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A bstract

The analysis of the p- and /rp-versions of the finite element methods has been 

studied in much detail for the Hilbert spaces IT1,2(n). The following work extends 

the previous approximation theory to that of general Sobolev spaces TT1,9(ff), 

q £ [ 1, oo]. This extension is essential when considering the use of the p and hp 

methods to the non-linear a-Laplacian problem.

Firstly, approximation theoretic results are obtained for approximation using 

continuous piecewise polynomials of degree p on meshes of triangular and quadri

lateral elements. Estimates for the rate of convergence in Sobolev spaces VF1,9(0) 

are given. This analysis shows that the traditional view of avoiding the use of 

high order polynomial finite element methods is incorrect, and that the rate of 

convergence of the p —version is always at least that of the h—version (measured 

in terms of number of degrees of freedom). It is also shown that, if the solution 

has certain types of singularity, the rate of convergence of the p—version is twice 

that of the h—version. Numerical results are given, confirming the results given 

by the approximation theory.



The p-version approximation theory is then used to obtain the hp approxi

mation theory. The results obtained allow both non-uniform p refinements to be 

used, and the h refinements only have to be locally quasiuniform. It is then shown 

that even when the solution has singularities, exponential rates of convergence 

can be achieved when using the hp-version, which would not be possible for the 

h- and p-versions.
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C hapter 1

Introduction

1.1 B asic  N o ta tio n

The following basic notation will be used. Throughout, C will be used to denote 

positive constants that are independent of other quantities appearing in the same 

relation, and whose values need not be the same in any two places. The notation 

a «  b means that there exist positive constants Ci, 62 such that C\a < b < Ĉ ci- 

Let 1R2 be the usual Euclidean space with x =  ( x i , x 2) E 1R2. Let fl be a 

polygonal domain in 1R2 with vertices i — 0 , . . .  M , A 0 = Am- The boundary 

T =  YaL\ r* where Tt- are open straight lines with end points At-_!, A{. The 

internal angle of I\- and Tj+i is denoted by u;,-, i = 1 . . .  M , 0 < to < ‘Itt. Let T> and 

Af  be two given sets of integers satisfying T>V\ Af = 0 and T>UAf =  {1, 2, . . . ,  M}.  

Let TD = Yliev^i  and TN = T — TD = YlieA'Ti, TD is called the Dirichlet 

boundary and TN the Neumann boundary. See Figure 1.1.
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CHAPTER 1. INTRODUCTION

C00

A 0

L«(0)

Figure 1.1: An example of a domain D

For q £ [1, oo] the space L q(Q) is defined to be the usual space of classes of 

functions for which the norm

(fn I/I® dx)1/?, q <  oo
( 1. 1)

ess supx€n |/ | ,  q =  oo 

is finite. For integer values of s , the Sobolev spaces VFs,9(n) are equipped with 

the norms

{X|a|<» l|-D‘7lllrf<n)}I / ,> q < oo

maxM<« ll-O“/l|£-(0) > 9 = oo
where, for any index a  =  ( a i , a 2), with |a | = a 2 + a 2

ll/ll Wa«{ fi) ( 1.2

D a =
dx?dx%3

It may also be convenient sometimes, to use the notation

/ (<

(1.3)

\ai,a2) _  n aDaf . (1.4)
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For non-integer values of s, the Sobolev spaces W s,q(fl) are defined using the 

K-method of interpolation [19]. Thus, writing s = m  +  a where in is an integer 

and a £ (0, 1), the space VFs,9(fi) is obtained by interpolating between the spaces 

W m'q(D) and This process is indicated using the notation

W s'q(£l) =  [W m'q(Q), W m+1'q(n)}a,q. (1.5 )

The subspaces WQ,q(Q) are defined in the usual manner [1].

Equally well, Sobolev spaces can be defined on an interval I  = (a, b) and on 

curves 7 .

Let S(p) ,  p > 0, be the square

S(p)  :=  {(011,2:2) : |aq| <  /?, |x 2| <  /?}, ( 1.6 )

and by Wp^R(S(p))  C W k,q(S(p))  we denote the space of all periodic functions 

with period 2p.

A partition V  of the domain consists of a finite number of open sub-domains 

(or elements), such that:

1. each element is either a triangle or a convex quadrilateral,

2. for any distinct pair of elements K  and J ,  the intersection K  Pi J  is either

empty, a single common edge or a single common vertex,

3. diam K  = h x , ViL £ V,

4. px  =  sup{diam(s) : s is a ball contained in /\} , is such that pK > Chx,
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5. for every K  6 V  the set

Dr  =  int{UJ : J  € V  and J  H K  ^ 0 } ,  (1-7)

is such that for each J  C Dr,  diam (J) «  tiR.

Note that, the above properties of the refinement allow regions of the domain 

to be more refined than others. This type of refinement will be called “locally 

quasiuniform” .

Associated with each type of element is a reference domain given in the case 

of quadrilateral elements by

5(1) =  {(x ,y)  : - 1  < x < 1; - 1  < y < 1},

or, in the case of triangular elements, by

T(T) =  {(m, 2/) : —1 < x < 1; —1 < y < x}.

Polynomial spaces of degree p £ IN are defined on the quadrilateral and tri

angular reference domains by

Q(p) = span {x3yk : 0 <  j ,  k < p}

and

P(p) =  span {x3yk : 0 < j  +  k < p]

respectively.

There exists an invertible mapping Fr  : K  K  that is affine for triangular 

elements and bilinear for quadrilateral elements, where K  denotes the reference
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domain 5(1) when K  is a quadrilateral element and T(  1) when K  is a triangular 

element. A polynomial space Pk  is taken to be either Q(p k ) or P ( p k ) as appro

priate, for each type of element. The space Xhp is constructed using the partition 

V  in such a way that

Xhp = {u E C(ft) : v \k  = v o Fft1 for some v E Pk-, for all K  € V},  (1-8)

these spaces will be referred to as being a space of piecewise continuous polyno

mials.

1.2 T h e M od el P rob lem

The class of problems to be considered is given by:

Find u such that

- V -  { |V u|a"2Vu} = f  inQ , (1.9)

u =  g on TD, (1.10)

(\Vu\a~2Vu) ■ n = h on VN , (1.11)

where a  E (l,oo ), / ,  g and h are given data and n is the outward normal to the 

boundary Tn - This equation is known as the a —Laplacian.

It is known that, even when the given data is smooth the solution u of (1.9) 

may be singular. For example, suppose the domain Ut has a corner of the form 

shown in Figure 1.2, where u  denotes the internal angle and (r, 0), 6 E [0,u>] 

denote the polar coordinate system with origin at the vertex. Then it has been
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u=0

Q

Figure 1.2: Domain W ith Corner Singularity

shown, see Dobrowolski [25] and also Tolksdorf [36], that the true solution in the 

neighbourhood of the corner has the form

u (x) =  crx@(0) + o(rx ), ( 1. 12)

where c £ 1R is a smooth function with 0(0) =  0(u;) =  0,

with

and

A =  I

S +  yjs2 + 1/3, if 0 < to < 7T

S — yjS2 +  1 //? , if  7T <  UJ <  2lT

( a  — 1 ) / a ,  i f  to =  27t

p = (c /x  -  l )2 -  1

s =

(1.13)

(1.14)

(1.15)
2/ ? ( a -  1)

To obtain an approximation to the solution of (1.9) using the finite element 

method, it must firstly be stated as a variational problem: Find u £ W 1,a(fi)
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such that u =  g on Tp and

f |V it|a”2Vii • Vu dx =  f  f v  dx + /  hv ds, (1-16)
./n ./n Jrv

for all v 6 W ^ a(D), where W p a(D) = {v : v £ kF1,Q!(n) : v = 0 on Tp}.

For this problem to have any meaning it is required that /  G and

h G VF_1+1/Q;,a;*(rAr) where a* =  a / (a  — 1), see [1]. Note that no assumption

has been made on g ; this is because the natural assumption g G M/ 1_1/a’a (fl) will

be seen to be insufficient when applying the p-version finite element method, see

chapter 2.

Note that the space of admissible functions for the solution of the variational 

problem (1.16) is larger than the natural choice of space for the original problem 

(1.9), which would typically be C2(Vl) fl C rD(fl), where CrD(0)  =  {u : v G 

C(f2),u = g on T^}. This enlarged space is essential to the application of the 

finite element method. If u is a solution of (1.9) then u is a solution of (1.16) 

and conversely if the solution u of (1.16) is sufficiently smooth then it is also a 

solution of (1.9). The solution of the original boundary value problem is known 

as the classical solution.

From here on, it will be assumed that the solution of (1.9) can be written in 

the form:

M

u = ui +  u2 +  us (1-1T)
2 =  1

where

Ui € VFp’“ (0) := W m'a(Q) n TO > 1, (1.18)
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u2 G W k,a(D), u2 — g on T#, k > 1 +  1 /a , (1-19)

and

w3 =  CiCt(y,*)r?<flr*(llog rt|)®t(^’) ^ ^ ’"(H) (1.20)

where each gi is a smooth C°° function and each Q are smooth C°° functions such 

that, for some pi, (i = 1 for 0 < r t- < pi, Q =  0 for r t- > 2pi, note that pi may 

depend on the partition. The polar coordinates (rt-, fy) have origins at the vertices 

Ai of the polygonal domain fh It can be seen that the functions u\ and u2 relate 

to the homogeneous and non homogeneous boundary conditions respectively and 

the u3 relate to the singularities that arise from the corners of the domain O.

1.3 T h e F in ite  E lem ent M eth od

In this section X  will be used to denote the space Xhv• For such a space X  there 

exists a finite basis {<p i and the finite element approximation u fe , for a given 

space X , has the form ufe = YliLi with ufe =  gFE on To, where gpE 1S an

approximation to the boundary data g which will be looked at in more detail in

the following chapter.

For a given space X  the discrete form for the variational problem (1.16) is 

given by: Find ufe € X  such that ufe = gFE on To and

f IXufe]01 2X u f e  ' V udx  =  [  f v  dx + f  hv ds, (1.21)
Jq Jq 2rjv

for all v G X D, where X D = {u : v G X, v = 0 on TD}. At this stage it will
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be assumed that the solutions of (1.16) and (1.21) exist and are unique. This 

assumption will be shown to be true in chapter 5.

Since every function in X  is a linear combination of the basis functions the 

above problem may be written as : find the c^, i =  1, 2 , . . . ,  N  such that

/ lE(a.-V^-)|a“2E(«.-V^)-V^dx =
Jn i=1 2 = 1

for all j  = 1, 2, . . . ,  N.

Using the techniques shown in chapter 5, this problem is reduced to a linear 

system of equations

A a  = b, (1.23)

where A  is an N  x N  m atrix and a  and b are N  dimensional vectors. The solution 

of this system gives the finite element approximation to the true solution of (1.16).

The general method of creating a discrete problem is known as the Galerkin 

method. The finite element method is a special case of the Galerkin method 

where the basis functions are defined over a given partition V . To make the final 

matrix A  as sparse as possible the basis functions are chosen so that their support 

is small, typically over a patch of elements sharing a common vertex or even on 

a single element, see Figure 1.3.
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-1 -1 -1 -1 

Figure 1.3: Examples of Interior Basis Functions

1.4 R efinem ents

The finite element approximation ufe that was obtained using partition V  and 

polynomial degree p x  on each K  6 V  may be improved by refining the partition 

in different ways. In this section the three main types of refinement will be looked 

at.

1.4.1 h—type refinement

This is the standard type of refinement used in the finite element method. The 

basic idea, when requiring a more accurate approximation, is to reduce the size 

of each element K  and have the same fixed polynomial degree, which is usually 

very low, one, two or three at most, on each element.

In a uniform h—version the elements are such that hx  ~  hj  for all K , J  6 V.
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Figure 1.4: Uniform h—Type Refinement

The maximum size of an element K  £ V  is denoted by h and therefore this 

method is known as the h—version finite element method. For an example of a 

uniform refinement see Figure 1.4. The finite dimensional space for the h—version 

will be denoted by XT and the finite element solution by Uh-

If the true solution of the problem is not so smooth in certain areas of the 

domain then uniform refinements may not be the most efficient type of refinement, 

instead it may be better to refine more intensely around the areas where the 

solution is not so smooth, giving a non-uniform mesh.

1.4.2 p —type refinement

In this method, the refinement is to increase the polynomial degree of the local 

basis functions and leave the partition as it is. In a uniform method, i.e. px  

is the same for each element; we denote by p the polynomial degree used and
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Figure 1.5: Uniform p—Type Refinement

thus we call this the p—version finite element method. For an example of a 

uniform p—version refinement see Figure 1.5. The finite dimensional space for 

the p—version will be denoted by X p and the finite element solution by up.

1.4.3 hp—typ e refinem ents

The hp finite element method combines the p—version and the h—version so 

that the best properties of both methods may be implemented, hopefully giving 

exponential rates of convergence. The finite dimensional space for the hp—version 

will be denoted by Xhp and the finite element solution by Uhv-

When using the hp—version constrained nodes occur when either adjacent 

elements have different polynomial degrees of approximation, or a vertex of an 

element is located on the edge and not at the vertex of a neighbouring element, 

or both. In Figure 1.6, it can be seen that two linear elements share a common
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Figure 1.6: An hp—Type Refinement

boundary with one quadratic element. These constrained nodes are not trivially 

dealt with, since a piecewise continuous polynomial is required over the domain

0 . For the constrained nodes given by Figure 1.6 continuity may only be obtained 

if the approximation across the interelement boundaries is linear. Therefore, the 

choice of basis functions to be used is very important and must include functions 

which are supported on the interior of the elements, as in Figure 1.3.

1.5 A  priori error estim ates for linear e llip tic  

eq u ation s

In this section some results for the linear case of (1.9) i.e. a  =  2. will be given. 

In this case the problem is given by: find u 6 IT1,2(f2) such that u =  g on T#
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and

B(u ,v )  =  F(v), for all v £ Wq 2(D), (1-24)

where

B(u ,v )  = [  V u - V r  dx F(u) =  /  / u d x +  [  hvds. (1.25) 
Jft

The following properties hold:

1. i?(-, •) is bilinear and symmetric,

2. #(*,•) and F(-) are continuous, i.e. there exist constants M, m > 0 such 

that

|£(u,u>)| < M\\v\\wl>2{Q) |M lwi,2(n) for all v, w £ Ŵ 1,2(fi), (1.26)

and

|F (u)| < m ||v||v^i,2(o) for all v £ kF1,2(n),  (1-27)

3. B(',  •) is elliptic i.e. there exists a constant 7 > 0 such that

\B(v,v)\  > 7 11̂ 11̂ 1,2(0) for all v £ W 1'2^ ) .  (1.28)

This is why the problem (1.24) is called linear elliptic. In chapter 5, the case 

a ^ 2  will be considered and it will be shown that the general non-linear problem 

satisfies a similar elliptic property to that of the linear case.

It is well known (Lax-Milgram lemma, [24] ) that under these circumstances, 

although symmetry is not a necessity, (1.24) has a unique solution u £ W 1,2(fi),
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and the respective finite element problem (1.21) with a = 2 has a unique solution, 

U p E -

It is also known (Cea’s Lemma, [24] ) that there exists a constant C indepen

dent of the subspace X  such that,

||u — u fe \\w 1>2(q) — C \\u — L’llw1-2(fi) (1.29)

Using the above abstract error estimate, results for the different types of finite 

element method can now be obtained.

1.5.1 A uniform h—version estim ate

From [24] there exists a piecewise polynomial approximation ttpv E Xh,  of degree 

no more than p in each element K  E V  such that for all v E W k,q(Q), k > 1, 

q E [l,oo]

||u — TTp l̂lwu,? )̂ ^  C(p)htt ||'l,||wfc.9(fi) •> (1.30)

where // =  min(p, k — 1).

When the true solution of (1.24) is such that u E W k,2(D) i.e. u3 =  0, choosing 

q — 2 in (1.30) and combining with (1.29) gives,

1 1 ^  —  u h \ \ w 1 ’2 ( n )  —  I M I i v fe>2 ( f t )  ’ ( 1 - d l )

where jj, = min(p, k — 1).
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1.5.2 A uniform p —version estim ate

The h —version estimate suggests that there is no need to use high degree approx

imation when k is small or p > k —  1, since the rate of convergence is restricted 

by the smoothness and increasing p will not improve the estimate, however this 

is not the case. It was shown, firstly by Babuska, Szabo and Katz in [14], that 

when a uniform p—version is applied and u £ W k,2(Ul) then up is such that, for 

any e > 0

llw — up\\w 1’2(u) — e)P ^  ’ (1.32)

where p =  k — 1. Later, Babuska and Suri in [12] removed the e to give

\\u ~  ?ipllw1-2(fi) ^  C(h)p M ||u \\wk’2(n) ’ (1.33)

This improvement was quite significant, since the analysis for the first result 

suggested that the term  C(h, e) —» oo as e —>• 0.

To compare these two methods the number of degrees of freedom N  will be 

used, since this is closely related to the work at each stage. When uniform h— 

and p—type refinements are used, the following relationship holds for N,

p2 oc N  and h~2 oc N. (1-34)

Using this relationship and the above two estimates, it is clear that the p—version 

will always converge as fast as the h—version. It can also be seen that, when the 

true solution is quite smooth then the p—version will exploit this smoothness to 

the full, while the h—version is restricted by the low polynomial degree it is using.
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Suppose now that the true solution of (1.24) is given by (1.17) and u%3 7̂  0 for 

a given i; then, see [12, Theorem 5.1], when the corresponding corner Ai is at a 

vertex of an element in the partition, which is not an unreasonable assumption,

\\u ~  up\\w1<2(n) — Cp *• (1.35)

Now, for any e > 0, u £ FFAi+1_e’2(fi) when such a singularity exists. There

fore, the p—version convergence rate is twice the rate of the h—version for such 

singularities.

1.5.3 The hp—version

It is not a simple m atter to deduce estimates for a general hp—version. For the 

one dimensional case, a thorough investigation was done by Babuska and Gui, see 

[8, 9, 10]. In the two dimensional case the basic a priori estimates for quasiuniform 

meshes were given by Babuska and Suri, see [11]. In chapter 4, error estimates 

for the hp—version will be looked at in more detail, and results will be obtained 

for locally quasiuniform meshes in general Sobolev spaces.



Chapter 2 

The p-version A pproxim ation  

Theory for Sm ooth Functions

2.1 In trod u ction

In this chapter approximation theory for functions in Sobolev spaces W k,q(fl), 

k > 1, q e  [l,oo], by functions in the spaces X p on a fixed partition V  of the 

domain f), will be looked at. The results obtained will extend the results shown 

in chapter 1 to the spaces W l,q(£l) for functions u =  U\ +  u2, a = q.

Much work has been done on spectral and high order polynomial approxima

tion, for example the one dimensional results established by Quarteroni for the 

spaces Lq{ —1,1), seen in [30], and the work of Bernardi and Maday, see for exam

ple [20, 21] where results are obtained for polynomial approximation on weighted 

Hilbert spaces. However the most relevant works are those of Babuska, Szabo

18
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and Katz [14], and Babuska and Suri [12] which considered the p-version approx

imation theory for the case q = 2 as seen in chapter 1. The work in this chapter 

follows the methods given by Babuska and Suri, [12, section 3] which gave, for 

u G W m,2(Q) a sequence of polynomials up G X v such that

\ \ u  —  u p \ \ w l >2 ( n )  —  C p  ^ M M I w m -2 ( n )  • ( 2 - 1 )

The results in this section extend previous results to general Sobolev spaces 

W 1,q(fl), q G [l,oo]. These results will be essential for the application of the 

p-version finite element method to the a-Laplacian.

The first section deals with trigonometric polynomial approximation, which 

will then be used in the following section to obtain the algebraic polynomial 

approximation theory.

2.2 A p p rox im ation  using tr igonom etric  p o lyn o 

m ials

The Fourier series expansion of a sufficiently smooth function /  G W k,q(Q) on 

the square S(7r) is given by

O C  o o

f ( x u x 2) =  E  E  A mne'{mXi+nx^  (2.2)
m  =  — oo n — — oo

where A mn are the Fourier coefficients given by
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The partial sum of the Fourier series is denoted by

s N { f )  =  E  E  Amne'imx'+n^ K  (2.4)
|m|<JV \ n \ < N

For numbers N  6 IN and let

CW  = (2-5)

The following results will be useful: from [29, Theorem 4.3.1] for any r r f

-  r  r  V n ,A-xi -  s ) f (rfi\ s , t )d s d t  (2.6) 
7T J  — K J  — 7T

where

For any fixed s

1 j r  ^

D n A * )  = E  ~  cos ( m i - — ). (2.7)
| 4 m  2

["  \VN,r( t - s ) \ d s  =  CN,. +  0 ( N - r ) (2.8)
—7T

and if r  > 1

\ \ V n A l m  < E  T <  CW1- . (2.9)
|m |> 7V 1,1

Furthermore, from [37, equation 4.1]
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and finally from [29, Theorem 2.2.1]

21

|n |< iV L ~ ( S (  t t ) )

sin (N  +  \ ) t
2 sin \ t

dt
L ^ ( S (  t t ) )

(2 .11 )

The following Lemma looks at L°° estimates for such functions / .

Lem m a 1 I f  f  £ WpffR(5<(7r)) then for  0 < k < I

11/ -  M / ) l l w » . - (s W ) <  C ( 1  +  In N)2N - ^  l l / l l ^ . o o , ^

Proof. Choose f t ,  f t  G ^  such that f t  +  f t  <  A: then

7T)) (2 .12)

£><*■*>(/ -  sN(f))

= E  S  + L  S  + L  L  A mn( i m f i {
\ \ m \ > N \ n \ > N  |m |> 7V |n |< iV  |m |< N  |n |> N /

:= I +  11 + III.

Now fix n and consider the term

£  Amn(im )f t (m ) 'V '< ro*1+ni2>
|m |> iV

P i  ( i n  ) P 2 e i { m x 1 + n x 2 )

(2.13)

=  V  f t  r  r  f ( s , t ) ( i m ) h ( i n f 2e~^,ns+nt'>e'{-mX2+nX2)dsdt  (2.14) 
M > / v  4w J J

s i n c e  /  €  W £ £ r ( S ( tt) ) ,

£  f t  J ” J ’  f ( s , t ) ( i m f ' ( i n f 2e - i<-m‘,+n^e,{mxi+nX2)dsdt  =  (2.15)

=  V  f t  T  T  f W lA\ s , t ) t - iim‘+nt)ei(mx' +nX2)dsdt 
, 4ir2 J y

r  e , n ( x 2- t ) d t  J2  —  r  f ^ A \ s , t ) e im{xi- s)ds. (2.16) 
J —7T I 1̂ j* r 27T J— 7T

|m|>AT

|m |>iV

1
2tt
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Using (2.6) for gives

E  Amn( i m f 1(in)l32e'imx'+nx2> =
|m |> 7V

1 r  e.n(*2-< )I  r vNm(Xl -  S) fa'+lĥ ( S,t)chdt. (2.17)
Z7T J —tv TT J — tv

Now summing (2.17) over n : \n\ > N,  for a 2 £ 252" gives

E  E  ^«(™)A(™)&«,|rari+“ !) =
|m|>j'V |n |> iV

- /  T>Niai(x1 -  s )~  f  V Nf0l2(x2 -  t ) f iai+01'a2+f32]{s,t)dtds. (2.18)
7T J  — 7r 7T J  —7r

Hence, for any au, a 2 G 2̂2" : a:i +  a 2 +  +  fa =  U (2.8) gives

HI < ^ (sw)

< C(l  + \ n N f N ^ - ^ \ f \ w^ [s{r)y 

Summing (2.17) over n : \n\ < N,  for r 6 ^  gives

II =  -  r  V n A xi -  s )± -  E  f  ein(x>-‘}f ir+l3' A ) (s,t)dtds
T T J - tv ZTT \ n \ < N J ~ *

< -  r  \ v N,r{ x i - s ) \ Z -  e  r ^ - v ^ (s .t)dt
T T J - tv Z l T  x T 7 ^ t J - tv

Hence, using (2.8)

|n |<iV

(2.19)

ds (2.20)

|II| <  C Nl,
I  _ r  2 tv

\ n \ < N

Using (2.10) and (2.11), for r -f fii + j32 = / gives

i a2tt
—  V  /  f {r+i3l'P2)(s,t)dt
27r , Jt~o

( 2 .2 1 )

L ° ° ( 5 ( 7 r ) )

III! <  CC noCnt / (r+AA> , ,I I —  IV,u i v . r  j  L ~ ( S ( t t ) )

<  C ( l  +  l n I V ) 2JV - < ' - A - & M / l l1,« ,~( s w ) . (2 .22 )
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The third term  III is dealt with similarly. Therefore, combining (2.19) and (2.22), 

for s £ ^  : s -f f t  +  /?2 =  / gives

|B(AA)( /  _ M f ) ) | ^ (sw) < C (1 + lniV)27V-<'-'3'-^> | / | W, . . (SW)(2.23) 

Summing over (3\ , /?2 ’• (3i +  f t  < k

11/ -  M / ) l l w * . ~ ( s W > <  C(1 +  I n N f N ^  | | / | | WM.o=(s(lr„ (2.24)

as required. ■

The following Lemma gives error estimates in the W m,1(0)  spaces.

Lem m a 2 I f  f  £ W lp\;R(S( t t ) )  then 

1. for 0 < k < I

I I / -  M / ) I L m (s W) <  C(1 +  lnJV)aJV-f'-*» | | / I L , , i (S(t)) , (2.25)

2. for  0 < k -f 1 < /

11/ -  M f ) \ \ w ^ h) < C(1 +  In | | / | Iw, , i(5(t)) , (2.26)

where 7 is a line contained in S('k) on which x 2 is constant or aq =  ± x 2.

3. for any x  £ S^tt) and for  0 <  k +  2 < I

| |/(x )  -  8N(f(x) )\ \wkl00{SM) < C N  (/ 2) | | / H v ^ M ( S ( 7r)) • ( 2 . 2 7 )
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Proof.

1. As before, choose /A, f t  G 'Mf such that f t  +  f t  < k then, 

D ^ A ) ( f  -  sN(f)) <

E  E
|m|>./V |n |> iV

+

+

E E  Amn(«m)^(m) /32edmxl+n:r2)
|m|>./V n|< iV

E E  Amn(zm )^(m ) /32 ^(rnxi+na^)
VI
J. |n |> N

LHS(ir))

lms» )

L1(S'(7r))
:= I +  11 + HI. (2.28)

Use (2.6) to obtain for on, a 2 £ X*" : a i +  o 2 + f t  +  f t  =  /

1

c l x \ d x 2

m r  m r  [ /*7T

I = /  / -  Vn^ - s)
J x i =  — 'K J x 2 =  — 7T 7T J S — — -K

-  f ’ V N m (x2 -  t ) f ( ^ + ^ + M ( s ,  t)dtds  
7r Jt=—7r
1  /-TT 1  ,-TV

<  -  \ T > N , a i ( x i - s ) \ d x 1 -  \ T ) N , a 2 ( x 2  -  t ) \ d x 2
7T J  x \ =  — TT 7T J  x 2 =  — 7T

r  r  (2.29)
J t z z  — lT J  S— — TT

Since £>jv,r and /  are both periodic with period 27r and «i +  o 2 +  f t  +  f t  =  /, 

(2.8) gives

■ CV2 +/32)I <  CCNa.CNc,2 /<“■+&•_  iv.Of! 7 V , u 2  J L1(S ( tt))

< C (l+ ln JV )aJV-',- * - * > | / |wr, 1(s(lr)). (2.30)
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Similarly, using (2.6) and (2.10) yields, for any r r f  : iii + S2 +  r =  I,

II =  (2.31)

i~ r  v „ A * * - W ~ r  sin9(jV +J ]tf ir+t)iA)( s , x 2 + t )7T Js— — 7r 7T Jt=-W I s m ^ t
[ T T  /*7T ^  r  7T

<  /  /  ~  \T>N , r ( x i  ~  s ) l
J x - t =  — lT JX'} — — 7T 7T J S  — — 7T

4- f t /
dtdxidx2. (2.32)

1  r *

’ X l  =  —  7T J  X 2 -  —  TT T T  J S  —  —  7T

| / ( r+/?i ,/32)(6 ,^2 +  /)|ds
sin (IV +  | ) /

2 sin 2^

Since and /  are both periodic with period 2tt, using (2.8) and (2.11) 

gives

ii  < ccn,t r  i if3i+r’«/1 = —7T

<  CCV,rCW,o

ft) sin (IV +  f t /
2 sin | /

dt

L '(S (  T T ))

< C ( l+ ln lV )2Ar-( ,- A - &> |/ |l1„-1
( 5 W )

(2.33)

The third term, III, is treated similarly. Consequently, for s £ Z+ : f t  +  

f t  +  S =  /

| £ (ftA )( / - ^ ( / ) ) | tl(sw ) < c ( l  + l n N ) 2N - ^ - M  |/U , ,1(SW)(2.34)

and summing f t ,  f t  : f t  +  f t  < A; gives (2.25).

2. Let 7 be the line contained in S 'ft) on which x 2 is constant and let (3 € :

(3 < k then

L1 (7)
< £ Y  Arnni imf mx\ -\-nx2 )

|m |>iV \ n \ > N

+ £ Y  A mn{ i m f e l mx\ -\-nx2 )
\ m \ > N

V
I

_e_

Z 4 ( 7 )

L1̂ )
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+ E E
m \ < N  | n | > . V

:= I +  11 +  HI.
L1̂ )

(2.35)

<  C C n ,0 i I '^N,aoiyx 2 ’)
j-(ai +/3,a2)

1 7T L°°(7)

Using (2.6) gives for a 1? a 2 E ^  : ot\ +  ol2 +  (d =  I and a 2 > 1,

i =  I -  r  vN,at(Xl ~s) r  vNjln(.r2- t)fa'+i3'‘»)(s,t)dtdi
II 7T J  s = — 7T J t — — 7T

H ( S ( tt) )

Recalling (2.9), gives for all (3 < k gives

< C(l  + \ n N ) N - ^ - ^ \ f \ wl,1{s{T)).

Equally well, (2.6) and (2.8) give, for any v G ^  : v — I — 0,

L H  7)

(2.36)

(2.37)

II = f  % (* !-« ) E  f / '
7T J  S— — 7T , | . ,r Z7T J  t — ~7T

L l ( i )
pir  p i r

^  / /
J t = —ir J s =

< C N C n ,„ f m

1
< CCa,., I  I  -9r E

’ t = —iv J  s =  — ir 67V || n | < 7 V

Jn(x2~t) dsdt

L H S ( i r ) )

< C'(l +  ln7V)Af-(,- 1- '5> |/ |Iy u (SW). (2.38)

Using (2.6), (2.9) and (2.11) gives for <7 £ Z + : cr =  / — /3,

III =

<

1 /•' /*• sin(jV +  _  t) f W , 0 ^ t)dsdtpir  pic

J  s =  — ir J  t — — it v  J s=—K j t ——7r 2 sin 2 ^

—  'P>N , a 2 ( X 2 ~  0  
TV

r* 1
J S =  —  7T TVL ° ° (  — 7 T ,7 r )  J s  =  - 7 T  

C N l + f f . ,  | ( ^ , |

LqsiTr))

=  C ( l+ ln ^ ) iV - < '- 1- « | / | wrl.1(SW).

sin (N  -f |) s
<7s 1 f ( /V )

2 sin | s
Cl o j J

Lq7)

L M 5 ( tt) )

(2.39)
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Combining (2.37), (2.38) and (2.39) and summing over (3 < k gives (2.26) 

for the case x 2 is constant.

Now let 7 be the line contained in S(w) given by Xi =  x 2 = r  and let 

(3 G ^  : (3 < k. Then

U - s n U))
LH 7)

<

+

+

Amn[i(rtl +  77. )]/+ i(w-fn)r
\ ™ \ > N \ n l >  N  Jj

£  e  [Tm + ?l)Y3PHm+n)T
jv )J

^mn['l(?7l -j- n)]/3p*(m+n)i~ 
H < ^ l n j > N  n

V

LM7)

Li (7)

L1̂ )

+

E  E  ^ - E
|m|>AT |n |> 7V j = 0

E  E  a »»E
|m|>AT |n|<JV 3 = 0

m 3 n /3 - 3 e;i(m + n )r

\  3 ) 
(  \

LH 7)

m j n(3- Jet{m+n)T

L H  7)

E  E  E
|m |<iV  \ n \ > N  j - 0

=  I +11 +  III.

P

\  3 )

m Jn J t- ’

L H  7)
(2.40)

Since /  is a periodic function, using (2.6), (2.7) and (2.37)

/ \
I

-  /:
1

4 7 T 2

/J
E
3=0

/?
E  E

|m|>./V |n |> 7V

Jt = — 7T js = — 7T

<  2'JC (l +  lniV)iV-',- I-'3» | / | H„,1(SW).

dr

(2.41)
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Using (2.6), (2.7) and (2.38) gives

/  \
/■TT  '  ^11 = /J T =  —  7T

i  13
E4tt2 j = o

3
E .  E

|m |>iV |n|<JV

r  f (lj3- 3)(sA)e- '{ma+nt)ei{m+n)Tdsdt
J t - - T T  <J S  —  —  7T

dr

( S ( U )  *
(2.42)

Using (2.6), (2.7) and (2.39) gives 

m  -  / „
1 0

4 7 T 2 E
J=0

3

\ ] /
f "  r  f U’0- j)( s , t ) e - {ms+nt)e,l-m+n}Tdsdt

J t =  — 7T J  S  =  — 7T

dr

(2.43)

Combining (2.41), (2.42) and (2.43) and summing over 6 < k gives the 

result for Xi = x 2, the result for X\ — —x 2 follows immediately.

3. Choosing /?i, (32 £ '■ (d\ (I2 < k, then for x =  (xi, x 2) £ *S’(7r)

-  sN( f ) ) ( x u x 2) <

+

£  ^  A mn(im)01( i n ) ^ mxi+nx^
|m|>./V |n|>./V

\ m \ > N  |n |< 7V

Pi  l j n \ l h  e i ( m x 1+ n x 2 )

+ E  E  A mn(im)l3' ( m f 3ei^ +n^
|m |<iV  |n|>./V

:= I +  11 + III. (2.44)

Letting q 2 € X*" : <*i > 1, a 2 > 1 and aj +  a 2 +  3i +  02 =  L Then using
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(2.6) and (2.9) gives

I =
l r
7r

[ V N,ai(xi -  s )d s -  f  V N,a2(x2 ~  t ) f {ai'a2\ s , t ) d t
J  S =  — 7T 7T J t= -  — TT

< (7_/V1-cvlTV1-"2 jOi+di,a2+/32)

<  1(S(T)). (2.45)

L 1 ( 5 (  t t ) )

Letting z/ G ^  : z/ +  f t  +  f t  =  / and noting that v > I — k > 2, 

1 . , 1

\ n \ < N

L H S {  T T ))

II - T  V N,v(Xl -  s ) d s ~  £  r  f ^ i s ^ d t
7T Js= —7r -67T , , . , TJ t =—n

< C N N 1 — 1/ jU+Pi ,fo)

( * » )
(2.46)

where (2.6) and (2.9) have been used.

The third term III is dealt with similarly. Gathering these estimates gives

L ° °  (5 (7 r))
(2.47)

and taking the maximum over f t ,  f t  : f t  +  f t  < & gives the result claimed.

The results given in Lemmas 1 and 2 can now be used to obtain estimates in 

the general Sobolev spaces W h,q(Ll).

Lem m a 3 Let f  G ^Nper{S{^)), q G [1, oo]. Then

1. for 0 < k < I

11/ -  sN( f ) I U ,(S W) < C N - ('-*)(! +  In W)2'! - 1' \\f\\w ,„,(sM } , (2.48)
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2. for  0 < k < I +  -—  ' n

11/  5./v(/)llwfc>9(-y) <

C N
(1 +  lniV)(<* a), q E [1,2] 

(1 +  In N ) 2̂ ~ ^ \  q E [2, oo]
, (2.49)

where 7 is a line contained in S (t t  ) on which x 2 is constant or X\ =  1L.T2.

1/  5AK/)llw*-°°(S(7r)) —

CW
1, 9 £  [1 , 2]

Vr*.9(S(7r))
(1+lnTV )2̂ 1 g E [ 2,oo]

.(2.50)

Proof.

1. Using standard arguments, [14], gives

II f  ~  sN{f)\\wk’2(s(ir)) — C N   ̂ II/ IIwJ’2(s(7r)> (2.51)

Combining this individually with (2.12) and (2.25) and applying a standard 

interpolation argument gives (2.48), for q E [2, 00] and q E [1,2] respectively.

2. From [14, equation 3.19], for m  > |

(2.52)

Since /  is periodic, for any 0 i , /32 6 ^

(2.53)
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Using (2.52) and (2.53), for m  > \  and /?lt /J2 +  fj2 < fc

DW"M U - s Nf )  =  D ^ ’M f - s ND ^ A ) f
L 2(~f) L 2 { 7)

—  ̂ 2Ml/llvrm+ î+̂ 2-2(5(7r)> • (2.54)

Choosing m  +  A  +  02 =  / and summing over all /3i, 02 : f t  +  $2 < & gives

11/ — 5n(/)|Ipv,*>2('v) —  ^ A 2 M l / l l w i -2 ( s ( 7 r ) )  • (2.55)

Combining (2.55) with (2.12) and (2.26) and applying a standard interpo

lation argument gives (2.49), for q € [2, 00] and q E [1,2] respectively.

3. From [14, equation 3.29], for m  > 1 and ( x i , x 2) E S( tt)

I( /  -  s M /) ) ( * i ,^ ) | < CIV-*’- 1' l l /H ^ ,2(s(lr)). (2.56)

Using (2.53) and (2.56), for any /?!, /32 E Z / and m > 1,

|D W uM (f  _  ^ ( Z ) ) ^ , * , ) !  < CAT-*”- 1' | | / | | lym+ft+ft,2(5W) ■ (2.57)

Choosing m  -j- 0\ +  02 = I and summing over all fii, 02 : fii + 02 < k gives 

|f l (ftA )( /  -  sN( f ) ) (Xl, x 2) I <  O N - V - * - * - 1* \\f\\Wm ^ _ , {s(^  . (2.58)

Combining (2.58) with (2.12) and (2.27) and applying a standard interpolation 

argument gives (2.49), for q E [2, 00] and q E [1,2] respectively. ■
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2.3 A lgeb raic p o lyn om ia l ap p roxim ation  on  5 ( 1 )

and T( 1)

The results from the previous section will be used to deduce the approxima

tion properties for sequences {<j)p(u)} of algebraic polynomials to a function 

u £ W m,9(5 (l))  of the form u = ux in (1.17). The methods used to obtain 

the following Lemmas are based on the ideas of Babuska, Katz and Szabo, see 

[14], where the function u must be put in the right form, so that the change of 

variables in the Fourier series will create an algebraic polynomial.

Algebraic polynomial approximation is firstly considered on the quadrilateral 

reference element 5(1).

Lem m a 4 Let u £ W l,q(S( 1)), q £ [1, oo] and let 7 be either a side or diagonal of 

5(1). Then there exists a sequence of algebraic polynomials </>p(u) £ Q(p), p £ IN, 

which are independent of q, such that,

1. for any 0 <  k <  I, q £ [1, 0 0 ]

||u — <t>P(u)\\Wk,q̂ s(i)) — Cp  ̂ MMIw*.«(s(i)) (1 “t" n̂ P) ^ \  (2.59)

2. for I > k -f i

|| U — 4>p{u)\\\Yk,q^ ^

—(I—k——) 11 ||

where 7 is an edge or diagonal of 5(1).

(1 +  Inp){« 1}, q £ [1, 2]
(2.60)

(1  +  l n p ) 2 1̂ - ^ ,  q  £  [2 ,  0 0 ]
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3. for I > k +

llw ~  >̂p(u)\\wk<°°(S(l)) —

Cp ^ k ^  ||u|
1, 9 € [ 1, 2] 

^ . 9 ( 5 ( 1 ) )  S ( 2 - 6 1 )

(1 +  ln p )2(1 <t\ q e  [2, oo]

Proof. Let p >  1, therefore 5(1) C S(p). Since S(l) is convex, from Stein [34, 

Theorem 5] there exists an extension U of the function u onto the square 5(2/>) 

such that

supp((7) C S ( y )  (2.62)

a n d  U € W m'q(S(2p))  w i t h

\\U\\wrn’<i(s(2p)) — ^ llu llwm <?(5(i)) • (2.63)

Let 4> : 5 ( | )  —► 5(2/)) be the mapping

x =  4>(x) =  2/)(sin xi,  sin x 2). (2.64)

Clearly $  is bijective. Furthermore, define V  £ lF m,9( 5 ( |) )  by

V(St) = (£ /o $ )(x ) (2.65)

and observe that supp(V) C 5 (a rcs in |). Hence, V  may be smoothly extended 

to 5 (7r) s o  that it is symmetric across the lines x t =  ± f  • From (2.64) it is clear 

that V  £ Wpjsi*(5(7r)). Moreover,

l l ^ 1l w m>9(S(?r)) — ^  I M I w m-9(S ( l))  ( 2 . 6 6 )
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Let sp denote the p-th partial sum of the Fourier series expansion for the 

function V  on S(7r). Each sp has the same symmetry properties as V. Therefore,

sp(x) =  (<j>p(u) o $ )(x) (2.67)

where (j>p(u) is now an algebraic polynomial of degree at most p.

1. By (2.48), for q £ [1,2], 0 < k < I one has,

| |n — <f>p{u)\\Wk,q(s(l)) — C 11^ _  5pl l wfe.<?(5(7r))

< C p - (,~k)(l  +  lnp)2(t _1)

<  +  ln p )2^ - 11 ||Cri l ^ „ (s(1))

< Cp~^~k\ l  + ln p )2(»_1) IMIiy<,«(s(i,) (2.68) 

where (2.66) has been used. The result for q £ [2, oo] follows in a similar

manner.

2. Denote 7 =  $  1(t)- Then by (2.49), for q £ [1,2] and 0 < k +  ~ < I

||^ — (f>piU)\\wk (̂'y) — ^ _  5pIIw*.«(9)

< Cp~{l~k~ ^ (  1 +  lnp )(t _1) IIV\\wl,Hsi7v))

< Cp~{l~k~ « \  1 +  lnp )(t _1) \\U\\wl,q{s{1))

< Cp~{l~k~1i )( 1 +  lnp)(i _1) |M |VfU(5(1)) (2-69)

and the result for q £ [2, 00] follows similarly.

3. By (2.50), for q £ [1,2] and 0 < k +  * < /

||u — <f>p(u)\\W k,oo ŝ ^  < ^  \ \ V  ~  s p \ \ w k<00{S{Tr))
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< C p - (l~k- ^  \\V\\

< Cp " ’ 2' (2.70)

and the result for q £ [2, oo] follows similarly.

Algebraic polynomial approximation will now be considered for the triangular 

reference element T( 1).

L em m a 5 Let u £ W l,q(T ( l ) ) , q £ [l,oo] and let 7 be either a side or diagonal 

of 5(1). Then there exists a sequence of algebraic polynomials f p(u) £ P (p ), 

p £ IN, which are independent of q, such that,

1. for any 0 <  k < I, q £ [1, 00]

||u -  M u)\\w .h t (i )) ^  CP {‘ k) IMIiy'.«(r(i)) C1 +  (2.71)

2. for I > k + IJ q

-
||^ — fipi11) II w k>

Cp  ̂ ^  llu llwl>«(r(i))<

where 7 is an edge or diagonal o fT ( l ) .

3. for I > k +  -
1

(1 +  ln p ) C  q  £ [1, 2]

(1 +  lnp)2(1" \  q  £ [2, 00]
(2.72)

|u 4>p{u ) \ \ w k’00(S(l)) —

M l- k - hCp q  \ \ u

1, q £ [1, 2]

(l +  ln p )2(1 q £ [2, 00]
(2.73)
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P ro o f. Let u E W l,q(T( 1)) be given. By [34, Theorem 5] there exists an extension 

U of the function u to the square S( l)  satisfying

ll^1lw"«9(S(l)) — C \\u\\WLq(T(l)) (2.74)

By Lemma 4 there exists a sequence Up E Q(p) such that for any 0 < k < I

IIV -  l y „.*(«(,)) <  +  1 +  lnp)2'1- ! ' | | t / |U , (s(1)). (2.75)

Now Q(p) C P(2p) and therefore the required sequence is defined to be the 

sequence <t>2V(u ) — Up and <̂2p+i(w) — p{u )' Observing

||U — ^2p+l||vvfc.9(T(l)) =  II ^  ~~ ^2pIIjvM(T(1))

— \\U — Up Hvvfc><J(T(l))

— 11̂  ~~ Up\\Wk,q(S(l)) 5 (2.76)

the result then follows from (2.74) and (2.75). The remaining cases are similar. ■

Lemma 4 and Lemma 5 can now be generalised to the case when the norms on 

each side are based on different Lq type spaces:

T h e o re m  6 Let u E B7m,r(5 (l)) where r E [1, oo]. Then there exists a sequence

of algebraic polynomials (j>v{u) E Q(p), p E W such that for  1 < g < r  and

0 < / <  m +  2/ r  — 2/q

ll« -  ^(«)llvrV(S(i)) ^  C p -(m- ,+ 2~ 2r (  1 +  lnp)21̂ - 1! ||« ||wm„(5:(1J). (2.77)

Moreover analogous results hold for approximation on the triangle.
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P ro o f. Using (2.59), with q =  1 gives

\\u ~  (f)p{u )\\wl'1(S{i)) —  ̂ (̂1 +  lnp) ||w||jym,i(5(i)) (2.78)

and using (2.61) with q = 1 gives

||u — (l>p{u)\\w i,cô s(i)) — Cp  ̂ ll^llwm'1(5(i)) ■ (2.79)

Therefore, it follows by standard interpolation for any r E [l,oo] that

II" -  ^p(“ )llw‘.'-(S(i)) -  e p- ‘m- ' - a+^ ( l  +  ln p ) ' | |" | |lym,i(s(i)) • (2-80)

It can be seen from (2.59), with q = r, r E [1,2], that

\\u ~  (l)p ( u ) \ \ w l’r ( s ( i ) )  — Cp   ̂ ^(1 +  l n p ) ^  MMIwm-r(S(i)) (2.81)

and with q =  r, r  E [2, oo], that

\ \u  —  4>p ( u ) \ \ w l’r ( S ( i ) )  —  C p  ^m  ^(1 +  lnp)  ̂ r M l w l l w m -r ( 5 ( i ) )  (2.82)

Using (2.80), with (2.81), and interpolation gives (2.77) for the case r E [1,2] 

and the case r  E [2, oo] follows similarly. ■

R e m a rk . For the case 1 < r  < q < oo the following bound can be seen immedi

ately,

Ilu — ^p(u )llwI-r(5(1)) — Cp ̂ ^  IMIwm-9(S(i)) (1 d" 'ir + q  ̂ (2.83)

although this may not be the optimal bound for this case.
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2.4 C ontinuous p iecew ise  p o lyn om ia l approxi

m ation

The results of the previous section will now be used to obtain approximation 

properties for the spaces X p. This is not a trivial m atter, due to the fact that X p 

is a space of continuous functions. To obtain continuity the individual element 

approximations must be “glued” together. The technique used to glue the element 

approximations together follows that of Babuska and Suri [12].

It will be assumed in this and the proceeding chapter, that the spaces X p are 

such that pk  = p for all K  £ V,  i.e. the uniform p-version will be looked at, this 

restriction will be removed in chapter 4, when the hp-version is considered.

The first Theorem in this section deals with the case u £ W m,q(Ti) where 

m  > 1 +  i  and homogeneous Dirichlet boundary conditions are considered. The 

restriction on q will be dealt with to give a global estimate in Theorem 8 and 

then is improved to a local estimate in chapter 4. The generalisation to non- 

homogeneous boundary conditions will be dealt with in Theorem 10.

T h e o re m  7 Let u £ W m,q(0,), q £ [l,oo], m > 1 +  f and assume TD =  0. Then 

there exists a sequence up, p £ IN of continuous pieceuhse polynomials up £ X p
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Moreover, the following global estimates are valid

\\u ~  up\\wl><i(Q,) — Cp  ̂ (1 ~b n̂ P) '9 (2.85)

P ro o f. Firstly assume that K  in the partition V  is a quadrilateral element; 

a sequence of polynomial approximations to u \k  is constructed as

follows:

Since K  is a quadrilateral, it is the image of the square reference element 5(1) 

under the mapping F k ’, s o  define u k  =  u |k ° F k • Let {cDa>} be a sequence of 

approximations to u k  as in Lemma 4, and define lok,p =  £>k 0 E r 1

Transforming the estimates of Lemma 4 to the element K  leads to analogous 

estimates on the error ex,P := u — c*>a> on E .  In general, if elements K  and J  

share a common edge 7 =  K  fl J  then the approximations ujk,v and ujjtP will be 

discontinuous on the interface. It will now be shown how u>k ,p and ojj# may be 

adjusted so that continuity is obtained while still retaining the accuracy of the

approximation. To do this, the polynomial : [— 1,1] —► IR given by

M s )  = ( ^ r ) P (2-86)

will be required, and note that for any q € [1, 00]

L IIV,pIIl9(-i,i) — Cp q,

2. l'0plvv1*«(-i,i) — Cp q 1

3. v^p(-i) =  1 i) =  o.
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Denote, with F k  as before, &k,p — eK,P°Fk. Now the function £>k,p is adjusted

on each edge to obtain a new polynomial vk ,p that interpolates u |a- at the vertices 

of the reference element. For instance, the adjustment at the vertex

A x -  ( - 1 , - 1 )  (2.87)

is given by

a {K,P( x u X 2) =  eK'P( - l ,  - l ) ' ipp( x 1)'il>p(x2).  (2.88)

It is easily checked using the properties of 7/7 that

a ( i )K,P^ - 9 ( 5 ( 1 ) )  “  ^  I I^a ' . p H l ~ ( 5 ( 1 ) )  I W p I I l 9 ( - 1 , 1 )  I I W 1 ( — 1, 1)

— ^V  q IIz,oo(s(i.)) • (2.89)

Construct similar functions for each vertex and define

4

=  + (2.90)
i = 1

It is clear that, the polynomial vk,p agrees with uk at the vertices. Moreover,

^  ^  | 1 _  2 ^

llM — VK,p\\w'><i{S(l)) — \^k p̂\w 1̂ (S(1)) q il^>llz,°°(S(l)) ' (2.91)

Therefore, defining vk ,p = &k ,p o F ^ 1 and mapping back to the element K  gives

1 — 2

\\u — VK,P\\wi,q(K} < \eK,P\\yi,q(K) +  ^ P q !leA',p|lLcc,(A') ‘ (2.92)

Proceeding in a similar manner on the element J  gives the functions vk,p and vj.p 

which agree at the end points of the edge 7 .
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Define the function : 7 —> ]R to be the restriction of vk .p and vjjP to the 

edge 7 i.e.

=  (vk,p ~  vj,p) 17 • (2.93)

This function is then extended onto the element K  as follows. Suppose, without 

loss of generality, 7 =  - F a ' ( t )  and define on 7  by =  e^) o F k - Evidently, 

ê 7) is a polynomial on the edge 7 . Define 0 ^  on 5(1) by the rule

p )  = ^ ) ( Xl)4,v(x2). (2.94)

Notice that 0 ^  is an extension of vanishing on the remaining edges of 5(1). 

Furthermore,

<  C (p 9 ||eA',p||^q(7) T P q (2.95)

Translating back to K  gives 0 ^  = 0^)  o F ^ 1 with

(2.96)

and for j  — 0,1

rfr) < lleFPII (2.97)

It is unnecessary to extend e(7̂  onto J . The process is repeated for every edge of 

the element K  and the function uk,p is defined by

UR,p =  I'K.p -  ^ / 3 h ) . (2.98)
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It easily verified that uk,p agrees with u j tP on the edge 7 . Consequently, after 

dealing with all inter-element edges, we may define a function up £ X v whose 

restriction to any element K  is uk,p- Furthermore,

||w ~  U K , p \ \ W l , q ( K ) < IIU — V K , p \ \ W l , q ( K ) + C ^ 2  W 1’Q( K)  (2.99)

and hence using (2.92), (2.96), (2.97), (2.99) and all the properties of Lemma 4, 

the result follows as claimed, for the case of quadrilateral elements.

The treatm ent of a triangular element K  is similar, except that the corrections 

at the vertices and edges are slightly different. Construct W k , v  as in the case 

of quadrilaterals using instead Lemma 5. The correction at the vertex A\ — 

(—1, —1) is given by

^ > ( 24,^ 2) =  ~eA>( - l , - l ) ^ s(x 1 )ps(x2){l -  x-l) (2.100)

where s — [(p—1) / 2] and the extension (I associated with the edge 7 =  { ( 2 7 , — 1) : 

— 1 < Xi < 1} is

fiO) =  -  x 2 )T<(xl ) +  (1 -  x x)C(xi -  x 2 -  1)}. (2.101)

The remaining cases are similar. It is easily verified that the functions have 

the required properties. ■

T heorem  8 Let u £ W m,q(Ll), q £ [l,oo]; m  >  1, and assume TD =  0. Then 

there exists a sequence up, p £ IN of continuous piecewise polynomials up £ X p
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Proof. Because of Theorem 7, only the case m £ (1,1 + 1 /q] need be considered.

Firstly, from Bergh and Lofstrom [19, Theorem 6.4.5, equation (4) and Theorem

6.2.4, equation (9)] it can be seen for 0 = m — 1 that

C B ^ ( 0 ) = W 2 « ( n ) ) 9t00 (2.103)

where 7 2 ^ (0 )  is the Besov space defined in [19].

Therefore, using [19, page 49, Top] and [19, Theorem 3.5.2] u may be expressed 

in the following form, for any t > 0

u = vi(t) + v2 (t) (2.104)

where iq £ VF1’9(0 ) and v2 £ VF2,9(0 ), such that

llui|lw'1-«(n) — ^  IMItvm-9(o) (2.105)

llv2||vv2,9(n) — Ct  IMIw^.qn) (2.106)

where C is independent of u. Then by Theorem 7 there exists a continuous 

piecewise polynomial up such that

11̂ 2 — up\\w1’<i(n) — Cp 1 ||v2|lw2,q(Q) < Cp t ■ (2.107)

Choosing t — \  and using the triangle inequality gives
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2.4.1 N on-hom ogeneous Dirichlet boundary data

So far the functions u that have been looked at have had no Dirichlet boundary 

conditions imposed, i.e. Tp =  0 or u =  U\ in (1.17). If the final approximation 

results are going to be applicable to the problem (1.9), it is clear that the case 

of non-homogeneous boundary conditions must be considered. Therefore, it will 

now be assumed that the function u =  u\ +  u 2 in (1.17). It is clear that, unless 

the function g in (1.17) is a polynomial of degree no more than p on each element 

boundary, then it is necessary to approximate the boundary data.

The Dirichlet data g must be approximated by a polynomial gp such that 

9 p\~KnrD a polynomial of degree no more than p and is easily constructed on 

a machine. It would be nice to use the approximations <j>p(u) given in the pre

vious section, since these approximations will not produce any degradation in 

the approximation. However, this would not be a practical method since the 

polynomials 4>p(u) are not easily constructed on a machine.

Once the function gp has been constructed, the problem is then to estimate the 

accuracy that may be obtained by approximating u with piecewise polynomials 

up <G X p, such that up =  gp on the Dirichlet boundary.

Denote the Dirichlet boundary for an element K  by 7 =  T& H K ; without loss 

of generality, assume that 7 =  (—1,1). The Dirichlet data for the element K  is 

constructed as follows.
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The p —th partial sum of the Chebyshev series is given by

ap{9 ] t) = '%2 A kTk(t) (2.109)
k = 0

where Tk is the k —th. degree Chebyshev polynomial and the coefficients are given

by
2 r1 dt

A k = — (2.110)
7T J- 1 VI -  t

Bounds for the rate of convergence of the partial sums of the Chebyshev series 

are now considered.

L em m a 9 Let g E W l,q( — 1,1) where q E [1, oo]. Then for I > 0

II# -  MsOIIlv-i . i )  -  +  lnp)p_/ \\g\\ŵ (-i,i) (2.111)

and for I > 2 — l /q

lls -  M s O l l v y i , <  C{  1 +  lnp)p_(i_2+’ ) l l f f l l (2.112)

Proof.

1. Following [33, Theorem 3.3] for m  > 0 and q E [1, oo]

II# ~  crp ( # ) l l w m ' 9 ( - i , i )  =  11  ̂ ~  *b ‘Pp — &p{g) IIvvm ^ ( —1 ,1)

— II# ~  ^p T Vpifp — # )I I 1,1)

^  II# — (i)p\\wm’(i(-i,i) "b llcrp(<̂p — # )llwm’«(-i,i) • (2.113)

Choosing m  = 0 and q =  oo in (2.113), and using [33, equation 3.27, page

133] gives

I I #  ^ p H l ^ - I , ! )  —  I I #  ^ p I I l ° ° ( - 1 , 1 )  ^  f t  J q

sin((2p +  l ) / 2)# d9
sin(#/2)

< (1 +  CPto) \\g — < ^ p | | 1?1) ’ (2.114)
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where in the last inequality (2.11) has been used. For a q E [l,oo] there 

exists a polynomial, of degree no more than p such that

II# ^ p  I I (—1,1) — C'P  ̂  ̂ l l#l l (2.115)

for all 0 <  k <  /. Choosing k = 0 and q = oo in (2.115) and combining this 

with (2.114) gives

lls ~  <  C(1 +  Inp)p-‘ (2.116)

2. Let 0 =  arccos#, x £ ( — 1,1). Then

1 A
(2.117)

Hence choosing m  = 1, q = oo in (2.113) and choosing k =  1, q = oo in 

(2.115) only the following need be considered,

d
dx

[ap(<t>p -  g)(x)\

1 r* sin ((2p +  l ) / 2)#

1 d
sin a da

{<rp(<t>p -  #)(cos a)}

i27r J o  s in as in (# /2)

~  s )(cos (0 +  “ )) +  (0p -  s )(cos (0 -  a ))]d0 (2.118)

Now

d_
da

1 ( 9  ~  <M(cos ( 6  +  a)) +  - { g  -  <£p)(cos ( 0  -  a))] =

1 ( 9  — ^p)^008 (0 +  a )) +  ( 9  ~  </>p)'(cos ( 0  — a))] sin a  cos # +

[(9 ~~ <̂>p)/(c os (0 +  a )) — (# — 4>pY (cos (0 — a))] sin# cos a. (2.119)
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Since g € 1,1)

I(S -  <M'(cos ( 0  +  a)) -  (g -  <j>p)\cos (0 -  a ))| <

2 | | (</ -  Is i n a l • (2-120)

Combining (2.113), (2.115), (2.119) and (2.120) with I = 1 and 2 gives,

d
f a M ' t ’p ~  9)(x)} <

7T
I K f f  -  M "  I

f sin ((2p +  l )/2 )#
1,1). \Jo sin(0/ 2)

where (2.11) has been used in the last inequality.

3. Observe that

where

Dp(a) =
sin (p -f l / 2)a  

sin a / 2

and thus, as in the L°° case,

lls -  <Tp(sf) 1,1) ^  c (l +  inp)p- ' Iblliycn-i.n

de

(2.121

( 2 . 122 )

(2.123)

(2.124)

4. Choosing m  = 1, q = 1 in (2.113) and choosing k = 1, q = 1 in (2.115) the 

following need only be considered

1 yir sin ((2 p +  l ) / 2)$
sin a sin(#/2)

x
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d
-fo[ (^p ~  9 ) { ^ s ( 0  +  a)) +  (</>p -  g)(cos { 0  -  a))\d0 dx

<
L

* 1 
2 w

sin ((2 p +  l ) / 2)0
sin(0/ 2)

x

\ Io  ^ J a ^ p ~  9^ cos(® +  a ^l +  -tf)(co s(0  -  a ) ) |) d a j  d0(2.125)

Since ^(<^P — <7)(cos (0 — «)) and — </)(cos (0 +  a)) are 2 n periodic

and the kernel is 2 tt periodic

| CTp{(f)t
1 r7r

< c ~  y_

r  ®
J-TT dc

sin ((2p +  l ) / 2)6>
sin(0/ 2)

dO

>p — g)(cos (a )) |d a

< CCPio \-^{(j)p -  g)(cos (a))\dct 

— C C p f i  \\4>p —  ^ I I - 1 ( —i , i )

< CCpfip - [l- 1] |M |w,.i(_lfl) (2.126)

where (2.11) and (2.115) have been used.

The claimed results then follow by using interpolation on the four above results. ■

Comparing the results of the previous section and the results for Chebyshev 

approximation, it can be seen that the p—th partial Chebyshev expansion of 

the boundary data g does not give optimal rates of convergence. The expected 

rate would be 0 (p~^l~1̂ ) for approximation in the space — 1, 1) when the

function g £ W l'°°{ — 1,1). At this moment, there does not seem to be any 

practical method of constructing a polynomial approximation which will give 

optimal rates of convergence in both L q and W 1,q norms for all values of q. The
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treatm ent of non-homogeneous boundary conditions is a non-trivial m atter even 

in the case q = 2, see Babuska and Suri [13].

The actual approximation gv to g on 7 is taken to be

9p(t) = { g ( - 1) -  ° P{g', +  {^(1) -  <Tp(g', *) +  ov(g; t). (2.127)

Constructing similar polynomials on each boundary 7#  =  {x : x E K  nT ^}  gives 

a continuous piecewise polynomial approximation to the Dirichlet boundary data.

From the above Lemma and Theorem 8 the following Theorem may be ob

tained.

-LI _ =-T h e o re m  10 Let u = ui~\~u2 be given by (1.17) and assume g E W  ^ (T # )  

where q € [l,oo], m  > 1 and g is the trace of u on r ^ .  Then there exists a 

sequence up E X p of continuous piecewise polynomials such that up = gp on the 

Dirichlet boundary Td. Moreover, the following estimate holds

11“  -  ^  1 +  ln p )2|1_«l{||u|lw'm,S(n) +  llsllH,™+1- | , t(rD)}-

(2.128)

P ro o f. Let up be a sequence of approximations to u as in Theorem 8. Let K  be 

any element having an edge on the Dirichlet boundary. W ithout loss of generality 

we may assume tha t K  is the reference element and the Dirichlet data is on the 

boundary 7 =  {(#1, - 1) : —1 < x\ < 1}. Let vp be the polynomial

Vp(x 1, x 2) =  up(xi, x 2) +  ( < 7 p ( g ;  zi) -  Up{x 1, - 1  ))ifp(x2). (2.129)
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Following steps similar to those in the proof Theorem 8 and using Lemma 9 leads 

to the estim ate

llu  — vp\\w'i-’<i(K) — C — ( l+ ln p)p  ̂  ̂ ‘ (2-130)

The proof is completed by applying exactly the same procedure used in the proof 

of Theorem 8 to adjust vp and obtain a continuous piecewise polynomial. ■



C hapter 3 

The p-version A pproxim ation  

T heory for Singular Functions

For the main part of this chapter the functions to be approximated using piecewise 

continuous polynomials will be of the form u = w3, where u3 is given by (1.20). It 

was shown in chapter 1, that when the linear elliptic problem was considered the 

rate of convergence for the p-version, for functions given by u3, was twice that of 

the /i-version, see (1.35). The main aim of this chapter is to generalise this result, 

to the Sobolev spaces q € [2, oo). The method of proof used will follow

closely the analysis given by Babuska, Szabo and Katz [14]. They obtained an 

estim ate for the error e of the form

lle llw1'2(n) — C(e)p + (3-1)

where e > 0 is arbitrary. As was the case for the result given in chapter 1, the 

presence of C(e) is of some concern, since the analysis suggests that it could blow

51
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up as 6 y 0. The e was later removed in analysis by Babuska and Suri [11, 

Chapter 5] involving the use of orthogonal polynomials, in the Hilbert spaces 

VU1,2(S7). Unfortunately, this method is of little use for the analysis in the spaces 

W 1 ,g(Ll), q 6 [2, oo) since, the orthogonality of the polynomials is lost. The 

following work will extend the results given in the previously mentioned works, 

to the spaces W 1 ,q(ft), q E [2, oo). However, the final result will involve e since, 

the method of proof will follow that of Babuska, Szabo and Katz [14].

The first section will deal with the regularisation of the true solution. In 

the second section these regularised approximations will be approximated using 

piecewise continuous polynomials. In the final section the general uniform p- 

version estim ate will be given for all functions described by (1.17).

Throughout the following two sections only one singular function of u3 will 

be considered, i.e. M  =  1 in (1.17). Therefore, the function to be approximated 

will be given by,

u = c((r)rxg( \ log r |)0 (0 ), (3.2)

where g and £ are given by (1.17) with the subscript i dropped and 0  is a smooth

function satisfying 0 (0) =  0 for 6 < 0O and for 9 > |  — 0O, where 0O G (0, J ) .  H

will also be assumed from here on that, g( \ logr|) satisfies

f R letl lo g r |) |r -"  dr <  C g ( \ log (3.3)
Jo

for any p < 1 and R  > 0.
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3.1 R egu lar ised  approxim ations to  singular func

tio n s

Following [14], firstly create a family of regularised approximations {uA : 0 < A < 

1/2}, that approach the singular function u as A —> 0. Then A will be chosen to 

be a specific term  dependent on p such that the rate at which uA approaches u 

is sufficiently fast.

For p > 0, let S(p) be the square

S(p) = { ( x i , x 2) : 0 < xi < p\ 0 < x 2 < p} (3.4)

and let x  : [0, oo) —> 1R be a smooth (C°°) cut off function satisfying

0, r < 1/2
X(r) = I . (3.5)

[ 1, r > l

The family then consists of functions of the form

uA(x) =  x(|x |/A )iz(x) (3.6)

and has the following key properties

1. uA £ C'°°(5'(l)) and uA(A) =  0, where A is the position vector of the 

corner.

2. for some k > 2

supp uA C R k fl 5(1/4), (3.7)

where

R k = { x  : x i / k  < x 2 < kx i )  (3.8)
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Asupp u

Figure 3.1: The support of uA

see Figure 3.1.

3. there exists a non-decreasing, non-negative function C(-) such that for all

x  € 5(1)

|_DauA(x)| <  C daD ^dlog A |)m ax{m in(xi,a;2), A}“ (,a|_A) (3.9)

for all 0 < A <  1/2 and all x  G 5(1) where (a) =  m ax(a,0).

Elements of the family {uA} approach the singular function u in the following

sense:

L em m a 11 Suppose that u is given by (3.2). Then

< C g (\log A D A ^ '1- 2̂ ) (3.10)u — uA
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Proof.

u — u J Qf  K1 -X (|x |/A ))w (x ) |9dxJ 11

+ /  |g rad  ((1 — \( |x |/A ))w (x ))|9 dx
J  Q

< C U  r  !«(»-. 6>)|, (l +  C A ~ q)r drcl#Jo Je~o

+C [ f  |g rad  u(r, 9)\qr drd0 
Jo Je-o

C f  {|<?(| lo g r|) |9r gA(l -f C A ~ q) +  p x~1'>q}r dr. 
Jo

Therefore, (3.3) gives

u — u~

taking the q—th root on both sides of the above inequality gives the required 

estimate. ■

3.2 P o ly n o m ia l approxim ation  to  u A

In this section it will be shown how well piecewise continuous polynomials of 

degree at most p in each element approximate the regularised function uA . To 

do this the following lemmas will be required.

Let $  : (0, | )  x (0, | ) —>(0,1) x (0,1) be the bijective map given by

$ ( x i , x 2) =  (sin2 a?i,sin2 x2). (3.11)

Define A =  a rc s in y A /2  and note that A < C A?, since A € (0, and
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A* , .
s  T r r a ^ ' -

L e m m a 12 Let v £ W 2 /q,q(T ) , q £ [ 2 , o o )  where T  C R K Pi 5 ( 1 / 3 )  and define

v = vo<!> : T  -> R  a n d T A = T D  5 ( f ) .  Then v £ W 2^ q( T ) with

~  I M I w ' 2 / q . q ( 2 ’) ( 3 . 1 2 )

and

I I x , I I w i . 9 ( t / t a )  —  C A .  2  ̂ ^  \ \ v \ \ w i , < , ( f / f 2 )  • ( 3 . 1 3 )

P ro o f. F i r s t l y  c o n s i d e r  ( 3 . 1 2 ) ;  f r o m  [ t h e o r e m  7 . 4 8 ] [ 1 ]  f o r  q £  [ 2 ,  o o )

( " f  K x ) -  ^ ( y )[g ^ 1/9
t Jt | x  — y | ‘

«  N i l ,  ,t , + L  T  5 2 5  d x d y  (3.14)

Firstly consider bounding the norm ||u||L<?̂ ;  using Holder’s inequality, with j  +  

L = l , t  = q + 1 , gives

f \ v \ q dSt = [  M 9————;——— dx
j t  J t  I sm 2.i’i sm 2̂ 21

< ( /  |u |9*dx^ ( /  | sin 25i sin 2^ 2|_i dx^ . (3.15)

The second term  need only be considered, for the case x 1 and x 2 are small,

r , r
j  | sin 2^i sin 2^21-  ̂ dx % J xfi  x 2 2 dx. (3.16)

Since t' =  < 2,<7

J  | sin 2aq sin 27?2|~* dx ~  C'. (3.17)

Consequently
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Using the Sobolev Embedding Theorem, see [1, theorem 5.4,equation 6j gives

W 2l q'q{ T )  ^  L qiq+1) ( 3 . 1 9 )

and so

IM|L*«+1)(T) —  ^  IIv llw2/9-9( T )  • (3.20)

Hence,

lul’ dx < C |Mli,(„+1)(r) < C I ll 'll^ /,,,(!■) • (3-21)

Furthermore from (3.15)

ll^llL‘?(T) — IMIl<?(T) • ( 3 .2 2 )

Next consider

f  f  |h(x) -  v ( y ) I9 sin 2^1 sin 2£2 sin 2i/i sin2y2 r  n  944
Jt  Jt  ((sin2 75 — sin2 y-\ )2 T  (sin2 x 2 — sin2y2)2 )2 ^

' t  J t  | x  — y|  

f  f  l^(x)
'T Jt ((sin2 £1 — sin2 i/1)2 +  (sin2^  — sin2^ ) 2) 

Thus it will suffice to show that

1 sin 2^i sin 2^2 sin 2Ji sin 2^2 (3.25)
|x  — y | 4 ((sin2 x\ — sin2 y i ) 2 +  (sin2 x 2 — sin2 y2 ) 2 ) 2

Firstly note that, for all (Tfi ,^) € T

sin X\ ,ooa\——— % 1. (3.26)
sin x 2

To show that (3.25) is true, consider these two cases,

1. Let y  — ► x / 0 .  Denote x  =  (34, .t2) and y =  (^i +  Vi^ 2  +  ^2)- Using

(3.26) gives

| x — y  |4 sin 2 x\  sin 2 x 2 sin 2 yi sin 2y2
lim

f Z k  ((sin2 24 -  sin2 yx)2 + (sin2 x 2 -  sin2 y2)2)2
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(r/i + v2)2lim
m - 0 , 77 2 -0  ( 7 / 2 ( 1  +  7/1 )2  _|_ _j_ 7/2) 2 ) 2

lim
m - + 0 , 7 7 2 — 0  7 / ^  - f

(3.27)

2. Now let x, y  — > 0. Using (3.26) gives

lim
|x — y |4 sin 2 x\ sin 2;?2 sin 2 yi sin 2y2 

x,y—o ((sin2 ah -  sin2 ^ ) 2 -f (sin2 x 2 — sin2 y2 ) 2 ) 2

r ((®i -  yi)2 + (5*2 -  y2 )2)2xix2yiy2 

x l ' o  ( ( ^ - y ?)2 +  ( ^ - g | ) 2)2
r  ((£i -  ? i)2 +  (^2 -

x J £ o  (2? -  £i2)2 +  ( ^  -  5I)2
y ( î -  y i f x i y i

x ^ o  (̂ 1 -  yi)2( î + ??l)2

x,y-*o (®i +  yi)
C (3.28)

Hence, the first result follows.

For any v € VU1,9(T), q £ [2, oo)

/ |u |9dx =  I  |u |9 sin 2a?i sin 2(r2 dx
J t / t a  J t / t a’T / T A

(3.29)

and for z =  1,2

iT / T A 5a; v
dx - j tT / T A

sin 2.71 sin 2 x 2

sin 2 x.;q
dx (3.30)

Combining these results with (3.26) and the fact that A =  A 2 gives (3.13).

L e m m a  13 For any k >0 ,  define uA = uA o 3>. Then uA £ W k,q(S( 7r /2)) and

u Wk’S(S)
< C(k)g(\ log A |)A - dfc/2-A)- 1/9) (3.31
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P ro o f. Let A £ (0,1/2) be fixed. Set A = arcsin y j A / k . From [27, page 19, 

section 0.43] for any index k =  (k i ,k2)

< 9 ^ U A t x )  k \ k 2  1 i p + /  A(x) ^  (3.32)
d x ^ d x ^1 j=1 /=1 jU ldx idx

where

W ^(t )  :=
3 =  1

( \
k

V /
sin2(m — sin2j t. 

dtn

Then from [12, Lemma 4.3] for m in(^i,.T2) > p and property 3 of

d x Y 'd x ? 3 

and for x  £ S(A )

Q \ m \ ~ A m  1 7712

(3.33)

< C(|m |)g(| log A|) min(a?i, 72) 2'^ (3.34)

< C (m 1,m 2) E E  g (| log A|)2?(2j “rai>2 ^2'- ” 2)A -<'<J+,- A). (3.35) 
i=i =̂1

The function uA is supported on the set

R  fi (<§)(7r/6) C Gi U G2 U g 3 (3.36)

where

Gi = R n ( S ) ( A ) . (3.37)

G2 =  {(^1,^ 2) : A < xi  < 7r/6,p < x 2 < xi] (3.38)

and

G3 = {(®i,52) : A < x 2 < 7r / 6,/i < x\ < x 2}. (3.39)

The contributions from each subset will be considered individually. The fact that

A < C A 2 will be used.
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1. On subset G\ using (3.35) for any \m\ < k gives

L

<9lml uA
dx\dx 2

d x ^ d x ^ 2

,,vi • ' * X f \  n / \

< C ( m i ,m.2 )g( | l o g A |) £ £ A - * + '- '>  /  x f ^ d x j
j=i 1=1 Jo Jo

m  i mo

mi 7712
< C(?ni, m 2) ^  ^ ^ ( 1  log A |)A 9̂ +/ A)+f(2j mi)+f<21 m2)+i 

3 = 1 1=1

and

(j +  / — A) +  - (2 j  — nii) +  -(2 / — m 2) > —(— — A) (3.40)

gives

Wk’9(G!) < C ^(|lo g A |)A ^ 2A- ^ - +1/9 (3.41)

2. On the subset G2

|Dmu A\ < C(m )S(|lo g A |)x J<H"2A> (3.42)

and so

D mu A q
lhg2) < C(m)g(\ log A|) x 2^m ̂ 2X')dxidx

giving

< C(k)A~{{k/2~x)~l/q).
W k ’* ( G 2 ) ~  v ’

(3.43)

3. The treatm ent of G3 is essentially the same as G2.

Summing contributions from each of the subsets completes the proof.
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The following Lemma can now be stated

L em m a 14 Let uA be a regularised singular function given by (3.6) and suppose 

k > 2A +  2q, q £ [2, oo), and that uA = 0 on the lines X\ = k x 2/2 and x 2 =  kxi /2 .  

Let K  be an element with one vertex at A, and two of its sides lying on the lines 

Xi = k x 2/2 and x 2 =  kx \ /2  and satisfying K  C R K H 5 (1 ) .  Then there exists a 

sequence of polynomials uA of degree p , with uA = 0 on the edges of the element 

K  and

A Au -~ UP W X« ( K )
< C(k)(  1 +  Inp)2{1~2/q)g( | log A |)A _(^“a_1/9)

p - ( k - l ) ^ - ( l / 2 - l / q )  p - ( k - 2 + 2 / q ) A - { l - 2 / q )  ^ - ( * - 2 ) 1

P ro o f. Firstly note that, by definition, supp uA C R n. Let K k be an open 

polygonal domain such that K  C K k C 5(1 )  and supp uA C K k

Extend the function uA to the square square S(tt) as an even periodic function 

so that the extended function is symmetric on the lines Xi = 0, ± 7r for i = 1, 2. 

Let sp(fiA) be p —th  partial sum of the Fourier series expansion of uA. Then by 

Lemma 3 and Lemma 13, for any 0 < m < &, k > 2A + 2/q

A Sp(uA)

< C(k)( l  + lnp)2 i<1 - 2/q)p - {k- m>>

< C ( k ) ( l A \ n p ) 2{1- 2/q)p - ik- m)g{ \ \ogA\)A - { 2

Wk^{S{ f ))
- ( h - X - l / q ) (3.45)

By Lemma 3

UA — 5p(fiA) L-(5( §))
< C(k)(l  + ln p ) 2(1- 2/q>p-{k- 2M g ( \ lo g A \ )A - (- i - x- 1/,' )

(3.46)
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From Schmidt’s inequality, Markov’s inequality and using interpolation the fol

lowing inverse estim ate holds: let v be a polynomial of degree p and fI be an open 

domain with diam(fi) =  h , then for q € [2, oo] and k > m > 0

— Ch   ̂  ̂  ̂ IMIvvm<qn) • (3.47

Let = sp(uA) o $  1 which, by symmetry i s  an algebraic polynomial, the 

restriction of vA to the element K  also denoted bv vp satisfies

A Au - v p < A Au - v v nrl'9(A'A) + A A
U - V p (3.48)

Each term on the right hand side of (3.48) will be considered individually. Since,

e  0 on K A, using the inverse estimate (3.47) with h =  A, Lemma 12 a n d

(3.45) gives

A A u — < A
W1’9(A'a j

■2/9) A A
U -  V p< Cv2{1~2/q) A "(1'

— ^  ” P W 2l w { K

< Cp2(l-2/9)A - ( l - 2/,) , -A_ (fiA) _
— r  P\  )  u , 2 / q , q ( 5 ( | ) )

< C(k)p-(k~2+2lq) A - (,- 2/,)(l +  lnp)'2(1- 2/,)

f fd lo g A D A -'i-" -1/” . (3.49)

For the second term  of (3.48), using Lemma 12 and (3.45) gives

<  h A - . s p ( n A ) W^HS( §))

< C{k)p-(k- 1} A - {1/2~1/q)(l T \ n  p)2(1~2/q)

#(|logA |)A (3.50)
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Combining (3.48), (3.49) and (3.50) gives

63

wl,q(K) ^  C(k)(l  + \np ) 2{1 2/^ ( |lo g A |) A  A l/q)

p - ( k - l ) ^ - ( l / 2 - l / q )  _j_ p —( k —2 + 2 / q ) ^  — ( l —2 / q )  ( 3  5 ^

Estimate (3.46) is preserved under the transformation. Therefore,

<  C(k)( l  + l n p ) 2(1- 2/,)p ' (*:‘ 2/ '')< /(|logA |)A -( = - A- 1/?). (3.52)A A
U  - V p

L ° ° ( K )

Assume that K  is a quadrilateral element; the proof for triangular elements is 

similar, as in the proof of Theorem 7 construct a bilinear bijective map Fk  from 

the reference element 5(1) to the element K  such that, for all u E W m,q(K)

llwllwm-9(A') ~  ll^llwm-«(5(i)) (3.53)

and denote the coordinates in the reference element by (^1,^ 2) =  1,^ 2)

and u = F^ 1 o u. Now adjust vA to give a new polynomial wA which vanishes 

at the vertices. A typical adjustment, say, at the vertex ( — 1, 1) on the reference 

element is given by,

oti{xu x 2) = Vp(-1,  (3.54)

where 1 is given in the proof of Theorem 7 and the fact that uA =  0 on the 

boundary of K  has been used. Denote by cq, i = 1, . . .  ,4 the adjustments at the 

vertices of K.  Therefore, from (3.51) and (3.52)
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A A■u — Wn < 11/A A — v~~P WYq(K) — P

< A AU — VV w m  (Ay

\ W Y q ( K )
1 = 1

A A
r  ~ vp L°°(A')

+ c £
i = 1

< C( 1 +  lnp)2(1“2/,?)p"{A:" 2/<?)̂ (l log A |)A -( t - A- 1/g)

<  C(fc)(l +  lnp)2̂ 1_2^ ^ ( |  log A |)A _ 2̂- a -1/9) 

p - ( k - l )  ^ - ( 1 / 2 - 1 / q )  _|_ p - ( k - 2 + 2 / q ) ^ - ( l - 2 / q )  +  ^ - ( k - 2 / q ) }  _ ( 3 5 5 )

To obtain the desired polynomial, adjustments on the edges of the element 

must now be done. These adjustments are slightly different to those of Theorem 

7. Consider the polynomial (3p given by

Pl(Xl,X2 ) = (3.56)

Transforming this polynomial to the element K  and denoting (3p = Fk  0 (3̂ , it is 

clear that, on the boundary of K , (3p(x i, kxi/2)  =  wp (x i, kxi/2)  on one side and 

is zero on all other sides of the element K . Subtracting this polynomial from wp 

gives a polynomial which is zero along the side 2 xi = k,X2 and

•A ( w f  — l3l) <V P • P> WYq(K) ~

Using the previous results the following estimate holds for (3p,

< C w

u + (3.57)

P i W ' « { K )

< C

W ' « { d K )

W Y < i ( d K )
+ A AU - V p

< Cp2{1- 1/q) +

L ° ° { K

A  A
U ~ V p L - ( A ' )
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uA — +  II uA — V*
p \\w 2/ 1 ’« ( K k ) II P L ™ ( K )

<  C p 2(1~1/q)
‘ \t VV “ I ' i ' V  \ I \ K ) II

<  C(k)(  1 + lnp)2(1- 2/,)9(l log A |)A “(t - A_1/',)

p - ( f c - l ) A - ( l / 2 - l / , )  + p - ( t - 2 + 2 / , ) ^ - ( l - 2 / 9 ) +  p - ( k - 2 ) 1  ̂ ( 3  g g j

where the fact tha t q > 1 has been used.

Hence, denoting by /?*, i = 1, . . .  ,4, the similar adjustments on the four sides 

of K  and letting u^ — J2t=i ftp gives a polynomial which is zero on all the

sides of the element I\ and combining the above results, satisfies the required 

estimate (3.44). ■

The main result of this section can now be stated:

T h e o re m  15 Let K  be an element with a vertex at the origin and two of its sides 

on the lines 9 =  9q and 0 = 7t /2  — 90 where 0 < 90 < tt/4. Suppose q £ [2,oo) 

and let u be given by (3.2), with X > 1 — 2/q and

u (r, 9q) =  u(r\ tt/2 -  6 0) = 0

(3.59)

and

supp uA C K-Qq , (3.60)

where K do = (I< U {(r,6>) : 90/ 2 < 9  < t t /2  -  90/ 2}) n 5 ( 1 / 4 ) .

Then there exists a sequence of polynomials up of degree p that vanish on the 

boundary of the element K  and given t > 0 there exists a k0 > 0 such that for all
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k > ko

11“ -  “ J vKMIA-) < C (*)(l + hlp )2(l-2/?)p-2(-'-l+2/?-0. (3.61)

P ro o f. From Lemma 11 and Lemma 14 there exists a. sequence of polynomials 

Up such for all k > 2A 4- 2/q

u  — u A < u  — u A 4"
A A

U — U,nV P W 1’S(I\)

< Cg (| log A |)A a- 1+2/<' +  C(fc)(l +  In p)2(1- 2/?>ff(| log A |)A ~(5_a_1/’>

p - ( k - l )  ^ - ( 1 / 2 - 1 / q )  +  p - ( k - 2 + 2 / q ) ^ - ( l - 2 / q )  +  ^ - ( A r - 2 ) j  _ ( 3 ^ 9 )

Now for given e > 0 there exists a k0 such that

k0 - 2

** k0 / 2  - l / q ~  ~ €‘

Choosing A =  gives for any k > k0

(3.63)

\u ~ up\\ŵ <i(K) ^  Cg{\\ogp\)p 2(A 1+2/9 e) +

C(k)(  1 +  lnp)2̂ 1_2/9^ ( | logp|)pfc-2-2A+€

< p - ( k - l ) p - 2 ( l / q - l / 2 )  +  - ( f c - 2 + 2 / g )  - 2 ( 2 /< 7 - l )  _j_ - ( * - 2 )

< C(k)( l  +  In p ) 2 ( l - 2 / 9 ) p - 2 ( A - l + 2 / g - e) (3.64)

as required.

R e m a rk  16 When the element K  is the union of two elements K\ and I{ 2 then 

similar results to those of Lemma 14 and Theorem 15 hold. Although the final 

polynomial is zero on the boundary of K  and not necessarily on the interelement
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boundary AT fl AT • The reason for this is that no adjustments of the initial ap

proximation Vp , given in the proof of Lemma l j ,  are required on the interelement 

boundary other than those given by the vertex adjustments, which do not effect 

the result since uA( A) =  0 for every vertex A ,  of the elements I\\ and AT*

3.3 T h e convergence rate

The results of the previous two chapters are now joined together, to give the 

general uniform p-version estimate for functions u given by (1.17).

T h eo rem  17 Let u be of the form described by (1.17), with sufficiently smooth 

boundary data. I f  q £ [2, 00) and A > 1 — 2/q where

A = minjAx, . . . ,  Am} (3.65)

then given e > 0 there exists a sequence {up} £ X p such that

\\u -  up\\w^HQ) ^  C (e)(l +  lnp) 2{1~2/q)g(\ logp|)p- T  (3.66)

where

a = m injm  — 1.2(\ — 1 + 2/q — ej}. (3.67)

P ro o f. It suffices to consider the case when there is one singular element u3 = w 

say, and will be given by (3.2), with exponent A = A associated with the corner 

A. Let, for any partition V,  the patch of elements surrounding the corner A to 

be given by Figure 3.2. Let the line joining A to Bj have angular coordinate d3.
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B,

m-l

m-2

Figure 3.2: patch of elements associated with corner A

The function ©(•) maybe partitioned into a sum of smooth functions 0 ^  (E 

C°°[0,27r] and are supported on (0j_i , Oj+i)- Therefore, w  may be expressed as,

w
m  — 1

=  ^ 2
3 = 1

(3.68)

where

— x ( r )r~9 (\ l°g r |)6 (3.69)

Hence, approximation of the functions iv^  must be considered. To do this, two 

cases must be considered:

1. 0j +1 — 6j -1 < 7r:

In this case, a linear map T  may be applied, so that the two elements 

are mapped onto a region R K. Therefore, from Theorem 15 and Remark
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16 there exists a continuous piecewise polynomial that is zero on all 

elements in the partition, except for the two elements K j  and K j ~ i ,  and is 

such that for any e > 0

< C{t)(l  + lnp)2{1- 2,q)g{\logp\)p-2̂ - 1+2/q- e) (3.70)

2. 6j +1 — 0 j - 1 > 7r:

In this case, firstly apply the linear map Q : K j  —► K j  which is such that

O B j  is mapped onto itself and 6J+1 — 9 j - 1 < ir, see Figure 3.3 and Figure

3.4.

Figure 3.3: Two elements, with 0t-+1 — 0t-_i > ir

The function may be smoothly extended onto Kj,  denote the exten

sion by to give a function that is supported on the interior of K j -1 UKj.
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o

B j+1

H < B

Figure 3.4: Elements after the map Q is Applied

The function _x +  where = 5̂ 1 o Q~l , is approximated by a

polynomial which is given by Theorem 15. Therefore, from Remark 16

w i«(k3- i: < C(c)(l +  lnp)2(1" 2/?)

g(\\ogp\)p - 2 ( A - l + 2  f q - t ) (3.71)

and

i?^ — Wi1p
W 1 -S ( K.

< C(e)(l +  lnp)2(1- 2/9)

S-(|logp|)p-2̂ - 1+J/»-e'. (3.72;

Note that, the function w\ p is a piecewise continuous polynomial on the 

two elements.

The function on K j  satisfies the conditions of Theorem 15, that

is that the function is zero on the boundary of the element. Hence, there 

exists a polynomial w^p defined on / i j ,  which is zero on the boundary and

Li] _  7,14 \ _  w\j](it? 14 — v 2 ,P < C (e ) ( l+ ln p ) 2( 1  — 2 /  q)

g(\\ogp\)p — 2( A —1+2/q —e>(3.73)
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Combining these two polynomials gives a piecewise continuous polynomial 

satisfying

<
1 ,p (3.74)

and

[j] [j]
W1'q(KJ+i) < W^q(KJ + ,

4~ i  ,p Wi’9(Kj+1) •(3.75;

Therefore, using the above estimates gives a piecewise polynomial satisfying 

the required result.

That completes the proof.



C hapter 4

The h p - v e rsion A pproxim ation  

T heory

The aim of this chapter is to obtain approximation results for the hp-version finite 

element method. The results given will extend those of Babuska. and Suri, [11], 

to general Sobolev spaces and reduce the restrictions on the meshes, so that local 

refinements in both h and p may be considered. An example of such refinement 

is the strong refinement used around a corner singularity.

So far it has been assumed that a partition V  is fixed and high order polyno

mial approximation was used. This chapter will retain the notation from chapter 

1 for the partition and obtain estimates involving both h and p.

In section 1 the approximation of smooth functions will be considered, as in 

chapter 2. The results obtained not only introduce the element sizes Ii k , K  € V , 

but also remove the restriction of uniform p refinement allowing each element I\

72
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to have its individual degree px- A  local estimate will also be provided for the 

case m > 1 when u E  which improves, in terms of the p-version, the

estimate given in Theorem 8.

In section 2 hp results will be obtained for singular functions of the type 

described earlier. Combining these results will give the main hp result.

4.1 C on tin uou s P iecew ise  P o lyn om ia l A p p rox i

m ation  o f  S m ooth  F unctions

The following extra notation will be required. For each K  E  V.  let m x  > 1 be 

such that u E  W mK,q(K).  Now define nip to be the set of all such m x  for K  E  V  

and the space

W mv’9(n)  = {u E  W 1,q(Q) : u\K E  W mK'q(I<)}. (4.1)

The corresponding boundary space is given by,

W m * ' i ( T D ) =  { g  €  W 1+1/M( r c ) : g\-K n T D  €  fl r 0 )} .  (4 .2)

The extra smoothness required on the boundary is due to Theorem 10.

For now, it will be assumed that the function u to lie approximated is given 

by (1.17) with u2 — U3 =  0.

Assume u E  W mv,q(H), q E  [l,oo] and m x  > 1 for all I\ E  V.  Define 

Qk  =  H ^ i Q x ) ,  where H x  is the affine map given by

H x ( x i , x 2) =  (hKx u  hx%2 ), for all (7h, x 2) E  D/y, (4.3)
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for each K  E V.  The following properties now hold:

diam (J) «  1, for all J  C Ok  where J  = FK (J),

p j ~  1, for all J  C Ok  ,

• for every u G W mv,q(0) ,  denote i j i q k  — m injc^A. rnj and

(4.4)

• for every index a , |a | <

\\Dau\\LHJ) < C l ^ - ' al D auK
L q {J)

(4.5)

and

D ° uk  ~ < C h ^ " 2/"\\Da, ILHJ) (4.6)

For any m = s +  a  G IR+ , s G Z 1- and <r G [0,1) define

[mj = s. (4.7

Finally define P p(Ok ) =  {u : u is a polynomial of degree p on Ha}. 

The following Lemma will be required:

Lem m a 18 Let u G W k'q(OK), k > 0. Then

inf ||m — FI
vEPp(^k) 

where /i =  min(p +  1, k).

(4.8)
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P ro o f. Firstly assume that k is an integer. The case k — 0 follows immediately 

from the properties of the linear map H k  • Now

inf ||S -  ^ inf. I ||« -  , +  E
^ p n n K) wk^ K) "  X X )  ''" "■ -(a * )-  ^  'u ^ , (aK)

+ E  I (4-9)
/=/Li+l J

and ]C?=M+i =  0 f°r & > ^ +  U Using [24, Theorem 3.1.1] gives

k
^ inf^ ||(m — 1,)||y[/fc,<?(hA-) — ^  l^lwi'<?(hK) (4.10)
v<ePp(Uk ) l=fi

Mapping back to the original domain LIr  gives the result for integer k. The result 

for general k follows, using standard interpolation. ■

The first local estim ate can now be stated.

Lem m a 19 Let u £ W mv,q(Tl), q £ [l,oo] and itir > 1 +  l /q  for all I\ £ V  be 

such that supp u C O r  for a K  £ P . Then there exists a sequence u\vp £ Xjvp 

which is independent of q such that,

lmnK\

|« |> m

+1i rQk ( 4 . T 2

I**-«ApIU .< * )  < C ^ p ^ ' - ' V  +  lo g p n J 2'1- 2̂  (4-11

where p =  min(pQK +  l ,m n ^ ) ; =  minj ^qk Pj and supp Uhp C Or .

P ro o f. First note that the finite dimensional space

V  =  {u £ (7(0) : u|a' =  h o G jf  for some v £ P ( p n K ) or Q{ p n K )

for all K  C Hr  and v =  0 for all /\ C O/Or ] (4.13)
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is a subspace of Xhp. Hence, there exists a Uhv £ Xhp such that

l l w  Uhp\\w^^{K) —  l l W ^ l l w m f A )  •v ' v£V v ’
(4.14)

Therefore, it is sufficient to construct an approximation of uniform degree pnK, 

which satisfies the Theorem. To construct such a piecewise continuous polynomial

polynomials w r  of degree no more than p q k  on each element K  £ 'P. Since 

■u E  0 on every J  C VI/PIr it follows that wj = 0 for every such J  C 0 / 0  a- 

Note that the w j , J  C 0 / 0 # ,  need never be adjusted. Denoting w £ V  to be 

the final piecewise continuous polynomial constructed in this manner, it is clear 

from (4.14) and Theorem 7 that there exists a uirp £ Xjvp such that

the ideas in the proof of Theorem 7 are required. That is, construct individual

S  IMI WmaK'q(J) • (4.15)
JeV:KnJ^<D

and supp Uhp C Hr -

Let v £ P Pnx(Q K ). Then

\\u  Uh p \ \ w 1’<i(K) IKW ( u hP v ) || w 1’<i(K)

(1 + l o g p Qjc)211 2/ql
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\u — v\
lm n K J

I ww(nK) +  IP ^
H>M

^  | | I T i r  W  Q  t '  i f l /  \ \LH&K-) 1 l]y A (nA') . (4.16)

From Lemma 18, with p =  p^K and k = //.,

inf
vePPflK (hK

u — v < C(n)h Kp - 2 / q  |
I W>>9(QA') ‘ (4.17

Combining (4.16), (4.17) and mapping back to the original domain gives,

\u ~  u hP\\wi,^K) <  C(p)h][q 1pQl",n,<4 1 + l°gj>siK)
Lm n A'J

2 \ l - 2 / q \

m ww(nK), +  E  P
H>M Li(nK + \ u \ w">nK'q(nK)

< CMpS* * U  + logw J:,|1- 2/,l
Lm«A4

fcr1i“i^..(nJt)+ E  4?'T id°
|a|>A«

,  m Q . , - 1 1  |

+ hK V \U\wmnK’q(QK)

u\
A'J

(4.18)

as required.

The general result for functions u E  Wrm7?,9(ft) with the minimal smoothness 

on u and the restriction on the support of u removed, can now be proved.

T h e o re m  20 Let u E  W mv'q(Lt), q E  [ 1 , oo] and ttik > 1  for all K  E  V . Then 

there exists a sequence Uhp E  Xhv which are independent of q such that for  K  E  V  

and m nK E  ( 1 , 1  +  1 / # ]

lW U h p \ \ \ y i , q ( K )  —  C ( p ) p Q K  ( l 4 " l o g p O / c )

lK 1 llMllwn‘“A'"1(fiAr)hL ||u ||wmnTs,q(o„ 11 (4.19)
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where n =  m nK and for m ^ K G (1 +  1 / g, oo)

\\u  -  u hP\\w i,HK) < C(/j,)pqV k 1)( 1 +  l o g )211 2/1,1 (4.20)

cv |

(4.21)

where p. =  min(msij. . p,,f- + 1) and paK =  m in j eaKPJ-

P ro o f. The result will firstly be shown to hold for the case h x  ~  1.

Let en, n = 1, 2 , . . . ,  Nj> denote the vertices in the partition V.  W ith each en

f ix ,  where K  is any element contained in Un, and {UUn : n =  1 ,2 , . . . ,  Nj>] =  0 .

Now construct a partition of unity <fni n =  1 ,2 ,. . .  IV-p, subordinate to the 

covering Un. Write u G W m77,9(f2) in the following manner

with supp un C Un and un G W mK,q( K ), see figure. The aim is now to construct 

polynomial approximations to each un.

In the case tyiqk > 1 +  1 /q for some K  G V,  Lemma 19 states that there exists 

an approximation unx P G Xhp to the function uni where n is such that en C\K 0, 

such that

associate a bounded open domain Un = int{U/G : K  D en ^  0}. Note that Un C

u <PnU

(4.22)
n = l , 2 , . . . ,Nv

b  -  u h p \\w l ,H K )  <

(1 +  log pnK)2]1 2/91 ||wn||ŵ A '^ (f2K)(4.23)
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5Q

Figure 4.1: A general patch of elements, showing the support of a (j).r

and supp un^ v C Hr -

Now consider the case when m n K £ ( 1 , 1  +  1  /q] for some I\ £ V.  From the 

characterisation

W m°K«{SlK) =  (4.24)

where 6 =  m ^ K — 1 and the proof of Theorem 8, it can be seen that for any t x  > 0, 

un with n such that supp un £ Un may be decomposed as un = vi,n{tr)  A -  v2,n( tr )  

with v i tn e  W 1’q(£lK ) and v2,n € W 2'q( 0 K) satisfying

IK„IU„„k) < C t ? * - 1 ||«,,11^,. (nK, (4.25)

< C Q " k 2 ||«„|ln.’»n,,.»(nK) ■ (4.26)

Using Lemma 19 to construct approximations v2,njip to the functions v2pn, with



CHAPTER 4. THE H P-VERSIO N APPROXIMATION T H E O RY 80

supp v 2,n,hp C VIk and

\ v 2 , n  v 2 , n , h p \ \ w i , q ( K )  — ^ P q k  4~ P & k  )I2!1 2/q\\ V2,n\w*’<i(nK

< CpnlKtmciK 2(1 +  logPfiA-)2'1 2/<;l • (4.27)

Apply similar decompositions for every element K  G V  in which m n K < 1 +  1/q. 

Choosing t x  =  1 /pnK for every such K  and using the triangle inequality gives

\ \ u n  ~  u n , h p \ \ w i , q ( K )  Y: \\v 2,n ~  ^ 2 , n , h p  || jyi.q ( x )  4~ \ \ ^ l , n \ \ w ^ H K )

<  c P a N K 1,(1 + l°gPnA-)211 2/"11|«n \ \ w il I<'q {nift K ) , (4.28)

where un?/ip := v 2}U,hp for all n  such that, when K  f) e n ^  0, then m n K  < 1 Y l / q .  

Defining u hp =  £ n = i  u H:hp gives

u Uhp || J 2 i u ~ ^ p }
7 1 = 1 W1Ni(K)

< E \Un Un h p \ \ w 1’(i ( K )  • (4.29)
n:ennA’̂ 8

Combining (4.23), (4.28), (4.29) and noting, for the case hx  ~  1, that

\Un\\wmnK’q(nK) — C ||wHŵmnA-’9(nAq ’ (4.30)

gives a Uhp G Xhp such that

W -  «*„||m *(K) = C p V ^ i  1 +  l°8PnK I211-27’1 I M U K..(njf) • (4-31)

The general hp results are now obtained by using (4.31) as follows. Let v  G 

P Vcik(CIk ) then from the above there exist a Uhp G Xhp such that
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11^ ^ p l l  Wi.g(A') — l l ( W {u hp v )  || W i,q( / ; )

< C h p - W r * ' 1'

(1 +  logPQK)2]1~2/ql ||2 -  • (4-32)

Combining the above inequality with Lemma 19 gives the required result. ■ 

The following global estimate is an immediate consequence of the above Theorem.

C o ro lla ry  21 Let u E  W mv'q(Ll), q E  [1, oo] and rriK > 1 for all K  E  V. Then 

there exists a sequence Uhv E  Xhv which are independent of q such that,

l lu -^ l lw r t - tn )  ^  C'p-(” - 1> (l+ lo g p )2'I- 2''’l (4.33)
m

C{n)h^~l \u\Wp^)  + II^^IIl^q)
M>£(

where g =  min(p +  l,m ) , h = m axjep hj, p = minj^vVJ and rn = m in jGp rtij 

i.e. u E  W m'q(TL).

Note that, for the case q — 2 the above global estimate is the same as that 

given by Babuska and Suri in [11].

4.2  N on -h om ogen eou s D irich let b ou n d ary  d ata

Now suppose that the function to be approximated is given by (1.17) with u2 ^  0 

and u3 =  0. Following chapter 2, assume that g given in (1.17) is approximated 

using Chebyshev polynomials.
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Denote the approximate Dirichlet data for an element K  having an edge 7x  = 

Td  n  K  by gx- The approximation to be used will be the p/^-th partial sum of 

the Chebyshev series expansion of gx,  where

9 k  =  ( 4 . 3 4 )

and J~k  is used to define the restriction of the map F x  to the edge 7# . The 

approximation will be denoted by c r h p , K ( j j K ) -  The resulting global approximation 

to the Dirichlet data is given by:

9hp y  " 9hp ,K  0 K  ( 4 . 3 5 )
K e V i K r \ T D ^

where

9h p , I< { t )  -  { 9 k ( ~  1) -  V h p , K { g i < ] - 1 ) } ^ p n K ( t ) +

{gK ( 1 ) -  (JhpJ<{gK - 1 ) }4>Po K ( - t )  +  (Jhpj<{gK\ t ) .  ( 4 . 3 6 )

L e m m a  22 Let g E W l,q(jK), for some K  E 'P where q E [l,oo]. Then for  

I > 2/q

\ \ g  ~  v hP , K ( g ) \ \ L ^ K ) < +  logPnK)PnKhK \ \ g \ \ w ^ h K ) (4-37)

and for  I > 2 — 1/q

h  -  ^ ,A -(< ? )l7 „ h „) <  C( 1 +  l o g R ^ t e i '" 2̂ 51̂ 1 IIsIIm-m(, k) (4.38) 

where g = mm(pnK +  1, /).

P ro o f. Mapping 7k  onto (—1,1), then combining Lemma 9, the equivalent one 

dimensional result of Lemma 18, and noting that the length of 7k  ~  hx  gives 

the required estimate. ■
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The main result of this section can now be stated:

T h e o re m  23 Let u £ W mv,q(Lt) be given by (1.17) with u3 = 0 and assume 

g £ W mv,q(Yd ) where q £ [l,oo]. Then there exists a sequence of polynomials 

Uhp £ Xhp such that Uhp =  ghp on the Dirichlet boundary Td and the following 

local estimate holds

< C W p a 1™* 1}(l + logPQl<

{IMIwmnA',9(fiK) +  ll5,llW/mn/c+1_2/9'<?(rK)  ̂ (4.39)

where p =  min(pnK +  l ,m fiA), pnK = minJenK PJ and VK = QK O T D.

P ro o f. Note that the function is of the form u = Ui +  u2 with u2 satisfying the 

boundary conditions and that u2 £ W mK,q(K), m-K > 1 +  l/<? for all K  £ V.  For 

this proof it is sufficient to assume that u = u2.

Let W h p  denote the sequence of polynomials constructed in Theorem 20. As

sume, without loss of generality, that IFk (i k ) — { (# i,— 1) : —1 < x\  < 1} and 

let V h p , K  be the polynomial

V h p , K  =  whp( x i , x 2) +  ((7hp,K(gK;xi) -  whp(x i , - 1 ) )ipPflK (;r2)• (4.40)

Due to the construction of W h p  it is clear that, see proof of Theorem 7,

(1 +  logpnA-)2(b \\u \\w mo.K^ ^ ^  (4.41)

for j  — 0, 1, since mnA. > 1 +  1 /q.



CHAPTER 4. THE HP-VERSIO N APPROXIMATION T H E O RY  84

Hence, combining Lemma 22, using the triangle inequality and mapping back 

to the original domain, Qk , gives

||^  ~~ v hp\\\yi,q(K) <  C  — Whp ||

C(1 +  \\g\\wr»nK + ' - ’/«. i ( r v ) . (4.42)

For every element with a boundary on the Dirichlet boundary, a similar poly

nomial is constructed. This gives a piecewise continuous polynomial satisfying 

(4.39). ■

4.3  P iecew ise  P o lyn om ia l A p p rox im ation  o f  C or

ner S in gu larities

The aim of this section is to obtain an hp estimate for the rate of convergence of 

sequences of polynomials approximating functions of the form

u(x) =  crx \log r |70(0), (4.43)

where (r, 9) are polar coordinates with origin at A, a corner of the domain 0 , 

with 0  assumed to be a smooth (C°°(fi)) function which vanishes along the edges 

corresponding to the boundary of the domain fh 7 integer and A > 1 —2/q for 

some q E [2, 00) .

The function (4.43) is not quite the same as a typical singular function of u3. 

Firstly the function of | log r | is given and secondly the smooth cutoff function
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(  is not included. The latter is due to the fact that (  is mesh dependent. The 

following notation will be required.

Denote, for any partition V,  the patch of elements surrounding the corner A 

by Ah, AT, • • • K m, see figure 3.2.

Let (  E C°°(n) be a function of r only and be such that

C(r ) =
1, r < 1/4

(4.44)
0, r > 1/2

Partition the function ©(•) into a sum of smooth functions ©;(•) £ C°°([0,2ir]) 

supported on (a;t-_i,u;t-+i). From the properties (3) and (4) of V  we have

min \ABi\ =  c\hx

where Jia ~  for i -= 1 ,2, . . .  m, also denote min1-=i i2,...m PKt '= Pa- N o w  write 

u in the form

m  — 1

w(x ) — C(r / cihA)9i(6)rX\ lo g r |7 +  0(<9)rA| lo g r |7(l — C(r / ci^A))
i — 1

:= ?r>i(x) +  u>2(x) (4.45)

and note that

1. wi €

2 . wt £ c ,oo(H)

3 . supp w i  C B ( A ,  C ]  / » a / 2 )
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First look at approximating the function wi; to do this consider each term  in the 

sum individually. Denote

Vi = ( ( r /c1hA )Ot(0)rx \logr\nf (4.46)

giving supp v{ C Ki , i + i ,  where K t,i+i = int (Ki  U Ah+i)

T h e o re m  24 Let vl be given by (4-46): then given e > 0 there exists a sequence 

of polynomials VhPyi G Xhp with supp Vhp,i C K i , i + i which are such that, for any 

q G [2, oo), j  — { 1 ,2 , . . . ,  m} and A > 1 — 2/q

ll»i -  t>*p.ilL.„(jrj.) < C (£)fti-1+2/?C(/!A,p A,7)PA2(A_1+2/,' e) (4.47)

where the constant is independent of both hA and pA , but dependent on the func

tion Vi, and

C(hA , pa , 7 ) =  max (J log/iA PM log p a  I7) (4.48)

Thus

m  — 1

v)~iyh.P ■— ^ 1 vjiPyi (4.49)
i= 1

is such that

II«>1 - « > i ,*pI L i,,(a-)) ^  C f t i -1+2/,C(/!A,p A,7 )p A2(A_1+2/,) (4-50)

P ro o f. Following the proof of Theorem 17, it may be assumed that the elements 

Ki, ,i + i ,  can be enclosed inside a square s{c2hA) where s{p) — {(;ri,:r2) : 0 < <

p, 0 < Xi < p}, and appropriate rotations of global coordinates have been used 

to obtain the coordinate system seen in the figure below.
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i+1

supp Vj

Figure 4.2: New coordinate system

Mapping Kij+i onto Ah,;+i, where supp Ki,i+1 C 5(1), under the map A ~ \ 

where

F,-(x) := c2hASL, Vx € 5(1), (4.51

gives

u,-(x) =  chAC(c2r /c 1)\\ogr\'yQ(0)rx,

= 'L C ( l ) h iC (c 2r /c i )T*\ log r |7 -/| log hA \l. 
l=o

■= ± C ( l ) h i \ l o g hA \‘v‘, (4.52)
/= 0

where

(4.53)r = (x\ +  $ l f 2.

The form of each v\ is such that, given e > 0 there exists a v lhpj £ Q{p a ), see 

Theorem 17, such that
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and the constant C is independent of both hx  and px- Defining

7

(4.55)
1=0

and then combining (4.52) and (4.54) gives

(4.56)

and the constant is independent of both hx  and p x , but dependent on the function

Now consider approximating the smooth part w2j this must be done since this

function is outside the patch surrounding the corner A, it has no hx  dependence, 

since the function f ( r / c2^A) =  0. Therefore, only approximation on the patch of 

elements surrounding the corner A need be considered.

T h e o re m  25 Let W2 be of the form given in (f.45); then there exists a sequence 

of polynomials W2 ,hp £ Xhp such that for any i =  1, 2, k £ (1, oo) and

q £ [l,oo]

Vi. Estimate (4.50) follows using the triangle inequality.

function is dependent on hx- Firstly note that w2 £ C'°°(fi) and that when the

< (7(0, a )C (h x 7 Pa, l )Px

(1 + logPA)211- 2̂ 1/?

where (7 (0 , 0 ) is a constant dependent on 0  restricted to and C (h x ,P A , l )

is defined in the previous theorem.
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P ro o f. From Theorem 20 for any q £ [1, oo] there exists a w2,hp £ Xhp indepen

dent of q such that for any k £ (1, oo)

where p = min(pA + 1,&) and C(p) independent of both h x  and px,  for i =  

1, 2, . . . ,  m.

Since ( ( r /c2hx)  e  0 on the elements away from the corner, the above norms 

of w2 may be restricted to the elements K j , for j  =  i  — 1,1,1 + 1. Also for any 

index o = (01, 02) with |o| =  01 +  02 the following hold:

1. w2 =  0 for r < c ih x /4 ,

\\w2 -  whp\\wl ,q{Kr) < C(/i)p^(k~1](l + lo g p A)2|1_2/91
[k\

h^x 1\w2\w^{QKi) +  hA 1

(4.58)

2 .

\Daw2\ < C ( 0 ,a ) r A_l“ l| l o g r | \ (4.59)

Therefore, for any i = 1 ,2 , . . .  ,m

< C (0 ,a )  / [rA log r |A]V dr

< C(Q,  a)fe^-,l“l+2| log hA|,A- (4.60)

Combining (4.58) and (4.60) for any k 6 (l,oo),

IK  -  whp\\m,m  < C'(©,«)pi(fc- 1)(l + logpA)211- 27’1
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which is the required result. ■

4.4  T h e M ain  R esu lt

The main approximation result can now be stated. This result will be used in the 

proceeding chapter, in the application of the finite element method to non-linear 

elliptic problems.

T h e o re m  26 Let u be of the form described in (1.17) with each uJ3 to be given 

by:

u£(x) =  CjrX-31 log rj |7j 0 j ( ) ,  (4.62)

where ( r j , 0 j )  are the polar coordinates of  x relative to the point A j, the ©j are 

sufficiently smooth functions and 7j are non negative integers.

I f  X > 1 — 2/q} where

X = min{Ai, • • •, An} (4.63)

and the Dirichlet data g is sufficiently smooth, then given e > 0 there exists a 

sequence of piecewise continuous polynomials Uhp € Xhp such that

u d)C; {JlK') PQk 1 ft)

Pnl-hK(l°&PtoK +  l ) 2(1_2/9), (4.64)

where

minj {m n K — 1,2(X3 — 1 +  2/q — e)}  VIk  © Aj  /  0 
a = < (4.65)

m n K — 1 VIk  © Aj = 0
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fi =
minj { m n K -  l ,pnK,Aj -  1 +  2/q} 0 K n  Aj ±  

m in{mnK -  1 ,pnK} CtK D A 3 =
(4.66)

m in j 7j Hk fl Aj  /

0 A j  =

(4.67)

P ro o f. By considering the approximation of each function given by (1.17) in

dividually and using Theorem 23, Theorem 24 and Theorem 25, along with the 

triangle inequality gives the required result. ■



C hapter 5 

A pplication to F inite E lem ent 

A pproxim ation of N on-linear  

Elliptic Problem s

5.1 A  priori E stim ates

The approximation results from the previous three chapters will now be used 

in the application of the finite element method to the model problem, the a- 

Laplacian, given by (1.9), which is recalled, in its weak form: Find u E W 1,Q!(n) 

such that u — g on To  and

for all v E fi), where = {u : v E W 1,a(Q) : v =  0 on To}- In

chapter 1, it was assumed that this problem and the equivalent finite element

(5.1)

92



CHAPTER 5. APPLICATION TO THE FINITE ELEM ENT METHOD  93

problem were well posed. This assumption is now justified in the following Theo

rem for the case — 0 and g = 0, the extension to the general problem follows 

immediately.

T h e o rem  27 The variational problems (1.16) and (1.21) both have unique so-

ivhere || • ||* is the dual norm of W 1,a(Lt).

P ro o f. When the h-version of the finite element method is considered, since D 

is a polygonal domain, the result follows from [24, Theorem 5.3.1].

Following the proof of [24, Theorem 5.3.1] and using the results obtained in 

chapter 2, in particular the use of Theorem 8 to make the last equation on [24,

lutions. Furthermore the solutions u £ VF1,Q:(n) and Uhp £ X}vp of (1.16) and

(1.21) respectively, are also the unique solutions of the minimisation problems:

find u £ V such that

J(u) < J(v), for all v £ V , (5.2)

and

J(uhP) < J(v), for all v £ X hp, (5.3)

respectively, where

J(v) (5.4)

Finally,
(

m ax(l, 11/ | |* ) 0-1, 1 < Ci < 2
(5.5)

I/ll* 2 < a < oo
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page 316] hold, it is clear that the existence and uniqueness for the p- and hp- 

versions holds. The other results follow immediately from [24] as in the case of 

the h-version.

The final bound is given by Chow [23, equation (32)]. ■

To use the results of the last three chapters an abstract error estimate of the 

form given by Cea’s Lemma (1.29), will be required. The following result provides 

such an estimate.

The finite element approximation Uhp, to the true solution u, see Chow [23], 

is such that

11  ̂ ~~ U h p \ \ \ y l , a ( Q )  —

_ infvex hp \\u -  v ||^i2ltt(n), if a  G (1, 2]
C < (5.6)

+  ll l̂lvv1’a(Q))̂ a 2̂ a llw — vll;yi.«(Q) , il (E [2,oo)

This result is also given by Barrett and Liu [15]. Looking at this estim ate it is 

clear that the exponent on the right hand side reduces the rate of convergence. 

For the h-ve rsion this has been looked at in much detail by Barrett and Liu. 

see [15, 16, 17], and under certain extra regularity assumptions on u the rate of 

convergence for the h-ve rsion, for linear elements, can be improved. However, in 

what follows the above abstract estimate will be used.

To obtain estimates for the finite element approximation the piecewise con

tinuous polynomial given by Theorem 26 will be used and will be denoted by V}ip. 

For the case a £ [2, oo), it is clear that an upper bound for V}rp independent of



CH APTER 5. APPLICATIO N TO THE FINITE ELEM EN T M ETHOD  95 

h x  and p x  will be required. But from Theorem 26 and the triangle inequality:

11 I Inn,a (ft) < Cdl^llwa.^ft) +  C (h,p) (5.7)

where k =  mmx^-p m x  and the constant C(h,p) is monotonically decreasing with 

respect to h and p. Hence, (5.6) reduces to:

H'M — v hp\ \wi ,a (Q}  , i l  «  G ( 1 , 2 ]
IU  U h p  l l p y l . a  (ft) < C < (5.8)

c  IMIw2(fi) 11“ “  , if a e  [2, oo)

Since the log and e terms of p are relatively small in comparison to the other 

terms of p, from here on they will be ignored.

5.1.1 Uniform  Refinem ents for Sm ooth Functions

In this section uniform refinements will be considered for approximation of u , 

where u is given by (1.17) with = 0. Therefore, using (5.8) and Corollary 21 

the following a priori estimates for the uniform h- and p-versions can be obtained:

IMIwCfi) ■ i f o e  ( 1 . 2]
(5.9)

||«||^*.-c'n) IMIvG“(fi) ’ if' a  e  I2 ’ ° ° )

\u ^  C(p) <

where (i = min(p, k — 1) and

p-™!2 ||« ||"/2,(n) • if a  € (1, 2]
< C ( h ) \  (n) (5.10)

C p -u /a  ll“ llw“.«(n ) . if a  6 [2, oo

where a = k — 1.

As in chapter 1, the number of degrees of freedom N  will be used to compare 

the uniform h- and p-versions. Therefore, as in the linear case, it is clear that
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the p-version is always as good as the h-version and when the solution is very 

smooth, then exponential rates of convergence can be expected for the p-version.

5.1.2 Uniform  Refinem ents for Singular Functions

Now assume that the true solution is given (4.43) and that a  £ [2, oo). In this 

case using (5.8) and Theorem 26 it can be seen that

11“ -  < C(p, u)h2>‘/a, (5.11)

where p =  A — 1 +  2 /a  and

llw ~  u hP \\W i , a {Q) < C(h, u)p~2a/a (5.12)

where a = 2(A — 1 +  2/a). Therefore, a similar result holds for the non-linear

problem as in the linear case, that is when such singularities exist, the rate of

convergence for the p-version is twice the rate of the h-ve rsion.

5.1.3 hp-type Refinem ents

The approximation theory from the previous chapter can now give more insight 

into how to refine the mesh for the hp-version when the solution is given by (1.17), 

with gi(| log r t-|) =  | log 7y |7* for all i =  1, . . .  M  and 7; £ Z . Let a £ [2, 00); from

(5.8) and Theorem 26 it can be seen that

| | u  W 1,<?(A') — C  ( i l \q k ) C  [ H r  1 PSl x  1 f t )

PO^A-dogPn* +  I)2' 1- 27'", (5.13)
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Q  Q

Figure 5.1: An example of geometric /?-type refinements

where the /?, a and p are given in Theorem 26. It is clear that around corner 

singularities the convergence rate is dramatically reduced and in general only 

algebraic rates of convergence may be produced. To overcome this and to try to 

obtain exponential rates of convergence some non-uniform refinements must be 

implemented. The most common h-type refinement to overcome the degradation, 

is to strongly refine around the corner. The type of strong refinement used for the 

hp-version, see Babuska and Gui [8, 9, 10], leads to what is known as geometric 

meshes, with mesh parameter 7 , see Figure 5.6. However, this geometric /i-type 

refinement will not, in general, lead to exponential rates of convergence. This is 

due to the fact that any type of h-ve rsion method can not exploit the smoothness 

of the true solution away from such singularities, due to the fact that the h-version 

convergence is always being restricted by the polynomial degree of approximation 

being used and thus, only algebraic rates of convergence can be obtained.

When the true solution is very smooth, for example C°° which could be the 

case in the elements away from the corners, then the above estimate suggests 

that p-type refinements will give exponential rates of convergence in elements
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that are not immediately adjacent to corner elements. It is also clear from the 

above estimate that having large degree jumps between adjacent elements is not 

a good thing, since the minimum degree of the two elements would be used in 

the above estimate.

From these observations, it is quite natural to choose a mesh refinement s tra t

egy around a corner that uses a geometric h-type refinement and increases the 

polynomial element degree as the elements move away from the singularity. This 

can be thought of as ignoring the singularity and getting the most out of the 

smooth part of the function. These observations were made by Ainsworth and 

Senior [6], who also give an adaptive hp algorithm and obtain exponential rates 

of convergence.

Finally, the rate of increase in polynomial degree must be considered. In 

Babuska and Gui [8, 9, 10], it was shown for the one dimensional case, that a linear 

growth away from the corner combined with geometric fi-type refinements, with 

mesh param eter 0.15, leads to an overall optimal exponential rate of convergence. 

This method of refinement will be adopted for the two dimensional case. For an 

example of such refinement see Figure 5.2. This refinement strategy was also 

considered by Babuska and Suri in [11]. It is clear that this type of refinement 

fits with the observations made from the a priori estimate. In the next section 

it will be shown that this method of refinement leads to exponential rates of 

convergence.
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refinement

degree = 1

Figure 5.2: An example of hp-type refinement around a corner singularity

5.2 N u m erica l R esu lts

Since the results shown are of asymptotic character, it is essential to show that 

the results hold for realistic values of px  and hx  i.e. values that are acceptable 

for a machine. The numerical results will verify that the estimates given, in the 

first chapter for the linear case and in the previous section for the non-linear case, 

hold for realistic values.

For simplicity, it will be assumed that all Dirichlet boundary conditions are 

homogeneous from here on.

5.2.1 L inearisation o f the problem

When solving the problem numerically, a method is required to reduce the prob

lem to a linear system or a set of linear systems. The first step towards achieving 

this is to add in a pseudo time step to the initial problem (1.9) which leads to
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the problem: Find u such that

du
dt

-  V - ( | V u \a~2V u) = f  in 0, (5.14)

with the same boundary conditions imposed. The finite element method is then 

given by: Find Uhv £ Xhp such that

dUfap
J
JCI dt

■v +  |Vu/ip|a Xuhp • V dx =  / fv  dx +  / gv ds, 
Jn ' JrN

(5.15;

for all v € X .  The aim is now to construct a sequence {u« }nG]N of approximations 

to the solution Uhp of (5.15) using the following technique.

Let

d u n u n Un—i / f,
- W  =  — • (5 -16)

where A t £ (0, T) for some T £ 1R+. Now solve the linear problem: Find un £ X  

such that

B ( u n- i ; u nivx ) = F(un- i - v x ), (5.17

for all vx  £ X ,  where

B (u ;v yw) = A t f |V i/|a 2Vu • Vtc dx +  I vw  dx (5.18)
J ci J ci

and

F(u; v) = A t f v  dx +  / gv ds 
.J a J

+  /  w r  d x ,  
Jci

;5.19)

and u0 is a given initial function. The non-linearity of the problem has been dealt 

with by using the previous approximation un_i.

This method as it stands at the moment is very unstable, i.e. convergence to 

ux  is not guaranteed. The instability gives rise to inefficiency in the method, since
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when the problem is unstable A t  must be reduced and in doing so the convergence 

rate of un —> Uhp is dramatically reduced. The stability and efficiency will now7 

be increased by implementing a fourth order Runge-Kutta method, see [22], as 

follows: Let uo be a given initial solution, define Uj1 j  = 1, 2, . . .  as follows

1. Let ki £ X  be such that

B ( u j \  ki ,v)  = v) for all v £ X . (5.20)

Define

k\ = (ki — Uj)At. (5.21)

2. Let k2 £ X  be such that

B ( u j  +  ki/2; k2l =  F ( u j  + &i/2; v) for all v £ X.  (5.22)

Define

h  = (k2 -  Uj)At. (5.23)

3. Let k% £ X  be such that

B ( u j  +  k2/2\ k3,v)  =  F ( u j  + k2/ 2; v) for all v £ X .  (5.24)

Define

k3 = (k3 -  Uj)At. (5.25)

4. Let £;4 £ X  be such that

B ( u j  +  k3] kA, v ) = F ( u j  + k3; r)  for all v £ A'. (5.26)
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Define

k4 = (%4 — Uj)At. (5.27)

Then define

1
uj+i — uj +  '^ 2 (5.28)

This method is much more stable and therefore T  is much larger, this causes 

a faster convergence rate for un —» Uhp and on the whole leads to a more efficient 

method, even though we are required to do four assemble and solves for each 

iteration of Uj.

5.2.2 Linear problems

Before looking at numerical results for the general <a-Laplacian some linear elliptic 

examples will be considered.

A sm ooth  linear problem

Firstly look at the rates of convergence, for linear elliptic problems with smooth 

a solution i.e. u £ C°°(fi). Consider the problem: Find u such that

-A n  =  / ,  (5.29)

with true solution u = exp (x +  y) on the domain fl =  (0, 1) x (0, 1).

This problem is now solved using both the h —version and p—version of the

finite element method. From the estimates seen in chapter 1, it is expected

that the h—version will converge at a rate 0 (N ~ P/2) where p is the maximum



CHAPTER 5. APPLICATION TO THE FINITE ELEMENT METHOD  103

polynomial degree used in the subspace Xh, while the p—version should produce 

an exponential rate of convergence, since for all values k the p—version will be 

faster than 0(N ~^k~1̂ 2). The results shown in Figure 5.3 confirms this.

(p=1): slope = -0.60

(p=2): s lop e  = -1 .09

(h=1/2)
E 10 '

(h=1/4)

-o h-version

■* p-version

D egrees of freedom

Figure 5.3: Rate of convergence for a linear problem with smooth solution 

A singular problem

Now consider the linear elliptic problem on the domain Cl given by Figure 5.4. It 

is known that the true solution of this problem, in polar coordinates with origin 

at the corner, is given by u — r2/3 sin (2/3)0. Therefore, u G W s/3,2(Cl).

The h—version and p—version are firstly implemented with uniform refine

ments with an initial partition of three elements and linear basis functions. From 

estimates (1.30) and (1.35), the expected convergence rate for the p —version
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u=0

u=0

Figure 5.4: The singular problem

should be twice that of the h—version which should itself converge at a rate 

0 ( N 2/3). From Figure 5.5 this is confirmed.

Now consider using geometric h—type refinements on the corner domain, these 

refinements are given by Figure 5.6. On each of these h —type refinements a 

uniform p—version is then applied.

From Figure 5.7 it can be seen that, by choosing suitable steps of refinement 

at each level it is possible to create an exponential rate of convergence even 

when degrees of freedom are wasted from using a uniform p refinement. These 

refinements would be both h —type and p—type and thus the exponential rate 

would be caused by implementing an hp—version of the finite element method. 

This exponential rate can be seen in Figure 5.8. This observation suggests that 

when the suggested hp refinements from the previous section are implemented 

i.e. non uniform p , then even faster rates are to be expected.
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(p=1): slope = -0 .68

o
UJ

(h=1/4): slope = -1.20

(h=1/2): slope = -1.21

(p=2): slope = -0 .70
o  h-version

-* p-version

D egrees of freedom

Figure 5.5: Convergence rates for uniform refinements

5.2.3 Non-linear Problem s

Examples will now be shown for the general ce-Laplacian.

A sm ooth  problem

Consider the o'-Lapla.cian problem with u = exp(,r +  y) G C,oc(17) where 0  is 

the unit square and a  =  3/2. The problem is solved using both uniform h- and 

p- refinement s. From (5.9) and (5.10) the h-version is expected to converge at a 

rate of at least 0 ( N ~3/4) for linear elements and 0 (N ~ 6/4) for quadratic elements, 

although Figure 5.9 suggests that these estimates may not be optimal and that 

/^-version of the finite element method converges at optimal rates for linear and 

quadratic elements. Since the true solution is infinitely smooth the p-version is
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0.15
-0 .1 5

1 2

0 .0225

-0 .0 0 3 3 7 5

0 .0 0 3 3 7 5

-0 .0 2 2 5

Figure 5.6: Geometric /i-type refinements used on the L-shaped domain
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o
UJ

MESH 1

MESH 2

MESH 3

MESH 4

D egrees of freedom

Figure 5.7: Convergence rates for the p-version at each step of h refinement

h-refinement

p-refinement

p-refinement

h-refinemento
UJ p-refinement

h-refinement

D egrees of freedom

Figure 5.8: Convergence rates for an simple /ip-method for the singular problem
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(p=1): s lope = -0 .60

(p=2): s lop e  = -1 .09

o
LU

(h=1/2)h-version

-* p-version

D egrees of freedom

Figure 5.9: Convergence rates for non-linear problem with smooth solution 

expected to converge at an exponential rate. This can also be seen in Figure 5.9.

A one dim ensional singular problem

Before looking at a two dimensional non-linear problem with a singularity, a one 

dimensional example will be given. In this case fi =  (0,1) and a =  2.7. The true 

solution is given by u =  x 27/17 £ p|/i.959-e,2.7̂  ^  where e > 0 is arbitrarily small 

and x is the distance measured from the origin.

The estim ate given for the p-version around a corner singularity in two di

mensions, seems to also hold for the equivalent one dimensional problem, see 

Figure 5.10, that is, the p-version is at least twice as effective as the h-version
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(p=1): slope = -1.01

t  1 0 '

(p=2): slope = -1 .02
(h=1/4): slope = -2 .05

(h=1/2): slope = -2.18

-o h-version

-* p-version

D egrees of freedom

Figure 5.10: Convergence rates for non-linear one dimensional problem with sin
gular solution

when a singularity occurs at a vertex of an element. Also, from Figure 5.10 it can 

be seen that the rates of convergence obtained from (5.9) and (5.12) are again 

suboptimal.

5.2.4 Tw o-dim ensional singular problems

In the following two dimensional singular problems the true solution will be a 

function of r  only on the domain 0, = (0, 1) x (0, 1).

E xam ple 1 Let a — 3 and the true solution u =  r 3/4. This function belongs 

to the space VF13/6-e,3(n). Both uniform h and p refinements where used on 

the domain. For the h-version the expected rate of convergence, using (5.9),
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(p=1): slope = -0 .55

(p=2): slope = -0 .64E 10 '

(h=1/4): s lope = -1.23

(h=1/2): slope = -1.30

h-version

p-version

D egrees of freedom

Figure 5.11: Convergence rates for Example 1

is 0 (N ~ 2̂ l3) where p = min(7/6 — e,p)/2. Therefore, when the fixed degree 

p > 1 the rate of convergence is affected and the maximum rate expected would 

be 0 (A/’“ 2̂y/3̂ 7/6))i while for a p-version the expected rate is twice this rate, 

0 ( N ~(2/3)(7/6))7 always. The results shown in Figure 5.11 show that both m eth

ods converge one and a half times faster than expected; this suggests that the 

abstract a priori bound (5.8), is suboptimal for these type of functions.

Exam ple 2 Let a  =  4 and the true solution u =  r 4/3. The function belongs 

to the space VF11/6_e,4(n). In this example both types of uniform refinement 

are considered and a simple hp-version is considered, using the ideas given in 

the previous section. An example of a mesh obtained from using the suggested
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y

X
0.04 0.2

Figure 5.12: The third level of refinement for the hp-version

hp-strategy can be seen in Figure 5.12.

Looking at the uniform convergence rates, see Figure 5.13, it is clear that the 

a priori results (5.9) and (5.12) are confirmed although, as before, the rates seem 

to be without the degradation caused by initial abstract error (5.8).

It can also be seen, quite clearly, that the adopted hp method produces an 

exponential rate of convergence. It can also be seen that the hp method is giving 

the best refinement at each level and when compared to the h-version is far 

superior.
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(p=1): slope = -0.46

(p=2): slope = -0.45
E10'

■ o h-version 
-* p-version 
-+ h p-version

(h=1/2j>: slope = -1 .00

(h=1/4): s lop e  = -0 .96

D egrees of freedom

Figure 5.13: A comparison of the uniform h, p and hp-versions for Example 2

5.3 Further C om m ents

Although the above results where obtained for the a —Laplacian, it is quite clear 

that the results given hold for any functions whose derivatives behave in a similar 

manner. Such allowable functions satisfy problems: Find u such that

- V  • {Ah +  A h|V u|“- 2Vu} = /  in 0 , (5.30)

for K i, Ah > 0, along with boundary conditions.

It was also assumed throughout, that the elements were only allowed to be 

polygonal. This is not the case, these results may be extended to curvilinear 

triangles and quadrilaterals which are such that there exists a sufficiently smooth 

one-to-one mapping from these elements to the reference elements.
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Finally, different types of singularities may arise from these a-Laplacian prob

lems. In particular singularities which occur in the interior will cause degradation 

in the finite element method. A look at the approximation theory for the /in

version for such singularities is being considered and will be given in Ainsworth 

and Kay [5].
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