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Abstract—This paper considers the design of structured anti-
windup compensators for open-loop stable plants which them-
selves have a particular structure: a diagonal dynamic part
cascaded with a static, invertible part. Two approaches to the
design of such compensators are proposed. The first is a pseudo-
decentralised anti-windup compensator which is a direct exten-
sion of a similar scheme in the literature. The second approach
allows anti-windup compensators to be designed individually for
each control channel and, provided a certain linear program
is satisfied, allows the compensators to be implemented in such
a way that the nonlinear closed-loop is asymptotically stable.
The design approaches are applied to a quadrotor UAV, which
inspired the work, and results from both simulations and flight
tests are reported.

I. INTRODUCTION

For control systems experiencing actuator saturation, anti-
windup (AW) compensators are designed to work with existing
controllers to prevent excessive degradation in performance
during periods of saturation and to quickly allow the system
to return to normal operation after saturation has occurred. The
topics of actuator saturation and AW compensation techniques
have been studied extensively over the past two decades and a
number of useful anti-windup techniques are now available
[1], [2], [3], [4]. In recent years several books have also
been written on the subject [5], [6], [7] and a tutorial is also
available [8].

Despite the advances made over recent years, the performance
of most anti-windup compensators in much of the litera-
ture is normally demonstrated using single-input-single-output
(SISO) systems. Although most of the design approaches can,
in principle, be applied to multi-input-multi-output (MIMO)
systems, these tests are often not performed and in certain
cases performance can be disappointing. At least part of this
may be due to the difficulty of interpreting the practical con-
sequences of L2 performance for multivariable systems. Two
papers which have recently examined this are [9] and [10].
A further disadvantage of MIMO anti-windup compensators
is their lack of structure which may deprive the compensators
of transparency and may allow their theoretical advantages
to be overshadowed by structural drawbacks when applied in
practice.

In this paper, we re-visit the problem of anti-windup design
for MIMO systems and provide structure to the anti-windup
compensators in order to simplify their implementation and
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enhance the transparency of their operation. In particular, we
provide two approaches for the design of structured compen-
sators for plants which consist of a diagonal dynamic part,
preceded by an invertible, static part. Practical systems that
fall into this class of MIMO systems include, but are not
restricted to, quadrotor unmanned air vehicles (UAVs). The
AW design techniques considered here follow the approach
for full order multivariable AW compensator design proposed
in [4] but extend these results in two different directions. The
first extension exploits the structure of the plant in order to
impose a certain AW compensator structure: this results in an
AW compensator which, in a certain sense, is decentralised -
we say it is pseudo-decentralised. The second extension shows
how a MIMO AW compensator can be constructed from a
combination of single-loop anti-windup compensators which
can be designed in isolation. These compensators are referred
to as channel-by-channel AW compensators [11], [12], and
have the advantage that they can be designed purely using a
set of SISO systems, which greatly simplifies their tuning.

Any anti-windup compensator must ensure that their use
guarantees stability of the overall system and hence the paper
presents stability analyses which provide conditions which
the anti-windup compensators must satisfy. These stability
conditions follow on naturally from the method in [4] for
the pseudo-decentralised approach and, as with most other
advanced anti-windup techniques, can be cast as a set of
linear matrix inequalities. The channel-by-channel approach is
accompanied by more stringent stability criteria which consist
of a set of linear matrix inequalities for each channel of
the design, and, in addition a linear program which must be
feasible for stability to be ensured. In both approaches, there
is a trade-off between architectural simplicity and feasibility
of the stability conditions, compared to the approach of [4].
However, in practical situations, architectural simplicity and
transparency are often highly valued.

The inspiration for this work was the development of anti-
windup compensators in order to alleviate saturation problems
in quadrotor UAVs where, for reasons of ease of imple-
mentation and monitoring, a set of single-loop anti-windup
compensators are preferred to one multivariable compensator.
A number of researchers have reported the problem of actuator
saturation in quadrotors to exist in normal flight situations and
extreme maneuvers [13], [14], [15]. The proposed anti-windup
compensators are designed and integrated into a modified 2014
3DR Quadrotor UAV and compared to the MIMO anti-windup
method of [4] in both simulation and flight-test. Results of
flight tests from this integration are presented to show the
improved performance of the quadrotor UAV during saturation
of its motors.
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Fig. 1. Single-loop anti-windup structure

Notation: Notation in this paper is standard. Rm×p denotes
the space of real rational m × p transfer function matrices;
the subspace which is analytic in the closed right half plane
is denoted RHm×p∞ . If dimensions are unimportant, RH∞ is
often used as short-hand.

A signal x(t) ∈ L2 if its L2 norm

‖x‖2 :=

(∫ ∞
0

‖x(t)‖2dt
) 1

2

is finite. The L2 gain or induced L2 norm of a (nonlinear)
mapping T (.) is defined as

‖T ‖i,2 := sup
06=x∈L2

‖T (x)‖2
‖x‖2

.

The saturation function is defined as

sat(u) := [sat(u1), . . . , sat(um)]′

and sat(ui) := min{|ui|, ūi} × sign(ui). The deadzone func-
tion given as

Dz(u) := u− sat(u)

and Dz(ui) = max{0, |ui|−ūi}×sign(ui). ũ is used to replace
Dz(u) in some parts of this paper. The notation He{A} is
given as

He{A} = A+A′.

II. TWO SPECIAL CASES OF ANTI-WINDUP DESIGN

Before presenting the main results of the paper, it is fruitful
to consider two special cases of anti-windup design: full-order
anti-windup design for MIMO systems and its counterpart for
single-loop, or SISO, systems (actually the systems are SIMO
because allowance is made for the controller to access more
than one output). Consideration of the MIMO case is important
for the development of the pseudo-decentralised results con-
sidered later; consideration of the SIMO case is important for
the development of the channel-by-channel approach which is
finally developed.

A. Full-order anti-windup design for MIMO systems

This section reviews the approach to full-order anti-windup
design described in [4] (see also [16]). A full-order anti-
windup compensator has the same order as the plant, G(s).
Its main advantage is that, for stable systems G(s) ∈ RH∞,
a globally stabilising full-order compensator always exists.
The pseudo-decentralised approach to anti-windup design we
present later builds on the approach presented below.

Consider Figure 1 which shows a generic anti-windup con-
figuration. It is assumed that the plant G(s) ∈ RHp×m∞ and

that the controller K(s) stabilises the plant in the absence of
saturation. Θ(s) is the anti-windup compensator which only
becomes active once saturation has occurred. In this figure

• u, um ∈ Rm are the control signal and plant input
respectively.

• r ∈ Rnr is the reference and y ∈ Rp is the plant output.

The plant G(s) has the following state-space realisation

G(s) ∼
[
Ap Bp
Cp Dp

]
(1)

where Ap ∈ Rnp×np . For simplicity, disturbances are not
considered, and they have no impact on the stability analysis.
Based on the formulation for full-order AW compensators in
[17], [18], the following structure:

Θ(s) =

[
M(s)− I
G(s)M(s)

]
(2)

is chosen for Θ(s) where the transfer function M(s) ∈
RHm×m∞ is chosen as part of a right coprime factorisation of
the plant G(s) = N(s)M(s)−1. If this coprime factorisation is
chosen to be equal in order to that of the plant, a state-space
realisation of the anti-windup compensator can therefore be
given by

Θ(s) =

[
M(s)− I
N(s)

]
∼

[
Ap +BpF Bp

F 0
Cp +DpF Dp

]
(3)

where F is chosen such that Ap +BpF is Hurwitz. With this
choice of anti-windup compensator, it can be shown ([17])
that Figure 1 is mathematically equivalent to Figure 2. Figure
2 is more useful for analysis of the system with saturation
and anti-windup because it is partitioned into three distinct
subsystems. Under the assumption that K(s) stabilises G(s)
and gives desirable behaviour, it follows that (i) the entire
system is stable if and only if the nonlinear loop is stable; and
(ii) the performance of the system is governed by the mapping
Tp : ulin 7→ yd. This mapping represents the deviation of the
real output (y) from the nominal output (ylin) when saturation
and/or anti-windup is active. This approach transforms the AW
design problem to that of finding a transfer function matrix
M(s) (or equivalently a state-feedback matrix F ), such that
the nominal closed-loop system with AW compensation is
asymptotically stable and the mapping Tp is well-defined and
such that, for some sufficiently small γ > 0, ‖Tp‖i,2 < γ. The
following is a summary of some results from [4].

Theorem 1: Assume that G(s) ∈ RHp×m∞ and that the nominal
interconnection of K(s) and G(s) is asymptotically stable and
well-posed. If there exist matrices Q > 0, diagonal U > 0 and
L, and a scalar γ > 0 such that the following linear matrix
inequality

He


ApQ+BpL BpU 0 0

−L −U I 0
0 0 −γ2 I 0

CpQ+DpL DpU 0 −γ2 I


 < 0 (4)

holds, then the anti-windup compensator (3) with F = LQ−1

ensures that the system in Figure 2 is globally exponentially
stable, well posed and such that ‖Tp‖i,2 < γ.



+

-

-
+

Nominal Linear Loop

NonLinear Loop

Disturbance Filter

GK
r y

yd

ud

M − I

N

ulin

ylin

ũ

Fig. 2. Equivalent representation of structure

The above theorem does not require the plant and the con-
troller to have a specific structure and, indeed, can be applied
to any stable plant G(s) with a stabilising linear controller,
K(s). However, one might expect that if the plant and con-
troller have structure, some simplifications of this result could
be obtained.

B. Full-order anti-windup design for SIMO systems

A useful special case of the generic MIMO result can be ob-
tained when the system in question has only one control input
(but possibly more than one output measurement). Consider
Figure 3 where Gi(s) ∈ RHpi×1∞ is the plant, Ki(s) is the
controller and Θi(s) is the anti-windup compensator. A state-
space realisation for the plant, Gi(s), is

Gi(s) ∼
[
Ai Bi
Ci Di

]
(5)

where Ai ∈ Rni×ni . Similarly to Section II-A, u, um ∈ R are
the control signal and plant input respectively, r ∈ R is the
reference, y ∈ Rpi is the plant output. All other signals have
compatible dimensions. The anti-windup compensator Θi(s)
has the same structure as in equation (3), where

Θi(s) =

[
Mi(s)− 1
Ni(s)

]
∼

[
Ai +BiFi Bi

Fi 0
Ci +DiFi Di

]
. (6)

As with Section II-A, this structure of anti-windup compen-
sator allows Figure 3 to be re-drawn as the mathematically
equivalent diagram, Figure 4. Again, the mapping Tp : ulin 7→
yd governs the deviation of performance from nominal due to
saturation and influence of the anti-windup compensator. The
following is then a special case of Theorem 1.

Theorem 2: Assume that Gi ∈ RHpi×1∞ and that the nominal
interconnection of Ki(s) and Gi(s) is asymptotically stable
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Fig. 3. Single-loop anti-windup structure
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and well-posed. If there exist matrices Qi > 0, Li and scalars
Ui > 0 and γi > 0 such that the following linear matrix
inequality

He


AiQi +BiLi BiUi 0 0

−Li −Ui I 0
0 0 −γi2 0

CiQi +DiLi DiUi 0 −γi2 I


 < 0 (7)

holds, then the system in Figure 4, with the anti-windup
compensator in equation (6) where Fi = LiQ

−1
i , is globally

exponentially stable, well posed and such that ‖Tp‖i,2 < γi.

If L2 gain is not important, the following corollary may be
used instead.

Corollary 1: Assume that Gi ∈ RHpi×1∞ and that the nominal
interconnection of Ki(s) and Gi(s) is stable and well-posed.
If there exist matrices Qi > 0, Li and scalars Ui > 0 such
that the following linear matrix inequality[

QiA
′
i +AiQi +BiLi + L′iB

′
i BiUi − L′i

? −2Ui

]
< 0 (8)

holds, then the system in Figure 4, with the anti-windup
compensator (6) where Fi = LiQ

−1
i , is globally exponentially

stable, well posed and there exists a γi > 0 such that
‖Tp‖i,2 < γi.

The choice of Ui in this case is not important and does
not affect feasibility of (8) or the design of the anti-windup
compensator. To see this, note that inequality (8) can be
divided by Ui to eliminate it from the LMI, resulting in a
scaling of Li and Qi by the same factor: but as Fi = LiQ

−1
i ,

the net effect of Ui on Fi is zero.

III. ANTI-WINDUP DESIGN FOR A CLASS OF MIMO
SYSTEMS

Consider now Figure 5. The signals and systems have the same
meaning as defined in Section II-A, but it is now assumed



that the plant G(s) and the controller K(s) have the special
structures

G(s) = GD(s)X, K(s) = X−1KD(s) (9)

where X ∈ Rm×m is a static nonsingular matrix whose inverse
can be considered as a control allocation matrix and,

GD(s) = blockdiag(G1(s), G2(s), . . . , Gm(s)) (10)
KD(s) = blockdiag(K1(s),K2(s), . . . ,Km(s)) (11)

Here it is assumed that each Gi(s) ∈ RHpi×1∞ and that∑m
i=1 pi = p. The controller dimensions are consistent with

this. State-space realisations for Gi(s), i ∈ {1, . . . ,m} are
the same as those given in equation (5) where

∑m
i=1 ni = np.

Due to the invertibility assumption on X , when no saturation
occurs, the system behaves as m decoupled SISO (or more
accurately SIMO) systems with each Ki(s) responsible for
controlling the corresponding Gi(s). Unfortunately, if sat-
uration occurs, the decoupling into single feedback loops
offered in the unsaturated (nominal) case is ruined because
of the presence of X . This is because the nonlinear operation
represented by χ(.) : Rm 7→ Rm, where

χ(v) := Xsat(X−1v)

is not decentralised. Hence during saturation, the system
experiences windup and becomes vulnerable to performance
degradation due to directionality [9]. It is important to note that
if saturation occurs and X is diagonal, the decoupling effect
we desire is restored. Therefore, in general, if anti-windup
compensators Θi(s) were designed for each i’th feedback loop
independently, it would be unreasonable to expect them to
work on the fully coupled system due to the static effects of
X . Conversely, due to the structure of the controller and plant,
one might expect an anti-windup compensator with a simpler
structure than the generic MIMO one described in Section II-A
to be obtained.

Before proceeding further it is important to state the following
standing assumption made throughout the paper.

Assumption 1:

1) The plant and controller have the structures (9)-(11)
2) The unconstrained closed-loop interconnection of the

plant G(s) (10) and controller K(s) (11) is well-posed
and asymptotically stable

3) G(s) ∈ RH∞ (and by extension each Gi(s) for i ∈
{1, . . . ,m} is stable i.e. Gi(s) ∈ RH∞)

Under Assumption 1, the next subsections will present two
different approaches to anti-windup design for this special
class of system.

A. Pseudo-decentralised Anti-windup Design

Consider again Figure 5 and assume that the plant and
controller are structured as described above. The anti-windup
compensator is driven by the signal ũ = u − um = Dz(u).
However, Figure 5 can be re-drawn more conveniently as
Figure 6, where

Θ̃ =

[
X
I

]
ΘX−1. (12)

In this case our virtual anti-windup compensator, Θ̃(s) can be
considered to be driven by the signal

ṽ = v − vm = v − χ(v).

It is also convenient to note that

ṽ = χ̃(v) := XDz(X−1v).

The control output u and plant input um in Figure 5 are real
signals and direct consequences of the saturation function.
However the signals v and vm in Figure 6 represent imaginary
or virtual signals which are the result of the plant and con-
troller structure G(s) = GD(s)X and K(s) = X−1KD(s).
For this reason, the anti-windup compensator is described
as pseudo-decentralised; it is only decentralised from the
perspective of the virtual signals, not the physical signals.

Assuming the virtual AW compensator Θ̃(s) is

Θ̃(s) =

[
Θ̃1(s)
Θ̃2(s)

]
and by isolating the nonlinear operator χ(v) as a single entity
with input v and output vm, it is possible to re-interpret the
effect of anti-windup on the closed loop in a similar manner
to [17]. From Figure 7, it can be seen that

y = GDvm = GD[v − ṽ].

Since, v = vlin + vd, and vd = Θ̃1ṽ,

y = GDvlin −GD[Θ̃1 + I]ṽ. (13)

Given that, ylin = y + yd , yd = Θ̃2ṽ then

ylin = GDvlin −GD(Θ̃1 + I)ṽ + Θ̃2ṽ. (14)

Therefore, the virtual AW compensator is chosen to have the
form

Θ̃(s) =

[
Θ̃1(s)
Θ̃2(s)

]
=

[
MD(s)− I
GD(s)MD(s)

]
(15)

where MD(s) ∈ RHm×m∞ is some transfer function matrix.
As with Section II-A, the equivalent representation in Figure
6 is shown in Figure 7. Note that, because GD(s) is block-
diagonal, it is possible (and desirable) to choose MD(s) block-
diagonal as well. Therefore Θ̃(s) is de-centralised, implying
a pseudo-decentralised anti-windup design structure from the
point of view of the physical signals. Again, note the same de-
coupled structure. The nonlinear loop in Figure 7 is described
by the following equation:

ṽ = XDz(X−1v).
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Since v = vlin − vd, then

ṽ = XDz[X−1(vlin − vd)]. (16)

The stability and performance of the system with the pseudo-
decentralised AW compensation is dependent on ensuring that
the nonlinear operator Tp : vlin 7→ yd is stable and that
its L2 gain is sufficiently small. Taking inspiration from the
previous sections, and noting that GD(s) is a block diagonal
transfer function matrix with state-space realisation

GD(s) ∼
[
AD BD
CD DD

]
(17)

where

AD = blockdiag (A1, . . . , Am) (18)
BD = blockdiag (B1, . . . , Bm) (19)
CD = blockdiag (C1, . . . , Cm) (20)
DD = blockdiag (D1, . . . , Dm) , (21)

it then follows that a coprime-factor based virtual anti-windup
compensator Θ̃(s) has the following structure:

Θ̃(s) =

[
MD(s)− 1
ND(s)

]
∼

[
AD +BDFD BD

FD 0
CD +DDFD DD

]
(22)

where

FD = blockdiag (F1, . . . , Fm) . (23)

Conditions which can be used to provide an anti-windup
compensator guaranteeing stability and finite L2 gain can now
be given.

Theorem 3: Let Assumption 1 be satisfied. Then there exists
an anti-windup compensator of the structure (12) such that
the origin of the system in Figure 7 is globally asymptotically
stable and ‖Tp‖i,2 < γ if there exist block-diagonal matrices
QD > 0 and LD, a diagonal matrix UD > 0 and a positive
real scalar γ such that the following LMI

He


ADQD +BDLD BDXUD 0 0

−LDX−1 −X−1UD X−1 0
0 0 −γ2 I 0

CDQD +DDLD DDUD 0 −γ2 I


 < 0.

(24)

is satisfied. Furthermore, if this inequality is satisfied, a suit-
able Θ̃(s) achieving global asymptotic stability and ‖Tp‖i,2 <
γ is obtained via the state-space equations (22) where FD as
FD = LDQD

−1.

Proof: See Appendix A.

Remark 1: Compared to the coprime factor based multivari-
able synthesis method of [4], the result above is more stringent:
for the existence of the pseudo-decentralised compensator
described in equation (22) a more restrictive LMI must be
satisfied (24): this is the price paid for a pseudo-decentralised
structure. �

B. Channel-by-channel anti-windup synthesis

The structure of Figure 8 is a slightly modified version of Fig-
ure 6. Here, the AW compensator receives its input ũ directly
from the saturation function. Since the AW compensator has
the transfer function Θ(s) = [Θ1(s) Θ2(s)]′ and ũ = Dz(u),
it then follows that

y = GDXum
= GDX[u− ũ]

= GD(ulin −Θ1ũ)−GDXũ
= GDulin −GD[Θ1 +X]ũ. (25)

Similar to the process followed in Section III-A, noting ylin =
y + yd and choosing Θ1(s) = M(s)−X yields

ylin = GDulin −GD(Θ1 +X)ũ+ Θ2ũ

= GDulin −GDMũ+ Θ2ũ. (26)

For ylin = GDulin, let Θ2(s) = GD(s)M(s). Therefore our
AW compensator has the generic form:

Θ(s) =

[
Θ1(s)
Θ2(s)

]
=

[
M(s)−X
GD(s)M(s)

]
(27)

where M(s) ∈ RHm×m∞ is a free parameter to be chosen. The
equivalent representation of Figure 8 is shown in Figure 9.

Now, assuming that each Gi(s) has right coprime factorisation

Gi(s) = Ni(s)Mi(s)
−1

and if for ∀i ∈ {1 . . . ,m},

ND(s) = blockdiag (N1(s), . . . , Nm(s))

MD(s) = blockdiag (M1(s), . . . ,Mm(s)) .

The transfer function matrix GD(s) has a coprime factoriza-
tion

GD(s) = ND(s)MD(s)−1 (28)
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Fig. 8. Applying the AW on general plant structure (MIMO)
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which may be re-written as

GD(s) = ND(s)X(MD(s)X)−1. (29)

Based on the nonlinear loop in Figure 10, if we choose
M(s) = MD(s)X , the linear element becomes

M(s)−X = (MD(s)− I)X.

We can then redraw the nonlinear loop of Figure 10 as Figure
11 such that the equations of the nonlinear loop then have the
form:

ũ = Dz[X−1(ulin − ud)] (30)

Given that ud = (MD − I)X)ũ then equation (30) becomes

ũ = Dz[X−1ulin − (X−1(MD − I)X)ũ] (31)

Hence, the AW compensator now has the form:

Θ(s) =

[
MD(s)− I
ND(s)

]
X. (32)

+

-

χ̃(u)

Dz(.)

X−1

MD − I

X
ulin

ũ

ud

Fig. 11. Non-linear loop for channel-by-channel AW 2

1) Stability and performance analysis: This section derives
conditions which must be satisfied in order for m single-
channel anti-windup compensators designed according to The-
orem 2 to be combined so that they ensure stability of
the overall nonlinear system i.e. they ensure stability of the
nonlinear loop in Figure 11. The following lemma is central
to the derivation of these results.

Lemma 1: Consider the nonlinearity χ̃(.) : Rm 7→ Rm

χ̃(u) := XDz(X−1u) (33)

where X ∈ Rm×m is a nonsingular matrix. If there exist
diagonal matrices W > 0 and V > 0 such that

V = X ′WX > 0 (34)

then the following inequality

χ̃(u)′W (u− χ̃(u)) ≥ 0, ∀u ∈ Rm. (35)

holds.

Proof: See Appendix B.

This result can be used to prove, in a similar way to Section
III-A, the stability of the system in Figure 9, and therefore
Figure 8, as expounded in the following theorem.

Theorem 4: Let Assumption 1 be satisfied. If there exist
diagonal matrices W > 0 and V > 0 such that V = X ′WX
and there exist matrices Qi > 0, Li and scalar Ui > 0 such
that the LMI (8) are satisfied for all i ∈ {1, . . . ,m}, then with
Θ(s) designed as in (32) where Fi = LiQ

−1
i , the system in

Figure 11 is globally exponentially stable.

Proof: See Appendix C.

C. Linear programming solution to sector analysis

The key to the successful implementation of the channel-by-
channel anti-windup designs on the multivariable system is
Lemma 1: if there exist diagonal matrices W > 0 and V > 0
such that V = X ′WX for the system structure in (9), m AW
compensators can designed using the system of LMI’s in (8)
can be implemented on the multivariable system and stability
is assured. The conditions under which there exist matrices
V > 0 and W > 0 such that V = X ′WX can be simplified
using the vec(.) operator, where:

vec(X ′WX) = vec(V ) = [X ′ ⊗X ′]vec(W ) (36)

=



V1
0
...
V2
0
...
...
Vm


= [X ′ ⊗X ′]



W1

0
...
W2

0
...
...

Wm


(37)

where vec(V ), vec(W ) ∈ Rm2

and X ′ ⊗ X ′ ∈ Rm2×m2

.
The operation vec(A) where A = [a1, a2.....an] ∈ Rn×n
rearranges the column vectors of A in the following way:

vec(A) = [a′1 a′2 · · · a′n]
′



Equation (36) uses the relationship between the vec operator
and the Kronecker product [19]. Equation (37) represents
a linear programming feasibility problem which, after some
manipulations, can be investigated using any linear program
solver. It is important to note that if solutions exist to the linear
program mentioned above, then AW compensators that ensure
the nonlinear stability of the entire system in Figure 8 can be
designed individually for the m control loops or channels of
the multivariable system.

Remark 2: The linear programming solution presents a
transparent and efficient method of determining the diagonal
matrices V > 0 and W > 0 satisfying equation (34). However
the numerical value of V and W are not used in the actual
design of the AW compensator: their existence is purely
required in order for us to make statements about the nonlinear
stability of the overall system. ��

Remark 3: The channel-by-channel approach may, at first
sight, seem a restrictive result: the requirement for the ex-
istence of positive definite diagonal matrices, V and W
satisfying V = X ′WX is strong. However, it enables more
practical flexibility than the pseudo-decentralised approach:
because only the existence of V and W is required, this implies
that any suitable SIMO anti-windup compensator can be used
and this may be re-designed without any effect on the stability
of the overall system. This of course has great practical appeal.
���

IV. THE QUADROTOR MODELLING & SIMULATION
RESULTS

Fl Ff

Fb Fr

τl

τb

τf

τr

θ, q φ, p

ψ, r

y, v x, u

z, w

Fig. 12. Force, torque and states definition of a quadrotor

A. Model Construction

The quadrotor UAV is an interesting vehicle with great po-
tential for use in many fields and has been studied by many
researchers [20], [13], [21].A few researchers have considered
the problem of saturation on UAVs, mainly on fixed wing
UAVs [22], [23], [24] and fewer than that have studied
saturation in UAVs in detail [25].

The structure of a quadrotor is shown in Figure 12. The
quadrotor motors each generate an input force and a torque
when powered. The quadrotor is controlled by varying the
motor speeds, thereby changing the lift force (which is the
sum of all input forces) and its six output coordinates (x, y, z
position output and φ, θ, ψ orientation in space). The pitch
of the quadrotor is controlled by one pair of motors (front
and back motors) rotating in one direction while the roll is
controlled by the other pair of motors (left and right motors)

rotating in opposite direction. The yaw movement is obtained
by increasing/decreasing the speed of one group of motors
while decreasing/increasing the same speed of another group
of motors.

The roll, pitch, yaw angles (φ,θ, ψ) and the position vector
z are the controlled outputs for this quadrotor system where
the nonlinear model dynamics (according to [26]) governing
the operation of the system is given, with c = cos(.) and
s = sin(.), by[
ẋ
ẏ
ż

]
=

[
cθcψ cψsθsφ− cφsψ cψsθ cosφ− sφsψ
cθsψ sψsθsφ− cφcψ sψsθcφ− sφcψ
−sθ cθsφ cφcφ

][
u
v
w

]
(38)φ̇θ̇

ψ̇

 =

[
1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

][
p
q
r

]
(39)

[
u̇
v̇
ẇ

]
=

[
rv − qw
pw − ru
qu− pv

]
+

[
g sin θ

g sinφ cos θ
g cosφ cos θ

]
− 1

m

[
0
0
F

]
(40)

[
ṗ
q̇
ṙ

]
=


Jy−Jz
Jx

qr
Jx−Jz
Jy

pr
Jx−Jy
Jz

pq

+

 1
Jx
τφ

1
Jy
τθ

1
Jz
τψ

 (41)

These dynamics are complex and hence, following [26], by
assuming that the roll and pitch angles φ, θ and the terms qr,
pr and pq in equation (41) (also known as Coriolis terms) are
small, we can simplify the rotational dynamics to

GD(s) ∼


φ̈ = 1

Jx
τφ

θ̈ = 1
Jy
τθ

ψ̈ = 1
Jz
τψ

z̈ ≈ g − 1
mF

(42)

where τφ, τθ, τψ are the roll pitch and yaw torques, F is
the total lift force and m, g are the mass of the quadrotor
and acceleration due to gravity respectively. Equation (42)
shows a simplified structure where the pitch, roll, yaw and
height channels are all decoupled; hence we can design the
controller easily based on this. Torques (τ∗) and forces (F ∗)
are generated by each motor and as stated in [26], they can
be modelled as

F ∗ = k1δ
∗ (43)

τ∗ = k2δ
∗ (44)

where k1 and k2 are constants that are determined experimen-
tally and δ∗ is the motor angular velocity squared.

The equations for the total lift force and torques in the roll,
pitch and yaw axis as seen in Figure 12 are;

Lift force F = Ff + Fr + Fb + Fl
Roll torque τφ = α(Fl − Fr)
Pitch torque τθ = α(Ff − Fb)
Yaw torque τψ = τr + τl − τf − τb

where α is the distance between the centre of mass of the
quadrotor and the motors.
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Fig. 13. Pitch angle response: (a) [from left] Saturation, no AW; (b) Saturation, full MIMO AW; and (c) Saturation, channel-by-channel AW
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Fig. 14. Control command due to pitch response: (a) [from left] Saturation, no AW; (b) Saturation, full MIMO AW; (c) Saturation, channel-by-channel AW

By substituting the above set of equations into an expanded
form of equations (43) and (44), we can then rewrite the forces
and torques with respect to the square of the motor angular
velocity (which are the actual motor commands) in matrix
form as:Fτφτθ

τψ

 =

 k1 k1 k1 k1
0 −αk1 0 αk1
αk1 0 αk1 0
−k2 k2 −k2 k2


︸ ︷︷ ︸

X

δfδrδb
δl


︸ ︷︷ ︸
u

. (45)

Hence equation (45) in conjunction with equation (42) display
the structure G(s) = GD(s)X described in Assumption 1.
This structure allows us to design the controller using the form
K(s) = KD(s)X where a simple PD controller is designed
for each controlled output that thus makes up KD(s). The
PD controller will not only provide a simple and structured
design approach but will also provide stability and control
for the angles φ, θ, and ψ and position z with satisfactory
performance results.

The decoupled structure in equation (42) allow us to design the
following decoupled controller for the three angular positions:

Uφ = Kφ,P [rφ − φ]−Kφ,D[p] (46)
Uθ = Kθ,P [rθ − θ]−Kθ,D[q] (47)
Uψ = Kψ,P [rψ − ψ]−Kψ,D[r]. (48)

To remain at constant height, the control output must be able
to drive its signal to counteract the effects of gravity and hence

the PD controller is added to stabilise the motion in z direction.
The control law can be described as:

Uz = Kz,P [rz − z]−Kz,D[w] + g. (49)

In equations (48) - (49), the notation definitions are given as

• Kφ,P ,Kθ,P ,Kψ,P ,Kz,P are the proportional gains,
• Kφ,D,Kθ,D,Kψ,D,Kz,D are the derivative gains,
• Uφ,θ,ψ,z are the control inputs (in virtual coordinates),
• rφ,θ,ψ,zare the desired references and
• g is acceleration due to gravity.

B. Simulation Results

A fully MIMO AW compensator [4], a pseudo decentralised
AW anti-windup compensator (Section III-A) and a set of
channel-by-channel anti-windup compensators (Section III-B)
were designed using the linear model of the quadrotor system
(42). These were then evaluated using the full nonlinear model
of the quadrotor. The parameters and PD gains used for the
simulation are stated in Table I. These parameters are the
same for the physical UAV. Many simulations were used to
the evaluate the performance of the anti-windup compensators
on the nonlinear model but, for conciseness, only the pitch
responses are discussed.

Figure 13 shows the responses of the system when a pulse
reference signal of 0.4 radians was commanded on the pitch.
The corresponding control response is shown in Figure 14.



TABLE I
APPROXIMATE VALUES OF 3DR QUADROTOR PARAMETERS AND ONLINE

PD GAINS

Parameters Description Values Units
g Gravity 9.81 ms−2

m Mass 2.1 kg
d Distance 0.3 m
k1 Force constant 0.89
k2 Torque constant 0.11
Jx Pitch Inertia 2.85 x 10−6 kgm−2

Jy Roll Inertia 2.85 x 10−6 kgm−2

Jz Yaw Inertia 1.81 x 10−6 kgm−2

Kφ,P Proportional gain 0.22
Kθ,P 0.22
Kψ,P 0.4
Kφ,D Derivative gain 0.004
Kθ,D 0.004
Kψ,D 0.003
Throttle via Kz,P Throttle rate P gain 6
Throttle via Kz,D Throttle rate D gain 0.001

Fig. 15. Modified 2014 3DR Quadrotor

Figures 13a/14a show the saturated response of the system
experiencing windup effects of large overshoot on the pitch
and roll channels caused by the increasing pitch feedback error
driven by slow poles in the nonlinear system and the coupling
that exists between the roll and pitch channels.

Figures 13b/14b and 13c/14c clearly show improved responses
from the full MIMO AW compensator and the channel-by-
channel AW compensator respectively. This implies that rather
than have a complex system like the full MIMO AW compen-
sator, a simple channel AW compensator can be designed with
ease and this will produce a similar result. A similar output
response to the full MIMO AW compensator was obtained for
the decentralised AW compensator.

V. FLIGHT TESTING

A. Test Platform

The test platform is a 2014 3DR quadrotor [27], a DIY
quadrotor kit equipped with the Ardupilot Mega (APM 2.6)
programmable flight controller board whose firmware has
been modified to allow for the testing and validation of the
different AW compensators (See Figure 15). The rotational and
translational dynamics of this system is similar to the complete
nonlinear dynamics of the quadrotor in Section IV

Flight Controller: The Ardupilot Mega (APM 2.6) is based on
the Arduino ATmega2560 microcontroller. It provides a large
number of I/O pins for its sensors which include magnetome-
ters, barometric pressure sensors and the inertial measurement
unit (IMU) sensor consisting of a three-axis accelerometer and
a three-axis gyroscope. The firmware for this system is open
source and has a lot of support on cross platform application
and programming making it relatively simple to understand
and modify.

Components: This quadrotor consists of the following com-
ponents: (1) four UT2212 850 kV brushless DC motors, (2)
a Quattro 4in1 20 A electronic speed controller (ESC) , (3)
four 12 inch two-bladed propellers, (4) a Ublox LEA-6H GPS
with compass kit (5) a pair of 3DR 433 MHz transceiver
telemetry kit (6) an AR6200 6-channel DSMX receiver (7)
and a Floureon rechargeable lithium-polymer, 11.1 V, 5500
mAh battery with a power module that supplies variable
voltages to the different sections of the quadrotor. See Figure
16 for a block architecture of the interconnections of all these
components.

Frame: The 3DR quadrotor frame is a combination of carbon
fibre plates and aluminium struts intended to provide a bal-
ance between impact strength and weight. Impact strength is
required because the frame may take a few hard landings and
potential crashes during tests. The central carbon fibre plate
is large enough to place components and it makes it easier to
attach and detach any components easily for troubleshooting
purposes.
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Fig. 16. Quadrotor hardware schematic

Ground Control Station (GCS): The GCS is a computer
that runs the software that communicates with the quadrotor
remotely via the telemetry system. It helps monitor the quadro-
tor’s performance and status. The GCS software has a heads-
up display (HUD), moving maps showing the UAV’s position
and a host of indicators that help enhance flight performance.

B. Test Procedure

For this work, the quadrotor was made to achieve autonomous
flight with a constant mission in order to attain a certain
level of uniformity in the results gathering. The first stage
requires scripting the AW compensators in C code and running
it in conjunction with the model in MATLAB/SIMULINK
to verify that it functions well. The next stage involves
converting the C code to C++ code and adding the scripted



Fig. 17. Snapshot showing Mission Waypoints

C++ code to the already existent PID controller library in the
ardupilot firmware code and making a few modifications. A
PD controller is derived from the firmware’s PID controller
by simply setting the integral gain to zero. The final stage
involves testing the entire system in a real flight situation. The
test in this stage is conducted in the following sequence: (1)
first, the UAV is started in manual mode with preflight checks
carried out; (2) next, the UAV is switched to autonomous mode
while on the ground for the saved mission to begin; (3) as the
UAV automatically takes off, it follows the pre defined paths
and reference commands set in the mission while it is being
monitored from the GCS; (4) finally, after all commands are
executed, the UAV lands automatically and shuts down the
motors signifying the end of the mission.

The motor commands to be saturated are the angular velocities.
However since angular velocities cannot be directly measured
by our system, the motor’s PWM input value is used instead
where the angular velocity is obtained by conversion from
RPM values and these RPM values are recorded by the
firmware code for various PWM command levels operating
with duty cycle range between 1000 µs (1 ms) and 2000
µs (2 ms) at a frequency of 490 Hz. Figure 18 shows the
typical PWM conversion ranges for this system where the
PWM signal period is 2 ms.

Under gusty conditions, the quadrotor proved vulnerable to the
effects of actuator saturation. However, these conditions made
tests not repeatable and made it difficult to fly the UAV safely.
Therefore, to safely and consistently observe the effects of
saturation, artificial limits were imposed on the system using
the software and flights only took place in clement weather.
This ensured that saturation effects could be recovered from
safely (i.e. the limits could be restored to nominal values) to
prevent the quadrotor from crashing, and also that saturation
arose mainly from (repeatable) reference demands rather than
(unrepeatable) disturbances.

In initial tests, the artificial saturation limits were set at about
50% of nominal. However, without AW, the quadrotor became
highly unstable and resulted in a safe crash seconds after

the artificial limits were engaged. When AW was applied
with these limits engaged, the quadrotor maintained stable
flight in air but with less than desirable performance. For
this reason, artificial limits were degraded to a more modest
13% of nominal in all flight tests, which corresponded to
7350 rpm or 120 rad/s. These modest degradations still allow
the differences between the UAV behaviour with and without
anti-windup to be observed but the flights were less prone
to disaster. In the test performed, the AW is engaged in the

PWM duty cycle Angular Velocity

1 ms

2 ms

100%

50%

0%

8500 rpm

4250 rpm

0 rpm

RPM

890 rad/s

445 rad/s

0 rad/s

ω

Fig. 18. PWM conversion

mission on the path from waypoint 2 to waypoint 3 at an
altitude of 9 m when the quadrotor is on level flight as shown
in Figure 17 and then the artificial limits are switched off just
before it hits waypoint 3.

C. Flight Test Results

Figure 19a shows a typical pitch response during a complete
flight for a saturated system with no AW case while Figure
19b shows another complete flight for a saturated system with
the channel-by-channel AW case.

Figure 20a focuses on the flight section with the waypoints
where artificial limit were applied and shows the response of
the system when no artificial saturation limits are imposed on
the system. Note the nominal system’s good performance with
some good signal tracking and good settling time.

Now, Figure 20b shows a degraded response with the artificial
saturation limits imposed. It can clearly be seen that the pitch
response has large overshoots and is out of phase. Physically,
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Fig. 19. Full Flight Pitch response: (a) [from left] Saturated No AW; (b) Saturated, with AW (Section II-A)
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the UAV is seen to jerk slightly along the pitch axis and
becomes increasingly unstable with time.

Figures 21a, 21b and 21c show improved responses when
the AW compensators are engaged using the full MIMO AW,
decentralised AW and channel-by-channel AW compensators
respectively. The pitch response overshoot seen in Figure 20b
is largely reduced in all three cases of Figure 21 and its signals
are now in phase with the desired/reference signal.

It is important to note that all flights are not exactly alike
because with outdoor flights, gust, wind speed and other
weather conditions are not constant and hence the differences
between each of these plots.

VI. CONCLUSION

This paper has proposed two techniques for structured anti-
windup compensator design for plants which exhibit a certain
structure. The first (pseudo-decentralised) approach allows one
to design an anti-windup compensator which, from the per-
spective of the virtual control signals, appears decentralised.
The second (channel-by-channel) approach enables one to
design separate single-loop anti-windup compensators and
combine them in such a manner that they guarantee stability
for the multivariable closed-loop system.

The paper has applied these decentralised approaches to
saturation problems in a quadrotor UAV, both in simula-
tion and in experiment. The results show that the pseudo-
decentralised approaches to anti-windup design can all offer
similar performance improvement, during saturation, as a
standard multivariable anti-windup compensator. The crucial
feature is that the channel-by-channel AW compensator can
be designed and implemented for just one channel of the
system thereby reducing the higher computational burden
experienced when the other two AW compensator designed
in this paper are implemented. Furthermore,in the channel-by-
channel approach, each i’th single-loop compensators can be
redesigned without affecting either the other compensators or
the stability of the overall multivariable system.
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APPENDIX A
PROOF OF THEOREM 3

As mentioned earlier, the stability and performance of the
system in Figure 7 reduces to guaranteeing the stability and
performance of the nonlinear operator Tp. In the case of the de-
centralised anti-windup compensator, a state-space realisation
of Tp is given by

ẋD = (AD +BDFD)xD +BDχ̃(v) (50)
vd = FDxD (51)
yd = (CD +DDFD)xD +DDχ̃(v) (52)

where

χ̃(v) = XDz[X−1(vlin − vd)]. (53)



To guarantee stability and ensure that ‖Tp‖i,2 < γ , it
is sufficient for the following inequality to hold for some
Lyapunov function V (x) and some scalar γ > 0,

V̇ (x)− γ‖vlin‖2 +
1

γ
‖yd‖2 < 0. (54)

Recall that as the deadzone inequality belongs to the
Sector [0, I], for some diagonal matrix W > 0 [28], the
following inequality

Ω(v) = Dz(X−1v)′W
(
v −Dz(X−1v)

)
≥ 0 (55)

holds. The Lyapunov function is chosen as V (xD) =
x′DPDxD where PD is a positive definite block diago-
nal matrix, with elements of dimensions consistent with
(AD, BD, CD). By appending the sector inequality (55) to
(54), we require

V̇ (xD)− γ‖vlin‖2 +
1

γ
‖yd‖2 + Ω(v) < 0. (56)

Using the realisation (52) and noting v = vlin − vd, similar
to [18] we obtain the linear matrix inequality in (24). This
LMI is obtained after evaluating the inequality (56) using stan-
dard Schur complements and the congruence transformation
diag(P−1D ,W−1, I, I) = diag(QD, UD, I, I).

APPENDIX B
PROOF OF LEMMA 1

Since χ̃(u) := XDz(X−1u), the left hand side of the
inequality (35) can then be written as

l.h.s.(35) = Dz(X−1u)′X ′W [u−XDz(X−1u)]

= Dz(X−1u)′X ′WX[X−1u−Dz(X−1u)]. (57)

Substituting ux = X−1u and V = X ′WX in the equation
above results in,

χ̃(u)′W (u− χ̃(u)) = Dz(ux)V [ux −Dz(ux)]. (58)

It then follows that for any ux and any diagonal V > 0, the
inequality,

Dz(ux)′V [ux −Dz(ux)] > 0 ∀ux ∈ Rm (59)

holds by virtue of the deadzone’s sector property. Hence, in
order for the inequality (35) to hold, it is sufficient for there to
exist diagonal matrices W > 0 and V > 0 satisfying equation
(34).

APPENDIX C
PROOF OF THEOREM 4

The state space realization of each ith loop of Θ(s) in (32) is

ẋi = (Ai +BiFi)xi +Biχ̃i(u) (60)
ui = Fixi (61)
yi = (Ci +DiFi)xi +Diχ̃(u). (62)

By choosing the Lyapunov function V (x) = x′PDx =∑m
i=1 x

′
iPixi, V̇ (x) becomes

V̇ (x) =x′ ((AD +BDFD)′PD + PD(AD +BDFD))x

+ 2x′PDBDχ̃(u). (63)

Using Lemma 1, it follows that there exists a diagonal W > 0
such that

χ̃(u)′W (u− χ̃(u)) ≥ 0, ∀u ∈ Rm. (64)

Therefore, a sufficient condition for inequality (63) to hold is
for the inequality below to hold:

V̇ (x) ≤
[
x

χ̃(u)

]′
He

{[
PD(AD +BDFD) PDBD

−WFD −W

]}[
x

χ̃(u)

]
.

(65)

Due to the diagonal nature of all the matrices, this inequality
can be broken down into

V̇ (x) ≤
m∑
i=1

[
xi

χ̃i(u)

]′
He

{[
Pi(Ai +BiFi) PiBi
−WiFi −Wi

]}[
xi

χ̃i(u)

]
.

(66)
After applying standard Schur complements and the congru-
ence transformation diag(P−1i ,W−1i ) = diag(Qi, Ui), we
obtain the LMI (8).


