

THE DESIGN OF PREDICTABLE MULTI-CORE PROCESSORS

WHICH SUPPORT TIME-TRIGGERED SOFTWARE

ARCHITECTURES

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

By

Keith Florence Athaide

Embedded Systems Laboratory

Department of Engineering

University of Leicester

Leicester, United Kingdom

October 2010

The design of predictable multi-core processors
which support time-triggered software

architectures

Keith F. Athaide

ABSTRACT

Safety-critical systems – such as those used in the medical, automotive and
aerospace fields – have a crucial dependence on the reliable functioning of one
or more embedded processors. In such systems, a co-operative software
design methodology can be used to guarantee a high degree of reliability; when
coupled with a time-triggered architecture, this methodology can result in robust
and predictable systems with a comparatively simple software design, low
operating system overhead, easier testability, greater certification support and
tight jitter control.

Nevertheless, the use of a co-operative design methodology is not always
appropriate, since it may negatively affect system responsiveness and can add
to the maintenance costs. Many alternatives have been researched and
implemented over the past few decades to address such concerns, albeit by
compromising on some of the benefits this architecture provides.

This thesis makes five main contributions to tackle the major obstacles to
single-processor time-triggered co-operative designs:

 it proposes and describes the implementation of a novel multi-core
processor with two capable software scheduler implementations that
allow application software to be designed as for a single-core system;

 it describes the internalisation of these scheduler implementations into
hardware which allows application software to use all available
computing capacity;

 it describes a hardware technique to eliminate the variations in starting
times of application software, thereby increasing the stability of
applications;

 it describes the implementation of a hardware technique for sharing
input/output resources amongst application software with increased
determinism by leveraging the time-triggered nature of the underlying
system;

 it describes the implementation of a predictable processor that supports
purely co-operative software and is suitable for the secondary cores on a
multi-core design (due to its small size).

Overall, the contributions of this thesis both increase system responsiveness
and lessen the impact of seemingly innocuous maintenance activities.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank the Almighty Triune God for His grace

and support mediated through the one Church guided by the See of St. Peter. It

is the restlessness of the heart as it seeks God that has led to the pursuit of

knowledge in the philosophical, historical, ethical, medical and natural sciences.

I owe my deepest gratitude to my supervisor, Professor Michael J. Pont, for his

guidance, patience and encouragement throughout my research; and also for

his constant endeavours to be available to his students. I would also like to

thank my technical supervisor, Dr. Devaraj Ayavoo, for his support and for all

his words of encouragement; and his colleague, Dr. Zemian Hughes for lending

an open ear to ludicrous thoughts and for intriguing ideas.

I would like to thank my sponsors for making this research possible:

TTE Systems Ltd. for the grant of a studentship, the University of Leicester for

the award of an Open Scholarship and the Department of Engineering for the

allotment of departmental funding.

Further, I am sincerely grateful to my parish priest, Fr. Leon Pereira O.P., for his

help during difficult times and to one of my housemates, Miss Isabel Lim Fong

for being a friend. I would also like to thank my other housemates, Dr. Dénes

Bisztray, Dr. Cicimol Alexander, Mr. Michael Furniss, Miss Réka Plugor and

Miss Dimitrinka Atanasova for their understanding and tolerance of many

eccentricities that escalated as time wore on. I extend the same thanks to my

colleagues Mr. Syed Aley Imran Rizvi, Dr. Imran Sheikh, Mr. Muhammad Amir,

Mr. Musharraf Ahmed Hanif and particularly Miss Farah Lakhani.

Last, but not least, I would like to thank my parents, Mr. Gregorio Taumaturgo

Policarpo Francisco Ataide and Mrs. Clara Ditosa Da Cruz é Ataide and my

siblings Mrs. Karen Marisa Kaur, Mr. Kevin Tonisavio Athaide and

Miss Kate Caroline Athaide for always being there and for their prayers.

There are many others in the parish of Holy Cross Priory Church, in Leicester,

in the United Kingdom, on earth, in purgatory and in heaven, too many to name

here, to whom I also extend my sincere gratitude. May God bless you all.

i

Table of Contents

LIST OF FIGURES .. VIII

LIST OF TABLES ... XI

LIST OF LISTINGS .. XII

LIST OF PUBLICATIONS ... XIII

PATENTS ... XIII

CHAPTER 1 INTRODUCTION .. 1-1

1.1 EMBEDDED COMPUTING .. 1-3

1.2 REAL-TIME EMBEDDED SYSTEMS .. 1-5

1.3 THE TIME-TRIGGERED CO-OPERATIVE ARCHITECTURE 1-6

1.4 AIMS OF THE THESIS ... 1-8

1.5 SCOPE ... 1-8

1.6 KEY CONTRIBUTIONS ... 1-9

1.7 THESIS OVERVIEW .. 1-11

1.8 CONCLUSIONS .. 1-12

CHAPTER 2 SOFTWARE ARCHITECTURE OF REAL-TIME SYSTEM SCHEDULERS 2-1

2.1 INTRODUCTION ... 2-1

2.2 ENVIRONMENTAL INTERACTION .. 2-2

2.3 CLASSIFICATIONS ... 2-4

2.4 HARDWARE MODEL ... 2-6

2.5 SOFTWARE DEVELOPMENT MODEL ... 2-7

2.6 THE TASK MODEL .. 2-9

2.6.1 HARMONIC DEPENDENCIES BETWEEN PERIODS 2-12

2.6.2 OTHER TYPES OF TASKS ... 2-13

2.6.3 LATENCY ... 2-13

2.6.4 JITTER ... 2-13

2.6.4.1 EXECUTION JITTER ... 2-14

2.6.4.2 COMPLETION JITTER ... 2-15

2.6.4.3 FINISHING JITTER ... 2-16

2.6.4.4 RELEASE JITTER ... 2-16

2.7 SHARED RESOURCE MANAGEMENT ... 2-17

2.7.1 BLOCKING TECHNIQUES .. 2-18

ii

2.7.2 NON-BLOCKING TECHNIQUES ... 2-20

2.7.3 MULTI-PROCESSOR .. 2-22

2.7.4 PERIPHERAL MANAGEMENT ... 2-23

2.8 REAL-TIME TASK SCHEDULING .. 2-24

2.8.1 THE SCHEDULING ALGORITHM .. 2-25

2.8.1.1 RUN-TIME COMPLEXITY ... 2-27

2.8.2 THE TRIGGER ARCHITECTURE .. 2-27

2.8.3 THE EXECUTION ARCHITECTURE .. 2-29

2.8.4 MULTI-PROCESSOR SCHEDULING ... 2-30

2.8.5 A PART OF THE SYSTEM .. 2-31

2.9 THE COMPLEXITY OF DESIGN ... 2-32

2.10 CONCLUSIONS .. 2-33

CHAPTER 3 THE TIME-TRIGGERED CO-OPERATIVE ARCHITECTURE 3-1

3.1 INTRODUCTION ... 3-1

3.2 ARCHITECTURE DESIGN ... 3-1

3.2.1 THE TTCA MODEL .. 3-3

3.2.2 TIMING EVENT GENERATOR ... 3-5

3.2.3 TASK DESIGN ... 3-5

3.2.4 PRIORITY ASSIGNMENTS ... 3-6

3.3 FEASIBILITY .. 3-6

3.4 PROCESSOR UTILISATION .. 3-7

3.5 FRAGILITY .. 3-7

3.6 EXISTING IMPLEMENTATIONS ... 3-8

3.6.1 THE CYCLIC EXECUTIVE ARCHITECTURE .. 3-8

3.6.2 TABLE-FREE MULTI-RATE EXECUTIVE (TTC) .. 3-11

3.6.3 TIME-EVENT QUEUE .. 3-13

3.6.4 MULTIPLE TIMER INTERRUPTS (TTC-SHD) ... 3-13

3.6.5 HARDWARE MULTI-RATE EXECUTIVE (HW-TTC) 3-16

3.6.6 OTHER IMPLEMENTATIONS .. 3-19

3.7 CONCLUSIONS .. 3-20

CHAPTER 4 PROBLEMS WITH THE TIME-TRIGGERED CO-OPERATIVE ARCHITECTURE 4-1

4.1 INTRODUCTION ... 4-1

4.2 MAINTAINABILITY .. 4-2

iii

4.3 THE LONG-TASK PROBLEM ... 4-2

4.3.1 IMPROVED HARDWARE .. 4-4

4.3.2 IMPROVED ALGORITHMS .. 4-5

4.3.3 BREAKING UP LONG-TASKS .. 4-5

4.3.4 PRE-EMPTIVE DESIGNS ... 4-6

4.3.5 INCREASED CONCURRENCY ... 4-8

4.4 TASK JITTER ... 4-8

4.4.1 IMPROVED ALGORITHMS .. 4-10

4.4.2 TASK PROPERTIES .. 4-11

4.4.3 UTILISING SPARE COMPUTATIONAL CAPACITY 4-12

4.4.3.1 SINGLE PATH PROGRAMMING... 4-12

4.4.3.2 CODE BALANCING WITH DELAYS ... 4-12

4.4.4 JITTER SENSITIVE CODE INSIDE A TASK ... 4-14

4.5 NON-HARMONIC TASK-SETS ... 4-15

4.6 CONCLUSIONS .. 4-16

CHAPTER 5 INCREASING THE CONCURRENCY IN SINGLE-PROCESSOR TTCA DESIGNS ..

 .. 5-1

5.1 INTRODUCTION ... 5-1

5.2 DESIGN CHOICES .. 5-2

5.2.1 INCREASING CONCURRENCY .. 5-2

5.2.2 INTER CORE COMMUNICATION .. 5-4

5.2.3 CONSTRAINTS .. 5-5

5.3 SELECTING A SOFT MULTI-CORE PROCESSOR .. 5-8

5.3.1 EXISTING SOFT MULTI-CORES .. 5-8

5.3.2 SOFT-CORES WITH NO MULTI-CORE PLATFORMS 5-9

5.3.3 THE PH CORE .. 5-10

5.3.3.1 MICROCONTROLLER BLOCK DIAGRAM ... 5-11

5.3.3.2 A SINGLE INTERRUPT .. 5-12

5.3.3.3 GUARANTEED INSTRUCTION EXECUTION TIMES 5-13

5.3.3.4 GUARANTEED MEMORY LATENCY ... 5-14

5.3.3.5 CONSTANT INTERRUPT OVERHEAD (PH-MT) 5-14

5.4 A PROCESSOR WITH MULTIPLE PH CORES .. 5-15

5.4.1 DELAYED SLEEP EXTENSION TO THE PH CORE (PH-DS) 5-16

5.5 INTER-TASK COMMUNICATION SCHEME.. 5-17

iv

5.5.1 OVERVIEW ... 5-17

5.5.2 CREATING THE DESCRIPTIONS ... 5-20

5.5.3 WRITING .. 5-20

5.5.4 READING ... 5-21

5.5.5 SWITCHING BETWEEN BUFFERS ... 5-21

5.6 THE SCHEDULER DESIGN ... 5-25

5.6.1 OVERVIEW ... 5-25

5.6.2 PRECEDENCE CONSTRAINTS.. 5-26

5.6.3 DETERMINISTIC INITIALISATION SEQUENCE .. 5-27

5.6.4 THE MULTIPLE SCHEDULE BUILDERS IMPLEMENTATION (TTC-MC-MSB) 5-29

5.6.5 THE SINGLE SCHEDULE BUILDER IMPLEMENTATION (TTC-MC-1SB) 5-30

5.7 EVALUATION ... 5-33

5.7.1 HARDWARE UTILISED .. 5-34

5.7.1.1 RESULTS ... 5-34

5.7.2 INTER CORE COMMUNICATION .. 5-36

5.7.2.1 HARDWARE RESULTS .. 5-37

5.7.2.2 SIMULATION RESULTS ... 5-39

5.7.3 INITIALISATION .. 5-40

5.7.3.1 RESULTS ... 5-41

5.8 CONCLUSIONS .. 5-43

CHAPTER 6 CASE STUDY: F-16 FLIGHT SYSTEM ... 6-1

6.1 INTRODUCTION ... 6-1

6.2 TECHNICAL DETAILS .. 6-1

6.3 SETUP ... 6-4

6.4 MEASURED TASK TIMING ... 6-7

6.5 RELEASE AND COMPLETION JITTER ... 6-7

6.6 OVERHEADS ... 6-10

6.7 DISCUSSION ... 6-13

6.8 CONCLUSIONS .. 6-15

CHAPTER 7 A TTCA MULTI-CORE HARDWARE IMPLEMENTATION 7-1

7.1 INTRODUCTION ... 7-1

7.2 RELATED WORK .. 7-2

7.3 HW-TTC SUPPORT FOR PRECISE EXCEPTIONS ... 7-4

v

7.4 A HARDWARE TTCA IMPLEMENTATION WITH ZERO OVERHEADS 7-5

7.5 THE HARDWARE MULTIPLE SCHEDULE BUILDERS IMPLEMENTATION 7-8

7.6 THE HARDWARE SINGLE SCHEDULE BUILDER IMPLEMENTATION 7-9

7.7 A PURE HARDWARE SANDWICH DELAY MECHANISM (-HSD) 7-10

7.8 EVALUATION ... 7-12

7.8.1 RELEASE AND COMPLETION JITTER .. 7-12

7.8.2 OVERHEADS .. 7-15

7.8.3 SIMULATION ... 7-18

7.9 CONCLUSIONS .. 7-20

CHAPTER 8 CASE STUDY: THE BR715 ENGINE CONTROLLER 8-1

8.1 INTRODUCTION ... 8-1

8.2 TECHNICAL DETAILS .. 8-2

8.3 PREVIOUS WORK .. 8-2

8.4 A STATIC SCHEDULE CREATION ALGORITHM ... 8-3

8.4.1 SCHEDULE CREATION ... 8-4

8.4.2 TASK PARTITIONING .. 8-5

8.5 EVALUATION PLATFORM .. 8-6

8.6 TASK DISTRIBUTION .. 8-6

8.7 RELEASE JITTER ... 8-7

8.8 TICK INTERVAL ... 8-10

8.9 COMPUTATION TIME .. 8-10

8.10 CONCLUSION .. 8-12

CHAPTER 9 NON-BLOCKING TRANSPARENT RESOURCE SHARING 9-1

9.1 INTRODUCTION ... 9-1

9.2 INPUT/OUTPUT RESOURCES ... 9-2

9.3 DESIGN CONSTRAINTS... 9-3

9.3.1 NON-BLOCKING SCHEME ... 9-3

9.3.2 LOW JITTER ... 9-4

9.4 RELATED WORK .. 9-4

9.4.1 THE GATEWAY SCHEME ... 9-4

9.4.2 PARTITIONING RESOURCES ... 9-5

9.4.3 TIME-DIVISION MULTIPLE ACCESS ... 9-5

9.4.4 OTHER APPROACHES .. 9-6

vi

9.5 GLOBAL AND PROXY PERIPHERALS ... 9-7

9.5.1 A TIME-TRIGGERED APPROACH .. 9-9

9.5.2 TRANSACTION CAPABLE .. 9-10

9.5.2.1 MARKING THE CRITICAL SECTIONS ... 9-11

9.5.2.2 TIMED ACCESS ... 9-11

9.5.2.3 INTELLIGENT PERIPHERALS ... 9-12

9.6 GLOBALISING THE GPIO PERIPHERAL .. 9-12

9.7 GLOBALISING THE ADC PERIPHERAL .. 9-13

9.8 EVALUATION ... 9-15

9.9 OPERATIONAL JITTER .. 9-15

9.10 HARDWARE UTILISATION .. 9-18

9.11 CONCLUSIONS .. 9-19

CHAPTER 10 DISCUSSION AND CONCLUSIONS ... 10-1

10.1 INTRODUCTION ... 10-1

10.2 MULTI-CORE TTCA IMPLEMENTATIONS ... 10-2

10.3 HARDWARE MULTI-CORE TTCA IMPLEMENTATIONS 10-4

10.4 AN I/O RESOURCE SHARING SCHEME .. 10-5

10.5 A SIMPLER, BUT PREDICTABLE PROCESSOR ... 10-6

10.6 MULTI-CORE SCHEDULE CREATION ALGORITHM 10-6

10.7 LIMITATIONS ... 10-7

10.8 NOVELTY CONTRIBUTIONS ... 10-8

10.9 RECOMMENDATIONS FOR FUTURE WORK .. 10-9

APPENDIX A GLOSSARY .. A-1

A.1 ABBREVIATIONS ... A-1

A.2 DEFINITIONS USED BY THE TASK MODEL ... A-6

A.3 UNITS.. A-8

A.4 NOTATIONS.. A-8

APPENDIX B THE THREE BUFFER SINGLE-WRITER, SINGLE-READER MECHANISM B-1

B.1 INTRODUCTION ... B-1

B.2 THE DESIGN OF THE MECHANISM .. B-2

B.3 CONCLUSIONS ... B-4

APPENDIX C THE BR715 ENGINE CONTROLLER .. C-1

C.1 PURPOSE OF THE ELECTRONIC ENGINE CONTROLLER SYSTEM C-1

vii

C.2 TASK DETAILS .. C-2

C.3 TRANSACTION DEADLINES ... C-3

C.4 CONCLUSIONS ... C-4

BIBLIOGRAPHY ... BIB-1

viii

List of Figures

FIGURE 1.1: THE TRANSFORMATION WILL REPLACE A SINGLE-CORE PROCESSOR WITH A

MULTI-CORE ONE THAT PRESERVES THE I/O INTERFACE WITH OTHER HARDWARE AND

THE SOFTWARE API. .. 1-9

FIGURE 2.1: EFFECT OF TIME ON THE QUALITY OF A REAL-TIME COMPUTATION

(AUDSLEY ET AL. 1990) .. 2-2

FIGURE 2.2: LATENCY AND JITTER OF A RESPONSE ... 2-4

FIGURE 2.3: AN EXAMPLE FRAME OF A TASK WHICH HAS THREE EXECUTIONS2-10

FIGURE 2.4: EXECUTION JITTER IN PERIODIC TASKS .. 2-15

FIGURE 2.5: FINISHING JITTER IN PERIODIC TASKS .. 2-16

FIGURE 2.6: RELEASE JITTER IN PERIODIC TASKS ... 2-17

FIGURE 2.7: A FEW OF THE PROBLEMS WITH RESOURCE SHARING: (A) RESOURCE

STARVATION; (B) DEADLOCK; (C) LIVELOCK ... 2-19

FIGURE 3.1: OPERATION OF TTCA ACCORDING TO THE SCHEDULE 3-2

FIGURE 3.2: OVERHEADS IN A TTCA IMPLEMENTATION ... 3-4

FIGURE 3.3: EFFECT OF LOWERING THE PRIORITY OF TASK B 3-6

FIGURE 3.4: EXECUTION OF TASKS WITH PERIODS 14 MS, 20 MS, 22 MS, FROM TOP TO

BOTTOM: THE IDEAL CASE; TTCA WITH A TICK OF 2 MS; CYCLIC EXECUTIVES WITH TICK

INTERVALS OF 4 MS, 5 MS, 7 MS. ... 3-9

FIGURE 3.5: FUNCTIONAL OVERVIEW OF THE HARDWARE MULTI-RATE EXECUTIVE .. 3-17

FIGURE 3.6: TIMELINE VIEW OF THE HW-TTC OPERATION 3-18

FIGURE 3.7: SCHEDULING OVERHEAD ON ONE TASK.. 3-19

FIGURE 4.1: LONG-TASK CAUSING DEADLINES TO BE MISSED 4-3

FIGURE 4.2: HANDLING A LONG-TASK WITH THE TTH ARCHITECTURE 4-7

FIGURE 4.3: RELEASE JITTER CAUSED BY EXECUTION JITTER IN A PRECEDING TASK. 4-9

FIGURE 4.4: HIGH EXECUTION JITTER MAY CAUSE HIGH RELEASE JITTER IN A PORTION

OF A TASK WHICH OTHERWISE HAS LOW RELEASE JITTER 4-10

FIGURE 4.5: EFFECT OF PHASES AND AN INCREASE IN TICK RATES ON RELEASE JITTER

CAUSED BY EXECUTION JITTER IN A PREVIOUS TASK .. 4-11

FIGURE 4.6: USING DELAYS TO PLACE GUARANTEES ON THE EXECUTION TIME 4-13

FIGURE 4.7: CREATING NEW TASKS TO HANDLE A JITTER-SENSITIVE PORTION INSIDE A

TASK ... 4-14

FIGURE 4.8: RELEASE JITTER CAUSED BY NON-HARMONIC PERIODS 4-15

FIGURE 4.9: ATTEMPTING TO REDUCE RELEASE JITTER CAUSED BY NON-HARMONIC

PERIODS BY INSERTING DELAYS ... 4-16

FIGURE 5.1: A GENERIC SINGLE PROCESSOR DESIGN .. 5-2

FIGURE 5.2: READER AND WRITER TASKS RUNNING AT DIFFERENT RATES 5-4

FIGURE 5.3: POSSIBLE OVERLAPS BETWEEN A WRITER AND A READER (KOPETZ ET AL.

1993) ... 5-5

FIGURE 5.4: PH PROCESSOR IMPLEMENTATION (HUGHES 2009) 5-12

FIGURE 5.5: FIVE STAGE PIPELINE IN THE PH CORE .. 5-13

file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732854
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732854
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732854
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732855
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732855
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732856
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732857
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732858
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732859
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732860
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732861
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732861
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732862
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732863
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732864
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732865
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732865
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732865
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732866
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732867
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732868
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732869
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732870
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732871
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732872
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732872
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732873
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732873
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732874
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732875
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732875
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732876
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732877
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732877
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732878
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732879
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732880
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732880
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732881
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732882

ix

FIGURE 5.6: HARDWARE ORGANISATION .. 5-15

FIGURE 5.7: THE PH-DS MECHANISM ... 5-16

FIGURE 5.8: OVERVIEW OF THE COMMUNICATION HARDWARE 5-17

FIGURE 5.9: AN OVERVIEW OF COMMUNICATION BETWEEN TWO CORES 5-20

FIGURE 5.10: STATES OF A BUFFER .. 5-22

FIGURE 5.11: BUFFER SWITCHES FROM THE VIEW OF TASK B WHEN IT OVERLAPS WITH

A TASK A RUNNING AT THE SAME RATE WITH A COMBINED UTILISATION LESS THAN ONE

 .. 5-23

FIGURE 5.12: BUFFER SWITCHES FROM THE VIEW OF TASK B WHEN IT OVERLAPS WITH

A TASK A RUNNING AT TWICE THE RATE .. 5-25

FIGURE 5.13: (A) USING TASK ORDER TO ENFORCE PRECEDENCE CONSTRAINTS IN A

SEQUENTIAL SYSTEM, (B) HAS NO EFFECT IN CONCURRENT EXECUTION WHICH MUST BE

HANDLED (C) BY CHANGING PHASES, (D) BY INCREASING THE TICK INTERVAL OR (E) BY

INSERTING IDLE TIME .. 5-27

FIGURE 5.15: HARDWARE UTILISATION ON REMOVING THE COMMUNICATION

MECHANISM FROM MC-PHN IMPLEMENTATIONS ... 5-35

FIGURE 5.14: HARDWARE UTILISATION ON CHANGING THE CORE TYPE 5-35

FIGURE 5.16: TASK FUNCTIONALITY FOR INTER CORE COMMUNICATION EVALUATION . 5-

37

FIGURE 5.17: NUMBER OF ERRORS ENCOUNTERED BY 5-38

FIGURE 5.18: SNAPSHOT OF TASK EXECUTION ON A DUAL-CORE WITH NO ERRORS (NN

= 399, 0 NOPS, = 1599 CYCLES) ... 5-38

FIGURE 5.19: SIMULATION OF BUFFER SWITCHES WITH ERRORS AT = 1596 CYCLES

 .. 5-39

FIGURE 5.20: SIMULATION OF BUFFER SWITCHES JUST AFTER ERRORS STOP AT =

1597 CYCLES .. 5-39

FIGURE 5.21: AVERAGE NUMBER OF CYCLES TAKEN FOR A CORE TO INITIALISE ON ONE-

TO FOUR-CORE DEVICES ... 5-41

FIGURE 5.22: STANDARD DEVIATION IN INITIALISATION TIMES ON ONE- TO FOUR-CORE

DEVICES .. 5-41

FIGURE 5.23: NUMBER OF CYCLES TAKEN FOR A CORE TO INITIALISE ON SIMULATED

ONE- TO EIGHT-CORE DEVICES .. 5-42

FIGURE 5.24: SIMULATION OF THE INITIALISATION SEQUENCE FOR 8-CORES 5-43

FIGURE 6.1: JITTER FOR TS-1 .. 6-8

FIGURE 6.2: JITTER FOR TS-2 .. 6-9

FIGURE 6.3: JITTER FOR TS-3 .. 6-10

FIGURE 6.4: SOFTWARE OVERHEAD OF THE SCHEDULER IMPLEMENTATIONS 6-11

FIGURE 6.5: RUN-TIME OVERHEAD OF THE SCHEDULER IMPLEMENTATIONS RELATIVE TO

THE TICK INTERVAL FOR TS-1 AND TS-2 .. 6-12

FIGURE 6.6: RUN-TIME OVERHEAD OF THE SCHEDULER IMPLEMENTATIONS RELATIVE TO

THE TICK INTERVAL FOR TS-1 ... 6-12

FIGURE 6.7: RUN-TIME OVERHEAD OF THE MULTI-CORE SCHEDULER IMPLEMENTATIONS

RELATIVE TO THE TICK INTERVAL ... 6-13

file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732883
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732884
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732885
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732886
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732887
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732888
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732888
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732888
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732889
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732889
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732890
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732890
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732890
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732890
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732892
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732893

x

FIGURE 7.1: THE EFFECT OF THE ENDTASK INSTRUCTION ON THE RUN QUEUES AND

INSTRUCTION EXECUTION ... 7-5

FIGURE 7.2: THE EFFECT OF OVERLOADING JR WITH THE WORK OF ENDTASK 7-6

FIGURE 7.3: FUNCTIONAL OVERVIEW OF THE HARDWARE MULTI-CORE MULTIPLE

SCHEDULE BUILDER SCHEDULER ... 7-8

FIGURE 7.4: FUNCTIONAL OVERVIEW OF THE HARDWARE MULTI-CORE SINGLE

SCHEDULE BUILDER SCHEDULER ... 7-9

FIGURE 7.5: CHANGES MADE TO THE DISPATCH COMPONENT TO SUPPORT SANDWICH

DELAYS ... 7-11

FIGURE 7.6: JITTER FOR TS-1 .. 7-13

FIGURE 7.7: JITTER FOR TS-2 .. 7-14

FIGURE 7.8: JITTER FOR TS-3 .. 7-15

FIGURE 7.9: SOFTWARE OVERHEAD OF THE SCHEDULER IMPLEMENTATIONS 7-16

FIGURE 7.10: HARDWARE UTILISATION WHEN USING A HARDWARE SCHEDULER WITH

AND WITHOUT THE OVERHEAD AND JITTER REDUCTION MECHANISMS 7-17

FIGURE 7.11: HARDWARE UTILISATION WHEN USING A MULTI-CORE HARDWARE

SCHEDULER WITH AND WITHOUT THE JITTER REDUCTION MECHANISM AND INTER-CORE

COMMUNICATION ... 7-18

FIGURE 7.12: SAMPLE EXECUTION OF THREE TASKS UNDER HW-TTC 7-19

FIGURE 7.13: SAMPLE EXECUTION UNDER HW-TTC-ZSO 7-19

FIGURE 7.14: SCHEDULE CREATION FOR A DUAL-CORE HW-TTC-ZSO-MC-1SB . 7-20

FIGURE 8.1: TASK DISTRIBUTION AFTER PARTITIONING BASED ON DIFFERENT TASK

SORTING STRATEGIES .. 8-6

FIGURE 8.2: RELEASE JITTER WHEN USING TTSA1 WITH DIFFERENT STRATEGIES ... 8-8

FIGURE 8.3: RELEASE JITTER WHEN USING TTSA1-JR UNDER DIFFERENT STRATEGIES

 .. 8-8

FIGURE 8.4: TASK INTERVALS UNDER THE DIFFERENT STRATEGIES 8-10

FIGURE 8.5: TIME TAKEN TO COMPUTE THE SCHEDULES WITH TTSA1 8-11

FIGURE 8.6: TIME TAKEN TO COMPUTE THE SCHEDULES WITH TTSA1-JR 8-11

FIGURE 9.1: THE I/O RESOURCE OR PERIPHERAL ... 9-2

FIGURE 9.2: GLOBAL PERIPHERALS AND PROXIES TO ALLOW RESOURCE SHARING ... 9-7

FIGURE 9.3: EXECUTION JITTER WHEN WAITING FOR THE COMPLETION OF AN ADC

CONVERSION ... 9-16

FIGURE 9.4: EXECUTION TIME OF THE ADC SAMPLING TASKS WITH SCAN RESET

ENABLED ... 9-16

FIGURE 9.5: JITTER IN SERVICING A PIN ASSERTION REQUEST ON A GLOBAL GPIO

PERIPHERAL .. 9-17

FIGURE 9.6: HARDWARE UTILISATION WHEN MOVING TO THE RESOURCE SHARING

SCHEME .. 9-18

FIGURE B.1: DATA SHARING BETWEEN ONE WRITER AND ONE READER B-1

FIGURE B.2: A REPRESENTATION OF THE THREE-BUFFER SINGLE-WRITER SINGLE-

READER MECHANISM .. B-3

FIGURE C.3: OVERVIEW OF AN ELECTRONIC ENGINE CONTROL UNIT C-1

FIGURE C.4: TASK TRANSACTION REQUIREMENTS .. C-3

file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732909
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732909
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732910
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732911
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732911
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732912
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732912
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732913
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732913
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732923
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732923
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732929
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732930
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732935
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732936
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732936
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732937
file:///D:\Papers\Thesis\KFA_Thesis_v11.docx%23_Toc304732938

xi

List of Tables

TABLE 3.1: TASK SCHEDULE ... 3-2

TABLE 4.1: TASK SCHEDULE WITH A LONG-TASK ... 4-3

TABLE 6.1: EVALUATION TASK-SET WITHOUT A LONG-TASK 6-2

TABLE 6.2: TASK-SET YIELDING SLUGGISH CONTROL (TS-1) 6-3

TABLE 6.3: TASK-SET WITH BETTER CONTROL BUT UNABLE TO HIT FAST MOVING

TARGETS (TS-2) .. 6-3

TABLE 6.4: TASK-SET TO IMPROVE THE ABILITY TO HIT FAST MOVING TARGETS (TS-3) 6-

4

TABLE 6.5: THE RUN-TIME TIMING PROPERTIES OF THE TASKS UNDER TTC-MT 6-7

TABLE C.1: TASK TIMING PROPERTIES ... C-2

xii

List of Listings

LISTING 3.1: PSEUDO CODE FOR A TTCA IMPLEMENTATION 3-2

LISTING 3.2: SINGLE-RATE CYCLE EXECUTIVE DISPATCH 3-10

LISTING 3.3: MULTI-RATE CYCLE EXECUTIVE DISPATCH 3-10

LISTING 3.4: A TTCA IMPLEMENTATION EVENT SERVICE 3-10

LISTING 3.5: ALLOWING TASKS TO EXCEED THE TICK INTERVAL 3-11

LISTING 3.6: NON-TABLE-DRIVEN MULTI-RATE EXECUTIVE DISPATCH 3-12

LISTING 3.7: RUN QUEUE DISPATCH .. 3-12

LISTING 3.8: TABLE-FREE MULTI-RATE EXECUTIVE SCHEDULE CREATION 3-12

LISTING 3.9: TIME-EVENT QUEUE SCHEDULE CREATION 3-13

LISTING 3.10: TIME-EVENT QUEUE DISPATCH ... 3-13

LISTING 3.11: ISR FOR THE TICK TIMER WHEN USING THE MTI SCHEDULER 3-14

LISTING 3.12: ISR FOR THE TASK TIMER WHEN USING THE MTI SCHEDULER 3-14

LISTING 3.13: MTI SCHEDULER DISPATCH .. 3-15

LISTING 3.14: ADAPTING THE MTI SCHEDULER DISPATCH SO THAT TASKS CAN

OVERRUN TICKS ... 3-16

LISTING 3.15: TASK DEFINITION AT A HIGH LEVEL IN THE C PROGRAMMING LANGUAGE 3-

19

LISTING 3.16: LOW LEVEL TASK WRAPPER IN THE HARDWARE MULTI-RATE EXECUTIVE 3-

19

LISTING 5.1: INITIALISATION ON THE TIMING MASTER ... 5-28

LISTING 5.2: INITIALISATION ON THE TIMING SLAVES .. 5-29

LISTING 5.3: MANAGING THE RUN QUEUE IN THE SCHEDULED QUEUE 5-31

LISTING 5.4: MANAGING THE RUN QUEUES IN THE SCHEDULING CORE 5-31

LISTING 5.5: EVENT SERVICE OF THE SCHEDULING CORE 5-32

LISTING 5.6: TASK DISPATCH IN A SCHEDULED CORE ... 5-33

LISTING 5.7: C CODE FOR ONE OF THE IDENTICAL TASKS IN THE EVALUATION OF INTER-

TASK COMMUNICATION ... 5-36

LISTING 5.8: ASSEMBLY CODE FOR A DELAY TASK ... 5-37

LISTING B.1: PSEUDO CODE FOR THE THREE-BUFFER SINGLE-WRITER SINGLE-READER

MECHANISM ... B-4

List of Publications

Athaide, K.F. and Pont, M.J. ―Ameliorating Problems in System Integration

with Time-Triggered Scheduling‖, Proceedings of the 5th IEEE International

Conference on Systems of Systems Engineering (SoSE ‗10) (Loughborough,

UK, 22 – 24 June 2010).

Athaide, K.F. Pont, M.J. and Ayavoo, D. ―Deploying a Time-triggered shared-

clock architecture in a multiprocessor system-on-chip design‖,

Proceedings of the Fourth UK Embedded Forum (Southampton, UK, 9 – 10

September 2008), pp. 96-103. Published by the Institute of Engineering and

Technology [ISBN: 978-0-86341-949-2].

Athaide, K.F. Pont, M.J. and Ayavoo, D. ―Shared-Clock Methodology for

Time-Triggered Multi-Cores‖, Proceedings of the 31st Communicating

Process Architectures Conference (York, UK, 7 – 10 September 2008), pp. 149-

162. Published by IOS Press [ISBN: 978-1-58603-907-3].

Athaide, K.F. Hughes, Z.M. and Pont, M.J. ―Towards a Time-Triggered

Processor‖, Poster presented at the third UK Embedded Forum (Durham, UK,

2 – 3 April 2007).

Patents

Pont, M.J., Athaide, K.F. and Ayavoo, D. (2007) "Debug unit for use with

time-triggered systems" (filed UK, 11 May 2007: details awaited).

Chapter 1

Introduction

―Simplicity is the ultimate sophistication‖ – so articulated Leonardo da Vinci

(1452 – 1519), a sentiment later expressed by Albert Einstein with, ―Everything

should be made as simple as possible, but no simpler!‖ (Einstein 1933). Yet, in

our modern society technology gets ever more complex. In his acceptance

speech for the 1980 ACM Turing Award, Hoare remarked that the price of

reliability is the pursuit of utmost simplicity, and that it is a price most find ―hard

to pay‖ (Hoare 1981).

Consider the workflow of an average office worker whose day-to-day activities

might involve data entry, envelope stuffing, sitting in meetings, etc. The simplest

way to get through them is in a sequential, predefined manner (Sasso 1986;

Schultz et al. 2003). Unfortunately, activities in a work day cannot be conducted

sequentially due to competing requirements: meetings have to be arranged

around all participants‘ schedules; the need to mail items arises at different

points in the day; occurrence of emergencies and so on (Hudson et al. 2002).

The worker must then jump from job to job to meet daily deadlines (Rouncejield

et al. 1994).

Consequently, simplicity is lost because of the change in mindset required by

each job interruption (O‘Conaill et al. 1995; Schultz et al. 2003). This is in

addition to the time required to prepare for and clean up after a job. For

example, data entry would require pulling the keyboard closer and opening a

spreadsheet program; envelope stuffing involves clearing space for papers,

Introduction

1-2

envelopes and writing materials; meetings require walking to the meeting room

and back; and so on. Increased interruptions lead to a loss in reliability due to

variability in productivity and/or quality (Schultz et al. 2003; Roper et al. 2007;

Haynes 2008) unless made up for during slack time (shortened lunch breaks,

overtime, etc.) (Spira et al. 2005).

Additionally, multiple workers doing the same job must also arrange their work

times to avoid arguments over company resources. For example, to prevent

queues at the printer, workers may arrange to do envelope stuffing at different

times. (Gordon et al. 1997)

A straightforward way to remedy the situation is to hire a worker for each job.

However, this plainly costs the company in terms of salary even if productivity

gains are made (Kim et al. 2004). On the other hand, a worker hired for a

particular job does not have to be skilled to do every job and so could be paid

less (Sasso 1986), perhaps resulting in a net salary decrease. The real solution,

as it almost always is, is a compromise between the two extremes (Kremer et

al. 1996).

Henry Ford, whose efforts were “in the direction of simplicity” in order to provide

―the very best service and the most convenient in use‖, pioneered by equalising

and more than doubling daily wages and by employing workers according to

their skill and physical handicaps; the former attracted the highest skill in the

field and the latter increased production. His efforts also eliminated interruptions

in the form of wasteful material and tool hunting with assembly lines. (Ford et al.

1922)

Introduction

1-3

The office situation has parallels in the field of computing where a personal

computer, assuming it has only one ―brain‖ like an office with one worker,

cannot nonchalantly spend five hours downloading a file before it allows a letter

to be typed in a word processor. So the computer has to alternate very, very

quickly between downloading the file and allowing the letter to be typed. Each

alternation, like the office worker‘s preparation when interrupted, requires

memory to be re-allocated and re-loaded, the appropriate computing

instructions to be re-fetched, etc. Also, like the office printer, both of the

computer jobs will be ―printing‖ to a common storage device and display device.

In this thesis, a solution to this loss of reliability in the field of embedded

computing is explored by the application of a proven methodology in order to

maintain programming simplicity: the exploration being inspired by the recent

and rapid adoption of multi-core technology (Borkar 2007) and by the statement

that ―the simple and elegant systems tend to be easier and faster to design and

get right, more efficient in execution, and much more reliable‖ (Dijkstra 1997).

Colloquially, the task of keeping an office worker‘s jobs simple and interruption-

free (and hence reliable) is explored by hiring a superhuman worker with more

than one brain.

1.1 Embedded Computing

In computer science, the field of embedded computing studies embedded

processor cores. These are like their desktop and server variants in that their

behaviour can be modified by software; but are different in that they have a

longer life cycle, are designed for harsher environments and have lower power

consumption. Embedded processor cores are often included with mechanical

Introduction

1-4

and other parts, forming an embedded system, the forerunner to tomorrow‘s

cyber-physical system (Lee 2009).

―Embedded‖ is used to indicate that the presence of the system is unapparent

to the end user rather than imposing constraints on physical size, though,

undeniably, smaller sizes may facilitate the concealment. It also indicates that

the system is part of a larger system or product whose primary functionality

need not be as a computer, as in the case of an antilock braking system in a car

(Pont 2002; Wolf 2002; Ganssle 2003). Such a system is designed to perform a

small number of dedicated functions albeit with choices and different options,

i.e. the end-user can make choices concerning functionality but cannot change

the functionality of the system by adding/replacing software (Sachitanand 2002;

Heath 2003).

Embedded systems have proliferated into our daily lives, being present in

televisions, cars, aircraft, Automated Teller Machines (ATMs), etc., and even in

such mundane products as ovens, toasters and dishwashers. Soon even

engineers will be hard put to identify embedded systems due to the

improbability of being able to squeeze in all the required features and

intelligence into tiny devices. This can be seen already in contactless payment

cards (Olsen 2007) or in car tyres that communicate wirelessly with the vehicle

about road conditions, tyre inflation, temperature, etc (Ergen et al. 2009). These

systems will soon be woven into everything we touch, including fabrics (Kim et

al. 2009).

Already by 2000, 98% of the computing devices sold worldwide were embedded

devices (Borriello et al. 2000). The number is expected to reach 16 billion for

Introduction

1-5

this year (nearly 3 embedded devices per person on earth) and to exceed 40

billion in 2020 (Helmerich et al. 2005; ARTEMIS SRAWG 2006). In addition, the

global market is expected to increase from £63.3 billion in 2008 to an estimated

£77.3 billion by the end of 2013 (Joshi 2009); and expenditure on software

research and development is expected to increase from £47.9 billion in 2002 to

£109.0 billion in 2015 (Helmerich et al. 2005; Alves 2007).

1.2 Real-time embedded systems

Embedded systems are frequently required to have real-time behaviour, that is,

they have to produce an action in response to a stimulus within a specified time

interval, independently of how quickly the action is performed (Buttazzo 2002a).

Outside of this interval, the result, even if correct, is marginally or completely

useless (Audsley et al. 1990). In safety-critical real-time systems, safe

performance or operation is essential and errors or malfunctions arising due to

the failure of real-time behaviour can result in death, injury or illness, major

economic loss, mission failure, environmental damage or property damage

(Dimond et al. 2002). This description clearly fits systems used in industrial

automation, medical equipment, nuclear power plants, avionics and

automobiles, amongst others (Redmill 1992; Profeta III et al. 1996).

By their nature, safety-critical systems are expected to be as dependable as

possible. Dependability is the trustworthiness of a computer system such that

reliance can justifiably be placed on its behaviour (Laprie 1992) and subsumes

reliability, availability, integrity, maintainability, etc. (Avižienis et al. 2004). It is

an assessment shaped by social and psychological factors in addition to hard

statistics.

Introduction

1-6

This thesis concerns itself with two aspects of dependability in safety-critical

systems; reliability, which is the ability to provide a required service, according

to stated specifications, for a time under varying operating conditions (IEEE

1990; Laprie 1992); and, maintainability, which is the ease with which

modifications can be made to correct faults, improve performance or other

attributes, or adapt to a changed environment (IEEE 1990). Maintainability, like

reliability, assumes that the environmental conditions declared by the system

specifications always holds and is differentiated from robustness which

indicates tolerance to unexpected conditions (IEEE 1990).

1.3 The time-triggered co-operative architecture

Among the myriad of ways to build real-time systems (Fidge 2002; Sha et al.

2004; Buttazzo 2005a), this thesis focuses on the simple, reliable time-triggered

co-operative architecture (TTCA) (Pont 2001). It has been found to be a good

match for a wide range of applications, such as automotive applications

(Ayavoo et al. 2004; Short et al. 2005), wireless (ECG) monitoring systems

(Phatrapornnant et al. 2006), various control applications (Edwards et al. 2004;

Key et al. 2004; Bautista et al. 2005; Nghiem et al. 2006), data acquisition

systems, washing-machine control and monitoring of liquid flow rates (Pont

2002).

The co-operative nature of TTCA simplifies software development and

facilitates more emphatic guarantees of the quality of interaction with the

environment; both, of which make it a reliable architecture. But this nature is

simultaneously a big impediment that necessitates an accurate estimation of

software execution times. Software non-determinism (from branching, variable

Introduction

1-7

number of iterations and dependence on environmental events) and hardware

non-determinism (from caches, direct-memory-access) hinder such estimations.

In addition, software that takes too long to execute can adversely affect system

responsiveness, even if such software runs infrequently, e.g. software that runs

every ten hours but takes two hours to execute stops the system from doing

anything else for those two hours. This then imposes a severe constraint that all

software must execute quickly in order to maintain system response times

(Allworth 1981; Locke 1992).

In most cases, execution time is not a single value, but a range. In such cases,

TTCA exposes fragility if the upper bound of the range is too liberal; leading to

an excessive waste of resources. Conversely, conservative estimates

potentially throw the entire system off temporally. While techniques have been

developed to deal with such failures, they can be counterproductive due to

increased complexity and/or the introduction of unknown states into the system

(Locke 1992; Kalinsky 2001; Hughes et al. 2008).

TTCA has also been criticised for requiring exhaustive validation and testing

during design and maintenance (Liu et al. 1995), both of which are time-

consuming and costly. However, given that the cost of unanticipated changes to

software increases exponentially as systems age (Griswold et al. 1993),

perhaps this extra scrutiny is a blessing in disguise.

Another consequence of co-operative execution and software and hardware

non-determinism is that only the software immediately after the triggering event

can be guaranteed a start time with minimum variance. All other software is

Introduction

1-8

affected by the cumulative variance of the execution times of all software that

executed prior in the same occurrence of the triggering event (Kalinsky 2001).

For these reasons, TTCA has been relegated as an ideal – suitable for only the

simplest systems. For everything else, compromises have been made.

Commercial system software vendors have also moved on, so that when

building a new design or updating an old one, commercial off-the-shelf and

standard operating systems are frequently adopted that do not support cyclic

scheduling (Liu et al. 1995; Xu et al. 2000).

1.4 Aims of the thesis

The aims of this thesis are to increase the number of feasible variants of the

single-processor time-triggered co-operative architecture (TTCA) and to

increase the temporal quality (i.e. reliability) of responses of TTCA to

environmental stimuli. Increasing the number of feasible variants decreases the

chance that maintenance will result in an unfeasible design while the use of

TTCA will reduce the amount of time needed to understand the program in the

maintenance activity.

These aims will be pursued by increasing the concurrency in the system whilst

maintaining the design simplicity of software that expects a non-concurrent

system.

1.5 Scope

This thesis possesses the following scope:

 The techniques operate on one particular software processing core in a

real-time system. Any other cores are considered together with the

Introduction

1-9

environment of the system to form the environment of the core. The core

may be the sole core in a processor or may be one of several (possibly

heterogeneous) cores in a multi-core processor.

 The software executing on the core is expected to run at a fixed rate, to

complete execution before a certain time, to have a bounded execution

time, and to behave in a highly predictable manner (Stankovic 1988;

Stankovic et al. 1990; Spuri et al. 1995; Buttazzo 2005a).

 The transformation under consideration in this thesis will result in the

core being converted into a network of cores (Figure 1.1) changing

neither the software application programming interface (API) nor the

input/output (I/O) interface with other hardware.

1.6 Key contributions

This thesis makes the following contributions to increase the applicability of the

time-triggered co-operative architecture:

Figure 1.1: The transformation will replace a single-core processor with a multi-core one that

preserves the I/O interface with other hardware and the software API.

TTCA
implementation

Core

Multi-core TTCA
implementation

Software Software

Introduction

1-10

 The first contribution is a novel processor for single-processor TTCA

designs that are either unfeasible or impractical due to the presence of

software with heavy utilisation and the presence of non-harmonic

relationships in software execution rates. This has been achieved by

increasing the number of available processing elements, without

affecting the application software design. This contribution also has the

benefit of reducing the probability of defects being introduced by the

maintenance of feasible single-processor TTCA designs.

 The second contribution extends an existing TTCA hardware

implementation to work with the new processor. This contribution results

in a TTCA implementation that possesses zero scheduler overheads and

the ability to execute heavily utilised or non-harmonically related

software, in addition to better maintainability and a greater scope for

future development.

 The third contribution uses existing software techniques to infuse jitter

reduction capabilities into the non-concurrent TTCA hardware

implementation and the concurrent version from the previous

contribution. This contribution results in a TTCA implementation with zero

task release jitter in addition to zero scheduler overheads, the ability to

execute heavily or non-harmonically utilised software, better

maintainability and a greater scope for future development.

 The fourth contribution is a hardware technique that allows peripherals to

be accessed deterministically and concurrently without blocking whilst

maintaining their consistency. This contribution eliminates the need for

Introduction

1-11

the gateway tasks inherent in the TTCA implementations of the previous

contributions.

 The fifth contribution is a processor core for purely co-operative software

that does not suffer from jitter or lengthened latency due to the interrupt

servicing, while continuing to provide the system scheduler with flexibility

in schedule creation and in the order in which tasks are dispatched.

1.7 Thesis overview

Chapter 2 provides an overview of the software architecture for real-time

systems, such as scheduling and resource sharing. The task model used for the

hard real-time systems under consideration in this thesis is also described along

with an account of latency and jitter and the reason they may give rise to

problems in a system.

Chapter 3 provides an overview and execution model of TTCA along with the

description of several software implementations and one hardware

implementation. The problems that arise from use of TTCA are elaborated in

Chapter 4 along with the solutions that have been proposed for these problems

and the discrepancies that they possess.

Chapter 5 presents a novel multi-core processor to alleviate the problems of

single-processor TTCA designs. The chapter also describes the wait-free loop-

free inter-core communication scheme and the scheduler extensions that were

made to allow standard TTCA application design to be used with the processor.

Chapter 6 presents a case study that examines the maintenance effort required

and the cost if a F16 flight system were initially deployed on a single-core

Introduction

1-12

processor with an appropriate scheduler versus the multi-core processor

described in Chapter 5.

Next, Chapter 7 incorporates the scheduler extensions of the multi-core

processor into an existing TTCA hardware implementation in a successful

attempt at achieving zero scheduler overhead and zero task release jitter.

Chapter 8 then presents a case study that examines the migration of an existing

co-operative system with many small communicating tasks to the presented

multi-core platform and the effects this has on the tasks‘ execution properties.

Chapter 9 introduces a hardware technique to share resources that

communicate with the environment, using a simple but novel technique to

increase determinism in accessing these resources.

Finally, Chapter 10 concludes with a final summary, with a discussion of

limitations and with the consideration of future work that may be performed.

1.8 Conclusions

The intuitive notion that productivity is increased by concentrating on a single

task is not only demonstrative in the work place but is also reflected in software

design. Particularly, a software developer‘s development productivity increases

if software is written in the co-operative manner of execution. In the safety-

critical field, co-operative execution can be coupled with the highly predictable

time-triggered architecture to produce the time-triggered co-operative

architecture (TTCA) that provides a simple and intuitive interface for application

development.

Introduction

1-13

Unfortunately, in the same way that an office worker is often impelled by daily

deadlines to abandon simpler ways of working, so also is an embedded

systems designer often impelled by real-time constraints to abandon a TTCA

implementation. Alternative real-time designs are able to accommodate the

constraints, but usually end up compromising on predictability or on the quality

of environmental interactions or on the ease of application development.

This thesis, then, presents research aimed at accommodating some of the

stricter real-time constraints on TTCA – expanding the range of designs that

can be built on this architecture. The next chapter will examine, in greater detail,

how the software for real-time systems is constructed and the various design

choices involved.

Chapter 2

Software architecture of real-time system

schedulers

2.1 Introduction

In real-time computing, the correctness of a system depends both on the logical

result of a computation and on the time at which the results are communicated

to the environment (Stankovic 1988; Ramamritham et al. 1994). Besides

requiring that the logical result be computed before it is communicated, real-

timeliness places no other constraint on the computation speed. Predictability is

the foremost goal in these systems (Stankovic 1988; Stankovic et al. 1990;

Buttazzo 2005a). These systems have a long life-cycle and a perennial uptime,

i.e. no restarts are required unless necessitated by a maintenance or upgrade

cycle (Koopman 1996).

The software design for these systems is concerned with enforcing the real-time

constraints on the scanning of sensors and on the driving of actuators (non-

reactive systems log data instead). The application design process leverages

the support of a real-time operating system (RTOS) that may also: provide fault

tolerance and distribution; and integrate time-constrained resource allocations

and scheduling across a spectrum of resources, e.g. sensor processing,

communications, etc. This chapter explores some of the design decisions of the

RTOS components that manage the execution of application software and that

manage the access to resources that connect to the environment.

Software architecture of real-time system schedulers

2-2

The next two sections discuss the characteristics of a real-time system‘s

interaction with its environment and the level of quality required from such

interaction based on the system‘s classification. This is followed by a brief

description of the hardware model of a typical real-time system and a more in-

depth software model. The last few sections briefly examine resource

management and scheduling.

2.2 Environmental interaction

Every reactive real-time system may be considered a control system: the

system measures one or more environmental properties and responds (via real-

time actions or responses) by algorithmically bringing one or more of these

properties to desired states. The numerical or logical effects of the actions are

constrained by the application design to an interval in which they must be used

(the response interval) and to an interval in which the desired performance is

obtained (the performance interval) as seen in Figure 2.1. The upper bound of

the performance interval is the deadline of the response. (Audsley et al. 1990;

Buttazzo 2005a)

Figure 2.1: Effect of time on the quality of a real-time computation (Audsley et al. 1990)

Performance

Time

Catastrophic
operation

Degraded
performance

Response
interval

Performance
interval

Algorithm
evaluation

Software architecture of real-time system schedulers

2-3

It is quite common for the design of a real-time embedded response to have an

infinitesimally small, fixed-position performance interval, implying that the

response must be time deterministic i.e., for every timed input stream, a unique

timed output stream will be provided (Henzinger et al. 2003; Kopetz 2008). In

other words, the temporal and the logical properties of a response should be

determinable in finite time through design analysis under all assumed

conditions, i.e. that these properties should be predictable.

In some literature, the desired time determinism is ambiguously referred to as

―predictability‖ and determinism is just as ambiguously used to refer to the

degree to which a system‘s exact execution sequence can be predicted ahead

of time, i.e. execution determinism (Locke 1992; Stankovic et al. 1993; Bate

1998). Execution determinism has been found sufficient, though not necessary,

to achieve time determinism (Locke 1992; Stewart 2001; Henzinger 2008). On

the other hand, undisclosed implementation details that affect observable

system behaviour or observable implementation determinism is crucial for

reliable behaviour and is often given the sole importance (Engel et al. 2004;

Henzinger 2008).

The range of the performance interval indicates the tolerated variance or jitter in

the real-time action while the position of the response interval indicates the

tolerated latency. Increases in the latency of responses inversely affect the

system responsiveness and may degrade control performance and cause

system instability (Kim et al. 1997). Depending on the application, jitter may also

seriously impact performance: it may cause instability due to a variable

sampling period (Locke 1992); it may introduce errors significant enough to

render a sampled signal meaningless (Cottet et al. 1999); it may need to be

Software architecture of real-time system schedulers

2-4

nearly eliminated for specialised I/O devices requiring precise timing

relationships between inputs and outputs (Locke 1992); and, it may complicate

and delay fault detection and recovery (Lin et al. 1996). For analytical purposes,

in addition to the definition above, jitter can be defined as the unpredictable and

irregular deviation in the latency of a response (Figure 2.2).

In real-time computing systems latency and jitter may be caused by underlying

hardware such as the oscillator hardware (Schossmaier et al. 1999), memory

caches (Mueller et al. 1993; Basumallick et al. 1994; Schneider 2000), direct

memory access hardware (Thiele et al. 2004; Pitter et al. 2007), variable event

servicing times (Jeffay et al. 1993; Berg et al. 2004), etc. (Sanfridson 2000).

Latency and jitter are key factors of the quality of the system response

mentioned in the aims in Section 1.4. The tolerance to these factors varies

depending on the application, for example, the jitter may be allowed to tend to

the response interval or may be required to tend to zero.

2.3 Classifications

The intervals in Figure 2.1 can be used to make a few distinctions: for a hard

real-time action, both the response and performance intervals are finite and

usually the same, while for a soft real-time action, the response interval is

Figure 2.2: Latency and jitter of a response

Stimulus Reaction

Jitter

Latency

Software architecture of real-time system schedulers

2-5

infinitely large1. A hard real-time action provides no value to a system when it

fails to meet its deadline (Buttazzo 2005a) and is safety-critical when the failure

can result in death, injury or illness, major economic loss, mission failure,

environmental damage or property damage (Dimond et al. 2002). A firm real-

time action has a performance interval smaller than a finite response interval,

tolerates responses anywhere in the response interval (with possible planned

degraded performance) and cancels overly long calculations according to the

dynamic quality requirements (Goossens et al. 1997; Laplante 2004). In spite of

the type of action, a deadline always exists after which catastrophic, zero or

mediocre performance is obtained.

A real-time system is normally classified on the maximum criticality of its

actions. That is, a real-time system performing even one hard real-time action is

a hard real-time system even if it performs soft or firm real-time actions. A real-

time system may also have non-real-time software, for example, software that

updates a display screen.

Hard real-time systems include devices that must shut down costly transformers

before lightning strikes in power lines destroy them (Engblom 2002); engine

control units that prevent too early or too late a combustion which can either

destroy the engine or result in lower fuel economy and power (Bober et al.

2009); and other such control systems designed to expect determinism without

which performance suffers degradation and may even lead to instability in the

system (Marti et al. 2001). Soft real-time systems include DVD players,

1
 Performance of soft real-time actions may degrade continuously outside the performance

interval, even turning negative, but even so, the consequences will not be catastrophic.

Software architecture of real-time system schedulers

2-6

multimedia systems, monitoring apparatuses, telecommunication networks,

mobile robotics, etc. Firm real-time systems include video conferencing devices

and some database management systems.

2.4 Hardware model

The embedded processor cores mentioned in Section 1.1 perform calculations

and interact with the environment through helper non-programmable hardware

cores (serial ports, analogue interfaces, etc.) called peripherals. They may be

placed with these peripherals onto a single integrated-circuit die to form a

microcontroller or placed alone to form a microprocessor; when placed into

suitable packaging, a chip emerges. The terms microcontroller and

microprocessor are, however, gradually being used less than the term system-

on-chip (SoC), owing to the scale of today‘s chips compared to the past

(Bjerregaard et al. 2006).

Real-time systems with multiple microcontrollers, i.e. distributed systems, are

common in automotive systems where cars may have between 20 and 100

electronic control units (Charette 2009; Ebert et al. 2009) and may even have

two communication media (Turley 1999). However, they have their

disadvantages such as an increased amount of hardware, wiring, points of

failure, etc (Leen et al. 1999). Progressive miniaturisation, from multi-

processors to multi-chip modules to chip-level multi-processors (CMP), aimed to

eliminate these disadvantages while also providing higher bandwidth, lower

latency, greater energy efficiency and more reliable communication (Multicore

Association 2008). There is also a drive to replace the electronic control units

with CMPs (Bergenhem 2007; Obermaisser et al. 2009).

Software architecture of real-time system schedulers

2-7

CMPs have also been termed multi-cores (Wolf et al. 2008), where what was

previously termed a ―processor‖ is termed a ―core‖. ―Processor‖ may instead be

used to group processors in a heterogeneous CMP so that the CMP can be

referred to as containing homogeneous ―processors‖ which further contain

heterogeneous ―cores‖ (Duller et al. 2005). A CMP with peripherals may still be

referred to as a microcontroller (Martin 2009) but where the SoC terminology is

prevalent and the cores especially heterogeneous, it is referred to as a multi-

processor system-on-chip (MPSoC) (Wolf et al. 2008).

The early CMP designs were one integrated-circuit versions of the prevailing

multi-processor designs of the time – the shared-memory multi-processors –

and leveraged many of the same techniques (Peng et al. 2007). More recently,

the number of processors found in such a design has increased into the tens

and hundreds (Borkar 2007) and inter-core communication has shifted from

simple interconnects to more complex networks on the chip (Ascia et al. 2005;

Bjerregaard et al. 2006). For distinction, the former group is identified simply as

multi-core while the latter is identified as massively multi-core or many-core

(Borkar 2007).

In this thesis, the ―multi-core‖ terminology is adhered to, which has become

colloquial usage even among non-technical users.

2.5 Software development model

As mentioned in Section 1.1, the embedded processor cores allow their

behaviour to be modified by software, that is, these cores execute software by

reading sequences of bits or instructions from memory hardware and

interpreting them. The instructions indicate the calculations to perform and the

Software architecture of real-time system schedulers

2-8

patterns of communication with other software processing cores and

peripherals. The peripherals either interact (by sensing or actuating) with the

environment directly or control another piece of hardware that does the

interaction.

Working from a set of human-level specifications, software developers describe

calculation algorithms at a comfortable level of abstraction (for example, a

textual or graphical programming language) which is then converted by a

development software artefact called a compiler into instructions. Algorithms are

designed as a series of tasks that work together to accomplish a particular goal-

oriented job. A group of common jobs then constitute a software application,

several of which may be running on one core. Tasks contain sequential

instructions and are meant to run concurrently with other tasks. In addition to

task planning, the design process will also involve picking a suitable RTOS. The

RTOS is responsible for task scheduling, i.e. deciding the time and order for

task executions.

For example, a word processing application has jobs for editing and printing

amongst others. Editing requires tasks capable of positioning the cursor,

highlighting text, saving the text, etc while printing requires tasks capable of

checking the printer status, pagination, etc.

In a hard real-time system, some tasks may require the maintenance of the

real-time constraints mentioned in Section 2.2. These hard real-time tasks are

those that use peripherals connected (directly or indirectly) with the

environment, such as an analogue-to-digital converter, a pin driving a relay, etc;

Software architecture of real-time system schedulers

2-9

and those that are required to precede the aforementioned tasks. From this, it

follows that these real-time tasks must also be time deterministic.

Tasks may be invoked aperiodically (at an irregular, unpredictable rate),

sporadically (at an irregular, upper-bounded rate) or periodically (at a regular

rate) (Buttazzo et al. 1999; Buttazzo 2005a). For example, operator requests or

displaying activities, responding to device interrupts and sensory acquisition or

control loops respectively correspond to one of these types. Since many safety-

critical activities are driven by periodic real-time tasks (Jeffay et al. 1991; Spuri

et al. 1995), the discussion will be limited to periodic tasks (see also Section

2.6.2).

2.6 The task model

In this thesis, the task model consists of a task-set, in which each task,

is distinguished by: an indication of its importance (the priority), a type (hard or

soft real-time or non-real-time), an initial delay (– the phase), the amount

of time between consecutive releases (– the period) and a list of tasks that

should be executed before it (precedence constraints). A list of resources used

by the task may also be included, sometimes annotated with the time and

duration of usage of each resource.

Over the lifetime of the system, the task executes in a number, of non-

overlapping frames (Figure 2.3). The frame consumes units of

processor time – between the best-case , and the worst-case

– but may be broken up into a number, of executions due to higher

priority tasks or to increase system responsiveness; the execution starts

Software architecture of real-time system schedulers

2-10

at and finishes at . The task‘s worst-case utilisation,

of the processor may be used to decide how to execute a frame.

The frame also has execution properties: it is released at and it has a

time by when it should have finished executing (a deadline specified absolutely

 or relative to the release time). Contentions at run-time will result

in the frame actually being released at a finite time after , and

finishing at , a finite time before .

Using these definitions, some useful relationships can be drawn for a task

 as seen in Equations 2.1 to 2.9.

 2.1

 2.2

 2.3

 2.4

 2.5

Figure 2.3: An example frame of a task which has three executions

Three executions of the k
th
 frame of

 Time

Software architecture of real-time system schedulers

2-11

 2.6

 2.7

 2.8

 2.9

At any time , a frame may have some computation time left and

available slack or laxity, as seen in Equation 2.10; the maximum laxity

(Buttazzo 2005a) is at the release time of the frame. The worst-case utilisation

(WCU) for the task-set can be seen in Equation 2.11.

 (2.10)

 (2.11)

A task-set is complete or concrete if is known a priori . The least

common multiple (LCM) of the periods of the tasks in a set is sometimes called

the major cycle or hyperperiod . If a set of tasks can be executed in a

particular system, then that set is feasible for that system. When checking for

feasibility, it is necessary and sufficient (for) to analyse the interval

from to (Pellizzoni et al. 2004). For brevity, the

upper bound will be represented as instead.

Sometimes, for ease of specification, the system is assumed to have implicit

deadlines, i.e. ; and the task-set is assumed

Software architecture of real-time system schedulers

2-12

to be synchronous, i.e. . However, asynchronous task-sets can

be advantageously feasible when synchronous ones aren‘t (Tindell 1994;

Pellizzoni et al. 2004), for example, phases and priorities can be used to specify

precedence constraints (Audsley 1991).

2.6.1 Harmonic dependencies between periods

Consider two tasks, and with initial delays of and respectively, such

that , then the two tasks will be released at the same time, at their

 th and th frame respectively, whenever Equation 2.12 holds.

 (2.12)

It is easy to see that if , then a release of can be

expected after releases of . In other words, if the periods are harmonic (one

is a multiple of the other), the tasks will always be released with a constant

relationship. Task-sets where all the tasks have the same or harmonically

related periods are likely to have a low hyperperiod and they simplify feasibility

analysis (Abdelzaher et al. 2000; Kuo et al. 2000).

On the other hand, if , then the hyperperiod may be

large and the relationship between the tasks‘ release times will vary over the

range . Moreover, these relationships need not be the same for

every task combination, leading to changing execution patterns where the set of

tasks executing before a particular task varies. Due to these variations, system

utilisation may increase (Gill et al. 1999) and so certain scheduling techniques

prefer to partition tasks on the basis of harmonic relations between their periods

(Abdelzaher et al. 2000; Ekelin et al. 2001).

Software architecture of real-time system schedulers

2-13

2.6.2 Other types of tasks

It is worth noting that this periodic task model can also be used for a task that

is released sporadically (Equation 2.13) (Jeffay et al. 1991) and for a one-shot

task that is only released once (Equations 2.14 to 2.17).

 (2.13)

 (2.14)

 (2.15)

 (2.16)

 (2.17)

2.6.3 Latency

The instantaneous latency or delay of the th frame, , of

task , is the difference between the start time and the release time

(Equation 2.18), though it can also be expressed as the maximum for the

assessment of a scheduling algorithm (Equation 2.19).

 (2.18)

 (2.19)

2.6.4 Jitter

The jitter in an ordered set of time measurements can be calculated as

in Equation 2.20. In some work, the maximum difference between two

consecutive time measurements is used as a relative measure of jitter

Software architecture of real-time system schedulers

2-14

(Equation 2.21) and the range as the absolute measure (Equation 2.22)

(Buttazzo 2005a).

 (2.20)

 (2.21)

 (2.22)

Depending on the application, performance may be seriously impacted by jitter:

it may cause instability due to a variable sampling period (Locke 1992; Törngren

1998; Marti et al. 2001); it may introduce errors significant enough to render a

sampled signal meaningless (Cottet et al. 1999); it may upset the precise timing

relationships between inputs and outputs for specialised I/O devices (Locke

1992); it may complicate and delay fault detection and recovery (Lin et al.

1996); and, it may generally degrade performance in control applications (Hong

1995). Since all observable behaviour in the systems under consideration is an

outcome of task execution, the discussion changes to one of jitter in a task‘s

various timing properties: a task can suffer from release jitter, execution jitter,

completion jitter and finishing jitter (Buttazzo 2005a).

2.6.4.1 Execution jitter

Execution jitter, for , is a variance in the execution time of a task

and is quantified as in Equation 2.23 and illustrated in Figure 2.4, where for

 , and, .

 (2.23)

Software architecture of real-time system schedulers

2-15

The primary reason for execution jitter is the presence of multiple execution

paths in the program each of which may take different times to complete. The

decision of which path to take is often based on unpredictable inputs and

cannot be compensated for statically (Engblom 2002). The situation is

exacerbated further by the trend to increase average performance with

embedded processor developments (Berg et al. 2004).

When systems are designed statically, they are designed to worst-case

performance (Engblom 2002) and a large execution jitter, e.g. larger than 10%

of a task‘s period (Cottet et al. 1999), can be indicative of unusable computation

time and may also cause schedule non-determinism (Gendy 2009).

2.6.4.2 Completion jitter

Completion jitter, for , is a variance in the execution time of a task in

the presence of pre-emption and is quantified as in Equation 2.24, where for

 , and, .

 (2.24)

In the absence of pre-emption, completion jitter is the same as execution jitter.

Figure 2.4: Execution jitter in periodic tasks

A

Time

A A A

Software architecture of real-time system schedulers

2-16

2.6.4.3 Finishing jitter

Finishing jitter, for , is a variance in the finishing time of a task. It

can be quantified as in Equation 2.25 and is illustrated in Figure 2.5, where for

 , ; ; and,

 .

 (2.25)

This jitter is a function of execution jitter and release jitter.

2.6.4.4 Release jitter

Release jitter, for , is a variance in the actual release time, i.e. the

start time, of a task. It can be quantified as in Equation 2.26 (see Section 2.6.3)

and is illustrated in Figure 2.6, where for ;

 ; and, .

(2.26)

Figure 2.5: Finishing jitter in periodic tasks

A A A A

Time

Software architecture of real-time system schedulers

2-17

2.7 Shared resource management

In a real-time system, resources include the peripherals, the memory banks,

etc. Tasks will frequently share resources (Audsley et al. 1990), often for inter-

task communication, and will, hence, possess critical sections that require

mutually exclusive transactional access to the shared resources in order to

maintain data coherence (Caccamo et al. 1999). In addition to temporal and

precedence constraints, a scheduling algorithm must ensure that critical

sections involving the same resource do not overlap (Pont 2001); this is why

real-time scheduling has also been referred to as resource scheduling (Locke

1992; Ramamritham et al. 1994).

Most modern systems have concurrent execution paths, actual or simulated,

and so shared resource management (the management of critical sections) has

become an essential feature of modern operating systems. Resource

contention is the primary reason for design complicatedness when dealing with

concurrent software and care must be taken due to the implications that

different management techniques may have on the real-time requirements.

There are principally two predictable management techniques, the blocking and

non-blocking techniques (Audsley 1991). In the blocking technique, a task is

Figure 2.6: Release jitter in periodic tasks

A A A A

Time

Software architecture of real-time system schedulers

2-18

stopped from doing all work while in the non-blocking technique, a task will

always perform work; however, this work may or may not be pertinent to the

task‘s purpose.

2.7.1 Blocking techniques

The most common way of preventing concurrent resource access is by one task

claiming ownership of the resource. All other tasks needing that resource must

wait until the owning task relinquishes ownership. Tasks typically use non-busy

or pre-emptable waiting, i.e. they yield control of the CPU when blocked,

allowing other tasks to go ahead (Mok 1983). When a task claims ownership of

a resource, it is described as locking the resource and the tasks that must wait

as a result are described as having their execution blocked.

One quick and simple locking method is to temporarily prevent tasks from being

scheduled (Pont 2001; Wang et al. 2007) which, of course, runs the risk of

missing events, adversely affecting system responsiveness and real-time

performance. However, it is useful when the locking time is very small as it

involves very little overhead. The other method is to employ a semaphore

(Audsley 1991).

Locks can cause problems if not used carefully (Figure 2.7): some tasks may be

always held up while others progress on (resource starvation); the entire system

may be held up while each task cyclically waits on another to relinquish

ownership (deadlock); tasks may continually choose to wait politely on detecting

a contention resulting in a situation where no work is done other than alternated

polite waiting (livelock); a task‘s input data may occasionally be unavailable or

corrupted due to unconsidered flow and anti-dependencies (race conditions);

Software architecture of real-time system schedulers

2-19

and, a high priority task may be pre-empted by lower priority ones when the

former is blocked over resource contention with even lower-priority blocked

tasks (bounded priority inversion) (Sha et al. 1990). Various resource protocols

have been conceived to deal with these problems (Audsley 1991), but blocking

can unpredictably affect a task‘s WCET, complicating software design (Audsley

1991; Chen et al. 1997a).

To increase predictability, the blocking schemes may be implemented statically

by carefully scheduling tasks at design time on the basis of their real-time

properties and resource usage (Zhao et al. 1987; Xu et al. 1990), even for multi-

processors (Xu 1993). This allows the blocking induced WCET changes to be

known beforehand (Xu et al. 2000); however, regions in the task still need to be

identified and marked as critical sections along with the resources used by

those sections.

Figure 2.7: A few of the problems with resource sharing:

(a) resource starvation; (b) deadlock; (c) livelock

Normal execution

Lock resource 1

Critical section

Release resource 1

Lock resource 2

(a) (b) (c)

T
im

e

Software architecture of real-time system schedulers

2-20

2.7.2 Non-blocking techniques

These techniques prevent priority inversion and deadlocks with varying levels of

guarantees on the lack of starvation: at the basic level, obstruction-free

techniques guarantee progress for a task that executes in isolation; the lock-

free techniques ensure that at least one task will always make progress; and,

the wait-free techniques ensure that every task will continue to make progress

(Herlihy et al. 2003). The stronger guarantees are more difficult to achieve and

require more complicated and expensive algorithms (Fich et al. 2005). These

techniques have also been studied as the creation of atomic registers, an

abstraction where overlapping reads and writes to an n-bit register always

behave as if operating in a fixed sequential order (Lamport 1986a; Lamport

1986b; Tromp 1989; Anderson et al. 1992).

Non-blocking techniques alleviate the complexity introduced by resource-

sharing and software can be written in a sequential manner, simplifying formal

and informal reasoning (Herlihy 1993). They do not employ critical sections but

allow concurrent resource access.

In some cases, the technique involves continually accessing a shared object,

checking and retrying the access if coherence is lost (Cho et al. 2010), for

example, the lock-free technique of ―read-and-check‖ loops (Lamport 1977;

Bershad 1993; Herlihy 1993; Kopetz et al. 1993; Anderson et al. 1997b); in one

wait-free technique, tasks help other ones out (Anderson et al. 1997a). These

two techniques are non-blocking in the sense that the task is performing work

but may be blocking in the sense of the task‘s real objective when the work

being performed is not advancing towards the objective, i.e. the work being

performed is a busy-wait, a repetition of work that was corrupted by a

Software architecture of real-time system schedulers

2-21

concurrent task or the work of another task. There may also be effects on the

real-timeliness depending on the properties of the task-sets (Anderson et al.

1997b; Holman et al. 2006).

To allow concurrent access without affecting the timing of the tasks, wait-free

and loop-free techniques have been devised, such as the writer maintaining a

buffer for each reader (Peterson 1983). However, this can be inefficient when

the amount of data to be written is large; hence, an alternative of switching

between buffers where writers and readers all access different buffers

(Sorenson et al. 1975; Clark 1989) gained attention. The initial design showed

that for m-writers and n-readers, (n + m + 1) buffers were sufficient, though

subsequent work demonstrated that for a fully asynchronous single writer,

single reader system four buffers were required (Simpson 1990). This was later

generalised for n readers as requiring (2n + 2) buffers (Chen et al. 1998).

Similar mechanisms were also devised in studies on the atomic register

abstraction (Tromp 1989; Anderson et al. 1992; Anderson et al. 2000).

The optimal three buffer scheme for one-reader and one-writer was originally

dismissed due to timing anomalies (Simpson 1990), but alterations since then

have addressed the vulnerability (Chen et al. 1997b) and have also generalised

the algorithm for n readers, requiring the optimal (n + 2) buffers (Chen et al.

1997b; Chen et al. 1998). The time and space costs of these algorithms have

been further optimised by taking into account the timing properties of the

readers and writers (Huang et al. 2002; Cho et al. 2005; Cho 2006; Cho et al.

2007).

Software architecture of real-time system schedulers

2-22

The technique of non-blocking communication buffers also allows

communication between tasks with non-harmonic period relationships (Buttazzo

2002b).

2.7.3 Multi-processor

The true concurrency available in multi-processor systems was part of the

motivation for the non-blocking resource sharing schemes (Lamport 1977;

Herlihy et al. 2008). In these systems, it is preferable to have wait-free rather

than lock-free schemes and to avoid blocking (Brandenburg et al. 2008b). This

is because blocking schemes effectively serialise resource access and impede

any concurrency gain.

The non-blocking schemes can be applied directly (Kopetz et al. 1993) or

through concurrent objects that employ non-blocking techniques (Herlihy et al.

2008) such as stacks, queues, lists etc. (Treiber 1986; Herlihy 1993; Valois

1994; Valois 1995; Michael et al. 1998; Tsigas et al. 1999; Åkesson 2001;

Sundell 2004; Sundell et al. 2008) especially when the processors share

memory. The processors may also communicate using protocols over message

passing networks (Pont 2001) if available. Several application programming

interfaces (APIs) have been built (sometimes as part of the RTOS) for inter-

processor communications; but even these require changes to deal with the

different constraints introduced by miniaturisation (Section 2.4) (Multicore

Association 2008).

Another technique popularised in 1993 (Herlihy et al. 1993) was hardware

transactional memory, later constrained as software-only transactional memory

(Shavit et al. 1997), though work continues with more-efficient embedded (Ferri

Software architecture of real-time system schedulers

2-23

et al. 2010) and real-time (Schoeberl et al. 2010) versions. Resource accesses

are made optimistically in logical groups called transactions and are committed

later upon successful validation. Transactions may be aborted at any time, at

which point all modifications are undone automatically or retried. This technique

bears similarities to the lock-free ―read-and-check‖ scheme and may similarly

suffer from the same timing uncertainties.

2.7.4 Peripheral management

Resources that interface with the environment, i.e. input/output (I/O) resources

or peripherals, may be either partitioned amongst tasks or shared. Modifications

made to registers in such resources may be non-transactional and may initiate

immediate environmental reactions; hence, most of the resource management

techniques above are applicable only to memory-type resources and need to be

altered for peripherals.

In embedded systems, peripherals are generally accessed by reads and writes

to memory (Berg 2009), but non-blocking management algorithms cannot be

directly applied unless the peripheral has been specialised to participate. If the

peripheral is to be treated as a resource, the only choice is to employ some

form of blocking such as multiplexing between processors (Gary et al. 2004;

Chen et al. 2009) or to perform some sort of specialisation such as pipelining

(Fort et al. 2006). However, the multiplexing scheme still requires support for

transactional accesses besides blocking one core from any sort of access. The

pipelining method may also be limited depending on the peripheral or may be

too costly based on the amount of duplication required.

Software architecture of real-time system schedulers

2-24

Another solution is to use a gateway, i.e. a single task through which all

communication with the peripheral is performed (Audsley et al. 1993). When

done in this manner, the chore becomes coherent communication with the

gateway – this can be performed using any of the techniques in the sections

above.

In virtualisation, where multiple operating systems (OSes) are allowed to

execute in isolation on the same hardware platform, an OS may have one

software module that communicates with another software module controlling

the peripheral, which may either be owned by another OS or exist as a separate

entity (Heiser 2007). Other solutions offload some of this functionality into

hardware for higher performance (Raj et al. 2007) while a safety-critical solution

may strictly partition the peripherals (Crespo et al. 2010).

2.8 Real-time task scheduling

Real-time task scheduling sequences the execution of tasks so that their timing

constraints are met (e.g. completion before the deadline), protects shared

resources from simultaneous access and achieves predictable system

behaviour (Ramamritham et al. 1994; Joseph 1996). The secondary goal is

usually to achieve maximum processor and resource utilisation.

Scheduling decisions are initiated based on the occurrence of particular

combinations of external or internal events. These events may be physical

switch depressions, message arrivals, the elapse of one second, a resource

being freed etc. Events can interrupt the system at any time, causing it to break

the current execution flow and execute new instructions from the interrupt

service routine (ISR) that handle the interrupt. ISRs steal CPU time and the

Software architecture of real-time system schedulers

2-25

general convention is to keep them as short as possible and to reduce the

number of resources they use. When not running instructions from real-time

tasks or from the ISR, the system is said to be slacking (Davis et al. 1993).

During this time, non-real-time or aperiodic tasks may be executed or the

system may switch into a low-power mode.

One of the key components of an RTOS is the scheduler. A scheduler is

identified by its trigger architecture (i.e. which events trigger the task execution)

and by its execution architecture (i.e. the order in which various tasks are

executed after being triggered) and enforces a task schedule, i.e. directives on

when a task should be started by a task dispatcher. The schedule is created

according to an algorithm and is considered valid if all tasks complete before

their deadlines and if no task runs before its release time.

2.8.1 The scheduling algorithm

A scheduling algorithm is a set of rules derived from the scheduling goals and is

realised by an implementation of a scheduler (Pont et al. 2007). The scheduling

algorithm is considered optimal if it can find a schedule for any feasible task-set.

Scheduling algorithms have associated feasibility tests: tests that must always

succeed for feasibility are necessary; those that succeed for some task-sets but

not for others even if they are feasible are sufficient. Sufficient tests can be

overly pessimistic, missing several feasible schedules.

Under any algorithm, a task is started as soon as it is released only if it is a

higher priority than the task currently executing or than all the tasks waiting to

execute; and if all its precedence and resource constraints have been fulfilled.

Priorities are assigned by the designer or by the algorithm on the basis of

Software architecture of real-time system schedulers

2-26

certain task properties (Buttazzo 2005b). These properties may be fixed at run-

time, such as the period or relative deadlines, or may vary, such as the laxity or

absolute deadlines (Liu et al. 1973; Oh et al. 1998). This implies that the priority

assignment can be made before the system is started (fixed priority) or has to

be made while the system is running (dynamic priority).

Static or offline algorithms build a complete schedule prior to execution while

dynamic or online algorithms build a part or the whole of the schedule at run-

time (Stankovic et al. 1995). The algorithm will have to be dynamic if any of the

properties depended upon change dynamically. The re-run of a dynamic

algorithm may be triggered by events such as the time slice elapsing, a task

finishing, a task being released, a task being blocked, a new task being added,

etc.

Static schedules clearly provide schedule determinism but must assume the

worst-case as the average behaviour and may, hence, never fully utilise the

processor. Dynamic algorithms provide great adaptability and flexibility but have

greater overhead and comparatively poorer schedule determinism. (Liu et al.

1973; Kopetz 1991a; Ramamritham et al. 1994; Fidge 2002; Scheler et al.

2006) Static scheduling algorithms, however, can be more complex and can

search a larger state space as they run on development machines with more

computational resources and can have a much greater amount of time in which

to make a decision (Xu et al. 1993; Ramamritham et al. 1994; Xu et al. 2000;

Goossens et al. 2004; Buttazzo 2005a; Lee 2009).

Hybrid algorithms have also been designed, for example, some systems have a

―measurement‖ and/or ―schedule creation‖ period immediately after start-up but

Software architecture of real-time system schedulers

2-27

before regular operation where unknown quantities and the schedule are

decided (Gendy et al. 2007a; Nahas 2008); others might have several static

schedules that are non-deterministically switched in as the state of the system

changes (Hanif et al. 2008); others may schedule some tasks statically and

others dynamically.

2.8.1.1 Run-time complexity

Intuitively, it is better to check a task-set for feasibility (page 2-11) before

expending resources to compute a schedule. Unfortunately, for most systems,

the feasibility tests are computationally intractable except for special cases such

as the implicit-deadline (Liu et al. 1973; Jeffay et al. 1991) and synchronous

(Baruah et al. 1990) pre-emptive systems; and, the non-concrete and concrete

sporadic (Jeffay et al. 1991) co-operative systems. The special cases may be

used for all types but may prove to be sufficient but not necessary, i.e. overly

pessimistic. The intractability only increases when tasks share resources by

blocking schemes (Mok 1983; Audsley et al. 1990; Audsley 1991).

To keep costs low, suboptimal, tractable algorithms are employed based on

branch and bound methods or on computationally simple heuristics (Burns et

al. 1995). This has been tried on asynchronous pre-emptive task-sets

(Pellizzoni et al. 2004), and for shared resources (Zhao et al. 1987). A similar

algorithm for time-triggered co-operative schedulers was developed (Gendy et

al. 2008a) and refined (Gendy et al. 2008b).

2.8.2 The trigger architecture

A trigger architecture where multiple, possibly aperiodic, events are allowed to

trigger the task executions results in the event-triggered architecture (ETA)

Software architecture of real-time system schedulers

2-28

(Kopetz 1991b). A specialisation of the ETA is the time-triggered architecture

(TTA) which has one primary event, periodically originating from a highly

accurate internal or external time-keeper. A TTA approaches ETA-level event-

perception by polling the non-triggering events as required.

In the TTA, the time of arrival of at least the next event is known, whereas in the

ETA, the time of arrival of the next event can at best be bounded. This makes

the TTA more predictable (Albert 2004) with the potential to be dynamic by

adjusting the occurrence of the next timing event (e.g. a flight control system

about to initiate landing procedures).

The emphasis on time as a first-order quantity can simplify communication,

establish state consistency, promptly perform error detection, and support the

timeliness of real-time applications. TTA designs are recognised to have much

more predictable behaviour and hence are widely recognised as providing

benefits to both reliability and safety in some of the more safety-critical

applications e.g. the main mission computer software in the Lockheed C130J

(Amey 2002). (Kopetz et al. 1994; Maier et al. 2002)

However, the TTA may not be suitable for all systems: due to the polling of

events, the TTA may not be as reactive as a full-blown ETA and may have a

worse power profile; and, polling events with highly variable frequencies can

also necessitate an unnecessarily high polling frequency (Albert 2004). The

best-case performance of the ETA may always be better or the same as an

equivalent TTA. However, the worst-case performance of the ETA might result

in tasks missing deadlines, or worse, event occurrences being missed (this can

be avoided, to an extent, with hardware enhancements (Siemers et al. 2005)).

Software architecture of real-time system schedulers

2-29

Both display, more or less, the same average-case performance. (Scheler et al.

2006)

On the other hand, TTA designs have a very simple architecture, making them

simple to understand and maintain (Liu et al. 1973); are more comfortably

certified (Pont 2001); and, emphasise correctness-by-construction, a

methodology which for the reason of predictable and highly reliable operation

has inspired programming languages (Chapman 2006) and model-driven

design approaches (Bordin et al. 2007).

2.8.3 The execution architecture

The execution architecture can take the form of executing tasks one after the

other or the form of interleaving frames. This forms co-operative and pre-

emptive architectures respectively; in the former, a task has to willingly

relinquish resources and stop running while in the latter, a task can pause

others, execute and then resume the paused tasks.

The sequential nature of the co-operative execution architecture attracts many

software designers as there are no contentions over common resources and

hence none of the complexity that comes with resource sharing interactions

(Locke 1992; Kalinsky 2001). The architecture is very deterministic and is

desirable particularly for use in safety-related systems (Allworth 1981; Ward

1991; Nissanke 1997; Bate 2000). Compared to a pre-emptive architecture, a

co-operative one can be identified as being simpler, having lower overheads (as

there are no context switches), being easier to test, having greater support from

certification authorities (e.g. avionics standard DO-178B) and being supportive

Software architecture of real-time system schedulers

2-30

of very tight jitter requirements (Jeffay et al. 1991; Locke 1992; Bate 2000;

Fidge 2002).

2.8.4 Multi-processor scheduling

In scheduling a task-set on a homogeneous or heterogeneous multi-core, tasks

can be allocated to the cores statically (partition scheduling) or dynamically

(global scheduling) (Coffman Jr et al. 1972; Dhall et al. 1978; Burchard et al.

1995; Sha et al. 2004). Though global scheduling can achieve a more balanced

workload and increased performance compared to partition scheduling (Kumar

et al. 2004), it is not as good a match for hard real-time systems (Lauzac et al.

1998; Brandenburg et al. 2008a) and like other dynamic systems can affect

simplicity and predictability (Burchard et al. 1995; Monot et al. 2010).

In partition scheduling, the choice of scheduling algorithm on a processor is

made first and then the task-set is iteratively scanned and tasks allocated to

processors. The allocation is constrained by the feasibility of the task-set under

the scheduling algorithm of a processor if the task were assigned there and

constraints on the properties of the task itself. However, the search for an

optimal partitioning is computationally intractable and hence implementations of

partitioning algorithms are heuristic in nature or use global optimisation, aiming

to get as close as possible to the minimum number of cores required (Dhall et

al. 1978; Monot et al. 2010).

Most of the existing partitioning algorithms have concentrated on pre-emptive

fixed and dynamic priority scheduling algorithms where tasks are sorted in by

specific property and then assigned to the next or first available processor

Software architecture of real-time system schedulers

2-31

(Dhall et al. 1978) or according to the task utilisation (Oh et al. 1993; Burchard

et al. 1995; Oh et al. 1995; Lauzac et al. 2003; Karrenbauer et al. 2009).

On the positive side, the heuristics used in these algorithms are general to the

problem class and can be re-applied with a different scheduling algorithm. For

example, when applied consecutively to an indexed list of processors and to

tasks sorted by increasing periods, the current task is assigned by first fit (FF) to

the processor with the smallest index, by next fit (NF) to the current processor

or to the next processor and by best fit (BF) to the processor that will provide

maximum utilisation. The FF heuristic has seen variations with better results

such as sorting tasks by decreasing utilisation (FFDU) or by matching on a

particular criterion (MFF) such as matching a period criterion (FFMP). Heuristics

have also been devised for specialised task-sets, such as tasks with low load

factors and for hybrid cases where low-load tasks occur with others.

More recently, an algorithm was designed that considers static cyclic scheduling

and constrains tasks by their communication and by their requirements for

particular peripherals (Monot et al. 2010).

2.8.5 A part of the system

The RTOS employed might be a commercial endeavour or might be built in-

house and becomes a part of the developer‘s code (Pont 2001). This is

manifested when it is used without a clear understanding of its costs or of its

special mechanisms for predictability (Katcher et al. 1993) leading to

applications exhibiting unpredictable behaviour (Reeves 1998). Scheduler

behaviour may also change based on tasks‘ properties. This is why a

Software architecture of real-time system schedulers

2-32

certification process may reassess the entire system even when a small part in

a single task has been altered (RTCA SC-167 / EUROCAE WG- 12 1992).

2.9 The complexity of design

In this thesis, the concern is with application complexity rather than RTOS

complexity. The RTOS may be simple or complex, but should attempt to provide

an interface to the application that simplifies application development. Simplicity

is lost if the interface is complex or if the interface doesn‘t include essential

descriptions, such as temporal descriptions (Lee 2009).

Design complexity deals with the overall morphology of the system and, in this

chapter‘s context, is affected by the number of jobs that another job depends

on, the cohesiveness of each job and the degree of coupling among jobs

(Herlihy 1993; Marco 1997; Sessions 2009). This suggests that tasks of the

same job should: be working towards a common goal, have optimal

dependence (Miller 1956) on the services of tasks from other jobs and be lightly

coupled to tasks from other jobs. This accounts for the complexity of resource

sharing which unintentionally couples tasks through a resource.

The tasks‘ data-flow then gives an early indication of the complexity by a simple

count of the interactions. At a task‘s instruction level, objective metrics, each

emphasising particular aspects, have been devised (Sneed 2008) to measure

the complexity and can be weighted with subjective aspects such as the

designer‘s experience and length of exposure to the system (Douce et al.

1999). One of these metric measures, the number of lines of code, can also be

used as an indication of monetary cost, e.g. £13.6 - £27.3 per line for most

Software architecture of real-time system schedulers

2-33

embedded projects, £68.2 per line for military projects and £682.0 per line to

reach the level of IBM‘s space shuttle control software (Ganssle 2008).

The design complexity is important not only at design time but at maintenance,

since the system maintainers are often different from the original designers and

may have to bear the full weight of the complexity (Douce et al. 1999).

2.10 Conclusions

Real-time systems interact with their environment by sampling one or more

signals and by driving one or more other signals. These chores, which build the

functionality of the system, are usually performed by several software entities or

tasks. This thesis considers only hard-real time systems which must be

responsive and time deterministic, and hence requires the tasks to have low

latency and low jitter during execution.

Task execution is the responsibility of the scheduler component of an RTOS

and the decisions therein trade-off between performance and predictability as

dictated by the system and resource sharing requirements; the large design

space facilitates the creation of a variety of designs, each suitable for their own

application. The pre-emptive variety of designs have gained acceptance due to

issues with the responsiveness of the co-operative ones, but the former often

lead to unpredictable run-time behaviour.

This thesis maintains that components at any level of abstraction should be

made as predictable and repeatable as is technologically feasible with any

remaining variability taken care of by a higher level (Lee 2009). For this reason,

a scheduler architecture that is highly predictable is preferred for the simplicity

Software architecture of real-time system schedulers

2-34

(and, hence, reliability) it lends to application development. One such

architecture is the time-triggered co-operative architecture which is discussed

further in the next chapter.

Chapter 3

The time-triggered co-operative architecture

3.1 Introduction

In real-time systems, predictability is the foremost goal (Stankovic 1988;

Stankovic et al. 1990; Buttazzo 2005a) and a guarantee of achieving accurate

real-time behaviour which is further aided by design simplicity (Dijkstra 1997).

This is why integrating the predictable time-triggered architecture and the

simple co-operative methodology of application design into a time-triggered co-

operative architecture (TTCA) proves highly beneficial.

TTCA can simplify software design (Kalinsky 2001), can result in lower

overheads, can be easier to test, has greater support from certification

authorities, and can be supportive of very tight jitter requirements (Locke 1992;

Bate 2000; Fidge 2002).

The next section examines the architecture in greater detail, followed by the

feasibility constraints imposed by the architecture. The chapter concludes with a

description of existing TTCA implementations on both software and hardware.

3.2 Architecture design

In TTCA, events from an accurate timing source, such as a timer peripheral,

trigger the system to execute software sequentially (Figure 3.1) according to a

schedule (Table 3.1) set up programmatically (Listing 3.1). In time-triggered

jargon, an event from the timing source is referred to as a tick while the interval

between ticks is the tick interval or minor cycle.

The time-triggered co-operative architecture

3-2

Table 3.1: Task schedule

Task Priority
Delay
(ms)

Period
(ms)

WCET (μs)
Must be

preceded by

A Normal 0 1 250 —

B High 1 2 400 —

C Normal 0 1 250 A

DEFINE Start:
 INIT timer WITH tick interval = 1 ms
 INIT scheduler
 INIT data FOR A,B,C

 ADD A, B, C TO scheduler
 WITH Priority = Low, High, Low,
 Delay = 0x, 1x, 0x,
 Period = 1x, 2x, 1x,
 WCET = 250 μs, 400 μs, 250 μs

 CREATE schedule
 START scheduler

 DO FOREVER:
 SLEEP
 DISPATCH tasks
 CREATE schedule

Listing 3.1: Pseudo code for a TTCA implementation

In Listing 3.1, the task properties given in Table 3.1 are assigned to each task,

except the resource list which is unnecessary baggage for a co-operative

Figure 3.1: Operation of TTCA according to the schedule

A C A C B A C A C B

Time

Tick Tick Tick Tick

Tick interval

1 ms

Higher
priority

400
μs

250
μs

250
μs

Must
precede

The time-triggered co-operative architecture

3-3

system and the deadline which, in this case, is assumed to be the same as the

period. The tick interval is set to one millisecond (see Equation 3.2 below) and,

since tasks are always released at a tick, the release and delay times in the

listing are in units of ticks. Precedence constraints are specified by adjusting

release times or deadlines or by the order in which tasks are added. The

resulting execution sequence is shown in Figure 3.1.

It is easy to see that when the designs avoid or make only pre-determined

changes to the set of tasks, they make the system inherently schedule

deterministic (Locke 1992; Fidge 2002), and hence execution timing is

predictable (Baker et al. 1988).

3.2.1 The TTCA model

In TTCA, for a given task-set , every () tick is followed by the tick

interval and results in the release of the tasks in the ordered set

(Equation 3.1); this can be used to form the ordered set of tasks

 that are to be released before a task as a result of the tick.

 ordered by presence in the task table (3.1)

Additionally, the schedule always cycles at the hyperperiod such that, if the tick

interval is represented as , then and :

 ; ; . The interval between ticks is

hence upper bounded by the greatest common divisor (GCD) of the tasks‘

phases and periods as seen in Equation 3.2.

 (3.2)

The time-triggered co-operative architecture

3-4

The overhead introduced by an implementation of this architecture (Katcher et

al. 1993) can be accounted for by factoring in the overhead of the ISR

(Section 2.8), the scheduling dispatcher for a task in the tick

and the schedule creation algorithm for the tick (Figure 3.2).

In an implementation with the schedule creation algorithm running concurrently

in the tick, is zero and it is useful to define a quantity as the

amount of lag experienced by the scheduling dispatcher in sensing the tick

compared to the schedule creation algorithm; for a schedule creation algorithm

running non-concurrently, would be zero.

These overheads can be used to calculate the worst-case time to execute all

the tasks released as a result of the tick () (Equation 3.3)

and the excess time taken by that tick interval (Equation 3.4).

 (3.3)

 (3.4)

The overheads can also be used in the calculation of the tasks which are to be

released in the tick interval and those actually started in the tick

interval (Equation 3.5). If is a task started in the tick

Figure 3.2: Overheads in a TTCA implementation

A C ISR Dispatch
Schedule
creation

Time

Dispatch

 Tick

The time-triggered co-operative architecture

3-5

interval but finished in the tick interval, then is the ordered set of

highest cardinality that can satisfy Equation 3.6.

 (3.5)

(3.6)

This thesis imposes no lower bound on the tick interval, though some designs

do so to prevent any overflows, i.e. such that

(Equation 3.7).

 (3.7)

3.2.2 Timing event generator

In the case of single processor systems, the timing event generator is usually a

timing circuit of required precision (Baker et al. 1988). In the case of multi-

processor systems, a timing circuit is used either locally with network

synchronisation (Kopetz et al. 1994; Kopetz et al. 2005) or globally through

propagation on a common network (Pont 2001; Ayavoo et al. 2007).

3.2.3 Task design

Tasks are designed on the assumption that all their input data are available

when they start and the output data are coherent when they complete. The

tasks are also implemented as independent entities that never have to wait for

The time-triggered co-operative architecture

3-6

input/output operations and expect no resource contentions; they communicate

by writing to shared memory unscrupulously.

3.2.4 Priority assignments

Figure 3.1, while demonstrating a TTCA implementation according to Table 3.1,

is also an example of bad priority assignment: B has a regular period, while A

and C experience oscillating ones. This can be improved by giving B a lower

priority, as dictated by one of the well known scheduling algorithms for periodic

pre-emptive systems (Liu et al. 1973), resulting in the new execution sequence

seen in Figure 3.3 where all tasks have non-oscillating periods.

3.3 Feasibility

For a task under test , the maximum schedule creation time and

the maximum task dispatch time , the task-set is feasible (page 2-11) if

Equations 3.2 and 3.8 hold; and if Equation 3.9 holds for ,

 ,

.

 (3.8)

Figure 3.3: Effect of lowering the priority of task B

A C A C B A C A C B

Time

Lower
priority

The time-triggered co-operative architecture

3-7

(3.9)

Equations 3.7, 3.8 and 3.9 ensure respectively that the tick interval can meet

the release times, that the processor is not overloaded and that a task‘s

deadline is met.

3.4 Processor utilisation

Since TTCA uses the WCET in calculating the task schedule, the worst-case

behaviour is made the average-case behaviour, resulting in less of the available

processing power being utilised (Scheler et al. 2006). However, the availability

of the hefty computational power of a development machine to calculate a

schedule gives a higher chance (compared to an online algorithm) of finding a

schedule that features better processor utilisation (Xu et al. 2000).

All the same, it is true that TTCA is not suitable for all applications and in those

where signal frequencies vary frequently and unpredictably or where activities

are mainly aperiodic or sporadic, it can result in wasting the available processor

time due to over-sampling and excessive executions (Locke 1992; Davis et al.

2000). In such cases, it would be better to use alternatives (Pont 2001; Scheler

et al. 2006).

3.5 Fragility

TTCA is fragile during overload situations, since a task exceeding its predicted

execution time could generate a domino effect on subsequent tasks, causing

schedule violations and more importantly, real-time violations (Buttazzo 2005b).

The time-triggered co-operative architecture

3-8

The problem is exacerbated by the increasing difficulty in calculating the WCET

of a task (Puschner et al. 2002; Kirner et al. 2003). Also, since the violations

occur only on overload, they can be hard to track down.

Techniques have been developed to deal with these such as the use of

watchdog timers or task guardians to abort the task; however this adds greatly

to scheduler complexity and can result in dangerous situations where the

system could be in an unknown state (Locke 1992; Kalinsky 2001; Hughes et al.

2008). This condition is considered a fault in system design and is not explored

further in this work.

3.6 Existing implementations

There are a wide range of implementations for TTCA, each emphasising a

particular aspect – only a representative set is presented in the sections below.

3.6.1 The cyclic executive architecture

The cyclic executive architecture, also called the timeline scheduler (Buttazzo

2005b), was used in many applications before it was formally described (Baker

et al. 1988). It has since been reused (Huang et al. 2003; Gangoiti et al. 2005),

re-described (Kalinsky 2001) and criticised (Locke 1992). This architecture

differs slightly from TTCA: the WCET of a sequence of tasks in a tick interval

has to be smaller than the tick interval and the tick interval can be greater than

the greatest common divisor. This is because it doesn‘t require as strict an

adherence to the release times as TTCA.

For example, for a set of tasks with WCET 1 ms, 2 ms and 3 ms and periods 14

ms, 20 ms and 22 ms respectively, a cyclic executive design can have a tick

The time-triggered co-operative architecture

3-9

interval of 4 ms, 5 ms or 7 ms (Baker et al. 1988) while in TTCA it would be a

factor of 2 ms (Equation 3.7). A sample execution of these systems can be seen

in Figure 3.4: TTCA has a tick of 2 ms and the cyclic executive is shown with

the three tick intervals. The task frames are shown as shaded rectangles with a

width proportional to their WCET; they run on the same execution unit but are

shown at different heights for clarity. For TTCA and the cyclic executive, a task

frame is released such that it is started at or after its release time in the ideal

case. However, a cyclic executive requires tasks to finish execution within the

tick interval and this release is sometimes delayed; this is also why the tick

interval is shown as a closed rectangle for the cyclic executives.

Figure 3.4: Execution of tasks with periods 14 ms, 20 ms, 22 ms, from top to bottom: the ideal case;

TTCA with a tick of 2 ms; cyclic executives with tick intervals of 4 ms, 5 ms, 7 ms.

2 ms

4 ms

5 ms

7 ms

Id
e
a

l
T

T
C

A

C
y
c
lic

E
x
e
c
u
ti
v
e

C
y
c
lic

E
x
e
c
u
ti
v
e

C
y
c
lic

E
x
e
c
u
ti
v
e

14 ms
20 ms

22 ms

Time

Time

Time

Time

Time

The time-triggered co-operative architecture

3-10

Versions of this scheduler have been written in Intel 8051 assembly (Key et al.

2003), ADA (Baker et al. 1988) and C (Pont 2001). In the single rate version of

the cyclic executive architecture, every task is executed after a tick (Listing 3.2);

and in the full-fledged, multi-rate version, some of the tasks might be executed

at higher rates according to a statically created table indexed by the minor cycle

(Listing 3.3); both versions have an ISR and schedule creation routine that do

nothing useful. The extreme simplicity makes this design inherently static.

DEFINE dispatch OF scheduler:
 FOR EACH task:
 RUN task

Listing 3.2: Single-rate cycle executive dispatch

It is interesting to note that to be scheduled by the cyclic executive, the example

above requires a large table size (a maximum of 257 entries for TTCA and

between 220 to 385 entries for the cyclic executive).

DEFINE dispatch OF scheduler:
 SET minor_cycle TO (minor_cycle + 1) mod HYPERPERIOD

 CASE minor_cycle:
 WHEN 0 => RUN tasks FOR tick 0;
 WHEN 1 => RUN tasks FOR tick 1;
 …

Listing 3.3: Multi-rate cycle executive dispatch

When adapting this design to TTCA – which allows tasks to exceed the tick

interval – the ticks that occur while tasks are still executing must be recorded

(Listing 3.4).

DEFINE service OF interrupt:
 RAISE ticks BY 1

Listing 3.4: A TTCA implementation event service

The time-triggered co-operative architecture

3-11

The record can then be used to re-run the dispatch by guarding the call to SLEEP

in Listing 3.1 as shown in Listing 3.5.

DEFINE Start:
 …
 DO FOREVER:
 IF ticks == 0:
 SLEEP

 LOWER ticks BY 1
 DISPATCH tasks
 CREATE schedule
 …

Listing 3.5: Allowing tasks to exceed the tick interval

In some literature, the cyclic executive architecture is also referred to as a

―super loop‖ (Kurian et al. 2007; Nahas 2008), but due to implementation non-

determinism, there is a significant difference: the former allows tasks to

maintain a fixed rate (viz. the rate in the specifications) while the latter allows for

a fixed delay. In a fixed-delay architecture, maintaining the task‘s frequency in

the long-term is not as important as the accuracy in the short-term, for example,

outputting a character to a screen as long as a key is held down. After an

overload, a fixed-rate architecture might cause a task to be executed multiple

times. The tasks under consideration are, by definition, fixed-rate (Section 2.6)

and so the ―super loop‖ is outside the scope of discussion.

3.6.2 Table-free multi-rate executive (TTC)

The table-driven multi-rate executive above has been criticised due to the large

amount of memory required, especially as the hyperperiod increases. With a

single-step simulation to create the table dynamically, a non-table driven multi-

rate version (Listing 3.6) can be obtained (Kalinsky 2001; Pont 2001),

The time-triggered co-operative architecture

3-12

commonly referred to as the time-triggered co-operative (TTC). The tasks are

still traversed in an order defined statically at compile time.

DEFINE dispatch OF scheduler:
 FOR EACH task:
 LOWER delay OF task BY 1

 IF delay OF task IS 0:
 RUN task
 SET delay OF task TO period OF task

Listing 3.6: Non-table-driven multi-rate executive dispatch

The schedule creation and dispatch which have been combined in the above

routine could also be split up as in Listing 3.7 and Listing 3.8; the combination

may be preferred in implementations due to the memory overheads of building

another data structure for the run queue; the split-up version may be preferred

since the schedule creation jitter is moved to the end of the dispatch cycle

(where it can‘t introduce jitter into the task releases).

DEFINE dispatch OF scheduler:
 FOR EACH task IN run_queue:
 RUN task

 CLEAR run_queue

Listing 3.7: Run queue dispatch

DEFINE creation OF scheduler:
 FOR EACH task:
 LOWER delay OF task BY 1

 IF delay OF task IS 0:
 ADD task TO run_queue
 SET delay OF task TO period OF task

Listing 3.8: Table-free multi-rate executive schedule creation

The time-triggered co-operative architecture

3-13

3.6.3 Time-event queue

This design (Listing 3.9 and Listing 3.10) uses a time-event queue to remove

the harmonic dependency in software frequencies (Hanif et al. 2008) present in

the previous implementations.

DEFINE creation OF scheduler:
 SET minimum delay TO INF

 FOR EACH task:
 IF delay OF task = interval:
 ADD task TO run_queue
 SET delay TO period OF task
 ELSE
 LOWER delay BY interval

 IF delay OF task < minimum delay:
 SET minimum delay TO delay OF task

 IF ticks == 0:
 SET interval TO minimum delay

Listing 3.9: Time-event queue schedule creation

DEFINE dispatch OF scheduler:
 INIT timer TO generate event AFTER interval

 FOR EACH task IN run_queue:
 RUN task

 CLEAR run_queue

Listing 3.10: Time-event queue dispatch

Designs such as these that change the tick interval have to be given due care to

prevent timing drift. The typical way is to factor the time to calculate the re-

initialisation of the timer into the calculation of the interval. However this may be

cumbersome or impossible due to implementation non-determinism.

3.6.4 Multiple timer interrupts (TTC-SHD)

This design achieves more precise release times when more than one task

executes in a tick interval (Nahas 2008). Ticks are generated as before, but are

The time-triggered co-operative architecture

3-14

used to update the run queue and to initialise a second timing source (Listing

3.11) without using the modification in Listing 3.5. Contrary to what the name of

the design may suggest, only two timer interrupts are enabled.

DEFINE service OF interrupt OF tick_timer:
 FOR EACH task:
 LOWER delay OF task BY 1

 IF delay OF task IS 0:
 ADD task TO run_queue
 SET delay OF task TO period OF task

 IF run_queue IS NOT EMPTY:
 INIT task_timer TO generate event
 AFTER release_time OF
 HEAD OF run_queue

Listing 3.11: ISR for the tick timer when using the MTI scheduler

The second source generates events within the tick interval that trigger task

execution and the re-initialisation of the second timing source for the next task

in the tick (Listing 3.12). This method avoids the long term timing drift in the

event queue version by basing the task execution trigger events off of a source

that is never reinitialised.

DEFINE service OF interrupt OF task_timer:
 SET task_to_dispatch TO HEAD OF run_queue
 SET run_queue TO TAIL OF run_queue

 IF run_queue IS NOT EMPTY:
 INIT task_timer TO generate event
 AFTER release_time OF
 HEAD OF run_queue

Listing 3.12: ISR for the task timer when using the MTI scheduler

The task release times are calculated as the maximum sum of the WCET of

tasks that could execute before it in its tick interval, based on a simulation

The time-triggered co-operative architecture

3-15

performed at scheduler commencement. The schedule creation routine of this

scheduler does nothing and the dispatch is minimal (Listing 3.13).

DEFINE dispatch OF scheduler:
 IF task_to_dispatch IS NOT NULL:
 RUN task_to_dispatch
 SET task_to_dispatch TO NULL

Listing 3.13: MTI scheduler dispatch

While this design violates the ―one-interrupt‖ guideline of time-triggered design,

it takes care to avoid any interrupt collisions by only generating the task

interrupts within a tick interval.

This design employs a solution akin to the sandwich delay (Section 4.4.3.2).

Like the sandwich delay, this design starts a timer at the beginning of a task-set

to trigger at the WCET of the task. However, after the task execution, where the

sandwich delays sits in a software loop polling the timer‘s trigger state, this

design sends the processor to sleep and uses an interrupt generated by the

timer overflow to wake up the processor. Due to the delay being enforced by

hardware, this scheduler is also referred to as TTC-SHD (for sandwich

hardware delay) in this thesis to differentiate it from TTCA implementations that

use the sandwich delay enforced by a software loop, e.g. TTC-SSD (for

sandwich software delay) or TTH-SSD. As far as naming conventions are

concerned, a pure hardware sandwich delay scheme for a TTCA

implementation may be suffixed with ―-HSD‖ (for hardware sandwich delay).

The design as presented also constrains all tasks from exceeding the tick

interval in cumulative execution times; an interrupt from the tick timer resets the

task timer (Listing 3.12). The constraint can be relaxed by reverting to the ISR in

The time-triggered co-operative architecture

3-16

Listing 3.4, the schedule creation in Listing 3.8 and by using the dispatch

routine in Listing 3.14. However, the underlying processor still needs the ability

to be triggered by at least two interrupts.

DEFINE dispatch OF scheduler:
 WHILE run_queue IS NOT EMPTY:
 SET task_to_dispatch TO HEAD OF run_queue
 SET run_queue TO TAIL OF run_queue

 IF run_queue IS NOT EMPTY:
 INIT task_timer TO generate event
 AFTER release_time OF
 HEAD OF run_queue
 RUN task_to_dispatch

 IF run_queue IS NOT EMPTY:
 DO:
 SET ticks_before TO ticks
 SLEEP
 WHILE ticks_before <> ticks

Listing 3.14: Adapting the MTI scheduler dispatch so that tasks can overrun ticks

3.6.5 Hardware multi-rate executive (HW-TTC)

The hardware multi-rate executive (Hughes 2009) has been modelled after the

software table-free multi-rate executive (Section 3.6.2). Like the software

version, its primary functionality has been split between an update and a

dispatch component with a synchronous hardware FIFO as the run queue. A

high level model can be seen in Figure 3.5.

The hardware scheduler is loaded with the task details in the same way as any

other peripheral would receive data from the core. The update component is

driven by ticks from the scheduler timer and works like the software version,

decreasing a delay field for each task and then inserting a task‘s address into

the run queue when the delay field goes to zero. The dispatch component is

driven by a notification from the update component that the run queue is ready,

The time-triggered co-operative architecture

3-17

by the state of the run queue and by a notification from the core that a task has

ended. The dispatch component stops (by requesting a switch into sleep mode)

and starts (via the interrupt mechanism) code execution on the core as well as

supplying the address of a task as the location at which to start code execution

when the core is interrupted or when a task ends.

The address of the task that should be executed next is always maintained on

the relevant signal. The interrupt signal is only used to notify a sleeping core

that a task is waiting. When it finishes executing a task, the core asserts the

―task ended‖ signal and automatically begins executing whatever instruction is

at the ―next task‖ address supplied by the dispatch component. The dispatch

component uses the ―task is ended‖ signal to dequeue a task and to put the

processor to sleep when all tasks have been executed. This behaviour is

illustrated in Figure 3.6.

Figure 3.5: Functional overview of the hardware multi-rate executive

Tick

Update component

Task1

Task2

TaskN

+

=

-1 0

Addresses of tasks to
be executed

Core

T
a
s
k
 e

n
d
e
d

N
e
x
t ta

s
k
 to

 ru
n

Dispatch
Component

S
le

e
p

 In
te

rru
p
t

Delay

Period D
e
la

y

A
d
d
re

s
s

Queue
ready

Empty

The time-triggered co-operative architecture

3-18

When executing the first task after a timer overflow, a fixed number of cycles

are spent on iterating through the task list to find those tasks that are due to be

released, on internal detection latency and on warming up the processor. Even

though this initial build-up offsets the start of the first task from the timer

overflow, there is no observable latency since it stays constant throughout the

system uptime and since the timer overflows are precisely timed.

However, as the supported number of tasks increases, this initial build-up

causes the notification from the update component to the dispatch component

to be delayed, resulting in a larger (page 3-4) as seen in Equation 3.10;

this quantity is also dependent on the number of cycles taken to signal the end

of a task after fetching the last instruction of the task. Through (Equation

3.5) and (Equation 3.6), this increases the required length of the run

queue (Equation 3.11). If the run queue is given a length less than this quantity,

released tasks may never execute, resulting in deadline misses.

 (3.10)

 (3.11)

Figure 3.6: Timeline view of the HW-TTC operation

T
a
s
k
 e

n
d
e
d

B
u
ild

 q
u

e
u
e

Task Task

T
a
s
k
 e

n
d
e
d

Task

T
a
s
k
 e

n
d
e
d

Fixed Variable 1 Var. 1 1 Variable No of cycles

Sleep Sleep

Time

Timer
overflow

Processor
interrupt

Send to
sleep

The time-triggered co-operative architecture

3-19

Special care has also been taken so that the overhead

between task executions remains a constant one cycle;

this one cycle is a result of the crucial ―end task‖

instruction which notifies the core that a task has ended.

However, when the task is written at a high level (Listing

3.15), this instruction is not generated by the compiler and so the task needs to

be wrapped as in Listing 3.16 which adds two further cycles of overhead (Figure

3.7).

void Actual_Task()
 {
 // Do something
 }

Listing 3.15: Task definition at a high level in the C programming language

Called_Task:
 call Actual_Task
 no-op
 end task

Listing 3.16: Low level task wrapper in the hardware multi-rate executive

3.6.6 Other implementations

The TTCA designs above are table driven, the table being created either offline

or online. Most often, the table entries are sorted statically based on the rate or

deadline monotonic algorithms (Liu et al. 1973), however, the algorithms could

be made dynamic by sorting their run queues (based on deadline, laxity, etc.) at

run-time instead. The tasks could then non-pre-emptively be dispatched from

the queue until it is empty. Others may also have run-time support to allow

1 Var. 1 1

Task

T
a
s
k
 e

n
d
e
d

c
a
ll

n
o
-o

p

Time

Figure 3.7: Scheduling

overhead on one task

The time-triggered co-operative architecture

3-20

tasks to be added (e.g. one-shot tasks) or removed (e.g. aborting scheduled

releases).

Other implementations deal with orthogonal constraints: the multi-phase co-

operative time-triggered design (Hanif et al. 2008) can be employed, at a loss of

schedule determinism (but not, necessarily, output determinism), when dealing

with a system with vastly different modes of operation (such as an airplane‘s

taxiing, take-off, flying, etc. modes) or when sampling a signal with variable

frequency; another design aims to reduce power consumption and the jitter that

arises thence (Phatrapornnant et al. 2006); another reduces jitter in multi-

processor systems where the timing event is propagated from another node

(Nahas et al. 2004); another incorporates overrun protection mechanisms

(Hughes et al. 2004; Hughes et al. 2008); another attempts to combine multiple

designs to make a ―perfect‖ implementation (Nahas 2008).

3.7 Conclusions

A TTCA implementation is fairly straightforward to compose due to the

architectural simplicity and comes with very low overheads. The absence of pre-

emption also means an RTOS with this architecture doesn‘t need any resource

management interfaces. Despite this, industrial and academic research focus

largely moved away from this architecture – a paradoxical shift that is explored

further in the next chapter.

Chapter 4

Problems with the time-triggered co-operative

architecture

4.1 Introduction

Chapter 2 mentioned the absolute imperative that real-time systems must be

predictable and the way this translates to time determinism on the outputs. It

went on to describe how time-triggered architectures and co-operative

architectures have been used in a wide-range of safety-critical applications due

to their tendency to facilitate high application reliability and predictability.

These two orthogonal architectures were then described as a combination in

the time-triggered co-operative architecture (TTCA) in Chapter 3. It was further

shown how some of the concerns against TTCA are based on a particularly

rigid form of it, largely ignoring the alternatives available (Xu et al. 2000; Pont

2001). However, other concerns are indeed valid and legitimate problems have

crippled its widespread adoption.

This chapter briefly reviews these problems, pointing out where existing

solutions fail. The first section deals with the maintainability problem, followed

by the problems of long-tasks, jitter and non-harmonic task-sets.

Problems with the time-triggered co-operative architecture

4-2

4.2 Maintainability

Maintenance carried out systematically is beneficial and adds value (Arnold

1989; Fowler et al. 1999) but can be exponentially costly if the required changes

were unanticipated at design time (Griswold et al. 1993).

Under TTCA, great importance is placed on careful initial design and any

change in system specifications (e.g. higher sampling rates) post-

implementation requires either an exhaustive re-validation that the static

schedule still holds or a recalculation of the schedule (Ramamritham et al.

1994; Liu et al. 1995; Sha et al. 2004). While an exhaustive validation is

resource consuming, it reduces the probability of faults at run-time, exchanging

software construction time for run-time reliability (Xu et al. 1993) and can be

automated (Mwelwa et al. 2005; Kurian et al. 2007). Doing this validation at

development-time also decreases the run-time overhead (Xu et al. 2000).

Any maintenance work, aided by a system‘s flexibility and extendibility, should

either keep or increase the system reliability; for real-time systems, this means

allowing resources or tasks to be added, removed or modified without causing

other tasks to miss their deadlines. Under TTCA, three problems may arise from

a maintenance activity: the long-task problem, an excessive increase in task

jitter and the introduction of non-harmonic relationships in the task periods.

4.3 The long-task problem

Due to its non-pre-emptive nature, the long-task problem arises in TTCA when

the worst-case execution time (WCET) of a group of tasks executing after a tick

in the evaluation period , exceeds the request period of one or more

Problems with the time-triggered co-operative architecture

4-3

tasks in the system. In the presence of the long-task problem, tasks may

respond sluggishly to environmental stimuli and/or may miss their deadlines. An

example is shown in the task-set in Table 4.1 and illustrated on a timeline in

Figure 4.1. In the figure, task A, which has a tight deadline is prevented from

starting due to task B which has a WCET greater than task A‘s period. As a

result, every second frame of task A misses the deadline. The effect of long-

task B cannot be mitigated by changing either the priorities or delays in this

non-pre-emptive architecture.

Table 4.1: Task schedule with a long-task

Task Priority
Delay
(ms)

Period
(ms)

WCET (μs) Deadline (μs)

A 1 0 1 200 300

B 1 0 3 1500 20,000

This problem imposes a constraint, seen in Equation 3.9, that all tasks must

have short execution times in order to improve system response times (Allworth

1981; Locke 1992) – a constraint that may be impossible to comply with.

It has been suggested that long-tasks have been over-emphasised as a

disadvantage since many tasks have a small duration when compared to the

smallest task period. For example, a proportional integral differential (PID)

Figure 4.1: Long-task causing deadlines to be missed

A

Time

A A A A A A

Deadline
missed by A

B B B

Deadline

Required

period

Actual period
Long-task

Task A
released

Problems with the time-triggered co-operative architecture

4-4

controller can be carried out on an 8-bit 8051 processor in around 0.4 ms –

fairly insignificant compared to the 10 ms sampling rate that is adequate for a

flight control system (Pont 2001). However, the long-task problem can still arise

if the execution time of a combined execution of tasks exceeds the period of

any of the executing tasks. The next few sections examine solutions to handle

long-tasks.

4.3.1 Improved hardware

Hardware improvements tend to be the first entertained solution since they are

made at a very low abstraction level and well-established design, test and

debug techniques can be left unchanged (Baruah 2006). This is why changes

such as dynamically creating hardware (Memik et al. 2001), using better

hardware (Wolf et al. 2002) or increasing the operating frequency are so

favourable – software developers can continue with existing design techniques,

all the while knowing that performance will scale.

Unfortunately, operating frequency increments may result in power

consumption, heat generation or cooling costs averse to the requirements of an

embedded design. Other improvements such as miniaturisation of silicon

components and reductions in supply voltage are being impeded by increasing

sub-threshold leakage currents; the laws of physics have proved to be the final,

insurmountable barrier. This has spurred research into alternate materials like

carbon nanotubes and graphene (Noorden 2006), but until such technologies

mature, new or rehashed techniques of getting more performance from the

existing silicon circuits must be pursued.

Problems with the time-triggered co-operative architecture

4-5

4.3.2 Improved algorithms

In addition to maintaining proper coding techniques such as avoiding potentially

infinite loops (Pont 2001) and to optimising existing algorithms (Wolf et al.

2002), recent techniques have attempted to include the side-effects of

scheduling into the development of the control algorithm with some success

(Martí et al. 2001). Other algorithms have used feedback to change the

execution times and periods of tasks dynamically (Cervin et al. 2003). This

solution is effective if used from the initial design; when introduced during

maintenance, however, the possibility of the task WCET changing is very high,

requiring a recalculation of the WCET, schedule and control algorithm.

4.3.3 Breaking up long-tasks

A natural solution to the long-task problem is for the problematic group of tasks

to relinquish control to the scheduler with sufficient regularity. It is possible to

achieve this aim by interspersing the release of the tasks requiring frequent

release with the release of tasks in the problematic group; however, the

resultant jitter may be high enough to require another approach.

In TTCA, this may involve splitting up a task into several smaller chunks

scheduled at the same rate as the original task, with incremental phases and

with each chunk having a precedence constraint on the previous chunk (Pont

2001; Pont et al. 2007). In practical terms this involves moving some of the

transient data (those hold information about the state) of the task from the stack

into permanent storage space, increasing the amount of storage space

required. Since each chunk forms a new task, the scheduler footprint also

increases.

Problems with the time-triggered co-operative architecture

4-6

On the one hand, the split might be intuitive, especially when a timeout

mechanism is being employed (e.g. waiting for a communication medium to be

available between uses) (Pont 2001), but on the other, it might be subject to

algorithmic constraints (Holden 2005). Other issues may also arise: an

irreducible chunk might still take too long to execute, the restructuring might

break the functionality, the new structure may not be suitably comprehendible or

the schedulability of the system may decrease (Arnold 1989; Xu et al. 2000).

4.3.4 Pre-emptive designs

A priority-based pre-emptive design (Fidge 2002) automatically performs the

split described in the section above at run-time and solves both the latency and

maintainability issues.

However, these schedulers are not without their own problems as each pre-

emption equates to a context switch which involves saving the state of the

environment of the current task, running the new task and then restoring the

saved state. This save-restore can constitute significant overhead (Locke 1992;

Pont et al. 2007). Also, the start and completion times of tasks, especially low

priority tasks, may be arbitrarily delayed due to pre-emption by higher priority

tasks, resulting in higher jitter and unpredictability (Buttazzo 2005a). Resource

contention may also add further complexity (Section 2.6.3) and latency or jitter

(Buttazzo 2005b; Short et al. 2008).

To obtain the latency reduction benefits while limiting the other disadvantages,

the time-triggered hybrid (TTH) pre-emptive scheduler was proposed (Pont

2001): it allows a single high priority task to be scheduled alongside one or

more lower priority co-operative tasks with lengthy durations by calling the pre-

Problems with the time-triggered co-operative architecture

4-7

emptive task from the ISR , i.e. it is a multi-rate executive with interrupts

(Kalinsky 2001). As an example, Figure 4.2 shows how the task schedule in

Table 4.1 can be implemented validly with the TTH design with no deadline

misses, compared to the TTCA implementation in Figure 4.1. In Figure 4.2, task

A has been given the highest priority, which under TTH will result in task A

starting as soon as it is released, breaking up any frames of B that are

executing. As a result, every frame of task A meets its deadline even in the

presence of long-task B.

Other TTH versions exist: one reduces release jitter for the pre-emptive task by

having the CPU placed in the same state (e.g. low power state) before each

invocation of the pre-emptive task (Maaita et al. 2005). Another version allows

more than one task to execute at the pre-emptive level (Hanif et al. 2008), using

a second timer to reduce jitter for the subsequent tasks.

Another approach is to statically allocate pre-emption times (Puschner et al.

2006; Wang et al. 2008). This approach is a compile-time automation and is

very similar to splitting up tasks into smaller ones (Section 4.3.3) and faces

Figure 4.2: Handling a long-task with the TTH architecture

Time

B1 B0 B1 B0 B0

A A A A A A A A

Deadline

Task A
released

Frame for long-task B
is split into two

executions

Problems with the time-triggered co-operative architecture

4-8

many of the same problems such as having to maintain the pre-emption points

(Locke 1992).

4.3.5 Increased concurrency

In such a design, at least one processing element will be available to respond

with the required rapidity, negating the effect of the long-task. Existing

architectures such as TTCA may be adapted to multiple processor designs

(Pont 2001; Ayavoo et al. 2007) to maintain predictability. A long-standing

complaint about these systems has been the high volume and weight of just the

wiring required to connect processors (Leen et al. 2002); a complaint that is

being taken care of by new networks such as the novel data network in the

Airbus A380 (Brajou et al. 2004); or, where practical, by integrating processors

onto a single-chip in the form of a multi-core (Obermaisser et al. 2009).

4.4 Task jitter

There are a variety of sources of jitter in tasks running under TTCA as outlined

in Section 2.6.4. This jitter can also accumulate across the co-operative

execution after a timing event turning otherwise miniscule variations into

catastrophic fluctuations.

One of the factors affecting the release jitter is that for every set of tasks

released at the same time, only the first one executed may have a precise

hardware determined start time. The start time of the others will depend on the

finishing jitter of all preceding tasks (Kalinsky 2001), including the ISR.

In Figure 4.3, task A and task C have the same period as the tick interval, with

task A having a higher priority; as a result, task A is executed immediately after

Problems with the time-triggered co-operative architecture

4-9

the tick with task C following immediately. However, task A also has non-zero

execution jitter (Section 2.6.4.1) due to varying execution time resulting in task

C having a variable period and exhibiting release jitter (Section 2.6.4.4) due to

varying release times.

Release jitter may also be caused by a variation in the time the trigger event

takes to interrupt the processor (Thiele et al. 2004), mainly due to the

underlying instruction set architecture of the processor where instructions may

have different execution times.

It is also possible that a task may be released with very low jitter, but due to

execution jitter, the actual jitter sensitive portion of the task may experience a

higher jitter. For example, Figure 4.4 shows a task A with a portion of execution

in a darker shade; this portion requires that it be started at the same time

relative to the same portion in the previous frame. However, this requirement

cannot be satisfied due to the preceding portions of task A, even though task A

has a low release jitter.

Figure 4.3: Release jitter caused by execution jitter in a preceding task

A C A C A C A C

Time

Varying period for task C

Varying execution time for task A

Problems with the time-triggered co-operative architecture

4-10

Jitter may also arise within the TTCA implementation from the interrupt service

routine, the scheduling algorithm and the dispatcher. All of these can be

considered to be implicit tasks, out of which, the scheduling algorithm alone can

be moved to the end of the schedule to minimise its effect. On the other hand,

in a purely static system, the scheduling algorithm doesn‘t run at all, and the

dispatcher can be designed to execute the same number of instructions before

running one task, though not necessarily the same number for all tasks. Since

these functions are implicit tasks, they exhibit the same types of jitter

enumerated in Section 2.6.4. The next few sections examine solutions for

tackling jitter.

4.4.1 Improved algorithms

The improved control techniques mentioned in Section 4.3.2 aimed at reducing

latency, do the same to jitter. Some other work has explored finding upper

bounds on the output jitter of a task; and reducing jitter by adjusting task phases

using simulated annealing and by adjusting relative deadlines (Baruah et al.

1999; Buttazzo et al. 2007). Algorithms have also been devised to tackle jitter

Figure 4.4: High execution jitter may cause high release jitter in a portion of a task which otherwise

has low release jitter

Time

Fixed period for
task A

Jitter sensitive portion has
varying start times

Task A Task A Task A

Jitter sensitive portion

Problems with the time-triggered co-operative architecture

4-11

caused as a side-effect of error-protection schemes in networks (Nahas et al.

2004).

4.4.2 Task properties

Section 3.2.4 demonstrated the effect a priority assignment can have on

maintaining a steady period (Figure 3.1 vs. Figure 3.3), choosing to assign

higher priorities to tasks with higher rates of execution. In a similar manner, the

issue of execution jitter for tasks following the first one after a tick can be solved

by increasing the tick interval and changing the phases (Tindell 1994). For

example, the problem in Figure 4.3 where a varying execution time in task A

caused release jitter in task C can be solved by halving the tick interval and

giving task C a phase of one tick as shown in Figure 4.5.

However, this technique results in increased power consumption due to more

frequent ticks and imposes a harsher limit on the worst-case execution time of

the tasks by shortening the tick interval. For example, in Figure 4.3, task A and

task C could have a combined worst-case execution time less than the tick

interval, whereas the changes in Figure 4.5 require each to finish in half the

time to avoid increasing the release jitter in the other. A similar technique of

Figure 4.5: Effect of phases and an increase in tick rates on release jitter caused by execution jitter

in a previous task

A C A C A C A C

Time

Fixed period for task C

Varying execution time for task A

Problems with the time-triggered co-operative architecture

4-12

changing the phases and priorities has been used in pre-emptive periodic

systems (Cottet et al. 1999).

In data acquisition applications, where jitter can lead to signal distortion, the

task that samples the signal can be released at a higher rate. However this is

often by a factor of five or ten and leads to an unfavourable increase in

processor utilisation (Cottet et al. 1999).

4.4.3 Utilising spare computational capacity

This class of methods makes use of any computational capacity that cannot be

used by the scheduling algorithm. With TTCA, two methods have been tried:

single path programming and balancing with delays.

4.4.3.1 Single path programming

The single-path programming paradigm aims to produce software with a

constant execution time, for an execution time jitter that is purely dependent on

the underlying hardware and not on the software design (Puschner et al. 2002).

However the technique, which has spawned a processor (Schoeberl et al.

2009), requires predicated instruction support and can increase power

consumption (Gendy et al. 2007b).

4.4.3.2 Code balancing with delays

Inserted idle time or delays or timeouts can be used to establish certain

guarantees about the execution time of a code segment. Accurate delays may

be created by starting a dedicated hardware timer and looping or idling until the

timer overflows. The dedicated timer may also be used and accessed via

special instructions. Software loops generate more jitter than hardware loops

since they cannot react as quickly to timer overflows.

Problems with the time-triggered co-operative architecture

4-13

This mechanism has been used by the precision timed architecture (Lickly et al.

2008) to guarantee a lower bound on the execution time, giving inputs time to

settle (Figure 4.6 (a)). The sandwich delay algorithm uses a software-controlled

timer to create delays that make the average execution time of a task the same

as the worst-case (Phatrapornnant et al. 2006; Gendy et al. 2007b; Das et al.

2009), as in Figure 4.6 (b), so that succeeding code always starts at the same

time. A version of this algorithm that provides more accurate delays and that

decreases power consumption has also been devised (Section 3.6.4). This

version ensures constant interrupt overheads, reducing release jitter, but still

necessitates a second mechanism to generate accurate timing events and is

susceptible to overheads and jitter in the ISR and in the scheduler dispatch.

There is also a need to factor the time required to setup the timer into the

calculation which can be error prone.

For pre-emptive, on-line systems, the delay method was criticised as the delay

is wasted idle time (Baruah et al. 1999). The solution there used processor

utilisation and deadlines to increase the priorities of tasks needing low output

jitter. But the effectiveness of the solution degraded as the number of tasks

requiring low jitter was increased. In comparison, static TTCA implementations

Figure 4.6: Using delays to place guarantees on the execution time

Jitter

D
e
la

y

Code

Code

D
e
la

y

(b) (a)

Code

Input
settling

time

Time Time

Problems with the time-triggered co-operative architecture

4-14

are designed for worst-case scenarios, and hence, the extra inserted time is

already accounted for in the scheduling algorithm – even without delays the

extra time would be wasted, but at the end of the execution sequence instead.

4.4.4 Jitter sensitive code inside a task

Jitter inside a task can be straightforwardly tackled by breaking up the task

(bearing in mind the concerns of Section 4.3.3) so that the jitter sensitive portion

constitutes a new task and changing the task properties as required (Buttazzo

et al. 2007). For example, the problem in Figure 4.4 where the sensitive portion

of a task A experienced high jitter even though the task itself had low release

jitter, can be solved by: splitting task A up into tasks A0 and A1 with the same

period such that the sensitive portion is at the beginning of task A1, halving the

tick interval and giving task A1 a phase of one tick (Figure 4.7). As can be seen,

this is a trade-off between reducing jitter and increasing latency.

Alternatives can be used either to prevent the problem from occurring in the first

place (Section 4.4.3.1) or to balance the first portion of the task (Phatrapornnant

et al. 2006) (Section 4.4.3.2).

Figure 4.7: Creating new tasks to handle a jitter-sensitive portion inside a task

Time

Fixed period for
task A

Jitter sensitive portion has
fixed start times

Task A0 Task A0 Task A0

Jitter sensitive portion

Task A1 Task A1 Task A1

Problems with the time-triggered co-operative architecture

4-15

4.5 Non-harmonic task-sets

Non-harmonic task-sets are those in which the greatest common factor of all

task periods is less than the period of the fastest executing task in the set. Such

task-sets can cause wide swings in release jitter as tasks will be released in

varying combinations over the hyperperiod – an example can be seen in Figure

4.8 which has two tasks, A and C, with periods two and three tick units

respectively. While TTCA is able to schedule these two tasks (over time, the

average period of C will converge to the ideal), the jitter in C would be largely

dependent on tasks with non-harmonically related periods.

The sandwich delay or the TTC-SHD scheduler could be used to handle the

release jitter caused by non-harmonic periods (Figure 4.8), as seen in Figure

4.9 where C has been delayed. However, the WCET of C which could

previously tend to , has now to be limited to to avoid causing

jitter in A. This constraint arises because the delay is no longer making use of

slack time, but is inserting a new task in the form of a delay into the system. Not

only does this cause a decrease in the available computational power, as

shown, but it may interfere with the schedulability of the system.

Figure 4.8: Release jitter caused by non-harmonic periods

A C

Time

A C A A C

Problems with the time-triggered co-operative architecture

4-16

Attempts to reduce jitter in non-harmonic tasks sets generally employ some

form of multiprocessing and the clustering of tasks on the basis of harmonic

relationships between their periods (Abdelzaher et al. 2000; Ekelin et al. 2001).

4.6 Conclusions

Long-tasks introduce unnecessary latency into high frequency tasks, degrading

the responsiveness of a time-triggered co-operative system. Existing solutions

of improved hardware or algorithms, of breaking up tasks and of pre-emptive

designs are either not feasible or introduce complexity into the systems. The

solution of using multi-processors is the most attractive, particularly the option

of a CMP or multi-core (Section 2.4). However, with this option, software design

may still be unduly complicated by inter-task communication requirements.

Likewise, task jitter degrades the output determinism, increasing the unreliability

of the system. The solutions of using improved algorithms and changing task

properties again introduce the possibility of producing unfeasible or complex

designs. Single path programming is also not very attractive due to the

requirement for certain types of processors. On the other hand, code balancing

techniques like the sandwich delay have been used in TTCA implementations

before and make use of pre-allocated slack time and are, hence, attractive.

Figure 4.9: Attempting to reduce release jitter caused by non-harmonic periods by inserting delays

A C

Time

A A A C

C

Problems with the time-triggered co-operative architecture

4-17

However, they impose additional scheduling overhead and are unable to

completely reduce the jitter due to the presence of a software element.

The third problem of non-harmonic task-sets is more serious and can be seen

from the mathematical model (Section 2.6.1) as unsolvable on single-processor

systems. For this reason, the sole solution has been to use multiple processors.

Fortunately, this is already the most attractive solution for tackling long-tasks

and so it may be possible to solve both the long-task and non-harmonic task-set

problems by pursuing a multi-core system.

Chapter 5

Increasing the concurrency in single-processor

TTCA designs

5.1 Introduction

TTCA provides a highly predictable method of designing embedded systems. It

is highly beneficial for safety-critical systems to use this architecture to schedule

a system. Once deployed, however, maintenance efforts might require certain

modifications or additions that can have detrimental effects on the real-

timeliness of the system.

One of these modifications is the introduction of the long-task problem i.e. a

group of tasks with an execution time larger than the period of the task that

executes with the highest frequency. The long-task problem decreases the

system responsiveness and increases the amount of output jitter.

Another modification is the creation of non-harmonic task-sets, i.e. sets wherein

tasks have periods that are not exact multiples of each other. This leads to

greater release jitter in all tasks of the system, affecting the system behaviour,

and possibly even corrupting sampled signals.

This chapter explores the alleviation of the long-task and non-harmonic task

problems by increasing the concurrency of the execution path with hardware

extensions. The first section explores the areas where such extensions may be

made before settling on a multi-core design and the requirements from such a

Increasing the concurrency in single-processor TTCA designs

5-2

design. The subsequent section examines suitable multi-cores, ultimately

choosing the PH core (Hughes 2009). The next few sections examine the

design of a multi-core PH system for TTCA including inter-task communication,

scheduler design and a predictable initialisation sequence.

5.2 Design choices

A high level view of the execution path of a

single-core processor is shown in Figure

5.1: instructions are read from memory,

decoded and then the operation indicated

by the instruction is performed. The

operation is usually performed with the

help of computational units like arithmetic-

logic-units, multiplier-dividers, etc. The

operands for the operation are fetched

from the register bank or from memory.

The memory may also defer access to

peripherals which may connect to the

environment.

5.2.1 Increasing concurrency

Due to the single execution path and the non-pre-emptive nature of the TTCA,

tasks with high execution times decrease the rate at which other software can

be executed, decreasing response times. This interference can be removed by

allowing tasks to execute concurrently with other tasks. Since the software

architecture is considered fixed in this thesis (Section 1.5), hardware techniques

Memory

Register
bank

Decode

Peripheral

Perform
operation

Instruction

Units

Processor core

Figure 5.1: A generic single processor

design

Increasing the concurrency in single-processor TTCA designs

5-3

must be employed either by sharing the execution path (pseudo-concurrency)

or by duplicating it. Sharing the execution path via hardware (temporal

multitasking) is functionally equivalent to sharing it via software (pre-emptive

architectures), may similarly give rise to execution jitter and is not considered

further.

The alternative of duplicating the execution path can be carried out with a

complete or with a partial duplication of the coprocessors, leading to chip level

multi-processors (CMPs) (Section 2.4) and simultaneous multithreading (SMT)

designs respectively.

SMT designs are superscalar in nature, i.e. they execute more than one

instruction at the same time; their speciality is that the concurrently executing

instructions come from different tasks. These designs are aimed at ensuring

that a core is never needlessly idling because of a co-processor that might be

held up. Nevertheless, due to only a partial duplication of co-processors, they

cannot run all operations in parallel, causing execution jitter and, hence, are not

considered further.

This leaves the CMP as the last option, though not without an abundance of

design choices: the processors in a CMP may be identical (homogeneous) or

may differ in the functional units or operating frequency (heterogeneous); they

may also share, through caches, the memory used for instructions and data

(symmetric) or maintain separate memory banks (asymmetric); and inter

processor communication may either be done through shared memory, if

present, or through a dedicated on-chip network taking various topologies such

as meshes, hypercubes, etc.

Increasing the concurrency in single-processor TTCA designs

5-4

5.2.2 Inter core communication

With an increase in the number of cores in the system, a mechanism is

necessitated for tasks on different cores to communicate. Moreover, since this

work aims to maintain the simplicity that TTCA lends to application design, such

a mechanism must be transparent to the application designer; it may however

be spread across the RTOS and the hardware. It must also avoid interfering

with the timing of applications, i.e. it must run asynchronously to the task.

In a single-processor TTCA implementation, tasks communicate by reading and

writing to common memory locations (Section 3.2.3). In the discussion below,

the core that is executing a task writing to a common memory location is termed

a writer and the core executing a task reading from this location is termed a

reader.

The assumption made of the use of TTCA allows for a specialisation: since the

periodicity of the applications is a part of the application design, it can be

assumed that the writer will buffer data appropriately at the application level if it

runs faster than the reader. For example, in Figure 5.2 (a), the application task

performing the write will only use one buffer while in Figure 5.2 (b), the writer

will create and use two buffers at the application level.

Figure 5.2: Reader and writer tasks running at different rates

Writer Writer Writer Writer

Reader Reader Reader Reader

Writer Writer Writer Writer

Reader Reader

(a)

(b)

Increasing the concurrency in single-processor TTCA designs

5-5

However, when executed on a multi-core a scenario unanticipated by the co-

operative application may occur: the writer may execute concurrently with the

reader and so while the reader is reading the shared memory area, a

concurrent execution of the writer may modify the memory area leading to

incoherent data. This is the result of the cases in Figure 5.3 (a) & (b) where task

frames occur within each other, Figure 5.3 (c) where the writer is started while

the reader is executing and Figure 5.3 (d) where the reader is started while the

writer is executing. For a multi-core TTCA, such overlap is permissible but

requires special measures to maintain coherence.

5.2.3 Constraints

The work described in this thesis considers the application software to be non-

modifiable and changes to be permissible only in the RTOS or in the hardware.

This restriction imposes a couple of constraints:

Figure 5.3: Possible overlaps between a writer and a reader (Kopetz et al. 1993)

Writer Writer Writer Writer

Reader Reader Reader Reader

Writer Writer Writer Writer

Reader Reader Reader Reader

Writer Writer Writer Writer

Reader Reader Reader Reader

(b)

(c)

(d)

Writer Writer Writer Writer

Reader Reader Reader Reader

(a)

Increasing the concurrency in single-processor TTCA designs

5-6

 The hardware for the study must be easily modifiable: To this end, a

programmable logic device, specifically, a field programmable gate array

(FGPA) is employed. FPGA technology, which is used to prototype the

production-costly application specific integrated circuits (ASICs), has

matured to the extent that FPGAs can be deployed in the field as cost-

effective replacements to ASICs (Rodriguez-Andina et al. 2007). An

FPGA can be developed with a schematic or textually with a hardware

description language (HDL) such as Verilog or VHDL.

 The complete hardware must be modifiable: To avoid having the

application software change it is necessary to do a lot of snooping on

existing control lines and to be able to control the execution paths of the

software processors. For these reasons, it was imperative that the whole

of the source of the design be readily modifiable. This subsequently

implies that a soft-core (i.e. not tied to a particular FPGA) must be used,

over both a commercial off-the-shelf (COTS) and a hard-core processor

(i.e. exactly fitted to a particular FPGA).

Additionally, the desired application area encompasses real-time systems for

which predictability is the foremost goal. Thus, any unpredictability or non-

determinism and latency introduced into the system by the techniques

developed must be easily identifiable. To this end, external contributors of

unnecessary complexity, non-determinism and latency must be minimised as

much as possible. Though highly restrictive, such a system can be highly

beneficial for predictable real-time systems. These requirements led to the

following desirable features for the soft multi-core:

Increasing the concurrency in single-processor TTCA designs

5-7

 The cores must process a single instruction at a time: This is to remove

the complexity and non-determinism inherent in the superscalar

approach. The very long instruction word architecture is an exception to

this since it is a static approach; but, it is aimed at concurrency within the

task and is highly unsuitable for concurrency amongst tasks.

 Cores must not compete for any resources: To match TTCA, this can be

accomplished by not sharing peripherals amongst the cores.

 Memory latency must be constant and guaranteed: This is accomplished

by each core having its own memory banks, by avoiding any caching

techniques and by using on-chip memory clocked at the same rate as the

core. Also, the memory architecture must help avoid the non-

determinism of structural hazards, e.g. the Harvard architecture where

separate instruction and data memories are employed.

 Instruction execution times must be constant and guaranteed: While

instructions may take different amounts of time to complete, the same

instruction must always take the same amount of time to complete

regardless of the value of its operands.

 The inter-core communication network must be point-to-point: This is to

avoid the latency and variations in packet or circuit switching and in

message routing. It should be noted that point-to-point network

topologies are costly and hence generally avoided; however, their use

does not preclude a future move to a more cost-effective topology.

 Tasks will be statically allocated to cores: This technique is also referred

to as asymmetric multiprocessing (AMP) and is used to avoid the non-

determinism involved with task migration. Asymmetric processing is an

Increasing the concurrency in single-processor TTCA designs

5-8

ideal fit for embedded applications where although symmetric

multiprocessing (SMP) allows all the required operations to be

performed, they may not be done as efficiently or in as few cycles as

under the former (Leibson 2007; Guerin et al. 2009).

5.3 Selecting a soft multi-core processor

Because of the ubiquitous nature of embedded computing, there are a wide

variety of application classes and a multi-core to match nearly every one. In

keeping with the design constraints and desirable features, only soft multi-cores

that are asymmetric and available with completely free-to-use source which can

be synthesised for an FPGA will be examined. Due to the relative simplicity that

the desirable features put on the multi-core (AMP & point-to-point links), soft

cores without multi-core designs and soft multi-cores with unsuitable designs

will also be examined with the view that a suitable multi-core design may be

easily created.

5.3.1 Existing soft multi-cores

There are two soft multi-cores families: LEON (Gaisler Research) and

OpenSPARC (Sun Microsystems). The LEON family has seen four versions,

the latest having been released earlier this year; the multi-core version uses a

shared memory architecture, but can have caches disabled. The SMT multi-

core OpenSPARC family similarly also uses a shared memory architecture and

is an open-sourced version of the existing UltraSPARC family; it has been

released with designs fixed at eight-cores with caches enabled. An independent

initiative has used the source for the OpenSPARC T1 to extract what is called

Increasing the concurrency in single-processor TTCA designs

5-9

the S1 core and it has been released in versions with and without multithreading

and caches.

As mentioned, the multi-core versions of these families use a shared memory

architecture and as such are unsuitable. On the other hand, it is possible to

extract the soft-cores and thus treat them like the other soft-cores that do not

have multi-core platforms.

5.3.2 Soft-cores with no multi-core platforms

This group consists of the OpenFire, AEMB family (Aeste Works), PacoBlaze,

ZPU (Zylin), OpenRisc (OpenCores community), JOP and PH (TTE Systems).

There are others like the Freedom CPU (F-CPU), a high performance

microprocessor which has not seen any development since 2004; its more

active spin-off, YASEP (Yet Another Small Embedded Processor) which sees

active development but is incomplete; and Lattice‘s Mico32 which is unsuitable

due to its varying instruction execution times.

Among the aforementioned, OpenFire and PacoBlaze are open-source clones

of the commercial Xilinx MicroBlaze (closed-source) and PicoBlaze (source

available on purchase) soft-cores respectively, both seeing their last updates in

2007; OpenFire is still not fully feature-compatible. The recently updated AEMB

family started out with sharing the MicroBlaze instruction set but the latest soft-

core, AEMB2 is SMT and only has a subset of the original instruction set. Then

again, the original scalar AEMB1 fits the requirements as does the OpenRISC

1200 which implements the OpenRISC 1000 architectural description and

Zylin‘s soft CPU (ZPU) which is touted for its small size and is marketed as a

co-processor to FPGA operations rather than as a COTS replacement.

Increasing the concurrency in single-processor TTCA designs

5-10

As seen above, there is a wide range of suitable soft-cores available, some

catering to the general application space, some catering to a specific need.

Alongside these, the Java Optimised Processor (JOP) and PH are soft-cores

that also fit the requirements, but have the advantage of being built from scratch

to be highly predictable. The Precision Time (PRET) Machine is also designed

for timing predictability and repeatability; however, it has only seen a cycle-

accurate simulator with several examples and a soft-core implementation is in

progress (Lickly et al. 2008).

The JOP has been placed into a multi-core design where a cyclic executive

software design, single-path programming and synchronisation with a time-

sliced access mechanism to shared memory allow for execution determinism

(Schoeberl et al. 2009). This system appears to offer the ideal platform;

however, it is not clear how transactional memory access is ensured without

keeping within the extremely small allotted time slice or by using Java‘s blocking

synchronisation mechanism.

The PH soft-core doesn‘t offer facilities for single-path programming but has the

advantage of being designed specifically for time-triggered applications. It has

been built for timing-determinism and has some desirable extensions that deal

with time-triggered issues. For these reasons, it is the soft-core of choice for this

work.

5.3.3 The PH core

The PH core is a 32-bit ―research‖ version of the commercial TTE®32 core

present in the TTE32-SM3 microcontroller (TTE Systems 2010). It was first

described in (Hughes et al. 2005) with improvements presented in (Athaide et

Increasing the concurrency in single-processor TTCA designs

5-11

al. 2007) and (Hughes 2009). It is a cut-down version of a R2000 core (Kane

1987) which is compatible with the MIPS® I instruction set. It possesses a 32-bit

Harvard-architecture with 32 registers, a five-stage pipeline and support for

precise exceptions.

The core has been designed specifically for time-triggered applications: it bakes

the general time-triggered design guideline, ―only one interrupt‖, into its design

and guarantees memory latency and instruction execution times. It has been

extended to ensure constant interrupt overhead (especially for multi-cycle

operations) and to incorporate a TTCA hardware implementation and a task

guardian (Hughes 2009). The task guardian extension is irrelevant for this work

and will not be described in detail.

Various platform designs for the PH soft-core have been implemented in VHDL

and were originally targeted at the Xilinx Spartan 3 FPGA on the Digilent

Spartan 3 starter kit (Digilent Inc. 2004). They have since been ported to the

Altera Cyclone® II on the Altera DE2-70 development board and, in the course

of this work, to the Xilinx Virtex 5 LXT on the Xilinx ML505 development board.

5.3.3.1 Microcontroller block diagram

Being a soft core, the PH processor core can be incorporated with any number

of custom hardware components to create an FPGA-based microcontroller or

system-on-chip or platform. A block diagram of one such platform can be seen

in Figure 5.4.

Increasing the concurrency in single-processor TTCA designs

5-12

5.3.3.2 A single interrupt

Many commercial off-the-shelf (COTS) processors support a wide range of

event sources, all of which might interrupt the processor execution. However,

the use of a (pure) time-triggered software architecture generally requires that

only a single interrupt be enabled (Pont 2001). While this might be enforceable

through conventions at the design stage, it is possible that a subsequent

maintenance or upgrade might fail to check against the conventions, introducing

unreliable behaviour.

The PH core is designed against this, so that out of the many event sources, it

is impossible for software to enable more than one as capable of interrupting

the processor. The events may still set flags that can be checked and cleared

by polling.

Figure 5.4: PH processor implementation (Hughes 2009)

32-bit
Mult/Div

8KB
Instruction
memory

GPIO 7-Segment
LED

8KB
Data

memory

16-bit Timer

Instruction
bus

Data bus

Debug

32 Core
Registers

5 Stage
Pipeline

Increasing the concurrency in single-processor TTCA designs

5-13

5.3.3.3 Guaranteed instruction execution times

The PH core processes an instruction in five stages: read from memory,

decode, perform requested calculations, access data memory and modify

registers. To avoid resource wastage and to increase computational speed,

instructions are processed in parallel with all five stages kept occupied (Figure

5.5).

An instruction goes through every one of the stages and requires a fixed

number of cycles to be processed, even if the operands allow for optimisations.

The core also relies on the compiler to insert suitable instructions after a branch

instruction to avoid unpredictable delays due to branches being taken or not

taken.

Figure 5.5: Five stage pipeline in the PH core

Access
memory

Calculate
Time

Read
instruction

Decode

Calculate

Access
memory

Modify
registers

Decode

Calculate

Access
memory

Decode

Calculate

Decode

InstrN InstrN+1 InstrN+2 InstrN+3 InstrN+4

Read
instruction

Read
instruction

Modify
registers

Read
instruction

Read
instruction

Increasing the concurrency in single-processor TTCA designs

5-14

Additionally, instructions may raise exceptions (calculation overflow, invalid

address, etc.) in the fourth stage upon which the instruction flow is broken.

These exceptions cause the core to abort the instructions that are in the first

three stages of processing and to start reading instructions from an appropriate

handler. The first three stages can be aborted because instructions do not

change the state of the core until the fourth and fifth stage.

5.3.3.4 Guaranteed memory latency

In the Harvard architecture, separate memory buses are used for the instruction

and data memories. By implementing this architecture, the PH core is able to

avoid conflicts over multiple pipeline stages fighting for memory access

(structural hazards), preventing stalls. In addition, caches are omitted and the

memories and peripherals (memory-mapped access) are clocked at the same

speed as the processor allowing for single cycle data access.

5.3.3.5 Constant interrupt overhead (PH-MT)

In the PH core, multi-cycle instructions, even if guaranteed to be a fixed number

of cycles, can generate unwanted interrupt servicing jitter since they may be

aborted any number of cycles into their execution and always have to be

restarted from the beginning after the ISR has executed.

To avoid this jitter, PH-MT (Hughes 2009) duplicates the program instruction

counter, the register file, the registers for the first three of its five pipeline stages

and the co-processor registers. The result is a multithreaded core that has the

effect of halting (instead of aborting) an instruction when an interrupt is raised

and resuming it after the interrupt service routine code has been executed in the

Increasing the concurrency in single-processor TTCA designs

5-15

duplicated pipeline. If the ISR execution time is kept jitter free, then this

technique ensures that the interrupt overhead remains constant.

5.4 A processor with multiple PH cores

A high level view of the microcontroller design developed in this work can be

seen in Figure 5.6. The resultant multi-core is a heterogeneous multi-core since

each core can have varying internal organisations and peripherals attached.

The cores may also be set at different operating frequencies. While not shown

in the figure, peripherals (including memories) are connected via a bus.

Each core is connected to every other core by a direct asynchronous point-to-

point link implemented as two asynchronous FIFOs (Nebhrajani 2007) for inter-

core communication. In addition to these links, the timer on one core (the timing

master) and the core itself are connected as external event sources for all the

other cores (the timing slaves), allowing for timing events to be propagated to all

Figure 5.6: Hardware organisation

Core

Mem

Timer

UART

Core

Mem

ADC

Core

Mem

GPIO

Timer

Increasing the concurrency in single-processor TTCA designs

5-16

cores either at the same time or after one core has done some application

specific processing.

5.4.1 Delayed sleep extension to the PH core (PH-DS)

Many of the TTCA implementations (Listing 3.6, Listing 3.8, Listing 3.9 and

Listing 3.14) use the interrupt mechanism only to keep track of the number of

times the schedule must be simulated so as to build the run queue. Such a

simple ISR hardly justifies the hardware overhead of PH-MT and the temporal

overhead of the invoked ISR. PH-DS is a hardware simplification that uses the

interrupt to indicate how many software sleep requests can be ignored; i.e. it

delays the sleep requests.

The mechanism can be seen in Figure 5.7 where an 8-bit counter (initialised to

zero) is decremented every time an interrupt occurs and is incremented when

there is a request to sleep; only when this counter equals one does the core

actually sleep. Referring back to Listing 3.1 and the extension in Listing 3.5, it is

clear that the execute ―tick‖-number-of-times behaviour is preserved with this

scheme.

The PH-DS calls no ISR and hence, the multi-threaded logic can be omitted

Counter

+1

-1

=

1

Core

Interrupt Request
to sleep

Sleep

+

Figure 5.7: The PH-DS mechanism

Increasing the concurrency in single-processor TTCA designs

5-17

without affecting the predictability while retaining the flexibility of designing the

schedule creation algorithm in software.

5.5 Inter-task communication scheme

5.5.1 Overview

As required by Section 5.2.2, the communication mechanism developed is

completely transparent to the application software: there is no effect on the

timing of the tasks and it is implemented in a hardware communication

controller with the RTOS‘ scheduler (running on the core) synchronising the

functionality with task execution.

The communication controller is attached to the same bus as the data memory

and the rest of the peripherals, allowing it to be directly controlled by software. It

receives messages from other cores via the link mentioned in Section 5.4 and

writes them directly into data memory (Figure 5.8). This is similar to the

architecture in (Kopetz et al. 1993) which receives messages from other cores

on a bus instead of on individual connections.

 Figure 5.8: Overview of the communication hardware

Communication
Controller

Core

Data
memory

Instruction
memory

Core

Core

Core

Core

Increasing the concurrency in single-processor TTCA designs

5-18

In this architecture, data memory has one writer (the communication controller

or the core) and one reader (the core) and the overlaps mentioned in Section

5.2.2 need to be safeguarded. The communication controller never has to read

from data memory since it uses (local) bus snooping to decide when to send

data to the other cores.

When safeguarding the overlaps, the lock-free solution in (Kopetz et al. 1993) is

unsuitable for the reasons mentioned in Section 2.7.2. From conclusions drawn

in that and the following section, it was decided to use a hardware

implementation of the 3-buffer single-writer, single-reader mechanism described

in Appendix B, with the entire data memory being buffered. Interestingly, if the

multi-cores were only running tasks capable of running on a single-core and

considering that the cores are synchronised by the periodicity of the tasks, a

double-buffer scheme would be sufficient. However, a three-buffer scheme

allows arbitrarily overlapping tasks, provides more flexibility and can be easily

downgraded to a two-buffer scheme should the resource usage become a

concern.

It should be noted that the buffers referred to in Section 5.2.2, are application

buffers while the context of this discussion refers to communication buffers.

There may be several application buffers, pertaining even to different tasks, in

one communication buffer. In this discussion, the application buffers from one

task form one or more shared memory areas (SMAs) in the three

communication buffers.

The communication controller maintains separate registers (the description) for

each SMA: a globally unique identifier, the address and size of the area, an

Increasing the concurrency in single-processor TTCA designs

5-19

indication of whether the SMA has been read since the last write and the state

of each buffer (latest data, being written, being read). The controller also

maintains a lookup table that allows for half-cycle conversions from a memory

address to a SMA identifier.

The scheduler component of the RTOS associates SMAs with tasks, requests

the controller to switch to the latest buffer for those areas when the task is about

to execute and releases the area when the task is finished, i.e. the whole task is

considered a critical section (Section 3.2.3). This managerial role of the

scheduler is depicted in the overview in Figure 5.9.

In the case of a write, for example, when core1 writes a value to its local data

memory, it is noticed (indicated by the rightmost eye in Figure 5.9) by that

core‘s communication controller which then uses the address of the data that

was modified to locate a SMA from a local list of descriptions. If a SMA

description is found, a message is sent to the communication controller

connected to core0 which then uses the identifier in the message to extract a

SMA description from its own list of descriptions. If this second SMA description

is found, it is used to select the right buffer and the address in that buffer at

which to write the data in the message from the other communication controller.

In the case of a read, for example, when core0 reads a value from its local data

memory, it is noticed (indicated by the leftmost eye in Figure 5.9) by that core‘s

communication controller which then uses the address of the attempted read to

locate a SMA from a local list of descriptions. If a SMA description is found, it is

used to select the correct buffer from which to fetch the required data.

These mechanisms are explained further in the subsequent sub-sections.

Increasing the concurrency in single-processor TTCA designs

5-20

5.5.2 Creating the descriptions

The SMA descriptions are created upon request by the RTOS and are

associated with an identifier decided at compile-time. On receiving the request,

the communication controller spends one or more cycles updating the lookup

table that converts addresses to SMA identifiers.

5.5.3 Writing

Writes from a core are applied to all three buffers. This is necessary since the

half-cycle required to fetch the correct buffer number combined with the

additional half-cycle to actually write the data might cause data hazards in the

processor pipeline. Unfortunately, this prevents a task from using a SMA for

both reading and writing.

If the address being written to is part of a SMA, then after half a cycle when the

address has yielded valid SMA information, a notification message is sent to all

cores. The message contains the identifier of the area, the offset of the write

address from the area‘s origin and the data that was written. This content is

Figure 5.9: An overview of communication between two cores

Data
Memory

SMA Desc0

Data
Memory
Buffer 1

Data
Memory
Buffer 2

Core0

SMA Desc1

SMA DescN

Core1

=

SMA Desc0

SMA Desc1

SMA DescN

=

=

Scheduler

Communication
controller

Communication
controller

Addr

Addr, ID
& Buf

Addr
& Buf

Buf

Physical link

Data
Memory
Buffer 0

Increasing the concurrency in single-processor TTCA designs

5-21

sufficient for the other cores to write the data into their own buffers at the proper

location.

Since shared memory areas may be of different sizes even if associated with

the same identifier, the hardware ignores write requests from other cores that

cross defined boundaries.

5.5.4 Reading

In the PH processors, memory is clocked at the same rate as the processor,

with no caches; hence, after the core places an address on the bus, valid data

are expected in the next clock cycle. Translating from a memory address to a

shared memory identifier (to fetch the number of the buffer with the latest data)

takes half a cycle; and so, all buffers fetch data concurrently from the same

address and the data are multiplexed when the right buffer is known.

5.5.5 Switching between buffers

As mentioned in the overview, the scheduler switches the buffers for the SMAs

used by a task before it executes. This includes the local buffers (local switch)

and the buffers in other cores (external switch) sharing these memory areas. A

switch also locks the buffers and so they must be released by the scheduler

when the task is finished. A local switch sets the local buffer to the latest written

buffer; an external switch reserves a buffer that is not the latest and which is not

being read. An external switch uses the last written buffer if a local switch has

not occurred since the last external switch; this allows tasks working at different

rates to function properly. A switch may also be performed locally only (read

switch) if a SMA has multiple readers since multiple readers attempting external

switches can disrupt each other.

Increasing the concurrency in single-processor TTCA designs

5-22

As seen in Figure 5.10, a buffer may then be

in one of several states: available (a), being

used locally (l), being used externally (e) and

being the last used externally (u); and

several guards: an external switch (ES) and

release (ER); a local switch (LS) and release

(LR); and a local switch having happened

since the last external switch (LSSLE). The transitions from the available state

are the least preferred; transitions by a buffer from another state are always

performed instead, if possible.

The switching behaviour is examined in more detail in Figure 5.11 and Figure

5.12 where the states of the buffers (Figure 5.10) are shown from the point of

view of a task ―B‖. The condition of a local switch having happened since the

last external switch is also shown. The start times of a task ―A‖ are shown as

when the external switch request reaches the hardware of the core on which B

executes, and likewise task A ends when the external release request is

received.

In Figure 5.11, both tasks run at the same rate and overlaps from Figure 5.3 are

chosen. The tasks in (a), (b) and (c) can all be scheduled on single processors;

(b) is the sort of timeline that can occur on a single processor. It is interesting to

note, that (b) only ever uses one buffer, and only (d) uses all three buffers. If the

precedence constraint of task B needing to run after task A was added to (d) &

(e), then they would resemble (c) and would also use only two buffers. A great

disadvantage in this system is that initial data are lost if the tasks are given non-

a

e l

u

LS

LS

ER

ES

LR

ES
LSSLE = 0

Figure 5.10: States of a buffer

Increasing the concurrency in single-processor TTCA designs

5-23

zero phases due to the extra condition imposed by LSSLE. This behaviour is

clearer in Figure 5.12.

In Figure 5.12, task A runs at twice the rate of B, with the first execution of B

taking place after two executions of A, so that data are valid. As before, various

combinations are taken: either B runs before the next execution of A or not,

Figure 5.11: Buffer switches from the view of task B when it overlaps with a task A running at the

same rate with a combined utilisation less than one

(a)

(b)

(c)

A A A A

B B B B

A A A A

B B B

a

A A A A

B B B B

a
a

e
l e

l e
l e

l u
a u

a u
a u

a

a

a
a

e l e u a l e u a e u a l u l

a

a
a

e
e

l e
l e

l u
u
a u

a u
a

l

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 1 0 0 1

B

B

(d)

A A A A

B B

a

a
a

e
l e

u
a u l

e u

l a

l a

e u

B

A A A A

B B

a

a
a e u l

l a e u

(e)

a
l a e u
e u l a

0 1 1 1 1 0 0 0

0 1 1 1 1 0 0 0 0

buf0

buf1

buf2

LSLE

buf0

buf1

buf2

LSLE

buf0

buf1

buf2

LSLE

buf0

buf1

buf2

LSLE

For
task
B

For
task
B

For
task
B

For
task
B

0

For
task
B

buf0

buf1

buf2

LSLE

Increasing the concurrency in single-processor TTCA designs

5-24

either B starts before the next plus one execution of A or not, either B finishes

before the next execution of A or not and either B finishes before the next plus

one execution of A or not. In all cases, executions of A which haven‘t seen an

execution of B after a prior execution of A cause no switches.

Figure 5.12 (a) is another example of a single processor type system and

accordingly, one buffer is sufficient. (b), (c) and (d) exhibit the long-task

problem. However, depending on the data structure used by the application

buffers, data losses may occur in (c), (d) and (e) and may be sustained. (c), (d)

and (e) could avoid data losses with proper scheduling but will recover in the

next tick (not shown).

The example in Figure 5.12 can be expanded to higher frequency rate

mismatches as well. As long as the application buffers data appropriately and

the reading task executes (on another core) after the last execution of a writer in

a batch but before the first execution of a writer in the next batch, then the

reader can execute concurrently until the start of the next plus one batch

without any data losses or any incoherence.

Multiple buffers can be toggled by a single register write to the communication

controller and there is no variability introduced by tasks using variable numbers

of shared memory areas. This prevents the communication controller from

increasing a task‘s release jitter.

Increasing the concurrency in single-processor TTCA designs

5-25

5.6 The scheduler design

5.6.1 Overview

In this design, each core stores only the code and data of the tasks that it will be

running. Two scheduler implementations were examined:

Figure 5.12: Buffer switches from the view of task B when it overlaps with a task A running at twice

the rate

(b)

A A A A

B B

(c)

(a)

A A A A

B

A A A A

B

A A A A

B

A A A A

B

(d)

(e)

a

a
a

e u l a e u

0 1 1 0

e u e u l a

a

a
a

e u a

0 1 1 0

e u
e u l a e u

a

a
a

e u
l

0 1 0

e u e u
a e u

a

a
a

e u
l

0 1 0

e u e u
a

e u

a

a
a

e u
l

0 1

e u e u
a

e u

l

buf0

buf1

buf2

LSLE

buf0

buf1

buf2

LSLE

buf0

buf1

buf2

LSLE

buf0

buf1

buf2

LSLE

buf0

buf1

buf2

LSLE

For
task
B

For
task
B

For
task
B

For
task
B

For
task
B

Increasing the concurrency in single-processor TTCA designs

5-26

 Multiple schedule builders: each core is triggered by the timing master,

stores the properties of only those tasks that it will be running and

creates and dispatches the schedule for these tasks.

 Single schedule builder: the scheduling core stores all the properties of

the tasks, creates the schedule for all other cores and triggers them at

the start of its ISR. The individual cores still dispatch their own tasks.

5.6.2 Precedence constraints

In a single-processor TTCA design, tasks may have precedence constraints, i.e.

a frame of one task may be required to precede a matching frame of another

task. Figure 5.13 explores scenarios where these constraints may not be

honoured in a multi-core TTCA design. In Figure 5.13, the tick is shown as a

dotted vertical line on a horizontal timeline, two tasks are shown as shaded

rectangles and the task represented as a rectangle with the smaller width must

precede the other one. Figure 5.13 (a) shows the single-processor TTCA design

where the constraint is implicitly defined by the order in which tasks are added

to the task list (Section 3.2). When the tasks execute concurrently, the task

ordering is no longer feasible for this purpose (Figure 5.13 (b)).

Changing the task phase may be used as a solution (Figure 5.13 (c)), but the

granularity of one tick is too large for phase changes and increases the latency

of the dependent task. The natural follow-up is to decrease the tick interval so

as to decrease the granularity (Figure 5.13 (d)) but this increases the scheduler

overhead. This design tackles the problem by inserted idle time using code

balancing techniques (Section 4.4.3.2) on the appropriate cores, shown as

deeply shaded rectangles in Figure 5.13 (e). A schedule creation algorithm may

choose to instead execute other tasks in the time slot, to make use of the

Increasing the concurrency in single-processor TTCA designs

5-27

available concurrency, since inserted delay time effectively looses the available

parallelism.

5.6.3 Deterministic initialisation sequence

To ensure all cores are at the required state before the scheduler starts, an

initialisation mechanism must be well defined. This has been done as follows:

after a reset, the timing master is the only core executing instructions, the other

cores are held in a low power mode at their reset addresses and the event

Figure 5.13: (a) Using task order to enforce precedence constraints in a sequential system, (b) has

no effect in concurrent execution which must be handled (c) by changing phases, (d) by increasing

the tick interval or (e) by inserting idle time

(a)

(b)

(c)

(d)

(e)

Time

Time

Time

Time

Time

Tick Must
precede

Inserted idle time

Increasing the concurrency in single-processor TTCA designs

5-28

source for the timing slaves is set to the timing master with interrupts enabled.

When ready, the timing master interrupts the other cores, causing them to begin

executing instructions. In this way, the timing master can create two SMAs and

initialise them before waking up the other cores. These SMAs are used to

synchronise the cores after initialisation (Listing 5.1 and Listing 5.2).

GLOBAL status IS INTEGER
GLOBAL acks IS INTEGER

DEFINE initialisation OF scheduler:
 SET status TO 0
 SET acks TO 0
 SHARE status WITH ID = NN
 SHARE acks WITH ID = NN + 1
 INTERRUPT cores

 ... Perform initialisation ...

 SET alive TO 1

 WHILE alive IS NOT ((2 EXP number OF cores) - 1)
 SET rack TO 0

 DO
 HOLD status
 READ HOLD acks
 SET rack TO acks
 SET status TO alive
 FREE status, acks
 WHILE rack /= (alive + 1)

 SET alive TO alive + rack

 HOLD status
 SET status TO alive
 FREE status
 ...

Listing 5.1: Initialisation on the timing master

Increasing the concurrency in single-processor TTCA designs

5-29

GLOBAL status IS INTEGER
GLOBAL ack IS INTEGER

DEFINE initialisation OF scheduler:
 ...
 SET status TO 0
 SET ack TO 0
 SHARE status WITH ID = NN
 SHARE ack WITH ID = NN + 1
 ...
 Perform initialisation
 ...
 SET mask TO 2 EXP number OF core
 SET stat TO 0

 DO
 READ HOLD status
 SET stat TO status
 FREE status
 WHILE stat /= (mask – 1)

 HOLD ack
 SET ack TO mask
 FREE ack
 ...

Listing 5.2: Initialisation on the timing slaves

This algorithm implements a barrier synchronisation, where the timing master

progresses only when all slaves have sent acknowledgements and the slaves

progress by an identifier-based ticket mechanism to prevent contention. Once

the acknowledgement is sent, a slave core immediately goes to sleep awaiting

the first tick. With this algorithm, the master core, which runs the scheduler, is

always the last core to go to sleep and so the scheduler is guaranteed to start

when all the cores are ready.

5.6.4 The multiple schedule builders implementation (TTC-MC-MSB)

In this implementation, the timer on the timing master is used as a global

interrupt generator. Such a method can accommodate reducing die sizes as the

wire propagation delay in timing events to each core is negligible compared to

an expected tick interval. For example, tick intervals may rarely drop below 0.01

Increasing the concurrency in single-processor TTCA designs

5-30

ms whereas propagation delays are expected to be approximately 2.859 ns per

μm in 2015 for a 1mm diameter copper wire (ITRS 2007).

Even though a core schedules its own tasks, it is still coupled to the timing

master via the interrupt mechanism; this coupling keeps the cores

synchronised. TTC-MC-MSB is based off of the table-free multi-rate executive

with the dispatch and schedule creation left almost unchanged except for

ensuring that the shared buffers for a task are switched before a task executes

and released after it finishes.

5.6.5 The single schedule builder implementation (TTC-MC-1SB)

In this implementation, the timing master is called the scheduling core and the

other cores are the scheduled cores. The scheduling core handles tasks

running on its own core separately from those running on other cores. For tasks

on the same core, the schedule is created when the scheduler starts and at the

end of the dispatch. For tasks running on other cores, the schedule is created

every tick in addition to the initial creation when the scheduler starts.

The run queues for the scheduled cores are implemented as circular buffers in

a SMA (Listing 5.3) in co-operation with the scheduling core (Listing 5.4). The

memory areas have their buffers switched at the start of the dispatch routines in

the scheduled cores (Listing 5.6).

Increasing the concurrency in single-processor TTCA designs

5-31

GLOBAL run_queue IS <NNNN> ARRAY OF INTEGERS
GLOBAL index IS INTEGER

DEFINE initialisation OF scheduler:
 ...
 SET ALL OF run_queue TO -1
 SHARE run_queue WITH ID = number OF core
 SET index TO 0
 SET fifo_index TO 0
 ...

DEFINE read_from_queue WITH OUTPUT data:
 IF MSB_16 OF run_queue[fifo_index] IS EQUAL TO index:
 SET data TO LSB_16 OF run_queue[fifo_index]
 SET index TO (index + 1) MOD number OF tasks
 SET fifo_index TO (fifo_index + 1) MOD SIZE OF run_queue
 ELSE:
 SET data TO NULL

Listing 5.3: Managing the run queue in the scheduled queue

GLOBAL run_queue IS <number OF cores> ARRAY OF
 (<NNNN> ARRAY OF INTEGERS)
GLOBAL index IS <number OF cores> ARRAY OF INTEGERS

DEFINE initialisation OF scheduler:
 ...
 FOR EACH core:
 SET ALL OF run_queue[number OF core] TO -1
 SHARE run_queue[number OF core] WITH ID = number OF core
 SET index[number OF core] TO 0
 SET fifo_index[number of core] TO 0
 ...

DEFINE write_to_queue WITH INPUT number AND INPUT data:
 SET run_queue[number][fifo_index[number]] TO
 MSB_16 = index[number]
 LSB_16 = data
 SET index[number] TO (index[number] + 1) MOD number OF tasks
 SET fifo_index[number of core] TO
 (fifo_index[number of core] + 1) MOD SIZE OF run_queue

Listing 5.4: Managing the run queues in the scheduling core

The scheduler is built as a modification to the table-free multi-rate executive

(Section 3.6.2), adding a schedule creation stage for the scheduled cores to the

ISR (Listing 5.5). The scheduling core is triggered by its own timer and triggers

the scheduled cores in the ISR with an interrupt. The scheduling core must

Increasing the concurrency in single-processor TTCA designs

5-32

delay for a little while before building the run queues, so that the scheduled

cores have the opportunity to switch their buffers (Listing 5.6).

DEFINE service OF interrupt:
 INTERRUPT CORES
 RAISE ticks BY 1
 DELAY
 HOLD run_queue
 FOR EACH task IN tasks WHERE core_number IS NOT 0:
 LOWER delay OF task BY 1

 IF delay OF task IS 0:
 write_to_queue WITH number = core_number OF task
 data = identifier OF task

 SET delay OF task TO period OF task
 FREE run_queue

Listing 5.5: Event service of the scheduling core

To allow the scheduling core to run tasks, the co-operative dispatch and

schedule creation are left almost unchanged – the only changes required are

checking that the new core_number property is zero and that the buffers for all

shared memory areas used by the task are switched before the task executes.

For scheduled cores, there is no schedule creation to be done and the ISR

stays the same as the general TTCA implementation ISR (Listing 3.4). The

dispatch reads from the queue in shared memory and executes tasks

appropriately (Listing 5.6).

Increasing the concurrency in single-processor TTCA designs

5-33

DEFINE dispatch OF scheduler:
 WHILE ticks > 0:
 LOWER ticks BY 1
 READ HOLD run_queue

 LOOP:
 SET task_id TO data FROM read_from_queue
 IF task_id IS NULL:
 EXIT LOOP

 HOLD EACH shared memory area OF task
 RUN task WITH identifier = task_id
 FREE EACH shared memory area OF task

 FREE run_queue

Listing 5.6: Task dispatch in a scheduled core

5.7 Evaluation

The developments in this chapter were aimed at eliminating the timing

anomalies introduced by long-tasks and non-harmonic tasks into a TTCA

implementation. This was performed by switching to a multi-core processor with

an application-transparent communication scheme for tasks on different cores.

This section will examine the effects of these alterations compared to the

situation under a single-core scalar processor. The two multi-core TTCA

implementations that were created to utilise these changes will be evaluated as

part of the case study in Chapter 6.

For brevity, the original PH core will be referred to as PH and the various

extensions with hyphenations: multi-threaded as PH-MT and an n core as MC-

PHn. In the same vein, the original table-free multi-rate TTCA implementation

will be referred to as TTC and the single and multiple schedule builder multi-

core versions as TTC-MC-1SB and TTC-MC-MSB respectively. Finally, all code

will either be in MIPS I assembly or in C.

Increasing the concurrency in single-processor TTCA designs

5-34

For timing measurements, special instructions were inserted at appropriate

points in the software code. These instructions triggered the transmission of the

value of a 16-bit or 28-bit (depending on the state of a physical switch)

hardware counter down a serial link to a development machine; the

transmissions have no effect on the operation of the cores. The hardware

counter is reset by hardware logic when an interrupt is generated by timer 0 on

core 0; is incremented at the rate of 25 MHz; and can count to approximately

either 2.6 ms or 10,737 ms before it overflows.

5.7.1 Hardware utilised

All experiments were run with the soft microcontrollers compiled for the Xilinx

Virtex-5 LX50T FPGA on the ML505 development board. The FPGA was

developed in VHDL, compiled with Xilinx ISE WebPACK 12.2 and simulated

with ModelSim XE III 6.5c. A MIPS-I port of GCC 3.3.3 was used to compile the

software source code.

TTC-MC-MSB was implemented on all PH-DS cores while TTC-MC-1SB had a

PH-MT as the scheduling core and PH-DS as the scheduled cores. The cores

were driven by asynchronous clock signals at similar 25 MHz frequencies; with

all interaction between them protected by circuits such as asynchronous FIFOs.

5.7.1.1 Results

Figure 5.14 shows the hardware utilisation, as the number of slices occupied for

solely one function, for the PH, the PH-MT and the PH-DS, each in a

configuration with 32 Kb code memory, 32 Kb data memory, three timers and

one GPIO. When compared to the unpredictable PH core, the predictable PH-

MT core results in approximately 14% more hardware being used while the

Increasing the concurrency in single-processor TTCA designs

5-35

predictable and co-operative PH-DS core

adds less than 1% to the hardware cost.

The savings from employing PH-DS cores

increase as the number of cores in a MC-

PHn increase.

The hardware utilisation when the

communications mechanism is enabled

and disabled is shown in Figure 5.15 for

three MC-PHn implementations where

each core is configured with 32 Kb code memory, 8 Kb data memory, one GPIO

and at least one timer – core 0 has three timers. The relative increase in

hardware due to the communication capability scaled by the number of cores in

all three cases is approximately 45% of the implementation containing the PH

core (Figure 5.14).

Figure 5.15: Hardware utilisation on removing the communication mechanism from MC-PHn

implementations

13,096

8,646

18,939

12,235

25,023

15,728

0

5000

10000

15000

20000

25000

30000

MC-PH2 MC-PH2
(no comms)

MC-PH3 MC-PH3
(no comms)

MC-PH4 MC-PH4
(no comms)

N
o
 o

f
s
lic

e
s

5,085

5,776

5,111

4600

4800

5000

5200

5400

5600

5800

6000

PH PH-MT PH-DS

N
o
 o

f
s
lic

e
s

Figure 5.14: Hardware utilisation on

changing the core type

Increasing the concurrency in single-processor TTCA designs

5-36

5.7.2 Inter core communication

To evaluate inter-task communication, two tasks were implemented and run on

different cores (and on cores 0 and 1 respectively) with TTC-MC-1SB and

two SMAs of a 100 words each. Both tasks check one of the SMAs against a

consecutive range of 100 numbers and then write the next set of consecutive

100 numbers to the other SMA (Listing 5.7 and Figure 5.16). To avoid release

jitter, the scheduler was carefully code-balanced with software techniques.

static uint32_t Shared_I_G[NUM];
static uint32_t Shared_O_G[NUM];
static uint32_t Errors_G[MAX_RUNS];
static uint32_t Runs_G;
static uint32_t Base_G; // Initialised to 0 or NUM

void Latency_Check_Update()
 {
 if (Runs_G < MAX_RUNS)
 {
 uint32_t index;
 uint32_t upper = Base_G + NUM;

 for (index = Base_G; index < upper; ++index)
 {
 if (Shared_I_G[index - Base_G] != index)
 ++Errors_G[Runs_G];
 }

 Base_G += NUM;
 upper = Base_G + NUM;

 for (index = Base_G; index < upper; ++index)
 {
 Shared_O_G[index - Base_G] = index;
 }

 Base_G += NUM;
 ++Runs_G;
 }
 }

Listing 5.7: C code for one of the identical tasks in the evaluation of inter-task communication

Increasing the concurrency in single-processor TTCA designs

5-37

Each task was run a fixed number of times, recording the number of errors in

the sequence for that run. The two tasks were executed at the same frequency

and in the same tick, but had a delay task, (Listing 5.8) inserted before it

so that its start time relative to could be evaluated. The value of NN in the

delay task was varied along with the insertion of up to 3 NOP instructions, in

order to find the precise number of cycles (Equation 5.1) at which the errors

disappear.

 (5.1)

delay_task:
 li $8, NN
loop:
 addiu $8, $8, -1
 nop
 bnez $8, loop
 nop
 nop x [0...3]
 jr $31
 nop

Listing 5.8: Assembly code for a delay task

5.7.2.1 Hardware results

The execution time of each task was consistently measured to be 1448 cycles

or 57.92 μs, except in the case of errors, when the time increased to 1948

cycles or 77.92 μs. encountered zero errors in all the trials, whereas the

number of errors encountered by jumped from 100 to 0 as the delay task

(Listing 5.8) was lengthened (Figure 5.17). and were found to consistently

Check: 0 - 99
Write: 100 - 199

Check: 100 - 199
Write: 200 - 299

Check: 200 - 299
Write: 300 - 399

Check: 300 - 399
Write: 400 - 499

Figure 5.16: Task functionality for inter core communication evaluation

Increasing the concurrency in single-processor TTCA designs

5-38

start at the same cycle count on each run and a sample execution in the

absence of errors can be seen in Figure 5.18.

Figure 5.17: Number of errors encountered by

Figure 5.18: Snapshot of task execution on a dual-core with no errors

(NN = 399, 0 NOPs, = 1599 cycles)

Since always completes before the next execution of , the latter

experiences no errors. The errors experienced by are due to it beginning

execution while is still executing; in particular, when tries to switch the

buffers while is still writing. Interestingly, in this particular case, the errors

disappear while the tasks are still overlapping in execution by 10 cycles.

It is also worth pointing out that the number of errors is either 0 or 100,

signifying that data are either wholly corrupt or wholly accurate. Figure 5.17

indicates that the hardware synthesis tool output can be trusted in terms of

timing accuracy down to the cycle level even when consuming large portions of

0

20

40

60

80

100

120

1595 1596 1597 1598

N
u
m

b
e
r

o
f

e
rr

o
rs

Number of execution cycles of delay task

2-core

3-core

4-core

1448

1448

1609

0 500 1000 1500 2000 2500 3000 3500

Task (core 0)

Task (core 1)

Delay task (core 1)

Number of cycles since tick

Increasing the concurrency in single-processor TTCA designs

5-39

the FPGA. Also, the communication controllers, which have to multiplex

between cores, demonstrate determinism in that there is no change in the

required number of delay cycles even when the number of cores is increased.

5.7.2.2 Simulation results

Figure 5.19 and Figure 5.20 respectively show simulations of the system when

the number of errors in are about to decrease to zero, as is lengthened

and when the number of errors is zero a cycle later.

Figure 5.19: Simulation of buffer switches with errors at = 1596 cycles

Figure 5.20: Simulation of buffer switches just after errors stop at = 1597 cycles

Increasing the concurrency in single-processor TTCA designs

5-40

These figures show that the errors begin when the local switch on overlaps

with the data access of , and matches the hardware observations. The

implementation only toggles buffers on data access and so the external access

causes a premature toggle. The overlap amount is highly dependent on the task

design. If the task were designed so, the last access of a SMA might even be

inserted in the delay slot for the task return instruction, making it the last

statement executed. Similarly, the load instruction could be made the first

statement of the other task executed. In such a scenario, the communication

latency might manifest itself to the application developer. However, most often,

the compiler inserts broiler plate stack setup and take-down code in the function

preludes and postludes which are sufficient to absorb the communication

latencies.

Figure 5.20 also shows the communication delay, from when the SMA write

instruction is first loaded into core 0: it is executed 2½ cycles later and then

propagated by the communication controller to the FIFO one cycle later. The

FIFO spends 2 cycles on metastability protection and 1½ cycles on internal

propagation. Finally, core 1 takes one cycle to notice that the FIFO contains a

value.

5.7.3 Initialisation

To verify that the initialisation sequence is predictable, the initialisation time for

each core was measured after a thousand resets: on hardware for up to four

cores and in simulation for up to eight cores. Additionally, the hardware test was

executed on dual, triple and quad core platforms. A single-core platform was

also examined for the sake of comparison.

Increasing the concurrency in single-processor TTCA designs

5-41

5.7.3.1 Results

The average number of cycles taken to initialise each core on four hardware

platforms, for a thousand trials, can be seen in Figure 5.21 with the standard

deviation presented in Figure 5.22; each line represents a particular hardware

platform with a data point for each core in the platform. Thus, the quad core

system has four data points, while the single-core platform has only one.

Figure 5.21: Average number of cycles taken for a core to initialise on one- to four-core devices

Figure 5.22: Standard deviation in initialisation times on one- to four-core devices

The reference single-core datum in Figure 5.21 shows the amount of time taken

by the application software to initialise and Figure 5.22 shows that this

1250

1300

1350

1400

1450

1500

1550

1600

First core Second core Third core Fourth core

N
u
m

b
e
r

o
f

c
y
c
le

s

Single-core

Dual-core

Triple-core

Quad-core

0

2

4

6

8

10

12

14

16

First core Second core Third core Fourth core

N
u
m

b
e
r

o
f

c
y
c
le

s

Single-core

Dual-core

Triple-core

Quad-core

Increasing the concurrency in single-processor TTCA designs

5-42

initialisation has zero variations. Thus, the increase in the number of cycles and

the variation thereof for the other hardware platforms are purely due to the

barrier synchronisation (Section 5.6.3) that ensures that cores finish initialisation

in the order of their numbering except for the first core which always finishes

last. In the dual, triple and quad core platforms, the second core has a zero

variance because in this particular evaluation, the second core always finishes

its application initialisation after the first core has begun the barrier

synchronisation; when the second core reaches its synchronisation point, it can

carry through immediately. For the third and the fourth cores, the number of

cycles taken to initialise increases linearly, though no such trend can be

observed about the standard deviation which is dependent on the software

implementation of the barrier synchronisation (Listing 5.2).

Figure 5.23 shows the average number of cycles taken on eight simulated

platforms, and Figure 5.24 shows a simulation of eight cores. As might be

expected, the simulations have no variation between runs for the same number

of simulated cores, and no simulation equivalent for Figure 5.22 is presented.

Figure 5.23: Number of cycles taken for a core to initialise on simulated one- to eight-core devices

1250

1450

1650

1850

2050

2250

2450

N
u
m

b
e
r

o
f

c
y
c
le

s

1-core

2-core

3-core

4-core

5-core

6-core

7-core

8-core

Increasing the concurrency in single-processor TTCA designs

5-43

Figure 5.24: Simulation of the initialisation sequence for 8-cores

Figure 5.23 and Figure 5.24 exhibit the same linear trend in initialisation time as

that in Figure 5.21. Figure 5.17 shows that the hardware synthesis tool is able

to maintain the timing relationships when synthesising different numbers of

cores and so the variations in Figure 5.22 and between the equivalently

numbered cores in Figure 5.21 are the cause of jitter in the software algorithm

employed, an observation reinforced by the simulation result in Figure 5.23.

However, the amount and reduction of this jitter is of little importance, the only

requirement of the initialisation algorithm was to start the cores in a pre-defined

order, which the results demonstrate is always maintained, with the slaves

starting sequentially and the master always starting last.

5.8 Conclusions

This chapter has examined a solution to the problem posed to TTCA by the

introduction of long and non-harmonic tasks, especially during maintenance

when the work is most often performed by individuals who were not the original

developers and who are not familiar with the system. The proposed solution is

to replace the single-core that is proving inadequate for TTCA with other,

Increasing the concurrency in single-processor TTCA designs

5-44

possibly simpler, cores, without breaking the interface with the environment.

Such an action may also be done at design infancy with an eye to future

development, potentially deploying devices with unused cores.

To increase the applicability of the solution, the inter-task communication

scheme was examined in detail with the aim to allow tasks to be written as in a

single-core system, maintaining the design simplicity. The evaluation in this

chapter demonstrated that this has been successful to the extent of allowing

even a tiny overlap in execution.

The next chapter uses a case study to evaluate the schedulers described in this

chapter and their effectiveness in coping with the long-task problem and the

introduction of non-harmonic task periods.

Chapter 6

Case study: F-16 flight system

6.1 Introduction

The previous chapter described two TTCA implementations aimed at enabling

or improving the scheduling of single-processor TTCA designs that possess the

long-task problem or that contain tasks with non-harmonic periods; the two

implementations were made possible by increasing the concurrency at the

hardware level with a multi-core design. The previous chapter also described an

inter-core communication scheme that allows tasks‘ designs to remain

unchanged and a predictable initialisation sequence so that all the cores are

guaranteed to be at a ready state when the TTCA implementations take over.

To evaluate the implementations and their ability to grapple with the demands of

maintenance and future development, this chapter studies a simulated F-16

flight system, as specified in (Abdelzaher et al. 1997).

The next section delves into the technical details of the system, followed by a

detailed description of the evaluation setup. Finally, the results of the evaluation

are presented with relevant discussions.

6.2 Technical details

In the published study, the period for each task in the system was varied

depending on the required quality of service (the higher the reward, the better

the quality) (Table 6.1). The flight system followed a pattern of first taking-off

Case study: F-16 flight system

6-2

and climbing; then holding a constant altitude around a rectangular path; ending

with descending and the final approach to landing. The military operation of

destroying possible enemy targets using an onboard radar and missiles was

also simulated.

Table 6.1: Evaluation task-set without a long-task

Name WCET (ms) Period (s) QoS Level Reward

Guidance

100 10 0 10

100 5 1 15

100 1 2 20

Controller

80 5 0 1

80 1 1 100

80 0.2 2 120

Slow Navigation

100 10 0 10

100 5 1 20

100 1 2 25

Fast Navigation

60 5 0 1

60 1 1 100

60 0.2 2 120

Missile Control
500 10 0 1

500 1 1 30

Four basic flight control tasks were utilised: ―Guidance‖ was responsible for

setting the reference trajectory of the aircraft in terms of altitude and heading

with sensor values supplied by ―Slow Navigation‖; ―Control‖ was responsible for

executing closed-loop control of the actuator with sensor values supplied by

―Fast Navigation‖. ―Missile Control‖ reads a radar and, if necessary, launches a

missile; execution at a higher rate allows faster-moving targets to be destroyed.

Case study: F-16 flight system

6-3

The original study aimed to gracefully downgrade the tasks in quality according

to the run-time capabilities of the system. When running on a single-core, the

periods shown in Table 6.2, TS-1, were utilised: the flight control was stable but

sluggish and the aircraft was unable to destroy fast moving targets. When trying

to hit fast moving targets, two processors were required to prevent

destabilisation in the flight control.

Table 6.2: Task-set yielding sluggish control (TS-1)

Name WCET (ms) Period (s) QoS Level Utilisation

Guidance 100 10 0 0.01

Controller 80 1 1 0.08

Slow Navigation 100 10 0 0.01

Fast Navigation 60 1 1 0.06

Missile Control 500 10 0 0.05

The flight control can be made slightly better with the task-set, TS-2, in Table

6.3. On a co-operative system, however, TS-2 can be expected to have large

release jitter due to the long-task problem: the combined WCET of the tasks

Guidance and Slow Navigation and the WCET of the task Missile Control are

greater than or equal to the periods of the tasks Controller and Fast Navigation.

Table 6.3: Task-set with better control but unable to hit fast moving targets (TS-2)

Name WCET (ms) Period (s) QoS Level Utilisation

Guidance 100 10 0 0.01

Controller 80 0.2 2 0.4

Slow Navigation 100 10 0 0.01

Fast Navigation 60 0.2 2 0.3

Missile Control 500 10 0 0.05

Case study: F-16 flight system

6-4

Likewise, the responsiveness of the targeting system can be improved by

increasing the period while still staying within the utilisation bounds of a single

processor system. This is seen in the task-set, TS-3 in Table 6.4, where the

period of Missile Control is increased so that the utilisation is approximately

90%; the extra 10% is to accommodate scheduling overheads. However, with

this change, it may be noted that the tasks of TS-3 have non-harmonic

relationships in their periods.

Table 6.4: Task-set to improve the ability to hit fast moving targets (TS-3)

Name WCET (ms) Period (s) QoS Level Utilisation

Guidance 100 10 0 0.01

Controller 80 0.2 2 0.4

Slow Navigation 100 10 0 0.01

Fast Navigation 60 0.2 2 0.3

Missile Control 500 2.78 - 0.18

6.3 Setup

In this evaluation, it is considered that the F-16 flight system has been deployed

in the field on a suitable hardware platform with TS-1. Further, it is considered

that at a point in the future, it becomes desirable to have snappier control

performance, resulting in the specifications of TS-2 being applied. Similarly, at

another future point, it is considered necessary to hit faster moving targets and

so, TS-3 becomes the new system specification. The evaluation details the

amount of effort required to make each upgrade and the implications therein,

grouped by the scheduler implementation.

Case study: F-16 flight system

6-5

The scheduler implementations chosen depended on the choice of the initial

hardware platform:

 A PH-MT platform: This was a platform with a single predictable PH core

supporting interrupts. Various scheduler implementations were trialled:

o TTC-MT: A TTCA implementation that executes tasks co-

operatively with fixed priorities.

o DPC: An implementation that executes tasks co-operatively with

the highest priority dynamically assigned to the task with the

earliest deadline.

o TTP: A fixed-priority pre-emptive implementation that allocates

stack space as a task executes.

o TTP-MJ: Functionally identical to TTP, but with code-balancing

techniques applied to key scheduler areas to minimise jitter.

o TTH: A type of TTCA implementation that permits a single pre-

emptive task in order to tackle the long-task problem (page 4-7).

o FPP and DPP: Fixed and dynamic priority pre-emptive

implementations that reserve space on the stack for each task on

creation. In either case, the task with the earliest deadline is given

the highest priority.

 A PH-DS platform: This was a platform with a single predictable PH core

supporting only co-operative software running a TTCA implementation,

TTC-DS.

 A MC-PH3 platform: This was a triple-core processor where core 0 was

either PH-MT or PH-DS while the remaining cores were PH-DS. Either

TTC-MC-1SB or TTC-MC-MSB was deployed depending on whether

Case study: F-16 flight system

6-6

core 0 was PH-MT or PH-DS. Fast Navigation and Controller were

always executed on core 1 and the rest of the tasks on core 0 except in

TS-3 where Missile Control was executed on core 2.

The scheduler implementations (excepting the multi-core ones) were adapted

from those found in the RapidiTTy® toolset from TTE® Systems; the tasks were

implemented as dummy tasks to meet the stated WCET with a small amount of

execution jitter introduced by an online pseudo-random number generator. The

comparison between schedulers was made on the amount of release and

completion jitter on the five tasks and on the software and run-time overheads

of the scheduler. The release jitter is indicative of stable sampling and the

completion jitter of stable actuation.

For all three task-sets, the tick interval was set as the GCD of all the task

periods: TS-1 had a tick interval of one second; TS-2 had a tick interval of 200

milliseconds and TS-3 had a tick interval of 20 milliseconds. A heartbeat LED

task (Pont 2001) was also always scheduled on core 0, at the lowest priority, at

the rate of one Hertz. For clarity, this task has been omitted from the results.

In the fixed-priority scheduler implementations, the highest priority was

assigned to the task with the earliest deadline, while honouring precedence

constraints (i.e. a navigation task is to be executed before the corresponding

control task). In the dynamic-priority implementations, this was maintained by

giving the navigation tasks deadlines slightly earlier than the corresponding

control tasks.

In the TTH implementation, the Fast Navigation and Control tasks were

combined since only a single pre-emptive task was supported, and both these

Case study: F-16 flight system

6-7

tasks were of the highest priority. This resulted in TS-3 being unfeasible under

TTH since the length of the pre-emptive task exceeded the tick interval.

6.4 Measured task timing

The tasks‘ execution times under TTC-MT can be seen in Table 6.5 – the times

match the task specifications and have a controlled amount of jitter (measured

according to Equation 2.23) inserted into them.

Table 6.5: The run-time timing properties of the tasks under TTC-MT

Name WCET (ms)
Execution jitter

(us)
Execution jitter

%

Guidance 100.0 288.9 0.29

Controller 80.0 290.7 0.36

Slow Navigation 100.0 301.7 0.30

Fast Navigation 60.0 293.8 0.49

Missile Control 500.0 307.4 0.06

The tasks all use the same pseudo-random number generation algorithm for

jitter generation. They maintain their own copies of the registers for the

algorithm and always use the same initial seed value between runs, allowing

them to maintain their run-time properties even when pre-empted or executed in

different sequences.

6.5 Release and completion jitter

The release and completion jitter for the five tasks across the different

schedulers and task-sets can be seen in Figure 6.1, Figure 6.2 and Figure 6.3.

All the scheduler implementations perform well with TS-1 (Figure 6.1) since this

task-set is suitable for co-operative systems, and the pre-emptive

Case study: F-16 flight system

6-8

implementations have little opportunity to employ their advanced features which

are the primary cause of jitter. As would be expected, the release jitter

increases as the priority decreases, equalling the cumulative completion jitter of

the higher priority tasks. The co-operative execution is distinctive by the fairly

uniform completion jitter displayed by the different implementations. TTH

displays a peculiarly high release jitter in the three lowest priority tasks due to a

large completion jitter in the two combined high priority tasks.

Figure 6.1: Jitter for TS-1

The single-core co-operative schedulers have been omitted from Figure 6.2 as

they are unfeasible with TS-2: both TTC-DS and TTC-MT displayed

approximately 165 ms release jitter; though DPC was able to halve this to

around 85 ms, the figure is unacceptable. With TS-2 (Figure 6.2), the pre-

emptive schedulers exhibit higher jitter for the lower priority tasks than TS-1

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

Release jitter (µs)

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

Completion jitter (µs)

TTP TTP-MJ FPP DPP TTC-MC-1SB

TTC-MC-MSB TTH TTC-DS TTC-MT DPC

Case study: F-16 flight system

6-9

(Figure 6.1), due to the increased amount of pre-emption. The multi-core

schedulers, due to co-operative execution, are able to keep the levels of release

jitter more or less the same as with TS-1; for some tasks the release jitter has

even decreased since they are preceded by fewer tasks.

Figure 6.2: Jitter for TS-2

The highest release jitter is seen with TS-3 (Figure 6.3) due to the presence of

non-harmonic relationships in the task periods; the high priority tasks exhibit

approximately 18 ms of jitter – a significant increase over TS-1 (Figure 6.1) and

TS-2 (Figure 6.2) which had jitter less than 0.5 ms; the lower priority tasks

exhibit even higher release jitter, exceeding 750 ms in the case of the dynamic-

priority implementation. The completion jitter is also quite high (Figure 6.3),

particularly in the case of the fully pre-emptive implementations. In contrast, the

multi-core schedulers are able to maintain the jitter levels at the previous levels

or better since tasks executing on one core maintain harmonic relationships in

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

Release jitter (µs)

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

Completion jitter (µs)

TTP TTP-MJ FPP DPP TTC-MC-1SB TTC-MC-MSB TTH

Case study: F-16 flight system

6-10

their periods and have fewer tasks with high completion jitter executing ahead

of them.

Figure 6.3: Jitter for TS-3

6.6 Overheads

The software overheads for each of the scheduler implementations can be seen

in Figure 6.4; the overhead of the communications API has been added to the

multi-core implementations. The overheads presented are the static usages

from the application binary; depending on the scheduler, there may be greater

demands on the stack. In the case of the pre-emptive systems, where tasks

utilise the stack for context storage, the memory requirement increases quite

severely, though this is not shown in the figure. In the case of FPP and DPP,

context storage has to be reserved at the time of creation, whereas TTP

allocates the storage as required. In the worst-case (where each priority level is

successively pre-empted), TTP tends to FPP and DPP stack requirements. In

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

Release jitter (ms)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Completion jitter (ms)

TTP TTP-MJ FPP DPP TTC-MC-1SB TTC-MC-MSB

Case study: F-16 flight system

6-11

that respect, the latter two may be better due to the upfront exposure of memory

requirements.

Figure 6.4: Software overhead of the scheduler implementations

The software overhead for the multi-core single builder schedulers includes the

run queue overheads, particularly evident on the master which has to store all

the run queues as shared areas. The size of the run queues is dependent on

both the number of processors and the number of tasks – in this case study, a

maximum of four processors were supported with a run queue size of eight

each.

The run-time overhead of the scheduler implementations is similarly dependent

on the task-set and is shown relative to the tick interval for TS-1 and TS-2 in

Figure 6.6 and for TS-3 in Figure 6.6. In this case study, the task-sets only vary

in: the necessity to pre-empt, which shows a minor increase for TS-2; and in the

tick interval, which shows a large increase with the non-harmonic task-set,

TS-3. These increases are not seen in the multi-core scheduler

0

500

1000

1500

2000

2500

N
u
m

b
e
r

o
f

b
yt

e
s

Comms

Data

Code

Case study: F-16 flight system

6-12

implementations because of the simplicity of TTCA, because the tasks always

execute co-operatively with harmonic relationships in their periods and because

the cores have fewer tasks to execute.

Figure 6.5: Run-time overhead of the scheduler implementations relative to the tick interval for

TS-1 and TS-2

Figure 6.6: Run-time overhead of the scheduler implementations relative to the tick interval for

TS-1

When the overheads in the multi-core scheduler implementations are viewed

separately for all three task-sets (Figure 6.7), it can be seen that the scheduler

takes up less overhead on the slave cores of the single builder implementation

compared to the multiple builder one because the latter is running the scheduler

0.00%
0.05%
0.10%
0.15%
0.20%
0.25%
0.30%
0.35%
0.40%
0.45%

S
c
h
e
d
u
le

r
o
v
e
rh

e
a
d
 (

%
)

TS-1

TS-2

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

S
c
h
e
d
u
le

r
o
v
e
rh

e
a
d
 (

%
)

Case study: F-16 flight system

6-13

creation algorithm on all the cores. The master core on the single builder

implementation, however, sees a greater overhead because it builds a schedule

for all other cores.

Figure 6.7: Run-time overhead of the multi-core scheduler implementations relative to the tick

interval

It should be noted that in the case of the pre-emptive schedulers, the locking

mechanisms were left unimplemented since they were not being used. These

mechanisms, when in use, add to the jitter and overheads and the figures

shown above are the baseline for the pre-emptive implementations.

6.7 Discussion

The PH-DS hardware platform provided moderate silicon and overhead

reduction compared to the PH-MT, but was the worst platform for moving

between the task-sets, incurring massive amounts of jitter with TS-2.

PH-MT fared better due to the provision of interrupt capabilities to scheduler

implementations; of these, the co-operative implementations fared similarly to

TTC-DS. The pre-emptive implementations were able to schedule TS-2, albeit

with 36% and 75% increases in release and completion jitter respectively in the

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

S
c
h
e
d
u
le

r
o
v
e
rh

e
a
d
 (

%
)

TS-1

TS-2

TS-3

Case study: F-16 flight system

6-14

lowest priority task; the highest priority tasks maintained their original run-time

characteristics. The fixed priority schedulers imposed an additional complexity

of assigning priorities, while the dynamic priority schedulers required verification

that a correct priority decision would be made at run-time when the decision

criteria proved ambiguous. Under the TTH implementation, not only did the

highest priority tasks have to be identified, but the tasks had to be merged as

well since only one high priority task was supported.

Under the non-harmonic task-set, TS-3, however, all the pre-emptive

implementations fared poorly, resulting in jitter at least a couple of magnitudes

greater than that in TS-1, even for the highest priority tasks. The TTH

implementation fails completely with this task-set since the WCET of the pre-

emptive task exceeds the tick interval.

Against these, the TTCA multi-core implementations were able to cope with the

increased demand and the disruption in task period harmony, resulting in jitter

no more than in the TS-1 case. Moving between task-sets was similar to the

pre-emptive implementations in having to make a decision of assigning tasks to

cores; however, the decision is conceptually simpler since blocking time does

not have to be considered.

On the other hand, the multi-core implementations introduced a compile-time

management complexity since each core required a different binary. In this case

study, this requirement was handled via extensive use of GNU C pre-processor

directives to ensure the right C header files were used, to selectively compile

task code for the right core and to generate common code, such as scheduler

Case study: F-16 flight system

6-15

setup code. Fortunately, the process is repetitious and is a suitable target for

simplification by automation.

6.8 Conclusions

This case study served to show the ease with which the multi-core TTCA

implementations may be able to cope with changes in system requirements –

changes that may introduce the long-task problem or that may introduce non-

harmonic relationships between tasks‘ periods. A system deployed with

dormant cores can allay the demands introduced by maintenance; with a multi-

core TTCA, this can be performed with simplicity and reliability.

Chapter 7

A TTCA multi-core hardware implementation

7.1 Introduction

Chapter 3 introduced the time-triggered co-operative architecture (TTCA) and a

hardware implementation of the same (HW-TTC) with the advantage of a

massive reduction in scheduler overhead and a constant overhead between

task dispatches. Chapter 5 described the scheduler implementations, TTC-MC-

1SB and TTC-MC-MSB, based off of the table-free multi-rate TTCA

implementation. These allowed for increased concurrency in the system so as

to achieve a reduction in the latency of high frequency tasks when scheduled

alongside task sequences with large execution times and for the separation of

tasks with non-harmonic period relationships. However, both implementations

display overheads dependent on the number of tasks in the system and a

variable inter-task dispatch overhead.

This chapter, therefore, looks at further reducing the latency caused by the HW-

TTC overheads to produce an implementation with zero overheads, HW-TTC-

ZSO and at incorporating the techniques of TTC-MC-1SB and TTC-MC-MSB

into HW-TTC-ZSO, hoping to achieve implementations, HW-TTC-ZSO-MC-1SB

and HW-TTC-ZSO-MC-MSB, with zero overheads, low latency and high

responsiveness despite the presence of long-tasks.

This chapter also examines the incorporation of release jitter reduction

mechanisms into the hardware schedulers to ultimately yield an implementation

A TTCA multi-core hardware implementation

7-2

that not only possesses zero scheduler overhead but also zero release jitter for

harmonic task-sets.

The next section will examine existing multi-core hardware schedulers and

existing techniques aimed to reduce overheads and jitter in general scheduler

implementations. Next, the changes made to HW-TTC to reduce overheads are

detailed, followed by descriptions of the multi-core schedulers incorporated into

hardware. Finally the jitter reduction mechanism is introduced before the

different schedulers are evaluated on the F16 flight system simulation from

Chapter 6.

7.2 Related work

Hardware techniques are gaining popularity particularly on multi-cores

particularly due to the observation that smaller tasks ease the partitioning and

allocation effort and improve performance; but, coincidently lead to an increase

in the number of tasks which, in turn, increases the overheads in software

scheduler implementations (Kumar et al. 2007; Själander et al. 2008). These

techniques are also preferred to dedicating a core to scheduling in order to

achieve lower power consumption and better silicon area usage (Gupta et al.

2007).

Hardware scheduling techniques immediately eliminate a portion or all of the

overhead introduced by a software scheduler since the extra hardware acts as

another processor running concurrently with the application processor.

Simultaneously, the jitter in a scheduler can be greatly reduced by employing

constant time algorithms to sort or search the run queues; and by servicing

interrupts in separate processors so that jitter from context switching and ISR

A TTCA multi-core hardware implementation

7-3

processing are eliminated (Agron et al. 2004; Andrews et al. 2005). The

reduction of jitter is also made easier in hardware design due to the exposure of

the underlying timing model (Lee 2009).

Hardware kernel techniques have been pursued for dynamic task scheduling,

for example, there have been attempts to decrease the overheads of software

run queues by implementing key functionality in hardware (Lai et al. 2005;

Kumar et al. 2007). However, while these approaches sped up dynamic load

balancing, the overhead of checking for precedence fulfilments remained in

software. This led to other studies that employed distributed hardware task

management units to perform these checks in the background, with the aim of

decreasing the start time of tasks with dependencies (Själander et al. 2008; Al-

Kadi et al. 2009). Other approaches have aspired to lower power consumption

(Gupta et al. 2007). Yet another, HW-RTOS, in the spirit of this thesis, improves

the efficiency of the OS and the API support transparently to the application, but

like the other aforementioned approaches, suffers in that a global scheduling

approach is used (Nácul et al. 2007) which is unsuitable for hard real-time

systems (Section 2.8.4).

Under a partitioned approach, any of a number of single-core hardware

schedulers (Stärner et al. 1996; Kohout et al. 2003; Kuacharoen et al. 2003;

Andrews et al. 2004) could be employed, however these are aimed at achieving

performance rather than predictability and present a programming model to the

developer that is considerably more complex and less predictable than the

intended co-operative approach. Hence, it is desirable to expand existing TTCA

implementations in order to achieve the required reduction in overheads.

A TTCA multi-core hardware implementation

7-4

One such implementation was presented in Section 3.6.5 – the hardware table-

free multi-rate TTCA implementation, HW-TTC, that reduces almost all

scheduler overhead. HW-TTC forms an ideal base for the exploration of the

hardware designs of the multi-core TTCA implementations since all three have

originated from the same basic implementation. However, a couple of

deficiencies remain in HW-TTC:

 The requirement for the ―endtask‖ instruction to indicate the end of the

task results in unnecessary overhead between task dispatches which

gets compounded with each dispatch. The lack of compiler support to

verify the presence of this instruction may also create unexpected bugs.

 The dispatcher is designed to run tasks as close together as possible so

as to reduce overheads. This makes tasks susceptible to increased

release jitter due to the execution jitter in the prior tasks (Section 2.6.4.1).

Section 7.4 will address the first criticism, while Section 7.7 will outline a method

of attaining zero release jitter.

7.3 HW-TTC support for precise exceptions

Prior to discussing the changes made to HW-TTC, it is necessary to briefly

mention that HW-TTC maintains support for precise exceptions (Section

5.3.3.3) by dequeuing a task from the run queue only when the ―end task‖

instruction is in the third processing stage – that is, only when an error cannot

be generated by instructions in a previous task. This is done even though the

address is already used in the first stage as an indication of where to fetch

instructions from (Figure 7.1).

A TTCA multi-core hardware implementation

7-5

Figure 7.1 also shows the inter-task dispatch overhead. The first instruction of

Task 2 is ―lw $3,-4($28)‖ and the last instruction of the previous task is ―sw

$4,8($1)‖, yet there are three instructions in between: endtask, a jump to the

actual function and the no-operation in the delay slot for this jump. As

mentioned above, this overhead is due to the endtask instruction which only

serves as a marker and necessitates an assembly language wrapping of tasks

written in a higher level language.

7.4 A hardware TTCA implementation with zero overheads

The solution proposed to eliminate this overhead is to overload an instruction

that is always inserted by the compiler, with the duty of marking the end of a

task and in doing so, eliminate the need for ―endtask‖ and the wrapper. A key

observation about tasks under the TTCA implementations is that they are

always written as run-to-completion routines and so, the compiler can be

guaranteed to always use a return-to-caller instruction at the end of the task.

Figure 7.1: The effect of the endtask instruction on the run queues and instruction execution

Read
instruction

Decode Calculate
Read
data

Write
data

sw $4,8($1) jr $31 lui $1, 0x4 sw 0,0($3) sw a0, 4($1)

sw 0,0($3) lui $1, 0x4 jr $31 sw $4,8($1)

lui $1, 0x4 jr $31 sw $4,8($1)

jr $31 sw $4,8($1)

sw $4,8($1) endtask

endtask

j #a10

endtask

j #a10

nop

endtask

j #a10

nop

lw $3,-4($28)

T
im

e

Task2

Task1

Task0

Task1

Task3

Task0

Next
task

Task
2

Task
1

A TTCA multi-core hardware implementation

7-6

In MIPS I, the return-to-caller instruction has the mnemonic ―jr‖, takes a register

number as the operand and causes an unconditional jump to the address in the

register with that number. Under MIPS conventions, the return address for a

function call is stored in register 31 and compilers generate the ―return to caller‖

instruction as ―jr $31‖. Since the register number is fixed, the contents of this

register can be used to distinguish between different ―return to caller‖ requests;

that is, whether the function making the request is a task or not, and so the

return-to-caller instruction can be used to indicate the end of a task to hardware.

The revisions to produce HW-TTC-ZSO were made as follows: general purpose

register 31 is reset to the value zero when the processor is interrupted; the

processor sets the program counter to whatever value a ―jr‖ instruction has

read from its register as normal, unless that value is zero (a ―task-jr‖), in which

case the program counter is instead set to the address of the next task; and, the

―task-jr‖ sends the ―end task‖ signal to the dispatch component in the WB stage.

This is illustrated in Figure 7.2.

 Figure 7.2: The effect of overloading jr with the work of endtask

Read
instruction

Decode Calculate
Read
data

Write
data

sw $4,8($1) jr $31 lui $1, 0x4 sw 0,0($3) sw a0, 4($1)

sw 0,0($3) lui $1, 0x4 jr $31 sw $4,8($1)

lui $1, 0x4 jr $31 sw $4,8($1)

jr $31 sw $4,8($1)

sw $4,8($1) lw $3,-4($28) nop

lw $3,-4($28)

nop

beq$2,$4,#a38

beq$2,$4,#a38

nop

T
im

e

Task2

Task1

Task0

Task1

Task3

Task0

Next
task

Task
2

Task
1

lw $3,-4($28)

nop

lw $3,-4($28)

A TTCA multi-core hardware implementation

7-7

The jr instruction can generate an ―end task‖ only at the fifth stage, since the

instruction in its delay slot may generate an exception in the fourth stage (―sw

$4,8($1)‖ in this case). The distinction between tasks is shown with gray

borders in Figure 7.2 and true back-to-back execution can be observed when

compared with Figure 7.1.

A sample execution sequence is as follows: as before, the processor is woken

from sleep using an interrupt and is provided the address of the first task. When

the task requests to return to caller, the processor starts reading instructions

from the next task. When the last task requests to return to the caller, the

processor starts to read from an undefined next task address. However, the

scheduler instructs the core to insert NOPs into the pipeline until the last

instruction of the last task has passed through the last pipeline stage

whereupon the processor is requested to sleep.

Another change was the switch of task storage from registers to SRAM,

allowing for a maximum of 128 tasks compared to the original 8. This

necessitates two cycles for each task during the build cycle, increasing the

schedule build time for 8 tasks from 8 cycles to 16 cycles. As in the original

design (Section 3.6.5), this latency remains invisible to an application, but

increases the length requirement on the run queue (page 3-18) as is

doubled (Equation 7.1). Equation 7.1 takes into account the five cycles that

elapse from fetching the jr instruction to actually sending the ―end task‖ signal

to the dispatch component.

 (7.1)

A TTCA multi-core hardware implementation

7-8

7.5 The hardware multiple schedule builders implementation

This scheduler implementation is a straightforward extension of HW-TTC-ZSO.

Similar to the pure software version, it consists of duplicating HW-TTC-ZSO for

each core with one exception: the update component in each HW-TTC-ZSO is

triggered by the timer from the timing master (Figure 7.3).

To maintain predictability, the update components all spin for the same number

of cycles to look for tasks to insert into their queues, even if the maximum

number of tasks supported by each one is different. In order to ensure that all

dispatches start at the same time on a -core device, an additional user-

specified number of cycles are also added after the schedule has been

built from task-set for the core () to allow for communication

latency, increasing (Equation 7.2) and the required run queue length

(page 3-18) for that core. As before (Equation 7.1), the five cycles spent from

fetching the jr instruction to signalling ―end task‖ are factored in.

Figure 7.3: Functional overview of the hardware multi-core multiple schedule builder scheduler

Update

Tick

Dispatch

Run
queues

Core

Dispatch Core

Dispatch Core

Dispatch

Core

Update

Update

Update

A TTCA multi-core hardware implementation

7-9

 (7.2)

7.6 The hardware single schedule builder implementation

The hardware implementation of TTC-ZSO-MC-1SB deviates in its storage of

the run queues, opting for hardware versions instead of simulated versions in

shared memory in order to avoid contention between the core and the

communication manager. Each core has its own run queue as an asynchronous

FIFO and a dispatch component that reads from this queue; the scheduling core

alone has an update component (Figure 7.4).

The single update component creates the entire schedule as before (Section

3.6.5) and pushes task addresses into the proper queues. Once the schedule

has been created, it then sends the ―queue ready‖ signal on an asynchronous

line to all the dispatch components at the same time. To allow for latency in the

FIFOs on an -core, this signal is sent a user-specified number of cycles after

the queues have been built for each task-set of the core (),

Figure 7.4: Functional overview of the hardware multi-core single schedule builder scheduler

Tick

Update

Task1

Task2

TaskN

Dispatch

Run
queues

Core

Delay,
Period

A
d
d
re

s
s

Update
logic

Dispatch Core

Dispatch Core

Dispatch

Core

Queue ready

Queue ready

Queue ready

Queue ready

A TTCA multi-core hardware implementation

7-10

resulting in a uniform (Equation 7.3) and required run queue length (page

3-18) for each core. As before (Equation 7.1), the five cycles spent from

fetching the jr instruction to signalling ―end task‖ are factored in. To be

effective, must be at least as large as the number of cycles of asynchronous

delay introduced by the FIFO.

 (7.3)

7.7 A pure hardware sandwich delay mechanism (-HSD)

As a solution to release jitter in TTCA, Section 4.4.3.2 has already touched

upon the sandwich delay mechanism which for its precise timing requires a

hardware timer to be set up and a delay until this timer overflows. Section 3.6.4

explored a hardware encapsulation of the delay under the TTC-SHD scheduler.

This scheduler provides a solution with low power consumption but at the cost

of extra overhead and the need to maintain an accurate measurement of the

execution time of the set up so as to compensate for it.

The sandwich delay mechanism can be fully incorporated into the hardware

schedulers without many fundamental changes since the WCET (in cycles) can

be provided with the other task parameters, the hardware is already in control of

when a task starts and the required run queue lengths already assume the

worst-case (page 3-18 and Equations 7.1, 7.2 and 7.3).

To obtain this functionality, the update component must supply a tuple of the

address and WCET cycles in the ready queue instead of just the address: the

general principle is to initialise a counter with the WCET every time a task

A TTCA multi-core hardware implementation

7-11

executes and to decrement the counter until it reaches zero (Figure 7.5). If the

task finishes before the counter reaches zero, the core is put to sleep instead

and woken up again when the counter does reach zero. This action is

unnecessary and so, omitted, for the last task in a run.

Waking the core up from sleep requires the use of the interrupt mechanism

which introduces a little delay as the processor warms up. This can be

countered by factoring the delay into the counter value, i.e. subtracting the

number of warm-up cycles from the counter‘s initialisation value. This technique

is suitable for the first task as it will always experience the delay. However, the

subsequent tasks will experience the delay only if their execution times are

sufficiently smaller than their WCETs. The very use, then, of the sandwich

mechanism might introduce jitter depending on whether a warm-up is

necessary.

To avoid this, it was observed that the warm-up is required since the processor

aborts the instructions in the first three pipeline stages (Section 5.3.3.3). This is

Figure 7.5: Changes made to the dispatch component to support sandwich delays

Update Address WCET

Counter

+ -1

0

Core

Queue ready

Task ended

Abort

Interrupt

Next task to run

Empty

Dispatch

Sleep

dispatch
logic

=

A TTCA multi-core hardware implementation

7-12

necessary for the first task since those instructions are undefined and cannot be

allowed to change the processor state; however in the case of subsequent

tasks, those instructions are strongly defined as belonging to the next task and

need not be aborted. Thus for the subsequent tasks, another signal was added

between the dispatch component and the core to indicate the necessity of

clearing the pipeline on an exception.

As an aside, the sandwich delay mechanism also has the ability to easily create

precisely timed tasks for the purposes of maintaining precedence constraints

(Section 5.6.2), with the tasks using a minimum of code space (only two

instructions are required: a ―return to caller‖ instruction and a NOP for its branch

delay slot).

7.8 Evaluation

The developments in this chapter were aimed at completely eliminating the

overheads of a TTCA implementation and the release jitter exhibited by such an

implementation. To demonstrate the effectiveness of the solution, the various

schedulers were evaluated with the F16 flight system case study in Chapter 5:

TS-1 on the single-core hardware schedulers, TS-2 on dual-core schedulers

and TS-3 on triple-core schedulers. The results are shown in the subsequent

sections alongside those from the co-operative schedulers in Chapter 5 and the

co-operative schedulers with sandwich delays enabled (-SSD), for comparison.

7.8.1 Release and completion jitter

The release and completion jitter for the five tasks across the different

schedulers and task-sets can be seen in Figure 7.6, Figure 7.7 and Figure 7.8.

The jitter measurements for TS-1 on the single-core schedulers in Figure 7.6

A TTCA multi-core hardware implementation

7-13

immediately indicate that the translation of the schedulers into hardware

provides no noticeable advantage in reducing jitter. However, a striking

difference appears with the –HSD schedulers, where the release jitter drops to

zero (indicated by gaps in the charts) for all the tasks and the completion jitter

drops to zero for all tasks that do not execute last in a tick interval; in this case,

all the tasks have zero completion jitter because a heartbeat LED task executes

last on the first core. As mentioned in Section 7.7, this behaviour is by design as

there is no task executing after the last task that requires zero release jitter.

Figure 7.6: Jitter for TS-1

Figure 7.7 shows TS-2 on various dual-core schedulers: Fast Navigation and

Controller on the second core and all other tasks on the first core. As expected,

the three tasks that execute after other tasks show a non-zero release jitter due

to the completion jitter in the previously executing task; and, as before, the –

HSD schedulers are able to remove release jitter completely by removing the

0.00

100.00

200.00

300.00

400.00

500.00

600.00

Release jitter (µs)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Completion jitter (µs)

TTC-DS TTC-MT DPC
HW-TTC HW-TTC-ZSO TTC-DS-SSD
TTC-MT-SSD DPC-SSD HW-TTC-ZSO-HSD

A TTCA multi-core hardware implementation

7-14

completion jitter in the previous tasks. The completion jitter remains almost the

same as in Figure 7.6 except for Controller which is the last task executing on

the second core; the heartbeat LED task still executes last on the first core.

Figure 7.7: Jitter for TS-2

Despite their advantageous jitter reducing effects on TS-1 and TS-2, the –HSD

schedulers are ineffective in doing the same for the non-harmonic (Section 4.5)

task-set TS-3, as in that case, the jitter is not caused by execution jitter in the

previous tasks, but by variation in the task execution sequence within the

hyperperiod. Hence, TS-3 was executed on three cores as seen in Figure 7.8:

Missile Control on the third core, Fast Navigation and Controller on the second

core and all other tasks on the first core. As before, tasks executing after other

tasks exhibit non-zero release jitter, the –HSD schedulers are able to remove

release jitter completely and completion jitter remains for the tasks that execute

last on a core.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

Release jitter (µs)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Completion jitter (µs)

TTC-MC-1SB TTC-MC-MSB
HW-TTC-ZSO-MC-1SB HW-TTC-ZSO-MC-MSB
TTC-MC-SSD-1SB TTC-MC-SSD-MSB
HW-TTC-ZSO-HSD-MC-1SB HW-TTC-ZSO-HSD-MC-MSB

A TTCA multi-core hardware implementation

7-15

Figure 7.8: Jitter for TS-3

7.8.2 Overheads

The software overheads for the schedulers can be seen in Figure 7.9. Unlike

Chapter 5, the overhead of the communications API has been omitted from the

multi-core implementations since the schedulers make no use of the API,

though it is still present for the initialisation procedure. The run-time overheads

have not been presented, since the schedulers developed in this chapter

display none. For the case study, this has the benefit of being able to make use

of all processing power in order to improve the missile control performance. For

example: the missile control task could be assigned a period of 1.79 seconds,

bringing the total system utilisation to 0.999 without any adverse effects.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Release jitter (µs)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Completion jitter (µs)

TTC-MC-1SB TTC-MC-MSB

HW-TTC-ZSO-MC-1SB HW-TTC-ZSO-MC-MSB

TTC-MC-SSD-1SB TTC-MC-SSD-MSB

HW-TTC-ZSO-HSD-MC-1SB HW-TTC-ZSO-HSD-MC-MSB

A TTCA multi-core hardware implementation

7-16

Figure 7.9: Software overhead of the scheduler implementations

The reduction in code size is dramatic, though not unexpected since the

scheduler functionality has been moved from software into the hardware. Figure

7.10 shows the hardware utilised, as the number of slices occupied for solely

one function, when the hardware scheduler is implemented in a configuration

with one core possessing 32 Kb code memory, 32 Kb data memory, three

timers and one GPIO. The figure shows the utilisation for each combination of

the inclusion of the overhead reduction and the jitter reduction mechanisms

alongside results from Figure 5.14. The figure illustrates that a hardware

scheduler results in at least 14% increased hardware consumption over an

unpredictable PH core and is very similar to that consumed by hardware

including a predictable PH-MT (Section 5.7.1.1). The overhead reduction

mechanism adds negligible hardware cost to the base hardware scheduler

implementation, while the jitter reduction mechanism adds approximately 5%,

close to the combined cost of approximately 6%.

100

600

1100

1600

2100

2600

S
iz

e
 (

b
yt

e
s
)

Code (old) Data (old) Code Data Comms

A TTCA multi-core hardware implementation

7-17

Figure 7.10: Hardware utilisation when using a hardware scheduler with and without the overhead

and jitter reduction mechanisms

It is worth noting that the increase in the hardware to support a scheduler is

much less than the result of adding another core dedicated to scheduling

(Section 5.7.1.1), demonstrating the silicon area advantage of a hardware

scheduler component.

The hardware utilisation for a dual-core system with the multi-core versions of

HW-TTC-ZSO with varying combinations of single and multiple builders, the

jitter reduction mechanism and the capability of inter-core communication is

shown in Figure 7.11. Each core has been configured with 32 Kb code memory,

8 Kb data memory, one GPIO and at least one timer – core 0 has three timers.

The scaled relative cost for communication has increased from approximately

45% (Figure 5.15) to approximately 54% due to the need to add a second

channel to the communication controller on which local requests to switch

buffers may be handled: one from the core (required by the initialisation routine)

and one from the scheduler. On average, the multiple scheduler builders

increase the hardware cost by less than 1% despite the savings from moving

5085

5776

5111

5801 5807
6094 6162

0

1000

2000

3000

4000

5000

6000

7000

N
o
 o

f
s
lic

e
s

A TTCA multi-core hardware implementation

7-18

from an asynchronous to a synchronous run queue; this is largely due to the

schedule building mechanism and the increased data path for task data (i.e.

periods, phases, etc. in addition to the address in memory) for a core building

its own schedule.

Figure 7.11: Hardware utilisation when using a multi-core hardware scheduler with and without the

jitter reduction mechanism and inter-core communication

7.8.3 Simulation

To illustrate the operation of the scheduler when simulated, a very simple task-

set was created with two empty tasks (tasks A and B) and a small heartbeat

LED task (task C). The operation of the scheduler under HW-TTC and HW-

TTC-ZSO can be seen in Figure 7.12 and Figure 7.13 respectively.

Being empty, tasks A and B have only two instructions, the return-to-caller

instruction and its delay slot instruction (a NOP). As might be expected under

HW-TTC, Figure 7.12 shows a delay of 200 ns execution time for either task, a

delay that equates to 5 cycles at the operating frequency of 25 MHz. Since the

15,156 15,413 15,857 16,037

9,687 9,923 10,374 10,542

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
o
 o

f
s
lic

e
s

A TTCA multi-core hardware implementation

7-19

PH cores execute the tasks‘ instructions in a single-cycle, the extra three cycles

are the overhead of the tasks wrappers. In the case of the last task, the ―Insert

NOPs‖ command removes the ―endtask‖ instruction from the pipeline and hence

it is not visible in the last three stages.

Figure 7.12: Sample execution of three tasks under HW-TTC

On the other hand, Figure 7.13 gets rid of the wrappers completely with the

ZSO technique, such that tasks A and B execute for exactly their duration of two

cycles or 80 ns. It should be noted that in both cases, the processor is put to

sleep only when the last instruction of the last task has completed the last

pipeline stage.

Figure 7.13: Sample execution under HW-TTC-ZSO

A TTCA multi-core hardware implementation

7-20

Figure 7.14 shows the schedule creation for a dual-core system under HW-

TTC-ZSO-MC-1SB. From the figure, a total of 19½ cycles can be observed to

elapse before the scheduler begins to dispatch tasks: ½ a cycle is spent to

recognise the timer interrupt, 16 to update the run queues and 3 to give

sufficient clearance for communication latency. This result was corroborated by

the measurement of a consistent 760 ns interval from timer overflow to core

wakeup on the hardware. This delay is greater than that for HW-TTC, but

imposes no additional overhead or jitter as it stays constant over the uptime of

the system, provided the delay for communication latency is only modified at

initialisation.

Figure 7.14: Schedule creation for a dual-core HW-TTC-ZSO-MC-1SB

7.9 Conclusions

This chapter has extended the multi-core schedulers developed in the previous

chapter to yield implementations that exhibit zero scheduler run-time overhead

A TTCA multi-core hardware implementation

7-21

and zero release jitter for harmonic task-sets. The zero run-time overhead has

been achieved by tapping into the concurrency provided by a hardware

scheduler without affecting the run-time properties of the tasks such as release

or completion jitter. The latter two were reduced by incorporating the sandwich

delay mechanism (Section 4.4.3.2) completely into hardware. This mechanism

utilises the spare capacity that has already been reserved in the TTCA

implementation during design time and requires no special consideration by a

scheduling algorithm.

Chapter 8

Case study: The BR715 Engine Controller

8.1 Introduction

The case study described in Chapter 6 investigated the deployment of a single-

processor design on a multi-core platform as a means of aiding future

development and maintenance. However, this route is only available to systems

in development that are yet to be deployed; therefore, this chapter uses the

case of an existing electronic engine controller system to study the migration of

an existing system to the multi-core platform.

The system under study has been borrowed from the case study in (Bate 1998)

which similarly studied a migration from one scheduler architecture to another.

The work in the original study was eventually adopted by Rolls-Royce for use

on an actual engine in an aircraft. For confidentiality, the original study changed

or omitted some of the task properties, such as names and purpose; however,

important timing requirements were left as-is. Some of the content of the

original study is reproduced in Appendix C.

In subsequent sections, the reasons for moving the system to a multi-core

design are first outlined, followed by a description of previous work done in

formulating algorithms capable of building schedules for the multi-core design.

Next, an algorithm for partitioning and scheduling the tasks on a multi-core

system is presented, followed by the results of using the algorithm on a system

running HW-TTC-ZSO-MC-MSB.

Case study: The BR715 Engine Controller

8-2

8.2 Technical details

For this case study, the tasks shown in Table C.1 (Appendix C) were

implemented as execution-jitter-free dummy tasks using a hardware timer, with

the execution times either at or a maximum of 120 μs below the WCET.

The large number of tasks in Table C.1 and the complex transactions

requirements in Figure C.4 are indicative that the system is non-trivial. With a

total processor utilisation of 84.3% for the tasks alone, there is a tight timing

margin which complicates the creation of a system schedule and the

maintenance of the system in the long run. Such requirements may then

necessitate costly system redesigns and/or alterations of timing requirements.

In the face of these, it may prove more cost-effective to move to a multi-core

design instead. As seen in earlier chapters, such a move is able to

accommodate maintenance issues, however the problem of creating the system

schedule for the multi-core remains.

8.3 Previous work

As outlined in Section 2.8.4, no partitioning algorithms have been specifically

defined for TTCA, though many of the heuristic algorithms can be extracted

from existing partitioning algorithms and applied to the TTCA by simply

switching the feasibility checks performed (Section 3.3) to validate a task

assignment to a core. While the work in (Monot et al. 2010) deals with the cyclic

executive, it is not directly applicable since it was designed for integrating a

multi-processor design into a multi-core design and expects many non-

communicating groups of communicating tasks; the technique under

Case study: The BR715 Engine Controller

8-3

consideration, on the other hand, targets a single processor design and non-

communicating groups of tasks are expected to be scarce.

Another assignment criterion is to assign tasks using the same peripheral to the

same core. A soft multi-core gives some manoeuvring ground in this aspect in

that peripherals can be connected to cores as dictated by the assigned task-set.

However, the matter gets more complicated if a peripheral needed by a task

has already been assigned to a core but the task itself cannot be feasibly

assigned to that core. One solution is to perform an initial clustering of tasks so

that clusters do not share resources – the heuristics then work on clusters

instead of tasks (Monot et al. 2010). Another solution is to create gateway tasks

that have sole access to peripherals and that receive instructions on how to

manipulate the peripherals from tasks on other cores (Audsley et al. 1993).

Chapter 9 will explore a third alternative.

8.4 A static schedule creation algorithm

A static schedule creation algorithm must first assign a scheduling algorithm per

core, then partition tasks amongst cores and finally create a schedule for each

core, honouring all constraints. For the multi-core system developed in this

thesis, the scheduling algorithm is irrevocably an implementation of TTCA.

As explained in Sections 2.8.1 and 2.8.4, both the creation of a static schedule

and the static partitioning of tasks are computationally intractable, and for

practical usage, computationally simple heuristics must be employed.

Case study: The BR715 Engine Controller

8-4

8.4.1 Schedule creation

For this case study, an implementation of the time-triggered scheduling

algorithm 1 (TTSA1) (Gendy 2009) was used. TTSA1 aims to create a schedule

that meets all task constraints and that keeps power consumption as low as

possible. The algorithm takes tasks‘ attributes such as the period and the

deadline as input and produces a tick interval and new phases for each task as

output.

The algorithm works by sorting tasks first according to precedence constraints

and next by some other user defined strategy:

 Shortest deadline first: In a task-set with implicit deadlines, this provides

the same results as a shortest period first strategy.

 Least laxity first

 Shortest WCET first

For ease of reference, the scheduling algorithm using these strategies will be

referred to as TTSA1-SDF, TTSA1-LLF and TTSA1-SWF respectively.

After the tasks are sorted, the algorithm simulates execution under TTCA with

the largest possible tick interval, including implementation overheads, by

considering one task at a time; if a simulation fails as a result of a constraint

violation, the phase of the task under consideration is increased and the

simulation is re-run. The phase is increased until it is evident that further

increase will provide no new feasible or unfeasible solution, whereupon the

entire process is repeated with the next largest tick interval. The algorithm

continues until all tasks‘ constraints have been met.

Case study: The BR715 Engine Controller

8-5

The algorithm does not perform an exhaustive search, merely stopping at the

first schedule that meets all constraints. It assumes that because the search

was begun with the ―best‖ tick interval, the first feasible schedule will represent

a good (but not necessarily optimal) solution.

The implementation of the algorithm used in this work was restricted to produce

only TTCA task-sets, though the complete algorithm can also produce

schedules for the time-triggered hybrid implementation (Section 4.3.4). The

algorithm was also supplemented with an optional capability to increase the

phase of tasks that do not take part in transactions, reducing the number of task

group executions that exceed the tick interval and, hence, reducing the overall

release jitter. When this capability is enabled, the algorithm will be referred to as

TTSA1-JR.

8.4.2 Task partitioning

The task partitioning scheme employed a first fit (FF) heuristic (Section 2.8.4)

since this provides a more efficient solution compared to the next fit heuristic.

The best fit heuristic may have provided better results (Burchard et al. 1995),

but also requires an algorithm capable of calculating the optimal schedule for a

set of tasks, a job that TTSA1 avoids due to the large computation time. The FF

heuristic allocates tasks purely on the basis of their utilisation and is, therefore,

much more computationally tractable. The output of the heuristic was varied by

the specification of a per-core utilisation cut-off, from 0.5 to 1.0 in 0.1 intervals;

and, by the task sorting strategy: by increasing periods or by decreasing

utilisation. For ease of reference, task partitioning using either of these

strategies will be referred to as TP-IP and TP-DU respectively.

Case study: The BR715 Engine Controller

8-6

The partition algorithm used the same initial step as in (Monot et al. 2010), by

placing all tasks involved in a transaction on the same core. This allowed the

single processor TTSA1 algorithm to be used as-is, without having to be made

aware of the presence of multiple cores.

8.5 Evaluation platform

This case study made exclusive use of the HW-TTC-ZSO-MC-MSB scheduler

(Section 7.5) on a MC-PH2 (Section 5.4). The HSD mechanism (Section 7.7)

was not used since the tasks were implemented with zero executive jitter. In

cases where all the tasks were scheduled on one core, the other core was left

dormant. Since a HW-TTC-ZSO- scheduler was used, TTSA1 was executed

under the expectation of zero scheduling overheads.

The following sections present the system configurations obtained by executing

the partitioning and schedule creation algorithms and their effect on the task

release jitter.

8.6 Task distribution

As the utilisation threshold for

the partition algorithm was

varied from 1.0 to 0.5, the

required number of cores rose

to a maximum of two. Figure

8.1 shows the distribution of

the 71 tasks across the cores.

0

50

100

150

200

250

0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1

Decreasing utilisation Increasing periods

N
u

m
b

er
 o

f
ta

sk
s

Number of tasks (core 0) Number of tasks (core 1)

Figure 8.1: Task distribution after partitioning based on

different task sorting strategies

Case study: The BR715 Engine Controller

8-7

When the tasks were sorted by decreasing utilisation, the partitioning algorithm

was able to fill up the first core with the high utilisation tasks, leaving the lower

utilisation tasks to the second core. Hence, under TP-DU, more tasks were

placed on the second core compared to TP-IP, especially with a lower utilisation

threshold. A similarly strong correlation cannot be made for TP-IP since there is

no general correlation between a task period and the utilisation. In this particular

case, TP-IP resulted in partitions where more tasks were placed on the first

core.

It can also be observed from Figure 8.1 that an utilisation cut-off of 0.9 and 1

resulted in the same single-processor partitioning of tasks under both

strategies. This is because the overall utilisation is 0.84. The systems can also

be expected to perform similarly, since the scheduling algorithm applies its own

sorting.

8.7 Release jitter

The task-set used in this study consists of 71 tasks, and it would be unwieldy to

present the release jitter for each task individually for each partition and

scheduling strategy used. For this reason, in this and subsequent sections, the

release jitter is shown as the average of the release jitter of the 71 tasks. This

measure is sufficient to assess the overall effect of the scheduler (―a lower

value is better‖), though it should be mentioned that some tasks do indeed show

zero release jitter.

Figure 8.2 and Figure 8.3 show the release jitter for TTSA1 and TTSA1-JR

respectively. The blank spaces in Figure 8.3 do not represent zero jitter, but

cases where the algorithm was unable to generate a schedule. This can be

Case study: The BR715 Engine Controller

8-8

observed whenever the task-set utilisation is high. In all cases, the release jitter

was within requirements (Section 8.2).

Figure 8.2: Release jitter when using TTSA1 with different strategies

Figure 8.3: Release jitter when using TTSA1-JR under different strategies

0

1000

2000

3000

4000

5000

6000

7000

8000
0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Least laxity first (LLF) Shortest deadline first
(SDF)

Shortest WCET first (SWF)

J
it
te

r
(µ

s
)

Avg. release jitter (core 0) Avg. release jitter (core 1)

0

200

400

600

800

1000

1200

1400

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Least laxity first (LLF) Shortest deadline first
(SDF)

Shortest WCET first
(SWF)

J
it
te

r
(µ

s
)

Avg. release jitter (core 0) Avg. release jitter (core 1)

Case study: The BR715 Engine Controller

8-9

The release jitter arises from occasional tick overruns by the execution of task

sequences; these overruns are occasional but regular because tasks in the

sequence have different request rates. This formed the motivation behind

TTSA1-JR and also explains its effectiveness: in the case of TTSA1-JR-SWF

with TP-DU and a cut-off of 0.5, a reduction of 88% is observed. However, in

other cases, the effect is minute, for example a reduction of just 3% is observed

for TTSA1-JR-SDF with TP-IP and a cut-off of 0.7. This latter case is because

the original schedule already exhibits low amounts of jitter.

The release jitter is not eliminated completely because TTSA1-JR ignores tasks

involved in transactions – these are still allowed to overrun the tick interval.

Under TTSA1-LLF and TTSA1-SDF, the second core – which has no tasks

involved in transactions – shows zero release jitter. This is because the sorting

method nullifies the effect of different request rates, an effect that is very

evident in TTSA1-SWF. This trend can also be observed in Figure 8.2 where

TTSA1-SWF has the highest amount of jitter in all but the single-core cases.

Figure 8.2 also shows that TP-IP always results in lower release jitter compared

to TP-DU. It also appears that an utilisation cut-off of 0.7 is a sweet spot for this

algorithm when applied to this task-set, resulting in very low jitter under TTSA1

that is only marginally improved (if at all) by TTSA1-JR. It also performs best

with TTSA1-LLF and TTSA1-SDF because of the strong correlation between

the criteria used in these two sorting strategies and that used in TP-IP itself.

Case study: The BR715 Engine Controller

8-10

8.8 Tick interval

TTSA1 realises its goal of minimum scheduler overhead by creating a schedule

that uses as large a tick interval as possible. The tick intervals for the different

schedules in this case study can be seen in Figure 8.4.

Figure 8.4: Task intervals under the different strategies

Both TTSA1-LLF and TTSA1-SWF generate a tick interval of 6.25 ms while

TTSA1-SDF generates a tick interval of 12.5 ms.

8.9 Computation time

The case study was originally undertaken to study the move to a multi-core

TTCA as an alternative to a costly redesign or re-evaluation of timing properties.

The amount of time taken to generate a schedule for the former is then a

valuable measure. This time taken for the task-set in this case study can be

seen in Figure 8.5 and Figure 8.6 for TTSA1 and TTSA1-JR respectively.

0

2

4

6

8

10

12

14

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Least laxity first (LLF) Shortest deadline first
(SDF)

Shortest WCET first (SWF)

T
ic

k
 in

te
rv

a
l
(m

s
)

Case study: The BR715 Engine Controller

8-11

Figure 8.5: Time taken to compute the schedules with TTSA1

Figure 8.6: Time taken to compute the schedules with TTSA1-JR

0

1

2

3

4

5

6

7

8

9

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Least laxity first (LLF) Shortest deadline first
(SDF)

Shortest WCET first (SWF)

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Scheduling time (core 0) Scheduling time (core 1) Partition time

0

0.5

1

1.5

2

2.5

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
.5

0
.6

0
.7

0
.8

0
.9 1

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Decreasing
utilisation

Increasing
periods

Least laxity first (LLF) Shortest deadline first
(SDF)

Shortest WCET first
(SWF)

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Scheduling time (core 0) Scheduling time (core 1) Partition time

Case study: The BR715 Engine Controller

8-12

The algorithms were executed on the Java VM v1.6.0 executing on a 32-bit

version of Windows XP, on one core of an Intel Pentium D CPU running at 3.40

GHz with 3.24 GB of RAM. The run-times were gathered from the millisecond

accurate operating system timer.

The partitioning algorithm takes very little time in all cases due to the extremely

low computational complexity. On the other hand, the scheduling algorithm has

a higher complexity and takes a much longer time, especially when the

processor utilisation is high. Despite this, at a maximum, the time reaches a

very reasonable eight seconds. It should be noted that TTSA1-SDF displays the

lowest run-times overall.

As would be expected, TTSA1-JR increases the computation time, particularly

on the core with fewer tasks involved in transactions since there are more

opportunities to apply the algorithm.

8.10 Conclusion

This chapter used an electronic engine controller as a case study for the

migration of an existing single-processor design to a multi-core TTCA design.

The major deterrent to such a migration is the allocation of tasks to different

cores, for which reason, a common allocation heuristic was applied to the

electronic engine controller task-set combined with a TTCA schedule creation

heuristic.

A number of heuristic variations were studied, out of which a partitioning based

on increasing periods and a schedule creation based on the sorting of tasks

according to their deadlines proved most effective particularly when the

Case study: The BR715 Engine Controller

8-13

maximum utilisation of all cores was capped at 70%. This system demonstrated

lower release jitter, lower power consumption as indicated by a higher tick

interval and took a shorter time for the computation of a task schedule.

The case study demonstrated that the allocation of tasks to cores and the

generation of an appropriate TTCA schedule is not time consuming and can be

sufficiently automated with good results.

Chapter 9

Non-blocking transparent resource sharing

9.1 Introduction

Chapter 5 first introduced the concept of increasing the applicability of single-

processor TTCA designs by making use of a multi-core platform. To facilitate

this move, a predictable, wait-free communication scheme was introduced that

allowed the programmer to move tasks that share common data memory on to

different cores without the bother of introducing coherence or consistency

schemes.

Unfortunately, this scheme is not applicable to input-output (I/O) resources and,

as yet, it has been left implicit that a secondary scheme in software is to be built

on top of the communication scheme to allow these other resources to be

shared. However, this extra effort of implementing software schemes impedes

and complicates the move to TTCA on a multi-core, against the aims of this

thesis. This chapter will examine ways of automating the management of

shared I/O resources in the designed multi-core TTCA, counting on the

guarantees provided in Chapter 7 of zero scheduler overhead and of a jitter-free

start time for tasks.

The first section will briefly re-visit I/O resources, first introduced in Section

2.7.4 and then move on to the requirements imposed by the TTCA multi-core

design. Next, a scheme of sharing the resources without blocking the software-

core is examined together with methods of supporting atomic non-cancellable

Non-blocking transparent resource sharing

9-2

transactional access to the resources. The last section presents an evaluation

based on two shared peripherals: a general-purpose input-output (GPIO)

peripheral and an analogue-to-digital converter (ADC) peripheral.

9.2 Input/output resources

As indicated by the name, input/output (I/O) resources provide I/O capabilities

to a software processing core by providing a direct or indirect interface to the

environment. Since these resources often lie on the periphery of a device (as

opposed to co-processors), they are also referred to as peripherals.

The peripheral interfaces to the

environment via analogue or digital

signalling and is generally accessed by

embedded software via reads or writes to

the global memory space (Figure 9.1)

(Berg 2009), which are translated by

hardware into reads and writes to internal

peripheral registers. In addition to these

software-controlled writes, registers in a

peripheral may also change as a result of

an environmental action (e.g. a button being pressed) or due to another register

being written (e.g. a character LCD incrementing the cursor position when the

character register is written). Some register writes may trigger processor

notifications in the form of interrupts or through the assertion of polled-flags.

Register writes from the processor may be commands to start an operation, the

initialisation of data to be used by a future command or the scan of data

Environment

Peripheral

Core

Memory

Co-processor

C
o
-p

ro
c
e
s
s
o
r

Data memory bus

Figure 9.1: The I/O resource or peripheral

Non-blocking transparent resource sharing

9-3

calculated by previous software- or environmentally-initiated operations. In

some cases, the operations are perceived as instantaneous by software (e.g.

changing the voltage level of a pin) and in others, they may non-

deterministically take several processor cycles to complete (e.g. converting an

analogue value to a digital one).

Peripherals may also be used by embedded software as-is or as the base for

another interface, for example, software serial protocols on top of general-

purpose input-output peripherals, or an Internet protocol stack on top of an

Ethernet peripheral. This wrapping of another peripheral may also be performed

at the hardware level, introducing new registers and/or eclipsing existing ones.

9.3 Design constraints

To facilitate the move from a single-core TTCA implementation to a multi-core

one as proposed in Chapter 5, it is essential that the tasks that share resources

and that have been placed on different cores (hence capable of overlapping

executions) do not interfere with each other. The aforementioned chapter has

explored this requirement and provided a solution for memory resources; a

similarly beneficial solution is required for peripherals.

9.3.1 Non-blocking scheme

To prevent altering the WCET of a task, which may have repercussions on the

system schedule, it is necessary to implement a non-blocking scheme. Ideally

the scheme would be wait-free, similar to that designed for memory-type

resources. Even though peripherals are accessed via the global memory space,

the developed buffer scheme (Section 5.5) cannot be used since tasks may

make requests and await responses in the same I/O resource transaction.

Non-blocking transparent resource sharing

9-4

9.3.2 Low jitter

For predictability, it is necessary to avoid affecting the time determinism of the

system, that is, the relationship between a timed output stream and a timed

input stream must not be broken and must be reasonably independent of the

number and periods of tasks using a resource (Thiele et al. 2004).

9.4 Related work

9.4.1 The gateway scheme

In this scheme, all communication with the peripheral is performed via a single

task, i.e. a gateway (Audsley et al. 1993). Communication with the task is

performed via memory resources and, hence, the I/O resource sharing problem

is transformed into a memory resource sharing problem – a problem that can be

tackled by the non-blocking communication. Gateways may commonly be

implemented as part of the driver for a peripheral – a driver being a software

module that aids portability by creating an abstraction between the task and the

peripheral.

Gateways have the flexibility of being software implementations and may hence

be changed as the system requirements change. However, being software

implementations, they suffer a performance hit (Raj et al. 2007). Additionally,

the gateway introduces latency into the system since it has to be scheduled as

a task and may hence be affected by jitter in the system. This jitter will be added

on to the jitter of the client tasks.

The scheduling constraints on a gateway may also increase as the number of

client tasks of the peripheral protected by the gateway increases, for example,

each task may require the gateway to run at different frequencies. These

Non-blocking transparent resource sharing

9-5

constraints may then interfere with other tasks on the gateway core, leading to

the need for a costly arrangement where an entire core is dedicated to the

gateway task. In such a situation, a hardware solution may be more cost-

effective.

9.4.2 Partitioning resources

In a partitioning scheme, tasks are allocated to the cores to which the required

peripherals are attached (Crespo et al. 2010). There is usually no provision for

the peripheral to be shared with the other cores and memory caches, if present,

may also be partitioned (Bui et al. 2008). Partitioning is a static procedure and

may be done at the software or hardware level depending on the requirements

of the system. It is the principle behind the Real-Time Virtual Multi-processor

(RVMP) architecture that uses static partitioning to divide a single cache-less

processor with fully-pipelined functional units into separate virtual processors

(El-Haj-Mahmoud et al. 2005).

Partitioning is sometimes matched with safety-critical systems (Crespo et al.

2010) and is a part of the AUTOSAR automotive standard (Monot et al. 2010).

This method is particularly suited for systems that are designed off a soft-core,

since the peripherals can be moved around freely until a suitable allocation is

found.

9.4.3 Time-division multiple access

Time-division multiple access (TDMA) schemes have been used to confine

access to a shared memory bus to a statically decided slot (Rosén et al. 2007;

Schoeberl et al. 2009). Under such a scheme, the system workload needs to be

known a priori, so that the slot length and frequency can be fixed. However, the

Non-blocking transparent resource sharing

9-6

size of a slot has to be greater than the worst-case transaction time, the

identification and calculation of which may be non-trivial.

This solution is also susceptible to failures due to the execution non-

determinism within the task execution: if a transaction starts too late compared

to the timeslot, it might not complete before the end of the timeslot (an early

access can be delayed until the slot begins). This could be handled by widening

the timeslot by a margin equal to the highest release jitter of all tasks using the

peripheral. However, when this same consideration is applied to all the

resources that may be used by a task and to all the tasks running on the core,

the allocation of timeslots becomes non-trivial. On the other hand, execution

non-determinism within a task could be eliminated completely as in one study

that uses the single-path programming paradigm and a TDMA scheme to

access shared memory in a multi-core (Schoeberl et al. 2009). This, however,

increases the power consumption of the system.

A common timeline also re-introduces the requirement for harmonic period

relationships – re-linking tasks that may have been moved to separate cores for

the sole purpose of breaking up non-harmonic relationships.

9.4.4 Other approaches

Another technique attempts to bound the amount of a time a task may wait on a

shared resource to be available (Paolieri et al. 2009). This same work explores

a processor mode capable of calculating the task WCET using the maximum

bound and the grouping of tasks according to the frequency of resource

demands, allowing for high processor utilisation; groups are scanned for

requests in a round-robin fashion.

Non-blocking transparent resource sharing

9-7

9.5 Global and proxy peripherals

In the designed resource sharing scheme, the peripherals that were connected

directly to a core, i.e. local peripherals, were placed outside the control of the

core, forming global peripherals. However, to permit the core to still have cycle

time access to a peripheral, virtual, or proxy peripherals were left behind that

give the core the impression that the peripheral is still directly connected (Figure

9.2). This is similar to the software driver implementations in embedded

virtualisation (Heiser 2007) but differs from other hardware implementations

where the processor is blocked (Gary et al. 2004; Chen et al. 2009).

Each global peripheral is connected to the outside world but has no state

registers of its own – these are in the proxies instead. When the cores write

data to the peripheral, they communicate with the proxy in the same way as

with a local peripheral. The proxy wraps data and transmits it to the global

peripheral via a FIFO while the global peripheral scans each incoming FIFO in a

fixed order, performing the first requested operation, if any, before moving to the

next FIFO, even if the current FIFO contains more requests.

Figure 9.2: Global peripherals and proxies to allow resource sharing

Core Proxy Global

Proxy

Proxy

Environment

Core

Core

Non-blocking transparent resource sharing

9-8

When the global peripheral senses or is notified of a change in the environment,

e.g. a button is pressed by the user, it broadcasts the event to all the proxies

which then modify their own copies of the registers. This pushback mechanism

eliminates the bandwidth that would otherwise be required if each proxy were to

poll for register changes.

For this work, the communication mechanism between the global peripherals

and the proxies has been chosen to be FIFOs, but another network may also be

employed. The FIFOs are at one extreme, being a point to point topology and

allow for other quantities to be measured deterministically. On the other

extreme is a bus topology where all the global peripherals are connected

together with all the proxies. A slightly more moderate arrangement may be one

bus for each type of peripheral. Ultimately, the topology must support

asynchronous operation since cores may be clocked at different frequencies.

As information from a global peripheral is broadcast, an upper bound can be

established on the length of a proxy‘s incoming FIFO, taking into the account

the number of cycles of asynchronous delay in the FIFO , clock rate

mismatches between the global peripheral and the proxy (Equation 9.1) and

the maximum number of cycles required by the proxy to process the broadcast

data (Equation 9.2).

 (9.1)

 (9.2)

In a similar manner, a finite upper bound can be established on the size of the

outgoing FIFO, taking into account the number of cores , the number of cycles

Non-blocking transparent resource sharing

9-9

of asynchronous delay in the FIFO , clock rate mismatches between the global

peripheral and the proxy (Equation 9.1) and the maximum amount of time

required to perform a peripheral operation (Equation 9.3).

(9.3)

9.5.1 A time-triggered approach

As explained above, a global peripheral stops scanning its incoming FIFOs

when performing an operation, using them both as a buffering mechanism and

as a communication medium. Thus, any non-determinism in the peripheral

usage pattern or the operation execution time is transferred to the scanning

pattern, implying that a global peripheral could be scanning a different FIFO

each time a task starts. A task would then experience jitter in accessing the

resource even if it has zero release jitter. Using a hardware sandwich delay

mechanism (Section 4.4.3.2) on the resource operation is one solution, but

would be impractical since the operations carried out by a peripheral are varied

and may be requested in any order. They may then be given the same WCET,

but this would lead to a waste of resources.

Even if the FIFO scanning were kept continuous, with new data being stored in

an internal buffer, the newly buffered data would still be applied at times

dependent on the completion of the previous operation and will have the same

implications as the previous case.

To increase the predictability in the developed system, the scanning mechanism

is restarted whenever the timer on core 0 generates an interrupt. Thus, the

Non-blocking transparent resource sharing

9-10

mechanism is always in a known state after a tick has occurred. While it may

still gather non-deterministic behaviour as execution progresses for the tick, the

cause for the non-determinism is localised to the previous tasks in the tick and

is, hence, more controllable.

The determinism could be increased further by restarting the scan at the start of

every task. However, since different cores may be running different tasks at

different times, the scanning may be continuously restarted, giving the global

peripheral no opportunity to service cores further down the scan sequence,

resulting in resource starvation instead.

This reset of the scanning mechanism can analogously be applied to other

network topologies, for example, a bus arbitration mechanism where tables

used to influence arbitration could be cleared or reset to a known state on the

generation of a tick.

9.5.2 Transaction capable

While the above hierarchy allows for resource sharing, the requirement for

transactions is still not fulfilled: by cycling rapidly between the FIFOs for the

cores, critical sections may be interleaved – a violation of their atomicity.

One way to avoid this is to use the blocking method of locking a global

peripheral onto a particular core until a transaction is complete. In such a state,

the peripheral will only scan the FIFO of the core that has locked the peripheral

and will only send data to this particular core. A locked peripheral will appear

―busy‖ to the cores that do not own the lock and these other cores will have to

operate on stale data in the proxies for the duration of the lock. This method,

then, requires a technique to mark the critical sections.

Non-blocking transparent resource sharing

9-11

9.5.2.1 Marking the critical sections

Critical sections could be demarcated with explicit software instructions;

however, this complicates the design with the need to assess the locations of

potential resource conflicts. This could be alleviated by doing the identification

and code insertion automatically. However, the application software may be

written with a co-operative mindset, i.e. it may assume full control of the

processor and may unnecessarily interleave accesses to different resources

(Section 3.2.3).

Under this assumption, the critical section for a resource used by a task can be

considered to start either at the start of the task or at the time of first access of

the resource; the end of the critical section can be considered to be either at the

end of the task or at the time of the last access of the resource. These

demarcations can be easily handled on behalf of the application software:

resource access can be automatically tracked by hardware and locking on task

start or end can be performed in the same manner as for the switching of the

communication buffers.

Unfortunately, race conditions, arising from the lack of execution determinism

inside a task, may introduce jitter when locking or unlocking is performed on the

basis of accesses. At the same time, making the entire task a critical section for

each resource used by it can be overly pessimistic, may completely serialise

code execution and may reintroduce the long-task problem.

9.5.2.2 Timed access

An alternative approach may be to create a TDMA schedule for each global

peripheral where any core requiring access to that peripheral is statically

Non-blocking transparent resource sharing

9-12

granted a timeslot. This is similar to the scheme discussed in Section 9.4.3 and

bears the same disadvantages.

9.5.2.3 Intelligent peripherals

The key problem with the approaches above is the use of a locking mechanism

to protect the resources and the protection of the entire task as a critical

section. In concurrent systems, locking mechanisms are best employed to

protect small (in execution time) areas of shared resources, even if the result is

a large number of locks.

The remaining alternative is to wrap the peripherals with additional logic that

can recognise software-access patterns and take appropriate action. Two

particular peripherals are considered in the following sections: a general-

purpose input-output (GPIO) peripheral and an analogue-to-digital converter

(ADC) peripheral.

9.6 Globalising the GPIO peripheral

The GPIO peripheral has a number of uses; from very simple ones like flashing

an LED or sensing a button press to more complex ones like the

implementation of a serial protocol. It provides a digital interface to the

environment via a set of pins on the chip. The direction (input or output) of a pin

and the voltage level on the pin are controlled by different registers in the

peripheral. GPIO pins are normally connected to various different devices

(perhaps through optical or electrical isolators), and it is a very common usage

to control pins individually without modifying the state of the others.

Non-blocking transparent resource sharing

9-13

The single-core GPIO implementation used a single register to maintain the

state of the pins. Asserting a pin required an OR operation between this register

and an appropriate mask, while an unassert operation required an AND

operation. When globalising the peripheral, this behaviour was inappropriate

since a single bit operation required a write to the entire register. A different

mechanism of SET and CLEAR commands was used, similar to the ARM

microcontroller.

As a local peripheral, the GPIO peripheral is able to read the state of the pins

whenever requested to do so, since this is an instantaneous operation.

However, a proxy peripheral is unable to do this and must maintain the state of

the pins in a register. This register is updated by the global peripheral via a

pushback mechanism; the global peripheral itself polls the pins at regular

intervals to be aware of any state changes.

Neither the proxy nor the global peripheral in this implementation implement any

extra flow control, hence requiring the size of the FIFOs between them to be

configured according to Equation 9.2 and Equation 9.3.

9.7 Globalising the ADC peripheral

The ADC peripheral is very popular in embedded control systems for sampling

analogue signals. Most often, the peripheral will support multiple analogue

signals or channels, with only one conversion logic tree, requiring tasks

sampling on different channels to wait for the previous conversions to complete.

To aid this mutual co-operation, the ADC peripheral includes a register to

indicate its ―busy‖ status. Tasks wait (by polling or by interrupts) on changes to

this register before starting a conversion or reading the conversion result.

Non-blocking transparent resource sharing

9-14

Typical ADC usage includes a write to a configuration register to pick the

channel, a command to start conversion, a wait for the conversion to be

completed and a read of the converted value. When globalising the peripheral,

this sequence was treated as a critical section: it should not be interrupted by

any other core. For example, the configuration must not be changed after it has

been written, but before the conversion starts.

The proxy honours this by writing to the configuration register locally. When the

conversion is actually requested, the conversion request is sent along with the

configuration value to the global peripheral. The global peripheral then

broadcasts the busy status to all the proxies, configures itself and starts the

conversion; the converted value is sent back to the proxy that requested the

conversion.

The global and proxy peripherals have to be designed with the same care as

concurrent software. For example, two proxy peripherals may send a

conversion request at the same time, whereupon the global peripheral must

clearly indicate which request is being handled. In this particular case, this is

performed by sending the converted value back only to the proxy whose

request was handled; this proxy alone clears the ―busy‖ status.

While Equation 9.2 supplies an upper bound for the proxy‘s incoming FIFO, the

proxy‘s included flow control requires only one entry in the outgoing FIFO,

contrary to Equation 9.3.

Non-blocking transparent resource sharing

9-15

9.8 Evaluation

The evaluation of the globalised ADC peripheral consisted of the execution of a

simple task that asks for the value on channel 0 of the ADC peripheral and then

waits until the conversion is performed. The evaluation utilised four task-sets

built from one to four replicas of this basic task. The task-sets were executed on

four systems with varying number of cores such that one task executed on each

core. In cases where the number of tasks exceeded the number of cores, the

excess tasks were left unscheduled. The use of a HW-TTC-ZSO-MC-MSB

scheduler allowed all the tasks to be started at the same time, so as to

guarantee resource conflicts on the ADC.

The evaluation of the globalised GPIO peripheral was performed similarly,

except that the job performed by the task was to assert a single pin. The times

for this peripheral were measured from the nearest tick to when the global GPIO

actually handled the assertion request, since the tasks do not wait on the

peripheral.

9.9 Operational jitter

The tasks utilising the ADC peripheral had zero release jitter as expected, but

the execution jitter varied as seen in Figure 9.3. However, as soon as the FIFO

scanning was reset on a tick, the execution jitter dropped to zero (not shown).

Non-blocking transparent resource sharing

9-16

Figure 9.3: Execution jitter when waiting for the completion of an ADC conversion

The execution jitter in waiting for an ADC conversion arises from contention

between the different tasks attempting to utilise the same peripheral and from

the FIFO scan being at a different position at each task start. Resetting this

scan at the tick helps to reduce execution jitter if the task execution and its use

of the peripheral is deterministic. The execution time of the other tasks is

lengthened depending on the core on which they execute (Figure 9.4).

Figure 9.4: Execution time of the ADC sampling tasks with scan reset enabled

0.12 0.12

4.12

4.70

4.02

4.98

0

1

2

3

4

5

6

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1 task 2 tasks 3 tasks 4 tasks

J
it
te

r
(µ

s
)

0

10

20

30

40

50

60

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1 task 2 tasks 3 tasks 4 tasks

E
x
e
c
u
ti
o
n
 t

im
e
 (

µ
s
)

Non-blocking transparent resource sharing

9-17

The amount of jitter displayed is directly proportional to the operation time. For

the GPIO peripheral, where the tasks do not have to wait for the peripheral and

where the operation takes one cycle, miniscule jitter is observed when the scan

reset mechanism is employed (Figure 9.5).

Figure 9.5: Jitter in servicing a pin assertion request on a global GPIO peripheral

It is conceivable that larger operations, for example, sending a large string of

characters down a serial communication medium will cause larger amounts of

jitter without the scan mechanism being reset. The jitter will also cascade as

execution progresses across the tick interval and as the number of resources

used by a task increases.

The mechanism is unable, however, to insulate from changes in other cores

(Figure 9.4). For example, an ADC sampling task running alone on core 3 may

have its execution time lengthened if another task is added to core 0 that

attempts to sample from a different channel on the same ADC even if the

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1
 c

o
re

2
 c

o
re

s

3
 c

o
re

s

4
 c

o
re

s

1 task 2 tasks 3 tasks 4 tasks

J
it
te

r
(µ

s
)

Non-blocking transparent resource sharing

9-18

completion jitter remains unaffected. The mechanism improves on the situation

compared to the original situation, but is still not capable of complete protection.

9.10 Hardware utilisation

The hardware utilised, as number of slices occupied for solely one function, for

various configurations can be seen in Figure 9.6. The basic configuration was a

dual-core with each core having 32 kb code memory, 8 kb data memory, the

ability to communicate and a hardware scheduler with multiple schedule

builders, overhead reduction and jitter reduction; the first core had two timers

and the second core had one timer. This configuration was then used to

produce four variations: two where the first core has either a local GPIO or a

local ADC peripheral; and two where both cores have access to either a global

GPIO or to a global ADC peripheral.

Figure 9.6: Hardware utilisation when moving to the resource sharing scheme

As expected, adding a local peripheral to the first core increases the hardware

usage by approximately 1%, with the GPIO peripheral introducing half the

15,471

15,634

16,248

15,556

16,633

14,800

15,000

15,200

15,400

15,600

15,800

16,000

16,200

16,400

16,600

16,800

Basic Local ADC Global ADC Local GPIO Global GPIO

N
u
m

b
e
r

o
f

s
lic

e
s

Non-blocking transparent resource sharing

9-19

utilisation compared to that of the ADC peripheral. Given this, it is unusual that

when globalised, the cost for the global peripheral and two proxies is

approximately 2% more for the GPIO than for the ADC. This is both because

the data sent from the global to the proxy for the ADC is half the size of that for

the GPIO and because the GPIO proxy has to maintain more registers than the

ADC proxy. As explained in Section 9.6, some of these registers do not exist in

the local GPIO peripheral because they can be read directly from the hardware

when required. Accordingly, the cost of globalising the GPIO is approximately

4% of the basic configuration per core compared to an approximate 2% per

core for the ADC and this trend can be expected to continue as the number of

cores is increased as illustrated by the trends in Figure 5.15 and Figure 7.11.

9.11 Conclusions

For safety-critical systems, it is a good idea to restrict tasks sharing a peripheral

to one core to avoid the nuances of resource sharing. However, for cases

where this is not possible, this chapter has discussed the use of a global and

proxy peripheral scheme that allows resources to be shared without blocking

the processing cores.

This scheme was also combined with a technique to reset the communication

controllers between the global and proxy peripherals when a tick occurs. If the

task sequence and resource usage are deterministic, this technique reduces the

jitter in performing operations on a shared peripheral.

However, the technique is unable to completely isolate tasks, and the

probability exists that a task added in the future may increase the run-time of all

tasks on the cores that it shares peripherals with.

Chapter 10

Discussion and conclusions

10.1 Introduction

Simplicity is an outstanding methodology for achieving a reliable design,

primarily because it makes systems easier to reason about, leading to easier

and faster design which has a higher probability of being not only correct but

both efficient and reliable. While complexity has the appearance of adding to a

product‘s value, it does not necessarily aid the construction of complex

functionality; and, simplicity in design does not imply simplicity in functionality.

With this motivation, this thesis has proposed the continued utilisation of the

simple and highly predictable time-triggered co-operative architecture (TTCA).

Nevertheless, this architecture does not see much support, primarily due to the

long-task problem. While this may be taken care of at the design stage through

appropriate techniques, it has a high probability of being introduced during

maintenance when the system is modified by developers who have little to no

experience with the system. Another similar issue is the creation of non-

harmonic relationships in the task periods which can cause wide swings in all

tasks‘ release and finishing jitter which are indicative of a system‘s sampling

and actuating jitter respectively.

Another drawback is that TTCA can guarantee low release jitter for only the first

task in the sequence of task executions after a tick, leaving remaining tasks to

the mercy of whatever execution jitter exists in the preceding tasks.

Discussion and conclusions

10-2

This chapter reviews the work presented in this thesis that tackles these

problems and presents a solution so as to enlarge the set of feasible single-

processor TTCA designs. The chapter concludes with a discussion on the

limitations of the work and scope for future work.

10.2 Multi-core TTCA implementations

As a solution to the long-task problem, this thesis has proposed increasing the

concurrency in the system through a multi-core TTCA design. In doing so, it

was deemed important to begin the multi-core design from a predictable

processor design. One such processor was found to be the PH-MT soft core

that has already been designed from the ground-up to be as predictable as

possible and that supports TTCA, for e.g. by only supporting a single enabled

interrupt.

In order to maintain the simple application design of TTCA, the memory system

on the multi-core was specially structured so that tasks running on different

cores could share data while still written sequentially and still running

concurrently. This prevented the need for code to be sprinkled with special

markers designating areas of contention, greatly simplifying the design of

concurrent tasks. The memory system was based around a wait-free loop-free

three-buffer scheme that ensures that the reading task always reads the latest

data and that the writing tasks never overwrite the most recent data. The

system also accommodates tasks that execute at different frequencies to allow

for the common ―n sample task executions for one control execution‖.

Under evaluation, the latency in the communication scheme was found to be

absorbed in the function preludes and postludes normally inserted by a C

Discussion and conclusions

10-3

compiler to the extent that the evaluation program was even able to overlap the

execution of the tasks sharing resources by about 10 cycles. Also noteworthy is

that the communication controller is approximately half the size of the PH-MT

core and that it produces a deterministic output even when the number of cores

is increased.

After the communication controller, two multi-core TTCA implementations were

built for the multi-core: one that filled the run queues for all other cores (TTC-

MC-1SB) and one where each core filled its own run queue (TTC-MC-MSB).

The former provides scope for a global management scheme whereas the latter

provides security through isolation of the schedule building mechanism. TTC-

MC-MSB is also flexible in that the schedule creation algorithm for a core may

be changed independently of the other cores. Such a change can also be made

in TTC-MC-1SB, but requires a modification of the master core and may have

further ramifications. Under TTC-MC-1SB, each core is triggered by a virtual

interrupt from the ―master‖ core when the run queue is ready, whereas under

TTC-MC-MSB, each core is triggered by the timer on the ―master‖ core. Under

evaluation, these mechanisms were found sufficient to start the task execution

on the slave cores at the same time.

Due to the dependence on the interrupts from the master core, a proper

initialisation sequence was also formulated in software that guaranteed that the

master core always finished the sequence last. This was found to hold true on

hardware when synthesised for up to four cores and in simulation for eight

cores.

Discussion and conclusions

10-4

With the entire multi-core design implemented as discussed above and along

with the multi-core TTCA implementations, it was then proposed through a case

study to solve the long-task and non-harmonic task problem by partitioning the

tasks amongst cores so that no core in the system has a long-task and so that

each task-set on a core has harmonic periods.

10.3 Hardware multi-core TTCA implementations

The multi-core TTCA implementations still had the disadvantage of imposing

the overhead and jitter of schedule creation and task dispatch on software

running on the multi-core. When considering the number of tasks that can

potentially be scheduled by a multi-core implementation, it was desirable to

provide an alternative implementation that could reduce this overhead and jitter.

In doing so, an existing TTCA hardware implementation, HW-TTC, was

extended by first making a modification that would allow for truly zero scheduler

overheads without destroying support for precise exceptions, resulting in HW-

TTC-ZSO. This same scheduler was again extended with a hardware version of

the software sandwich delay scheme for reducing jitter, producing a hardware

implementation with zero overheads and zero release-jitter (HW-TTC-ZSO-

HSD). An evaluation of the system proved these expectations and also

demonstrated that the scheduler core is only 18% of PH-MT, while the

processor core decreases in size by 23%.

It was also possible to add a user configurable delay to task execution that

ensured that the latency of communicating the task information did not delay

task execution on any of the cores. The evaluation proved this valid when the

Discussion and conclusions

10-5

tasks on all cores, even on the master core in HW-TTC-ZSO-MC-1SB, started

at the same number of cycles after the timer interrupt.

10.4 An I/O resource sharing scheme

I/O resources are different from the memory resources considered in the multi-

core communication scheme because writes to their registers may cause

immediate interactions with the environment. However, since this thesis

considers exploding a single-processor design across a multi-core, it became

necessary to consider ways of sharing I/O resources.

In this endeavour, the peripherals were split up into a proxy component that

stayed attached to a core and a global component that was attached to the

environment. Proxies in different cores communicated with the global

component via a network, with the system employing a relaxed memory

consistency scheme where the proxies stored all the peripheral data and the

global peripherals pushed back new data when available. A novel technique of

resetting the network structures on the system timer overflow was also utilised

to add determinism into the system, with the maximum effect being produced on

a 4-core system with a jitter reduction from 4.98 μs to zero. This jitter was found

to be dependent on the length of transaction with the resource.

Unfortunately, the techniques are unable to completely eradicate the effects of

resource sharing and it is still possible for a later change in the system to unduly

elongate the execution time of an existing task on a different core related only

by the shared peripheral.

Discussion and conclusions

10-6

10.5 A simpler, but predictable processor

One observation made in almost all TTCA implementations is that the interrupt

service routine is merely used to count the number of ticks. Yet, this simple

routine may interfere with the execution of a task, increasing latency and jitter.

To avoid this, the mechanism of counting ticks was moved into hardware by

matching sleep requests against core interrupts; the core is put to sleep only

when every interrupt is matched by a sleep request. The rest of the scheduler

remained in software and retained flexibility in the formulation of the scheduling

algorithm.

This core, dubbed the PH-DS, is as predictable as the PH-MT, but not as

flexible. It is however more flexible than the core that utilises a complete

hardware scheduler. The evaluation found PH-DS to be 24% smaller than PH-

MT, a savings that sees greater benefit when the core has to be replicated in a

multi-core. For example, under TTC-MC-1SB, it is sufficient to employ PH-DS

as the core for the slave cores; TTC-MC-MSB is simple enough to allow this for

all the cores.

10.6 Multi-core schedule creation algorithm

While not considered a novel contribution, the schedule creation algorithm used

in the engine controller case study merits a mention. This case study examined

the migration of an existing system to the multi-core TTCA. This system was

interesting in that the tasks could be run co-operatively but there were a great

many tasks, all of small execution length and the transactions between tasks

were complex.

Discussion and conclusions

10-7

To avoid the error prone method of allocating and scheduling tasks manually,

the case study implemented an algorithm by tying together a popular bin-

packing heuristic and a TTCA scheduling algorithm heuristic (TTSA1). Among

the different variations that were evaluated, it was discovered that a partitioning

based on increasing periods with an utilisation threshold of 0.7 per core and a

schedule creation based on earliest deadline first, proved most effective. With

such parameters, the algorithm also took a shorter time to compute its result

and produced a result possessing lower release jitter than all the other

variations. It is also expected that the result will consume the least amount of

power owing to the generation of scheduling parameters with the largest tick

interval.

10.7 Limitations

This thesis has demonstrated how the major problems in TTCA can be solved

by moving to multi-core TTCA implementations, without any impact on the

application software. However, there are a number of limitations in the

presented work.

The first limitation is that the communication scheme is very closely tied to the

memory structure. One of the implications is that a particular shared memory

area cannot be used for both read and writing. The processor also only uses

scratchpad memory and, so, each buffer is also implemented similarly on the

SRAM present in the FPGA. If the multi-core were to be used for general-

purpose TTCA applications, then the memory might be changed to a larger

external memory. In such a case, it becomes more expensive to duplicate the

entire data memory.

Discussion and conclusions

10-8

Another limitation is that the predictable initialisation scheme requires the

communication mechanism and that this initialisation scheme is required by all

the multi-core schedulers. Thus, even if the choice were made to run the cores

completely independently, with no communication between tasks on different

cores, no hardware savings can be made by eliminating the communication

mechanism.

The hardware scheduler suffers from the same inflexibility limitation that affects

any other hardware component, but is also limited in its portability. Crucial

features of the scheduler, such as the zero scheduler overhead, required in-

depth knowledge of the functioning of the PH core and also unrestricted access

to modify the code for the core. The scheduler is also closely tied to the MIPS

instruction set and the 5-stage pipeline of the PH core.

10.8 Novelty contributions

The thesis has made five key contributions to the field of safety-critical

embedded systems. The first contribution is a novel processor that widens the

applicability of the time-triggered co-operative architecture (TTCA) by enabling

long-tasks and non-harmonic tasks to be scheduled alongside high frequency

tasks without changing the application software. This contribution will allow for

more responsive and reliable systems.

The second contribution is the incorporation of these techniques into hardware,

achieving a system that is able to expose the whole of the processor‘s

computing resource to the application software. This contribution will allow for

more surety of the available processing power during system development.

Discussion and conclusions

10-9

The third contribution extends the second contribution to protect the execution

of a task so that it experiences zero release jitter. This contribution will reduce

the chance that a sampled signal will be wrongly reconstructed, ensuring stable

system behaviour.

The fourth contribution allows resources to be shared amongst cores without

the cores blocking when trying to access the same resource concurrently and

the re-initialisation of the communication infrastructure with the shared resource

so that resource access is deterministic. This contribution allows for a relaxation

in the constraint that tasks on different cores must not share resources, hence

allowing for a computationally simpler allocation and scheduling algorithm that

is faster to run, reducing development time.

The fifth contribution is a predictable processor core for purely co-operative

software that does not introduce the latency and jitter from the interrupt service

routine into the executing co-operative task. This contribution reduces the

silicon cost of a multi-core TTCA implementation. Additionally, like the second

contribution, it allows for greater surety of the available processing power during

development.

10.9 Recommendations for future work

The resolution of the limitations described above can constitute a start to future

work. For example, to allow the communication scheme to work with a larger

amount of memory, only a portion of the data memory needs to be buffered.

Under this scheme, compiler support will then be required to place all shared

memory variables into the shared area. The limitation with the initialisation

Discussion and conclusions

10-10

scheme can be resolved quite straightforwardly by a hardware implementation

with single-bit asynchronous signalling.

A bulk of future work can also examine the automation of many of the

development-side management issues such as the allocation of tasks to cores.

Such a tool could also be made intelligent enough to extract tasks‘ timing

properties and present a range of possible allocations along with the tradeoffs

made by each one.

Such a tool would require an improved multi-core TTCA allocation and

scheduling algorithm in the first instance that can handle communicating tasks

across cores as well as tasks sharing resources. Since the schemes presented

in this thesis are deterministic, the analysis can be done off-line and so utilise a

much greater range of computing resources to arrive at a result.

Further work is also required to improve the scalability of the multi-core

implementations, primarily in the communication and the resource sharing

schemes. As a first step, this will involve a move to a more scalable network

topology, away from the point-to-point topology currently being used. This move

can be expected to increase hardware costs as well as communication latency,

perhaps necessitating a hybrid application-specific topology, rather than a

generalised, regular one.

Appendix A

Glossary

A.1 Abbreviations

ALU – Arithmetic Logic Unit

AMP – Asymmetric multiprocessing

API – Application Programming Interface

ASIC – Application specific integrated circuit

BCET – Best-case execution time

CMP – Chip-level multi-processors

COTS – Commercial off-the-shelf

CPU – Central Processing Unit

DPC – A table-free multi-rate TTCA implementation that executes tasks co-

operatively with the highest priority dynamically assigned to the task with

the earliest deadline

DPC-SSD – A modified DPC implementation with software-blocked sandwich

delays

DPP – A pre-emptive implementation that reserves space on the stack for each

task on creation and that dynamically associates a higher priority to the

task with the earliest deadline

Glossary

A-2

ETA – Event Triggered Architecture

FIFO – First-in first-out data structure

FPGA – Field programmable gate arrays

FPP – A fixed priority pre-emptive implementation that reserves space on the

stack for each task on creation

GCD – Greatest Common Divisor

HDL – Hardware description language

HW-TTC – A hardware table-free multi-rate TTCA implementation that executes

tasks co-operatively with fixed priorities

HW-TTC-ZSO – A modification of the HW-TTC implementation that exhibits

zero scheduling overheads

HW-TTC-ZSO-HSD – A modified HW-TTC-ZSO implementation with purely

hardware implemented sandwich delays

HW-TTC-ZSO-HSD-MC-1SB – A modified HW-TTC-ZSO-MC-1SB

implementation with purely hardware implemented sandwich delays

HW-TTC-ZSO-HSD-MC-MSB – A modified HW-TTC-ZSO-MC-MSB

implementation with purely hardware implemented sandwich delays

HW-TTC-ZSO-MC-1SB – A hardware table-free multi-rate TTCA

implementation that executes on a MC-PHn with the schedule builder

running on one core

Glossary

A-3

HW-TTC-ZSO-MC-MSB – A hardware table-free multi-rate TTCA

implementation that executes on a MC-PHn with schedule builders

running on each core

I/O – Input/output

ISR – Interrupt Service Routine

Kb – 1 Kilobyte or 1024 bytes

LCM – Least Common Multiple

MC-PHn – A microcontroller with n PH-DS cores or 1 PH-MT core and n 1 PH-

DS cores

MPSoC – Multi-processor system-on-chip

PH – The PH soft-core implementation

PH-DS – A modified PH implementation with the delayed sleep mechanism

PH-MT – A modified PH implementation with multithreading

RTOS – Real time Operating System

SMA – Shared memory area

SMP – Symmetric multiprocessing

SMT – Simultaneous multithreading

SoC – System-on-chip

TP-IP – An algorithm that sorts a set of tasks in ascending order of their periods

before partitioning it

Glossary

A-4

TP-DU – An algorithm that sorts a set of tasks in descending order of their

deadlines before partitioning it

TTA – Time Triggered Architecture

TTC – A table-free multi-rate TTCA implementation that executes tasks co-

operatively with fixed priorities

TTCA – Time Triggered Co-operative Architecture

TTC-DS – A TTC implementation that executes on the PH-DS

TTC-DS-SSD – A modified TTC implementation with software-blocked

sandwich delays that executes on the PH-DS

TTC-MC-1SB – A table-free multi-rate TTCA implementation that executes on a

MC-PHn with the schedule builder running on one core

TTC-MC-MSB – A table-free multi-rate TTCA implementation that executes on

a MC-PHn with schedule builders running on each core

TTC-MC-SSD-1SB – A modified TTC-MC-1SB implementation with software-

blocked sandwich delays

TTC-MC-SSD-MSB – A modified TTC-MC-MSB implementation with software-

blocked sandwich delays

TTC-MT – A TTC implementation that executes on the PH-MT

TTC-MT-SSD – A modified TTC implementation with software-blocked

sandwich delays that executes on the PH-MT

Glossary

A-5

TTC-SHD – A modified TTC implementation with hardware-blocked sandwich

delays

TTH – Time Triggered Hybrid

TTH – A type of TTCA implementation that permits a single pre-emptive task in

order to tackle the long-task problem

TTP – A fixed-priority pre-emptive implementation that allocates stack space as

a task executes

TTP-MJ – Functionally identical to TTP, but with code-balancing techniques

applied to key scheduler areas to minimise jitter

TTSA1 – A heuristic algorithm that builds a schedule for time-triggered

co-operative architectures

TTSA1-LLF – A version of TTSA1 that sorts the tasks in ascending order of

their laxities before building the schedule

TTSA1-SDF – A version of TTSA1 that sorts the tasks in ascending order of

their deadlines before building the schedule

TTSA1-SWF – A version of TTSA1 that sorts the tasks in ascending order of

their WCETs before building the schedule

VHDL – VHSIC hardware description language

VHSIC – Very-high-speed integrated circuit

WCET – Worst-case execution time

Glossary

A-6

A.2 Definitions used by the task model

absolute deadline – The deadline of a frame when measured from when the

system starts.

complete – See concrete.

concrete – A set of tasks in which the phase of all tasks is known a priori.

Also known as complete.

deadline – The time at which a frame should have finished its work.

See also absolute deadline, implicit deadlines and relative deadlines.

execution – A portion of a frame usually produced as a result of interruptions

by higher priority tasks.

execution time – Amount of time consumed by a frame, usually demarcated by

the best-case and the worst-case amongst all frames.

feasible – An indication that a set of tasks can be executed on a particular

system.

finishing time – The time at which a frame or execution finishes its work.

frame – A particular release of the task.

harmonic – A task-set where the period of each task is an integer multiple of

the task with the smallest period.

hyperperiod – The amount of time after which the sequence of executions of

tasks‘ frames repeats.

Glossary

A-7

Also known as major cycle.

implicit deadline – When the deadline of the task is assumed to equal its

period.

laxity – The amount of computation time left at any particular time.

Also known as slack.

major cycle – See hyperperiod.

minor cycle – See tick interval.

period – The amount of time between consecutive releases.

phase – The time from when the system starts to the release time of the first

frame of a task.

precedence constraints – A constraint on a particular task that lists the tasks

that should have executed before it.

priority – An indication of its importance.

relative deadline – The deadline of a frame measured relative to the release

time of the frame.

release time – The time at which a frame should begin its work.

slack – See laxity.

start time – The time at which a frame or execution actually begins its work.

synchronous – A task-set in which all tasks have a zero phase.

tick – The interruption caused by a time event in a time-triggered architecture.

Glossary

A-8

tick interval – The amount of time between two consecutive ticks in a time-

triggered architecture.

Also known as minor cycle.

utilisation – The percentage of computational time consumed by a task or task-

set, upper bounded by the worst-case.

See also Section 2.6, ―The task model‖ on page 2-9, particularly Figure 2.3.

A.3 Units

ms Milliseconds (10-3 seconds)

μs Micro-seconds (10-6 seconds)

A.4 Notations

 Set of non-negative integers

 Set of positive integers

Ordered set of size =

 Largest integer that is smaller than the real number .

 Smallest integer that is greater than the real number .

 The worst-case utilisation of a task-set Eq. 2.11

 The hyperperiod of a task-set . Pg. 2-11

The phase of a task . Pg. 2-9

 The period of a task . Pg. 2-9

 The number of frames of a task . Pg. 2-9

 The best-case execution time of a task Eq. 2.8

Glossary

A-9

 The worst-case execution time of a task Eq. 2.7

 The worst-case utilisation of a task Eq. 2.9

 Execution time of the frame of a task Eq. 2.6

 The release time of the frame of a task Eq. 2.2

 The start time of the frame of a task Eq. 2.4

 The relative deadline of the frame of a task Pg. 2-9

 The absolute deadline of the frame of a task

Eq. 2.3

 The finishing time of the frame of a task Eq. 2.5

 The computation time left for a task at a time . Pg. 2-11

 The slack or laxity for a task at a time . Eq. 2.10

 The number of executions of the frame of a

task

Pg. 2-9

 The start time of the execution of the

frame of a task

Pg. 2-9

 The finishing time of the execution of the

frame of a task .

Pg. 2-9

 The upper bound of the interval that must be

evaluated for feasibility analysis; a more concise

form of for a task-set .

Pg. 2-11

 The tick interval. Pg. 3-3

 Overhead introduced by the interrupt servicing

routine.

Pg. 3-3

 Overhead introduced by dispatching a task. Pg. 3-3

Glossary

A-10

 Overhead introduced by a runtime schedule

creation algorithm.

Pg. 3-3

 The set of tasks, ordered by presence in the task

table, released as a result of the tick.

Eq. 3.1

 The set of tasks, ordered by presence in the task

table, released before a task as a result of the

 tick.

Pg. 3-3

 The set of tasks, ordered by release time and by

presence in the task table, to be released in the

 tick interval.

Eq. 3.5

 The set of tasks, ordered by release time and by

presence in the task table, started in the tick

interval.

Eq. 3.6

 The worst-case execution time of the tick

interval.

Eq. 3.3

 The amount of time by which the execution time

of the tick interval exceeds the tick interval.

Eq. 3.4

 The amount of lag experienced by the scheduler

dispatch component in sensing the tick

compared to the schedule creation component.

Pg. 3-4

See also Section 2.6, ―The task model‖ on page 2-9, particularly Figure 2.3.

 Section 3.2.1, ―The TTCA model‖ on page 3-3.

Appendix B

The three buffer single-writer, single-reader

mechanism

This chapter describes the functioning of the asynchronous three buffer single-

writer, single-reader mechanism, as detailed in (Chen et al. 1997b). This

scheme was first named in Section 2.7.2 and was used as the basis of the

hardware communication mechanism described in Section 5.5.

B.1 Introduction

Data sharing is a basic approach to achieving inter-task communication within a

variety of applications. At a basic level, this approach can be described as a

writer task copying data into a common location (a buffer) which is later

scanned by a reader task (Figure B.1).

For successful data sharing, the coherence as well as the integrity of the shared

data values must be guaranteed, i.e. the shared data must arrive at the reader

both wholly uncorrupted and in a totally ordered manner. It is also necessary

that the data be kept fresh by making the latest complete version of the shared

data produced by the writer always available to the reader.

Figure B.1: Data sharing between one writer and one reader

Data buffer Writer Reader
Data values Data values

The three buffer single-writer, single-reader mechanism

B-2

The three-buffer mechanism described here facilitates successful data sharing

in real-time, multi-processor systems where: the data transferred from the writer

to the reader must both be accurate and arrive in a timely manner; the data

transfer mechanism must not reduce the available parallelism; the data to be

transferred is too large to be a candidate for any atomic data transfer

techniques built into the microprocessor hardware; and, there is no relationship

between the times taken for the write operations and the read operations. The

mechanism does not protect against data either being overwritten when the

writer is faster than the reader or being skewed when the reader is faster than

the writer; such protection is expected to be implicit in the real-time properties of

the writer and reader.

B.2 The design of the mechanism

The decision on the number of buffers in the mechanism was driven by the

need to use as few resources as possible and the freshness requirement

mentioned above: one buffer to allow the reader to run concurrently with the

writer; and at least two buffers for the writer to switch between so that the

reader can still get the data from the last completely written buffer when the

writer is busy. To preserve coherence and integrity, the buffer which is to be

read by the reader and the reader‘s state are always made known to the writer,

significantly in the event that a writer begins in between the reader‘s decision of

which buffer to read and the announcement of this decision.

In the design illustrated in Figure B.2 and in Listing B.1, the data accessed by

the reader and the writer include the three-element buffer array, buffer and the

two control variables, reading and latest. The data transferred from writer to

The three buffer single-writer, single-reader mechanism

B-3

reader can be held in any buffer. The control variable latest always indicates the

buffer holding the latest version of the completely written shared data whilst

reading is used to indicate both whether the reader is in the process of deciding

which buffer to read and the buffer which was read by the reader. A constant

table next is constructed to help the writer to efficiently decide which buffer to

write into. The writer helps the reader to update the reading control variable so

that it always indicates the buffer that is going to be read.

When the writer starts its execution, it delivers a new version of the shared data

into a buffer which has the index value different from the current values of latest

and reading. The value of latest is then updated. The writer then attempts to

update reading, if it hasn‘t already been updated by the reader. The reader,

before accessing a buffer, updates reading with the value of latest to indicate it

is reading that buffer.

Since no guarantees can be made that the update to reading by the reader will

not be interleaved with executions of the writer, the update is actually done in

two steps: first setting reading to a value that indicates that it is about to be

Figure B.2: A representation of the three-buffer single-writer single-reader mechanism

buffer0

Writer Reader
Data values Data values

buffer1

buffer2

reading

latest

The three buffer single-writer, single-reader mechanism

B-4

updated and then updating it with the value of latest. Additionally, both the

updates to reading by the writer and reader are done under atomically

evaluated conditions, i.e. the value of reading is guaranteed not to change from

when the condition is evaluated to when it is finally changed/left unchanged.

SHARED buffer IS 3 ARRAY OF DATA
SHARED reading IS INTEGER FROM 0 to 3
SHARED latest IS INTEGER FROM 0 to 2

DEFINE Write:
 INIT next AS 4 ARRAY OF (3 ARRAY OF INTEGERS) = [[1, 2, 1],
 [2, 2, 0],
 [1, 0, 0],
 [1, 2, 0]]
 SET widx1 TO reading
 SET widx2 TO latest
 SET windex TO widx2 OF (widx1 OF next)
 WRITE DATA INTO windex OF buffer
 SET latest TO windex
 ATOMIC SET reading TO windex IF reading IS 3

DEFINE Read:
 SET reading TO 3
 SET rindex TO latest
 ATOMIC SET reading TO rindex IF reading IS 3
 SET rindex TO reading
 READ DATA FROM rindex OF buffer

Listing B.1: Pseudo code for the three-buffer single-writer single-reader mechanism

A correctness proof for this mechanism can be found in (Chen et al. 1997b).

B.3 Conclusions

This appendix described a three-buffer mechanism supporting asynchronous

data sharing between a single writer and a single reader. The mechanism is

intended for real-time concurrent systems where the available parallelism must

not be reduced, the timing behaviour of tasks must remain predictable and

analysable and the shared data must be coherent and properly ordered.

Appendix C

The BR715 Engine Controller

Some of the content from the electronic engine controller system case study in

(Bate 1998) is reproduced here as background material for Chapter 8.

C.1 Purpose of the Electronic Engine Controller System

An electronic engine controller is essentially

a safety-critical embedded system in charge

of maintaining correct and safe operation of

an aircraft engine. As seen in Figure C.3, the

electronic engine controller uses sensors to

monitor the engine condition (e.g. fuel flow)

and other components to monitor the aircraft

operation (e.g. thrust request). The electronic

engine controller controls the engine via the

operation of actuators such as valves,

ignitors and pumps. It also accepts pilot

commands, and provides status information about the engine back to the

cockpit. Components of the controller are normally replicated to provide fault

tolerance.

A particular characteristic of an electronic engine controller system is that

transactions between tasks are common and fundamental to safe operation.

Transactions consist of reading data from a number of sensors, performing

Engine
&

Airframe

Actuators Sensors

Electronic Engine
Controller

Cockpit

C
o
n
tr

o
l
U

n
it

Figure C.3: Overview of an Electronic

Engine Control Unit

The BR715 Engine Controller

C-2

calculations based on the available data and of conveying the results to the

appropriate actuators; the system also has tasks to handle aspects such as

health monitoring and maintenance. Also of particular note, is that the system is

normally implemented from a single processor design and that the processor

utilisation is fairly high.

C.2 Task details

For confidentiality, the original study changed or omitted some of the task

properties, such as names and purpose; however, important timing

requirements were left as-is (Table C.1).

Table C.1: Task timing properties

Name Period WCET

P11 25,000 671

P21 25,000 684

P35 50,000 173

P3 25,000 461

P1 25,000 300

P2 25,000 2088

P4 25,000 340

P5 25,000 7

P6 25,000 85

P7 25,000 1910

P8 25,000 1971

P9 25,000 640

P10 25,000 17

P12 25,000 103

P13 25,000 203

P14 25,000 26

P15 25,000 14

P16 25,000 408

P17 25,000 278

P18 25,000 190

P19 25,000 32

P20 25,000 228

P22 25,000 273

P23 25,000 1265

Name Period WCET

P24 50,000 318

P25 100,000 1334

P26 50,000 52

P27 200,000 796

P28 50,000 336

P29 50,000 408

P30 50,000 798

P31 100,000 457

P32 50,000 351

P33 50,000 390

P34 50,000 201

P36 50,000 925

P37 50,000 321

P38 50,000 1801

P39 50,000 522

P40 50,000 256

P41 100,000 196

P42 50,000 900

P43 50,000 1945

P44 100,000 528

P45 100,000 551

P46 100,000 272

P47 100,000 271

P48 100,000 378

Name Period WCET

P49 100,000 107

P50 100,000 217

P51 100,000 4698

P52 100,000 232

P53 100,000 30

P54 100,000 763

P55 100,000 62

P56 200,000 304

P57 200,000 336

P58 200,000 100

P59 200,000 8

P60 200,000 378

P61 200,000 38

P62 200,000 428

P63 200,000 2258

P64 200,000 328

P65 1000,000 5040

P66 1000,000 5040

P67 1000,000 5040

P68 1000,000 5040

P69 1000,000 5040

P70 1000,000 5040

P71 1000,000 5040

The BR715 Engine Controller

C-3

In the original study, the system was implemented using a scheduler with the

cyclic executive architecture (Section 3.6.1) which was configured with a major

cycle of 25,000 units and a minor cycle of 3,125 units; the scale of the unit was

not mentioned. For this work, it was assumed that one unit is equal to one

microsecond.

C.3 Transaction deadlines

The transactions between the tasks and their deadlines are presented in Figure

C.4, with arrows designating the transaction flow.

Transaction deadline
to P11 = 75,000

except

P15-P3-P11 = 50,000
P25

P15

P28

P29

P27

P26

P29

P24

P38

P43

P41

P3 P11

P30

P31

P32

P33

P39

P45

P44

P35

P21

Transaction deadline
to P35 = 150,000

Transaction deadline
to P21 = 75,000

Figure C.4: Task transaction requirements

The BR715 Engine Controller

C-4

The task-set had implicit deadlines with minimum release jitter requirements of

at most 12,500 units each for P11, P21, P35 and P3; there were no such

requirements for the other tasks.

C.4 Conclusions

This appendix presented the task-set for an electronic engine controller system.

This task-set is a good match for case studies due to the large number of tasks,

the complex transaction requirements between the tasks and a high processor

utilisation of 84.3%.

Bibliography

Abdelzaher, T. F., Atkins, E. M. and Shin, K. G. (1997). QoS Negotiation in
Real-Time Systems and Its Application to Automated Flight Control. The
3rd IEEE Real-Time Technology and Applications Symposium. Montreal,
Quebec , Canada: 228 - 238.

Abdelzaher, T. F. and Shin, K. G. (2000). "Period-Based Load Partitioning and
Assignment for Large Real-Time Applications." IEEE Transactions on
Computers 49(1): 81 - 87.

Agron, J., Andrews, D., Finley, M., Komp, E. and Peck, W. (2004). FPGA
Implementation of a Priority Scheduler Module. The 25th IEEE
International Real-Time Systems Symposium, Works In Progress Session
(RTSS, WIP 2004), Lisbon, Portugal.

Åkesson, J. F. (2001). Interprocess Communication Utilising Special Purpose
Hardware. Department of Computer Systems. Uppsala, Sweden, Uppsala
University. Licentiate of Philosophy in Computer Systems.

Al-Kadi, G. and Terechko, A. (2009). A Hardware Task Scheduler for
Embedded Video Processing. High Performance Embedded Architectures
and Compilers - Lecture Notes in Computer Science, Springer Berlin /
Heidelberg. 5409: 140 - 152.

Albert, A. (2004). Comparison of Event-Triggered and Time-Triggered Concepts
with Regard to Distributed Control Systems. Embedded World 2004.
Nürnberg, WEKA Verlag, Germany: 235 - 252.

Allworth, S. T. (1981). Introduction to Real-Time Software Design, Macmillan.

Alves, I. G. (2007). Artemis, Advanced Research and Technology in Embedded
Intelligence and Systems. Speeding up innovation.

Amey, P. (2002). Correctness By Construction: Better Can Also Be Cheaper.
CrossTalk Magazine - The Journal of Defense Software Engineering.

Anderson, J. H. and Gouda, M. G. (1992). "A Criterion for Atomicity." Formal
Aspects of Computing 4(3): 273 - 298.

Anderson, J. H. and Holman, P. (2000). Efficient Pure-buffer Algorithms for
Real-time Systems. The 7th International Conference on Real-Time
Computing Systems and Applications. Cheju Island, South Korea: 57 - 64.

Anderson, J. H., Jain, R. and Ramamurthy, S. (1997a). Wait-free Object-sharing
Schemes for Real-time Uniprocessors and Multiprocessors. The 18th
IEEE Real-Time Systems Symposium.

Bibliography

Bib-2

Anderson, J. H., Ramamurthy, S. and Jeffay, K. (1997b). "Real-Time Computing
with Lock-Free Shared Objects." ACM Transactions on Computer Systems
(TOCS) 15(2): 134 - 165.

Andrews, D., Niehaus, D., Jidin, R., Finley, M., Peck, W., Frisbie, M., Ortiz, J.,
Komp, E. and Ashenden, P. (2004). "Programming Models for Hybrid
FPGA-CPU Computational Components: A Missing Link." IEEE Micro
24(4): 42-53.

Andrews, D., Peck, W., Agron, J., Preston, K., Komp, E., Finley, M. and Sass,
R. (2005). hthreads: A Hardware/Software Co-Designed Multithreaded
RTOS Kernel. The 10th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA '05). Catania, Italy: 338 - 445.

Arnold, R. S. (1989). "Software Restructuring." IEEE 77(4): 607 - 617.

ARTEMIS SRAWG (2006). Strategic Research Agenda.

Ascia, G., Catania, V. and Palesi, M. (2005). "Mapping Cores on Network-on-
Chip." International Journal of Computational Intelligence Research
(IJCIR) 1(2): 109-126.

Athaide, K. F., Hughes, Z. M. and Pont, M. J. (2007). Towards a Time-Triggered
Processor. The 3rd UK Embedded Forum. Durham, UK.

Audsley, N. and Burns, A. (1990). Real-time System Scheduling, University of
York.

Audsley, N. C. (1991). Resource control for hard real time systems: A review.
York, Real-Time Systems Research Group, Department of Computer
Science, University of York.

Audsley, N. C., Burns, A., Richardson, M. F. and Wellings, A. J. (1993). Data
Consistency In Hard Real-Time Systems, Department of Computer
Science, University of York.

Avižienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. (2004). "Basic
Concepts and Taxonomy of Dependable and Secure Computing." IEEE
Transactions on Dependable and Secure Computing 1(1): 11 - 33.

Ayavoo, D., Pont, M. J. and Parker, S. (2004). Using simulation to support the
design of distributed embedded control systems: a case study. The 1st UK
Embedded Forum, Birmingham, UK, Published by University of Newcastle
upon Tyne.

Ayavoo, D., Pont, M. J., Short, M. and Parker, S. (2007). "Two novel shared-
clock scheduling algorithms for use with 'Controller Area Network' and
related protocols." Microprocessors & Microsystems 31(5): 326-334.

Baker, T. P. and Shaw, A. (1988). The Cyclic Executive Model and Ada. Real-
Time Systems Symposium Huntsville, AL, USA.

Bibliography

Bib-3

Baruah, S., Buttazzo, G., Gorinsky, S. and Lipari, G. (1999). Scheduling
periodic task systems to minimize output jitter. The 6th International
Conference on Real-Time Computing Systems and Applications (RTCSA
'99). Hong Kong, China: 62 - 69.

Baruah, S. K. (2006). "The Non-preemptive Scheduling of Periodic Tasks upon
Multiprocessors." Real-Time Systems 32(1 - 2): 9 - 20.

Baruah, S. K., Howell, R. R. and Rosier, L. E. (1990). "Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic, Real-Time
Tasks on One Processor." Real-Time Systems 2: 301 - 324.

Basumallick, S. and Nilsen, K. (1994). Cache Issues in Real-Time Systems.
ACM SIGPLAN Workshop on Language, Compiler, and Tool Support for
Real-Time Systems.

Bate, I. J. (1998). Scheduling and Timing Analysis for Safety Critical Real-Time
Systems. Department of Computer Science. York, University of York.
Doctor of Philosophy.

Bate, I. J. (2000). Introduction to Scheduling and Timing Analysis. The Use of
Ada in Real-Time Systems, IEE Conference Publication 00/034.

Bautista, R., Pont, M. J. and Edwards, T. (2005). Comparing the performance
and resource requirements of „PID‟ and „LQR‟ algorithms when used in a
practical embedded control system: A pilot study. The 2nd UK Embedded
Forum, Birmingham, UK, University of Newcastle upon Tyne.

Berg, C., Engblom, J. and Wilhelm, R. (2004). Requirements for and Design of
a Processor with Predictable Timing. Design of Systems with Predictable
Behaviour, Dagstuhl, Germany, Internationales Begegnungs- und
Forschungszentrum (IBFI), Schloss.

Berg, T. B. (2009). "Maintaining I/O Data Coherence in Embedded Multicore
Systems." IEEE Micro 29(3): 10 - 19.

Bergenhem, C. (2007). Time-triggered technology for Automation and
Machinery Control Communities. N.-N. I. Centre, SP Technical Research
Institute of Sweden.

Bershad, B. N. (1993). Practical Considerations for Non-Blocking Concurrent
Objects. The 13th International Conference on Distributed Computing
Systems. Pittsburgh, PA, USA: 264 - 273.

Bjerregaard, T. and Mahadevan, S. (2006). "A survey of research and practices
of Network-on-chip." ACM Computing Surveys 38(1): 1.

Bober, T. and Shih, F. Y. (2009). "Image Processing-Based Methodology for
Optimizing Automotive Ignition Timing." IEEE Transactions on Vehicular
Technology 58(1): 85 - 92.

Bibliography

Bib-4

Bordin, M. and Vardanega, T. (2007). Correctness by Construction for High-
Integrity Real-Time Systems: A Metamodel-Driven Approach. Reliable
Software Technologies - Ada Europe 2007, Springer Berlin / Heidelberg.
4498: 114 - 127.

Borkar, S. (2007). Thousand Core Chips - A Technology Perspective. 44th
IEEE Design Automation Conference. San Diego, California: 746 - 749.

Borriello, G. and Want, R. (2000). "Embedded Computation meets the World
Wide Web." Communications of the ACM 43(5): 59 - 66.

Brajou, F. and Ricco, P. (2004). The Airbus A380 - an AFDX-based flight test
computer concept. Systems Readiness Technology Conference
(AUTOTESTCON). Geneva, Switzerland: 460 - 463.

Brandenburg, B. B., Calandrino, J. M. and Anderson, J. H. (2008a). On the
Scalability of Real-Time Scheduling Algorithms on Multicore Platforms: A
Case Study. Real-Time Systems Symposium. Barcelona, Spain: 157 -
169.

Brandenburg, B. B., Calandrino, J. M., Block, A., Leontyev, H. and Anderson, J.
H. (2008b). Real-Time Synchronization on Multiprocessors: To Block or
Not to Block, to Suspend or Spin? IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS '08). St. Louis, MO: 342 -
353.

Bui, B. D., Caccamo, M., Sha, L. and Martinez, J. (2008). Impact of Cache
Partitioning on Multi-Tasking Real Time Embedded Systems. The 14th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA '08). Kaohsiung, Taiwan: 101 - 110.

Burchard, A., Liebeherr, J., Oh, Y. and Son, S. H. (1995). "New Strategies for
Assigning Real-Time Tasks to Multiprocessor Systems." IEEE
Transactions on Computers 44(12): 1429 - 1442.

Burns, A., Hayes, N. and Richardson, M. F. (1995). "Generating Feasible Cyclic
Schedules." Control Engineering Practice 3(2): 151 - 162.

Buttazzo, G. and Cervin, A. (2007). Comparative Assessment and Evaluation of
Jitter Control Methods. The 15th International Conference on Real-Time
and Network Systems (RTNS '07). Loria, Nancy, France: 163 - 172.

Buttazzo, G. C. (2002a). Real-Time Operating Systems: Problems and Novel
Solutions. The 7th International Synopsium on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT '02). Oldenburg, Germany,
Springer Berlin / Heidelberg. 2469: 37 - 51.

Buttazzo, G. C. (2002b). Scalable Applications for Energy-Aware Processors.
The 2nd International Conference on Embedded Software (EMSOFT '02).
A. Sangiovanni-Vincentelli and J. Sifakis, Lecture Notes In Computer
Science, Springer-Verlag Berlin Heidelberg. 2491: 153 - 165.

Bibliography

Bib-5

Buttazzo, G. C. (2005a). Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Springer.

Buttazzo, G. C. (2005b). "Rate Monotonic vs. EDF: Judgment Day." Real-Time
Systems 29(1): 5 - 26.

Buttazzo, G. C. and Caccamo, M. (1999). "Minimizing Aperiodic Response
Times in a Firm Real-Time Environment." IEEE Transactions on Software
Engineering 25(1): 22 - 32.

Caccamo, M., Lipari, G. and Buttazzo, G. C. (1999). Sharing Resources among
Periodic and Aperiodic Tasks with Dynamic Deadlines. IEEE Real-Time
Systems Symposium.

Cervin, A., Henriksson, D., Lincoln, B., Eker, J. a. and Arzen, K.-E. (2003). How
does control timing affect performance? Analysis and simulation of timing
using Jitterbug and TrueTime. IEEE Control Systems Magazine. 23: 16 -
30.

Chapman, R. (2006). Correctness by Construction: A Manifesto for High
Integrity Software. The 10th Australian workshop on Safety Critical
Systems and Software. Sydney, Australia. 55: 43 - 46.

Charette, R. N. (2009). This Car Runs on Code. IEEE Spectrum.

Chen, J. and Burns, A. (1997a). A Fully Asynchronous Reader/Writer
Mechanism for Multiprocessor Real-Time Systems. York, UK, Real-Time
System Group, Department of Computer Science, University of York.

Chen, J. and Burns, A. (1997b). A Three-Slot Asynchronous Reader/Writer
Mechanism for Multiprocessor Real-Time Systems. York, UK, Real-Time
System Group, Department of Computer Science, University of York.

Chen, J. and Burns, A. (1998). Asynchronous Data Sharing in Multiprocessor
Real-Time Systems Using Process Consensus. The 10th Euromicro
Workshop on Real-Time Systems. Berlin, Germany: 2 - 9.

Chen, Z., Pittman, R. N. and Forin, A. (2009). MultiCore eMIPS. Redmond, WA,
Microsoft Research, Microsoft Corporation.

Cho, H. (2006). Utility Accrual Real-Time Scheduling and Synchronization on
Single and Multiprocessors: Models, Algorithms, and Tradeoffs. Computer
Engineering. Blacksburg, Virginia, Virginia Polytechnic Institute and State
University. Doctor of Philosophy.

Cho, H., Ravindran, B. and Jensen, E. D. (2005). A Space-Optimal Wait-Free
Real-Time Synchronization Protocol. The 17th Euromicro Conference on
Real-Time Systems (ECRTS‟05): 79 - 88.

Cho, H., Ravindran, B. and Jensen, E. D. (2007). "Space-Optimal, Wait-Free
Real-Time Synchronization." IEEE Transactions on Computers 56(3): 373
- 384.

Bibliography

Bib-6

Cho, H., Ravindran, B. and Jensen, E. D. (2010). "Lock-Free Synchronization
for Dynamic Embedded Real-Time Systems." ACM Transactions on
Embedded Computing Systems (TECS) 9(3).

Clark, D. (1989). HIC: An Operating System for Hierarchies of Servo Loops.
IEEE International Conference on Robotics and Automation. Scottsdale,
AZ , USA: 1004 - 1009.

Coffman Jr, E. G. and Graham, R. L. (1972). "Optimal Scheduling for Two-
Processor Systems." Acta Informatica 1: 200 - 213.

Cottet, F. and David, L. (1999). A Solution to the Time Jitter Removal in
Deadline Based Scheduling of Real-time Applications. The 5th IEEE Real-
Time Technology and Applications Symposium - WIP, Vancouver,
Canada.

Crespo, A., Ripoll, I. and Masmano, M. (2010). Partitioned Embedded
Architecture based on Hypervisor: the XtratuM approach. European
Dependable Computing Conference. Valencia, Spain: 67 - 72.

Das, A., Lakhani, F. N., Gendy, A. K. and Pont, M. J. (2009). Two simple
patterns to support the development of reliable, realtime embedded
systems. European Conference on Pattern Languages of Programs
(EuroPLoP).

Davis, R., Merriam, N. and Tracey, N. (2000). How Embedded Applications
using an RTOS can stay within On-chip Memory Limits. Proceedings of
the Work in Progress and Industrial Experience Session, Euromicro
Conference on RealTime Systems: 43 - 50.

Davis, R. I., Tindell, K. W. and Burns, A. (1993). Scheduling Slack Time in Fixed
Priority Pre-emptive Systems. Real-Time Systems Symposium.

Dhall, S. K. and Liu, C. L. (1978). "On a Real-Time Scheduling Problem."
Operations Research 26(1): 127 - 140.

Digilent Inc. (2004). "Spartan 3 Board." from http://www.digilentinc.com/.

Dijkstra, E. W. (1997). The tide, not the waves. Beyond Calculation: The Next
Fifty Years of Computing. P. Denning and R. Metcalfe, Copernicus
(Springer-Verlag).

Dimond, R., Madhvani, N. and Mathai, J. (2002). Software for NASA in 2050: an
impossible mission? SURPRISE.

Douce, C. R., Layzell, P. J. and Buckley, J. (1999). Spatial Measures of
Software Complexity. 11th Annual Workshop of the Psychology of
Programming Interest Group, Leeds, UK.

Duller, A., Towner, D., Panesar, G., Gray, A. and Robbins, W. (2005). picoArray
technology: the tool‟s story. Design, Automation and Test in Europe
(DATE '05), IEEE Computer Society.

http://www.digilentinc.com/

Bibliography

Bib-7

Ebert, C. and Jones, C. (2009). "Embedded Software: Facts, Figures and
Future." IEEE Computer 42(4): 42 - 52.

Edwards, T., Pont, M. J., Scotson, P. and Crumpler, S. (2004). A test-bed for
evaluating and comparing designs for embedded control systems. The 1st
UK Embedded Forum, Birmingham, UK, University of Newcastle upon
Tyne.

Einstein, A. (1933). On the Method of Theoretical Physics. The Herbert Spencer
Lecture. Oxford.

Ekelin, C. and Jonsson, J. (2001). Evaluation of Search Heuristics for
Embedded System Scheduling Problems. The 7th International
Conference on Principles and Practice of Constraint Programming: 640 -
654.

El-Haj-Mahmoud, A., AL-Zawawi, A. S., Anantaraman, A. and Rotenberg, E.
(2005). Virtual Multiprocessor: An Analyzable, HighPerformance
Microarchitecture for RealTime Computing. The International Conference
on Compilers, Architecture and Synthesis for Embedded Systems (CASES
'05). San Francisco, CA, USA: 213 - 224.

Engblom, J. (2002). Processor Pipelines and Static Worst-Case Execution Time
Analysis. Dept. of Information Technology. Acta Universitatis Upsaliensis,
Uppsala University. Doctor of Philosophy.

Engel, F., Kuz, I., Petters, S. M. and Ruocco, S. (2004). Operating Systems on
SoCs: A good idea? Embedded Real-Time Systems Implimentation
(ERTSI 2004) Workshop, Lisbon, Portugal.

Ergen, S. C., Sangiovanni-Vincentelli, A., Sun, X., Tebano, R., Alalusi, S.,
Audisio, G. and Sabatini, M. (2009). "The Tire as an Intelligent Sensor."
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 28(7): 941 - 955.

Ferri, C., Wood, S., Moreshet, T., Bahar, R. I. and Herlihy, M. (2010).
"Embedded-TM: Energy and complexity-effective hardware transactional
memory for embedded multicore systems." Journal of Parallel and
Distributed Computing.

Fich, F. E., Luchangco, V., Moir, M. and Shavit, N. (2005). Obstruction-Free
Algorithms Can Be Practically Wait-Free. Distributed Computing, Springer
Berlin / Heidelberg. 3724: 78 - 92.

Fidge, C. J. (2002). Real-Time Scheduling Theory. Technical Report, Software
Verficiation Research Center, University of Queensland.

Ford, H. and Crowther, S. (1922). My Life and Work, Garden City, New York,
USA: Garden City Publishing Company, Inc.

Fort, B., Capalija, D., Vranesic, Z. G. and Brown, S. D. (2006). A Multithreaded
Soft Processor for SoPC Area Reduction. The 14th Annual IEEE

Bibliography

Bib-8

Symposium on Field-Programmable Custom Computing Machines (FCCM
'06). Napa, CA, USA: 131 - 142.

Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code, Addison-Wesley.

Gangoiti, U., Marcos, M. and Estévez, E. (2005). Using Cyclic Executives for
Achieving Closed Loop Co-simulation. The joint 44th IEEE Conference on
Decision and Control and the European Control Conference. Seville,
Spain.

Ganssle, J. (2003). Embedded Systems Dictionary, CMP Books.

Ganssle, J. (2008). The Art of Designing Embedded Systems, Newnes,
Elsevier.

Gary, S. and Tyger, K. (2004). Shared Peripheral Architecture. United States.
US2004/0088459 A1.

Gendy, A. K., Dong, L. and Pont, M. J. (2007a). Improving the performance of
time-triggered embedded systems by means of a scheduler agent. ASME
2007 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference (IDETC/CIE '07).
Las Vegas, Nevada, USA.

Gendy, A. K. and Pont, M. J. (2007b). Towards a Generic "Single-Path
Programming" Solution With Reduced Power Consumption. ASME
International Design Engineering Technical Conference & Computers and
Information in Engineering Conference (IDETC/CIE '07), Las Vegas,
Nevada, USA.

Gendy, A. K. and Pont, M. J. (2008a). "Automatically Configuring Time-
Triggered Schedulers for Use With Resource-Constrained, Single-
Processor Embedded Systems." IEEE Transactions on Industrial
Informatics 4(1): 37 - 46.

Gendy, A. K. and Pont, M. J. (2008b). Automating the Processes of Selecting
an Appropriate Scheduling Algorithm and Configuring the Scheduler
Implementation for Time-Triggered Embedded Systems. The 27th
international conference on Computer Safety, Reliability, and Security. M.
D. Harrison and M.-A. Sujan. Newcastle upon Tyne, UK, Springer-Verlag:
440 - 453.

Gendy, A. K. G. (2009). Techniques for scheduling time-triggered resource-
constrained embedded systems. Engineering. Leicester, University of
Leicester. Doctor of Philosophy: 199.

Gill, C. D., Levine, D. L. and Schmidt, D. C. (1999). Dynamic Scheduling
Strategies for Avionics Mission Computing. The 17th IEEE/AIAA Digital
Avionics Systems Conference (DASC '99).

Bibliography

Bib-9

Goossens, J. and Devillers, R. (1997). "The Non-Optimality of the Monotonic
Priority Assignments for Hard Real-Time Offset Free Systems." Journal of
Real-Time Systems 13: 107–126.

Goossens, J. and Richard, P. (2004). Overview of real-time scheduling
problems. Euro Workshop on Project Management and Scheduling.

Gordon, J. and Tulip, A. (1997). "Resource Scheduling." lnternattonal Journal of
Project Management 15(6): 359 - 370.

Griswold, W. G. and Notkin, D. (1993). "Automated Assistance for Program
Restructuring." ACM Transactions on Software Engineering and
Methodology 2(3): 228 - 269.

Guerin, X. and Petrot, F. (2009). A System Framework for the Design of
Embedded Software Targeting Heterogeneous Multi-Core SoCs. The 20th
IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP '09). Boston, MA: 153 - 160.

Gupta, N., Mandal, S. K., Malave, J., Mandal, A. and Mahapatra, R. N. (2007).
A Hardware Scheduler for Real Time Multiprocessor System on Chip. The
23rd International Conference on VLSI Design (VLSID '10). Bangalore,
India: 264 - 269.

Hanif, M. A., Pont, M. J. and Ayavoo, D. (2008). Implementing a Flexible Time-
Triggered Architecture for Deeply Embedded Applications. The 4th UK
Embedded Forum. A. Koelmans and K. Maharatna. Southampton, UK,
Institute of Engineering and Technology (IET): 106 - 115.

Haynes, B. P. (2008). "An evaluation of the impact of the office environment on
productivity." Facilities 26(5/6): 178 - 195.

Heath, S. (2003). Embedded Systems Design, Newnes.

Heiser, G. (2007). Virtualization for Embedded Systems.

Helmerich, A., Koch, N., Mandel, L., Braun, P., Dornbusch, P., Gruler, A., Keil,
P., Leisibach, R., Romberg, J., Schätz, B., Wild, T. and Wimmel, G.
(2005). Study of Worldwide Trends and R&D Programmes in Embedded
Systems in View of Maximising the Impact of a Technology Platform in the
Area. Munich, Germany, FAST GmbH, Technische Universität.

Henzinger, T. A. (2008). "Two challenges in embedded systems design:
predictability and robustness." Philosophical Transactions of The Royal
Society A 366(1881): 3727 - 3736.

Henzinger, T. A., Horowitz, B. and Kirsch, C. M. (2003). Giotto: A Time-
triggered Language for Embedded Programming. Proceedings of the
IEEE. 91: 84-99.

Bibliography

Bib-10

Herlihy, M. (1993). "A Methodology for Implementing Highly Concurrent Data
Objects." ACM Transactions on Programming Languages and Systems
(TOPLAS) 15(5): 745 - 770.

Herlihy, M. and Luchangco, V. (2008). "Distributed Computing and the Multicore
Revolution." ACM SIGACT News 39(1): 62 - 72.

Herlihy, M., Luchangco, V. and Moir, M. (2003). Obstruction-Free
Synchronization: Double-Ended Queues as an Example. The 23rd
International Conference on Distributed Computing Systems (ICDCS '03).
Providence, Rhode Island, IEEE Computer Society: 522 - 530.

Herlihy, M. and Moss, J. E. B. (1993). Transactional Memory: Architectural
Support for Lock-Free Data Structures. The 20th Annual International
Symposium on Computer Architecture. 21: 289 - 300.

Hoare, C. A. R. (1981). "The Emperor's Old Clothes." Communications of the
ACM 24(2): 75 - 83.

Holden, P. (2005). Develop FFT apps on low-power MCUs. Embedded Systems
Design. 18.

Holman, P. and Anderson, J. H. (2006). "Supporting lock-free synchronization in
Pfair-scheduled real-time systems." Journal of Parallel and Distributed
Computing 66(1): 47 - 67.

Hong, S. H. (1995). "Scheduling Algorithm of Data Sampling Times in the
Integrated Communication and Control Systems." IEEE Transactions on
Control Systems Technology 3(2): 225 - 230.

Huang, C.-Y., Chang, L.-P. and Kuo, T.-W. (2003). A cyclic-executive-based
QoS guarantee over USB. The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium: 88 - 95.

Huang, H., Pillai, P. and Shin, K. G. (2002). Improving wait-free algorithms for
interprocess communication in embedded realtime systems. Usenix
Annual Technical Conference.

Hudson, J. M., Christensen, J., Kellogg, W. A. and Erickson, T. (2002). ―I‘d Be
Overwhelmed, But It‘s Just One More Thing to Do:‖ Availability and
Interruption in Research Management. Conference on Human Factors in
Computing Systems: Changing our world, changing ourselves.
Minneapolis, Minnesota, USA: 97 - 104.

Hughes, Z. (2009). Design and Evaluation of a Predictable Embedded
Processor for Use in Time-Triggered Applications. Embedded Systems
Laboratory. Leicester, UK, University of Leicester. Doctor of Philosophy:
199.

Hughes, Z. and Pont, M. J. (2004). Design and Test of a Task Guardian for Use
in TTCS Embedded Systems. UK Embedded Forum. Birmingham, UK.

Bibliography

Bib-11

Hughes, Z. M. and Pont, M. J. (2008). "Reducing the impact of task overruns in
resource-constrained embedded systems in which a time-triggered
software architecture is employed." Transactions of the Institute of
Measurement and Control 30(5): 427-450.

Hughes, Z. M., Pont, M. J. and Ong, H. L. R. (2005). The PH Processor: A soft
embedded core for use in university research and teaching. The 2nd UK
Embedded Forum, Birmingham, UK, University of Newcastle upon Tyne.

IEEE (1990). "IEEE standard glossary of software engineering terminology."
IEEE Std 610.12-1990.

ITRS (2007). International Technology Roadmap for Semiconductors 2007
Edition.

Jeffay, K., Stanat, D. F. and Martel, C. U. (1991). On non-preemptive
scheduling of periodic and sporadic tasks. The 12th IEEE Symposium on
Real-Time Systems.

Jeffay, K. and Stone, D. L. (1993). Accounting for Interrupt Handling Costs in
Dynamic Priority Task Systems. Real-Time Systems Symposium. Raleigh
Durham, NC, USA: 212 - 221.

Joseph, M. (1996). Real-time Systems: Specification, Verification and Analysis,
Prentice Hall.

Joshi, A. (2009). Embedded Systems: Technologies and Markets, BCC
Research.

Kalinsky, D. (2001, 26 February 2001). "Context Switch."

Kane, G. (1987). MIPS R2000 RISC Architecture, Prentice Hall, Englewood
Cliffs, N.J.

Karrenbauer, A. and Rothvo, T. (2009). An Average-Case Analysis for Rate-
Monotonic Multiprocessor Real-time Scheduling. The 17th Annual
European Symposium on Algorithms (ESA'09). Copenhagen.

Katcher, D. I., Arakawa, H. and Strosnider, J. K. (1993). "Engineering and
Analysis of Fixed Priority Schedulers." IEEE Transactions on Software
Engineering 19(9): 920 - 934.

Key, S. and Pont, M. J. (2004). Implementing PID control systems using
resource-limited embedded processors. The 1st UK Embedded Forum,
Birmingham, UK, University of Newcastle upon Tyne.

Key, S., Pont, M. J. and Edwards, S. (2003). Implementing low-cost TTCS
systems using assembly language. The 8th European Conference on
Pattern Languages of Programs (EuroPLoP '03). Germany: 667 - 690.

Bibliography

Bib-12

Kim, B. K. and Shin, K. G. (1997). Task Assignment and Scheduling for Open
Real-Time Control Systems. The American Control Conference.
Albuquerque, New Mexico: 3664 - 3668.

Kim, H., Kim, Y., Kim, B. and Yoo, H.-J. (2009). A Wearable Fabric Computer
by Planar-Fashionable Circuit Board Technique. Sixth International
Workshop on Wearable and Implantable Body Sensor Networks (BSN
2009). Berkeley, CA: 282 - 285.

Kim, J., Lee, S. J. and Marschke, G. (2004). Research Scientist Productivity
and Firm Size: Evidence from Panel Data on Inventors. Discussion Paper
Series, Institute of Economic Research, Korea University.

Kirner, R. and Puschner, P. (2003). Discussion of Misconceptions about WCET
Analysis. The 3rd Euromicro International Workshop on WCET Analysis.

Kohout, P., Ganesh, B. and Jacob, B. (2003). Hardware support for real-time
operating systems. The 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. Newport Beach, CA,
USA, ACM.

Koopman, P. (1996). Embedded System Design Issues (the Rest of the Story).
IEEE International Conference on Computer Design: VLSI in Computers
and Processors (ICCD '96). Austin, TX , USA 310 - 317.

Kopetz, H. (1991a). Event-Triggered Versus Time-Triggered Real-Time
Systems. Proceedings of the International Workshop on Operating
Systems of the 90s and Beyond, Springer-Verlag.

Kopetz, H. (1991b). Event-Triggered Versus Time-Triggered Real-Time
Systems. International Workshop on Operating Systems of the 90s and
Beyond, Springer-Verlag

Kopetz, H. (2008). The Complexity Challenge in Embedded System Design.
The 11th IEEE International Symposium on Object Oriented Real-Time
Distributed Computing (ISORC '08). Orlando, FL: 3 - 12.

Kopetz, H., Ademaj, A., Grillinger, P. and Steinhammer, K. (2005). The Time-
Triggered Ethernet (TTE) Design. The 8th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, IEEE Computer
Society.

Kopetz, H. and Grünsteidl, G. (1994). "TTP - A Protocol for Fault-Tolerant Real-
Time Systems." Computer 27(1): 14 - 23.

Kopetz, H. and Reisinger, J. (1993). The Non-Blocking Write Protocol NBW A
Solution to a Real-Time Synchronization Problem. Real-Time Systems
Symposium. Raleigh Durham, NC, USA: 131 - 137.

Kremer, M. and Maskin, E. (1996). Wage Inequality and Segregation by Skill,
NBER Working Paper.

Bibliography

Bib-13

Kuacharoen, P., Shalan, M. and Mooney, V. (2003). A configurable hardware
scheduler for real-time systems. International Conference on Engineering
of Reconfigurable Systems and Algorithms.

Kumar, R., Tullsen, D. M., Ranganathan, P., Jouppi, N. P. and Farkas, K. I.
(2004). Single-ISA Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance. The 31st Annual International
Symposium on Computer Architecture (ISCA‟04). 32: 64 - 75.

Kumar, S., Hughes, C. J. and Nguyen, A. (2007). Carbon: Architectural Support
for Fine-Grained Parallelism on Chip Multiprocessors. The 34th annual
International Symposium on Computer Architecture (ISCA ‟07). San Diego,
California, USA: 162 - 173.

Kuo, T.-W., Liu, Y.-H. and Lini, K.-J. (2000). Efficient On-Line Schedulability
Tests for Priority Driven Real-Time Systems. The 6th Real-Time
Technology and Applications Symposium (RTAS '00). Washington, DC ,
USA: 4 - 13.

Kurian, S. and Pont, M. J. (2007). "The maintenance and evolution of resource-
constrained embedded systems created using design patterns." Journal of
Systems and Software 80(1): 32 - 41.

Lai, B.-C. C., Schaumont, P. and Verbauwhede, I. (2005). A Light-Weight
Cooperative Multi-threading with Hardware Supported Thread-
Management on an Embedded Multi-Processor System. The 39th
Asilomar Conference on Signals, Systems and Computers: 1647 - 1651.

Lamport, L. (1977). "Concurrent Reading and Writing." Communications of the
ACM 20(11): 806 - 811.

Lamport, L. (1986a). "On interprocess communication - Part I: Basic formalism."
Distributed Computing 1(2): 77- 85.

Lamport, L. (1986b). "On interprocess communication - Part II: Algorithms."
Distributed Computing 1(2): 86 - 101.

Laplante, P. A. (2004). Real-time Systems Design and Analysis, Wiley-
Interscience.

Laprie, J. C. (1992). Dependability: Basic Concepts and Terminology, Berlin,
Germany: Springer-Verlag.

Lauzac, S., Melhem, R. and Mossé, D. (1998). Comparison of Global and
Partitioning Schemes for Scheduling Rate Monotonic Tasks on a
Multiprocessor. The 10th Euromicro Workshop on Real-Time Systems.
Berlin , Germany: 188 - 195.

Lauzac, S., Melhem, R. and Mossé, D. (2003). "An Improved Rate-Monotonic
Admission Control and Its Applications." IEEE Transactions on Computers
52(3): 337 - 350.

Bibliography

Bib-14

Lee, E. A. (2009). "Computing Needs Time." Communications of the ACM
52(5): 70 - 79.

Leen, G. and Heffernan, D. (2002). "Expanding Automotive Electronic
Systems." IEEE Computer 35(1): 88 - 93.

Leen, G., Heffernan, D. and Dunne, A. (1999). "Digital networks in the
automotive vehicle." Computing and Control Engineering Journal 10(6):
257 - 266.

Leibson, S. (2007). Multicore microprocessors and embedded multicore SOCs
have very different needs, Tensilica, Inc.

Lickly, B., Liu, I., Kim, S., Patel, H. D., Edwards, S. A. and Lee, E. A. (2008).
Predictable Programming on a Precision Timed Architecture. International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems. Atlanta, GA, USA: 137 - 146.

Lin, K.-J. and Herkert, A. (1996). Jitter Control in Time-Triggered Systems. The
29th Annual Hawaii International Conference on System Sciences.

Liu, C. L. and Layland, J. W. (1973). "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment." Journal of the
Association for Computing Machinery 20(1): 46-61.

Liu, J. W. S. and Ha, R. (1995). "Methods for validating real-time constraints."
Journal of Systems and Software 30(1-2): 85-98.

Locke, C. D. (1992). "Software Architecture for Hard Real-time Applications:
Cyclic Executives vs. Fixed Priority Executives." Real-Time Systems 4(1):
37 - 53.

Maaita, A. and Pont, M. J. (2005). Using 'Planned Pre-emption' to Reduce
Levels of Task Jitter in a Time-triggered Hybrid Scheduler. The 2nd UK
Embedded Forum, Birmingham, UK, University of Newcastle upon Tyne.

Maier, R., Bauer, G., Stöger, G. and Poledna, S. (2002). "Time-triggered
architecture: a consistent computing platform." IEEE Micro 22(4): 36-45.

Marco, L. (1997). "Measuring Software Complexity." Enterprise Systems
Journal.

Martí, P., Fuertes, J. M., Fohler, G. and Ramamritham, K. (2001). Jitter
Compensation for Real-Time Control Systems. The 22nd IEEE Real-Time
Systems Symposium.

Marti, P., Villa, R., Fuertes, J. M. and Fohler, G. (2001). On Real-Time Control
Tasks Schedulability. European Control Conference, Porto, Portugal.

Martin, J. (2009). Parallax Propeller Manual.

Bibliography

Bib-15

Memik, S. O., Bozorgzadeh, E., Kastner, R. and Sarrafzadeh, M. (2001). A
Super-Scheduler for Embedded Reconfigurable Systems. International
Conference on Computer Aided Design, IEEE Press: 391 - 394.

Michael, M. M. and Scott, M. L. (1998). "Nonblocking Algorithms and
Preemption-Safe Locking on Multiprogrammed Shared Memory
Multiprocessors." Journal of Parallel and Distributed Computing 51(1): 1 -
26.

Miller, G. (1956). "The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information." Psychological Review 63(2):
81 - 97.

Mok, A. K.-L. (1983). Fundamental Design Problems of Distributed Systems for
the Hard Real-Time Environment. Department of Electrical Engineering
and Computer Science. Cambridge, MA, USA, Massachusetts Institute of
Technology (MIT). Doctor of Philosophy: 183.

Monot, A., Navet, N., Simonot, F. and Bavoux, B. (2010). Multicore scheduling
in automotive ECUs. Embedded Real-time Software and Systems.
Toulouse, France.

Mueller, F., Whalley, D. and Harmon, M. (1993). Predicting instruction cache
behavior.

Multicore Association (2008). Multicore Communications API Specification
V1.063 (MCAPI).

Mwelwa, C., Pont, M. J. and Ward, D. (2005). Developing reliable embedded
systems using a pattern-based code generation tool: A case study. The
2nd UK Embedded Forum, Birmingham, UK, University of Newcastle upon
Tyne.

Nácul, A. C., Regazzoni, F. and Lajolo, M. (2007). Hardware Scheduling
Support in SMP Architectures. Design, Automation & Test in Europe
Conference & Exhibition (DATE '07). Nice, France: 1 - 6.

Nahas, M. (2008). Bridging the gap between scheduling algorithms and
scheduler implementations in time-triggered embedded systems.
Department of Engineering. Leicester, University of Leicester. Doctor of
Philosophy.

Nahas, M., Pont, M. J. and Jain, A. (2004). Reducing task jitter in shared-clock
embedded systems using CAN. The 1st UK Embedded Forum. A.
Koelmans, A. Bystrov and M. J. Pont. Birmingham, UK, Published by
University of Newcastle upon Tyne: 184-195.

Nebhrajani, V. A. (2007). Asynchronous FIFO Architectures.

Nghiem, T., Pappas, G. J., Girard, A. and Alur, R. (2006). Time-triggered
Implementations of Dynamic Controllers. The 6th ACM & IEEE
International Conference on Embedded Software, Seoul, Korea.

Bibliography

Bib-16

Nissanke, N. (1997). Realtime Systems, Prentice-Hall.

Noorden, R. V. (2006). "Moving towards a graphene world." Nature 442: 228 -
229.

O‘Conaill, B. and Frohlich, D. (1995). Timespace in the Workplace: Dealing with
Interruptions. Human Factors in Computing Systems. Denver, CO.

Obermaisser, R., Salloum, C. E., Huber, B. and Kopetz, H. (2009). "From a
Federated to an Integrated Automotive Architecture." IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 28(7): 956 -
965.

Oh, S.-H. and Yang, S.-M. (1998). A Modified Least-Laxity-First scheduling
algorithm for real-time tasks. The 5th International Conference on Real-
Time Computing Systems and Applications (RTCSA '98), Hiroshima,
IEEE Computer Society.

Oh, Y. and Son, S. H. (1993). Tight Performance Bounds of Heuristics for a
Real-Time Scheduling Problem. Charlottesville, VA, University of Virginia.

Oh, Y. and Son, S. H. (1995). Fixed-Priority Scheduling of Periodic Tasks on
Multiprocessor Systems. Thornton Hall, Charlottesville, VA, USA,
Department of Computer Science, University of Virginia.

Olsen, C. (2007). "Getting the most out of EMV with contactless cards." Card
Technology Today 19(4): 10 - 11.

Paolieri, M., Quiñones, E., Cazorla, F. J., Bernat, G. and Valero, M. (2009).
Hardware Support for WCET Analysis of Hard Real-Time Multicore
Systems. The 36th Annual International Symposium on Computer
Architecture. Austin, TX, USA: 57 - 68.

Pellizzoni, R. and Lipari, G. (2004). A New Sufficient Feasibility Test for
Asynchronous Real-Time Periodic Task Sets. 16th Euromicro Conference
on Real-Time Systems (ECRTS '04). Scuola Superiore S. Anna, Pisa,
Italy, IEEE: 204 - 211.

Peng, L., Peir, J.-K., Prakash, T. K., Chen, Y.-K. and Koppelman, D. (2007).
Memory Performance and Scalability of Intel‘s and AMD‘s Dual-Core
Processors: A Case Study. IEEE International Performance, Computing,
and Communications Conference (IPCCC '07). New Orleans, LA: 55 - 64.

Peterson, G. L. (1983). "Concurrent Reading While Writing." ACM Transactions
on Programming Languages and Systems (TOPLAS) 5(1): 46 - 55.

Phatrapornnant, T. and Pont, M. J. (2006). "Reducing jitter in embedded
systems employing a time-triggered software architecture and dynamic
voltage scaling." IEEE Transactions on Computers 55(2): 113 - 124.

Bibliography

Bib-17

Pitter, C. and Schoeberl, M. (2007). Towards a Java Multiprocessor. The 5th
international workshop on Java technologies for real-time and embedded
systems. Vienna, Austria, ACM. 319: 144 - 151.

Pont, M. J. (2001). Patterns for time-triggered embedded systems : building
reliable applications with the 8051 family of microcontrollers. Harlow,
Addison-Wesley.

Pont, M. J. (2002). Embedded C. London, Addison-Wesley.

Pont, M. J., Kurian, S., Wang, H. and Phatrapornnant, T. (2007). Selecting an
appropriate scheduler for use with time-triggered embedded systems. The
12th European Conference on Pattern Languages of Programs (EuroPLoP
'07).

Profeta III, J. A., Andrianos, N. P., Yu, B., Johnson, B. W., DeLong, T. A.,
Guaspari, D. and Jamsek, D. (1996). "Safety-Critical Systems Built with
COTS." IEEE Computer 29(11): 54 - 60.

Puschner, P. and Burns, A. (2002). Writing Temporally Predictable Code. The
7th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems.

Puschner, P. and Kirner, R. (2006). From Time-Triggered to Time-Deterministic
Real-Time Systems From Model-Driven Design to Resource Management
for Distributed Embedded Systems, Springer Boston. 225: 115 - 124.

Raj, H. and Schwan, K. (2007). High Performance and Scalable I/O
Virtualization via Self-Virtualized Devices. The 16th International
Symposium on High Performance Distributed Computing. Monterey,
California, USA: 179 - 188.

Ramamritham, K. and Stankovic, J. A. (1994). "Scheduling algorithms and
operating systems support for real-time systems." IEEE 82(1): 55 - 67.

Redmill, F. (1992). "Computers in Safety-Critical Applications." Computing &
Control Engineering Journal 3(4): 178 - 182.

Reeves, G. (1998) Re: What Really Happened on Mars? Risks-Forum Digest
19,

Rodriguez-Andina, J. J., Moure, M. J. and Valdes, M. D. (2007). "Features,
Design Tools, and Application Domains of FPGAs." IEEE Transactions on
Industrial Electronics 54(4): 1810 - 1823.

Roper, K. O. and Juneja, P. (2007). "Valuation of AW: modeling the impacts of
distractions." Facilities 25(13/14): 536 - 553.

Rosén, J., Andrei, A., Eles, P. and Peng, Z. (2007). Bus Access Optimization for
Predictable Implementation of Real-Time Applications on Multiprocessor
Systems-on-Chip. IEEE International Real-Time Systems Symposium: 49
- 60.

Bibliography

Bib-18

Rouncejield, M., Hughes, J. A., Rodden, T. and Viller, S. (1994). Working with
―Constant Interruption‖: CSCW and the Small Office. ACM conference on
Computer Supported Cooperative Work. Chapel Hill, North Carolina,
United States: 275 - 286.

RTCA SC-167 / EUROCAE WG- 12 (1992). DO-178B: Software Considerations
in Airborne Systems and Equipment Certification.

Sachitanand, N. N. (2002). Embedded systems - A new high growth area. The
Hindu. Bangalore, India. .

Sanfridson, M. (2000). Timing problems in distributed real-time computer control
systems. Stockholm, Sweden, Mechatronics Lab, Department of Machine
Design, Royal Institute of Technology.

Sasso, W. C. (1986). Measuring Office Complexity, Stern School of Business,
New York University.

Scheler, F. and Schröder-Preikschat, W. (2006). Time-triggered vs. event-
triggered: A matter of configuration? GI/ITG Workshop on Non-Functional
Properties of Embedded Systems, Nuremberg, Germany, VDE Verlag
GmbH.

Schneider, J. (2000). Cache and Pipeline Sensitive Fixed Priority Scheduling for
Preemptive Real-Time Systems. The 21st IEEE Real-Time Systems
Symposium (RTSS'00), Orlando, Florida, USA.

Schoeberl, M., Brandner, F. and Vitek, J. (2010). RTTM: Real-Time
Transactional Memory. The 2010 ACM Symposium on Applied Computing.
Sierre, Switzerland: 326 - 333.

Schoeberl, M., Puschner, P. and Kirner, R. (2009). A Single-Path Chip-
Multiprocessor System. The 7th IFIP Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems (SEUS '09): 47 - 57.

Schossmaier, K. and Weiss, B. (1999). An Algorithm for Fault-Tolerant Clock
State & Rate Synchronization. The 18th IEEE Symposium on Reliable
Distributed Systems (SRDS '99), Lausanne.

Schultz, K. L., McClain, J. O. and Thomas, L. J. (2003). "Overcoming the dark
side of worker flexibility." Journal of Operations Management 21(1): 81 -
92.

Sessions, R. (2009). The IT Complexity Crisis: Danger and Opportunity.

Sha, L., Abdelzaher, T., Årzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo,
G., Caccamo, M., Lehoczky, J. and Mok, A. K. (2004). "Real Time
Scheduling Theory: A Historical Perspective." Real-Time Systems 28(2 -
3): 101 - 155.

Bibliography

Bib-19

Sha, L., Rajkumar, R. and Lehoczky, J. P. (1990). "Priority Inheritance
Protocols: An Approach to Real-time Synchronization." IEEE Transactions
on Computers 39(9): 1175 - 1185.

Shavit, N. and Touitou, D. (1997). "Software transactional memory." Distributed
Computing 10(2): 99 - 116.

Short, M. and Pont, M. J. (2005). Hardware in the loop simulation of embedded
automotive control system. The 8th IEEE International Conference on
Intelligent Transportation Systems (IEEE ITSC 2005).

Short, M., Pont, M. J. and Fang, J. (2008). Exploring the Impact of Task
Preemption on Dependability in Time-Triggered Embedded Systems: A
Pilot Study. Euromicro Conference on Real-Time Systems, 2008 (ECRTS
'08): 83-91.

Siemers, C., Falsett, R., Seyer, R. and Ecker, K. (2005). "Reliable event-
triggered systems for mechatronic applications." Journal of Systems and
Software: Parallel and distributed real-time systems 77(1): 17-26.

Simpson, H. R. (1990). "Four-slot fully asynchronous communication
mechanism." IEE Proceedings on Computers and Digital Techniques
137(1): 17 - 30.

Själander, M., Terechko, A. and Duranton, M. (2008). A Look-Ahead Task
Management Unit for Embedded Multi-Core Architectures. The 11th
EUROMICRO Conference on Digital System Design Architectures,
Methods and Tools (DSD '08). Parma, Italy: 149 - 157.

Sneed, H. M. (2008). Measuring 75 Million Lines of Code. Software Process
and Product Measurement, Springer Berlin / Heidelberg. 5338: 271 - 286.

Sorenson, P. G. and Hamacher, V. C. (1975). "A Real-time System Design
Methodology." INFOR 13(1): 1 - 18.

Spira, J. B. and Feintuch, J. B. (2005). The Cost of Not Paying Attention: How
Interruptions Impact Knowledge Worker Productivity, Basex, Inc.

Spuri, M., Buttazzo, G. and Sensini, F. (1995). Robust Aperiodic Scheduling
under Dynamic Priority Systems. The 16th IEEE Real-Time Systems
Symposium, Pisa, Italy.

Stankovic, J. A. (1988). "Misconceptions About Real-time Computing." IEEE
Computer 21(10): 10 - 19.

Stankovic, J. A. and Ramamritham, K. (1990). "What is Predictability for Real-
time Systems? ." Journal of Real-Time Systems 2(4): 247-254.

Stankovic, J. A. and Ramamritham, K. (1993). What is Predictability for Real-
Time Systems? Amherst, MA, USA University of Massachusetts.

Bibliography

Bib-20

Stankovic, J. A., Spuri, M., Natale, M. D. and Buttazzo, G. C. (1995).
"Implications of Classical Scheduling Results for Real-Time Systems."
IEEE Computer 28(6): 16 - 25.

Stärner, J., Adomat, J., Furunäs, J. and Lindh, L. (1996). Real-Time Scheduling
Co-Processor in Hardware for Single and Multiprocessor Systems. The
22nd EUROMICRO Conference 'Beyond 2000: Hardware and Software
Design Strategies'. Prague , Czech Republic: 509 - 512.

Stewart, D. B. (2001). Real Time. Embedded Systems Programming, CMP
Media LLC. 14: 87-88.

Sundell, H. (2004). Efficient and Practical Non-Blocking Data Structures.
Department of Computing Science. Göteborg, Sweden, Chalmers
University of Technology and Göteborg University. Doctor of Philosophy.

Sundell, H. and Tsigas, P. (2008). "Lock-free deques and doubly linked lists."
Journal of Parallel and Distributed Computing 68(7): 1008 - 1020.

Thiele, L. and Wilhelm, R. (2004). "Design for Timing Predictability." Real-Time
Systems 28(2): 157-177.

Tindell, K. (1994). Adding Time-Offsets to Schedulability Analysis. York,
England, Real-Time Systems Research Group, Department of Computer
Science, University of York: 94 - 221.

Törngren, M. (1998). "Fundamentals Of Implementing Real-Time Control
Applications In Distributed Computer Systems." Journal of Real-Time
Systems 14: 219 - 250.

Treiber, R. K. (1986). Systems Programming: Coping with Parallelism.
Research Report. San Jose, California, USA, IBM Almaden Research
Center.

Tromp, J. (1989). How to Construct an Atomic Variable. The 3rd International
Workshop on Distributed Algorithms: 292 - 302.

Tsigas, P. and Zhang, Y. (1999). Non-blocking Data Sharing in Multiprocessor
Real-Time Systems. The 6th International Conference on Real-Time
Computing Systems and Applications (RTCSA '99). Hong Kong, China:
247 - 254.

TTE Systems (2010). Datasheet and Programming Guide for the TTE32-SM3
Microcontroller (r1).

Turley, J. (1999). Embedded processors by the numbers. Embedded Systems
Programming. 12.

Valois, J. D. (1994). Implementing Lock-Free Queues. The 7th International
Conference on Parallel and Distributed Computing Systems, Las Vegas,
Nevada.

Bibliography

Bib-21

Valois, J. D. (1995). Lock-Free Linked Lists Using Compare-and-Swap. Annual
ACM Symposium on Principles of Distributed Computing. Ottowa, Ontario,
Canada, ACM: 214 - 222.

Wang, H. and Pont, M. J. (2008). Design and Implementation of a Static Pre-
emptive Scheduler with Highly-Predictable behaviour. The 4th UK
Embedded Forum, Southampton, UK, Institute of Engineering and
Technology (IET).

Wang, H., Pont, M. J. and Kurian, S. (2007). Patterns Which Help to Avoid
Conflicts over Shared Resources in Time-triggered Embedded Systems
Which Employ a Pre-emptive Scheduler. The 12th European Conference
on Pattern Languages of Programs (EuroPLoP '07). Irsee Monastery,
Bavaria, Germany.

Ward, N. J. (1991). The static analysis of a safety-critical avionics control
system. Air Transport Safety: Proceedings of the Safety and Reliability
Society Spring Conference, SaRS, Ltd.

Wolf, W. (2002). "What Is Embedded Computing?" IEEE Computer 35(1): 136 -
137.

Wolf, W., Jerraya, A. A. and Martin, G. (2008). "Multiprocessor System-on-Chip
(MPSoC) Technology." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(10): 1701 - 1713.

Wolf, W., Ozer, B. and Lv, T. (2002). "Smart Cameras as Embedded Systems."
IEEE Computer 35(9): 48 - 53.

Xu, J. (1993). "Multiprocessor Scheduling of Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations." IEEE Transactions on
Software Engineering 19(2): 139 - 154.

Xu, J. and Parnas, D. L. (1990). "Scheduling Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations." IEEE Transactions on
Software Engineering 16(3): 360 - 369.

Xu, J. and Parnas, D. L. (1993). "On Satisfying Timing Constraints in Hard-
Real-Time Systems." IEEE Transactions on Software Engineering 19(1):
70 - 84.

Xu, J. and Parnas, D. L. (2000). "Priority Scheduling versus Pre-Run-Time
Scheduling." Journal of Real-Time Systems 18(1): 7 - 23.

Zhao, W., Ramamritham, K. and Stankovic, J. A. (1987). "Preemptive
Scheduling Under Time and Resource Constraints." IEEE Transactions on
Computers 36(8): 949 - 960.

	A thesis submitted in fulfilment of the requirements for the degree of
	Doctor of Philosophy
	Keith Florence Athaide
	Embedded Systems Laboratory
	Keith F. Athaide
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Publications
	Patents
	Introduction
	Embedded Computing
	Real-time embedded systems
	The time-triggered co-operative architecture
	Aims of the thesis
	Scope
	Key contributions
	Thesis overview
	Conclusions

	Software architecture of real-time system schedulers
	Introduction
	Environmental interaction
	Classifications
	Hardware model
	Software development model
	The task model
	Harmonic dependencies between periods
	Other types of tasks
	Latency
	Jitter
	Execution jitter
	Completion jitter
	Finishing jitter
	Release jitter

	Shared resource management
	Blocking techniques
	Non-blocking techniques
	Multi-processor
	Peripheral management

	Real-time task scheduling
	The scheduling algorithm
	Run-time complexity

	The trigger architecture
	The execution architecture
	Multi-processor scheduling
	A part of the system

	The complexity of design
	Conclusions

	The time-triggered co-operative architecture
	Introduction
	Architecture design

	Table 3.1: Task schedule
	The TTCA model
	Timing event generator
	Task design
	Priority assignments
	Feasibility
	Processor utilisation
	Fragility
	Existing implementations
	The cyclic executive architecture
	Table-free multi-rate executive (TTC)
	Time-event queue
	Multiple timer interrupts (TTC-SHD)
	Hardware multi-rate executive (HW-TTC)
	Other implementations

	Conclusions

	Problems with the time-triggered co-operative architecture
	Introduction
	Maintainability
	The long-task problem

	Table 4.1: Task schedule with a long-task
	Improved hardware
	Improved algorithms
	Breaking up long-tasks
	Pre-emptive designs
	Increased concurrency
	Task jitter
	Improved algorithms
	Task properties
	Utilising spare computational capacity
	Single path programming
	Code balancing with delays

	Jitter sensitive code inside a task

	Non-harmonic task-sets
	Conclusions

	Increasing the concurrency in single-processor TTCA designs
	Introduction
	Design choices
	Increasing concurrency
	Inter core communication
	Constraints

	Selecting a soft multi-core processor
	Existing soft multi-cores
	Soft-cores with no multi-core platforms
	The PH core
	Microcontroller block diagram
	A single interrupt
	Guaranteed instruction execution times
	Guaranteed memory latency
	Constant interrupt overhead (PH-MT)

	A processor with multiple PH cores
	Delayed sleep extension to the PH core (PH-DS)

	Inter-task communication scheme
	Overview
	Creating the descriptions
	Writing
	Reading
	Switching between buffers

	The scheduler design
	Overview
	Precedence constraints
	Deterministic initialisation sequence
	The multiple schedule builders implementation (TTC-MC-MSB)
	The single schedule builder implementation (TTC-MC-1SB)

	Evaluation
	Hardware utilised
	Results

	Inter core communication
	Hardware results

	Figure 5.17: Number of errors encountered by ,𝝉-𝟏.
	Simulation results

	Figure 5.19: Simulation of buffer switches with errors at 𝝎 = 1596 cycles
	Figure 5.20: Simulation of buffer switches just after errors stop at 𝝎 = 1597 cycles
	Initialisation
	Results

	Figure 5.21: Average number of cycles taken for a core to initialise on one- to four-core devices
	Figure 5.22: Standard deviation in initialisation times on one- to four-core devices
	Figure 5.23: Number of cycles taken for a core to initialise on simulated one- to eight-core devices
	Figure 5.24: Simulation of the initialisation sequence for 8-cores
	Conclusions

	Case study: F-16 flight system
	Introduction
	Technical details

	Table 6.1: Evaluation task-set without a long-task
	Table 6.2: Task-set yielding sluggish control (TS-1)
	Table 6.3: Task-set with better control but unable to hit fast moving targets (TS-2)
	Table 6.4: Task-set to improve the ability to hit fast moving targets (TS-3)
	Setup
	Measured task timing

	Table 6.5: The run-time timing properties of the tasks under TTC-MT
	Release and completion jitter

	Figure 6.1: Jitter for TS-1
	Figure 6.2: Jitter for TS-2
	Figure 6.3: Jitter for TS-3
	Overheads

	Figure 6.4: Software overhead of the scheduler implementations
	Discussion
	Conclusions

	A TTCA multi-core hardware implementation
	Introduction
	Related work
	HW-TTC support for precise exceptions
	A hardware TTCA implementation with zero overheads
	The hardware multiple schedule builders implementation
	The hardware single schedule builder implementation
	A pure hardware sandwich delay mechanism (-HSD)
	Evaluation
	Release and completion jitter

	Figure 7.6: Jitter for TS-1
	Figure 7.7: Jitter for TS-2
	Figure 7.8: Jitter for TS-3
	Overheads

	Figure 7.9: Software overhead of the scheduler implementations
	Simulation

	Figure 7.12: Sample execution of three tasks under HW-TTC
	Figure 7.13: Sample execution under HW-TTC-ZSO
	Figure 7.14: Schedule creation for a dual-core HW-TTC-ZSO-MC-1SB
	Conclusions

	Case study: The BR715 Engine Controller
	Introduction
	Technical details
	Previous work
	A static schedule creation algorithm
	Schedule creation
	Task partitioning

	Evaluation platform
	/Task distribution
	Release jitter

	Figure 8.2: Release jitter when using TTSA1 with different strategies
	Figure 8.3: Release jitter when using TTSA1-JR under different strategies
	Tick interval

	Figure 8.4: Task intervals under the different strategies
	Computation time

	Figure 8.5: Time taken to compute the schedules with TTSA1
	Figure 8.6: Time taken to compute the schedules with TTSA1-JR
	Conclusion

	Non-blocking transparent resource sharing
	Introduction
	Input/output resources
	Design constraints
	Non-blocking scheme
	Low jitter

	Related work
	The gateway scheme
	Partitioning resources
	Time-division multiple access
	Other approaches

	Global and proxy peripherals
	A time-triggered approach
	Transaction capable
	Marking the critical sections
	Timed access
	Intelligent peripherals

	Globalising the GPIO peripheral
	Globalising the ADC peripheral
	Evaluation
	Operational jitter

	Figure 9.3: Execution jitter when waiting for the completion of an ADC conversion
	Figure 9.4: Execution time of the ADC sampling tasks with scan reset enabled
	Figure 9.5: Jitter in servicing a pin assertion request on a global GPIO peripheral
	Hardware utilisation

	Figure 9.6: Hardware utilisation when moving to the resource sharing scheme
	Conclusions

	Discussion and conclusions
	Introduction
	Multi-core TTCA implementations
	Hardware multi-core TTCA implementations
	An I/O resource sharing scheme
	A simpler, but predictable processor
	Multi-core schedule creation algorithm
	Limitations
	Novelty contributions
	Recommendations for future work
	Glossary
	Abbreviations
	Definitions used by the task model
	Units
	Notations

	The three buffer single-writer, single-reader mechanism
	Introduction
	The design of the mechanism
	Conclusions

	The BR715 Engine Controller
	Purpose of the Electronic Engine Controller System
	Task details
	Transaction deadlines
	Conclusions

	Bibliography

