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Abstract 45 
The human placental growth hormone variant (GH-V) is secreted continuously from the 46 
syncytiotrophoblast layer of the placenta during pregnancy, and is thought to play a key role 47 
in the maternal adaptation to pregnancy. Maternal GH-V concentrations are closely related to 48 
fetal growth in humans. GH-V has also been proposed as a potential candidate to mediate 49 
insulin resistance observed later in pregnancy. To determine the effect of maternal GH-V 50 
administration on maternal and fetal growth and metabolic outcomes during pregnancy, we 51 
examined the dose response relationship for GH-V administration in a mouse model of 52 
normal pregnancy. Pregnant C57BL/6J mice were randomized to receive vehicle or GH-V 53 
(0.25, 1, 2, 5 mg/kg per day) by osmotic pump from gestational days 12.5-18.5. Fetal linear 54 
growth was slightly reduced in the 5 mg/kg dose compared to vehicle and the 0.25 mg/kg 55 
groups respectively, whereas placental weight was not affected. GH-V treatment did not 56 
affect maternal body weights or food intake. However, treatment with 5 mg/kg per day 57 
significantly increased maternal fasting plasma insulin concentration with impaired insulin 58 
sensitivity observed at day 18.5 as assessed by HOMA. At 5mg/kg per day, there was also an 59 
increase in maternal hepatic GH receptor (Ghr) expression, but GH-V did not alter maternal 60 
plasma IGF-1 concentration or hepatic Igf-1 mRNA expression. Our findings suggest that 61 
GH-V treatment causes hyperinsulinemia and is a likely mediator of the insulin resistance 62 
associated with late pregnancy.  63 
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Introduction  65 
The growth hormone (GH) and insulin-like growth factor-1 (IGF-1) axis is a major regulator 66 
of mammalian growth. The human GH gene family, localised on chromosome 17p21, is a 67 
cluster of five tandemly arranged and highly related genes (1). Two GH genes encode two 22 68 
kDa GH proteins: pituitary GH (GH-N; GH1) and placental GH variant (GH-V; GH2). The 69 
protein sequences of GH-N and GH-V are highly conserved, differing by 13 out of 191 amino 70 
acids (2) but they have distinct expression profiles; GH-N is predominantly secreted in a 71 
pulsatile fashion from the pituitary, while GH-V is secreted from the placenta in a 72 
nonpulsatile manner. The continuous secretion of GH-V into the maternal compartment is 73 
thought to contribute to maternal metabolic alterations during pregnancy (3). Both proteins 74 
bind the GH receptor (GHR) with similar affinity and share similar physiological 75 
somatotrophic, lactogenic and lipolytic properties (4, 5). However, GH-V binds the prolactin 76 
(PRL) receptor poorly and its lactogenic affects are greatly reduced compared with GH-N (6, 77 
7). Following interaction with the GHR, GH stimulates the production and secretion of 78 
hepatic IGF-1, through activation of the JAK-STAT signalling pathway. 79 
During pregnancy, concentrations of GH-N in the maternal circulation decline, whilst GH-V 80 
expression increases from week five, gradually replacing GH-N completely at approximately 81 
20 weeks (3). The increase in maternal circulating GH-V is positively associated with fetal 82 
growth and circulating IGF-1 concentrations during pregnancy (8-12). A growth-promoting 83 
effect for GH-V has been demonstrated in vivo in non-pregnant hypophysectomized rats 84 
treated with GH-V and transgenic mice (7, 13, 14). Moreover, GH-V regulates placental 85 
angiogenesis and trophoblast invasion in vitro and may therefore play a role in the process of 86 
placentation (15, 16). 87 
One of the characteristic features of the maternal adaptation to pregnancy is insulin resistance 88 
with resultant hyperinsulinemia (17). This environment ensures adequate nutrient supply to 89 
the fetus. However, increased insulin resistance can lead to gestational diabetes. Placental 90 
hormones, and to a lesser extent increased fat deposition during pregnancy, may contribute to 91 
insulin resistance during pregnancy (18, 19). Consistent with this, higher concentrations of 92 
circulating GH-V have been observed in pregnancies complicated by diabetes (9, 20). 93 
Furthermore, GH-V has been demonstrated to induce severe insulin resistance and alter body 94 
composition in non-pregnant transgenic mice that overexpress GH-V (14).Despite a proposed 95 
role for GH-V during pregnancy, the effects of GH-V administration on metabolic parameters 96 
and outcomes related to maternal and fetal growth are poorly understood.  97 
In this study, we investigated the effect of GH-V on human and mice cell lines, and examined 98 
the dose response relationship for GH-V administration in a mouse model of normal 99 
pregnancy. 100 
 101 
Materials and Methods 102 
Cell lines and materials 103 
The human prostate carcinoma cell line, LNCaP, and mouse myoblast cell line, C2C12, were 104 
obtained from the American Type Culture Collection (ATCC). LNCaP cells have previously 105 
been demonstrated to only express very low levels of PRL receptor mRNA (21). C2C12 cells 106 
express both Ghr and Prl receptor mRNA (22, 23). Cells were cultured at 37°C, 5% CO2

 in 107 
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RPMI (Gibco) supplemented with 10% heat-inactivated FBS, 100U/ml penicillin, 100µg/ml 108 
streptomycin and Glutamax (Gibco).  109 
Recombinant human GH-V (22 kDa) was purchased from Protein Laboratories Rehovot 110 
(Rehovot, Israel) and was reconstituted in 0.4% NaHCO3 pH 9 (24). Recombinant human 111 
GH-N (22 kDa) was obtained from the National Hormone and Peptide Program (Harbor-112 
UCLA Medical Center, Torrance, CA, US). 113 
Animals  114 
All protocols were approved by the Animal Ethics Committee of the University of Auckland. 115 
Female C57BL/6J (B6) mice aged 8-10 weeks (Jackson Laboratories) were housed under 116 
standard conditions and maintained at 22°C with a 12 hours light/dark cycle and with ad-117 
libitum access to food and water. Females were mated nightly with males and the day a 118 
vaginal plug detected was designated Gestational Day (GD) 0.5. Maternal body weight and 119 
food intake were monitored daily. At GD 12.5, pregnant mice were randomized to receive 120 
GH-V (0.25, 1, 2, or 5 mg/kg per day; calculated on the basis of maternal body weight at GD 121 
11.5) or vehicle for six days by osmotic pump (Alzet model 1007D, Durect Corporation, 122 
Cupertino, CA) inserted on the animals back, slightly posterior to the scapulae. Maternal 123 
blood was obtained via tail tip at GD 12.5 and 15.5. At GD 18.5, pregnant mice were fasted 124 
for 6 hours, and euthanized by cervical dislocation; blood was collected by cardiac puncture. 125 
Glucose measurements were performed with a Freestyle Optium glucometer (Abbott, UK).   126 
Maternal tissues, fetal and placental measurement 127 
Maternal tissues, pups and placentas were dissected following euthanasia. Embryonic death 128 
was determined by the presence of fetal resorption, which appeared as dark round masses 129 
between live fetuses. Embryo resorption rate was calculated as number of reabsorbed 130 
embryos/total number of embryos of each group. Maternal liver, kidneys, spleen, pancreas, 131 
perirenal fat, retroperitoneal fat and gonadal fat weights, pup weights and placenta weights 132 
were recorded. Fetal crown-to rump lengths and abdominal circumferences were measured.  133 
Plasma analysis 134 
Plasma IGF-1 (Mediagnost, Germany) and insulin (CrystalChem, USA) were assayed with a 135 
mouse-specific enzyme-linked immunosorbent assay (ELISA) as per the manufacturers’ 136 
instructions. The homeostasis model assessment of insulin resistance (HOMA-IR) was 137 
calculated as: Fasting glucose (mmol/l)×fasting insulin (mU/l)/22.5 (25). 138 
Quantitative real-time PCR 139 
Total RNA was isolated from liver samples using Trizol (Life Technologies). The quantity 140 
and integrity of RNA were determined using a NanoDrop spectrophotometer (NanoDrop 141 
Technologies) and an Agilent Bioanalyzer RNA 6000 Nano kit, respectively. RIN numbers 142 
ranged from 7.6 to 8.4. Isolated RNA was DNAse treated (Life Technologies). Single-143 
stranded cDNA was synthesized from 1µg of RNA using a Transcriptor First Strand cDNA 144 
Synthesis Kit (Roche), according to the manufacturer’s protocol. Real-time PCR analysis was 145 
carried out using predesigned PrimeTime qPCR assays (Integrated DNA Technologies) on a 146 
Lightcycler 480 (Roche). mRNA levels were normalized to 3 housekeeping genes: Gapdh, β-147 
Actin and Cox4i1 by subtracting the geometric mean Ct of housekeeping genes from the Ct 148 
for the gene of interest to produce a ∆Ct value. The ∆Ct for each treatment sample was 149 
compared with the mean ∆Ct for vehicle-treated samples using the relative quantification 2-150 
(∆∆Ct) method to determine fold-change (26). 151 
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Western blotting  152 
Cells were grown to 70% to 80% confluence, serum starved for 16h and treated with 500nM 153 
GH-N or GH-V for 10 mins, prior to lysis in 50mM Tris-HCL pH 7.4, 1% Nonidet P-40; 154 
150mM NaCl, 1mM EDTA, 1mM NaF, 1mM PMSF, 1mM Na3VO4, cOmplete protease 155 
inhibitor tablet (Roche) and sodium dodecylsulfate (SDS)–polyacrylamide gel electrophoresis 156 
(PAGE).Where indicated, cells were treated with the human GHR antagonist, B2036 157 
(500nM), for 30 min, prior to GH-V or GH-N treatment. Western blot analysis was carried 158 
out under reducing conditions using phospho-STAT5 (pTyr694) antibody (Life 159 
Technologies) or mouse β-ACTIN monoclonal antibody (Sigma-Aldrich). Proteins were 160 
visualized using horseradish peroxidase–conjugated secondary antibody with enhanced 161 
chemiluminescence on a BioRad Chemidoc MP system.  162 
Statistical analysis  163 
All normally distributed data are expressed as means ± S.E.M and were compared using 164 
Student’s t test or one way ANOVA with post-hoc analysis (Tukey's procedure or linear trend 165 
test) as appropriate. Maternal body weight and food intake data were analysed by repeated 166 
measures ANOVA. ANOVA analysis and regression analysis were conducted using SigmaPlot 167 
12.0 and IBM SPSS Statistics 21, respectively. Linear and quadratic comparisons were made 168 
among doses. A p-value of <0.05 was accepted as statistically significant.  169 
 170 
Results  171 
Activation of the mouse GHR by GH-V  172 
To confirm activity of the recombinant human GH-V used in this study, against the human 173 
and mouse GH receptor, activation of STAT5 signal transduction was determined in human 174 
and mouse cell lines by Western blotting. Both GH-N and GH-V stimulated STAT5 175 
phosphorylation in the human prostate cancer cell line, LNCaP (Figure 1A), and the mouse 176 
myoblast cell line, C2C12 (Figure 1B). To determine whether GH-V activation of STAT5 177 
occurred through binding to the GH receptor, we investigated PRL receptor expression. We 178 
were unable to detect PRL receptor expression in LNCaP cells by semi-quantitative RT-PCR 179 
(Supplementary Fig. 1). Furthermore, induction of STAT5 phosphorylation by GH-N and 180 
GH-V was abrogated by the specific GHR antagonist, B2036, thus confirming that 181 
phosphorylation of STAT5 was via activation of the GHR (Figure 1A and B).  182 
Activation of the mouse GHR by recombinant human GH-V was confirmed in the mouse 183 
myoblast cell line, C2C12. Ghr and Prl receptor expression was detectable in C2C12 cells by 184 
semi-quantitative RT-PCR (Supplementary Fig. 1). Treatment with either GH-V or GH-N 185 
stimulated STAT5 phosphorylation in C2C12 cells (Figure 1B and C). B2036 treatment did 186 
not completely abrogate STAT5 activation by either GH-V or GH-N, indicating that GH-V 187 
and GH-N activate both the mouse GHR and PRL receptors in this cell line.  188 
Maternal body weight and food intake 189 
There was no statistically significant difference in maternal body weight at the time of mating 190 
or before osmotic pump implantation. Maternal body weight increased markedly with 191 
increasing gestational age in all groups (Figure 2A). However, there was no statistically 192 
significant difference in maternal body weight and food intake between the vehicle control 193 
and GH-V treatment groups (Figure 2A and B). A transient reduction in maternal food intake 194 
was seen in each group following osmotic pump implantation (Figure 2B).  195 
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Fetal growth and placental weight 196 
There was no statistically significant difference in average litter size in each group (Table 1). 197 
Pup weight, fetal-abdominal circumference, and placental weight, as well as fetal/placental 198 
ratio were not significantly different at GD 18.5 (Figure 3A, B and D and Table 1). 199 
Interestingly, fetal crown-to rump length was reduced in the 5 mg/kg GH-V treatment group, 200 
when compared with the vehicle and 0.25 mg/kg treatment groups (29.51 ± 0.15 vs 28.73 ± 201 
0.21, p<0.05 and  29.52 ± 0.13 vs 28.73 ± 0.21, p<0.05, respectively) (Figure 3C). 202 
Embryonic mortality was not changed by GH-V treatment, although a small increase in 203 
embryo resorption rate (6.56%) was observed in the 5 mg/kg GH-V treatment group (Table 204 
1).   205 
Maternal tissue weights  206 
GH-V treatment did not affect the weights of maternal liver, kidneys, spleen or pancreas 207 
(Table 1). There were no significant differences in maternal adipose tissue weights across all 208 
treatment groups; however, we observed a significant dose effect of GH-V on perirenal fat 209 
weight (linear, p<0.05; quadratic, p<0.05) , with an increase in perirenal fat weight associated 210 
with increasing GH-V dose (Figure 4A). A similar significant association with dose was 211 
observed on gonadal fat weights (linear, not significant; quadratic, p<0.05) (Figure 4C). These 212 
results suggest that increased GH-V during pregnancy is associated with an increase in 213 
maternal adipose deposition.   214 
IGF-1, fasting glucose and insulin levels  215 
Maternal IGF-1 increased during mid-pregnancy and decreased in late pregnancy in all 216 
treatment groups (Table 1). However, GH-V treatment did not affect maternal IGF-1 plasma 217 
concentrations at either GD 15.5 or 18.5 (Table 1). Maternal fasting insulin levels were 218 
significantly increased and insulin sensitivity decreased in the 5 mg/kg treatment group at GD 219 
18.5 (Figure 5A and B). A dose-dependent decrease in insulin sensitivity was observed 220 
(linear, p<0.01; quadratic, p<0.05) (Figure 5C). No affect was seen on fasting glucose levels 221 
(Table 1).  222 
Hepatic mRNA expression  223 
The effect of GH-V on hepatic mRNA expression was analysed by comparing gene 224 
expression in the vehicle-treated and 5 mg/kg GH-V treatment group (Figure 6). Hepatic Ghr 225 
expression was significantly up-regulated in the 5 mg/kg treatment group (1.30 ± 0.16 vs 1.99 226 
± 0.11, p<0.01). Solute carrier family 2, member 4 (Slc2a4, Glut4) was significantly down-227 
regulated after GH-V treatment (0.92 ± 0.14 vs 0.45 ± 0.08, p<0.05). However, GH-V 228 
treatment did not alter the expression of hepatic insulin receptor substrates (Irs)-1, insulin 229 
receptor (Insr), v-akt murine thymoma viral oncogene homolog 3 (Akt3), Igf-1, 230 
phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (Pik3ca), 231 
phosphatidylinositol 3-kinase regulatory subunit alpha (Pik3r1).  232 
 233 
Discussion  234 
Recombinant GH-N therapy has long been used as an effective treatment for promoting 235 
growth due to its somatotrophic properties. However, treatment increases insulin resistance 236 
and alters carbohydrate and lipid metabolism (27). Placental variant GH-V is secreted from 237 
the placenta during human pregnancy and may also be associated with fetal growth in 238 
humans (8-12). Previous studies have observed growth-promoting properties of 22 kDa GH-239 
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V in rodents (7, 13, 14, 28). However, these studies were conducted in non-pregnant animals. 240 
The aim of the current study was to evaluate the physiological effects of GH-V 241 
administration in a mouse model of pregnancy.  242 
Despite previous reports of growth-promoting effects in non-pregnant mice, we did not 243 
observe any difference in maternal or fetal weight with increasing GH-V dose, although fetal 244 
crown-rump length was reduced in the 5 mg/kg treatment group. This is consistent with a 245 
study by Naar et al. who observed reduced fertility with compromised fetal growth in 246 
transgenic mice overexpressing human GH-V (29). Other studies have investigated the effect 247 
of maternal GH treatment on fetal growth during pregnancy with variable outcomes. 248 
Zamenhof et al. treated pregnant rats with bovine GH (3 mg/day) from day 7 to 20 of 249 
pregnancy, with no change in fetal weight but a significant increase in brain weight (30). 250 
Gargosky et al. treated pregnant rats with recombinant human GH (2.4 mg/kg per day) or 251 
human IGF-1 (1.4 mg/kg per day) via an osmotic pump but neither fetal or placental weight 252 
was affected by GH-N or IGF-1 treatment (31). In the sheep, Jenkinson et al. treated pregnant 253 
ewes with bovine GH-N during different stages of gestation and found that exogenous GH-N 254 
can stimulate fetal growth only after day 100 of gestation  (32), while Harding et al. found 255 
that neither fetal or maternal growth was altered by bovine GH treatment from 125 days to 256 
134 days of gestation (33). Discordant results on fetal growth have also been seen in pigs 257 
following GH interventions (34-37). It is likely that different GH preparations, dose regimens 258 
and treating periods may contribute to these findings. Moreover, nutrient partitioning may 259 
also play an important part in fetal growth (35, 38, 39) and it has been suggested that the 260 
anabolic effect of exogenous GH on the mother may counteract the growth-promoting effect 261 
of GH treatment on the fetus by reducing the nutrient supply (33, 40).  262 
Previous studies have demonstrated that the placental lactogen is responsible for the 263 
maintenance of pregnancy and a series of actions include promotion of fetal growth in mice 264 
(41-43). As human growth hormone exhibits lactogenic activity in rodents (44, 45), it has 265 
been hypothesised that human GH administration may interfere with endogenous lactogen 266 
release in the rodent, or that high levels of GH act as an antagonist at the lactogen receptors 267 
but exhibit insufficient lactogenic effects during pregnancy (29, 46). Maternal glucocorticoid 268 
levels may also be involved in the effect of GH treatment on fetal growth. Increased maternal 269 
glucocorticoid levels impair fetal growth during pregnancy (47-50). As elevated 270 
glucocorticoid levels were observed in transgenic mice overexpressing the human GH gene 271 
(51, 52), maternal glucocorticoid may play a role in fetal growth following GH 272 
administration, although the chronic GH effects in transgenic mice may not be comparable to 273 
the relatively acute effects in GH administration during pregnancy.  In fact, GH 274 
administration during pregnancy may elicit a number of interacting effects across the entire 275 
neuroendocrine systems. In our study, GH-V treatment did not promote maternal or fetal 276 
body weight but impaired fetal linear growth. Other possible mechanisms cannot be 277 
excluded. 278 
Maternal adipose deposition and insulin levels 279 
Surprisingly we observed a trend of increased maternal adipose tissue weight with increasing 280 
doses of GH-V. Although GH is widely recognised to have lipolytic properties, this has been 281 
debated. The controversy exists as it has been claimed that GH-N interacts with adipose 282 
tissue in different ways to promote both lipolytic and anti-lipolytic effects (28, 53, 54). In in 283 
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vivo studies, it has been shown that GH-N administration reduces lipolysis and free fatty 284 
acids in both humans and animals (55-58), although this effect is transient and is only 285 
observed in the early period after GH-N injections with subsequent lipolytic effects (59-61). 286 
In addition, Kopchick et al. highlighted an increase in fat mass in young GH transgenic mice 287 
(≤ 6 months of age) followed by a reduction in adipose tissue in the older (62). GH-N and 288 
GH-V share similar structures and physiological effects. However, whether GH-V has similar 289 
actions on adipose tissue is largely unknown, especially during pregnancy, and the exact 290 
effects of GH-V on maternal adipose tissue remain unclear. In this study, we did not observe 291 
any significant differences in maternal adipose tissue weights after GH-V administration, 292 
although there were significant dose effects on adipose tissue weights.  293 
Following GH-V treatment, we observed that maternal fasting insulin concentrations 294 
significantly increased at GD 18.5 with no corresponding changes in fasting glucose 295 
concentrations, suggesting that GH-V is a likely contributor to insulin resistance during 296 
pregnancy. Indeed, the GHR and insulin receptors share some signalling pathways, and both 297 
GH-N and GH-V stimulate phosphorylation of IRS following activation of Janus kinase-2 298 
(63). Similar to the action of insulin, GH induces the tyrosyl phosphorylation of IRS proteins, 299 
providing binding sites for the regulatory subunits (p85) of phosphatidylinositol 3-kinase 300 
(PI3K) (64, 65). GH activation of PI3K via IRS phosphorylation plays an important role in 301 
glucose transport and lipid synthesis (66, 67). In transgenic mice, GH-V administration 302 
causes hyperinsulinemia by specifically increasing the protein expression of the p85 subunit 303 
in muscle and subsequently reducing PI3K signalling (68, 69). In our study, the mRNA 304 
expression of hepatic Irs, Insr, Akt3, Pik3ca, Pik3r1 were unaltered after GH-V treatment. 305 
However, hepatic expression of the gene for insulin-sensitive glucose transporter 4 306 
(Slc2a4/Glut4) was significantly down-regulated. Reduced expression of Glut4 has been 307 
associated with insulin resistance and plays a role in the pathophysiology of type 2 diabetes 308 
mellitus (70). This may contribute to the insulin resistance induced by GH-V.  309 
IGF-1 concentrations during pregnancy 310 
IGF-1 is a primary mediator of the effects of GH, in particular its growth-promoting effects. 311 
Circulating IGF-1 is synthesized mainly by the liver under the control of GH. The binding of 312 
GH with its hepatic receptor stimulates expression and release of IGF-1 into the circulation 313 
(71). During human pregnancy, GH-V is secreted continuously from the placenta into 314 
maternal circulation from early pregnancy and rises exponentially until 37 weeks of 315 
gestation. Concomitantly, maternal GH-N falls to nearly undetectable levels. Maternal 316 
circulating IGF-1 concentrations increase dramatically in the second half of pregnancy with a 317 
peak at 37 weeks (5). It is believed that GH-V substitutes for GH-N to regulate maternal 318 
circulating IGF-1 concentrations during pregnancy (72, 73). However, conflicting results 319 
exist with regard to the relationship between maternal IGF-1 concentrations and fetal growth 320 
during pregnancy (74-76).  321 
The effect of exogenous GH administration on IGF-1 levels has been investigated in previous 322 
animal studies. Treatment of rats with porcine or bovine GH increased maternal circulating 323 
IGF-1 levels (77, 78).  Interestingly, rats treated with either recombinant human GH (31) or 324 
the 20 kDa isoform of GH-V (79) during pregnancy did not exhibit increased maternal IGF-1, 325 
although transgenic mice which overexpress human GH have increased IGF-1 during 326 
pregnancy or when non-pregnanct (14, 29). Consistent with previous reports (30), we 327 
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observed that maternal IGF-1 increased during mid-pregnancy and decreased in late 328 
pregnancy. However, GH-V treatment did not affect maternal IGF-1 plasma concentrations at 329 
either GD 15.5 or 18.5. Some post-translational modifications, including specific cleavage, 330 
folding, subunit assembly, glycosylation, carboxylation etc., may be responsible for this 331 
phenomenon (80).  332 
In our study, we found that GH-V accentuated Ghr expression in the liver during mouse 333 
pregnancy; this did not affect the expression of Igf-1. This is consistent with studies by Jiang 334 
et al. who observed that bovine GH increased hepatic Ghr and Igf-1 expression in cows (81), 335 
and Nilsson et al. who found that GH regulated Ghr mRNA levels in rat epiphyseal 336 
chondrocytes (89). Mathews et al. found no significant changes in hepatic Ghr mRNA levels 337 
between control and hypophysectomised rats treated with bovine GH, although pregnant 338 
females had elevated Ghr expressions (82). The time, dose and duration of GH exposure, in 339 
vivo or in vitro experiments, steroid hormones, and nutritional status may all contribute to the 340 
variations in results (83).  341 
There are differences in the GH axis in mouse and human pregnancy which should be 342 
highlighted. As mentioned above, the human GH gene family is a cluster of five genes, which 343 
includes GH-N, GH-V, and the chorionic somatomammotropin (CS-A, CS-B and CS-L) genes 344 
(84). In contrast, the rodent genome contains a single pituitary-specific GH gene and lacks 345 
any GH-related CS genes (85). Consequently, only a pituitary version of GH is expressed 346 
during rodent pregnancy (86, 87). Circulating concentrations of pituitary GH increase during 347 
mouse pregnancy. Expression of the mouse GHR and GH-binding protein (GHBP) also 348 
dramatically increase; thus increased GHBP may decrease the availability of circulating GH. 349 
However, GHBP may also function as an important cell-surface receptor for GH in the liver 350 
(87). Furthermore, extra-pituitary expression of GH in multiple tissues is observed in both 351 
humans and mice, including the mouse placenta (88), suggests a potential role in mouse 352 
pregnancy. Although human GH-N and GH-V can both bind and activate the GHR of non-353 
primate species, we cannot exclude species-specific differences.  354 
 355 
In conclusion, GH-V administration did not affect maternal plasma IGF-1 concentrations or 356 
hepatic Igf-1 mRNA expression but induced hyperinsulinemia in normal mouse pregnancy. 357 
Our results support the role of GH-V as a likely candidate to induce insulin resistance during 358 
pregnancy. Although GH-V treatment did not promote fetal growth in our studies, due to the 359 
intimate relationship between GH-V and fetal growth during human pregnancies, further 360 
investigation of specific animal models are warranted. 361 
 362 
 363 
 364 
 365 
 366 
 367 

368 
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