ascia et al. 2005; 

Bjerregaard et al. 2006). For distinction, the former group is identified simply as 

multi-core while the latter is identified as massively multi-core or many-core 

(Borkar 2007). 

In this thesis, the ―multi-core‖ terminology is adhered to, which has become 

colloquial usage even among non-technical users. 

2.5 Software development model 

As mentioned in Section 1.1, the embedded processor cores allow their 

behaviour to be modified by software, that is, these cores execute software by 

reading sequences of bits or instructions from memory hardware and 

interpreting them. The instructions indicate the calculations to perform and the 
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patterns of communication with other software processing cores and 

peripherals. The peripherals either interact (by sensing or actuating) with the 

environment directly or control another piece of hardware that does the 

interaction. 

Working from a set of human-level specifications, software developers describe 

calculation algorithms at a comfortable level of abstraction (for example, a 

textual or graphical programming language) which is then converted by a 

development software artefact called a compiler into instructions. Algorithms are 

designed as a series of tasks that work together to accomplish a particular goal-

oriented job. A group of common jobs then constitute a software application, 

several of which may be running on one core. Tasks contain sequential 

instructions and are meant to run concurrently with other tasks. In addition to 

task planning, the design process will also involve picking a suitable RTOS. The 

RTOS is responsible for task scheduling, i.e. deciding the time and order for 

task executions. 

For example, a word processing application has jobs for editing and printing 

amongst others. Editing requires tasks capable of positioning the cursor, 

highlighting text, saving the text, etc while printing requires tasks capable of 

checking the printer status, pagination, etc.  

In a hard real-time system, some tasks may require the maintenance of the 

real-time constraints mentioned in Section 2.2. These hard real-time tasks are 

those that use peripherals connected (directly or indirectly) with the 

environment, such as an analogue-to-digital converter, a pin driving a relay, etc; 
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and those that are required to precede the aforementioned tasks. From this, it 

follows that these real-time tasks must also be time deterministic. 

Tasks may be invoked aperiodically (at an irregular, unpredictable rate), 

sporadically (at an irregular, upper-bounded rate) or periodically (at a regular 

rate) (Buttazzo et al. 1999; Buttazzo 2005a). For example, operator requests or 

displaying activities, responding to device interrupts and sensory acquisition or 

control loops respectively correspond to one of these types. Since many safety-

critical activities are driven by periodic real-time tasks (Jeffay et al. 1991; Spuri 

et al. 1995), the discussion will be limited to periodic tasks (see also Section 

2.6.2). 

2.6 The task model 

In this thesis, the task model consists of a task-set,   in which each task,     

is distinguished by: an indication of its importance (the priority), a type (hard or 

soft real-time or non-real-time), an initial delay (     – the phase), the amount 

of time between consecutive releases (     – the period) and a list of tasks that 

should be executed before it (precedence constraints). A list of resources used 

by the task may also be included, sometimes annotated with the time and 

duration of usage of each resource. 

Over the lifetime of the system, the task executes in a number,      of non-

overlapping frames (Figure 2.3). The       frame consumes         units of 

processor time – between the best-case        , and the worst-case         

– but may be broken up into a number,        of executions due to higher 

priority tasks or to increase system responsiveness; the       execution starts 
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at          and finishes at         . The task‘s worst-case utilisation,         

of the processor may be used to decide how to execute a frame. 

The     frame also has execution properties: it is released at        and it has a 

time by when it should have finished executing (a deadline specified absolutely 

       or relative to the release time       ). Contentions at run-time will result 

in the frame actually being released at         a finite time after       , and 

finishing at       , a finite time before        .  

Using these definitions, some useful relationships can be drawn for a task 

             as seen in Equations 2.1 to 2.9. 

 

             2.1  

                     2.2  

                      2.3  

                        2.4  

                             2.5  

Figure 2.3: An example     frame of a task   which has three executions 
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           2.8  

        
       

    
  2.9  

At any time        , a frame may have some computation time left        and 

available slack or laxity,        as seen in Equation 2.10; the maximum laxity 

(Buttazzo 2005a) is at the release time of the frame. The worst-case utilisation 

(WCU) for the task-set can be seen in Equation 2.11.  

             
 

    
               ( 2.10 ) 

              

     

 ( 2.11 ) 

A task-set is complete or concrete if      is known a priori     . The least 

common multiple (LCM) of the periods of the tasks in a set is sometimes called 

the major cycle or hyperperiod     . If a set of tasks can be executed in a 

particular system, then that set is feasible for that system. When checking for 

feasibility, it is necessary and sufficient (for      ) to analyse the interval 

from   to                       (Pellizzoni et al. 2004). For brevity, the 

upper bound will be represented as         instead. 

Sometimes, for ease of specification, the system is assumed to have implicit 

deadlines, i.e.                          ; and the task-set is assumed 
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to be synchronous, i.e.            . However, asynchronous task-sets can 

be advantageously feasible when synchronous ones aren‘t (Tindell 1994; 

Pellizzoni et al. 2004), for example, phases and priorities can be used to specify 

precedence constraints (Audsley 1991). 

2.6.1 Harmonic dependencies between periods 

Consider two tasks,   and    with initial delays of   and    respectively, such 

that            , then the two tasks will be released at the same time, at their 

  th and   th frame respectively, whenever Equation 2.12 holds. 

    
       

     
                   

     

     
    

        

     
 ( 2.12 ) 

It is easy to see that if                   , then a release of    can be 

expected after   releases of   . In other words, if the periods are harmonic (one 

is a multiple of the other), the tasks will always be released with a constant 

relationship. Task-sets where all the tasks have the same or harmonically 

related periods are likely to have a low hyperperiod and they simplify feasibility 

analysis (Abdelzaher et al. 2000; Kuo et al. 2000). 

On the other hand, if                   , then the hyperperiod may be 

large and the relationship between the tasks‘ release times will vary over the 

range            . Moreover, these relationships need not be the same for 

every task combination, leading to changing execution patterns where the set of 

tasks executing before a particular task varies. Due to these variations, system 

utilisation may increase (Gill et al. 1999) and so certain scheduling techniques 

prefer to partition tasks on the basis of harmonic relations between their periods 

(Abdelzaher et al. 2000; Ekelin et al. 2001). 
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2.6.2 Other types of tasks 

It is worth noting that this periodic task model can also be used for a task    that 

is released sporadically (Equation 2.13) (Jeffay et al. 1991) and for a one-shot 

task     that is only released once (Equations 2.14 to 2.17). 

                                          ( 2.13 ) 

          ( 2.14 ) 

          ( 2.15 ) 

                  ( 2.16 ) 

            ( 2.17 ) 

2.6.3 Latency 

The instantaneous latency or delay         of the  th frame,         , of 

task  , is the difference between the start time and the release time 

(Equation 2.18), though it can also be expressed as the maximum for the 

assessment of a scheduling algorithm (Equation 2.19). 

                       ( 2.18 ) 

                                        ( 2.19 ) 

2.6.4 Jitter 

The jitter      in an ordered set   of time measurements can be calculated as 

in Equation 2.20. In some work, the maximum difference between two 

consecutive time measurements is used as a relative measure of jitter 
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(Equation 2.21) and the range as the absolute measure (Equation 2.22) 

(Buttazzo 2005a). 

         
        

      

   
 ( 2.20 ) 

          
           

            ( 2.21 ) 

 

                     ( 2.22 ) 

Depending on the application, performance may be seriously impacted by jitter: 

it may cause instability due to a variable sampling period (Locke 1992; Törngren 

1998; Marti et al. 2001); it may introduce errors significant enough to render a 

sampled signal meaningless (Cottet et al. 1999); it may upset the precise timing 

relationships between inputs and outputs for specialised I/O devices (Locke 

1992); it may complicate and delay fault detection and recovery (Lin et al. 

1996); and, it may generally degrade performance in control applications (Hong 

1995). Since all observable behaviour in the systems under consideration is an 

outcome of task execution, the discussion changes to one of jitter in a task‘s 

various timing properties: a task can suffer from release jitter, execution jitter, 

completion jitter and finishing jitter (Buttazzo 2005a). 

2.6.4.1 Execution jitter 

Execution jitter,       for     , is a variance in the execution time of a task 

and is quantified as in Equation 2.23 and illustrated in Figure 2.4, where for 

        ,                      and,                  . 

                             ( 2.23 ) 
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The primary reason for execution jitter is the presence of multiple execution 

paths in the program each of which may take different times to complete. The 

decision of which path to take is often based on unpredictable inputs and 

cannot be compensated for statically (Engblom 2002). The situation is 

exacerbated further by the trend to increase average performance with 

embedded processor developments (Berg et al. 2004). 

When systems are designed statically, they are designed to worst-case 

performance (Engblom 2002) and a large execution jitter, e.g. larger than 10% 

of a task‘s period (Cottet et al. 1999), can be indicative of unusable computation 

time and may also cause schedule non-determinism (Gendy 2009). 

2.6.4.2 Completion jitter 

Completion jitter,       for     , is a variance in the execution time of a task in 

the presence of pre-emption and is quantified as in Equation 2.24, where for 

        ,                      and,                  . 

                                   ( 2.24 ) 

In the absence of pre-emption, completion jitter is the same as execution jitter. 

Figure 2.4: Execution jitter in periodic tasks 

A 

             

 

Time 
            

     

 

     

 

     

 

    

 
A A A 



Software architecture of real-time system schedulers 

 

2-16 
 

2.6.4.3 Finishing jitter 

Finishing jitter,       for     , is a variance in the finishing time of a task. It 

can be quantified as in Equation 2.25 and is illustrated in Figure 2.5, where for 

        ,                    ;                  ; and,            

      . 

                                        ( 2.25 ) 

 

 

This jitter is a function of execution jitter and release jitter. 

2.6.4.4 Release jitter 

Release jitter,       for     , is a variance in the actual release time, i.e. the 

start time, of a task. It can be quantified as in Equation 2.26 (see Section 2.6.3) 

and is illustrated in Figure 2.6, where for                              ; 

                 ; and,                  . 

 
                                      

                       
( 2.26 ) 

Figure 2.5: Finishing jitter in periodic tasks 
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2.7 Shared resource management 

In a real-time system, resources include the peripherals, the memory banks, 

etc. Tasks will frequently share resources (Audsley et al. 1990), often for inter-

task communication, and will, hence, possess critical sections that require 

mutually exclusive transactional access to the shared resources in order to 

maintain data coherence (Caccamo et al. 1999). In addition to temporal and 

precedence constraints, a scheduling algorithm must ensure that critical 

sections involving the same resource do not overlap (Pont 2001); this is why 

real-time scheduling has also been referred to as resource scheduling (Locke 

1992; Ramamritham et al. 1994). 

Most modern systems have concurrent execution paths, actual or simulated, 

and so shared resource management (the management of critical sections) has 

become an essential feature of modern operating systems. Resource 

contention is the primary reason for design complicatedness when dealing with 

concurrent software and care must be taken due to the implications that 

different management techniques may have on the real-time requirements. 

There are principally two predictable management techniques, the blocking and 

non-blocking techniques (Audsley 1991). In the blocking technique, a task is 

Figure 2.6: Release jitter in periodic tasks 

A A A A 

    

 

             

 

Time 
                        

     

 

     

 

     

 



Software architecture of real-time system schedulers 

 

2-18 
 

stopped from doing all work while in the non-blocking technique, a task will 

always perform work; however, this work may or may not be pertinent to the 

task‘s purpose. 

2.7.1 Blocking techniques 

The most common way of preventing concurrent resource access is by one task 

claiming ownership of the resource. All other tasks needing that resource must 

wait until the owning task relinquishes ownership. Tasks typically use non-busy 

or pre-emptable waiting, i.e. they yield control of the CPU when blocked, 

allowing other tasks to go ahead (Mok 1983). When a task claims ownership of 

a resource, it is described as locking the resource and the tasks that must wait 

as a result are described as having their execution blocked.  

One quick and simple locking method is to temporarily prevent tasks from being 

scheduled (Pont 2001; Wang et al. 2007) which, of course, runs the risk of 

missing events, adversely affecting system responsiveness and real-time 

performance. However, it is useful when the locking time is very small as it 

involves very little overhead. The other method is to employ a semaphore 

(Audsley 1991). 

Locks can cause problems if not used carefully (Figure 2.7): some tasks may be 

always held up while others progress on (resource starvation); the entire system 

may be held up while each task cyclically waits on another to relinquish 

ownership (deadlock); tasks may continually choose to wait politely on detecting 

a contention resulting in a situation where no work is done other than alternated 

polite waiting (livelock); a task‘s input data may occasionally be unavailable or 

corrupted due to unconsidered flow and anti-dependencies (race conditions); 
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and, a high priority task may be pre-empted by lower priority ones when the 

former is blocked over resource contention with even lower-priority blocked 

tasks (bounded priority inversion) (Sha et al. 1990). Various resource protocols 

have been conceived to deal with these problems (Audsley 1991), but blocking 

can unpredictably affect a task‘s WCET, complicating software design (Audsley 

1991; Chen et al. 1997a).  

 

To increase predictability, the blocking schemes may be implemented statically 

by carefully scheduling tasks at design time on the basis of their real-time 

properties and resource usage (Zhao et al. 1987; Xu et al. 1990), even for multi-

processors (Xu 1993). This allows the blocking induced WCET changes to be 

known beforehand (Xu et al. 2000); however, regions in the task still need to be 

identified and marked as critical sections along with the resources used by 

those sections. 

Figure 2.7: A few of the problems with resource sharing:  

(a) resource starvation; (b) deadlock; (c) livelock 
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2.7.2 Non-blocking techniques 

These techniques prevent priority inversion and deadlocks with varying levels of 

guarantees on the lack of starvation: at the basic level, obstruction-free 

techniques guarantee progress for a task that executes in isolation; the lock-

free techniques ensure that at least one task will always make progress; and, 

the wait-free techniques ensure that every task will continue to make progress 

(Herlihy et al. 2003). The stronger guarantees are more difficult to achieve and 

require more complicated and expensive algorithms (Fich et al. 2005). These 

techniques have also been studied as the creation of atomic registers, an 

abstraction where overlapping reads and writes to an n-bit register always 

behave as if operating in a fixed sequential order (Lamport 1986a; Lamport 

1986b; Tromp 1989; Anderson et al. 1992). 

Non-blocking techniques alleviate the complexity introduced by resource-

sharing and software can be written in a sequential manner, simplifying formal 

and informal reasoning (Herlihy 1993). They do not employ critical sections but 

allow concurrent resource access. 

In some cases, the technique involves continually accessing a shared object, 

checking and retrying the access if coherence is lost (Cho et al. 2010), for 

example, the lock-free technique of ―read-and-check‖ loops (Lamport 1977; 

Bershad 1993; Herlihy 1993; Kopetz et al. 1993; Anderson et al. 1997b); in one 

wait-free technique, tasks help other ones out (Anderson et al. 1997a). These 

two techniques are non-blocking in the sense that the task is performing work 

but may be blocking in the sense of the task‘s real objective when the work 

being performed is not advancing towards the objective, i.e. the work being 

performed is a busy-wait, a repetition of work that was corrupted by a 
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concurrent task or the work of another task. There may also be effects on the 

real-timeliness depending on the properties of the task-sets (Anderson et al. 

1997b; Holman et al. 2006). 

To allow concurrent access without affecting the timing of the tasks, wait-free 

and loop-free techniques have been devised, such as the writer maintaining a 

buffer for each reader (Peterson 1983). However, this can be inefficient when 

the amount of data to be written is large; hence, an alternative of switching 

between buffers where writers and readers all access different buffers 

(Sorenson et al. 1975; Clark 1989) gained attention. The initial design showed 

that for m-writers and n-readers, (n + m + 1) buffers were sufficient, though 

subsequent work demonstrated that for a fully asynchronous single writer, 

single reader system four buffers were required (Simpson 1990). This was later 

generalised for n readers as requiring (2n + 2) buffers (Chen et al. 1998). 

Similar mechanisms were also devised in studies on the atomic register 

abstraction (Tromp 1989; Anderson et al. 1992; Anderson et al. 2000). 

The optimal three buffer scheme for one-reader and one-writer was originally 

dismissed due to timing anomalies (Simpson 1990), but alterations since then 

have addressed the vulnerability (Chen et al. 1997b) and have also generalised 

the algorithm for n readers, requiring the optimal (n + 2) buffers (Chen et al. 

1997b; Chen et al. 1998). The time and space costs of these algorithms have 

been further optimised by taking into account the timing properties of the 

readers and writers (Huang et al. 2002; Cho et al. 2005; Cho 2006; Cho et al. 

2007). 
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The technique of non-blocking communication buffers also allows 

communication between tasks with non-harmonic period relationships (Buttazzo 

2002b). 

2.7.3 Multi-processor 

The true concurrency available in multi-processor systems was part of the 

motivation for the non-blocking resource sharing schemes (Lamport 1977; 

Herlihy et al. 2008). In these systems, it is preferable to have wait-free rather 

than lock-free schemes and to avoid blocking (Brandenburg et al. 2008b). This 

is because blocking schemes effectively serialise resource access and impede 

any concurrency gain. 

The non-blocking schemes can be applied directly (Kopetz et al. 1993) or 

through concurrent objects  that employ non-blocking techniques (Herlihy et al. 

2008) such as stacks, queues, lists etc. (Treiber 1986; Herlihy 1993; Valois 

1994; Valois 1995; Michael et al. 1998; Tsigas et al. 1999; Åkesson 2001; 

Sundell 2004; Sundell et al. 2008) especially when the processors share 

memory. The processors may also communicate using protocols over message 

passing networks (Pont 2001) if available. Several application programming 

interfaces (APIs) have been built (sometimes as part of the RTOS) for inter-

processor communications; but even these require changes to deal with the 

different constraints introduced by miniaturisation (Section 2.4) (Multicore 

Association 2008). 

Another technique popularised in 1993 (Herlihy et al. 1993) was hardware 

transactional memory, later constrained as software-only transactional memory 

(Shavit et al. 1997), though work continues with more-efficient embedded (Ferri 
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et al. 2010) and real-time (Schoeberl et al. 2010) versions. Resource accesses 

are made optimistically in logical groups called transactions and are committed 

later upon successful validation. Transactions may be aborted at any time, at 

which point all modifications are undone automatically or retried. This technique 

bears similarities to the lock-free ―read-and-check‖ scheme and may similarly 

suffer from the same timing uncertainties. 

2.7.4 Peripheral management 

Resources that interface with the environment, i.e. input/output (I/O) resources 

or peripherals, may be either partitioned amongst tasks or shared. Modifications 

made to registers in such resources may be non-transactional and may initiate 

immediate environmental reactions; hence, most of the resource management 

techniques above are applicable only to memory-type resources and need to be 

altered for peripherals. 

In embedded systems, peripherals are generally accessed by reads and writes 

to memory (Berg 2009), but non-blocking management algorithms cannot be 

directly applied unless the peripheral has been specialised to participate. If the 

peripheral is to be treated as a resource, the only choice is to employ some 

form of blocking such as multiplexing between processors (Gary et al. 2004; 

Chen et al. 2009) or to perform some sort of specialisation such as pipelining 

(Fort et al. 2006). However, the multiplexing scheme still requires support for 

transactional accesses besides blocking one core from any sort of access. The 

pipelining method may also be limited depending on the peripheral or may be 

too costly based on the amount of duplication required. 
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Another solution is to use a gateway, i.e. a single task through which all 

communication with the peripheral is performed (Audsley et al. 1993). When 

done in this manner, the chore becomes coherent communication with the 

gateway – this can be performed using any of the techniques in the sections 

above. 

In virtualisation, where multiple operating systems (OSes) are allowed to 

execute in isolation on the same hardware platform, an OS may have one 

software module that communicates with another software module controlling 

the peripheral, which may either be owned by another OS or exist as a separate 

entity (Heiser 2007). Other solutions offload some of this functionality into 

hardware for higher performance (Raj et al. 2007) while a safety-critical solution 

may strictly partition the peripherals (Crespo et al. 2010). 

2.8 Real-time task scheduling 

Real-time task scheduling sequences the execution of tasks so that their timing 

constraints are met (e.g. completion before the deadline), protects shared 

resources from simultaneous access and achieves predictable system 

behaviour (Ramamritham et al. 1994; Joseph 1996). The secondary goal is 

usually to achieve maximum processor and resource utilisation. 

Scheduling decisions are initiated based on the occurrence of particular 

combinations of external or internal events. These events may be physical 

switch depressions, message arrivals, the elapse of one second, a resource 

being freed etc. Events can interrupt the system at any time, causing it to break 

the current execution flow and execute new instructions from the interrupt 

service routine (ISR) that handle the interrupt. ISRs steal CPU time and the 



Software architecture of real-time system schedulers 

 

2-25 
 

general convention is to keep them as short as possible and to reduce the 

number of resources they use. When not running instructions from real-time 

tasks or from the ISR, the system is said to be slacking (Davis et al. 1993). 

During this time, non-real-time or aperiodic tasks may be executed or the 

system may switch into a low-power mode. 

One of the key components of an RTOS is the scheduler. A scheduler is 

identified by its trigger architecture (i.e. which events trigger the task execution) 

and by its execution architecture (i.e. the order in which various tasks are 

executed after being triggered) and enforces a task schedule, i.e. directives on 

when a task should be started by a task dispatcher. The schedule is created 

according to an algorithm and is considered valid if all tasks complete before 

their deadlines and if no task runs before its release time.  

2.8.1 The scheduling algorithm 

A scheduling algorithm is a set of rules derived from the scheduling goals and is 

realised by an implementation of a scheduler (Pont et al. 2007). The scheduling 

algorithm is considered optimal if it can find a schedule for any feasible task-set. 

Scheduling algorithms have associated feasibility tests: tests that must always 

succeed for feasibility are necessary; those that succeed for some task-sets but 

not for others even if they are feasible are sufficient. Sufficient tests can be 

overly pessimistic, missing several feasible schedules. 

Under any algorithm, a task is started as soon as it is released only if it is a 

higher priority than the task currently executing or than all the tasks waiting to 

execute; and if all its precedence and resource constraints have been fulfilled. 

Priorities are assigned by the designer or by the algorithm on the basis of 
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certain task properties (Buttazzo 2005b). These properties may be fixed at run-

time, such as the period or relative deadlines, or may vary, such as the laxity or 

absolute deadlines (Liu et al. 1973; Oh et al. 1998). This implies that the priority 

assignment can be made before the system is started (fixed priority) or has to 

be made while the system is running (dynamic priority).  

Static or offline algorithms build a complete schedule prior to execution while 

dynamic or online algorithms build a part or the whole of the schedule at run-

time (Stankovic et al. 1995). The algorithm will have to be dynamic if any of the 

properties depended upon change dynamically. The re-run of a dynamic 

algorithm may be triggered by events such as the time slice elapsing, a task 

finishing, a task being released, a task being blocked, a new task being added, 

etc.  

Static schedules clearly provide schedule determinism but must assume the 

worst-case as the average behaviour and may, hence, never fully utilise the 

processor. Dynamic algorithms provide great adaptability and flexibility but have 

greater overhead and comparatively poorer schedule determinism. (Liu et al. 

1973; Kopetz 1991a; Ramamritham et al. 1994; Fidge 2002; Scheler et al. 

2006) Static scheduling algorithms, however, can be more complex and can 

search a larger state space as they run on development machines with more 

computational resources and can have a much greater amount of time in which 

to make a decision (Xu et al. 1993; Ramamritham et al. 1994; Xu et al. 2000; 

Goossens et al. 2004; Buttazzo 2005a; Lee 2009). 

Hybrid algorithms have also been designed, for example, some systems have a 

―measurement‖ and/or ―schedule creation‖ period immediately after start-up but 
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before regular operation where unknown quantities and the schedule are 

decided (Gendy et al. 2007a; Nahas 2008); others might have several static 

schedules that are non-deterministically switched in as the state of the system 

changes (Hanif et al. 2008); others may schedule some tasks statically and 

others dynamically.  

2.8.1.1 Run-time complexity 

Intuitively, it is better to check a task-set for feasibility (page 2-11) before 

expending resources to compute a schedule. Unfortunately, for most systems, 

the feasibility tests are computationally intractable except for special cases such 

as the implicit-deadline (Liu et al. 1973; Jeffay et al. 1991) and synchronous 

(Baruah et al. 1990) pre-emptive systems; and, the non-concrete and concrete 

sporadic (Jeffay et al. 1991) co-operative systems. The special cases may be 

used for all types but may prove to be sufficient but not necessary, i.e. overly 

pessimistic. The intractability only increases when tasks share resources by 

blocking schemes (Mok 1983; Audsley et al. 1990; Audsley 1991).  

To keep costs low, suboptimal, tractable algorithms are employed based on 

branch and bound methods  or on computationally simple heuristics (Burns et 

al. 1995). This has been tried on asynchronous pre-emptive task-sets 

(Pellizzoni et al. 2004), and for shared resources (Zhao et al. 1987). A similar 

algorithm for time-triggered co-operative schedulers was developed (Gendy et 

al. 2008a) and refined (Gendy et al. 2008b). 

2.8.2 The trigger architecture 

A trigger architecture where multiple, possibly aperiodic, events are allowed to 

trigger the task executions results in the event-triggered architecture (ETA) 
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(Kopetz 1991b). A specialisation of the ETA is the time-triggered architecture 

(TTA) which has one primary event, periodically originating from a highly 

accurate internal or external time-keeper. A TTA approaches ETA-level event-

perception by polling the non-triggering events as required. 

In the TTA, the time of arrival of at least the next event is known, whereas in the 

ETA, the time of arrival of the next event can at best be bounded. This makes 

the TTA more predictable (Albert 2004) with the potential to be dynamic by 

adjusting the occurrence of the next timing event (e.g. a flight control system 

about to initiate landing procedures).  

The emphasis on time as a first-order quantity can simplify communication, 

establish state consistency, promptly perform error detection, and support the 

timeliness of real-time applications. TTA designs are recognised to have much 

more predictable behaviour and hence are widely recognised as providing 

benefits to both reliability and safety in some of the more safety-critical 

applications e.g. the main mission computer software in the Lockheed C130J 

(Amey 2002). (Kopetz et al. 1994; Maier et al. 2002) 

However, the TTA may not be suitable for all systems: due to the polling of 

events, the TTA may not be as reactive as a full-blown ETA and may have a 

worse power profile; and, polling events with highly variable frequencies can 

also necessitate an unnecessarily high polling frequency (Albert 2004). The 

best-case performance of the ETA may always be better or the same as an 

equivalent TTA. However, the worst-case performance of the ETA might result 

in tasks missing deadlines, or worse, event occurrences being missed (this can 

be avoided, to an extent, with hardware enhancements (Siemers et al. 2005)). 
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Both display, more or less, the same average-case performance. (Scheler et al. 

2006) 

On the other hand, TTA designs have a very simple architecture, making them 

simple to understand and maintain (Liu et al. 1973); are more comfortably 

certified (Pont 2001); and, emphasise correctness-by-construction, a 

methodology which for the reason of predictable and highly reliable operation 

has inspired programming languages (Chapman 2006) and model-driven 

design approaches (Bordin et al. 2007). 

2.8.3 The execution architecture 

The execution architecture can take the form of executing tasks one after the 

other or the form of interleaving frames. This forms co-operative and pre-

emptive architectures respectively; in the former, a task has to willingly 

relinquish resources and stop running while in the latter, a task can pause 

others, execute and then resume the paused tasks. 

The sequential nature of the co-operative execution architecture attracts many 

software designers as there are no contentions over common resources and 

hence none of the complexity that comes with resource sharing interactions 

(Locke 1992; Kalinsky 2001). The architecture is very deterministic and is 

desirable particularly for use in safety-related systems (Allworth 1981; Ward 

1991; Nissanke 1997; Bate 2000). Compared to a pre-emptive architecture, a 

co-operative one can be identified as being simpler, having lower overheads (as 

there are no context switches), being easier to test, having greater support from 

certification authorities (e.g. avionics standard DO-178B) and being supportive 
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of very tight jitter requirements (Jeffay et al. 1991; Locke 1992; Bate 2000; 

Fidge 2002). 

2.8.4 Multi-processor scheduling 

In scheduling a task-set on a homogeneous or heterogeneous multi-core, tasks 

can be allocated to the cores statically (partition scheduling) or dynamically 

(global scheduling) (Coffman Jr et al. 1972; Dhall et al. 1978; Burchard et al. 

1995; Sha et al. 2004). Though global scheduling can achieve a more balanced 

workload and increased performance compared to partition scheduling (Kumar 

et al. 2004), it is not as good a match for hard real-time systems (Lauzac et al. 

1998; Brandenburg et al. 2008a) and like other dynamic systems can affect 

simplicity and predictability (Burchard et al. 1995; Monot et al. 2010). 

In partition scheduling, the choice of scheduling algorithm on a processor is 

made first and then the task-set is iteratively scanned and tasks allocated to 

processors. The allocation is constrained by the feasibility of the task-set under 

the scheduling algorithm of a processor if the task were assigned there and 

constraints on the properties of the task itself. However, the search for an 

optimal partitioning is computationally intractable and hence implementations of 

partitioning algorithms are heuristic in nature or use global optimisation, aiming 

to get as close as possible to the minimum number of cores required (Dhall et 

al. 1978; Monot et al. 2010). 

Most of the existing partitioning algorithms have concentrated on pre-emptive 

fixed and dynamic priority scheduling algorithms where tasks are sorted in by 

specific property and then assigned to the next or first available processor 
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(Dhall et al. 1978) or according to the task utilisation (Oh et al. 1993; Burchard 

et al. 1995; Oh et al. 1995; Lauzac et al. 2003; Karrenbauer et al. 2009). 

On the positive side, the heuristics used in these algorithms are general to the 

problem class and can be re-applied with a different scheduling algorithm. For 

example, when applied consecutively to an indexed list of processors and to 

tasks sorted by increasing periods, the current task is assigned by first fit (FF) to 

the processor with the smallest index, by next fit (NF) to the current processor 

or to the next processor and by best fit (BF) to the processor that will provide 

maximum utilisation. The FF heuristic has seen variations with better results 

such as sorting tasks by decreasing utilisation (FFDU) or by matching on a 

particular criterion (MFF) such as matching a period criterion (FFMP). Heuristics 

have also been devised for specialised task-sets, such as tasks with low load 

factors and for hybrid cases where low-load tasks occur with others. 

More recently, an algorithm was designed that considers static cyclic scheduling 

and constrains tasks by their communication and by their requirements for 

particular peripherals (Monot et al. 2010). 

2.8.5 A part of the system 

The RTOS employed might be a commercial endeavour or might be built in-

house and becomes a part of the developer‘s code (Pont 2001). This is 

manifested when it is used without a clear understanding of its costs or of its 

special mechanisms for predictability (Katcher et al. 1993) leading to 

applications exhibiting unpredictable behaviour (Reeves 1998). Scheduler 

behaviour may also change based on tasks‘ properties. This is why a 
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certification process may reassess the entire system even when a small part in 

a single task has been altered (RTCA SC-167 / EUROCAE WG- 12 1992). 

2.9 The complexity of design 

In this thesis, the concern is with application complexity rather than RTOS 

complexity. The RTOS may be simple or complex, but should attempt to provide 

an interface to the application that simplifies application development. Simplicity 

is lost if the interface is complex or if the interface doesn‘t include essential 

descriptions, such as temporal descriptions (Lee 2009). 

Design complexity deals with the overall morphology of the system and, in this 

chapter‘s context, is affected by the number of jobs that another job depends 

on, the cohesiveness of each job and the degree of coupling among jobs 

(Herlihy 1993; Marco 1997; Sessions 2009). This suggests that tasks of the 

same job should: be working towards a common goal, have optimal 

dependence (Miller 1956) on the services of tasks from other jobs and be lightly 

coupled to tasks from other jobs. This accounts for the complexity of resource 

sharing which unintentionally couples tasks through a resource. 

The tasks‘ data-flow then gives an early indication of the complexity by a simple 

count of the interactions. At a task‘s instruction level, objective metrics, each 

emphasising particular aspects, have been devised (Sneed 2008) to measure 

the complexity and can be weighted with subjective aspects such as the 

designer‘s experience and length of exposure to the system (Douce et al. 

1999). One of these metric measures, the number of lines of code, can also be 

used as an indication of monetary cost, e.g. £13.6 - £27.3 per line for most 
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embedded projects, £68.2 per line for military projects and £682.0 per line to 

reach the level of IBM‘s space shuttle control software (Ganssle 2008). 

The design complexity is important not only at design time but at maintenance, 

since the system maintainers are often different from the original designers and 

may have to bear the full weight of the complexity (Douce et al. 1999). 

2.10 Conclusions 

Real-time systems interact with their environment by sampling one or more 

signals and by driving one or more other signals. These chores, which build the 

functionality of the system, are usually performed by several software entities or 

tasks. This thesis considers only hard-real time systems which must be 

responsive and time deterministic, and hence requires the tasks to have low 

latency and low jitter during execution. 

Task execution is the responsibility of the scheduler component of an RTOS 

and the decisions therein trade-off between performance and predictability as 

dictated by the system and resource sharing requirements; the large design 

space facilitates the creation of a variety of designs, each suitable for their own 

application. The pre-emptive variety of designs have gained acceptance due to 

issues with the responsiveness of the co-operative ones, but the former often 

lead to unpredictable run-time behaviour.  

This thesis maintains that components at any level of abstraction should be 

made as predictable and repeatable as is technologically feasible with any 

remaining variability taken care of by a higher level (Lee 2009). For this reason, 

a scheduler architecture that is highly predictable is preferred for the simplicity 
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(and, hence, reliability) it lends to application development. One such 

architecture is the time-triggered co-operative architecture which is discussed 

further in the next chapter. 



 
 

Chapter 3 

The time-triggered co-operative architecture 

3.1 Introduction 

In real-time systems, predictability is the foremost goal (Stankovic 1988; 

Stankovic et al. 1990; Buttazzo 2005a) and a guarantee of achieving accurate 

real-time behaviour which is further aided by design simplicity (Dijkstra 1997). 

This is why integrating the predictable time-triggered architecture and the 

simple co-operative methodology of application design into a time-triggered co-

operative architecture (TTCA) proves highly beneficial. 

TTCA can simplify software design (Kalinsky 2001), can result in lower 

overheads, can be easier to test, has greater support from certification 

authorities, and can be supportive of very tight jitter requirements (Locke 1992; 

Bate 2000; Fidge 2002). 

The next section examines the architecture in greater detail, followed by the 

feasibility constraints imposed by the architecture. The chapter concludes with a 

description of existing TTCA implementations on both software and hardware. 

3.2 Architecture design  

In TTCA, events from an accurate timing source, such as a timer peripheral, 

trigger the system to execute software sequentially (Figure 3.1) according to a 

schedule (Table 3.1) set up programmatically (Listing 3.1). In time-triggered 

jargon, an event from the timing source is referred to as a tick while the interval 

between ticks is the tick interval or minor cycle.  
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Table 3.1: Task schedule 

Task Priority 
Delay 
(ms) 

Period 
(ms) 

WCET (μs) 
Must be 

preceded by 

A Normal 0 1 250 — 

B High 1 2 400 —  

C Normal 0 1 250 A 

 

DEFINE Start: 
   INIT timer WITH tick interval = 1 ms 
   INIT scheduler 
   INIT data FOR A,B,C 
 
   ADD A, B, C TO scheduler  
         WITH Priority    =     Low,   High,    Low, 
              Delay       =      0x,     1x,     0x, 
              Period      =      1x,     2x,     1x, 
              WCET        =  250 μs, 400 μs, 250 μs 
 
   CREATE schedule 
   START scheduler 
 
   DO FOREVER:  
      SLEEP 
      DISPATCH tasks 
      CREATE schedule 
 

Listing 3.1: Pseudo code for a TTCA implementation 

In Listing 3.1, the task properties given in Table 3.1 are assigned to each task, 

except the resource list which is unnecessary baggage for a co-operative 

Figure 3.1: Operation of TTCA according to the schedule 

A C A C B A C A C B 

Time 

Tick Tick Tick Tick 

Tick interval 

1 ms 

Higher 
priority 

400  
μs 

250 
μs 

250 
μs 

Must 
precede 
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system and the deadline which, in this case, is assumed to be the same as the 

period. The tick interval is set to one millisecond (see Equation 3.2 below) and, 

since tasks are always released at a tick, the release and delay times in the 

listing are in units of ticks. Precedence constraints are specified by adjusting 

release times or deadlines or by the order in which tasks are added. The 

resulting execution sequence is shown in Figure 3.1. 

It is easy to see that when the designs avoid or make only pre-determined 

changes to the set of tasks, they make the system inherently schedule 

deterministic (Locke 1992; Fidge 2002), and hence execution timing is 

predictable (Baker et al. 1988). 

3.2.1 The TTCA model 

In TTCA, for a given task-set  , every     (   ) tick is followed by the     tick 

interval and results in the release of the tasks in the ordered set        

(Equation 3.1); this can be used to form the ordered set of tasks           

     that are to be released before a task   as a result of the     tick. 

          
      

    
         ordered by presence in the task table  ( 3.1 ) 

Additionally, the schedule always cycles at the hyperperiod such that, if the tick 

interval is represented as     , then              and     :      

      ;             ;               . The interval between ticks is 

hence upper bounded by the greatest common divisor (GCD) of the tasks‘ 

phases and periods as seen in Equation 3.2.  

                              ( 3.2 ) 
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The overhead introduced by an implementation of this architecture (Katcher et 

al. 1993) can be accounted for by factoring in the overhead of the ISR      

(Section 2.8), the scheduling dispatcher            for a task   in the     tick 

and the schedule creation algorithm         for the     tick (Figure 3.2). 

 

In an implementation with the schedule creation algorithm running concurrently 

in the     tick,         is zero and it is useful to define a quantity      as the 

amount of lag experienced by the scheduling dispatcher in sensing the     tick 

compared to the schedule creation algorithm; for a schedule creation algorithm 

running non-concurrently,      would be zero. 

These overheads can be used to calculate the worst-case time to execute all 

the tasks released as a result of the     tick (   )           (Equation 3.3) 

and the excess time taken by that tick interval          (Equation 3.4).  

                                            

      

 ( 3.3 ) 

                                       ( 3.4 ) 

The overheads can also be used in the calculation of the tasks which are to be 

released in the     tick interval       and those actually started in the     tick 

interval             (Equation 3.5). If     is a task started in the     tick 

Figure 3.2: Overheads in a TTCA implementation 

A C ISR Dispatch 
Schedule 
creation 

Time 

                

Dispatch 

           

    Tick 
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interval but finished in the         tick interval, then       is the ordered set of 

highest cardinality that can satisfy Equation 3.6. 

       
                                                                

                              
  ( 3.5 ) 

                     

               

                                  

( 3.6 ) 

This thesis imposes no lower bound on the tick interval, though some designs 

do so to prevent any overflows, i.e. such that                 
        

 
 

(Equation 3.7). 

                       
        

 
   ( 3.7 ) 

3.2.2 Timing event generator 

In the case of single processor systems, the timing event generator is usually a 

timing circuit of required precision (Baker et al. 1988). In the case of multi-

processor systems, a timing circuit is used either locally with network 

synchronisation (Kopetz et al. 1994; Kopetz et al. 2005) or globally through 

propagation on a common network (Pont 2001; Ayavoo et al. 2007).  

3.2.3 Task design 

Tasks are designed on the assumption that all their input data are available 

when they start and the output data are coherent when they complete. The 

tasks are also implemented as independent entities that never have to wait for 
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input/output operations and expect no resource contentions; they communicate 

by writing to shared memory unscrupulously. 

3.2.4 Priority assignments 

Figure 3.1, while demonstrating a TTCA implementation according to Table 3.1, 

is also an example of bad priority assignment: B has a regular period, while A 

and C experience oscillating ones. This can be improved by giving B a lower 

priority, as dictated by one of the well known scheduling algorithms for periodic 

pre-emptive systems (Liu et al. 1973), resulting in the new execution sequence 

seen in Figure 3.3 where all tasks have non-oscillating periods. 

 

3.3 Feasibility 

For a task under test      , the maximum schedule creation time          and 

the maximum task dispatch time          , the task-set is feasible (page 2-11) if 

Equations 3.2 and 3.8 hold; and if Equation 3.9 holds for                  , 

   ,          
       

 
. 

                

 

 
 

                     
  

    
       

    

 

 
 

   

   ( 3.8 ) 

Figure 3.3: Effect of lowering the priority of task B 
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( 3.9 ) 

Equations 3.7, 3.8 and 3.9 ensure respectively that the tick interval can meet 

the release times, that the processor is not overloaded and that a task‘s 

deadline is met. 

3.4 Processor utilisation 

Since TTCA uses the WCET in calculating the task schedule, the worst-case 

behaviour is made the average-case behaviour, resulting in less of the available 

processing power being utilised (Scheler et al. 2006). However, the availability 

of the hefty computational power of a development machine to calculate a 

schedule gives a higher chance (compared to an online algorithm) of finding a 

schedule that features better processor utilisation (Xu et al. 2000). 

All the same, it is true that TTCA is not suitable for all applications and in those 

where signal frequencies vary frequently and unpredictably or where activities 

are mainly aperiodic or sporadic, it can result in wasting the available processor 

time due to over-sampling and excessive executions (Locke 1992; Davis et al. 

2000). In such cases, it would be better to use alternatives (Pont 2001; Scheler 

et al. 2006). 

3.5 Fragility 

TTCA is fragile during overload situations, since a task exceeding its predicted 

execution time could generate a domino effect on subsequent tasks, causing 

schedule violations and more importantly, real-time violations (Buttazzo 2005b). 
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The problem is exacerbated by the increasing difficulty in calculating the WCET 

of a task (Puschner et al. 2002; Kirner et al. 2003). Also, since the violations 

occur only on overload, they can be hard to track down. 

Techniques have been developed to deal with these such as the use of 

watchdog timers or task guardians to abort the task; however this adds greatly 

to scheduler complexity and can result in dangerous situations where the 

system could be in an unknown state (Locke 1992; Kalinsky 2001; Hughes et al. 

2008). This condition is considered a fault in system design and is not explored 

further in this work. 

3.6 Existing implementations 

There are a wide range of implementations for TTCA, each emphasising a 

particular aspect – only a representative set is presented in the sections below. 

3.6.1 The cyclic executive architecture 

The cyclic executive architecture, also called the timeline scheduler (Buttazzo 

2005b), was used in many applications before it was formally described (Baker 

et al. 1988). It has since been reused (Huang et al. 2003; Gangoiti et al. 2005), 

re-described (Kalinsky 2001) and criticised (Locke 1992). This architecture 

differs slightly from TTCA: the WCET of a sequence of tasks in a tick interval 

has to be smaller than the tick interval and the tick interval can be greater than 

the greatest common divisor. This is because it doesn‘t require as strict an 

adherence to the release times as TTCA. 

For example, for a set of tasks with WCET 1 ms, 2 ms and 3 ms and periods 14 

ms, 20 ms and 22 ms respectively, a cyclic executive design can have a tick 
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interval of 4 ms, 5 ms or 7 ms (Baker et al. 1988) while in TTCA it would be a 

factor of 2 ms (Equation 3.7). A sample execution of these systems can be seen 

in Figure 3.4: TTCA has a tick of 2 ms and the cyclic executive is shown with 

the three tick intervals. The task frames are shown as shaded rectangles with a 

width proportional to their WCET; they run on the same execution unit but are 

shown at different heights for clarity. For TTCA and the cyclic executive, a task 

frame is released such that it is started at or after its release time in the ideal 

case. However, a cyclic executive requires tasks to finish execution within the 

tick interval and this release is sometimes delayed; this is also why the tick 

interval is shown as a closed rectangle for the cyclic executives. 

 

 

Figure 3.4: Execution of tasks with periods 14 ms, 20 ms, 22 ms, from top to bottom: the ideal case; 

TTCA with a tick of 2 ms; cyclic executives with tick intervals of 4 ms, 5 ms, 7 ms. 
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Versions of this scheduler have been written in Intel 8051 assembly (Key et al. 

2003), ADA (Baker et al. 1988) and C (Pont 2001). In the single rate version of 

the cyclic executive architecture, every task is executed after a tick (Listing 3.2); 

and in the full-fledged, multi-rate version, some of the tasks might be executed 

at higher rates according to a statically created table indexed by the minor cycle 

(Listing 3.3); both versions have an ISR and schedule creation routine that do 

nothing useful. The extreme simplicity makes this design inherently static. 

DEFINE dispatch OF scheduler: 
   FOR EACH task: 
      RUN task 

Listing 3.2: Single-rate cycle executive dispatch 

It is interesting to note that to be scheduled by the cyclic executive, the example 

above requires a large table size (a maximum of 257 entries for TTCA and 

between 220 to 385 entries for the cyclic executive). 

DEFINE dispatch OF scheduler: 
   SET minor_cycle TO (minor_cycle + 1) mod HYPERPERIOD 
 
   CASE minor_cycle:  
      WHEN 0 => RUN tasks FOR tick 0; 
      WHEN 1 => RUN tasks FOR tick 1; 
      …  

Listing 3.3: Multi-rate cycle executive dispatch 

When adapting this design to TTCA – which allows tasks to exceed the tick 

interval – the ticks that occur while tasks are still executing must be recorded 

(Listing 3.4). 

DEFINE service OF interrupt: 
   RAISE ticks BY 1 

Listing 3.4: A TTCA implementation event service 
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The record can then be used to re-run the dispatch by guarding the call to SLEEP 

in Listing 3.1 as shown in Listing 3.5. 

DEFINE Start: 
   … 
   DO FOREVER:  
      IF ticks == 0: 
         SLEEP 
 
      LOWER ticks BY 1 
      DISPATCH tasks 
      CREATE schedule 
   … 

Listing 3.5: Allowing tasks to exceed the tick interval 

In some literature, the cyclic executive architecture is also referred to as a 

―super loop‖ (Kurian et al. 2007; Nahas 2008), but due to implementation non-

determinism, there is a significant difference: the former allows tasks to 

maintain a fixed rate (viz. the rate in the specifications) while the latter allows for 

a fixed delay. In a fixed-delay architecture, maintaining the task‘s frequency in 

the long-term is not as important as the accuracy in the short-term, for example, 

outputting a character to a screen as long as a key is held down. After an 

overload, a fixed-rate architecture might cause a task to be executed multiple 

times. The tasks under consideration are, by definition, fixed-rate (Section 2.6) 

and so the ―super loop‖ is outside the scope of discussion. 

3.6.2 Table-free multi-rate executive (TTC) 

The table-driven multi-rate executive above has been criticised due to the large 

amount of memory required, especially as the hyperperiod increases. With a 

single-step simulation to create the table dynamically, a non-table driven multi-

rate version (Listing 3.6) can be obtained (Kalinsky 2001; Pont 2001), 
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commonly referred to as the time-triggered co-operative (TTC). The tasks are 

still traversed in an order defined statically at compile time. 

DEFINE dispatch OF scheduler: 
   FOR EACH task: 
      LOWER delay OF task BY 1 
 
      IF delay OF task IS 0: 
         RUN task 
         SET delay OF task TO period OF task 

Listing 3.6: Non-table-driven multi-rate executive dispatch 

The schedule creation and dispatch which have been combined in the above 

routine could also be split up as in Listing 3.7 and Listing 3.8; the combination 

may be preferred in implementations due to the memory overheads of building 

another data structure for the run queue; the split-up version may be preferred 

since the schedule creation jitter is moved to the end of the dispatch cycle 

(where it can‘t introduce jitter into the task releases). 

DEFINE dispatch OF scheduler:  
   FOR EACH task IN run_queue: 
      RUN task 
 
   CLEAR run_queue 

Listing 3.7: Run queue dispatch 

DEFINE creation OF scheduler: 
   FOR EACH task: 
      LOWER delay OF task BY 1 
 
      IF delay OF task IS 0: 
         ADD task TO run_queue 
         SET delay OF task TO period OF task 

Listing 3.8: Table-free multi-rate executive schedule creation 
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3.6.3 Time-event queue 

This design (Listing 3.9 and Listing 3.10) uses a time-event queue to remove 

the harmonic dependency in software frequencies (Hanif et al. 2008) present in 

the previous implementations. 

DEFINE creation OF scheduler:  
   SET minimum delay TO INF 
 
   FOR EACH task: 
      IF delay OF task = interval: 
         ADD task TO run_queue 
         SET delay TO period OF task 
      ELSE 
         LOWER delay BY interval 
 
      IF delay OF task < minimum delay: 
         SET minimum delay TO delay OF task 
 
   IF ticks == 0: 
      SET interval TO minimum delay 

Listing 3.9: Time-event queue schedule creation 

DEFINE dispatch OF scheduler: 
   INIT timer TO generate event AFTER interval 
 
   FOR EACH task IN run_queue: 
      RUN task 
 
   CLEAR run_queue 

Listing 3.10: Time-event queue dispatch 

Designs such as these that change the tick interval have to be given due care to 

prevent timing drift. The typical way is to factor the time to calculate the re-

initialisation of the timer into the calculation of the interval. However this may be 

cumbersome or impossible due to implementation non-determinism. 

3.6.4 Multiple timer interrupts (TTC-SHD) 

This design achieves more precise release times when more than one task 

executes in a tick interval (Nahas 2008). Ticks are generated as before, but are 
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used to update the run queue and to initialise a second timing source (Listing 

3.11) without using the modification in Listing 3.5. Contrary to what the name of 

the design may suggest, only two timer interrupts are enabled. 

DEFINE service OF interrupt OF tick_timer: 
   FOR EACH task: 
      LOWER delay OF task BY 1 
 
      IF delay OF task IS 0: 
         ADD task TO run_queue 
         SET delay OF task TO period OF task 
 
   IF run_queue IS NOT EMPTY: 
      INIT task_timer TO generate event  
                      AFTER release_time OF  
                      HEAD OF run_queue 

Listing 3.11: ISR for the tick timer when using the MTI scheduler 

The second source generates events within the tick interval that trigger task 

execution and the re-initialisation of the second timing source for the next task 

in the tick (Listing 3.12). This method avoids the long term timing drift in the 

event queue version by basing the task execution trigger events off of a source 

that is never reinitialised. 

DEFINE service OF interrupt OF task_timer: 
   SET task_to_dispatch TO HEAD OF run_queue 
   SET run_queue TO TAIL OF run_queue 
 
   IF run_queue IS NOT EMPTY: 
      INIT task_timer TO generate event  
                      AFTER release_time OF  
                      HEAD OF run_queue 

Listing 3.12: ISR for the task timer when using the MTI scheduler 

The task release times are calculated as the maximum sum of the WCET of 

tasks that could execute before it in its tick interval, based on a simulation 
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performed at scheduler commencement. The schedule creation routine of this 

scheduler does nothing and the dispatch is minimal (Listing 3.13).  

DEFINE dispatch OF scheduler: 
   IF task_to_dispatch IS NOT NULL: 
      RUN task_to_dispatch 
      SET task_to_dispatch TO NULL 

Listing 3.13: MTI scheduler dispatch 

While this design violates the ―one-interrupt‖ guideline of time-triggered design, 

it takes care to avoid any interrupt collisions by only generating the task 

interrupts within a tick interval. 

This design employs a solution akin to the sandwich delay (Section 4.4.3.2). 

Like the sandwich delay, this design starts a timer at the beginning of a task-set 

to trigger at the WCET of the task. However, after the task execution, where the 

sandwich delays sits in a software loop polling the timer‘s trigger state, this 

design sends the processor to sleep and uses an interrupt generated by the 

timer overflow to wake up the processor. Due to the delay being enforced by 

hardware, this scheduler is also referred to as TTC-SHD (for sandwich 

hardware delay) in this thesis to differentiate it from TTCA implementations that 

use the sandwich delay enforced by a software loop, e.g. TTC-SSD (for 

sandwich software delay) or TTH-SSD. As far as naming conventions are 

concerned, a pure hardware sandwich delay scheme for a TTCA 

implementation may be suffixed with ―-HSD‖ (for hardware sandwich delay). 

The design as presented also constrains all tasks from exceeding the tick 

interval in cumulative execution times; an interrupt from the tick timer resets the 

task timer (Listing 3.12). The constraint can be relaxed by reverting to the ISR in 
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Listing 3.4, the schedule creation in Listing 3.8 and by using the dispatch 

routine in Listing 3.14. However, the underlying processor still needs the ability 

to be triggered by at least two interrupts. 

DEFINE dispatch OF scheduler: 
   WHILE run_queue IS NOT EMPTY: 
      SET task_to_dispatch TO HEAD OF run_queue 
      SET run_queue TO TAIL OF run_queue 
 
      IF run_queue IS NOT EMPTY: 
         INIT task_timer TO generate event  
                         AFTER release_time OF  
                         HEAD OF run_queue 
      RUN task_to_dispatch 
 
      IF run_queue IS NOT EMPTY: 
         DO: 
            SET ticks_before TO ticks 
            SLEEP 
         WHILE ticks_before <> ticks 

Listing 3.14: Adapting the MTI scheduler dispatch so that tasks can overrun ticks 

3.6.5 Hardware multi-rate executive (HW-TTC) 

The hardware multi-rate executive (Hughes 2009) has been modelled after the 

software table-free multi-rate executive (Section 3.6.2). Like the software 

version, its primary functionality has been split between an update and a 

dispatch component with a synchronous hardware FIFO as the run queue. A 

high level model can be seen in Figure 3.5. 

The hardware scheduler is loaded with the task details in the same way as any 

other peripheral would receive data from the core. The update component is 

driven by ticks from the scheduler timer and works like the software version, 

decreasing a delay field for each task and then inserting a task‘s address into 

the run queue when the delay field goes to zero. The dispatch component is 

driven by a notification from the update component that the run queue is ready, 
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by the state of the run queue and by a notification from the core that a task has 

ended. The dispatch component stops (by requesting a switch into sleep mode) 

and starts (via the interrupt mechanism) code execution on the core as well as 

supplying the address of a task as the location at which to start code execution 

when the core is interrupted or when a task ends. 

 
The address of the task that should be executed next is always maintained on 

the relevant signal. The interrupt signal is only used to notify a sleeping core 

that a task is waiting. When it finishes executing a task, the core asserts the 

―task ended‖ signal and automatically begins executing whatever instruction is 

at the ―next task‖ address supplied by the dispatch component. The dispatch 

component uses the ―task is ended‖ signal to dequeue a task and to put the 

processor to sleep when all tasks have been executed. This behaviour is 

illustrated in Figure 3.6. 

Figure 3.5: Functional overview of the hardware multi-rate executive 

Tick 

Update component 

Task1 

Task2 

TaskN 

+ 

= 

-1 0 

Addresses of tasks to 
be executed 

Core 

T
a
s
k
 e

n
d
e
d

 

N
e
x
t ta

s
k
 to

 ru
n

 

Dispatch 
Component 

S
le

e
p

 In
te

rru
p
t 

Delay 

Period D
e
la

y
 

A
d
d
re

s
s
 

Queue 
ready 

Empty 



The time-triggered co-operative architecture 

 

3-18 
 

 
 
When executing the first task after a timer overflow, a fixed number of cycles 

are spent on iterating through the task list to find those tasks that are due to be 

released, on internal detection latency and on warming up the processor. Even 

though this initial build-up offsets the start of the first task from the timer 

overflow, there is no observable latency since it stays constant throughout the 

system uptime and since the timer overflows are precisely timed. 

However, as the supported number of tasks increases, this initial build-up 

causes the notification from the update component to the dispatch component 

to be delayed, resulting in a larger      (page 3-4) as seen in Equation 3.10; 

this quantity is also dependent on the number of cycles taken to signal the end 

of a task after fetching the last instruction of the task. Through       (Equation 

3.5) and       (Equation 3.6), this increases the required length of the run 

queue (Equation 3.11). If the run queue is given a length less than this quantity, 

released tasks may never execute, resulting in deadline misses. 

     
                                            

                              
 ( 3.10 ) 

                                       
       

 
 ( 3.11 ) 

Figure 3.6: Timeline view of the HW-TTC operation 
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Special care has also been taken so that the overhead 

between task executions remains a constant one cycle; 

this one cycle is a result of the crucial ―end task‖ 

instruction which notifies the core that a task has ended. 

However, when the task is written at a high level (Listing 

3.15), this instruction is not generated by the compiler and so the task needs to 

be wrapped as in Listing 3.16 which adds two further cycles of overhead (Figure 

3.7). 

void Actual_Task() 
   { 
   // Do something 
   } 

Listing 3.15: Task definition at a high level in the C programming language 

Called_Task: 
      call Actual_Task 
      no-op 
      end task 

Listing 3.16: Low level task wrapper in the hardware multi-rate executive 

3.6.6 Other implementations 

The TTCA designs above are table driven, the table being created either offline 

or online. Most often, the table entries are sorted statically based on the rate or 

deadline monotonic algorithms (Liu et al. 1973), however, the algorithms could 

be made dynamic by sorting their run queues (based on deadline, laxity, etc.) at 

run-time instead. The tasks could then non-pre-emptively be dispatched from 

the queue until it is empty. Others may also have run-time support to allow 
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tasks to be added (e.g. one-shot tasks) or removed (e.g. aborting scheduled 

releases). 

Other implementations deal with orthogonal constraints: the multi-phase co-

operative time-triggered design (Hanif et al. 2008) can be employed, at a loss of 

schedule determinism (but not, necessarily, output determinism), when dealing 

with a system with vastly different modes of operation (such as an airplane‘s 

taxiing, take-off, flying, etc. modes) or when sampling a signal with variable 

frequency; another design aims to reduce power consumption and the jitter that 

arises thence (Phatrapornnant et al. 2006); another reduces jitter in multi-

processor systems where the timing event is propagated from another node 

(Nahas et al. 2004); another incorporates overrun protection mechanisms 

(Hughes et al. 2004; Hughes et al. 2008); another attempts to combine multiple 

designs to make a ―perfect‖ implementation (Nahas 2008). 

3.7 Conclusions 

A TTCA implementation is fairly straightforward to compose due to the 

architectural simplicity and comes with very low overheads. The absence of pre-

emption also means an RTOS with this architecture doesn‘t need any resource 

management interfaces. Despite this, industrial and academic research focus 

largely moved away from this architecture – a paradoxical shift that is explored 

further in the next chapter. 



 
 

Chapter 4 

Problems with the time-triggered co-operative 

architecture 

4.1 Introduction 

Chapter 2 mentioned the absolute imperative that real-time systems must be 

predictable and the way this translates to time determinism on the outputs. It 

went on to describe how time-triggered architectures and co-operative 

architectures have been used in a wide-range of safety-critical applications due 

to their tendency to facilitate high application reliability and predictability. 

These two orthogonal architectures were then described as a combination in 

the time-triggered co-operative architecture (TTCA) in Chapter 3. It was further 

shown how some of the concerns against TTCA are based on a particularly 

rigid form of it, largely ignoring the alternatives available (Xu et al. 2000; Pont 

2001). However, other concerns are indeed valid and legitimate problems have 

crippled its widespread adoption. 

This chapter briefly reviews these problems, pointing out where existing 

solutions fail. The first section deals with the maintainability problem, followed 

by the problems of long-tasks, jitter and non-harmonic task-sets. 
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4.2 Maintainability 

Maintenance carried out systematically is beneficial and adds value (Arnold 

1989; Fowler et al. 1999) but can be exponentially costly if the required changes 

were unanticipated at design time (Griswold et al. 1993).  

Under TTCA, great importance is placed on careful initial design and any 

change in system specifications (e.g. higher sampling rates) post-

implementation requires either an exhaustive re-validation that the static 

schedule still holds or a recalculation of the schedule (Ramamritham et al. 

1994; Liu et al. 1995; Sha et al. 2004). While an exhaustive validation is 

resource consuming, it reduces the probability of faults at run-time, exchanging 

software construction time for run-time reliability (Xu et al. 1993) and can be 

automated (Mwelwa et al. 2005; Kurian et al. 2007). Doing this validation at 

development-time also decreases the run-time overhead (Xu et al. 2000). 

Any maintenance work, aided by a system‘s flexibility and extendibility, should 

either keep or increase the system reliability; for real-time systems, this means 

allowing resources or tasks to be added, removed or modified without causing 

other tasks to miss their deadlines. Under TTCA, three problems may arise from 

a maintenance activity: the long-task problem, an excessive increase in task 

jitter and the introduction of non-harmonic relationships in the task periods. 

4.3 The long-task problem 

Due to its non-pre-emptive nature, the long-task problem arises in TTCA when 

the worst-case execution time (WCET) of a group of tasks executing after a tick 

in the evaluation period         , exceeds the request period of one or more 
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tasks in the system. In the presence of the long-task problem, tasks may 

respond sluggishly to environmental stimuli and/or may miss their deadlines. An 

example is shown in the task-set in Table 4.1 and illustrated on a timeline in 

Figure 4.1. In the figure, task A, which has a tight deadline is prevented from 

starting due to task B which has a WCET greater than task A‘s period. As a 

result, every second frame of task A misses the deadline. The effect of long-

task B cannot be mitigated by changing either the priorities or delays in this 

non-pre-emptive architecture. 

Table 4.1: Task schedule with a long-task 

Task Priority 
Delay 
(ms) 

Period 
(ms) 

WCET (μs) Deadline (μs) 

A 1 0 1 200 300 

B 1 0 3 1500  20,000 

 
This problem imposes a constraint, seen in Equation 3.9, that all tasks must 

have short execution times in order to improve system response times (Allworth 

1981; Locke 1992) – a constraint that may be impossible to comply with.  

It has been suggested that long-tasks have been over-emphasised as a 

disadvantage since many tasks have a small duration when compared to the 

smallest task period. For example, a proportional integral differential (PID) 

Figure 4.1: Long-task causing deadlines to be missed 
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controller can be carried out on an 8-bit 8051 processor in around 0.4 ms – 

fairly insignificant compared to the 10 ms sampling rate that is adequate for a 

flight control system (Pont 2001). However, the long-task problem can still arise 

if the execution time of a combined execution of tasks exceeds the period of 

any of the executing tasks. The next few sections examine solutions to handle 

long-tasks. 

4.3.1 Improved hardware 

Hardware improvements tend to be the first entertained solution since they are  

made at a very low abstraction level and well-established design, test and 

debug techniques can be left unchanged (Baruah 2006). This is why changes 

such as dynamically creating hardware (Memik et al. 2001), using better 

hardware (Wolf et al. 2002) or increasing the operating frequency are so 

favourable – software developers can continue with existing design techniques, 

all the while knowing that performance will scale. 

Unfortunately, operating frequency increments may result in power 

consumption, heat generation or cooling costs averse to the requirements of an 

embedded design. Other improvements such as miniaturisation of silicon 

components and reductions in supply voltage are being impeded by increasing 

sub-threshold leakage currents; the laws of physics have proved to be the final, 

insurmountable barrier. This has spurred research into alternate materials like 

carbon nanotubes and graphene (Noorden 2006), but until such technologies 

mature, new or rehashed techniques of getting more performance from the 

existing silicon circuits must be pursued. 
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4.3.2 Improved algorithms 

In addition to maintaining proper coding techniques such as avoiding potentially 

infinite loops (Pont 2001) and to optimising existing algorithms (Wolf et al. 

2002), recent techniques have attempted to include the side-effects of 

scheduling into the development of the control algorithm with some success 

(Martí et al. 2001). Other algorithms have used feedback to change the 

execution times and periods of tasks dynamically (Cervin et al. 2003). This 

solution is effective if used from the initial design; when introduced during 

maintenance, however, the possibility of the task WCET changing is very high, 

requiring a recalculation of the WCET, schedule and control algorithm. 

4.3.3 Breaking up long-tasks 

A natural solution to the long-task problem is for the problematic group of tasks 

to relinquish control to the scheduler with sufficient regularity. It is possible to 

achieve this aim by interspersing the release of the tasks requiring frequent 

release with the release of tasks in the problematic group; however, the 

resultant jitter may be high enough to require another approach. 

In TTCA, this may involve splitting up a task into several smaller chunks 

scheduled at the same rate as the original task, with incremental phases and 

with each chunk having a precedence constraint on the previous chunk (Pont 

2001; Pont et al. 2007). In practical terms this involves moving some of the 

transient data (those hold information about the state) of the task from the stack 

into permanent storage space, increasing the amount of storage space 

required. Since each chunk forms a new task, the scheduler footprint also 

increases. 
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On the one hand, the split might be intuitive, especially when a timeout 

mechanism is being employed (e.g. waiting for a communication medium to be 

available between uses) (Pont 2001), but on the other, it might be subject to 

algorithmic constraints (Holden 2005). Other issues may also arise: an 

irreducible chunk might still take too long to execute, the restructuring might 

break the functionality, the new structure may not be suitably comprehendible or 

the schedulability of the system may decrease (Arnold 1989; Xu et al. 2000). 

4.3.4 Pre-emptive designs 

A priority-based pre-emptive design (Fidge 2002) automatically performs the 

split described in the section above at run-time and solves both the latency and 

maintainability issues. 

However, these schedulers are not without their own problems as each pre-

emption equates to a context switch which involves saving the state of the 

environment of the current task, running the new task and then restoring the 

saved state. This save-restore can constitute significant overhead (Locke 1992; 

Pont et al. 2007). Also, the start and completion times of tasks, especially low 

priority tasks, may be arbitrarily delayed due to pre-emption by higher priority 

tasks, resulting in higher jitter and unpredictability (Buttazzo 2005a). Resource 

contention may also add further complexity (Section 2.6.3) and latency or jitter 

(Buttazzo 2005b; Short et al. 2008). 

To obtain the latency reduction benefits while limiting the other disadvantages, 

the time-triggered hybrid (TTH) pre-emptive scheduler was proposed (Pont 

2001): it allows a single high priority task to be scheduled alongside one or 

more lower priority co-operative tasks with lengthy durations by calling the pre-
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emptive task from the ISR , i.e. it is a multi-rate executive with interrupts 

(Kalinsky 2001). As an example, Figure 4.2 shows how the task schedule in 

Table 4.1 can be implemented validly with the TTH design with no deadline 

misses, compared to the TTCA implementation in Figure 4.1. In Figure 4.2, task 

A has been given the highest priority, which under TTH will result in task A 

starting as soon as it is released, breaking up any frames of B that are 

executing. As a result, every frame of task A meets its deadline even in the 

presence of long-task B. 

 
Other TTH versions exist: one reduces release jitter for the pre-emptive task by 

having the CPU placed in the same state (e.g. low power state) before each 

invocation of the pre-emptive task (Maaita et al. 2005). Another version allows 

more than one task to execute at the pre-emptive level (Hanif et al. 2008), using 

a second timer to reduce jitter for the subsequent tasks. 

Another approach is to statically allocate pre-emption times (Puschner et al. 

2006; Wang et al. 2008). This approach is a compile-time automation and is 

very similar to splitting up tasks into smaller ones (Section 4.3.3) and faces 

Figure 4.2: Handling a long-task with the TTH architecture 
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many of the same problems such as having to maintain the pre-emption points 

(Locke 1992). 

4.3.5 Increased concurrency 

In such a design, at least one processing element will be available to respond 

with the required rapidity, negating the effect of the long-task. Existing 

architectures such as TTCA may be adapted to multiple processor designs 

(Pont 2001; Ayavoo et al. 2007) to maintain predictability. A long-standing 

complaint about these systems has been the high volume and weight of just the 

wiring required to connect processors (Leen et al. 2002); a complaint that is 

being taken care of by new networks such as the novel data network in the 

Airbus A380 (Brajou et al. 2004); or, where practical, by integrating processors 

onto a single-chip in the form of a multi-core (Obermaisser et al. 2009). 

4.4 Task jitter 

There are a variety of sources of jitter in tasks running under TTCA as outlined 

in Section 2.6.4. This jitter can also accumulate across the co-operative 

execution after a timing event turning otherwise miniscule variations into 

catastrophic fluctuations.  

One of the factors affecting the release jitter is that for every set of tasks 

released at the same time, only the first one executed may have a precise 

hardware determined start time. The start time of the others will depend on the 

finishing jitter of all preceding tasks (Kalinsky 2001), including the ISR.  

In Figure 4.3, task A and task C have the same period as the tick interval, with 

task A having a higher priority; as a result, task A is executed immediately after 
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the tick with task C following immediately. However, task A also has non-zero 

execution jitter (Section 2.6.4.1) due to varying execution time resulting in task 

C having a variable period and exhibiting release jitter (Section 2.6.4.4) due to 

varying release times. 

 
 
Release jitter may also be caused by a variation in the time the trigger event 

takes to interrupt the processor (Thiele et al. 2004), mainly due to the 

underlying instruction set architecture of the processor where instructions may 

have different execution times. 

It is also possible that a task may be released with very low jitter, but due to 

execution jitter, the actual jitter sensitive portion of the task may experience a 

higher jitter. For example, Figure 4.4 shows a task A with a portion of execution 

in a darker shade; this portion requires that it be started at the same time 

relative to the same portion in the previous frame. However, this requirement 

cannot be satisfied due to the preceding portions of task A, even though task A 

has a low release jitter. 

Figure 4.3: Release jitter caused by execution jitter in a preceding task 
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Time 
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Jitter may also arise within the TTCA implementation from the interrupt service 

routine, the scheduling algorithm and the dispatcher. All of these can be 

considered to be implicit tasks, out of which, the scheduling algorithm alone can 

be moved to the end of the schedule to minimise its effect. On the other hand, 

in a purely static system, the scheduling algorithm doesn‘t run at all, and the 

dispatcher can be designed to execute the same number of instructions before 

running one task, though not necessarily the same number for all tasks. Since 

these functions are implicit tasks, they exhibit the same types of jitter 

enumerated in Section 2.6.4. The next few sections examine solutions for 

tackling jitter. 

4.4.1 Improved algorithms 

The improved control techniques mentioned in Section 4.3.2 aimed at reducing 

latency, do the same to jitter. Some other work has explored finding upper 

bounds on the output jitter of a task; and reducing jitter by adjusting task phases 

using simulated annealing and by adjusting relative deadlines (Baruah et al. 

1999; Buttazzo et al. 2007). Algorithms have also been devised to tackle jitter 

Figure 4.4: High execution jitter may cause high release jitter in a portion of a task which otherwise 

has low release jitter 
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caused as a side-effect of error-protection schemes in networks (Nahas et al. 

2004). 

4.4.2 Task properties 

Section 3.2.4 demonstrated the effect a priority assignment can have on 

maintaining a steady period (Figure 3.1 vs. Figure 3.3), choosing to assign 

higher priorities to tasks with higher rates of execution. In a similar manner, the 

issue of execution jitter for tasks following the first one after a tick can be solved 

by increasing the tick interval and changing the phases (Tindell 1994). For 

example, the problem in Figure 4.3 where a varying execution time in task A 

caused release jitter in task C can be solved by halving the tick interval and 

giving task C a phase of one tick as shown in Figure 4.5.  

However, this technique results in increased power consumption due to more 

frequent ticks and imposes a harsher limit on the worst-case execution time of 

the tasks by shortening the tick interval. For example, in Figure 4.3, task A and 

task C could have a combined worst-case execution time less than the tick 

interval, whereas the changes in Figure 4.5 require each to finish in half the 

time to avoid increasing the release jitter in the other. A similar technique of 

Figure 4.5: Effect of phases and an increase in tick rates on release jitter caused by execution jitter 

in a previous task 
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changing the phases and priorities has been used in pre-emptive periodic 

systems (Cottet et al. 1999). 

In data acquisition applications, where jitter can lead to signal distortion, the 

task that samples the signal can be released at a higher rate. However this is 

often by a factor of five or ten and leads to an unfavourable increase in 

processor utilisation (Cottet et al. 1999).  

4.4.3 Utilising spare computational capacity  

This class of methods makes use of any computational capacity that cannot be 

used by the scheduling algorithm. With TTCA, two methods have been tried: 

single path programming and balancing with delays. 

4.4.3.1 Single path programming 

The single-path programming paradigm aims to produce software with a 

constant execution time, for an execution time jitter that is purely dependent on 

the underlying hardware and not on the software design (Puschner et al. 2002). 

However the technique, which has spawned a processor (Schoeberl et al. 

2009), requires predicated instruction support and can increase power 

consumption (Gendy et al. 2007b).  

4.4.3.2 Code balancing with delays 

Inserted idle time or delays or timeouts can be used to establish certain 

guarantees about the execution time of a code segment. Accurate delays may 

be created by starting a dedicated hardware timer and looping or idling until the 

timer overflows. The dedicated timer may also be used and accessed via 

special instructions. Software loops generate more jitter than hardware loops 

since they cannot react as quickly to timer overflows. 
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This mechanism has been used by the precision timed architecture (Lickly et al. 

2008) to guarantee a lower bound on the execution time, giving inputs time to 

settle (Figure 4.6 (a)). The sandwich delay algorithm uses a software-controlled 

timer to create delays that make the average execution time of a task the same 

as the worst-case (Phatrapornnant et al. 2006; Gendy et al. 2007b; Das et al. 

2009), as in Figure 4.6 (b), so that succeeding code always starts at the same 

time. A version of this algorithm that provides more accurate delays and that 

decreases power consumption has also been devised (Section 3.6.4). This 

version ensures constant interrupt overheads, reducing release jitter, but still 

necessitates a second mechanism to generate accurate timing events and is 

susceptible to overheads and jitter in the ISR and in the scheduler dispatch. 

There is also a need to factor the time required to setup the timer into the 

calculation which can be error prone. 

 
 
For pre-emptive, on-line systems, the delay method was criticised as the delay 

is wasted idle time (Baruah et al. 1999). The solution there used processor 

utilisation and deadlines to increase the priorities of tasks needing low output 

jitter. But the effectiveness of the solution degraded as the number of tasks 

requiring low jitter was increased. In comparison, static TTCA implementations 

Figure 4.6: Using delays to place guarantees on the execution time 
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are designed for worst-case scenarios, and hence, the extra inserted time is 

already accounted for in the scheduling algorithm – even without delays the 

extra time would be wasted, but at the end of the execution sequence instead. 

4.4.4 Jitter sensitive code inside a task 

Jitter inside a task can be straightforwardly tackled by breaking up the task 

(bearing in mind the concerns of Section 4.3.3) so that the jitter sensitive portion 

constitutes a new task and changing the task properties as required (Buttazzo 

et al. 2007). For example, the problem in Figure 4.4 where the sensitive portion 

of a task A experienced high jitter even though the task itself had low release 

jitter, can be solved by: splitting task A up into tasks A0 and A1 with the same 

period such that the sensitive portion is at the beginning of task A1, halving the 

tick interval and giving task A1 a phase of one tick (Figure 4.7). As can be seen, 

this is a trade-off between reducing jitter and increasing latency.  

 

Alternatives can be used either to prevent the problem from occurring in the first 

place (Section 4.4.3.1) or to balance the first portion of the task (Phatrapornnant 

et al. 2006) (Section 4.4.3.2). 

Figure 4.7: Creating new tasks to handle a jitter-sensitive portion inside a task 
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4.5 Non-harmonic task-sets 

Non-harmonic task-sets are those in which the greatest common factor of all 

task periods is less than the period of the fastest executing task in the set. Such 

task-sets can cause wide swings in release jitter as tasks will be released in 

varying combinations over the hyperperiod – an example can be seen in Figure 

4.8 which has two tasks, A and C, with periods two and three tick units 

respectively. While TTCA is able to schedule these two tasks (over time, the 

average period of C will converge to the ideal), the jitter in C would be largely 

dependent on tasks with non-harmonically related periods. 

 

 
The sandwich delay or the TTC-SHD scheduler could be used to handle the 

release jitter caused by non-harmonic periods (Figure 4.8), as seen in Figure 

4.9 where C has been delayed. However, the WCET of C which could 

previously tend to  , has now to be limited to           to avoid causing 

jitter in A. This constraint arises because the delay is no longer making use of 

slack time, but is inserting a new task in the form of a delay into the system. Not 

only does this cause a decrease in the available computational power, as 

shown, but it may interfere with the schedulability of the system. 

Figure 4.8: Release jitter caused by non-harmonic periods 
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Attempts to reduce jitter in non-harmonic tasks sets generally employ some 

form of multiprocessing and the clustering of tasks on the basis of harmonic 

relationships between their periods (Abdelzaher et al. 2000; Ekelin et al. 2001). 

4.6 Conclusions 

Long-tasks introduce unnecessary latency into high frequency tasks, degrading 

the responsiveness of a time-triggered co-operative system. Existing solutions 

of improved hardware or algorithms, of breaking up tasks and of pre-emptive 

designs are either not feasible or introduce complexity into the systems. The 

solution of using multi-processors is the most attractive, particularly the option 

of a CMP or multi-core (Section 2.4). However, with this option, software design 

may still be unduly complicated by inter-task communication requirements. 

Likewise, task jitter degrades the output determinism, increasing the unreliability 

of the system. The solutions of using improved algorithms and changing task 

properties again introduce the possibility of producing unfeasible or complex 

designs. Single path programming is also not very attractive due to the 

requirement for certain types of processors. On the other hand, code balancing 

techniques like the sandwich delay have been used in TTCA implementations 

before and make use of pre-allocated slack time and are, hence, attractive. 

Figure 4.9: Attempting to reduce release jitter caused by non-harmonic periods by inserting delays 
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However, they impose additional scheduling overhead and are unable to 

completely reduce the jitter due to the presence of a software element. 

The third problem of non-harmonic task-sets is more serious and can be seen 

from the mathematical model (Section 2.6.1) as unsolvable on single-processor 

systems. For this reason, the sole solution has been to use multiple processors. 

Fortunately, this is already the most attractive solution for tackling long-tasks 

and so it may be possible to solve both the long-task and non-harmonic task-set 

problems by pursuing a multi-core system. 



 
 

Chapter 5 

Increasing the concurrency in single-processor 

TTCA designs 

5.1 Introduction 

TTCA provides a highly predictable method of designing embedded systems. It 

is highly beneficial for safety-critical systems to use this architecture to schedule 

a system. Once deployed, however, maintenance efforts might require certain 

modifications or additions that can have detrimental effects on the real-

timeliness of the system. 

One of these modifications is the introduction of the long-task problem i.e. a 

group of tasks with an execution time larger than the period of the task that 

executes with the highest frequency. The long-task problem decreases the 

system responsiveness and increases the amount of output jitter. 

Another modification is the creation of non-harmonic task-sets, i.e. sets wherein 

tasks have periods that are not exact multiples of each other. This leads to 

greater release jitter in all tasks of the system, affecting the system behaviour, 

and possibly even corrupting sampled signals. 

This chapter explores the alleviation of the long-task and non-harmonic task 

problems by increasing the concurrency of the execution path with hardware 

extensions. The first section explores the areas where such extensions may be 

made before settling on a multi-core design and the requirements from such a 
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design. The subsequent section examines suitable multi-cores, ultimately 

choosing the PH core (Hughes 2009). The next few sections examine the 

design of a multi-core PH system for TTCA including inter-task communication, 

scheduler design and a predictable initialisation sequence.  

5.2 Design choices 

A high level view of the execution path of a 

single-core processor is shown in Figure 

5.1: instructions are read from memory, 

decoded and then the operation indicated 

by the instruction is performed. The 

operation is usually performed with the 

help of computational units like arithmetic-

logic-units, multiplier-dividers, etc. The 

operands for the operation are fetched 

from the register bank or from memory. 

The memory may also defer access to 

peripherals which may connect to the 

environment. 

5.2.1 Increasing concurrency 

Due to the single execution path and the non-pre-emptive nature of the TTCA, 

tasks with high execution times decrease the rate at which other software can 

be executed, decreasing response times. This interference can be removed by 

allowing tasks to execute concurrently with other tasks. Since the software 

architecture is considered fixed in this thesis (Section 1.5), hardware techniques 

Memory 
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Peripheral 
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Figure 5.1: A generic single processor 

design 
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must be employed either by sharing the execution path (pseudo-concurrency) 

or by duplicating it. Sharing the execution path via hardware (temporal 

multitasking) is functionally equivalent to sharing it via software (pre-emptive 

architectures), may similarly give rise to execution jitter and is not considered 

further. 

The alternative of duplicating the execution path can be carried out with a 

complete or with a partial duplication of the coprocessors, leading to chip level 

multi-processors (CMPs) (Section 2.4) and simultaneous multithreading (SMT) 

designs respectively.  

SMT designs are superscalar in nature, i.e. they execute more than one 

instruction at the same time; their speciality is that the concurrently executing 

instructions come from different tasks. These designs are aimed at ensuring 

that a core is never needlessly idling because of a co-processor that might be 

held up. Nevertheless, due to only a partial duplication of co-processors, they 

cannot run all operations in parallel, causing execution jitter and, hence, are not 

considered further. 

This leaves the CMP as the last option, though not without an abundance of 

design choices: the processors in a CMP may be identical (homogeneous) or 

may differ in the functional units or operating frequency (heterogeneous); they 

may also share, through caches, the memory used for instructions and data 

(symmetric) or maintain separate memory banks (asymmetric); and inter 

processor communication may either be done through shared memory, if 

present, or through a dedicated on-chip network taking various topologies such 

as meshes, hypercubes, etc. 
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5.2.2 Inter core communication 

With an increase in the number of cores in the system, a mechanism is 

necessitated for tasks on different cores to communicate. Moreover, since this 

work aims to maintain the simplicity that TTCA lends to application design, such 

a mechanism must be transparent to the application designer; it may however 

be spread across the RTOS and the hardware. It must also avoid interfering 

with the timing of applications, i.e. it must run asynchronously to the task. 

In a single-processor TTCA implementation, tasks communicate by reading and 

writing to common memory locations (Section 3.2.3). In the discussion below, 

the core that is executing a task writing to a common memory location is termed 

a writer and the core executing a task reading from this location is termed a 

reader. 

The assumption made of the use of TTCA allows for a specialisation: since the 

periodicity of the applications is a part of the application design, it can be 

assumed that the writer will buffer data appropriately at the application level if it 

runs faster than the reader. For example, in Figure 5.2 (a), the application task 

performing the write will only use one buffer while in Figure 5.2 (b), the writer 

will create and use two buffers at the application level.  

 

Figure 5.2: Reader and writer tasks running at different rates 
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However, when executed on a multi-core a scenario unanticipated by the co-

operative application may occur: the writer may execute concurrently with the 

reader and so while the reader is reading the shared memory area, a 

concurrent execution of the writer may modify the memory area leading to 

incoherent data. This is the result of the cases in Figure 5.3 (a) & (b) where task 

frames occur within each other, Figure 5.3 (c) where the writer is started while 

the reader is executing and Figure 5.3 (d) where the reader is started while the 

writer is executing. For a multi-core TTCA, such overlap is permissible but 

requires special measures to maintain coherence.  

 

5.2.3 Constraints 

The work described in this thesis considers the application software to be non-

modifiable and changes to be permissible only in the RTOS or in the hardware. 

This restriction imposes a couple of constraints: 

Figure 5.3: Possible overlaps between a writer and a reader (Kopetz et al. 1993) 
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 The hardware for the study must be easily modifiable: To this end, a 

programmable logic device, specifically, a field programmable gate array 

(FGPA) is employed. FPGA technology, which is used to prototype the 

production-costly application specific integrated circuits (ASICs), has 

matured to the extent that FPGAs can be deployed in the field as cost-

effective replacements to ASICs (Rodriguez-Andina et al. 2007). An 

FPGA can be developed with a schematic or textually with a hardware 

description language (HDL) such as Verilog or VHDL. 

 The complete hardware must be modifiable: To avoid having the 

application software change it is necessary to do a lot of snooping on 

existing control lines and to be able to control the execution paths of the 

software processors. For these reasons, it was imperative that the whole 

of the source of the design be readily modifiable. This subsequently 

implies that a soft-core (i.e. not tied to a particular FPGA) must be used, 

over both a commercial off-the-shelf (COTS) and a hard-core processor 

(i.e. exactly fitted to a particular FPGA). 

Additionally, the desired application area encompasses real-time systems for 

which predictability is the foremost goal. Thus, any unpredictability or non-

determinism and latency introduced into the system by the techniques 

developed must be easily identifiable. To this end, external contributors of 

unnecessary complexity, non-determinism and latency must be minimised as 

much as possible. Though highly restrictive, such a system can be highly 

beneficial for predictable real-time systems. These requirements led to the 

following desirable features for the soft multi-core: 
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 The cores must process a single instruction at a time: This is to remove 

the complexity and non-determinism inherent in the superscalar 

approach. The very long instruction word architecture is an exception to 

this since it is a static approach; but, it is aimed at concurrency within the 

task and is highly unsuitable for concurrency amongst tasks. 

 Cores must not compete for any resources: To match TTCA, this can be 

accomplished by not sharing peripherals amongst the cores. 

 Memory latency must be constant and guaranteed: This is accomplished 

by each core having its own memory banks, by avoiding any caching 

techniques and by using on-chip memory clocked at the same rate as the 

core. Also, the memory architecture must help avoid the non-

determinism of structural hazards, e.g. the Harvard architecture where 

separate instruction and data memories are employed. 

 Instruction execution times must be constant and guaranteed: While 

instructions may take different amounts of time to complete, the same 

instruction must always take the same amount of time to complete 

regardless of the value of its operands. 

 The inter-core communication network must be point-to-point: This is to 

avoid the latency and variations in packet or circuit switching and in 

message routing. It should be noted that point-to-point network 

topologies are costly and hence generally avoided; however, their use 

does not preclude a future move to a more cost-effective topology. 

 Tasks will be statically allocated to cores: This technique is also referred 

to as asymmetric multiprocessing (AMP) and is used to avoid the non-

determinism involved with task migration. Asymmetric processing is an 



Increasing the concurrency in single-processor TTCA designs 

 

5-8 
 

ideal fit for embedded applications where although symmetric 

multiprocessing (SMP) allows all the required operations to be 

performed, they may not be done as efficiently or in as few cycles as 

under the former (Leibson 2007; Guerin et al. 2009). 

5.3 Selecting a soft multi-core processor 

Because of the ubiquitous nature of embedded computing, there are a wide 

variety of application classes and a multi-core to match nearly every one. In 

keeping with the design constraints and desirable features, only soft multi-cores 

that are asymmetric and available with completely free-to-use source which can 

be synthesised for an FPGA will be examined. Due to the relative simplicity that 

the desirable features put on the multi-core (AMP & point-to-point links), soft 

cores without multi-core designs and soft multi-cores with unsuitable designs 

will also be examined with the view that a suitable multi-core design may be 

easily created. 

5.3.1 Existing soft multi-cores 

There are two soft multi-cores families: LEON (Gaisler Research) and 

OpenSPARC (Sun Microsystems). The LEON family has seen four versions, 

the latest having been released earlier this year; the multi-core version uses a 

shared memory architecture, but can have caches disabled. The SMT multi-

core OpenSPARC family similarly also uses a shared memory architecture and 

is an open-sourced version of the existing UltraSPARC family; it has been 

released with designs fixed at eight-cores with caches enabled. An independent 

initiative has used the source for the OpenSPARC T1 to extract what is called 
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the S1 core and it has been released in versions with and without multithreading 

and caches. 

As mentioned, the multi-core versions of these families use a shared memory 

architecture and as such are unsuitable. On the other hand, it is possible to 

extract the soft-cores and thus treat them like the other soft-cores that do not 

have multi-core platforms. 

5.3.2 Soft-cores with no multi-core platforms 

This group consists of the OpenFire, AEMB family (Aeste Works), PacoBlaze, 

ZPU (Zylin), OpenRisc (OpenCores community), JOP and PH (TTE Systems). 

There are others like the Freedom CPU (F-CPU), a high performance 

microprocessor which has not seen any development since 2004; its more 

active spin-off, YASEP (Yet Another Small Embedded Processor) which sees 

active development but is incomplete; and Lattice‘s Mico32 which is unsuitable 

due to its varying instruction execution times. 

Among the aforementioned, OpenFire and PacoBlaze are open-source clones 

of the commercial Xilinx MicroBlaze (closed-source) and PicoBlaze (source 

available on purchase) soft-cores respectively, both seeing their last updates in 

2007; OpenFire is still not fully feature-compatible. The recently updated AEMB 

family started out with sharing the MicroBlaze instruction set but the latest soft-

core, AEMB2 is SMT and only has a subset of the original instruction set. Then 

again, the original scalar AEMB1 fits the requirements as does the OpenRISC 

1200 which implements the OpenRISC 1000 architectural description and 

Zylin‘s soft CPU (ZPU) which is touted for its small size and is marketed as a 

co-processor to FPGA operations rather than as a COTS replacement.  
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As seen above, there is a wide range of suitable soft-cores available, some 

catering to the general application space, some catering to a specific need. 

Alongside these, the Java Optimised Processor (JOP) and PH are soft-cores 

that also fit the requirements, but have the advantage of being built from scratch 

to be highly predictable. The Precision Time (PRET) Machine is also designed 

for timing predictability and repeatability; however, it has only seen a cycle-

accurate simulator with several examples and a soft-core implementation is in 

progress (Lickly et al. 2008).  

The JOP has been placed into a multi-core design where a cyclic executive 

software design, single-path programming and synchronisation with a time-

sliced access mechanism to shared memory allow for execution determinism 

(Schoeberl et al. 2009). This system appears to offer the ideal platform; 

however, it is not clear how transactional memory access is ensured without 

keeping within the extremely small allotted time slice or by using Java‘s blocking 

synchronisation mechanism. 

The PH soft-core doesn‘t offer facilities for single-path programming but has the 

advantage of being designed specifically for time-triggered applications. It has 

been built for timing-determinism and has some desirable extensions that deal 

with time-triggered issues. For these reasons, it is the soft-core of choice for this 

work. 

5.3.3 The PH core 

The PH core is a 32-bit ―research‖ version of the commercial TTE®32 core 

present in the TTE32-SM3 microcontroller (TTE Systems 2010). It was first 

described in (Hughes et al. 2005) with improvements presented in (Athaide et 
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al. 2007) and (Hughes 2009). It is a cut-down version of a R2000 core (Kane 

1987) which is compatible with the MIPS® I instruction set. It possesses a 32-bit 

Harvard-architecture with 32 registers, a five-stage pipeline and support for 

precise exceptions.  

The core has been designed specifically for time-triggered applications: it bakes 

the general time-triggered design guideline, ―only one interrupt‖, into its design 

and guarantees memory latency and instruction execution times. It has been 

extended to ensure constant interrupt overhead (especially for multi-cycle 

operations) and to incorporate a TTCA hardware implementation and a task 

guardian (Hughes 2009). The task guardian extension is irrelevant for this work 

and will not be described in detail. 

Various platform designs for the PH soft-core have been implemented in VHDL 

and were originally targeted at the Xilinx Spartan 3 FPGA on the Digilent 

Spartan 3 starter kit (Digilent Inc. 2004). They have since been ported to the 

Altera Cyclone® II on the Altera DE2-70 development board and, in the course 

of this work, to the Xilinx Virtex 5 LXT on the Xilinx ML505 development board. 

5.3.3.1 Microcontroller block diagram 

Being a soft core, the PH processor core can be incorporated with any number 

of custom hardware components to create an FPGA-based microcontroller or 

system-on-chip or platform. A block diagram of one such platform can be seen 

in Figure 5.4. 
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5.3.3.2 A single interrupt 

Many commercial off-the-shelf (COTS) processors support a wide range of 

event sources, all of which might interrupt the processor execution. However, 

the use of a (pure) time-triggered software architecture generally requires that 

only a single interrupt be enabled (Pont 2001). While this might be enforceable 

through conventions at the design stage, it is possible that a subsequent 

maintenance or upgrade might fail to check against the conventions, introducing 

unreliable behaviour. 

The PH core is designed against this, so that out of the many event sources, it 

is impossible for software to enable more than one as capable of interrupting 

the processor. The events may still set flags that can be checked and cleared 

by polling. 

Figure 5.4: PH processor implementation (Hughes 2009) 
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5.3.3.3 Guaranteed instruction execution times 

The PH core processes an instruction in five stages: read from memory, 

decode, perform requested calculations, access data memory and modify 

registers. To avoid resource wastage and to increase computational speed, 

instructions are processed in parallel with all five stages kept occupied (Figure 

5.5).  

 

An instruction goes through every one of the stages and requires a fixed 

number of cycles to be processed, even if the operands allow for optimisations. 

The core also relies on the compiler to insert suitable instructions after a branch 

instruction to avoid unpredictable delays due to branches being taken or not 

taken. 

Figure 5.5: Five stage pipeline in the PH core 
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Additionally, instructions may raise exceptions (calculation overflow, invalid 

address, etc.) in the fourth stage upon which the instruction flow is broken. 

These exceptions cause the core to abort the instructions that are in the first 

three stages of processing and to start reading instructions from an appropriate 

handler. The first three stages can be aborted because instructions do not 

change the state of the core until the fourth and fifth stage. 

5.3.3.4 Guaranteed memory latency 

In the Harvard architecture, separate memory buses are used for the instruction 

and data memories. By implementing this architecture, the PH core is able to 

avoid conflicts over multiple pipeline stages fighting for memory access 

(structural hazards), preventing stalls. In addition, caches are omitted and the 

memories and peripherals (memory-mapped access) are clocked at the same 

speed as the processor allowing for single cycle data access. 

5.3.3.5 Constant interrupt overhead (PH-MT) 

In the PH core, multi-cycle instructions, even if guaranteed to be a fixed number 

of cycles, can generate unwanted interrupt servicing jitter since they may be 

aborted any number of cycles into their execution and always have to be 

restarted from the beginning after the ISR has executed. 

To avoid this jitter, PH-MT (Hughes 2009) duplicates the program instruction 

counter, the register file, the registers for the first three of its five pipeline stages 

and the co-processor registers. The result is a multithreaded core that has the 

effect of halting (instead of aborting) an instruction when an interrupt is raised 

and resuming it after the interrupt service routine code has been executed in the 
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duplicated pipeline. If the ISR execution time is kept jitter free, then this 

technique ensures that the interrupt overhead remains constant.  

5.4 A processor with multiple PH cores 

A high level view of the microcontroller design developed in this work can be 

seen in Figure 5.6. The resultant multi-core is a heterogeneous multi-core since 

each core can have varying internal organisations and peripherals attached. 

The cores may also be set at different operating frequencies. While not shown 

in the figure, peripherals (including memories) are connected via a bus. 

 

Each core is connected to every other core by a direct asynchronous point-to-

point link implemented as two asynchronous FIFOs (Nebhrajani 2007) for inter-

core communication. In addition to these links, the timer on one core (the timing 

master) and the core itself are connected as external event sources for all the 

other cores (the timing slaves), allowing for timing events to be propagated to all 

Figure 5.6: Hardware organisation 

Core 

Mem 

Timer 

UART 

Core 

Mem 

ADC 

Core 

Mem 

GPIO 

Timer 



Increasing the concurrency in single-processor TTCA designs 

 

5-16 
 

cores either at the same time or after one core has done some application 

specific processing. 

5.4.1 Delayed sleep extension to the PH core (PH-DS) 

Many of the TTCA implementations (Listing 3.6, Listing 3.8, Listing 3.9 and 

Listing 3.14) use the interrupt mechanism only to keep track of the number of 

times the schedule must be simulated so as to build the run queue. Such a 

simple ISR hardly justifies the hardware overhead of PH-MT and the temporal 

overhead of the invoked ISR. PH-DS is a hardware simplification that uses the 

interrupt to indicate how many software sleep requests can be ignored; i.e. it 

delays the sleep requests. 

The mechanism can be seen in Figure 5.7 where an 8-bit counter (initialised to 

zero) is decremented every time an interrupt occurs and is incremented when 

there is a request to sleep; only when this counter equals one does the core 

actually sleep. Referring back to Listing 3.1 and the extension in Listing 3.5, it is 

clear that the execute ―tick‖-number-of-times behaviour is preserved with this 

scheme.  

The PH-DS calls no ISR and hence, the multi-threaded logic can be omitted 

Counter 

+1 

-1 

= 

1 

Core 

Interrupt Request 
to sleep 

Sleep 

+ 

Figure 5.7: The PH-DS mechanism 



Increasing the concurrency in single-processor TTCA designs 

 

5-17 
 

without affecting the predictability while retaining the flexibility of designing the 

schedule creation algorithm in software. 

5.5 Inter-task communication scheme 

5.5.1 Overview 

As required by Section 5.2.2, the communication mechanism developed is 

completely transparent to the application software: there is no effect on the 

timing of the tasks and it is implemented in a hardware communication 

controller with the RTOS‘ scheduler (running on the core) synchronising the 

functionality with task execution. 

The communication controller is attached to the same bus as the data memory 

and the rest of the peripherals, allowing it to be directly controlled by software. It 

receives messages from other cores via the link mentioned in Section 5.4 and 

writes them directly into data memory (Figure 5.8). This is similar to the 

architecture in (Kopetz et al. 1993) which receives messages from other cores 

on a bus instead of on individual connections. 

 Figure 5.8: Overview of the communication hardware 
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In this architecture, data memory has one writer (the communication controller 

or the core) and one reader (the core) and the overlaps mentioned in Section 

5.2.2 need to be safeguarded. The communication controller never has to read 

from data memory since it uses (local) bus snooping to decide when to send 

data to the other cores. 

When safeguarding the overlaps, the lock-free solution in (Kopetz et al. 1993) is 

unsuitable for the reasons mentioned in Section 2.7.2. From conclusions drawn 

in that and the following section, it was decided to use a hardware 

implementation of the 3-buffer single-writer, single-reader mechanism described 

in Appendix B, with the entire data memory being buffered. Interestingly, if the 

multi-cores were only running tasks capable of running on a single-core and 

considering that the cores are synchronised by the periodicity of the tasks, a 

double-buffer scheme would be sufficient. However, a three-buffer scheme 

allows arbitrarily overlapping tasks, provides more flexibility and can be easily 

downgraded to a two-buffer scheme should the resource usage become a 

concern. 

It should be noted that the buffers referred to in Section 5.2.2, are application 

buffers while the context of this discussion refers to communication buffers. 

There may be several application buffers, pertaining even to different tasks, in 

one communication buffer. In this discussion, the application buffers from one 

task form one or more shared memory areas (SMAs) in the three 

communication buffers. 

The communication controller maintains separate registers (the description) for 

each SMA: a globally unique identifier, the address and size of the area, an 
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indication of whether the SMA has been read since the last write and the state 

of each buffer (latest data, being written, being read). The controller also 

maintains a lookup table that allows for half-cycle conversions from a memory 

address to a SMA identifier. 

The scheduler component of the RTOS associates SMAs with tasks, requests 

the controller to switch to the latest buffer for those areas when the task is about 

to execute and releases the area when the task is finished, i.e. the whole task is 

considered a critical section (Section 3.2.3). This managerial role of the 

scheduler is depicted in the overview in Figure 5.9. 

In the case of a write, for example, when core1 writes a value to its local data 

memory, it is noticed (indicated by the rightmost eye in Figure 5.9) by that 

core‘s communication controller which then uses the address of the data that 

was modified to locate a SMA from a local list of descriptions. If a SMA 

description is found, a message is sent to the communication controller 

connected to core0 which then uses the identifier in the message to extract a 

SMA description from its own list of descriptions. If this second SMA description 

is found, it is used to select the right buffer and the address in that buffer at 

which to write the data in the message from the other communication controller. 

In the case of a read, for example, when core0 reads a value from its local data 

memory, it is noticed (indicated by the leftmost eye in Figure 5.9) by that core‘s 

communication controller which then uses the address of the attempted read to 

locate a SMA from a local list of descriptions. If a SMA description is found, it is 

used to select the correct buffer from which to fetch the required data. 

These mechanisms are explained further in the subsequent sub-sections. 
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5.5.2 Creating the descriptions 

The SMA descriptions are created upon request by the RTOS and are 

associated with an identifier decided at compile-time. On receiving the request, 

the communication controller spends one or more cycles updating the lookup 

table that converts addresses to SMA identifiers. 

5.5.3 Writing 

Writes from a core are applied to all three buffers. This is necessary since the 

half-cycle required to fetch the correct buffer number combined with the 

additional half-cycle to actually write the data might cause data hazards in the 

processor pipeline. Unfortunately, this prevents a task from using a SMA for 

both reading and writing. 

If the address being written to is part of a SMA, then after half a cycle when the 

address has yielded valid SMA information, a notification message is sent to all 

cores. The message contains the identifier of the area, the offset of the write 

address from the area‘s origin and the data that was written. This content is 

Figure 5.9: An overview of communication between two cores 
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sufficient for the other cores to write the data into their own buffers at the proper 

location.  

Since shared memory areas may be of different sizes even if associated with 

the same identifier, the hardware ignores write requests from other cores that 

cross defined boundaries. 

5.5.4 Reading 

In the PH processors, memory is clocked at the same rate as the processor, 

with no caches; hence, after the core places an address on the bus, valid data 

are expected in the next clock cycle. Translating from a memory address to a 

shared memory identifier (to fetch the number of the buffer with the latest data) 

takes half a cycle; and so, all buffers fetch data concurrently from the same 

address and the data are multiplexed when the right buffer is known. 

5.5.5 Switching between buffers 

As mentioned in the overview, the scheduler switches the buffers for the SMAs 

used by a task before it executes. This includes the local buffers (local switch) 

and the buffers in other cores (external switch) sharing these memory areas. A 

switch also locks the buffers and so they must be released by the scheduler 

when the task is finished. A local switch sets the local buffer to the latest written 

buffer; an external switch reserves a buffer that is not the latest and which is not 

being read. An external switch uses the last written buffer if a local switch has 

not occurred since the last external switch; this allows tasks working at different 

rates to function properly. A switch may also be performed locally only (read 

switch) if a SMA has multiple readers since multiple readers attempting external 

switches can disrupt each other. 
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As seen in Figure 5.10, a buffer may then be 

in one of several states: available (a), being 

used locally (l), being used externally (e) and 

being the last used externally (u); and 

several guards: an external switch (ES) and 

release (ER); a local switch (LS) and release 

(LR); and a local switch having happened 

since the last external switch (LSSLE). The transitions from the available state 

are the least preferred; transitions by a buffer from another state are always 

performed instead, if possible. 

The switching behaviour is examined in more detail in Figure 5.11 and Figure 

5.12 where the states of the buffers (Figure 5.10) are shown from the point of 

view of a task ―B‖. The condition of a local switch having happened since the 

last external switch is also shown. The start times of a task ―A‖ are shown as 

when the external switch request reaches the hardware of the core on which B 

executes, and likewise task A ends when the external release request is 

received.  

In Figure 5.11, both tasks run at the same rate and overlaps from Figure 5.3 are 

chosen. The tasks in (a), (b) and (c) can all be scheduled on single processors; 

(b) is the sort of timeline that can occur on a single processor. It is interesting to 

note, that (b) only ever uses one buffer, and only (d) uses all three buffers. If the 

precedence constraint of task B needing to run after task A was added to (d) & 

(e), then they would resemble (c) and would also use only two buffers. A great 

disadvantage in this system is that initial data are lost if the tasks are given non-
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Figure 5.10: States of a buffer 
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zero phases due to the extra condition imposed by LSSLE. This behaviour is 

clearer in Figure 5.12. 

 
In Figure 5.12, task A runs at twice the rate of B, with the first execution of B 

taking place after two executions of A, so that data are valid. As before, various 

combinations are taken: either B runs before the next execution of A or not, 

Figure 5.11: Buffer switches from the view of task B when it overlaps with a task A running at the 

same rate with a combined utilisation less than one 
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either B starts before the next plus one execution of A or not, either B finishes 

before the next execution of A or not and either B finishes before the next plus 

one execution of A or not. In all cases, executions of A which haven‘t seen an 

execution of B after a prior execution of A cause no switches. 

Figure 5.12 (a) is another example of a single processor type system and 

accordingly, one buffer is sufficient. (b), (c) and (d) exhibit the long-task 

problem. However, depending on the data structure used by the application 

buffers, data losses may occur in (c), (d) and (e) and may be sustained. (c), (d) 

and (e) could avoid data losses with proper scheduling but will recover in the 

next tick (not shown). 

The example in Figure 5.12 can be expanded to higher frequency rate 

mismatches as well. As long as the application buffers data appropriately and 

the reading task executes (on another core) after the last execution of a writer in 

a batch but before the first execution of a writer in the next batch, then the 

reader can execute concurrently until the start of the next plus one batch 

without any data losses or any incoherence. 

Multiple buffers can be toggled by a single register write to the communication 

controller and there is no variability introduced by tasks using variable numbers 

of shared memory areas. This prevents the communication controller from 

increasing a task‘s release jitter. 
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5.6 The scheduler design 

5.6.1 Overview 

In this design, each core stores only the code and data of the tasks that it will be 

running. Two scheduler implementations were examined:  

Figure 5.12: Buffer switches from the view of task B when it overlaps with a task A running at twice 

the rate 
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 Multiple schedule builders: each core is triggered by the timing master, 

stores the properties of only those tasks that it will be running and 

creates and dispatches the schedule for these tasks. 

 Single schedule builder: the scheduling core stores all the properties of 

the tasks, creates the schedule for all other cores and triggers them at 

the start of its ISR. The individual cores still dispatch their own tasks. 

5.6.2 Precedence constraints 

In a single-processor TTCA design, tasks may have precedence constraints, i.e. 

a frame of one task may be required to precede a matching frame of another 

task. Figure 5.13 explores scenarios where these constraints may not be 

honoured in a multi-core TTCA design. In Figure 5.13, the tick is shown as a 

dotted vertical line on a horizontal timeline, two tasks are shown as shaded 

rectangles and the task represented as a rectangle with the smaller width must 

precede the other one. Figure 5.13 (a) shows the single-processor TTCA design 

where the constraint is implicitly defined by the order in which tasks are added 

to the task list (Section 3.2). When the tasks execute concurrently, the task 

ordering is no longer feasible for this purpose (Figure 5.13 (b)).  

Changing the task phase may be used as a solution (Figure 5.13 (c)), but the 

granularity of one tick is too large for phase changes and increases the latency 

of the dependent task. The natural follow-up is to decrease the tick interval so 

as to decrease the granularity (Figure 5.13 (d)) but this increases the scheduler 

overhead. This design tackles the problem by inserted idle time using code 

balancing techniques (Section 4.4.3.2) on the appropriate cores, shown as 

deeply shaded rectangles in Figure 5.13 (e). A schedule creation algorithm may 

choose to instead execute other tasks in the time slot, to make use of the 
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available concurrency, since inserted delay time effectively looses the available 

parallelism. 

 

5.6.3 Deterministic initialisation sequence 

To ensure all cores are at the required state before the scheduler starts, an 

initialisation mechanism must be well defined. This has been done as follows: 

after a reset, the timing master is the only core executing instructions, the other 

cores are held in a low power mode at their reset addresses and the event 

Figure 5.13: (a) Using task order to enforce precedence constraints in a sequential system, (b) has 

no effect in concurrent execution which must be handled (c) by changing phases, (d) by increasing 

the tick interval or (e) by inserting idle time 
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source for the timing slaves is set to the timing master with interrupts enabled. 

When ready, the timing master interrupts the other cores, causing them to begin 

executing instructions. In this way, the timing master can create two SMAs and 

initialise them before waking up the other cores. These SMAs are used to 

synchronise the cores after initialisation (Listing 5.1 and Listing 5.2). 

GLOBAL status IS INTEGER 
GLOBAL acks   IS INTEGER 
 
DEFINE initialisation OF scheduler: 
   SET status TO 0 
   SET acks   TO 0 
   SHARE status WITH ID = NN 
   SHARE acks   WITH ID = NN + 1 
   INTERRUPT cores 
 

   ... Perform initialisation   ... 
 

   SET alive TO 1 
 
   WHILE alive IS NOT ((2 EXP number OF cores) - 1)  
      SET rack TO 0 
 
      DO 
         HOLD status 
         READ HOLD acks 
         SET rack TO acks 
         SET status TO alive 
         FREE status, acks 
      WHILE rack /= (alive + 1) 
 
      SET alive TO alive + rack 
  
      HOLD status 
      SET status TO alive 
      FREE status 
   ... 

Listing 5.1: Initialisation on the timing master 
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GLOBAL status IS INTEGER 
GLOBAL ack    IS INTEGER 
 
DEFINE initialisation OF scheduler: 
   ... 
   SET status TO 0 
   SET ack    TO 0 
   SHARE status WITH ID = NN 
   SHARE ack    WITH ID = NN + 1 
   ... 
   Perform initialisation 
   ... 
   SET mask TO 2 EXP number OF core 
   SET stat TO 0 
 
   DO 
      READ HOLD status 
      SET stat TO status 
      FREE status 
   WHILE stat /= (mask – 1) 
 
   HOLD ack 
   SET ack TO mask 
   FREE ack 
   ... 

Listing 5.2: Initialisation on the timing slaves 

This algorithm implements a barrier synchronisation, where the timing master 

progresses only when all slaves have sent acknowledgements and the slaves 

progress by an identifier-based ticket mechanism to prevent contention. Once 

the acknowledgement is sent, a slave core immediately goes to sleep awaiting 

the first tick. With this algorithm, the master core, which runs the scheduler, is 

always the last core to go to sleep and so the scheduler is guaranteed to start 

when all the cores are ready. 

5.6.4 The multiple schedule builders implementation (TTC-MC-MSB) 

In this implementation, the timer on the timing master is used as a global 

interrupt generator. Such a method can accommodate reducing die sizes as the 

wire propagation delay in timing events to each core is negligible compared to 

an expected tick interval. For example, tick intervals may rarely drop below 0.01 
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ms whereas propagation delays are expected to be approximately 2.859 ns per 

μm in 2015 for a 1mm diameter copper wire (ITRS 2007). 

Even though a core schedules its own tasks, it is still coupled to the timing 

master via the interrupt mechanism; this coupling keeps the cores 

synchronised. TTC-MC-MSB is based off of the table-free multi-rate executive 

with the dispatch and schedule creation left almost unchanged except for 

ensuring that the shared buffers for a task are switched before a task executes 

and released after it finishes. 

5.6.5 The single schedule builder implementation (TTC-MC-1SB) 

In this implementation, the timing master is called the scheduling core and the 

other cores are the scheduled cores. The scheduling core handles tasks 

running on its own core separately from those running on other cores. For tasks 

on the same core, the schedule is created when the scheduler starts and at the 

end of the dispatch. For tasks running on other cores, the schedule is created 

every tick in addition to the initial creation when the scheduler starts.  

The run queues for the scheduled cores are implemented as circular buffers in 

a SMA (Listing 5.3) in co-operation with the scheduling core (Listing 5.4). The 

memory areas have their buffers switched at the start of the dispatch routines in 

the scheduled cores (Listing 5.6).  
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GLOBAL run_queue  IS <NNNN> ARRAY OF INTEGERS 
GLOBAL index IS INTEGER 
 
DEFINE initialisation OF scheduler: 
   ... 
   SET ALL OF run_queue TO -1  
   SHARE run_queue WITH ID = number OF core 
   SET index TO 0 
   SET fifo_index TO 0 
   ... 
 
DEFINE read_from_queue WITH OUTPUT data: 
   IF MSB_16 OF run_queue[fifo_index] IS EQUAL TO index: 
      SET data TO LSB_16 OF run_queue[fifo_index] 
      SET index TO (index + 1) MOD number OF tasks 
      SET fifo_index TO (fifo_index + 1) MOD SIZE OF run_queue 
   ELSE: 
      SET data TO NULL 

Listing 5.3: Managing the run queue in the scheduled queue 

GLOBAL run_queue IS <number OF cores> ARRAY OF 
                      (<NNNN> ARRAY OF INTEGERS) 
GLOBAL index     IS <number OF cores> ARRAY OF INTEGERS  
 
DEFINE initialisation OF scheduler: 
   ... 
   FOR EACH core: 
      SET ALL OF run_queue[number OF core] TO -1 
      SHARE run_queue[number OF core] WITH ID = number OF core 
      SET index[number OF core] TO 0 
      SET fifo_index[number of core] TO 0 
   ... 
 
DEFINE write_to_queue WITH INPUT number AND INPUT data: 
   SET run_queue[number][fifo_index[number]] TO  
                MSB_16 = index[number] 
                LSB_16 = data 
   SET index[number] TO (index[number] + 1) MOD number OF tasks 
   SET fifo_index[number of core] TO  
           (fifo_index[number of core] + 1) MOD SIZE OF run_queue 

Listing 5.4: Managing the run queues in the scheduling core 

The scheduler is built as a modification to the table-free multi-rate executive 

(Section 3.6.2), adding a schedule creation stage for the scheduled cores to the 

ISR (Listing 5.5). The scheduling core is triggered by its own timer and triggers 

the scheduled cores in the ISR with an interrupt. The scheduling core must 
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delay for a little while before building the run queues, so that the scheduled 

cores have the opportunity to switch their buffers (Listing 5.6). 

DEFINE service OF interrupt:  
   INTERRUPT CORES 
   RAISE ticks BY 1 
   DELAY 
   HOLD run_queue 
   FOR EACH task IN tasks WHERE core_number IS NOT 0: 
      LOWER delay OF task BY 1 
 
      IF delay OF task IS 0: 
         write_to_queue WITH number = core_number OF task 
                             data   = identifier  OF task 
 
         SET delay OF task TO period OF task 
   FREE run_queue 

Listing 5.5: Event service of the scheduling core 

To allow the scheduling core to run tasks, the co-operative dispatch and 

schedule creation are left almost unchanged – the only changes required are 

checking that the new core_number property is zero and that the buffers for all 

shared memory areas used by the task are switched before the task executes. 

For scheduled cores, there is no schedule creation to be done and the ISR 

stays the same as the general TTCA implementation ISR (Listing 3.4). The 

dispatch reads from the queue in shared memory and executes tasks 

appropriately (Listing 5.6). 
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DEFINE dispatch OF scheduler: 
   WHILE ticks > 0: 
      LOWER ticks BY 1 
      READ HOLD run_queue 
 
      LOOP: 
         SET task_id TO data FROM read_from_queue 
         IF task_id IS NULL: 
            EXIT LOOP 
 
         HOLD EACH shared memory area OF task 
         RUN task WITH identifier = task_id 
         FREE EACH shared memory area OF task 
 
      FREE run_queue 

Listing 5.6: Task dispatch in a scheduled core 

5.7 Evaluation 

The developments in this chapter were aimed at eliminating the timing 

anomalies introduced by long-tasks and non-harmonic tasks into a TTCA 

implementation. This was performed by switching to a multi-core processor with 

an application-transparent communication scheme for tasks on different cores. 

This section will examine the effects of these alterations compared to the 

situation under a single-core scalar processor. The two multi-core TTCA 

implementations that were created to utilise these changes will be evaluated as 

part of the case study in Chapter 6. 

For brevity, the original PH core will be referred to as PH and the various 

extensions with hyphenations: multi-threaded as PH-MT and an n core as MC-

PHn. In the same vein, the original table-free multi-rate TTCA implementation 

will be referred to as TTC and the single and multiple schedule builder multi-

core versions as TTC-MC-1SB and TTC-MC-MSB respectively. Finally, all code 

will either be in MIPS I assembly or in C. 
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For timing measurements, special instructions were inserted at appropriate 

points in the software code. These instructions triggered the transmission of the 

value of a 16-bit or 28-bit (depending on the state of a physical switch) 

hardware counter down a serial link to a development machine; the 

transmissions have no effect on the operation of the cores. The hardware 

counter is reset by hardware logic when an interrupt is generated by timer 0 on 

core 0; is incremented at the rate of 25 MHz; and can count to approximately 

either 2.6 ms or 10,737 ms before it overflows. 

5.7.1 Hardware utilised 

All experiments were run with the soft microcontrollers compiled for the Xilinx 

Virtex-5 LX50T FPGA on the ML505 development board. The FPGA was 

developed in VHDL, compiled with Xilinx ISE WebPACK 12.2 and simulated 

with ModelSim XE III 6.5c. A MIPS-I port of GCC 3.3.3 was used to compile the 

software source code. 

TTC-MC-MSB was implemented on all PH-DS cores while TTC-MC-1SB had a 

PH-MT as the scheduling core and PH-DS as the scheduled cores. The cores 

were driven by asynchronous clock signals at similar 25 MHz frequencies; with 

all interaction between them protected by circuits such as asynchronous FIFOs. 

5.7.1.1 Results 

Figure 5.14 shows the hardware utilisation, as the number of slices occupied for 

solely one function, for the PH, the PH-MT and the PH-DS, each in a 

configuration with 32 Kb code memory, 32 Kb data memory, three timers and 

one GPIO. When compared to the unpredictable PH core, the predictable PH-

MT core results in approximately 14% more hardware being used while the 
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predictable and co-operative PH-DS core 

adds less than 1% to the hardware cost. 

The savings from employing PH-DS cores 

increase as the number of cores in a MC-

PHn increase.  

The hardware utilisation when the 

communications mechanism is enabled 

and disabled is shown in Figure 5.15 for 

three MC-PHn implementations where 

each core is configured with 32 Kb code memory, 8 Kb data memory, one GPIO 

and at least one timer – core 0 has three timers. The relative increase in 

hardware due to the communication capability scaled by the number of cores in 

all three cases is approximately 45% of the implementation containing the PH 

core (Figure 5.14). 

 

Figure 5.15: Hardware utilisation on removing the communication mechanism from MC-PHn 

implementations 
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5.7.2 Inter core communication 

To evaluate inter-task communication, two tasks were implemented and run on 

different cores (   and    on cores 0 and 1 respectively) with TTC-MC-1SB and 

two SMAs of a 100 words each. Both tasks check one of the SMAs against a 

consecutive range of 100 numbers and then write the next set of consecutive 

100 numbers to the other SMA (Listing 5.7 and Figure 5.16). To avoid release 

jitter, the scheduler was carefully code-balanced with software techniques. 

static uint32_t Shared_I_G[NUM]; 
static uint32_t Shared_O_G[NUM]; 
static uint32_t Errors_G[MAX_RUNS]; 
static uint32_t Runs_G; 
static uint32_t Base_G; // Initialised to 0 or NUM 
 
void Latency_Check_Update() 
   { 
   if (Runs_G < MAX_RUNS) 
      { 
      uint32_t index; 
      uint32_t upper = Base_G + NUM; 
 
      for (index = Base_G; index < upper; ++index) 
  { 
  if (Shared_I_G[index - Base_G] != index) 
     ++Errors_G[Runs_G]; 
  } 
 
      Base_G += NUM; 
      upper = Base_G + NUM; 
 
      for (index = Base_G; index < upper; ++index) 
  { 
  Shared_O_G[index - Base_G] = index; 
  } 
 
      Base_G += NUM; 
      ++Runs_G; 
      } 
   } 

Listing 5.7: C code for one of the identical tasks in the evaluation of inter-task communication 
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Each task was run a fixed number of times, recording the number of errors in 

the sequence for that run. The two tasks were executed at the same frequency 

and in the same tick, but    had a delay task,    (Listing 5.8) inserted before it 

so that its start time relative to    could be evaluated. The value of NN in the 

delay task was varied along with the insertion of up to 3 NOP instructions, in 

order to find the precise number of cycles (Equation 5.1) at which the errors 

disappear.  

                                                ( 5.1 ) 

delay_task: 
   li $8, NN 
loop: 
   addiu $8, $8, -1 
   nop 
   bnez  $8, loop 
   nop 
   nop x [0...3] 
   jr $31 
   nop 

Listing 5.8: Assembly code for a delay task 

5.7.2.1 Hardware results 

The execution time of each task was consistently measured to be 1448 cycles 

or 57.92 μs, except in the case of errors, when the time increased to 1948 

cycles or 77.92 μs.    encountered zero errors in all the trials, whereas the 

number of errors encountered by    jumped from 100 to 0 as the delay task 

(Listing 5.8) was lengthened (Figure 5.17).    and    were found to consistently 

Check: 0 - 99 
Write: 100 - 199 

Check: 100 - 199 
Write: 200 - 299 

Check: 200 - 299 
Write: 300 - 399 

Check: 300 - 399 
Write: 400 - 499 

Figure 5.16: Task functionality for inter core communication evaluation 
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start at the same cycle count on each run and a sample execution in the 

absence of errors can be seen in Figure 5.18. 

 

Figure 5.17: Number of errors encountered by    

 

Figure 5.18: Snapshot of task execution on a dual-core with no errors 

(NN = 399, 0 NOPs,   = 1599 cycles)  

Since    always completes before the next execution of   , the latter 

experiences no errors. The errors experienced by    are due to it beginning 

execution while    is still executing; in particular, when    tries to switch the 

buffers while   is still writing. Interestingly, in this particular case, the errors 

disappear while the tasks are still overlapping in execution by 10 cycles.  

It is also worth pointing out that the number of errors is either 0 or 100, 

signifying that data are either wholly corrupt or wholly accurate. Figure 5.17 

indicates that the hardware synthesis tool output can be trusted in terms of 

timing accuracy down to the cycle level even when consuming large portions of 
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the FPGA. Also, the communication controllers, which have to multiplex 

between cores, demonstrate determinism in that there is no change in the 

required number of delay cycles even when the number of cores is increased. 

5.7.2.2 Simulation results 

Figure 5.19 and Figure 5.20 respectively show simulations of the system when 

the number of errors in    are about to decrease to zero, as    is lengthened 

and when the number of errors is zero a cycle later. 

 

Figure 5.19: Simulation of buffer switches with errors at    = 1596 cycles 

 

Figure 5.20: Simulation of buffer switches just after errors stop at    = 1597 cycles 
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These figures show that the errors begin when the local switch on    overlaps 

with the data access of   , and matches the hardware observations. The 

implementation only toggles buffers on data access and so the external access 

causes a premature toggle. The overlap amount is highly dependent on the task 

design. If the task were designed so, the last access of a SMA might even be 

inserted in the delay slot for the task return instruction, making it the last 

statement executed. Similarly, the load instruction could be made the first 

statement of the other task executed. In such a scenario, the communication 

latency might manifest itself to the application developer. However, most often, 

the compiler inserts broiler plate stack setup and take-down code in the function 

preludes and postludes which are sufficient to absorb the communication 

latencies. 

Figure 5.20 also shows the communication delay, from when the SMA write 

instruction is first loaded into core 0: it is executed 2½ cycles later and then 

propagated by the communication controller to the FIFO one cycle later. The 

FIFO spends 2 cycles on metastability protection and 1½ cycles on internal 

propagation. Finally, core 1 takes one cycle to notice that the FIFO contains a 

value. 

5.7.3 Initialisation 

To verify that the initialisation sequence is predictable, the initialisation time for 

each core was measured after a thousand resets: on hardware for up to four 

cores and in simulation for up to eight cores. Additionally, the hardware test was 

executed on dual, triple and quad core platforms. A single-core platform was 

also examined for the sake of comparison. 
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5.7.3.1 Results 

The average number of cycles taken to initialise each core on four hardware 

platforms, for a thousand trials, can be seen in Figure 5.21 with the standard 

deviation presented in Figure 5.22; each line represents a particular hardware 

platform with a data point for each core in the platform. Thus, the quad core 

system has four data points, while the single-core platform has only one. 

 

Figure 5.21: Average number of cycles taken for a core to initialise on one- to four-core devices 

 

Figure 5.22: Standard deviation in initialisation times on one- to four-core devices 

The reference single-core datum in Figure 5.21 shows the amount of time taken 

by the application software to initialise and Figure 5.22 shows that this 
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initialisation has zero variations. Thus, the increase in the number of cycles and 

the variation thereof for the other hardware platforms are purely due to the 

barrier synchronisation (Section 5.6.3) that ensures that cores finish initialisation 

in the order of their numbering except for the first core which always finishes 

last. In the dual, triple and quad core platforms, the second core has a zero 

variance because in this particular evaluation, the second core always finishes 

its application initialisation after the first core has begun the barrier 

synchronisation; when the second core reaches its synchronisation point, it can 

carry through immediately. For the third and the fourth cores, the number of 

cycles taken to initialise increases linearly, though no such trend can be 

observed about the standard deviation which is dependent on the software 

implementation of the barrier synchronisation (Listing 5.2). 

Figure 5.23 shows the average number of cycles taken on eight simulated 

platforms, and Figure 5.24 shows a simulation of eight cores. As might be 

expected, the simulations have no variation between runs for the same number 

of simulated cores, and no simulation equivalent for Figure 5.22 is presented. 

 

Figure 5.23: Number of cycles taken for a core to initialise on simulated one- to eight-core devices 
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Figure 5.24: Simulation of the initialisation sequence for 8-cores 

Figure 5.23 and Figure 5.24 exhibit the same linear trend in initialisation time as 

that in Figure 5.21. Figure 5.17 shows that the hardware synthesis tool is able 

to maintain the timing relationships when synthesising different numbers of 

cores and so the variations in Figure 5.22 and between the equivalently 

numbered cores in Figure 5.21 are the cause of jitter in the software algorithm 

employed, an observation reinforced by the simulation result in Figure 5.23. 

However, the amount and reduction of this jitter is of little importance, the only 

requirement of the initialisation algorithm was to start the cores in a pre-defined 

order, which the results demonstrate is always maintained, with the slaves 

starting sequentially and the master always starting last. 

5.8 Conclusions 

This chapter has examined a solution to the problem posed to TTCA by the 

introduction of long and non-harmonic tasks, especially during maintenance 

when the work is most often performed by individuals who were not the original 

developers and who are not familiar with the system. The proposed solution is 

to replace the single-core that is proving inadequate for TTCA with other, 
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possibly simpler, cores, without breaking the interface with the environment. 

Such an action may also be done at design infancy with an eye to future 

development, potentially deploying devices with unused cores. 

To increase the applicability of the solution, the inter-task communication 

scheme was examined in detail with the aim to allow tasks to be written as in a 

single-core system, maintaining the design simplicity. The evaluation in this 

chapter demonstrated that this has been successful to the extent of allowing 

even a tiny overlap in execution. 

The next chapter uses a case study to evaluate the schedulers described in this 

chapter and their effectiveness in coping with the long-task problem and the 

introduction of non-harmonic task periods. 



 
 

Chapter 6 

Case study: F-16 flight system 

6.1 Introduction 

The previous chapter described two TTCA implementations aimed at enabling 

or improving the scheduling of single-processor TTCA designs that possess the 

long-task problem or that contain tasks with non-harmonic periods; the two 

implementations were made possible by increasing the concurrency at the 

hardware level with a multi-core design. The previous chapter also described an 

inter-core communication scheme that allows tasks‘ designs to remain 

unchanged and a predictable initialisation sequence so that all the cores are 

guaranteed to be at a ready state when the TTCA implementations take over. 

To evaluate the implementations and their ability to grapple with the demands of 

maintenance and future development, this chapter studies a simulated F-16 

flight system, as specified in (Abdelzaher et al. 1997).  

The next section delves into the technical details of the system, followed by a 

detailed description of the evaluation setup. Finally, the results of the evaluation 

are presented with relevant discussions. 

6.2 Technical details 

In the published study, the period for each task in the system was varied 

depending on the required quality of service (the higher the reward, the better 

the quality) (Table 6.1). The flight system followed a pattern of first taking-off 
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and climbing; then holding a constant altitude around a rectangular path; ending 

with descending and the final approach to landing. The military operation of 

destroying possible enemy targets using an onboard radar and missiles was 

also simulated.  

Table 6.1: Evaluation task-set without a long-task 

Name WCET (ms) Period (s) QoS Level Reward 

Guidance 

100 10 0 10 

100 5 1 15 

100 1 2 20 

Controller 

80 5 0 1 

80 1 1 100 

80 0.2 2 120 

Slow Navigation 

100 10 0 10 

100 5 1 20 

100 1 2 25 

Fast Navigation 

60 5 0 1 

60 1 1 100 

60 0.2 2 120 

Missile Control 
500 10 0 1 

500 1 1 30 

 

Four basic flight control tasks were utilised: ―Guidance‖ was responsible for 

setting the reference trajectory of the aircraft in terms of altitude and heading 

with sensor values supplied by ―Slow Navigation‖; ―Control‖ was responsible for 

executing closed-loop control of the actuator with sensor values supplied by 

―Fast Navigation‖. ―Missile Control‖ reads a radar and, if necessary, launches a 

missile; execution at a higher rate allows faster-moving targets to be destroyed. 
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The original study aimed to gracefully downgrade the tasks in quality according 

to the run-time capabilities of the system. When running on a single-core, the 

periods shown in Table 6.2, TS-1, were utilised: the flight control was stable but 

sluggish and the aircraft was unable to destroy fast moving targets. When trying 

to hit fast moving targets, two processors were required to prevent 

destabilisation in the flight control. 

Table 6.2: Task-set yielding sluggish control (TS-1) 

Name WCET (ms) Period (s) QoS Level Utilisation 

Guidance 100 10 0 0.01 

Controller 80 1 1 0.08 

Slow Navigation 100 10 0 0.01 

Fast Navigation 60 1 1 0.06 

Missile Control 500 10 0 0.05 

 

The flight control can be made slightly better with the task-set, TS-2, in Table 

6.3. On a co-operative system, however, TS-2 can be expected to have large 

release jitter due to the long-task problem: the combined WCET of the tasks 

Guidance and Slow Navigation and the WCET of the task Missile Control are 

greater than or equal to the periods of the tasks Controller and Fast Navigation. 

Table 6.3: Task-set with better control but unable to hit fast moving targets (TS-2) 

Name WCET (ms) Period (s) QoS Level Utilisation 

Guidance 100 10 0 0.01 

Controller 80 0.2 2 0.4 

Slow Navigation 100 10 0 0.01 

Fast Navigation 60 0.2 2 0.3 

Missile Control 500 10 0 0.05 
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Likewise, the responsiveness of the targeting system can be improved by 

increasing the period while still staying within the utilisation bounds of a single 

processor system. This is seen in the task-set, TS-3 in Table 6.4, where the 

period of Missile Control is increased so that the utilisation is approximately 

90%; the extra 10% is to accommodate scheduling overheads. However, with 

this change, it may be noted that the tasks of TS-3 have non-harmonic 

relationships in their periods.   

Table 6.4: Task-set to improve the ability to hit fast moving targets (TS-3) 

Name WCET (ms) Period (s) QoS Level Utilisation 

Guidance 100 10 0 0.01 

Controller 80 0.2 2 0.4 

Slow Navigation 100 10 0 0.01 

Fast Navigation 60 0.2 2 0.3 

Missile Control 500 2.78 - 0.18 

 

6.3 Setup 

In this evaluation, it is considered that the F-16 flight system has been deployed 

in the field on a suitable hardware platform with TS-1. Further, it is considered 

that at a point in the future, it becomes desirable to have snappier control 

performance, resulting in the specifications of TS-2 being applied. Similarly, at 

another future point, it is considered necessary to hit faster moving targets and 

so, TS-3 becomes the new system specification. The evaluation details the 

amount of effort required to make each upgrade and the implications therein, 

grouped by the scheduler implementation. 
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The scheduler implementations chosen depended on the choice of the initial 

hardware platform: 

 A PH-MT platform: This was a platform with a single predictable PH core 

supporting interrupts. Various scheduler implementations were trialled: 

o TTC-MT: A TTCA implementation that executes tasks co-

operatively with fixed priorities. 

o DPC: An implementation that executes tasks co-operatively with 

the highest priority dynamically assigned to the task with the 

earliest deadline. 

o TTP: A fixed-priority pre-emptive implementation that allocates 

stack space as a task executes. 

o TTP-MJ: Functionally identical to TTP, but with code-balancing 

techniques applied to key scheduler areas to minimise jitter. 

o TTH: A type of TTCA implementation that permits a single pre-

emptive task in order to tackle the long-task problem (page 4-7). 

o FPP and DPP: Fixed and dynamic priority pre-emptive 

implementations that reserve space on the stack for each task on 

creation. In either case, the task with the earliest deadline is given 

the highest priority. 

 A PH-DS platform: This was a platform with a single predictable PH core 

supporting only co-operative software running a TTCA implementation, 

TTC-DS. 

 A MC-PH3 platform: This was a triple-core processor where core 0 was 

either PH-MT or PH-DS while the remaining cores were PH-DS. Either 

TTC-MC-1SB or TTC-MC-MSB was deployed depending on whether 
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core 0 was PH-MT or PH-DS. Fast Navigation and Controller were 

always executed on core 1 and the rest of the tasks on core 0 except in 

TS-3 where Missile Control was executed on core 2. 

The scheduler implementations (excepting the multi-core ones) were adapted 

from those found in the RapidiTTy® toolset from TTE® Systems; the tasks were 

implemented as dummy tasks to meet the stated WCET with a small amount of 

execution jitter introduced by an online pseudo-random number generator. The 

comparison between schedulers was made on the amount of release and 

completion jitter on the five tasks and on the software and run-time overheads 

of the scheduler. The release jitter is indicative of stable sampling and the 

completion jitter of stable actuation. 

For all three task-sets, the tick interval was set as the GCD of all the task 

periods: TS-1 had a tick interval of one second; TS-2 had a tick interval of 200 

milliseconds and TS-3 had a tick interval of 20 milliseconds. A heartbeat LED 

task (Pont 2001) was also always scheduled on core 0, at the lowest priority, at 

the rate of one Hertz. For clarity, this task has been omitted from the results. 

In the fixed-priority scheduler implementations, the highest priority was 

assigned to the task with the earliest deadline, while honouring precedence 

constraints (i.e. a navigation task is to be executed before the corresponding 

control task). In the dynamic-priority implementations, this was maintained by 

giving the navigation tasks deadlines slightly earlier than the corresponding 

control tasks.  

In the TTH implementation, the Fast Navigation and Control tasks were 

combined since only a single pre-emptive task was supported, and both these 
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tasks were of the highest priority. This resulted in TS-3 being unfeasible under 

TTH since the length of the pre-emptive task exceeded the tick interval. 

6.4 Measured task timing 

The tasks‘ execution times under TTC-MT can be seen in Table 6.5 – the times 

match the task specifications and have a controlled amount of jitter (measured 

according to Equation 2.23) inserted into them. 

Table 6.5: The run-time timing properties of the tasks under TTC-MT 

Name WCET (ms) 
Execution jitter 

(us) 
Execution jitter 

% 

Guidance 100.0 288.9 0.29 

Controller 80.0 290.7 0.36 

Slow Navigation 100.0 301.7 0.30 

Fast Navigation 60.0 293.8 0.49 

Missile Control 500.0 307.4 0.06 

 

The tasks all use the same pseudo-random number generation algorithm for 

jitter generation. They maintain their own copies of the registers for the 

algorithm and always use the same initial seed value between runs, allowing 

them to maintain their run-time properties even when pre-empted or executed in 

different sequences. 

6.5 Release and completion jitter 

The release and completion jitter for the five tasks across the different 

schedulers and task-sets can be seen in Figure 6.1, Figure 6.2 and Figure 6.3. 

All the scheduler implementations perform well with TS-1 (Figure 6.1) since this 

task-set is suitable for co-operative systems, and the pre-emptive 
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implementations have little opportunity to employ their advanced features which 

are the primary cause of jitter. As would be expected, the release jitter 

increases as the priority decreases, equalling the cumulative completion jitter of 

the higher priority tasks. The co-operative execution is distinctive by the fairly 

uniform completion jitter displayed by the different implementations. TTH 

displays a peculiarly high release jitter in the three lowest priority tasks due to a 

large completion jitter in the two combined high priority tasks. 

 

Figure 6.1: Jitter for TS-1 

The single-core co-operative schedulers have been omitted from Figure 6.2 as 

they are unfeasible with TS-2: both TTC-DS and TTC-MT displayed 
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around 85 ms, the figure is unacceptable. With TS-2 (Figure 6.2), the pre-
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(Figure 6.1), due to the increased amount of pre-emption. The multi-core 

schedulers, due to co-operative execution, are able to keep the levels of release 

jitter more or less the same as with TS-1; for some tasks the release jitter has 

even decreased since they are preceded by fewer tasks. 

 

Figure 6.2: Jitter for TS-2 
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non-harmonic relationships in the task periods; the high priority tasks exhibit 
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exhibit even higher release jitter, exceeding 750 ms in the case of the dynamic-

priority implementation. The completion jitter is also quite high (Figure 6.3), 
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their periods and have fewer tasks with high completion jitter executing ahead 

of them. 

 

Figure 6.3: Jitter for TS-3 
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that respect, the latter two may be better due to the upfront exposure of memory 

requirements. 

 

Figure 6.4: Software overhead of the scheduler implementations 
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implementations because of the simplicity of TTCA, because the tasks always 

execute co-operatively with harmonic relationships in their periods and because 

the cores have fewer tasks to execute. 

 

Figure 6.5: Run-time overhead of the scheduler implementations relative to the tick interval for 

TS-1 and TS-2 

 

Figure 6.6: Run-time overhead of the scheduler implementations relative to the tick interval for 

TS-1 
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creation algorithm on all the cores. The master core on the single builder 

implementation, however, sees a greater overhead because it builds a schedule 

for all other cores. 

 

Figure 6.7: Run-time overhead of the multi-core scheduler implementations relative to the tick 

interval 
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lowest priority task; the highest priority tasks maintained their original run-time 

characteristics. The fixed priority schedulers imposed an additional complexity 

of assigning priorities, while the dynamic priority schedulers required verification 

that a correct priority decision would be made at run-time when the decision 

criteria proved ambiguous. Under the TTH implementation, not only did the 

highest priority tasks have to be identified, but the tasks had to be merged as 

well since only one high priority task was supported. 

Under the non-harmonic task-set, TS-3, however, all the pre-emptive 

implementations fared poorly, resulting in jitter at least a couple of magnitudes 

greater than that in TS-1, even for the highest priority tasks. The TTH 

implementation fails completely with this task-set since the WCET of the pre-

emptive task exceeds the tick interval. 

Against these, the TTCA multi-core implementations were able to cope with the 

increased demand and the disruption in task period harmony, resulting in jitter 

no more than in the TS-1 case. Moving between task-sets was similar to the 

pre-emptive implementations in having to make a decision of assigning tasks to 

cores; however, the decision is conceptually simpler since blocking time does 

not have to be considered.  

On the other hand, the multi-core implementations introduced a compile-time 

management complexity since each core required a different binary. In this case 

study, this requirement was handled via extensive use of GNU C pre-processor 

directives to ensure the right C header files were used, to selectively compile 

task code for the right core and to generate common code, such as scheduler 
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setup code. Fortunately, the process is repetitious and is a suitable target for 

simplification by automation. 

6.8 Conclusions 

This case study served to show the ease with which the multi-core TTCA 

implementations may be able to cope with changes in system requirements – 

changes that may introduce the long-task problem or that may introduce non-

harmonic relationships between tasks‘ periods. A system deployed with 

dormant cores can allay the demands introduced by maintenance; with a multi-

core TTCA, this can be performed with simplicity and reliability. 

 



 
 

Chapter 7 

A TTCA multi-core hardware implementation 

7.1 Introduction 

Chapter 3 introduced the time-triggered co-operative architecture (TTCA) and a 

hardware implementation of the same (HW-TTC) with the advantage of a 

massive reduction in scheduler overhead and a constant overhead between 

task dispatches. Chapter 5 described the scheduler implementations, TTC-MC-

1SB and TTC-MC-MSB, based off of the table-free multi-rate TTCA 

implementation. These allowed for increased concurrency in the system so as 

to achieve a reduction in the latency of high frequency tasks when scheduled 

alongside task sequences with large execution times and for the separation of 

tasks with non-harmonic period relationships. However, both implementations 

display overheads dependent on the number of tasks in the system and a 

variable inter-task dispatch overhead. 

This chapter, therefore, looks at further reducing the latency caused by the HW-

TTC overheads to produce an implementation with zero overheads, HW-TTC-

ZSO and at incorporating the techniques of TTC-MC-1SB and TTC-MC-MSB 

into HW-TTC-ZSO, hoping to achieve implementations, HW-TTC-ZSO-MC-1SB 

and HW-TTC-ZSO-MC-MSB, with zero overheads, low latency and high 

responsiveness despite the presence of long-tasks. 

This chapter also examines the incorporation of release jitter reduction 

mechanisms into the hardware schedulers to ultimately yield an implementation 



A TTCA multi-core hardware implementation 

 

7-2 
 

that not only possesses zero scheduler overhead but also zero release jitter for 

harmonic task-sets. 

The next section will examine existing multi-core hardware schedulers and 

existing techniques aimed to reduce overheads and jitter in general scheduler 

implementations. Next, the changes made to HW-TTC to reduce overheads are 

detailed, followed by descriptions of the multi-core schedulers incorporated into 

hardware. Finally the jitter reduction mechanism is introduced before the 

different schedulers are evaluated on the F16 flight system simulation from 

Chapter 6. 

7.2 Related work 

Hardware techniques are gaining popularity particularly on multi-cores 

particularly due to the observation that smaller tasks ease the partitioning and 

allocation effort and improve performance; but, coincidently lead to an increase 

in the number of tasks which, in turn, increases the overheads in software 

scheduler implementations (Kumar et al. 2007; Själander et al. 2008). These 

techniques are also preferred to dedicating a core to scheduling in order to 

achieve lower power consumption and better silicon area usage (Gupta et al. 

2007). 

Hardware scheduling techniques immediately eliminate a portion or all of the 

overhead introduced by a software scheduler since the extra hardware acts as 

another processor running concurrently with the application processor. 

Simultaneously, the jitter in a scheduler can be greatly reduced by employing 

constant time algorithms to sort or search the run queues; and by servicing 

interrupts in separate processors so that jitter from context switching and ISR 
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processing are eliminated (Agron et al. 2004; Andrews et al. 2005). The 

reduction of jitter is also made easier in hardware design due to the exposure of 

the underlying timing model (Lee 2009). 

Hardware kernel techniques have been pursued for dynamic task scheduling, 

for example, there have been attempts to decrease the overheads of software 

run queues by implementing key functionality in hardware (Lai et al. 2005; 

Kumar et al. 2007). However, while these approaches sped up dynamic load 

balancing, the overhead of checking for precedence fulfilments remained in 

software. This led to other studies that employed distributed hardware task 

management units to perform these checks in the background, with the aim of 

decreasing the start time of tasks with dependencies (Själander et al. 2008; Al-

Kadi et al. 2009). Other approaches have aspired to lower power consumption 

(Gupta et al. 2007). Yet another, HW-RTOS, in the spirit of this thesis, improves 

the efficiency of the OS and the API support transparently to the application, but 

like the other aforementioned approaches, suffers in that a global scheduling 

approach is used (Nácul et al. 2007) which is unsuitable for hard real-time 

systems (Section 2.8.4). 

Under a partitioned approach, any of a number of single-core hardware 

schedulers (Stärner et al. 1996; Kohout et al. 2003; Kuacharoen et al. 2003; 

Andrews et al. 2004) could be employed, however these are aimed at achieving 

performance rather than predictability and present a programming model to the 

developer that is considerably more complex and less predictable than the 

intended co-operative approach. Hence, it is desirable to expand existing TTCA 

implementations in order to achieve the required reduction in overheads. 
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One such implementation was presented in Section 3.6.5 – the hardware table-

free multi-rate TTCA implementation, HW-TTC, that reduces almost all 

scheduler overhead. HW-TTC forms an ideal base for the exploration of the 

hardware designs of the multi-core TTCA implementations since all three have 

originated from the same basic implementation. However, a couple of 

deficiencies remain in HW-TTC: 

 The requirement for the ―endtask‖ instruction to indicate the end of the 

task results in unnecessary overhead between task dispatches which 

gets compounded with each dispatch. The lack of compiler support to 

verify the presence of this instruction may also create unexpected bugs. 

 The dispatcher is designed to run tasks as close together as possible so 

as to reduce overheads. This makes tasks susceptible to increased 

release jitter due to the execution jitter in the prior tasks (Section 2.6.4.1). 

Section 7.4 will address the first criticism, while Section 7.7 will outline a method 

of attaining zero release jitter. 

7.3 HW-TTC support for precise exceptions 

Prior to discussing the changes made to HW-TTC, it is necessary to briefly 

mention that HW-TTC maintains support for precise exceptions (Section 

5.3.3.3) by dequeuing a task from the run queue only when the ―end task‖ 

instruction is in the third processing stage – that is, only when an error cannot 

be generated by instructions in a previous task. This is done even though the 

address is already used in the first stage as an indication of where to fetch 

instructions from (Figure 7.1).  
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Figure 7.1 also shows the inter-task dispatch overhead. The first instruction of 

Task 2 is ―lw $3,-4($28)‖ and the last instruction of the previous task is ―sw 

$4,8($1)‖, yet there are three instructions in between: endtask, a jump to the 

actual function and the no-operation in the delay slot for this jump. As 

mentioned above, this overhead is due to the endtask instruction which only 

serves as a marker and necessitates an assembly language wrapping of tasks 

written in a higher level language. 

7.4 A hardware TTCA implementation with zero overheads 

The solution proposed to eliminate this overhead is to overload an instruction 

that is always inserted by the compiler, with the duty of marking the end of a 

task and in doing so, eliminate the need for ―endtask‖ and the wrapper. A key 

observation about tasks under the TTCA implementations is that they are 

always written as run-to-completion routines and so, the compiler can be 

guaranteed to always use a return-to-caller instruction at the end of the task.  

Figure 7.1: The effect of the endtask instruction on the run queues and instruction execution 
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In MIPS I, the return-to-caller instruction has the mnemonic ―jr‖, takes a register 

number as the operand and causes an unconditional jump to the address in the 

register with that number. Under MIPS conventions, the return address for a 

function call is stored in register 31 and compilers generate the ―return to caller‖ 

instruction as ―jr $31‖. Since the register number is fixed, the contents of this 

register can be used to distinguish between different ―return to caller‖ requests; 

that is, whether the function making the request is a task or not, and so the 

return-to-caller instruction can be used to indicate the end of a task to hardware. 

The revisions to produce HW-TTC-ZSO were made as follows: general purpose 

register 31 is reset to the value zero when the processor is interrupted; the 

processor sets the program counter to whatever value a ―jr‖ instruction has 

read from its register as normal, unless that value is zero (a ―task-jr‖), in which 

case the program counter is instead set to the address of the next task; and, the 

―task-jr‖ sends the ―end task‖ signal to the dispatch component in the WB stage. 

This is illustrated in Figure 7.2. 

 Figure 7.2: The effect of overloading jr with the work of endtask 
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The jr instruction can generate an ―end task‖ only at the fifth stage, since the 

instruction in its delay slot may generate an exception in the fourth stage (―sw 

$4,8($1)‖ in this case). The distinction between tasks is shown with gray 

borders in Figure 7.2 and true back-to-back execution can be observed when 

compared with Figure 7.1. 

A sample execution sequence is as follows: as before, the processor is woken 

from sleep using an interrupt and is provided the address of the first task. When 

the task requests to return to caller, the processor starts reading instructions 

from the next task. When the last task requests to return to the caller, the 

processor starts to read from an undefined next task address. However, the 

scheduler instructs the core to insert NOPs into the pipeline until the last 

instruction of the last task has passed through the last pipeline stage 

whereupon the processor is requested to sleep. 

Another change was the switch of task storage from registers to SRAM, 

allowing for a maximum of 128 tasks compared to the original 8. This 

necessitates two cycles for each task during the build cycle, increasing the 

schedule build time for 8 tasks from 8 cycles to 16 cycles. As in the original 

design (Section 3.6.5), this latency remains invisible to an application, but 

increases the length requirement on the run queue (page 3-18) as      is 

doubled (Equation 7.1). Equation 7.1 takes into account the five cycles that 

elapse from fetching the jr instruction to actually sending the ―end task‖ signal 

to the dispatch component. 

     
                   

                              
 ( 7.1 ) 
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7.5 The hardware multiple schedule builders implementation 

This scheduler implementation is a straightforward extension of HW-TTC-ZSO. 

Similar to the pure software version, it consists of duplicating HW-TTC-ZSO for 

each core with one exception: the update component in each HW-TTC-ZSO is 

triggered by the timer from the timing master (Figure 7.3).  

 

To maintain predictability, the update components all spin for the same number 

of cycles to look for tasks to insert into their queues, even if the maximum 

number of tasks supported by each one is different. In order to ensure that all 

dispatches start at the same time on a  -core device, an additional user-

specified number of cycles      are also added after the schedule has been 

built from task-set      for the      core (     ) to allow for communication 

latency, increasing       (Equation 7.2) and the required run queue length 

(page 3-18) for that core. As before (Equation 7.1), the five cycles spent from 

fetching the jr instruction to signalling ―end task‖ are factored in. 

Figure 7.3: Functional overview of the hardware multi-core multiple schedule builder scheduler 
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                  ( 7.2 ) 

7.6 The hardware single schedule builder implementation 

The hardware implementation of TTC-ZSO-MC-1SB deviates in its storage of 

the run queues, opting for hardware versions instead of simulated versions in 

shared memory in order to avoid contention between the core and the 

communication manager. Each core has its own run queue as an asynchronous 

FIFO and a dispatch component that reads from this queue; the scheduling core 

alone has an update component (Figure 7.4). 

 
The single update component creates the entire schedule as before (Section 

3.6.5) and pushes task addresses into the proper queues. Once the schedule 

has been created, it then sends the ―queue ready‖ signal on an asynchronous 

line to all the dispatch components at the same time. To allow for latency in the 

FIFOs on an  -core, this signal is sent a user-specified number of cycles   after 

the queues have been built for each task-set      of the      core (     ), 

Figure 7.4: Functional overview of the hardware multi-core single schedule builder scheduler 
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resulting in a uniform      (Equation 7.3) and required run queue length (page 

3-18) for each core. As before (Equation 7.1), the five cycles spent from 

fetching the jr instruction to signalling ―end task‖ are factored in. To be 

effective,   must be at least as large as the number of cycles of asynchronous 

delay introduced by the FIFO. 

     
                       

                              
                ( 7.3 ) 

7.7 A pure hardware sandwich delay mechanism (-HSD) 

As a solution to release jitter in TTCA, Section 4.4.3.2 has already touched 

upon the sandwich delay mechanism which for its precise timing requires a 

hardware timer to be set up and a delay until this timer overflows. Section 3.6.4 

explored a hardware encapsulation of the delay under the TTC-SHD scheduler. 

This scheduler provides a solution with low power consumption but at the cost 

of extra overhead and the need to maintain an accurate measurement of the 

execution time of the set up so as to compensate for it. 

The sandwich delay mechanism can be fully incorporated into the hardware 

schedulers without many fundamental changes since the WCET (in cycles) can 

be provided with the other task parameters, the hardware is already in control of 

when a task starts and the required run queue lengths already assume the 

worst-case (page 3-18 and Equations 7.1, 7.2 and 7.3). 

To obtain this functionality, the update component must supply a tuple of the 

address and WCET cycles in the ready queue instead of just the address: the 

general principle is to initialise a counter with the WCET every time a task 
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executes and to decrement the counter until it reaches zero (Figure 7.5). If the 

task finishes before the counter reaches zero, the core is put to sleep instead 

and woken up again when the counter does reach zero. This action is 

unnecessary and so, omitted, for the last task in a run. 

 
Waking the core up from sleep requires the use of the interrupt mechanism 

which introduces a little delay as the processor warms up. This can be 

countered by factoring the delay into the counter value, i.e. subtracting the 

number of warm-up cycles from the counter‘s initialisation value. This technique 

is suitable for the first task as it will always experience the delay. However, the 

subsequent tasks will experience the delay only if their execution times are 

sufficiently smaller than their WCETs. The very use, then, of the sandwich 

mechanism might introduce jitter depending on whether a warm-up is 

necessary. 

To avoid this, it was observed that the warm-up is required since the processor 

aborts the instructions in the first three pipeline stages (Section 5.3.3.3). This is 

Figure 7.5: Changes made to the dispatch component to support sandwich delays 
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necessary for the first task since those instructions are undefined and cannot be 

allowed to change the processor state; however in the case of subsequent 

tasks, those instructions are strongly defined as belonging to the next task and 

need not be aborted. Thus for the subsequent tasks, another signal was added 

between the dispatch component and the core to indicate the necessity of 

clearing the pipeline on an exception.  

As an aside, the sandwich delay mechanism also has the ability to easily create 

precisely timed tasks for the purposes of maintaining precedence constraints 

(Section 5.6.2), with the tasks using a minimum of code space (only two 

instructions are required: a ―return to caller‖ instruction and a NOP for its branch 

delay slot). 

7.8 Evaluation 

The developments in this chapter were aimed at completely eliminating the 

overheads of a TTCA implementation and the release jitter exhibited by such an 

implementation. To demonstrate the effectiveness of the solution, the various 

schedulers were evaluated with the F16 flight system case study in Chapter 5: 

TS-1 on the single-core hardware schedulers, TS-2 on dual-core schedulers 

and TS-3 on triple-core schedulers. The results are shown in the subsequent 

sections alongside those from the co-operative schedulers in Chapter 5 and the 

co-operative schedulers with sandwich delays enabled (-SSD), for comparison. 

7.8.1 Release and completion jitter 

The release and completion jitter for the five tasks across the different 

schedulers and task-sets can be seen in Figure 7.6, Figure 7.7 and Figure 7.8. 

The jitter measurements for TS-1 on the single-core schedulers in Figure 7.6 
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immediately indicate that the translation of the schedulers into hardware 

provides no noticeable advantage in reducing jitter. However, a striking 

difference appears with the –HSD schedulers, where the release jitter drops to 

zero (indicated by gaps in the charts) for all the tasks and the completion jitter 

drops to zero for all tasks that do not execute last in a tick interval; in this case, 

all the tasks have zero completion jitter because a heartbeat LED task executes 

last on the first core. As mentioned in Section 7.7, this behaviour is by design as 

there is no task executing after the last task that requires zero release jitter. 

 

Figure 7.6: Jitter for TS-1 

Figure 7.7 shows TS-2 on various dual-core schedulers: Fast Navigation and 

Controller on the second core and all other tasks on the first core. As expected, 

the three tasks that execute after other tasks show a non-zero release jitter due 

to the completion jitter in the previously executing task; and, as before, the –

HSD schedulers are able to remove release jitter completely by removing the 
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completion jitter in the previous tasks. The completion jitter remains almost the 

same as in Figure 7.6 except for Controller which is the last task executing on 

the second core; the heartbeat LED task still executes last on the first core.  

 

Figure 7.7: Jitter for TS-2 

Despite their advantageous jitter reducing effects on TS-1 and TS-2, the –HSD 

schedulers are ineffective in doing the same for the non-harmonic (Section 4.5) 

task-set TS-3, as in that case, the jitter is not caused by execution jitter in the 

previous tasks, but by variation in the task execution sequence within the 

hyperperiod. Hence, TS-3 was executed on three cores as seen in Figure 7.8: 

Missile Control on the third core, Fast Navigation and Controller on the second 

core and all other tasks on the first core. As before, tasks executing after other 

tasks exhibit non-zero release jitter, the –HSD schedulers are able to remove 

release jitter completely and completion jitter remains for the tasks that execute 
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Figure 7.8: Jitter for TS-3 
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Figure 7.9: Software overhead of the scheduler implementations 

The reduction in code size is dramatic, though not unexpected since the 

scheduler functionality has been moved from software into the hardware. Figure 

7.10 shows the hardware utilised, as the number of slices occupied for solely 

one function, when the hardware scheduler is implemented in a configuration 

with one core possessing 32 Kb code memory, 32 Kb data memory, three 

timers and one GPIO. The figure shows the utilisation for each combination of 

the inclusion of the overhead reduction and the jitter reduction mechanisms 

alongside results from Figure 5.14. The figure illustrates that a hardware 

scheduler results in at least 14% increased hardware consumption over an 

unpredictable PH core and is very similar to that consumed by hardware 

including a predictable PH-MT (Section 5.7.1.1). The overhead reduction 

mechanism adds negligible hardware cost to the base hardware scheduler 

implementation, while the jitter reduction mechanism adds approximately 5%, 
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Figure 7.10: Hardware utilisation when using a hardware scheduler with and without the overhead 

and jitter reduction mechanisms 

It is worth noting that the increase in the hardware to support a scheduler is 

much less than the result of adding another core dedicated to scheduling 

(Section 5.7.1.1), demonstrating the silicon area advantage of a hardware 
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from an asynchronous to a synchronous run queue; this is largely due to the 

schedule building mechanism and the increased data path for task data (i.e. 

periods, phases, etc. in addition to the address in memory) for a core building 

its own schedule. 

 

Figure 7.11: Hardware utilisation when using a multi-core hardware scheduler with and without the 

jitter reduction mechanism and inter-core communication 
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PH cores execute the tasks‘ instructions in a single-cycle, the extra three cycles 

are the overhead of the tasks wrappers. In the case of the last task, the ―Insert 

NOPs‖ command removes the ―endtask‖ instruction from the pipeline and hence 

it is not visible in the last three stages. 

 

Figure 7.12: Sample execution of three tasks under HW-TTC 

On the other hand, Figure 7.13 gets rid of the wrappers completely with the 

ZSO technique, such that tasks A and B execute for exactly their duration of two 

cycles or 80 ns. It should be noted that in both cases, the processor is put to 

sleep only when the last instruction of the last task has completed the last 

pipeline stage. 

 

Figure 7.13: Sample execution under HW-TTC-ZSO 
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Figure 7.14 shows the schedule creation for a dual-core system under HW-

TTC-ZSO-MC-1SB. From the figure, a total of 19½ cycles can be observed to 

elapse before the scheduler begins to dispatch tasks: ½ a cycle is spent to 

recognise the timer interrupt, 16 to update the run queues and 3 to give 

sufficient clearance for communication latency. This result was corroborated by 

the measurement of a consistent 760 ns interval from timer overflow to core 

wakeup on the hardware. This delay is greater than that for HW-TTC, but 

imposes no additional overhead or jitter as it stays constant over the uptime of 

the system, provided the delay for communication latency is only modified at 

initialisation. 

 

Figure 7.14: Schedule creation for a dual-core HW-TTC-ZSO-MC-1SB 

7.9 Conclusions 

This chapter has extended the multi-core schedulers developed in the previous 

chapter to yield implementations that exhibit zero scheduler run-time overhead 
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and zero release jitter for harmonic task-sets. The zero run-time overhead has 

been achieved by tapping into the concurrency provided by a hardware 

scheduler without affecting the run-time properties of the tasks such as release 

or completion jitter. The latter two were reduced by incorporating the sandwich 

delay mechanism (Section 4.4.3.2) completely into hardware. This mechanism 

utilises the spare capacity that has already been reserved in the TTCA 

implementation during design time and requires no special consideration by a 

scheduling algorithm. 

 



 
 

Chapter 8 

Case study: The BR715 Engine Controller 

8.1 Introduction 

The case study described in Chapter 6 investigated the deployment of a single-

processor design on a multi-core platform as a means of aiding future 

development and maintenance. However, this route is only available to systems 

in development that are yet to be deployed; therefore, this chapter uses the 

case of an existing electronic engine controller system to study the migration of 

an existing system to the multi-core platform. 

The system under study has been borrowed from the case study in (Bate 1998) 

which similarly studied a migration from one scheduler architecture to another. 

The work in the original study was eventually adopted by Rolls-Royce for use 

on an actual engine in an aircraft. For confidentiality, the original study changed 

or omitted some of the task properties, such as names and purpose; however, 

important timing requirements were left as-is. Some of the content of the 

original study is reproduced in Appendix C. 

In subsequent sections, the reasons for moving the system to a multi-core 

design are first outlined, followed by a description of previous work done in 

formulating algorithms capable of building schedules for the multi-core design. 

Next, an algorithm for partitioning and scheduling the tasks on a multi-core 

system is presented, followed by the results of using the algorithm on a system 

running HW-TTC-ZSO-MC-MSB. 
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8.2 Technical details 

For this case study, the tasks shown in Table C.1 (Appendix C) were 

implemented as execution-jitter-free dummy tasks using a hardware timer, with 

the execution times either at or a maximum of 120 μs below the WCET.  

The large number of tasks in Table C.1 and the complex transactions 

requirements in Figure C.4 are indicative that the system is non-trivial. With a 

total processor utilisation of 84.3% for the tasks alone, there is a tight timing 

margin which complicates the creation of a system schedule and the 

maintenance of the system in the long run. Such requirements may then 

necessitate costly system redesigns and/or alterations of timing requirements. 

In the face of these, it may prove more cost-effective to move to a multi-core 

design instead. As seen in earlier chapters, such a move is able to 

accommodate maintenance issues, however the problem of creating the system 

schedule for the multi-core remains. 

8.3 Previous work 

As outlined in Section 2.8.4, no partitioning algorithms have been specifically 

defined for TTCA, though many of the heuristic algorithms can be extracted 

from existing partitioning algorithms and applied to the TTCA by simply 

switching the feasibility checks performed (Section 3.3) to validate a task 

assignment to a core. While the work in (Monot et al. 2010) deals with the cyclic 

executive, it is not directly applicable since it was designed for integrating a 

multi-processor design into a multi-core design and expects many non-

communicating groups of communicating tasks; the technique under 
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consideration, on the other hand, targets a single processor design and non-

communicating groups of tasks are expected to be scarce. 

Another assignment criterion is to assign tasks using the same peripheral to the 

same core. A soft multi-core gives some manoeuvring ground in this aspect in 

that peripherals can be connected to cores as dictated by the assigned task-set. 

However, the matter gets more complicated if a peripheral needed by a task 

has already been assigned to a core but the task itself cannot be feasibly 

assigned to that core. One solution is to perform an initial clustering of tasks so 

that clusters do not share resources – the heuristics then work on clusters 

instead of tasks (Monot et al. 2010). Another solution is to create gateway tasks 

that have sole access to peripherals and that receive instructions on how to 

manipulate the peripherals from tasks on other cores (Audsley et al. 1993). 

Chapter 9 will explore a third alternative. 

8.4 A static schedule creation algorithm 

A static schedule creation algorithm must first assign a scheduling algorithm per 

core, then partition tasks amongst cores and finally create a schedule for each 

core, honouring all constraints. For the multi-core system developed in this 

thesis, the scheduling algorithm is irrevocably an implementation of TTCA. 

As explained in Sections 2.8.1 and 2.8.4, both the creation of a static schedule 

and the static partitioning of tasks are computationally intractable, and for 

practical usage, computationally simple heuristics must be employed.  
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8.4.1 Schedule creation 

For this case study, an implementation of the time-triggered scheduling 

algorithm 1 (TTSA1) (Gendy 2009) was used. TTSA1 aims to create a schedule 

that meets all task constraints and that keeps power consumption as low as 

possible. The algorithm takes tasks‘ attributes such as the period and the 

deadline as input and produces a tick interval and new phases for each task as 

output. 

The algorithm works by sorting tasks first according to precedence constraints 

and next by some other user defined strategy: 

 Shortest deadline first: In a task-set with implicit deadlines, this provides 

the same results as a shortest period first strategy. 

 Least laxity first 

 Shortest WCET first 

For ease of reference, the scheduling algorithm using these strategies will be 

referred to as TTSA1-SDF, TTSA1-LLF and TTSA1-SWF respectively. 

After the tasks are sorted, the algorithm simulates execution under TTCA with 

the largest possible tick interval, including implementation overheads, by 

considering one task at a time; if a simulation fails as a result of a constraint 

violation, the phase of the task under consideration is increased and the 

simulation is re-run. The phase is increased until it is evident that further 

increase will provide no new feasible or unfeasible solution, whereupon the 

entire process is repeated with the next largest tick interval. The algorithm 

continues until all tasks‘ constraints have been met. 
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The algorithm does not perform an exhaustive search, merely stopping at the 

first schedule that meets all constraints. It assumes that because the search 

was begun with the ―best‖ tick interval, the first feasible schedule will represent 

a good (but not necessarily optimal) solution. 

The implementation of the algorithm used in this work was restricted to produce 

only TTCA task-sets, though the complete algorithm can also produce 

schedules for the time-triggered hybrid implementation (Section 4.3.4). The 

algorithm was also supplemented with an optional capability to increase the 

phase of tasks that do not take part in transactions, reducing the number of task 

group executions that exceed the tick interval and, hence, reducing the overall 

release jitter. When this capability is enabled, the algorithm will be referred to as 

TTSA1-JR. 

8.4.2 Task partitioning 

The task partitioning scheme employed a first fit (FF) heuristic (Section 2.8.4) 

since this provides a more efficient solution compared to the next fit heuristic. 

The best fit heuristic may have provided better results (Burchard et al. 1995), 

but also requires an algorithm capable of calculating the optimal schedule for a 

set of tasks, a job that TTSA1 avoids due to the large computation time. The FF 

heuristic allocates tasks purely on the basis of their utilisation and is, therefore, 

much more computationally tractable. The output of the heuristic was varied by 

the specification of a per-core utilisation cut-off, from 0.5 to 1.0 in 0.1 intervals; 

and, by the task sorting strategy: by increasing periods or by decreasing 

utilisation. For ease of reference, task partitioning using either of these 

strategies will be referred to as TP-IP and TP-DU respectively. 
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The partition algorithm used the same initial step as in (Monot et al. 2010), by 

placing all tasks involved in a transaction on the same core. This allowed the 

single processor TTSA1 algorithm to be used as-is, without having to be made 

aware of the presence of multiple cores. 

8.5 Evaluation platform 

This case study made exclusive use of the HW-TTC-ZSO-MC-MSB scheduler 

(Section 7.5) on a MC-PH2 (Section 5.4). The HSD mechanism (Section 7.7) 

was not used since the tasks were implemented with zero executive jitter. In 

cases where all the tasks were scheduled on one core, the other core was left 

dormant. Since a HW-TTC-ZSO- scheduler was used, TTSA1 was executed 

under the expectation of zero scheduling overheads. 

The following sections present the system configurations obtained by executing 

the partitioning and schedule creation algorithms and their effect on the task 

release jitter. 

8.6 Task distribution 

As the utilisation threshold for 

the partition algorithm was 

varied from 1.0 to 0.5, the 

required number of cores rose 

to a maximum of two. Figure 

8.1 shows the distribution of 

the 71 tasks across the cores.  
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When the tasks were sorted by decreasing utilisation, the partitioning algorithm 

was able to fill up the first core with the high utilisation tasks, leaving the lower 

utilisation tasks to the second core. Hence, under TP-DU, more tasks were 

placed on the second core compared to TP-IP, especially with a lower utilisation 

threshold. A similarly strong correlation cannot be made for TP-IP since there is 

no general correlation between a task period and the utilisation. In this particular 

case, TP-IP resulted in partitions where more tasks were placed on the first 

core. 

It can also be observed from Figure 8.1 that an utilisation cut-off of 0.9 and 1 

resulted in the same single-processor partitioning of tasks under both 

strategies. This is because the overall utilisation is 0.84. The systems can also 

be expected to perform similarly, since the scheduling algorithm applies its own 

sorting. 

8.7 Release jitter 

The task-set used in this study consists of 71 tasks, and it would be unwieldy to 

present the release jitter for each task individually for each partition and 

scheduling strategy used. For this reason, in this and subsequent sections, the 

release jitter is shown as the average of the release jitter of the 71 tasks. This 

measure is sufficient to assess the overall effect of the scheduler (―a lower 

value is better‖), though it should be mentioned that some tasks do indeed show 

zero release jitter. 

Figure 8.2 and Figure 8.3 show the release jitter for TTSA1 and TTSA1-JR 

respectively. The blank spaces in Figure 8.3 do not represent zero jitter, but 

cases where the algorithm was unable to generate a schedule. This can be 
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observed whenever the task-set utilisation is high. In all cases, the release jitter 

was within requirements (Section 8.2). 

 

Figure 8.2: Release jitter when using TTSA1 with different strategies 

 

Figure 8.3: Release jitter when using TTSA1-JR under different strategies 
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The release jitter arises from occasional tick overruns by the execution of task 

sequences; these overruns are occasional but regular because tasks in the 

sequence have different request rates. This formed the motivation behind 

TTSA1-JR and also explains its effectiveness: in the case of TTSA1-JR-SWF 

with TP-DU and a cut-off of 0.5, a reduction of 88% is observed. However, in 

other cases, the effect is minute, for example a reduction of just 3% is observed 

for TTSA1-JR-SDF with TP-IP and a cut-off of 0.7. This latter case is because 

the original schedule already exhibits low amounts of jitter. 

The release jitter is not eliminated completely because TTSA1-JR ignores tasks 

involved in transactions – these are still allowed to overrun the tick interval. 

Under TTSA1-LLF and TTSA1-SDF, the second core – which has no tasks 

involved in transactions – shows zero release jitter. This is because the sorting 

method nullifies the effect of different request rates, an effect that is very 

evident in TTSA1-SWF. This trend can also be observed in Figure 8.2 where 

TTSA1-SWF has the highest amount of jitter in all but the single-core cases. 

Figure 8.2 also shows that TP-IP always results in lower release jitter compared 

to TP-DU. It also appears that an utilisation cut-off of 0.7 is a sweet spot for this 

algorithm when applied to this task-set, resulting in very low jitter under TTSA1 

that is only marginally improved (if at all) by TTSA1-JR. It also performs best 

with TTSA1-LLF and TTSA1-SDF because of the strong correlation between 

the criteria used in these two sorting strategies and that used in TP-IP itself. 
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8.8 Tick interval 

TTSA1 realises its goal of minimum scheduler overhead by creating a schedule 

that uses as large a tick interval as possible. The tick intervals for the different 

schedules in this case study can be seen in Figure 8.4. 

 

Figure 8.4: Task intervals under the different strategies 

Both TTSA1-LLF and TTSA1-SWF generate a tick interval of 6.25 ms while 

TTSA1-SDF generates a tick interval of 12.5 ms. 
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The amount of time taken to generate a schedule for the former is then a 

valuable measure. This time taken for the task-set in this case study can be 

seen in Figure 8.5 and Figure 8.6 for TTSA1 and TTSA1-JR respectively. 
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Figure 8.5: Time taken to compute the schedules with TTSA1 

 

Figure 8.6: Time taken to compute the schedules with TTSA1-JR 
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The algorithms were executed on the Java VM v1.6.0 executing on a 32-bit 

version of Windows XP, on one core of an Intel Pentium D CPU running at 3.40 

GHz with 3.24 GB of RAM. The run-times were gathered from the millisecond 

accurate operating system timer. 

The partitioning algorithm takes very little time in all cases due to the extremely 

low computational complexity. On the other hand, the scheduling algorithm has 

a higher complexity and takes a much longer time, especially when the 

processor utilisation is high. Despite this, at a maximum, the time reaches a 

very reasonable eight seconds. It should be noted that TTSA1-SDF displays the 

lowest run-times overall. 

As would be expected, TTSA1-JR increases the computation time, particularly 

on the core with fewer tasks involved in transactions since there are more 

opportunities to apply the algorithm. 

8.10 Conclusion 

This chapter used an electronic engine controller as a case study for the 

migration of an existing single-processor design to a multi-core TTCA design. 

The major deterrent to such a migration is the allocation of tasks to different 

cores, for which reason, a common allocation heuristic was applied to the 

electronic engine controller task-set combined with a TTCA schedule creation 

heuristic. 

A number of heuristic variations were studied, out of which a partitioning based 

on increasing periods and a schedule creation based on the sorting of tasks 

according to their deadlines proved most effective particularly when the 
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maximum utilisation of all cores was capped at 70%. This system demonstrated 

lower release jitter, lower power consumption as indicated by a higher tick 

interval and took a shorter time for the computation of a task schedule. 

The case study demonstrated that the allocation of tasks to cores and the 

generation of an appropriate TTCA schedule is not time consuming and can be 

sufficiently automated with good results. 



 
 

Chapter 9 

Non-blocking transparent resource sharing 

9.1 Introduction 

Chapter 5 first introduced the concept of increasing the applicability of single-

processor TTCA designs by making use of a multi-core platform. To facilitate 

this move, a predictable, wait-free communication scheme was introduced that 

allowed the programmer to move tasks that share common data memory on to 

different cores without the bother of introducing coherence or consistency 

schemes.  

Unfortunately, this scheme is not applicable to input-output (I/O) resources and, 

as yet, it has been left implicit that a secondary scheme in software is to be built 

on top of the communication scheme to allow these other resources to be 

shared. However, this extra effort of implementing software schemes impedes 

and complicates the move to TTCA on a multi-core, against the aims of this 

thesis. This chapter will examine ways of automating the management of 

shared I/O resources in the designed multi-core TTCA, counting on the 

guarantees provided in Chapter 7 of zero scheduler overhead and of a jitter-free 

start time for tasks. 

The first section will briefly re-visit I/O resources, first introduced in Section 

2.7.4 and then move on to the requirements imposed by the TTCA multi-core 

design. Next, a scheme of sharing the resources without blocking the software-

core is examined together with methods of supporting atomic non-cancellable 
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transactional access to the resources. The last section presents an evaluation 

based on two shared peripherals: a general-purpose input-output (GPIO) 

peripheral and an analogue-to-digital converter (ADC) peripheral. 

9.2 Input/output resources 

As indicated by the name, input/output (I/O) resources provide I/O capabilities 

to a software processing core by providing a direct or indirect interface to the 

environment. Since these resources often lie on the periphery of a device (as 

opposed to co-processors), they are also referred to as peripherals. 

The peripheral interfaces to the 

environment via analogue or digital 

signalling and is generally accessed by 

embedded software via reads or writes to 

the global memory space (Figure 9.1) 

(Berg 2009), which are translated by 

hardware into reads and writes to internal 

peripheral registers. In addition to these 

software-controlled writes, registers in a 

peripheral may also change as a result of 

an environmental action (e.g. a button being pressed) or due to another register 

being written (e.g. a character LCD incrementing the cursor position when the 

character register is written). Some register writes may trigger processor 

notifications in the form of interrupts or through the assertion of polled-flags. 

Register writes from the processor may be commands to start an operation, the 

initialisation of data to be used by a future command or the scan of data 

Environment 

Peripheral 

Core 

Memory 

Co-processor 
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o
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ro
c
e
s
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Data memory bus 

Figure 9.1: The I/O resource or peripheral 



Non-blocking transparent resource sharing 

 

9-3 
 

calculated by previous software- or environmentally-initiated operations. In 

some cases, the operations are perceived as instantaneous by software (e.g. 

changing the voltage level of a pin) and in others, they may non-

deterministically take several processor cycles to complete (e.g. converting an 

analogue value to a digital one). 

Peripherals may also be used by embedded software as-is or as the base for 

another interface, for example, software serial protocols on top of general-

purpose input-output peripherals, or an Internet protocol stack on top of an 

Ethernet peripheral. This wrapping of another peripheral may also be performed 

at the hardware level, introducing new registers and/or eclipsing existing ones. 

9.3 Design constraints 

To facilitate the move from a single-core TTCA implementation to a multi-core 

one as proposed in Chapter 5, it is essential that the tasks that share resources 

and that have been placed on different cores (hence capable of overlapping 

executions) do not interfere with each other. The aforementioned chapter has 

explored this requirement and provided a solution for memory resources; a 

similarly beneficial solution is required for peripherals. 

9.3.1 Non-blocking scheme 

To prevent altering the WCET of a task, which may have repercussions on the 

system schedule, it is necessary to implement a non-blocking scheme. Ideally 

the scheme would be wait-free, similar to that designed for memory-type 

resources. Even though peripherals are accessed via the global memory space, 

the developed buffer scheme (Section 5.5) cannot be used since tasks may 

make requests and await responses in the same I/O resource transaction. 
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9.3.2 Low jitter 

For predictability, it is necessary to avoid affecting the time determinism of the 

system, that is, the relationship between a timed output stream and a timed 

input stream must not be broken and must be reasonably independent of the 

number and periods of tasks using a resource (Thiele et al. 2004). 

9.4 Related work 

9.4.1 The gateway scheme 

In this scheme, all communication with the peripheral is performed via a single 

task, i.e. a gateway (Audsley et al. 1993). Communication with the task is 

performed via memory resources and, hence, the I/O resource sharing problem 

is transformed into a memory resource sharing problem – a problem that can be 

tackled by the non-blocking communication. Gateways may commonly be 

implemented as part of the driver for a peripheral – a driver being a software 

module that aids portability by creating an abstraction between the task and the 

peripheral. 

Gateways have the flexibility of being software implementations and may hence 

be changed as the system requirements change. However, being software 

implementations, they suffer a performance hit (Raj et al. 2007). Additionally, 

the gateway introduces latency into the system since it has to be scheduled as 

a task and may hence be affected by jitter in the system. This jitter will be added 

on to the jitter of the client tasks. 

The scheduling constraints on a gateway may also increase as the number of 

client tasks of the peripheral protected by the gateway increases, for example, 

each task may require the gateway to run at different frequencies. These 
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constraints may then interfere with other tasks on the gateway core, leading to 

the need for a costly arrangement where an entire core is dedicated to the 

gateway task. In such a situation, a hardware solution may be more cost-

effective. 

9.4.2 Partitioning resources 

In a partitioning scheme, tasks are allocated to the cores to which the required 

peripherals are attached (Crespo et al. 2010). There is usually no provision for 

the peripheral to be shared with the other cores and memory caches, if present, 

may also be partitioned (Bui et al. 2008). Partitioning is a static procedure and 

may be done at the software or hardware level depending on the requirements 

of the system. It is the principle behind the Real-Time Virtual Multi-processor 

(RVMP) architecture that uses static partitioning to divide a single cache-less 

processor with fully-pipelined functional units into separate virtual processors 

(El-Haj-Mahmoud et al. 2005). 

Partitioning is sometimes matched with safety-critical systems (Crespo et al. 

2010) and is a part of the AUTOSAR automotive standard (Monot et al. 2010). 

This method is particularly suited for systems that are designed off a soft-core, 

since the peripherals can be moved around freely until a suitable allocation is 

found. 

9.4.3 Time-division multiple access 

Time-division multiple access (TDMA) schemes have been used to confine 

access to a shared memory bus to a statically decided slot (Rosén et al. 2007; 

Schoeberl et al. 2009). Under such a scheme, the system workload needs to be 

known a priori, so that the slot length and frequency can be fixed. However, the 



Non-blocking transparent resource sharing 

 

9-6 
 

size of a slot has to be greater than the worst-case transaction time, the 

identification and calculation of which may be non-trivial. 

This solution is also susceptible to failures due to the execution non-

determinism within the task execution: if a transaction starts too late compared 

to the timeslot, it might not complete before the end of the timeslot (an early 

access can be delayed until the slot begins). This could be handled by widening 

the timeslot by a margin equal to the highest release jitter of all tasks using the 

peripheral. However, when this same consideration is applied to all the 

resources that may be used by a task and to all the tasks running on the core, 

the allocation of timeslots becomes non-trivial. On the other hand, execution 

non-determinism within a task could be eliminated completely as in one study 

that uses the single-path programming paradigm and a TDMA scheme to 

access shared memory in a multi-core (Schoeberl et al. 2009). This, however, 

increases the power consumption of the system. 

A common timeline also re-introduces the requirement for harmonic period 

relationships – re-linking tasks that may have been moved to separate cores for 

the sole purpose of breaking up non-harmonic relationships. 

9.4.4 Other approaches 

Another technique attempts to bound the amount of a time a task may wait on a 

shared resource to be available (Paolieri et al. 2009). This same work explores 

a processor mode capable of calculating the task WCET using the maximum 

bound and the grouping of tasks according to the frequency of resource 

demands, allowing for high processor utilisation; groups are scanned for 

requests in a round-robin fashion. 
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9.5 Global and proxy peripherals 

In the designed resource sharing scheme, the peripherals that were connected 

directly to a core, i.e. local peripherals, were placed outside the control of the 

core, forming global peripherals. However, to permit the core to still have cycle 

time access to a peripheral, virtual, or proxy peripherals were left behind that 

give the core the impression that the peripheral is still directly connected (Figure 

9.2). This is similar to the software driver implementations in embedded 

virtualisation (Heiser 2007) but differs from other hardware implementations 

where the processor is blocked (Gary et al. 2004; Chen et al. 2009). 

 

 
Each global peripheral is connected to the outside world but has no state 

registers of its own – these are in the proxies instead. When the cores write 

data to the peripheral, they communicate with the proxy in the same way as 

with a local peripheral. The proxy wraps data and transmits it to the global 

peripheral via a FIFO while the global peripheral scans each incoming FIFO in a 

fixed order, performing the first requested operation, if any, before moving to the 

next FIFO, even if the current FIFO contains more requests. 

Figure 9.2: Global peripherals and proxies to allow resource sharing 
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When the global peripheral senses or is notified of a change in the environment, 

e.g. a button is pressed by the user, it broadcasts the event to all the proxies 

which then modify their own copies of the registers. This pushback mechanism 

eliminates the bandwidth that would otherwise be required if each proxy were to 

poll for register changes.  

For this work, the communication mechanism between the global peripherals 

and the proxies has been chosen to be FIFOs, but another network may also be 

employed. The FIFOs are at one extreme, being a point to point topology and 

allow for other quantities to be measured deterministically. On the other 

extreme is a bus topology where all the global peripherals are connected 

together with all the proxies. A slightly more moderate arrangement may be one 

bus for each type of peripheral. Ultimately, the topology must support 

asynchronous operation since cores may be clocked at different frequencies. 

As information from a global peripheral is broadcast, an upper bound can be 

established on the length of a proxy‘s incoming FIFO, taking into the account 

the number of cycles of asynchronous delay in the FIFO  , clock rate 

mismatches between the global peripheral and the proxy   (Equation 9.1) and 

the maximum number of cycles required by the proxy to process the broadcast 

data (Equation 9.2). 

  
                               

                   
 ( 9.1 ) 

                                                               ( 9.2 ) 

In a similar manner, a finite upper bound can be established on the size of the 

outgoing FIFO, taking into account the number of cores  , the number of cycles 
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of asynchronous delay in the FIFO  , clock rate mismatches between the global 

peripheral and the proxy   (Equation 9.1) and the maximum amount of time 

required to perform a peripheral operation (Equation 9.3). 

                                 

        
                                         

 
  

( 9.3 ) 

9.5.1 A time-triggered approach 

As explained above, a global peripheral stops scanning its incoming FIFOs 

when performing an operation, using them both as a buffering mechanism and 

as a communication medium. Thus, any non-determinism in the peripheral 

usage pattern or the operation execution time is transferred to the scanning 

pattern, implying that a global peripheral could be scanning a different FIFO 

each time a task starts. A task would then experience jitter in accessing the 

resource even if it has zero release jitter. Using a hardware sandwich delay 

mechanism (Section 4.4.3.2) on the resource operation is one solution, but 

would be impractical since the operations carried out by a peripheral are varied 

and may be requested in any order. They may then be given the same WCET, 

but this would lead to a waste of resources. 

Even if the FIFO scanning were kept continuous, with new data being stored in 

an internal buffer, the newly buffered data would still be applied at times 

dependent on the completion of the previous operation and will have the same 

implications as the previous case. 

To increase the predictability in the developed system, the scanning mechanism 

is restarted whenever the timer on core 0 generates an interrupt. Thus, the 
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mechanism is always in a known state after a tick has occurred. While it may 

still gather non-deterministic behaviour as execution progresses for the tick, the 

cause for the non-determinism is localised to the previous tasks in the tick and 

is, hence, more controllable. 

The determinism could be increased further by restarting the scan at the start of 

every task. However, since different cores may be running different tasks at 

different times, the scanning may be continuously restarted, giving the global 

peripheral no opportunity to service cores further down the scan sequence, 

resulting in resource starvation instead. 

This reset of the scanning mechanism can analogously be applied to other 

network topologies, for example, a bus arbitration mechanism where tables 

used to influence arbitration could be cleared or reset to a known state on the 

generation of a tick. 

9.5.2 Transaction capable 

While the above hierarchy allows for resource sharing, the requirement for 

transactions is still not fulfilled: by cycling rapidly between the FIFOs for the 

cores, critical sections may be interleaved – a violation of their atomicity.  

One way to avoid this is to use the blocking method of locking a global 

peripheral onto a particular core until a transaction is complete. In such a state, 

the peripheral will only scan the FIFO of the core that has locked the peripheral 

and will only send data to this particular core. A locked peripheral will appear 

―busy‖ to the cores that do not own the lock and these other cores will have to 

operate on stale data in the proxies for the duration of the lock. This method, 

then, requires a technique to mark the critical sections. 
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9.5.2.1 Marking the critical sections 

Critical sections could be demarcated with explicit software instructions; 

however, this complicates the design with the need to assess the locations of 

potential resource conflicts. This could be alleviated by doing the identification 

and code insertion automatically. However, the application software may be 

written with a co-operative mindset, i.e. it may assume full control of the 

processor and may unnecessarily interleave accesses to different resources 

(Section 3.2.3). 

Under this assumption, the critical section for a resource used by a task can be 

considered to start either at the start of the task or at the time of first access of 

the resource; the end of the critical section can be considered to be either at the 

end of the task or at the time of the last access of the resource. These 

demarcations can be easily handled on behalf of the application software: 

resource access can be automatically tracked by hardware and locking on task 

start or end can be performed in the same manner as for the switching of the 

communication buffers. 

Unfortunately, race conditions, arising from the lack of execution determinism 

inside a task, may introduce jitter when locking or unlocking is performed on the 

basis of accesses. At the same time, making the entire task a critical section for 

each resource used by it can be overly pessimistic, may completely serialise 

code execution and may reintroduce the long-task problem.  

9.5.2.2 Timed access 

An alternative approach may be to create a TDMA schedule for each global 

peripheral where any core requiring access to that peripheral is statically 
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granted a timeslot. This is similar to the scheme discussed in Section 9.4.3 and 

bears the same disadvantages. 

9.5.2.3 Intelligent peripherals 

The key problem with the approaches above is the use of a locking mechanism 

to protect the resources and the protection of the entire task as a critical 

section. In concurrent systems, locking mechanisms are best employed to 

protect small (in execution time) areas of shared resources, even if the result is 

a large number of locks. 

The remaining alternative is to wrap the peripherals with additional logic that 

can recognise software-access patterns and take appropriate action. Two 

particular peripherals are considered in the following sections: a general-

purpose input-output (GPIO) peripheral and an analogue-to-digital converter 

(ADC) peripheral. 

9.6 Globalising the GPIO peripheral 

The GPIO peripheral has a number of uses; from very simple ones like flashing 

an LED or sensing a button press to more complex ones like the 

implementation of a serial protocol. It provides a digital interface to the 

environment via a set of pins on the chip. The direction (input or output) of a pin 

and the voltage level on the pin are controlled by different registers in the 

peripheral. GPIO pins are normally connected to various different devices 

(perhaps through optical or electrical isolators), and it is a very common usage 

to control pins individually without modifying the state of the others. 
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The single-core GPIO implementation used a single register to maintain the 

state of the pins. Asserting a pin required an OR operation between this register 

and an appropriate mask, while an unassert operation required an AND 

operation. When globalising the peripheral, this behaviour was inappropriate 

since a single bit operation required a write to the entire register. A different 

mechanism of SET and CLEAR commands was used, similar to the ARM 

microcontroller. 

As a local peripheral, the GPIO peripheral is able to read the state of the pins 

whenever requested to do so, since this is an instantaneous operation. 

However, a proxy peripheral is unable to do this and must maintain the state of 

the pins in a register. This register is updated by the global peripheral via a 

pushback mechanism; the global peripheral itself polls the pins at regular 

intervals to be aware of any state changes. 

Neither the proxy nor the global peripheral in this implementation implement any 

extra flow control, hence requiring the size of the FIFOs between them to be 

configured according to Equation 9.2 and Equation 9.3. 

9.7 Globalising the ADC peripheral 

The ADC peripheral is very popular in embedded control systems for sampling 

analogue signals. Most often, the peripheral will support multiple analogue 

signals or channels, with only one conversion logic tree, requiring tasks 

sampling on different channels to wait for the previous conversions to complete. 

To aid this mutual co-operation, the ADC peripheral includes a register to 

indicate its ―busy‖ status. Tasks wait (by polling or by interrupts) on changes to 

this register before starting a conversion or reading the conversion result.  
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Typical ADC usage includes a write to a configuration register to pick the 

channel, a command to start conversion, a wait for the conversion to be 

completed and a read of the converted value. When globalising the peripheral, 

this sequence was treated as a critical section: it should not be interrupted by 

any other core. For example, the configuration must not be changed after it has 

been written, but before the conversion starts. 

The proxy honours this by writing to the configuration register locally. When the 

conversion is actually requested, the conversion request is sent along with the 

configuration value to the global peripheral. The global peripheral then 

broadcasts the busy status to all the proxies, configures itself and starts the 

conversion; the converted value is sent back to the proxy that requested the 

conversion. 

The global and proxy peripherals have to be designed with the same care as 

concurrent software. For example, two proxy peripherals may send a 

conversion request at the same time, whereupon the global peripheral must 

clearly indicate which request is being handled. In this particular case, this is 

performed by sending the converted value back only to the proxy whose 

request was handled; this proxy alone clears the ―busy‖ status. 

While Equation 9.2 supplies an upper bound for the proxy‘s incoming FIFO, the 

proxy‘s included flow control requires only one entry in the outgoing FIFO, 

contrary to Equation 9.3. 
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9.8 Evaluation 

The evaluation of the globalised ADC peripheral consisted of the execution of a 

simple task that asks for the value on channel 0 of the ADC peripheral and then 

waits until the conversion is performed. The evaluation utilised four task-sets 

built from one to four replicas of this basic task. The task-sets were executed on 

four systems with varying number of cores such that one task executed on each 

core. In cases where the number of tasks exceeded the number of cores, the 

excess tasks were left unscheduled. The use of a HW-TTC-ZSO-MC-MSB 

scheduler allowed all the tasks to be started at the same time, so as to 

guarantee resource conflicts on the ADC. 

The evaluation of the globalised GPIO peripheral was performed similarly, 

except that the job performed by the task was to assert a single pin. The times 

for this peripheral were measured from the nearest tick to when the global GPIO 

actually handled the assertion request, since the tasks do not wait on the 

peripheral. 

9.9 Operational jitter 

The tasks utilising the ADC peripheral had zero release jitter as expected, but 

the execution jitter varied as seen in Figure 9.3. However, as soon as the FIFO 

scanning was reset on a tick, the execution jitter dropped to zero (not shown).  
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Figure 9.3: Execution jitter when waiting for the completion of an ADC conversion 

The execution jitter in waiting for an ADC conversion arises from contention 

between the different tasks attempting to utilise the same peripheral and from 

the FIFO scan being at a different position at each task start. Resetting this 

scan at the tick helps to reduce execution jitter if the task execution and its use 

of the peripheral is deterministic. The execution time of the other tasks is 

lengthened depending on the core on which they execute (Figure 9.4). 

 

Figure 9.4: Execution time of the ADC sampling tasks with scan reset enabled 
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The amount of jitter displayed is directly proportional to the operation time. For 

the GPIO peripheral, where the tasks do not have to wait for the peripheral and 

where the operation takes one cycle, miniscule jitter is observed when the scan 

reset mechanism is employed (Figure 9.5). 

 

Figure 9.5: Jitter in servicing a pin assertion request on a global GPIO peripheral 
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completion jitter remains unaffected. The mechanism improves on the situation 

compared to the original situation, but is still not capable of complete protection. 

9.10 Hardware utilisation 

The hardware utilised, as number of slices occupied for solely one function, for 

various configurations can be seen in Figure 9.6. The basic configuration was a 

dual-core with each core having 32 kb code memory, 8 kb data memory, the 

ability to communicate and a hardware scheduler with multiple schedule 

builders, overhead reduction and jitter reduction; the first core had two timers 

and the second core had one timer. This configuration was then used to 

produce four variations: two where the first core has either a local GPIO or a 

local ADC peripheral; and two where both cores have access to either a global 

GPIO or to a global ADC peripheral. 

 

Figure 9.6: Hardware utilisation when moving to the resource sharing scheme 

As expected, adding a local peripheral to the first core increases the hardware 

usage by approximately 1%, with the GPIO peripheral introducing half the 

15,471

15,634

16,248

15,556

16,633

14,800

15,000

15,200

15,400

15,600

15,800

16,000

16,200

16,400

16,600

16,800

Basic Local ADC Global ADC Local GPIO Global GPIO

N
u
m

b
e
r 

o
f 

s
lic

e
s



Non-blocking transparent resource sharing 

 

9-19 
 

utilisation compared to that of the ADC peripheral. Given this, it is unusual that 

when globalised, the cost for the global peripheral and two proxies is 

approximately 2% more for the GPIO than for the ADC. This is both because 

the data sent from the global to the proxy for the ADC is half the size of that for 

the GPIO and because the GPIO proxy has to maintain more registers than the 

ADC proxy. As explained in Section 9.6, some of these registers do not exist in 

the local GPIO peripheral because they can be read directly from the hardware 

when required. Accordingly, the cost of globalising the GPIO is approximately 

4% of the basic configuration per core compared to an approximate 2% per 

core for the ADC and this trend can be expected to continue as the number of 

cores is increased as illustrated by the trends in Figure 5.15 and Figure 7.11. 

9.11 Conclusions 

For safety-critical systems, it is a good idea to restrict tasks sharing a peripheral 

to one core to avoid the nuances of resource sharing. However, for cases 

where this is not possible, this chapter has discussed the use of a global and 

proxy peripheral scheme that allows resources to be shared without blocking 

the processing cores. 

This scheme was also combined with a technique to reset the communication 

controllers between the global and proxy peripherals when a tick occurs. If the 

task sequence and resource usage are deterministic, this technique reduces the 

jitter in performing operations on a shared peripheral.  

However, the technique is unable to completely isolate tasks, and the 

probability exists that a task added in the future may increase the run-time of all 

tasks on the cores that it shares peripherals with. 



 
 

Chapter 10 

Discussion and conclusions 

10.1 Introduction 

Simplicity is an outstanding methodology for achieving a reliable design, 

primarily because it makes systems easier to reason about, leading to easier 

and faster design which has a higher probability of being not only correct but 

both efficient and reliable. While complexity has the appearance of adding to a 

product‘s value, it does not necessarily aid the construction of complex 

functionality; and, simplicity in design does not imply simplicity in functionality. 

With this motivation, this thesis has proposed the continued utilisation of the 

simple and highly predictable time-triggered co-operative architecture (TTCA).  

Nevertheless, this architecture does not see much support, primarily due to the 

long-task problem. While this may be taken care of at the design stage through 

appropriate techniques, it has a high probability of being introduced during 

maintenance when the system is modified by developers who have little to no 

experience with the system. Another similar issue is the creation of non-

harmonic relationships in the task periods which can cause wide swings in all 

tasks‘ release and finishing jitter which are indicative of a system‘s sampling 

and actuating jitter respectively. 

Another drawback is that TTCA can guarantee low release jitter for only the first 

task in the sequence of task executions after a tick, leaving remaining tasks to 

the mercy of whatever execution jitter exists in the preceding tasks. 
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This chapter reviews the work presented in this thesis that tackles these 

problems and presents a solution so as to enlarge the set of feasible single-

processor TTCA designs. The chapter concludes with a discussion on the 

limitations of the work and scope for future work. 

10.2 Multi-core TTCA implementations 

As a solution to the long-task problem, this thesis has proposed increasing the 

concurrency in the system through a multi-core TTCA design. In doing so, it 

was deemed important to begin the multi-core design from a predictable 

processor design. One such processor was found to be the PH-MT soft core 

that has already been designed from the ground-up to be as predictable as 

possible and that supports TTCA, for e.g. by only supporting a single enabled 

interrupt. 

In order to maintain the simple application design of TTCA, the memory system 

on the multi-core was specially structured so that tasks running on different 

cores could share data while still written sequentially and still running 

concurrently. This prevented the need for code to be sprinkled with special 

markers designating areas of contention, greatly simplifying the design of 

concurrent tasks. The memory system was based around a wait-free loop-free 

three-buffer scheme that ensures that the reading task always reads the latest 

data and that the writing tasks never overwrite the most recent data. The 

system also accommodates tasks that execute at different frequencies to allow 

for the common ―n sample task executions for one control execution‖. 

Under evaluation, the latency in the communication scheme was found to be 

absorbed in the function preludes and postludes normally inserted by a C 
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compiler to the extent that the evaluation program was even able to overlap the 

execution of the tasks sharing resources by about 10 cycles. Also noteworthy is 

that the communication controller is approximately half the size of the PH-MT 

core and that it produces a deterministic output even when the number of cores 

is increased. 

After the communication controller, two multi-core TTCA implementations were 

built for the multi-core: one that filled the run queues for all other cores (TTC-

MC-1SB) and one where each core filled its own run queue (TTC-MC-MSB). 

The former provides scope for a global management scheme whereas the latter 

provides security through isolation of the schedule building mechanism. TTC-

MC-MSB is also flexible in that the schedule creation algorithm for a core may 

be changed independently of the other cores. Such a change can also be made 

in TTC-MC-1SB, but requires a modification of the master core and may have 

further ramifications. Under TTC-MC-1SB, each core is triggered by a virtual 

interrupt from the ―master‖ core when the run queue is ready, whereas under 

TTC-MC-MSB, each core is triggered by the timer on the ―master‖ core. Under 

evaluation, these mechanisms were found sufficient to start the task execution 

on the slave cores at the same time. 

Due to the dependence on the interrupts from the master core, a proper 

initialisation sequence was also formulated in software that guaranteed that the 

master core always finished the sequence last. This was found to hold true on 

hardware when synthesised for up to four cores and in simulation for eight 

cores. 
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With the entire multi-core design implemented as discussed above and along 

with the multi-core TTCA implementations, it was then proposed through a case 

study to solve the long-task and non-harmonic task problem by partitioning the 

tasks amongst cores so that no core in the system has a long-task and so that 

each task-set on a core has harmonic periods. 

10.3 Hardware multi-core TTCA implementations 

The multi-core TTCA implementations still had the disadvantage of imposing 

the overhead and jitter of schedule creation and task dispatch on software 

running on the multi-core. When considering the number of tasks that can 

potentially be scheduled by a multi-core implementation, it was desirable to 

provide an alternative implementation that could reduce this overhead and jitter. 

In doing so, an existing TTCA hardware implementation, HW-TTC, was 

extended by first making a modification that would allow for truly zero scheduler 

overheads without destroying support for precise exceptions, resulting in HW-

TTC-ZSO. This same scheduler was again extended with a hardware version of 

the software sandwich delay scheme for reducing jitter, producing a hardware 

implementation with zero overheads and zero release-jitter (HW-TTC-ZSO-

HSD). An evaluation of the system proved these expectations and also 

demonstrated that the scheduler core is only 18% of PH-MT, while the 

processor core decreases in size by 23%. 

It was also possible to add a user configurable delay to task execution that 

ensured that the latency of communicating the task information did not delay 

task execution on any of the cores. The evaluation proved this valid when the 
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tasks on all cores, even on the master core in HW-TTC-ZSO-MC-1SB, started 

at the same number of cycles after the timer interrupt. 

10.4 An I/O resource sharing scheme 

I/O resources are different from the memory resources considered in the multi-

core communication scheme because writes to their registers may cause 

immediate interactions with the environment. However, since this thesis 

considers exploding a single-processor design across a multi-core, it became 

necessary to consider ways of sharing I/O resources. 

In this endeavour, the peripherals were split up into a proxy component that 

stayed attached to a core and a global component that was attached to the 

environment. Proxies in different cores communicated with the global 

component via a network, with the system employing a relaxed memory 

consistency scheme where the proxies stored all the peripheral data and the 

global peripherals pushed back new data when available. A novel technique of 

resetting the network structures on the system timer overflow was also utilised 

to add determinism into the system, with the maximum effect being produced on 

a 4-core system with a jitter reduction from 4.98 μs to zero. This jitter was found 

to be dependent on the length of transaction with the resource. 

Unfortunately, the techniques are unable to completely eradicate the effects of 

resource sharing and it is still possible for a later change in the system to unduly 

elongate the execution time of an existing task on a different core related only 

by the shared peripheral. 
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10.5 A simpler, but predictable processor 

One observation made in almost all TTCA implementations is that the interrupt 

service routine is merely used to count the number of ticks. Yet, this simple 

routine may interfere with the execution of a task, increasing latency and jitter. 

To avoid this, the mechanism of counting ticks was moved into hardware by 

matching sleep requests against core interrupts; the core is put to sleep only 

when every interrupt is matched by a sleep request. The rest of the scheduler 

remained in software and retained flexibility in the formulation of the scheduling 

algorithm.  

This core, dubbed the PH-DS, is as predictable as the PH-MT, but not as 

flexible. It is however more flexible than the core that utilises a complete 

hardware scheduler. The evaluation found PH-DS to be 24% smaller than PH-

MT, a savings that sees greater benefit when the core has to be replicated in a 

multi-core. For example, under TTC-MC-1SB, it is sufficient to employ PH-DS 

as the core for the slave cores; TTC-MC-MSB is simple enough to allow this for 

all the cores. 

10.6 Multi-core schedule creation algorithm 

While not considered a novel contribution, the schedule creation algorithm used 

in the engine controller case study merits a mention. This case study examined 

the migration of an existing system to the multi-core TTCA. This system was 

interesting in that the tasks could be run co-operatively but there were a great 

many tasks, all of small execution length and the transactions between tasks 

were complex.  
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To avoid the error prone method of allocating and scheduling tasks manually, 

the case study implemented an algorithm by tying together a popular bin-

packing heuristic and a TTCA scheduling algorithm heuristic (TTSA1). Among 

the different variations that were evaluated, it was discovered that a partitioning 

based on increasing periods with an utilisation threshold of 0.7 per core and a 

schedule creation based on earliest deadline first, proved most effective. With 

such parameters, the algorithm also took a shorter time to compute its result 

and produced a result possessing lower release jitter than all the other 

variations. It is also expected that the result will consume the least amount of 

power owing to the generation of scheduling parameters with the largest tick 

interval. 

10.7 Limitations 

This thesis has demonstrated how the major problems in TTCA can be solved 

by moving to multi-core TTCA implementations, without any impact on the 

application software. However, there are a number of limitations in the 

presented work. 

The first limitation is that the communication scheme is very closely tied to the 

memory structure. One of the implications is that a particular shared memory 

area cannot be used for both read and writing. The processor also only uses 

scratchpad memory and, so, each buffer is also implemented similarly on the 

SRAM present in the FPGA. If the multi-core were to be used for general-

purpose TTCA applications, then the memory might be changed to a larger 

external memory. In such a case, it becomes more expensive to duplicate the 

entire data memory. 
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Another limitation is that the predictable initialisation scheme requires the 

communication mechanism and that this initialisation scheme is required by all 

the multi-core schedulers. Thus, even if the choice were made to run the cores 

completely independently, with no communication between tasks on different 

cores, no hardware savings can be made by eliminating the communication 

mechanism. 

The hardware scheduler suffers from the same inflexibility limitation that affects 

any other hardware component, but is also limited in its portability. Crucial 

features of the scheduler, such as the zero scheduler overhead, required in-

depth knowledge of the functioning of the PH core and also unrestricted access 

to modify the code for the core. The scheduler is also closely tied to the MIPS 

instruction set and the 5-stage pipeline of the PH core. 

10.8 Novelty contributions 

The thesis has made five key contributions to the field of safety-critical 

embedded systems. The first contribution is a novel processor that widens the 

applicability of the time-triggered co-operative architecture (TTCA) by enabling 

long-tasks and non-harmonic tasks to be scheduled alongside high frequency 

tasks without changing the application software. This contribution will allow for 

more responsive and reliable systems. 

The second contribution is the incorporation of these techniques into hardware, 

achieving a system that is able to expose the whole of the processor‘s 

computing resource to the application software. This contribution will allow for 

more surety of the available processing power during system development. 
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The third contribution extends the second contribution to protect the execution 

of a task so that it experiences zero release jitter. This contribution will reduce 

the chance that a sampled signal will be wrongly reconstructed, ensuring stable 

system behaviour. 

The fourth contribution allows resources to be shared amongst cores without 

the cores blocking when trying to access the same resource concurrently and 

the re-initialisation of the communication infrastructure with the shared resource 

so that resource access is deterministic. This contribution allows for a relaxation 

in the constraint that tasks on different cores must not share resources, hence 

allowing for a computationally simpler allocation and scheduling algorithm that 

is faster to run, reducing development time. 

The fifth contribution is a predictable processor core for purely co-operative 

software that does not introduce the latency and jitter from the interrupt service 

routine into the executing co-operative task. This contribution reduces the 

silicon cost of a multi-core TTCA implementation. Additionally, like the second 

contribution, it allows for greater surety of the available processing power during 

development. 

10.9 Recommendations for future work 

The resolution of the limitations described above can constitute a start to future 

work. For example, to allow the communication scheme to work with a larger 

amount of memory, only a portion of the data memory needs to be buffered. 

Under this scheme, compiler support will then be required to place all shared 

memory variables into the shared area. The limitation with the initialisation 
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scheme can be resolved quite straightforwardly by a hardware implementation 

with single-bit asynchronous signalling. 

A bulk of future work can also examine the automation of many of the 

development-side management issues such as the allocation of tasks to cores. 

Such a tool could also be made intelligent enough to extract tasks‘ timing 

properties and present a range of possible allocations along with the tradeoffs 

made by each one. 

Such a tool would require an improved multi-core TTCA allocation and 

scheduling algorithm in the first instance that can handle communicating tasks 

across cores as well as tasks sharing resources. Since the schemes presented 

in this thesis are deterministic, the analysis can be done off-line and so utilise a 

much greater range of computing resources to arrive at a result. 

Further work is also required to improve the scalability of the multi-core 

implementations, primarily in the communication and the resource sharing 

schemes. As a first step, this will involve a move to a more scalable network 

topology, away from the point-to-point topology currently being used. This move 

can be expected to increase hardware costs as well as communication latency, 

perhaps necessitating a hybrid application-specific topology, rather than a 

generalised, regular one. 

 

 



 
 

Appendix A 

Glossary 

A.1 Abbreviations 

ALU – Arithmetic Logic Unit 

AMP – Asymmetric multiprocessing 

API – Application Programming Interface 

ASIC – Application specific integrated circuit 

BCET – Best-case execution time 

CMP – Chip-level multi-processors 

COTS – Commercial off-the-shelf 

CPU – Central Processing Unit 

DPC – A table-free multi-rate TTCA implementation that executes tasks co-

operatively with the highest priority dynamically assigned to the task with 

the earliest deadline 

DPC-SSD – A modified DPC implementation with software-blocked sandwich 

delays 

DPP – A pre-emptive implementation that reserves space on the stack for each 

task on creation and that dynamically associates a higher priority to the 

task with the earliest deadline 
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ETA – Event Triggered Architecture 

FIFO – First-in first-out data structure 

FPGA – Field programmable gate arrays  

FPP – A fixed priority pre-emptive implementation that reserves space on the 

stack for each task on creation 

GCD – Greatest Common Divisor 

HDL – Hardware description language 

HW-TTC – A hardware table-free multi-rate TTCA implementation that executes 

tasks co-operatively with fixed priorities 

HW-TTC-ZSO – A modification of the HW-TTC implementation that exhibits 

zero scheduling overheads 

HW-TTC-ZSO-HSD – A modified HW-TTC-ZSO implementation with purely 

hardware implemented sandwich delays 

HW-TTC-ZSO-HSD-MC-1SB – A modified HW-TTC-ZSO-MC-1SB 

implementation with purely hardware implemented sandwich delays 

HW-TTC-ZSO-HSD-MC-MSB – A modified HW-TTC-ZSO-MC-MSB 

implementation with purely hardware implemented sandwich delays 

HW-TTC-ZSO-MC-1SB – A hardware table-free multi-rate TTCA 

implementation that executes on a MC-PHn with the schedule builder 

running on one core 
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HW-TTC-ZSO-MC-MSB – A hardware table-free multi-rate TTCA 

implementation that executes on a MC-PHn with schedule builders 

running on each core 

I/O – Input/output 

ISR – Interrupt Service Routine 

Kb – 1 Kilobyte or 1024 bytes 

LCM – Least Common Multiple 

MC-PHn – A microcontroller with n PH-DS cores or 1 PH-MT core and n 1 PH-

DS cores 

MPSoC – Multi-processor system-on-chip 

PH – The PH soft-core implementation 

PH-DS – A modified PH implementation with the delayed sleep mechanism 

PH-MT – A modified PH implementation with multithreading 

RTOS – Real time Operating System 

SMA – Shared memory area 

SMP – Symmetric multiprocessing 

SMT – Simultaneous multithreading 

SoC – System-on-chip 

TP-IP – An algorithm that sorts a set of tasks in ascending order of their periods 

before partitioning it 
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TP-DU – An algorithm that sorts a set of tasks in descending order of their 

deadlines before partitioning it 

TTA – Time Triggered Architecture 

TTC – A table-free multi-rate TTCA implementation that executes tasks co-

operatively with fixed priorities 

TTCA – Time Triggered Co-operative Architecture 

TTC-DS – A TTC implementation that executes on the PH-DS 

TTC-DS-SSD – A modified TTC implementation with software-blocked 

sandwich delays that executes on the PH-DS 

TTC-MC-1SB – A table-free multi-rate TTCA implementation that executes on a 

MC-PHn with the schedule builder running on one core 

TTC-MC-MSB – A table-free multi-rate TTCA implementation that executes on 

a MC-PHn with schedule builders running on each core 

TTC-MC-SSD-1SB – A modified TTC-MC-1SB implementation with software-

blocked sandwich delays 

TTC-MC-SSD-MSB – A modified TTC-MC-MSB implementation with software-

blocked sandwich delays 

TTC-MT – A TTC implementation that executes on the PH-MT 

TTC-MT-SSD – A modified TTC implementation with software-blocked 

sandwich delays that executes on the PH-MT 
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TTC-SHD – A modified TTC implementation with hardware-blocked sandwich 

delays 

TTH – Time Triggered Hybrid 

TTH – A type of TTCA implementation that permits a single pre-emptive task in 

order to tackle the long-task problem 

TTP – A fixed-priority pre-emptive implementation that allocates stack space as 

a task executes 

TTP-MJ – Functionally identical to TTP, but with code-balancing techniques 

applied to key scheduler areas to minimise jitter 

TTSA1 – A heuristic algorithm that builds a schedule for time-triggered 

co-operative architectures 

TTSA1-LLF – A version of TTSA1 that sorts the tasks in ascending order of 

their laxities before building the schedule 

TTSA1-SDF – A version of TTSA1 that sorts the tasks in ascending order of 

their deadlines before building the schedule 

TTSA1-SWF – A version of TTSA1 that sorts the tasks in ascending order of 

their WCETs before building the schedule 

VHDL – VHSIC hardware description language 

VHSIC – Very-high-speed integrated circuit 

WCET – Worst-case execution time 
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A.2 Definitions used by the task model 

absolute deadline – The deadline of a frame when measured from when the 

system starts. 

complete – See concrete. 

concrete – A set of tasks in which the phase of all tasks is known a priori. 

Also known as complete. 

deadline – The time at which a frame should have finished its work. 

See also absolute deadline, implicit deadlines and relative deadlines. 

execution – A portion of a frame usually produced as a result of interruptions 

by higher priority tasks. 

execution time – Amount of time consumed by a frame, usually demarcated by 

the best-case and the worst-case amongst all frames. 

feasible – An indication that a set of tasks can be executed on a particular 

system. 

finishing time – The time at which a frame or execution finishes its work. 

frame – A particular release of the task. 

harmonic – A task-set where the period of each task is an integer multiple of 

the task with the smallest period. 

hyperperiod – The amount of time after which the sequence of executions of 

tasks‘ frames repeats. 
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Also known as major cycle. 

implicit deadline – When the deadline of the task is assumed to equal its 

period. 

laxity – The amount of computation time left at any particular time. 

Also known as slack. 

major cycle – See hyperperiod. 

minor cycle – See tick interval. 

period – The amount of time between consecutive releases. 

phase – The time from when the system starts to the release time of the first 

frame of a task. 

precedence constraints – A constraint on a particular task that lists the tasks 

that should have executed before it. 

priority – An indication of its importance. 

relative deadline – The deadline of a frame measured relative to the release 

time of the frame. 

release time – The time at which a frame should begin its work. 

slack – See laxity. 

start time – The time at which a frame or execution actually begins its work. 

synchronous – A task-set in which all tasks have a zero phase. 

tick – The interruption caused by a time event in a time-triggered architecture. 
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tick interval – The amount of time between two consecutive ticks in a time-

triggered architecture. 

Also known as minor cycle. 

utilisation – The percentage of computational time consumed by a task or task-

set, upper bounded by the worst-case. 

See also Section 2.6, ―The task model‖ on page 2-9, particularly Figure 2.3. 

A.3 Units 

ms Milliseconds (10-3 seconds) 

μs Micro-seconds (10-6 seconds) 

A.4 Notations 

  Set of non-negative integers                  

   Set of positive integers                

 

              

Ordered set   of size =     

    Largest integer that is smaller than the real number  . 

    Smallest integer that is greater than the real number  . 

    The worst-case utilisation of a task-set Eq. 2.11 

     The hyperperiod of a task-set  . Pg. 2-11 

     
The phase of a task  . Pg. 2-9 

     The period of a task  . Pg. 2-9 

     The number of frames of a task  . Pg. 2-9 

        The best-case execution time of a task    Eq. 2.8 
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        The worst-case execution time of a task    Eq. 2.7  

        The worst-case utilisation of a task    Eq. 2.9 

        Execution time of the     frame of a task    Eq. 2.6 

       The release time of the     frame of a task    Eq. 2.2 

       The start time of the     frame of a task    Eq. 2.4 

       The relative deadline of the     frame of a task    Pg. 2-9 

       The absolute deadline of the     frame of a task 

   

Eq. 2.3 

       The finishing time of the     frame of a task    Eq. 2.5 

       The computation time left for a task   at a time  . Pg. 2-11 

       The slack or laxity for a task   at a time  . Eq.  2.10 

       The number of executions of the     frame of a 

task    

Pg. 2-9  

         The start time of the     execution of the     

frame of a task    

Pg. 2-9 

         The finishing time of the     execution of the     

frame of a task  . 

Pg. 2-9 

        The upper bound of the interval that must be 

evaluated for feasibility analysis; a more concise 

form of                       for a task-set  . 

Pg. 2-11 

  The tick interval. Pg. 3-3 

     Overhead introduced by the interrupt servicing 

routine. 

Pg. 3-3 

      Overhead introduced by dispatching a task. Pg. 3-3 
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     Overhead introduced by a runtime schedule 

creation algorithm. 

Pg. 3-3 

     The set of tasks, ordered by presence in the task 

table, released as a result of the     tick. 

Eq. 3.1 

          The set of tasks, ordered by presence in the task 

table, released before a task   as a result of the 

    tick. 

Pg. 3-3 

      The set of tasks, ordered by release time and by 

presence in the task table, to be released in the 

    tick interval. 

Eq. 3.5 

      The set of tasks, ordered by release time and by 

presence in the task table, started in the     tick 

interval. 

Eq. 3.6 

          The worst-case execution time of the     tick 

interval. 

Eq. 3.3 

        The amount of time by which the execution time 

of the     tick interval exceeds the tick interval. 

Eq. 3.4 

     The amount of lag experienced by the scheduler 

dispatch component in sensing the     tick 

compared to the schedule creation component. 

Pg. 3-4 

 
See also  Section 2.6, ―The task model‖ on page 2-9, particularly Figure 2.3. 

 Section 3.2.1, ―The TTCA model‖ on page 3-3. 

 



 
 

Appendix B 

The three buffer single-writer, single-reader 

mechanism 

This chapter describes the functioning of the asynchronous three buffer single-

writer, single-reader mechanism, as detailed in (Chen et al. 1997b). This 

scheme was first named in Section 2.7.2 and was used as the basis of the 

hardware communication mechanism described in Section 5.5. 

B.1 Introduction 

Data sharing is a basic approach to achieving inter-task communication within a 

variety of applications. At a basic level, this approach can be described as a 

writer task copying data into a common location (a buffer) which is later 

scanned by a reader task (Figure B.1).  

 
 

 
For successful data sharing, the coherence as well as the integrity of the shared 

data values must be guaranteed, i.e. the shared data must arrive at the reader 

both wholly uncorrupted and in a totally ordered manner. It is also necessary 

that the data be kept fresh by making the latest complete version of the shared 

data produced by the writer always available to the reader. 

Figure B.1: Data sharing between one writer and one reader 

Data buffer Writer Reader 
Data values Data values 
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The three-buffer mechanism described here facilitates successful data sharing 

in real-time, multi-processor systems where: the data transferred from the writer 

to the reader must both be accurate and arrive in a timely manner; the data 

transfer mechanism must not reduce the available parallelism; the data to be 

transferred is too large to be a candidate for any atomic data transfer 

techniques built into the microprocessor hardware; and, there is no relationship 

between the times taken for the write operations and the read operations. The 

mechanism does not protect against data either being overwritten when the 

writer is faster than the reader or being skewed when the reader is faster than 

the writer; such protection is expected to be implicit in the real-time properties of 

the writer and reader. 

B.2 The design of the mechanism 

The decision on the number of buffers in the mechanism was driven by the 

need to use as few resources as possible and the freshness requirement 

mentioned above: one buffer to allow the reader to run concurrently with the 

writer; and at least two buffers for the writer to switch between so that the 

reader can still get the data from the last completely written buffer when the 

writer is busy. To preserve coherence and integrity, the buffer which is to be 

read by the reader and the reader‘s state are always made known to the writer, 

significantly in the event that a writer begins in between the reader‘s decision of 

which buffer to read and the announcement of this decision. 

In the design illustrated in Figure B.2 and in Listing B.1, the data accessed by 

the reader and the writer include the three-element buffer array, buffer and the 

two control variables, reading and latest. The data transferred from writer to 
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reader can be held in any buffer. The control variable latest always indicates the 

buffer holding the latest version of the completely written shared data whilst 

reading is used to indicate both whether the reader is in the process of deciding 

which buffer to read and the buffer which was read by the reader. A constant 

table next is constructed to help the writer to efficiently decide which buffer to 

write into. The writer helps the reader to update the reading control variable so 

that it always indicates the buffer that is going to be read. 

 
 

 
When the writer starts its execution, it delivers a new version of the shared data 

into a buffer which has the index value different from the current values of latest 

and reading. The value of latest is then updated. The writer then attempts to 

update reading, if it hasn‘t already been updated by the reader. The reader, 

before accessing a buffer, updates reading with the value of latest to indicate it 

is reading that buffer. 

Since no guarantees can be made that the update to reading by the reader will 

not be interleaved with executions of the writer, the update is actually done in 

two steps: first setting reading to a value that indicates that it is about to be 

Figure B.2: A representation of the three-buffer single-writer single-reader mechanism 

buffer0 

Writer Reader 
Data values Data values 

buffer1 

buffer2 

reading 

latest 
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updated and then updating it with the value of latest. Additionally, both the 

updates to reading by the writer and reader are done under atomically 

evaluated conditions, i.e. the value of reading is guaranteed not to change from 

when the condition is evaluated to when it is finally changed/left unchanged. 

SHARED buffer IS 3 ARRAY OF DATA 
SHARED reading IS INTEGER FROM 0 to 3 
SHARED latest IS INTEGER FROM 0 to 2 
 
DEFINE Write: 
   INIT next AS 4 ARRAY OF (3 ARRAY OF INTEGERS) = [ [ 1, 2, 1 ], 
 [ 2, 2, 0 ], 
 [ 1, 0, 0 ],  
 [ 1, 2, 0 ] ]  
   SET widx1 TO reading 
   SET widx2 TO latest 
   SET windex TO widx2 OF (widx1 OF next) 
   WRITE DATA INTO windex OF buffer 
   SET latest TO windex 
   ATOMIC SET reading TO windex IF reading IS 3 
 
DEFINE Read: 
   SET reading TO 3 
   SET rindex TO latest 
   ATOMIC SET reading TO rindex IF reading IS 3 
   SET rindex TO reading 
   READ DATA FROM rindex OF buffer 

Listing B.1: Pseudo code for the three-buffer single-writer single-reader mechanism 

A correctness proof for this mechanism can be found in (Chen et al. 1997b). 

B.3 Conclusions 

This appendix described a three-buffer mechanism supporting asynchronous 

data sharing between a single writer and a single reader. The mechanism is 

intended for real-time concurrent systems where the available parallelism must 

not be reduced, the timing behaviour of tasks must remain predictable and 

analysable and the shared data must be coherent and properly ordered. 

 



 
 

Appendix C 

The BR715 Engine Controller 

Some of the content from the electronic engine controller system case study in 

(Bate 1998) is reproduced here as background material for Chapter 8. 

C.1 Purpose of the Electronic Engine Controller System 

An electronic engine controller is essentially 

a safety-critical embedded system in charge 

of maintaining correct and safe operation of 

an aircraft engine. As seen in Figure C.3, the 

electronic engine controller uses sensors to 

monitor the engine condition (e.g. fuel flow) 

and other components to monitor the aircraft 

operation (e.g. thrust request). The electronic 

engine controller controls the engine via the 

operation of actuators such as valves, 

ignitors and pumps. It also accepts pilot 

commands, and provides status information about the engine back to the 

cockpit. Components of the controller are normally replicated to provide fault 

tolerance. 

A particular characteristic of an electronic engine controller system is that 

transactions between tasks are common and fundamental to safe operation. 

Transactions consist of reading data from a number of sensors, performing 
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Figure C.3: Overview of an Electronic 
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calculations based on the available data and of conveying the results to the 

appropriate actuators; the system also has tasks to handle aspects such as 

health monitoring and maintenance. Also of particular note, is that the system is 

normally implemented from a single processor design and that the processor 

utilisation is fairly high. 

C.2 Task details 

For confidentiality, the original study changed or omitted some of the task 

properties, such as names and purpose; however, important timing 

requirements were left as-is (Table C.1). 

Table C.1: Task timing properties

Name Period WCET 

P11 25,000 671 

P21 25,000 684 

P35 50,000 173 

P3 25,000 461 

P1 25,000 300 

P2 25,000 2088 

P4 25,000 340 

P5 25,000 7 

P6 25,000 85 

P7 25,000 1910 

P8 25,000 1971 

P9 25,000 640 

P10 25,000 17 

P12 25,000 103 

P13 25,000 203 

P14 25,000 26 

P15 25,000 14 

P16 25,000 408 

P17 25,000 278 

P18 25,000 190 

P19 25,000 32 

P20 25,000 228 

P22 25,000 273 

P23 25,000 1265 

Name Period WCET 

P24 50,000 318 

P25 100,000 1334 

P26 50,000 52 

P27 200,000 796 

P28 50,000 336 

P29 50,000 408 

P30 50,000 798 

P31 100,000 457 

P32 50,000 351 

P33 50,000 390 

P34 50,000 201 

P36 50,000 925 

P37 50,000 321 

P38 50,000 1801 

P39 50,000 522 

P40 50,000 256 

P41 100,000 196 

P42 50,000 900 

P43 50,000 1945 

P44 100,000 528 

P45 100,000 551 

P46 100,000 272 

P47 100,000 271 

P48 100,000 378 

Name Period WCET 

P49 100,000 107 

P50 100,000 217 

P51 100,000 4698 

P52 100,000 232 

P53 100,000 30 

P54 100,000 763 

P55 100,000 62 

P56 200,000 304 

P57 200,000 336 

P58 200,000 100 

P59 200,000 8 

P60 200,000 378 

P61 200,000 38 

P62 200,000 428 

P63 200,000 2258 

P64 200,000 328 

P65 1000,000 5040 

P66 1000,000 5040 

P67 1000,000 5040 

P68 1000,000 5040 

P69 1000,000 5040 

P70 1000,000 5040 

P71 1000,000 5040 
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In the original study, the system was implemented using a scheduler with the 

cyclic executive architecture (Section 3.6.1) which was configured with a major 

cycle of 25,000 units and a minor cycle of 3,125 units; the scale of the unit was 

not mentioned. For this work, it was assumed that one unit is equal to one 

microsecond. 

C.3 Transaction deadlines 

The transactions between the tasks and their deadlines are presented in Figure 

C.4, with arrows designating the transaction flow. 
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The task-set had implicit deadlines with minimum release jitter requirements of 

at most 12,500 units each for P11, P21, P35 and P3; there were no such 

requirements for the other tasks. 

C.4 Conclusions 

This appendix presented the task-set for an electronic engine controller system. 

This task-set is a good match for case studies due to the large number of tasks, 

the complex transaction requirements between the tasks and a high processor 

utilisation of 84.3%. 
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