SYNTHESIS, CHARACTERISATION AND STRUCTURE

DETERMINATION OF FLUORO- AND NON-FLUORO SCHIFF BASES AND THEIR METAL COMPLEXES

Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester
by
\section*{SYEDA ROBINA GILANI}
in the
Faculty of Science
of the
Department of Chemistry
at the
University of Leicester

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U105926
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

STATEMENT

The accompanying thesis submitted for the degree of Ph.D. is based on work conducted by the author in the Department of Chemistry of the University of Leicester mainly during the period between September 1994 and September 1997.

All the work recorded in this thesis is original unless otherwise acknowledged in the text or by the references. None of the work has been submitted for another degree in this or any other University.

Syeda R. Gilani
University of Leicester
October 1997

Acknowledgements

I would like to thank my supervisor Dr. J. Burgess, for all his help, encouragement, guidance, precious suggestions and patience during the course of this work. It is not possible to express in words my gratitude to him who has spent his invaluable time for many discussions, reading and giving comments during the course of this work.

My special thanks must go to Dr. D. R. Russell for his help and guidance in the study of crystal structures during the course of this work. I am also grateful to Prof. Dr. J. Holloway, Head of the department, for all his encouragement, suggestions and guidance.

I would also like to thank Dr. J. Fawcett for a number of crystal structure determinations, presented in this work, his suggestions, guidance and comments. Thanks must also go to Dr. G. Griffith for his help in interpreting NMR spectra, and Dr. G. Eaton for recording MS spectra and his help in their interpretation.

I am also extremely grateful to Martin Spark, and all the workshop staff for their help and co-operation. I would also like to thank Kuldip Singh for his help and co-operation during the course of this work. My special thanks must go to Emma Waltham for her help, suggestion, guidance and love. I must also thank to all the inorganic staff members and colleagues for their co-operation.

Further, I would like to express my gratitude to my husband for his continuous support, encouragement and tolerance throughout the course of this work, and I am also grateful to my son Mohd. Ali and my family members for their encouragement and tolerance, especially, my father and mother(late) whom encouragement made it all possible for me.

DEDICATED TO

MUM AND DAD

WITH LOVE AND THANKS

ABSTRACT

SYNTHESIS, CHARACTERISATION AND STRUCTURE DETERMINATION OF FLUORO- AND NON-FLUORO SCHIFF BASES AND THEIR METAL COMPLEXES

Syeda R. Gilani

Abstract

Schiff bases have been prepared from fluoro- and non-fluorosubstituted anilines with (a) salicaldehyde and substituted salicaldehydes and (b) acetylacetone and its trifluoro analogue. They were characterised by ultraviolet-visible, infrared, and NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$) spectroscopies, and by mass spectrometry. The crystal structures of several of these Schiff bases were determined by X-ray techniques. Several cobalt(II), cobalt(III), nickel(II) and copper(II) complexes of these ligands were prepared. Crystal structures were established for four of the copper(II) complexes; bond distances in the complexes have been compared with those in the respective free ligands. Inter- and intra-molecular hydrogen-bonding is significant in many of the Schiff bases, but not in the complexes.

Anhydrous bis(acetylacetonato)cobalt(II) was obtained, and its structure established by X-ray diffraction. It was found to be square-planar. Its bond lengths, bond angles, and geometry were compared with those for other metal(II) acetylacetonates $[\mathrm{M}$ (II) $=\mathrm{Cr}(\mathrm{II}), \mathrm{Co}$ (II) $, \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}($ II $), \mathrm{Zn}(\mathrm{II})]$, in mononuclear, polynuclear, and hydrated forms.

CONTENTS:- 1 INTRODUCTION
1.1 Introduction 1
1.2 Schiff Bases 1
1.3 Spectroscopy of Salicylideneanilines 3
1.4 4-Amino-3-penten-2-ones Spectroscopy 8
1.5 Complexes 11
1.6 References 15
2 SYNTHESIS AND CHARACTERISATION OF SUBSTITUTED SALICYLIDENE ANILINES
2.1 Introduction 19
2.2 Preparation of Schiff Bases 23
2.3 General Reaction 23
2.4 Reaction Mechanism 24
2.5 Experimental 25
2.6 General Method of Preparation 25
2.7 List of Salicylideneimines Prepared 26
2.8 Results and Discussion 29
2.8.1 Physical Characterisation 29
2.8.2 Elemental Analysis 31
2.8.3 ${ }^{1}$ H NMR Spectroscopy 32
2.8.4 ${ }^{13} \mathrm{C}$ NMR Spectroscopy 36
2.8.5 ${ }^{19}$ F NMR Spectroscopy 40
2.8.6 Mass Spectrometry 42
2.8.7 IR Spectroscopy 45
2.8.8 UV Scan 50
2.9 Conclusion 51
2.10 References 52
3 STRUCTURAL DETERMINATION OF SOME NOVEL SUBSTITUTED SALICYLIDENE ANILINES
3.1 Introduction 55
3.2 Literature Survey 56
3.3 Methods of Crystallisation 63
3.4 Experimental 64
3.5 Salicylideneaniline Derivatives 64
3.6 Results and Discussion 67
3.6.1 SAL3,5 $\left(\mathrm{CF}_{3}\right)_{2}$ 67
3.6.2 SAL3F,4(CH_{3}) 70
3.6.3 $\operatorname{SAL4}\left(\mathrm{OCF}_{3}\right)$ 73
3.6.4 SAL4F 76
3.6.5 $\mathrm{SAL4}\left(\mathrm{CH}_{3}\right)$ 79
3.6.6 SALF5 82
3.6.7 5ClSAL4Cl 85
3.7 Discussion 88
3.8 References 93
4 SYNTHESIS AND CHARACTER- -ISATION OF SOME SUBSTITUTED 4-AMINO-3-PENTEN-2-ONES
4.1 Introduction 96
4.2 Preparation of ketoamines 98
4.3 General Reaction 98
4.4 Reaction Mechanism 99
4.5 Experimental 100
4.6 General Method of Preparation 100
4.7 List of Diketoimines prepared 101
4.8 Results and Discussion 103
4.8.1 Physical Characteristics 103
4.8.2 Elemental Analysis 105
4.8.3 ${ }^{1}$ H NMR Spectroscopy 106
4.8.4 ${ }^{13} \mathrm{C}$ DEPT NMR Spectroscopy 1111
4.8.5 ${ }^{19} \mathrm{~F}$ NMR Spectroscopy 115
4.8.6 Mass Spectrometry 118
4.8.7 IR spectroscopy 120
4.9 Conclusion 124
4.10 References 125
5 STRUCTURAL DETERMINATION OF SOME NOVEL 4-AMINOPHENYL-3- PENTEN-2-ONES
5.1 Introduction 127
5.2 Methods of Crystallisation 128
5.3 4-Aminophenyl-3-Penten-2-Ones 129
5.3.1 $\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$ 131
5.3.2 $\mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right) \mathrm{A}$ 134
5.3.3 AcAc4 $\left(\mathrm{CH}_{3}\right) \mathrm{A}$ 137
5.3.4 AcAc4FA 140
5.3.5 AcAc3F,4(CH3)A 143
5.3.6 AcAc2(OH)A 146
5.4 Discussion 149
5.5 References 153
6 SYNTHESIS AND CHARACTER-
-ISATION OF SALICYLIDENEANILINE TRANSITION METAL COMPLEXES
6.1 Introduction 155
6.2 General Method of Preparation 158
6.2.1 Preparation of $\mathrm{Cu}(\mathrm{II})$ complexes 158
6.2.2 Preparation of $\mathrm{Ni}(\mathrm{II})$ complexes 158
6.2.3 Preparation of $\mathrm{Co}(\mathrm{II})$ complexes 159
6.2.4 Preparation of $\mathrm{Co}(\mathrm{III})$ complexes 159
6.3 Experimental 164
6.4 Results and Discussion 165
6.4.1 Physical Properties 166
6.4 2 Elemental Analysis 167
6.6.3 ${ }^{1} \mathrm{H}$ NMR Data 168
6.4.4 IR Data 173
6.4.5 Mass Spectrometry 179
6.7 UV/Vis Spectroscopy 185
6.8 Refrences 189
7 STRUCTURE DETERMINATION OF SOME NOVEL SUBSTITUTED SALs Cu(II) COMPLEXES
7.1 Introduction 191
7.2 Method of Crystallisation 193
7.3 Structural Study of Salicylideneanilines $\mathrm{Cu}(\mathrm{II})$ Complexes 193
7.3.1 Cu -Bis-Salicylidene 4-Fluoro aniline 195
7.3.2 Cu -Bis-Salicylidene 3-Fluro 4-Methyl anilime 198
7.3.3 Cu -Bis-Salicylidene 3,5
Di(TriFluoro Methyl) Aniline 201
7.3.4 Cu -Bis-Salicylidene 4-TriFluoro Methoxy Aniline 204
7.4 Discussion 207
7.5 Refrences 211
8 STRUCTURE DETERMINATION OFANHYDROUS Bis[AcetylAcetonato]Co(II)
8.1 Introduction 213
8.2 Experimental 214
8.3 Structure 215
8.4 Discussion 219
8.5 References 227
Appendix

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION:-

The compounds which are called "Schiff bases" include various types, but this thesis is concerned mainly with the synthesis and characterisation of some novel Schiff bases derived from the condensation of either (a) salicylaldehyde and substituted salicylaldehydes or, (b) from β-diketones, with both fluoro-substituted anilines and with their non-fluoro hydrogen analogues and various metal chelates. The latter include $\mathrm{Co}(\mathrm{II}), \mathrm{Co}$ (III), Ni (II), and Cu (II) complexes.

The structures of the ligands and their Cu (II) complexes are determined by X-ray diffraction techniques. The bond lengths and bond angles of the ligands are compared with each other and with those in their respective $\mathrm{Cu}(\mathrm{II})$ complexes, to study the substituent effects in free and coordinated forms. The bond lengths and bond angles of complexes are also compared with each other and some other complexes with O, N donor ligands.

Anhydrous bis[acetylacetonato]Co(II) crystallised out during the attempts to synthesise complexes of Co (II) with acetylacetoimine by a template reaction. The structure of this novel anhydrous bis[acetylacetonato] Co (II) complex has been determined by X-ray techniques using the Fourier method and was found to be interesting because of its square planar geometry. Its bond lengths, bond angles and geometry were compared with other anhydrous, aqua monomers and polymers of $\mathrm{M}(\mathrm{II})[\mathrm{Cu}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cr}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})]$ complexes.

1.2 SCHIFF BASES :-

The condensation of primary amines with aldehydes and ketones gives products known as imines which contain a $\mathrm{C}=\mathrm{N}$ double bond. These compounds rapidly decompose or polymerise unless there is at least one aryl group bonded to either nitrogen or carbon atom. These compounds were first reported by Schiff ${ }^{1}$, and are therefore often referred to as Schiff bases. Imine formation is normally an acid catalysed process, a pH versus rate profile indicating that reaction is very slow at both high and low pH . At low pH there will be amine protonation, but a maximum rate is reached at weakly acidic pH (approximately 4.5) ${ }^{2}$.

Due to several diverse systems of nomenclature, information on Schiff bases can also be found under the headings azomethine, anil, imine, ketimine and also as specific compounds such as benzylidene aniline can be found as benzalaniline, benzalanil or benzanil ${ }^{3}$.

Aromatic aldehydes and ketones give quite stable Schiff bases with amines. Aromatic aldehydes react readily under mild conditions and at relatively low temperatures with or, if liquid, without a suitable solvent. With ketones, especially aromatic ones, higher temperatures and longer reaction times are usually required. In condensations of aromatic amines with aromatic aldehydes, electron-withdrawing substituents at the para position of the amine decrease the rate of the reaction, while increasing it when on the aldehyde ${ }^{4}$.

The basicity of imines is increased by electron-donating substituents at the para-position, for example, 4-methyl and 4-methoxy groups, which tend to
increase the electron density at the nitrogen atom, and decreases with an electronwithdrawing substituent, such as a nitro group, at the para-position. Halogen substituents exert their expected effect in causing a withdrawal of electron density and hence in reducing the basic strength ${ }^{5,6}$. The basic character of the azomethine group is also revealed by the fact that in aprotic solvents, there is a tendency for the lone pair of electrons on the nitrogen atom to interact with hydroxylic compounds to yield hydrogen-bonded complexes.

1.3 SPECTROSCOPY OF SALICYLIDENEANILINES

Spectroscopic studies have largely been confined to ${ }^{1} \mathrm{H}$ NMR investigations of the keto-enol equilibria of the free bases. Percy and Thornton ${ }^{7}$ reported an investigation of tautomeric equilibria in solutions of Schiff bases. It has been shown that the bases exist solely in the phenol-imine form in nonhydroxylic solvents at normal ambient temperatures. The strong intramolecular hydrogen-bonding present in the ligands leads to very broad and weak hydroxyl absorption in their \mathbb{R} spectra near $2700 \mathrm{~cm}^{-1}$, so that the ${ }^{1} \mathrm{H}$ NMR spectra are more informative than \mathbb{R} spectra with respect to the nature of the $\mathrm{O}-\mathrm{H}$ bonding. The electronic effects of the substituent may be transmitted to affect the strength of the hydrogen bond either via the conjugation through the heterocyclic ring or, more directly, by modifying the capacity of the nitrogen atom for participating in hydrogen-bonding.

1.3.1 UV

The UV spectra of compounds containing an unconjugated chromophore are characterised by bands due to $\mathrm{n} \rightarrow \pi^{*}$ transitions in the range 235-272 nm. However, conjugation with alkene or aryl groups causes large changes in the spectrum, since strong bands due to $\pi \rightarrow \pi^{*}$ transitions cover the rather weak $n \rightarrow \pi^{*}$ absorptions. Minkin and coworkers suggested an enol structure for Schiff bases on the basis of UV and \mathbb{R} behaviour of a number of ortho-hydroxy aldehydes ${ }^{8}$. They showed that the $\pi \rightarrow \pi^{*}$ frequency of N-benzylidene aniline compounds is only very slightly affected by further substitution in the benzylidene or aniline rings, and therefore the six-membered H -bonded ring is strongly stabilised since it resists substituent effects which change the acidity of the hydroxy group and the basicity of the nitrogen atom. Tsuchida and Tsumaki ${ }^{9}$ had noticed that the compounds having intramolecular hydrogen-bonding showed a band at $\sim 400 \mathrm{~nm}$, while in the compounds with no intramolecular hydrogenbonding this band was absent.

Figure 1.1

However, Kiss and Auer ${ }^{10}$ had considered an alternative explanation that the band at $\sim 400 \mathrm{~nm}$ is due to a tautomeric equilibrium involving enol-imine and keto-amine forms in solutions, which are represented in Fig. 1.2.

Figure 1.2

Other workers have favoured Kiss and Auer's interpretation ${ }^{11-14}$ and the bands have been assigned to individual tautomers ${ }^{15}$; in this case both isomers are assumed to be present in the solid state.

Hydrogen-bonding generally results in a rather small red shift for the π to π^{*} band ${ }^{12,14}$, the $\sim 400 \mathrm{~nm}$ band is considerably displaced. Increasing the polarity of the solvent increases the $\varepsilon_{\max }$ of the $\sim 400 \mathrm{~nm}$ band in a uniform fashion, although the wavelength of the absorption maximum does not change very much ${ }^{15}$.

Many studies of the electronic spectra of bidentate N,O Schiff bases derived from chiral primary amines have been reported ${ }^{16}$ in order to establish the absolute configuration of the amine. Three absorption bands, designated ${ }^{17}$ I, II and III, at about 315, 255 and 215 nm respectively, are present in the electronic
absorption spectra of hexane solutions of the Schiff bases derived from salicylaldehyde and RNH_{2} where R is a chiral group. These bands have been attributed to the $\mathrm{C}=\mathrm{N}$ chromophore. As already pointed out, two additional bands, at about 400 and 280 nm , become apparent in polar solvents and have been attributed to the quinoid tautomer ${ }^{18}$.

1.3.2 IR

The $\mathrm{C}=\mathrm{N}$ stretching frequencies of the ligands occur in the region between 1680 and $1603 \mathrm{~cm}^{-1}$ when H , alkyl or aryl groups are bonded to the C and N atoms. The nature of the different substituents on these atoms determines the position of the stretching frequency in the above range, e.g. aryl groups on the C and N atoms cause a shift of frequency towards the lower part of the range ${ }^{19}$. Thus, for compounds such as $\mathrm{ArCH}=\mathrm{NR}$ a frequency range of $1656-1631 \mathrm{~cm}^{-1}$ has been reported ${ }^{20}$. Compounds of the type $\mathrm{ArCH}=\mathrm{NAr}$, with variously substituted aryl groups, exhibit a range of $1631-1613 \mathrm{~cm}^{-1}$ for $v(\mathrm{C}=\mathrm{N})^{21}$.

The presence of an OH group at the 2-position of the phenyl ring of the benzaldehyde effects a bathochromic shift. This has been attributed to intramolecular bond formation, with the benzenoid form being prevalent over the quinoid form (Fig 1.3). In these compounds, the phenolic $\mathrm{C}-\mathrm{O}$ stretching vibration occurs between 1288 and $1265 \mathrm{~cm}^{-1}$. Upon coordination to metal ions through both O and N , a decrease of the $\mathrm{C}=\mathrm{N}$ frequency is generally observed.

1.3.3 NMR, MASS SPECTROMETRY AND X-RAY:-

NMR studies are mainly applied to elucidating the structural features of Schiff bases in solution. These studies are mainly concerned with Schiff bases derived from benzaldehyde and its derivatives, β-diketones, o hydroxyacetophenones and o-hydroxyacetonaphthones. Data from ${ }^{1} \mathrm{H}$ NMR studies on ${ }^{15} \mathrm{~N}$-salicylidene aniline and related compounds provide independent evidence for an equilibrium between enol-imine and keto-amine tautomers ${ }^{15}$.

Elias and Gillis ${ }^{22}$ studied a series of substituted N -benzylidene anilines. They reported that the molecular ion was the base peak in every case for 4substituted compounds, and that all underwent loss of the azomethine proton to yield an (M-1) ${ }^{+}$peak of variable intensity.

The crystal structures of some salicylidene anilines have been determined by several groups. The most interesting feature of these structures is intramolecular hydrogen-bonding ${ }^{23}$. They are known to show a self-isomerisation induced by an intramolecular proton transfer from the hydroxyl oxygen to the imine nitrogen through the $\mathrm{O}-\mathrm{H} . . \mathrm{N}$ hydrogen bond ${ }^{24}$. Generally, it is seen that the salicylideneimine molecules are stacked in layers and are associated by an infinite chain of hydrogen-bonds ${ }^{25}$.

1.4 SPECTROSCOPY OF ACETYLACETO IMINES:-

Bidentate Schiff bases derived from β-diketones have been shown to exist almost entirely as the tautomer (b) in Fig 1.4 in solution in common solvents. Proof of this structure has been obtained from the observed spin-spin splitting of the $\mathrm{N}-\mathrm{H}$ proton by the protons of R^{26-27} (b) in Figure 1.4.

Similarly the condensation products of amines with 1-hydroxy-2acetonaphthone and 2-hydroxy-1-naphthaldehyde, in a 1:1 ratio, have been shown to be ketoamines, the quinoid forms being preferred over the enol forms. The ${ }^{15} \mathrm{~N}$ NMR spectra of the above Schiff bases confirmed these assignments and the temperature dependence of the spectra gave information on the tautomeric equilibria ${ }^{28}$.

The Schiff bases derived from hydroxymethylene ketones (Fig 1.3) exhibit tautomers (b) and (c), but not (a), in a variety of solvents. The ratio of the two isomers is influenced by the substituent R^{29}.

(a)

(b)

Figure 1.3

Similarly, a recent NMR study of the formylcamphor derivatives (d)-(f) in Fig 1.5 showed that the tautomer distribution was very strongly solvent dependent, and also that spectral changes occured with time. Thus, (e) (Fig. 1.4) is the most abundant in CHCl_{3} while (f) is the most stable in acetone. In benzene solution the ratio (e)/(f) varied from $1 / 10$ to $10 / 1$ during 24 h . No evidence of the tautomer (d) was obtained ${ }^{30}$.

Figure 1.4

NMR results show that all these compounds exist in solution as the enolimine tautomers. In addition, an electron-withdrawing R substituent reduces the magnetic shielding of the hydroxyl proton. In contrast, the $\mathrm{C}=\mathrm{N}$ stretching frequencies do not appear to be influenced by the nature of the R group in a systematic way. Upon coordination to transition metals the $\mathrm{C}=\mathrm{N}$ stretching frequencies at about $1620 \mathrm{~cm}^{-1}$ decrease, whereas those at about $1575 \mathrm{~cm}^{-1}$ increase. On the other hand, the two bands assigned to the C-O stretching frequency increase by about 30 and $40 \mathrm{~cm}^{-1}$.

Dudek and Holm^{27} studied the ${ }^{1} \mathrm{H}$ resonance spectra of a number of compounds obtained from the $1: 1$ condensation of a β-diketone with a mono
amine. Of the three tautomeric possibilities, these compounds exist predominantly in the keto-amine form $\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\right.$ substituted aryl group $)$.

Figure 1.5
Proof of this structure is obtained from the observed spin-spin splitting of $\mathrm{N}-\mathrm{H}$ with the α-protons of R . The position of the tautomeric equilibrium could not be altered by large changes in the nature of the solvent nor by the substituent R. The preferential existence of the keto-amine form over the keto-imine and enol-imine forms is ascribed to greater stabilisation through resonance and hydrogen-bonding.

Such tautomerisation in the solid state has been suggested to be responsible for the thermochromism of many crystalline anils ${ }^{31}$.

McCarthy and Martell ${ }^{32}$ reported the NMR spectra of β-diketone diimine Schiff bases and several of their diamagnetic nickel(II) and palladium(II) chelates. The spectra indicate that all of the ligands studied exist mainly in the keto-amine form.

1.5 COMPLEXES:-

Despite the considerable number of papers which have appeared on the structure of Schiff base metal complexes, a relatively small number of the free ligands have been structurally characterised. Metal complexes, with a general formula ML_{n} [where $\mathrm{L}=\mathrm{SAL}$ or AcAc] (Figure 1.6, 1.8), of these organic ligands have been prepared and studied for many years. Various methods have been employed for their characterisation and for determining the structure of the complexes, including determinations of magnetic moment, electronic spectra and nuclear magnetic resonance spectra, in addition to elemental analysis and molecular weight determinations.

Figure 1.6

Figure 1.7

Salicylaldimines react with bivalent metal ions to form complexes $\mathrm{M}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}: \mathrm{NR}\right)_{2}$. Such complexes have been isolated for nickel ${ }^{33}$, copper 33,34 and cobalt ${ }^{35,36}$, and their magnetic properties ${ }^{37,38}$, absorption spectra ${ }^{38}$ and dipole moments ${ }^{39}$ have been studied. Only a few Schiff bases commonly used as ligands have been prepared and characterised in the uncomplexed state, metal complexes have generally been directly obtained by other procedures ${ }^{40}$. A large
group of bidentate Schiff bases utilised as metal ligands is characterised by having a NO donor set. Since, in the free ligands, the oxygen is often present as an OH group, these ligands generally act as chelating mono anions.

The most characteristic respect in which ligands containing the $\mathrm{C}=\mathrm{N}$ bond show basic properties is in the formation of complexes with metals. These complexes provide some very characteristic series of co-ordination compounds, and consequently a large number of them have been prepared and their properties examined and compared. The basic strength of the $\mathrm{C}=\mathrm{N}$ group is insufficient by itself to permit the formation of stable complexes by simple co-ordination of the lone pair to the metal atom. Therefore, a functional group with a replaceable hydrogen atom, preferably a hydroxyl group, is required, near the $\mathrm{C}=\mathrm{N}$ group, for the formation of a five or six membered ring by chelation to the metal atom ${ }^{41}$.

Among the simplest imine compounds are salicylaldimines. The salicylaldimine complexes can often be made either by direct interaction between the metal ion and the appropriate Schiff base in alcoholic solution, in the presence of a base such as NaOH or sodium acetate, or by refluxing salicylaldehyde complexes of the metal with a slight excess of a primary amine in non-aqueous solvent.

The co-ordination complexes formed with divalent metal ions are of considerable interest as they vary in structure from coplanar to tetrahedral, not only depending on the nature of the divalent metal involved, but also on the nature of the substituent on the nitrogen atom and the substituents on the aromatic ring of the salicylaldimine molecule.

Difficulty has been reported in the preparation of cobalt(II) complexes with salicylidene-arylimines bearing substituents in the aryl ring ortho to iminonitrogen: compounds can be readily prepared from bases containing meta- or para- substituents, and complexes of copper and nickel can be prepared with all three kinds of substituent present. In order to explain this behaviour it has been suggested that $\operatorname{Co}($ II $)$ complexes of this kind prefer a tetrahedral arrangement of ligands, and ortho-substituents in the arylimine ring system, for steric reasons, prevent the most stable configuration from being adopted, so that crystalline products cannot be isolated. Nickel and copper complexes exist preferentially in a planar configuration and such compounds show a greatly reduced steric hindrance to chelation. The development of brown-yellow colours after oxidation of reaction mixtures of Co (II) and either ortho- or meta-substituted salicylidenearylimines indicates that coordination of some kind does occur in solution even though pure products could not be isolated ${ }^{42}$.

The presence of two different kinds of coordinating atom on each ligand, viz., oxygen and nitrogen, allows the existence of structural isomers for the octahedral Co (III) complexes. As one molecule is unable to span opposite corners of the octahedron, only two geometric isomers of these tris ligand Co(III) complexes would be expected to exist. These are the fac-form in which the nitrogen atoms all occupy corners opposite to an oxygen atom, and mer-form in which one pair of nitrogen atoms occupy corners opposite to one another. In fact one form has been isolated in each case, and dipole moment ${ }^{43}$ and NMR^{44}
evidence indicates that this is the mer form, as would be predicted from steric considerations. There is also the possibility of positional isomerism among salicylaldimine complexes containing aryl substituents attached to the nitrogen atom, depending upon whether the substituents are in the ortho-, meta-, or paraposition ${ }^{45}$. The copper(II) complexes having a d^{9} configuration have one unpaired electron in both the planar and tetrahedral complexes and are paramagnetic.

The keto tautomer is rather unusual, since it has been previously shown that Schiff bases derived from salicylaldehyde prefer form (a)[Fig. 1.5]. When such Schiff bases coordinate to the metal as monoanionic ligands the C-N and CO bond lengths undergo variations which are in agreement with the $\mathbb{I R}$ spectroscopic result reported in the previous section.

X-ray diffraction studies show that an N -phenyl group causes considerable distortion from overall coplanarity in the molecule ${ }^{46-48}$. In the solid state the $\mathrm{Ni}(\mathrm{II})$ complexes of N -aryl salicylaldimines are all either diamagnetic or paramagnetic. For a series of metal complexes of Schiff bases derived from salicylaldehyde, the C-N and C-O bond length have mean values of 1.295 and $1.312 \AA$ respectively ${ }^{49}$.

As expected, comparison of these data with those relative to the free ligands shows that the shortening of the C - O distance corresponds to a small, but significant, lengthening of the $\mathrm{C}=\mathrm{N}$ distance. This is in agreement with the amount of variation of the corresponding stretching frequencies of $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bonds upon coordination to a metal.

1.6 REFERENCES

(1) S. Dayangi and Y. Degani, in "The Chemistry of Carbon-Nitrogen Double Bond" ed. S. Patai, Interscience, London, 61, 1970.
(2) J. McMurry "Organic Chemistry", 3rd edition, Brooks/Cole Publishing Co., California, 725, 1992.
(3) E. F. Pratt and M. J. Kamlet, J. Org. Chem., 26, 4029, 1961.
(4) D.J. Curran and S. Siggia, "The Chemistry of Carbon-Nitrogen Double Bond", ed. S. Patai, Interscience London, 149, 1970.
(5) J. W. Smith, in "The Chemistry of the Amino Group", ed. S. Patai, Interscience, London, 185, 1968.
(6) M. Calligaris and L. Randaccio, "Comprehensive Coordination Chemistry", vol. 2, Pergamon Press, 715, 1987.
(7) G. C. Percy and D. A. Thornton, J. Inorg. Nucl. Chem., 34, 3357, 1972.
(8) V. I. Minikin, O. A. Osipou, V. A. Kogan, R. R. Shugidullin, R. L. Terent'ev and O. A. Raeuskii, Russ. J. Phys. Chem., 38, 938, 1964.
(9) R. Tsuchida and T. Tsumaki, Bull. Chem. Soc. Jpn., 13, 527, 1938.
(10) A. Kiss and G. Auer, Z. Phys. Chem.(Leipzig), A189, 344, 1941.
(11) H. E. Smith, S. L. Cook and E. M. Warren, J. Org. Chem., 29, 2256, 1964.
(12) D. Heinert and A. E. Martell, J. Amer. Chem. Soc., 85, 183, 1963.
(13) H. E. Smith and M. E. Warren, J. Amer. Chem. Soc. 87, 1757, 1965.
(14) L. A. Kazitsyana, N. B. Kupletskaya, A. L. Polstyanko, B. S. Kikot, Y. A. Kolesnik and A. P. Terentev, J. Gen. Chem. USSR. 31, 286, 1961.
(15) G. O. Dudek and E. P. Dudek, J. Amer. Chem. Soc.,88, 2407, 1966.
(16) H. E. Smith, B. G. Padilla, J. R. Neergoard and F. M. Chen, J. Org. Chem., 44, 1690, 1979.
(17) H. E. Smith, E. P. Burrows, E. H. Massey and F. M. Chen, J. Org Chem., 40, 2897, 1975.
(18) H. E. Smith, E. P. Burrows, M. J. Marks, R. D. Lynch and F. M. Chen, J. Amer. Chem. Soc. 99, 707, 1977.
(19) R. M. Silverstein and G. C. Bassler, "Spectrometric Identification of Organic Compounds" 2nd edition, John Wiley, New York, 97, 1967.
(20) J. Fabian, M. Legrand and P. Poirer, Bull. Soc. Chim. France, 1499, 1956.
(21) L. E. Clougherty, J. A. Sousa and G. M. Wyman, J. Org. Chem., 22, 462, 1957.
(22) D. G. Ellis and R. G. Gillis, Aust. J. Chem., 19, 251, 1966.
(23) K. Wozniak, H. He, J. Kilnowski and W. Jones, J. Chem. Soc., Faraday Trans. 91, 77, 1995.
(24) T. Inabe, I. Gautier-Luneau, and N. Hoshino, Bull. Chem. Soc. Jpn., 64, 801, 1991.
(25) J. A. Tenon, M. C. Ets and J. P. Aycord, Acta Cryst., C51, 2603, 1995.
(26) G. O. Dudek and R. H. Holm, J. Amer. Chem. Soc., 83, 2099, 1961.
(27) G. O. Dudek and R. H. Holm, J. Amer. Chem. Soc., 84, 2691, 1962.
(28) G. O. Dudek and E. P. Dudek, J. Amer. Chem. Soc., 86, 4283, 1964.
(29) G. O. Dudek and G. P. Volpp, J. Amer. Chem. Soc., 85, 2697, 1963.
(30) H. P. Jensen and E. Larsen, Acta Chem. Scand., Ser. A, 29, 157, 1975.
(31) M. D. Cohen and S. Flavian, J. Chem. Soc. (B), 321, 1967.
(32) P. J. McCarthy and A. R. Martell, Inorg. Chem., 6, 781, 1967.
(33) L. Hunter and J. Marriot, J. Chem. Soc., 2000, 1937.
(34) H. S. Verter and A. E. Frost, J. Amer. Chem. Soc., 82, 85, 1960.
(35) B. O. West, Nature, 173, 1187, 1987.
(36) B. O. West, J. Chem. Soc., 3115, 1952.
(37) H. C. Clark and A. L. Odell, J. Chem. Soc., 3431, 1955.
(38) L Sacconi, P. Paoletti and G. D. Re, J. Amer. Chem. Soc., 79, 4062, 1957.
(39) L. Sacconi, M. Ciampolini, F. Maggio and G. D. Re, J. Amer. Chem. Soc., 82, 815, 1960.
(40) F. P. Dwyer and D. P. Mellor, "Chelating Agents and Metal Chelates" Academic, London, 1964.
(41) J. W. Smith, in "Chemistry of Carbon-Nitrogen Double Bond", ed. S. Patai, Interscience, London, 1970.
(42) B. O. West, Robertson and Hocking, Nature, 176, 832, 1955.
(43) M. Ciampolini, F. Maggio and F. B. Cavasino, Inorg. Chem., 3, 1188, 1964.
(44) A. Chakravorty and R. H. Holm, Inorg. Chem., 3, 1521, 1964.
(45) B. O. West, J. Chem. Soc., 4944, 1960.
(46) L. Wei, R. M. Slogsdill and E. C. Lingafelter, Acta. Cryst., 17, 1058, 1964.
(47) R. H. Holm and K. Swaminathan, Inorg. Chem., 1, 599, 1962.
(48) L. Sacconi and M. Ciampolini, J. Amer. Chem. Soc., 85, 1750, 1963.
(49) N. Inamoto, K. Kushida, S. Masuda, H. Ohta, S. Satoh, Y. Tamura, K. Tokumaru, K. Tori and M. Yoshida, Tetrahedron Lett., 3671, 1974.

CHAPTER 2

SYNTHESIS AND CHARACTERISATION

OF SUBSTITUTED

SALICYLIDENEANILINES

2.1 INTRODUCTION:-

A Schiff base is a nitrogen analogue of an aldehyde or ketone in which the $\mathrm{C}=\mathrm{O}$ group is replaced by a $\mathrm{C}=\mathrm{N}-\mathrm{R}$ group ${ }^{1}$. A large group of Schiff bases are utilised as metal ligands. They may be mono, bi, tri, tetra or multidentate having, for example, $\mathrm{N}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{~S}, \mathrm{NO}_{2}$, NSO or $\mathrm{N}_{2} \mathrm{O}_{2}$ donor sets. In the case of monodentate Schiff base ligands the basic strength of the $\mathrm{C}=\mathrm{N}$ group is not sufficient to obtain stable complexes by coordination of the imino nitrogen atom to a metal ion. Hence only the presence of at least one other donor atom, suitably near the nitrogen atom, generally stabilises the metal-nitrogen bond through formation of chelate ring. Some examples of Schiff base whose anions can act as bi, tri, or tetradentate ligands are shown in Figures 2.1, 2.2 and 2.3.

Figure 2.1 Bidentate NO donor set

Figure 2.2 Tridentate NO_{2} donor set

Figure 2.3 Tetradentate $\mathrm{N}_{2} \mathrm{O}_{2}$ donor set

Most of the chelates of Schiff base ligands are synthesised by template reactions in which the carbonyl oxygen first reacts with a metal ion to give an intermediate complex which then reacts with a basic nitrogen, i.e. $-\mathrm{NH}_{2}$ group, donor to give a Schiff base ligand complex.

Bidentate Schiff bases utilised as ligands are usually characterised by having an NO or N_{2} donor set, for example, azo and azomethine ligands. Since the oxygen is often present as an OH group, these ligands generally act as mono anions ${ }^{2}$.

The most studied bidentate Schiff bases containing an NO donor set are those derived from substituted salicylaldehyde derivatives, for example, salicylideneaniline (Figure 2.4) and salicylidene-p-toluidine (Figure 2.5).

Figure 2.4 SAL

Figure 2.5 $\quad \mathbf{S A L 4}\left(\mathbf{C H}_{3}\right)$

Sacconi and co-workers reported ${ }^{3}$ that the hydroxyl oxygen atom, under particular circumstances, may bridge two metal atoms as tridentate ligands that favour the formation of binuclear complexes. Countryman et al. reported the structure and magnetic properties of copper halide adducts of some binuclear copper Schiff base complexes ${ }^{4}$ (Figure 2.6).

Figure 2.6 Binuclear copper complex

As they have been widely used as ligands in many transition metal complexes ${ }^{5}$, the NMR spectra of many Schiff bases derived from substituted salicylaldehydes and primary amines have been reported ${ }^{6}$. The electron-withdrawing substituent group has been shown to reduce the magnetic shielding of the hydroxyl proton.

2.2 PREPARATION OF SCHIFF BASES:-

A number of Schiff bases have been synthesised in this work by reacting salicylaldehyde with different fluoro-anilines and their nonfluoro hydrogen-analogues. They are shown in Table 2.1. The reaction and its mechanism are given in the following sections.

2.3 GENERAL REACTION:-

2.4 REACTION MECHANISM:-

The reaction mechanism is ${ }^{7}$

2.5 EXPERIMENTAL:-

All NMR spectra were recorded on a Bruker AM250 MHz spectrometer, I.R. spectra on a Perkin Elmer 580B and UV spectra on a Beckmann DU 650 spectrometer. Mass spectrometry was undertaken on a Kratos concept double focussing mass spectrometer by Dr. G. Eaton. All chemicals were used as obtained from Aldrich.

2.6 GENERAL METHOD OF PREPARATION:-

To an ethanolic solution of salicylaldehyde(one molar, 25 ml) a few drops of pH 5.0 solution $(\mathrm{HCl}+\mathrm{NaOH})$ were added to protonate the aldehyde. Into this acidic aldehydic solution, an ethanolic solution of the substituted aniline(one molar, 25 ml)[calculated amounts are given in Table 2.1 for each ligand] was added in several small portions, in a one to one ratio. The reaction mixture was then stirred and refluxed for an hour. After refluxing, it was allowed to cool down slowly. After cooling, precipitation began. The resulting precipitate was washed with water, filtered off by suction and dried using a vacuum desiccator. The dried precipitates were recrystallised from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane (1:10) mixture.

2.7 LIST OF SALICYLIDENEANILINES PREPARED:-

TABLE 2.1

Structure Formulae	Molecular Formula	Abbreviations Used	Amounts Used gm
	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}$	SAL	$\begin{aligned} & \mathrm{sa}^{\mathrm{i}}=3.05 \\ & \mathrm{an}^{\mathrm{ii}}=2.32 \end{aligned}$
	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}$	SAL4F	$\begin{gathered} \mathrm{sa}=3.05 \\ 4 \mathrm{Fan}=2.78 \end{gathered}$
	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}$	$\mathrm{SAL} 4\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & \mathrm{sa}=3.07 \\ & 4\left(\mathrm{CH}_{3}\right) \mathrm{an}=2.68 \end{aligned}$
	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}$	$\mathrm{SAL} 4\left(\mathrm{CF}_{3}\right)$	$\begin{gathered} \mathrm{sa}=3.07 \\ 4\left(\mathrm{CF}_{3}\right) \mathrm{an}=4.03 \end{gathered}$
	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$	$\mathrm{SAL} 4\left(\mathrm{OCH}_{3}\right)$	$\begin{gathered} \mathrm{sa}=3.07 \\ 4\left(\mathrm{OCH}_{3}\right) \mathrm{an}= \\ 3.08 \end{gathered}$
	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2}$	$\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)$	$\begin{gathered} \mathrm{sa}=3.07 \\ 4\left(\mathrm{OCF}_{3}\right) \mathrm{an}= \\ 4.43 \end{gathered}$

Structure Formulae	Molecular Formula	Abbreviations Used	Amounts Used gm
	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$	SAL3,5 $\left(\mathrm{CH}_{3}\right)_{2}$	$\begin{gathered} \mathrm{sa}=3.07 \\ 3,5\left(\mathrm{CH}_{3}\right)_{2} \mathrm{an}= \\ 3.03 \end{gathered}$
	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}$	SAL3,5 $\left(\mathrm{CF}_{3}\right)_{2}$	$\begin{gathered} \mathrm{sa}=3.07 \\ 3,5\left(\mathrm{CF}_{3}\right)_{2} \mathrm{an}= \\ 5.73 \end{gathered}$
	$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{~F}_{5} \mathrm{NO}$	SAL F ${ }_{5}$	$\begin{gathered} \mathrm{sa}=3.07 \\ \mathrm{~F}_{5} \mathrm{an}=4.58 \end{gathered}$
	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FNO}$	$\begin{gathered} \mathrm{SAL} \\ 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{sa}=3.07 \\ 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{an}= \\ 3.13 \end{gathered}$
	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$	SAL3,4 $\left(\mathrm{CH}_{3}\right)$	$\begin{gathered} \mathrm{sa}=3.07 \\ 3,4\left(\mathrm{CH}_{3}\right) \mathrm{an}= \\ 3.03 \end{gathered}$
	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}$	SAL4Cl	$\begin{gathered} \mathrm{sa}=3.07 \\ \text { 4Clan }=3.19 \end{gathered}$
	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}$	$\begin{gathered} 5(\mathrm{Cl}) \\ \text { SAL4Cl } \end{gathered}$	$\begin{aligned} & 5 \mathrm{Clsa}=3.92 \\ & 4 \mathrm{Clan}=3.19 \end{aligned}$

Structure Formulae	Molecular Formula	Abbreviations Used	Amounts Used gm
$4\left(\mathrm{NO}_{2}\right) \mathrm{an}=3.45$			

$\mathrm{i}=$ Salicyaldehyde, $\mathrm{ii}=$ Aniline

2.8 RESULTS AND DISCUSSION:-

All the compounds have been characterised by various techniques including melting points (Table 2.2) and elemental analyses (Table 2.3). ${ }^{1} \mathrm{H}$ NMR (Table 2.4) and ${ }^{13} \mathrm{C}$-DEPT. NMR (Table 2.5) and ${ }^{19} \mathrm{~F}$ NMR (Table 2.6) spectroscopies were also carried out as were mass spectrometry (Table 2.7), I.R. spectroscopy (Table 8) and U.V. spectroscopy (Table 2.2).

2.8.1 PHYSICAL CHARACTERISATION

TABLE 2.2

Abbreviation Used	Molecular Formula	Melting Points ${ }^{\mathbf{0}} \mathbf{C}$	Colour/ State	$\begin{gathered} \% \\ \text { Yield } \end{gathered}$	$\lambda \max ^{*}$ /nm
SAL	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}$	46	Dark yellow crystals	76	356
SAL4F	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}$	78	Dark yellow needles	65	323
$\mathrm{SAL} \mathrm{F}_{5}$	$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{~F}_{5} \mathrm{NO}$	120	Light yellow needles	69	325
SAL3F,4(CH_{3})	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNO}$	86	Bright yellow needles	62	343
$\mathrm{SAL4}\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}$	92	Dark yellow needles	78	322
SAL4(CF_{3})	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}$	104	Light yellow flakes	54	350
$\mathrm{SAL4}\left(\mathrm{OCH}_{3}\right)$	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$	80	Bright yellow powder	67	297
SAL4(OCF_{3})	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2}$	70	Dark yellow needles	58	341

Abbreviation Used	Molecular Formula	Melting Points ${ }^{0} \mathrm{C}$	Colour/ State	$\begin{gathered} \% \\ \text { Yield } \end{gathered}$	入max* /nm
SAL3,5($\left.\mathrm{CH}_{3}\right)_{2}$	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$	68	Light yellow crystals	35	326
SAL3,5(OCF 3$)_{2}$	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}$	90	Dark yellow crystals	36	317
SAL3,4(CH3)	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$	66	Dark yellow powder	63	346
SAL4Cl	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClNO}$	108	Light yellow needles	76	318
5(Cl)SAL4Cl	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{C}_{12} \mathrm{NO}$	145	Bright yellow crystals	85	324
SAL4(NO_{2})	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$	160	Orange crystals	77	381
$\begin{gathered} \hline 5\left(\mathrm{NO}_{2}\right) \\ \operatorname{SAL}\left(\mathrm{NO}_{2}\right) \end{gathered}$	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{5}$	225	Yellow crystals	68	384
SAL4(COOH)	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3}$	270	Bright yellow crystals	84	378
SAL4($\mathrm{SO}_{3} \mathrm{H}$)	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$	245	Mustard powder	55	324
BispSAL	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	218	Orange crystals	89	314
BisoSAL	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	160	Light brown crystals	67	328

* = Solvent used was 50% ethanol/water mixture.

2.8.2 ELEMENTAL ANALYSES:-

TABLE 2.3

Compounds	\% C		\% H		\% N	
	Calc.	Found	Calc.	Found	Calc.	Found
SAL4(OCF $\left._{3}\right)$	59.57	59.80	3.55	3.54	4.96	5.08
SAL4(CF $\left._{3}\right)$	63.16	63.45	3.76	3.89	5.26	5.26
SAL3,5(CF $\left._{3}\right)$	53.89	54.06	2.69	2.66	4.19	4.20
5(Cl)SAL4(Cl)	58.87	58.74	3.4	3.14	5.28	5.24
SAL4(COOH)	69.70	69.56	4.56	4.55	5.81	5.89

All the compounds investigated by elemental analysis were found to be anhydrous and free of solvent molecules. This is consistent with previous work described in the literature.

Figure 2.7 The numbering of the hydrogen atoms in ${ }^{1} H$ NMR

2.8. ${ }^{1}{ }^{1} \mathrm{H}$ NMR

TABLE 4. ${ }^{\mathbf{1}} \mathrm{H}$ NMR DATA [Recorded in CDCl_{3}]

Compounds	Peaks Assigned	δ	Integral	Multiplicity
SAL.	$\begin{aligned} & \text { Ar.H } \\ & \mathrm{C}_{7} \mathrm{H} \\ & \mathrm{O}_{1} \mathrm{H} \end{aligned}$	$\begin{gathered} \hline 7.05-7.87 \\ 8.76 \\ 13.42 \end{gathered}$	$\begin{aligned} & 9 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
SALAF	$\begin{aligned} & \hline \overline{\mathrm{Ar} \cdot \mathrm{H}} \\ & \mathrm{C}_{7} \mathrm{H} \\ & \mathrm{O}_{1} \mathrm{H} \end{aligned}$	$\begin{gathered} \hline 7.11-7.61 \\ 8.78 \\ 13.32 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
SALF $_{5}$	$\begin{aligned} & \hline \text { Ar. } \mathrm{H} \\ & \mathrm{C}_{7} \mathrm{H} \\ & \mathrm{O}_{1} \mathrm{H} \end{aligned}$	$\begin{gathered} \hline 6.88-7.43 \\ 8.75 \\ 12.19 \end{gathered}$	$\begin{aligned} & 4 \\ & 1 \\ & 1 \end{aligned}$	m
SAL3F,4(CH_{3})	$\begin{gathered} \hline \mathrm{CH}_{3} \\ \mathrm{Ar} \cdot \mathrm{H} \\ \mathrm{C}_{7} \mathrm{H} \\ \mathrm{O}_{1} \mathrm{H} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.29-2.30 \\ 6.91-7.41 \\ 8.59 \\ 13.09 \\ \hline \end{gathered}$	3	$\mathrm{d}(\mathrm{J}=1.89)$ m s s
SAL4(CH_{3})	$\begin{gathered} \mathrm{CH}_{3} \\ \mathrm{Ar} \cdot \mathrm{H} \\ \mathrm{C}_{7} \mathrm{H} \\ \mathrm{O}_{1} \mathrm{H} \\ \hline \end{gathered}$	2.31 $6.79-7.33$ 8.76 13.33	3	$\begin{gathered} \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s} \\ \hline \end{gathered}$
SAL4(CF_{3})	$\begin{aligned} & \mathrm{Ar} \cdot \mathrm{H} \\ & \mathrm{C}_{7} \mathrm{H} \\ & \mathrm{O}_{1} \mathrm{H} \end{aligned}$	$\begin{gathered} \hline 6.79-7.56 \\ 8.47 \\ 12.69 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
SAL.4(OCH_{3})	$\begin{gathered} \hline \mathrm{OCH}_{3} \\ \mathrm{Ar} \cdot \mathrm{H} \\ \mathrm{C}_{7} \mathrm{H} \\ \mathrm{O}_{1} \mathrm{H} \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.66-3.72 \\ 6.63-7.56 \\ 8.53 \\ 13.37 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3 \\ & 9 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s} \\ \hline \end{gathered}$

Compounds	Peaks Assigned	δ	Integral	Multiplicity
SAL4(OCF_{3})	$\begin{aligned} & \hline \mathrm{Ar} \cdot \mathrm{H} \\ & \mathrm{C}_{7} \mathrm{H} \\ & \mathrm{O}_{1} \mathrm{H} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7.03-7.53 \\ 8.69 \\ 13.07 \end{gathered}$	$\begin{aligned} & 8 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{m} \\ \mathrm{~s} \end{gathered}$
SAL3,5(CH_{3})	$\begin{gathered} \mathrm{CH}_{3} \\ \mathrm{Ar} \cdot \mathrm{H} \\ \mathrm{C}_{7} \mathrm{H} \\ \mathrm{O}_{1} \mathrm{H} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.21-2.49 \\ 6.89-7.53 \\ 8.57 \\ 13.36 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 7 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	\bar{s}
SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$	$\begin{aligned} & \mathrm{Ar} \cdot \mathrm{H} \\ & \mathrm{C}_{7} \mathrm{H} \\ & \mathrm{O}_{1} \mathrm{H} \end{aligned}$	$\begin{gathered} \hline 6.89-7.72 \\ 8.583 \\ 12.37 \end{gathered}$	$\begin{aligned} & 7 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
SAL3,4($\left.\mathrm{CH}_{3}\right)_{2}$	$\begin{gathered} \mathrm{CH}_{3} \\ \mathrm{CH}_{3} \\ \mathrm{Ar} \cdot \mathrm{H} \\ \mathrm{C}_{7} \mathrm{H} \\ \mathrm{O}_{1} \mathrm{H} \\ \hline \end{gathered}$	2.36 2.34 $6.89-7.44$ 8.67 13.52	$\begin{aligned} & 3 \\ & 3 \\ & 7 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{s} \\ \mathrm{~s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s} \\ \hline \end{array}$
SAL4(Cl)	$\begin{aligned} & \hline \text { Ar. } \mathrm{H} \\ & \mathrm{C}_{7} \mathrm{H} \\ & \mathrm{O}_{1} \mathrm{H} \end{aligned}$	$\begin{gathered} \hline 6.92-7.43 \\ 8.59 \\ 13.03 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
5(Cl)SAL4Cl	$\begin{gathered} \hline \mathrm{Ar} \cdot \mathrm{H} \\ \mathrm{C}_{7} \mathrm{H} \\ \mathrm{O}_{1} \mathrm{H} \end{gathered}$	$\begin{gathered} \hline 7.42-6.95 \\ 8.53 \\ 13.01 \end{gathered}$	$\begin{aligned} & 7 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
SAL4(NO_{2})	$\begin{gathered} \hline \mathrm{Ar} . \mathrm{H} \\ \mathrm{C}_{7} \mathrm{H} \\ \mathrm{O}_{1} \mathrm{H} \end{gathered}$	$\begin{gathered} \hline 6.69-8.96 \\ 9.8 \\ 11.02 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
$\begin{gathered} 5\left(\mathrm{NO}_{2}\right) \mathrm{SAL} \\ 4\left(\mathrm{NO}_{2}\right) \end{gathered}$	Ar.H $\mathrm{C}_{7} \mathrm{H}$ $\mathrm{O}_{1} \mathrm{H}$	$\begin{gathered} \hline 6.50-6.67 \\ 7.84-8.31 \\ 7.14-7.18 \\ 10.24 \end{gathered}$	$\begin{aligned} & 3 \\ & 4 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{m} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
SAL4(COOH)	$\begin{gathered} \hline \mathrm{COOH} \\ \mathrm{Ar} \cdot \mathrm{H} \\ \mathrm{C}_{7} \mathrm{H} \\ \mathrm{O}_{1} \mathrm{H} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.79 \\ 6.92-8.09 \\ 8.95 \\ 12.85 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 8 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { b.s } \\ \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \\ \hline \end{gathered}$
SAL4($\mathrm{SO}_{3} \mathrm{H}$)	$\begin{gathered} \mathrm{SO}_{3} \mathrm{H} \\ \mathrm{Ar}^{1}{ }^{1} \mathrm{H} \\ \mathrm{C}_{7} \mathrm{H} \\ \mathrm{O}_{1} \mathrm{H} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.78 \\ 7.14-8.54 \\ 9.25 \\ 10.51 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 8 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s} \\ \hline \end{gathered}$
BispSAL	$\begin{gathered} {\mathrm{Ar} .{ }^{1} \mathrm{H}}_{\mathrm{CH}}^{\mathrm{CH}} \\ \mathrm{OH} \end{gathered}$	$\begin{gathered} \hline 6.68-7.42 \\ 8.66 \\ 13.06 \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
BisoSAL	$\begin{gathered} \hline{\mathrm{Ar} .{ }^{1} \mathrm{H}}_{\mathrm{C}_{7} \mathrm{H}}^{\mathrm{O}_{1} \mathrm{H}} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.82-7.54 \\ 8.63 \\ 13.041 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{~s} \\ \mathrm{~s} \\ \hline \end{array}$

DISCUSSION:-

In the NMR spectra there is a singlet for the -CH proton at approximately 8.6 ppm as expected, except for the $-\mathrm{NO}_{2}\left(\mathrm{SAL} 4\left(\mathrm{NO}_{2}\right)\right)$ and $\mathrm{SO}_{3} \mathrm{H}\left(\mathrm{SAL4}\left(\mathrm{SO}_{3} \mathrm{H}\right)\right)$ substituted molecules. In the case of $\mathrm{SAL}_{2} \mathrm{NO}_{2}$ and SAL4 $\left(\mathrm{SO}_{3} \mathrm{H}\right)$ the -CH proton appeared in the region $9.0-10.0 \mathrm{ppm}$; with $5\left(\mathrm{NO}_{2}\right) \mathrm{SAL} 4\left(\mathrm{NO}_{2}\right)$ the -CH proton appeared at $7.14-7.18 \mathrm{ppm}$, this may be due to the electronic effect of the substituents. In all the spectra recorded there is a singlet in the region $12.0-13.5 \mathrm{ppm}$ corresponding to the -OH proton except for the $-\mathrm{NO}_{2}$ substituted molecules [SAL4(NO_{2} and $\left.5\left(\mathrm{NO}_{2}\right) \mathrm{SAL} 4\left(\mathrm{NO}_{2}\right)\right]$. In these, the nitro group shifted the -OH peak towards lower field and it appeared in the region $10.0-11.0 \mathrm{ppm}$. This may be due to the inductive effect of the $-\mathrm{NO}_{2}$ group. There was a multiplet for the aromatic protons in the region $6.5-7.8 \mathrm{ppm}$, for all the molecules as expected. Singlets of -OH and -CH of SAL and complete ${ }^{1} \mathrm{H}$ NMR spectra of SAL and SAL4F are given in Figures 2.8 an 2.9 and 2.10 respectively.

Figure 2.8 -OH Singlet of SAL

-CH Singlet of SAL

Figure 2.9 ${ }^{1} H$ NMR Spectrum of SAL

Figure 2.10 ${ }^{1} H$ NMR Spectrum of SALAF

Figure 2.11 The numbering of the carbons in
${ }^{13}$ C-DEPT NMR
2.8.4 ${ }^{13}$ C-DEPT. NMR DATA [Recorded in CDCl_{3}]

TABLE 2.5

Compounds	Peaks Assigned	δ Values
SAL	$\mathrm{C}_{7} \mathrm{H}$ C_{6} C_{1} C_{8} Ar C9-13	163.1 119.7 149.9 161.6 $117.7,119.5,121.6,127.4,129.9$, 132.6
SAL4F	$\begin{aligned} & \hline \mathbf{C}_{7} \mathrm{H} \\ & \mathbf{C}_{8} \\ & \mathbf{C}_{1} \\ & \mathbf{C}_{6} \\ & \mathbf{C}_{11} \\ & \mathrm{Ar}_{9-10,12-13} \end{aligned}$	$\begin{array}{\|l\|} \hline 162.4 \\ 161.0 \\ 149.9 \\ 144.6 \\ 159.7 \\ 116.0,116.5,117.2,119.1,122.5,122.7, \\ 132.3,133.2 \\ \hline \end{array}$
SAL4 $\left(\mathrm{OCF}_{3}\right)$	$\mathrm{C}_{7} \mathrm{H}$ C_{8} C_{11} C_{1} OCF_{3} C_{6} $\mathrm{Ar} \mathrm{C}_{9-10,12-13}$	163.5 147.8 118.4 119.0 161.1 147.2 $117.4,119.3,122.1,122.4,122.5,132.5$, 133.6
$\mathrm{SAL} 4\left(\mathrm{CF}_{3}\right)$	$\mathrm{C}_{7} \mathrm{H}$ CF_{3} C_{1} C_{8} C_{11} C_{6} $\mathrm{Ar} \mathrm{C}_{9-10,12-13}$	164.5 $127.9,128.4,129.0$ 151.6 161.2 122.0 118.9 $117.4,119.4,121.5,126.7,130.6,133.9$,

Compounds	Peaks Assigned	δ Values
SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$	$\mathrm{C}_{7} \mathrm{H}$ CF_{3} C_{1} C_{8}, C_{6} $\mathrm{C}_{10,12}$ $\mathrm{Ar} \mathbf{C}_{9,11,13}$	```165.7 132.2, 132.7, 133.2, 133.8 150.2 161.3, 162.9 118.6, 120.9, 125.3, 129.6 117.6, 119.6, 121.5, 121.6, 133.1, 134.6, 120.1, 120.2```
SAL4Cl	$\begin{aligned} & \hline \mathbf{C}_{7} \mathrm{H} \\ & \mathbf{C}_{8} \\ & \mathbf{C}_{11} \\ & \mathbf{C}_{1} \\ & \mathbf{C}_{6} \\ & \mathrm{ArC}_{9-10,11-12} \\ & \hline \end{aligned}$	$\begin{aligned} & 163.4 \\ & 161.5 \\ & 119.4 \\ & 147.4 \\ & 132.9 \\ & 117.7,119.6,129.9,132.8,133.9 \\ & \hline \end{aligned}$
5(Cl)SAL4(Cl)	$\begin{aligned} & \hline \mathbf{C}_{7} \mathrm{H} \\ & \mathbf{C}_{8} \\ & \mathbf{C}_{1} \\ & \mathbf{C}_{6} \\ & \mathbf{C}_{4,11} \\ & \operatorname{Ar} \mathbf{C}_{9-10,11-12} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 161.4 \\ & 159.4 \\ & 146.3 \\ & 119.6 \\ & 123.6 \\ & 118.7,122.3,129.4,131.1,133.0 \\ & \hline \end{aligned}$
SAL4($\mathrm{SO}_{3} \mathrm{H}$)		$\begin{aligned} & \hline 165.2 \\ & 167.2 \\ & 160.7 \\ & 152.5 \\ & 129.2 \\ & 117.1,119.7,121.9,131.1,133.0,134.2 \\ & \hline \end{aligned}$
BispSAL	$\begin{aligned} & \hline \mathbf{C}_{7} \mathrm{H} \\ & \mathbf{C}_{8} \\ & \mathbf{C}_{1} \\ & \mathbf{C}_{6} \\ & \mathrm{Ar} \mathbf{C} \\ & \hline \end{aligned}$	1163.7 161.3 142.5 119.2 $117.5,119.0,119.7,127.7,132.3,133.3$
SAL4(COOH)	$\begin{aligned} & \hline-\mathbf{C}_{7} \mathrm{H} \\ & -\mathrm{COOH} \\ & \mathbf{C}_{11} \\ & \mathbf{C}_{8} \\ & \mathbf{C}_{1} \\ & \mathbf{C}_{6} \\ & \mathrm{Ar}_{\mathbf{9}} \mathbf{C}_{9-10,11-12} \end{aligned}$	$\begin{aligned} & 164.6 \\ & 206.3 \\ & 166.7 \\ & 160.1 \\ & 151.9 \\ & 129.1 \\ & 112.4,116.7,121.4,128.7,130.6,131.1, \end{aligned}$
SALF $_{5}$	$\mathrm{C}_{7} \mathrm{H}$ C_{8} C_{6} C_{1} $\mathbf{C}_{9,13}$ $\mathrm{C}_{10,12}$ C_{11} ArCH	170.6 161.5 118.7 143.1 $141.3,138.2$ $136.2,135.8$ 123.5 $117.8,119.6,133.3,135.0$

\begin{tabular}{|c|c|c|}
\hline Compounds \& Peaks Assigned \& δ Values

\hline \multirow{5}{*}{BisoSAL} \& $\mathrm{C}_{7} \mathrm{H}$ \& 163.7

\hline \& C_{8} \& 161.3

\hline \& C_{1} \& 142.5

\hline \& C_{6} \& 119.2

\hline \& Ar C \& 117.5, 119.0, 119.7, 127.7, 132.3, 133.3

\hline \multirow{7}{*}{SAL3,5($\left.\mathrm{CH}_{3}\right)_{2}$} \& CH_{3} \& 21.8

\hline \& $\mathrm{C}_{7} \mathrm{H}$ \& 162.6

\hline \& C_{8} \& 161.7

\hline \& C_{1} \& 148.8

\hline \& \& 119.8

\hline \& $$
\mathbf{C}_{10,12}
$$ \& 139.5

\hline \& $\mathrm{Ar} \mathbf{C}_{9,11,13}$ \& $$
\begin{aligned}
& \text { 117.7, 118.9, 119.4, 119.4, 129.1, 132.7, } \\
& 133.4
\end{aligned}
$$

\hline \multirow{6}{*}{$\mathrm{SAL4}\left(\mathrm{OCH}_{3}\right)$} \& OCH_{3} \& 55.5

\hline \& $\mathrm{C}_{7} \mathrm{H}$ \& 160.4

\hline \& C_{8} \& 161.0

\hline \& C_{1} \& 158.8

\hline \& C_{11} \& 141.4

\hline \& C
Ar

c \& | 119.4 |
| :--- |
| 114.6, 117.1, 119.0, 122.3, 131.9, 132.7 |

\hline \multirow{6}{*}{$\mathrm{SAL} 4\left(\mathrm{CH}_{3}\right)$} \& CH_{3} \& 21.0

\hline \& $\mathrm{C}_{7} \mathrm{H}$ \& 161.7

\hline \& C_{8} \& 161.1

\hline \& C_{11} \& 119.3

\hline \& C_{1} \& 136.9

\hline \& \& $$
\begin{aligned}
& 145.8 \\
& 117.2,119.0,121.0,130.0,132.1,132.9
\end{aligned}
$$

\hline \multirow{6}{*}{$5\left(\mathrm{NO}_{2}\right) \mathrm{SAL} 4\left(\mathrm{NO}_{2}\right)$} \& $\mathrm{C}_{7} \mathrm{H}$ \& 194.6

\hline \& $\mathrm{C}_{4,11}$ \& 171.5, 171.8

\hline \& C_{8} \& 161.3

\hline \& C_{1} \& 145.2

\hline \& C_{6} \& 141.2

\hline \& Ar $\mathrm{C}_{9.10,11-12}$ \& 118.0, 124.1, 128.1, 129.8, 130.7, 131.7

\hline \multirow{7}{*}{SAL3,4(CH_{3})} \& $-\mathrm{CH}_{3}$ \& 19.4, 19.9

\hline \& $\mathrm{C}_{7} \mathrm{H}$ \& 161.5

\hline \& C_{1} \& 119.3

\hline \& $\mathrm{C}_{10,11}$ \& 135.6, 137.7

\hline \& C_{6} \& 146.1

\hline \& C_{8} \& 161.1

\hline \& Ar $\mathbf{C}_{9,11,13}$ \& $$
\begin{aligned}
& 117.2,118.2,118.9,122.5,130.5,132.0, \\
& 132.8
\end{aligned}
$$

\hline \multirow{6}{*}{SAL3F,4(CH_{3})} \& CH_{3} \& 14.3

\hline \& C_{7} \& 162.6

\hline \& C_{8} \& 163.5

\hline \& \mathbf{C}_{11}

\mathbf{C}_{10} \& $$
\begin{aligned}
& 123.4,123.7 \\
& 147.6,147.8
\end{aligned}
$$

\hline \& C_{6} \& 159.6

\hline \& \& 161.1
107.5, 108.1, 116.9, 117.3, 132.0, 132.4, 133.3,

\hline
\end{tabular}

Compounds	Peaks Assigned	δ V Values
$\operatorname{SAL4}\left(\mathrm{NO}_{2}\right)$	$\mathbf{C}_{7} \mathrm{H}$	165.4
	\mathbf{C}_{11}	161.1
	\mathbf{C}_{6}	154.2
	\mathbf{C}_{1}	118.2
	Ar $\mathbf{C}_{9-10,11-12}$	118.7
	146.1	

All the compounds gave satisfactory ${ }^{13} \mathrm{C}$-DEPT NMR spectra, peaks were as expected for all the carbons in comparison with the previous work present in the literature ${ }^{8-10}$. ${ }^{13} \mathrm{C}$ NMR spectrum of SAL4F is given in Figure 2.12 .

Figure $2.12{ }^{13} \mathrm{C} N M R$ Spectrum of SALAF

2.8.5 ${ }^{19}$ F NMR DATA [Recorded in CDCl_{3}]

TABLE 2.6

Structural Formula	Reference	δ	M*	J
	Coupled Decoupled	$\begin{aligned} & \hline \hline-58.405 \\ & -58.427 \end{aligned}$	s	-
	Coupled Decoupled	$\begin{aligned} & \hline-63.312 \\ & -63.332 \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \end{aligned}$	-
	Coupled Decoupled	$\begin{aligned} & \hline-62.587 \\ & -62.607 \end{aligned}$	\bar{s}	-
	Coupled Decoupled	$\begin{gathered} -118.14--118.3 \\ -118.20 \end{gathered}$	$\begin{aligned} & \mathrm{t} \\ & \mathrm{~s} \end{aligned}$	8.52
	Coupled Decoupled	$\begin{gathered} \hline-116.01-115.9 \\ -115.96 \end{gathered}$	$\begin{gathered} \text { Quintet } \\ \mathrm{s} \end{gathered}$	4.49
	Coupled $\mathrm{F}_{1}, \mathrm{~F}_{5}$ $\mathrm{~F}_{3}$ $\mathrm{~F}_{2}, \mathrm{~F}_{4}$ Decoupled $\mathrm{F}_{1}, \mathrm{~F}_{5}$ $\mathrm{~F}_{3}$ $\mathrm{~F}_{2}, \mathrm{~F}_{4}$	$\begin{gathered} -152.39--152.3 \\ -158.7--158.5 \\ -162.8--162.6 \\ -152.4--152.3 \\ -158.7--158.41 \\ -162.81--162.6 \end{gathered}$	dd t ddd dd t ddd	$\begin{gathered} 7.63 \\ 21.57 \\ 6.31 \\ \\ 7.59 \\ 21.61 \\ 6.42 \end{gathered}$

* M = Multiplicity

DISCUSSION:-

${ }^{19}$ F NMR decoupled and coupled spectra were recorded for the Fsubstituted molecules. The chemical shift for SALF $_{5}$ gave a doublet of doublets(dd), $\operatorname{triplet}(\mathrm{t})$, and a doublet of doublets of doublets(ddd) at -152.39 to $-152.3,-158.7$ to $-158.5,-162.8$ to -162.6 respectively. These peaks are highfield compared to the other molecules studied during this work, this is probably due to the complete substitution of hydrogen by fluorine atoms on the ring. For all other molecules, the peaks were in the expected region.

2.8.6 MASS SPECTROMETRY:-

All the salicylidene anilines prepared were characterised by a variety of mass spectroscopic techniques including +FAB (Fast Atomic Bombardment), EI (Electron Ionisation) or E Spray (Electron Spray) mass spectroscopies, as required by the nature of the compound. All gave strong peaks corresponding to the molecular ion, no significant fragmentation was observed, because the expected fragments were too small for the mass spectrum detection.

TABLE 2.7 MASS SPECTROSCOPIC DATA

Compounds	Calculated Mass	Ions Observed
SAL.	197.21	+FAB MH ${ }^{+} 198$
SALAF	215.2	+FAB M ${ }^{+} 216$
SALF_{5}	287.0	+FAB M ${ }^{+} 288$
SAL3F,4Me	229.11	+FAB M ${ }^{+} 230$
$\mathrm{SAL} 4\left(\mathrm{CH}_{3}\right)$	211.0	EI M ${ }^{+} 211$ (Nonpolar, Volatile, Stable)
$\mathrm{SAL} 4\left(\mathrm{CF}_{3}\right)$	265.117	E. Spray MH ${ }^{+} 266$ Polar
$\mathrm{SAL} 4\left(\mathrm{OCH}_{3}\right)$	227.11	$+\mathrm{FAB} \mathrm{M}^{+} 228$
SAL4(OCF_{3})	281.19	+FAB MH ${ }^{+} 282$
SAL3,5($\left.\mathrm{CH}_{3}\right)_{2}$	225.0	+FAB M ${ }^{+} 226$
SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$	333.158	$+\mathrm{FAB} \mathrm{M}^{+} 334$
SAL3,4($\left.\mathrm{CH}_{3}\right)_{2}$	225.11	+FAB M ${ }^{+} 226$
SAL4Cl	231.45	+ FAB 232 mixture of M^{+}, $233 \mathrm{MH}^{+}$

Compounds	Calculated Mass	Ions Observed
5(Cl)SAL4(Cl)	265.9	+FAB M ${ }^{+} 265$
SAL4(NO_{2})	242.0	+FAB MH ${ }^{+}$243, $\mathrm{M}^{+} 242$
5($\left.\mathrm{NO}_{2}\right)$ SAL4 $\left(\mathrm{NO}_{2}\right)$	287.0	+FAB MH ${ }^{+}$288, $\mathrm{EI} \mathrm{M}^{+} 287$
SAL4(COOH)	241.2	+ FAB. Mixture of M^{+}and MH^{+} 241
$\mathrm{SAL} 4\left(\mathrm{SO}_{3} \mathrm{H}\right)$	277.21	+FAB. $\mathrm{MH}^{+} 278$
BispSAL	316.33	+FAB and EI M ${ }^{+} 316$
BisoSAL	316.33	+FAB MH ${ }^{+} 317$

Mass spectra of SAL and SALAF are given in Figure 2.13 and 2.14
respectively.

Figure 2.13 Mass Spectrum of SAL

Figure 2.14 Mass Spectrum of SAL4F
2.8.7 I.R. DATA(Recorded as solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)

TABLE 2.8

Compound	C-H	C-H	\leftarrow		Stretches		\rightarrow		Other Bands
	(Stretch)	(bend)	$\mathbf{C}=\mathbf{N}$	N-C	O-H	$\mathrm{C}-\mathrm{O}$	$\mathrm{C}=\mathbf{C}$	C-F	
SAL.	$\begin{aligned} & 3040,2980 \mathrm{~m}, \\ & 2680,2400 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 680,760,840,890 \mathrm{~s}, \\ & 1030,1070,1110 \mathrm{w} \end{aligned}$	1610s	1360w	$\begin{aligned} & \hline \hline 4000,3740, \\ & 3680 \mathrm{w} \end{aligned}$	$\begin{aligned} & \hline 1265,1140 \mathrm{~m}, \\ & 1180 \mathrm{~s} \end{aligned}$	1575,1450 1480,1600 1400s	5	$\begin{aligned} & \hline 2680,2400 \\ & m \end{aligned}$
SAL4F	3100,2700w	$\begin{array}{\|l\|} \hline 900,840,790,1110 \\ 980 \mathrm{w} \end{array}$	1610s	1360 m	4000,3710m	1230,1275s	$\begin{aligned} & \hline 1570, \\ & 1480 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1180, \\ & 1150 \mathrm{~s} \end{aligned}$	2700w
$\mathrm{SAL4}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & 3060,2970 \mathrm{~m} \\ & 2680,2450 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { 670,780,840, } \\ & 880 \mathrm{~s}, 1040, \\ & 1070 \mathrm{w} \end{aligned}$	1610s	1360 m	$\begin{aligned} & \text { 4000,3740, } \\ & 3660 \mathrm{w} \end{aligned}$	$\begin{aligned} & 1260,1150 \mathrm{w}, \\ & 1180 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline 1570,1450 \\ & 1460, \\ & 1600 \mathrm{~s} \end{aligned}$		$\begin{aligned} & \text { 2680,2450 } \\ & \mathrm{m} \end{aligned}$
SALA (CF_{3})	$\begin{aligned} & 3035,2970 \mathrm{~s}, \\ & 2650 \mathrm{~m} \end{aligned}$	$\begin{array}{\|l\|} \hline 758,870, \mathrm{~m} \\ 980,1010, \\ 1030 \mathrm{~m} \end{array}$	1590s	1370w	$\begin{aligned} & 4000,3740, \\ & 3680 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 1240,127011 \\ & 80,1140 \mathrm{~s} \end{aligned}$	$\begin{array}{\|l\|} \hline 1550,1425 \\ 1610 \mathrm{~s} \end{array}$	$\begin{aligned} & 1060, \\ & 1100, \\ & 1200 \mathrm{~s} \end{aligned}$	2650m

Compound	$\mathbf{C}-\mathbf{H}$	$\mathbf{C - H}$	\leftarrow		Stretches		\rightarrow		Other Bands
	(Stretch)	(bend)	$\mathbf{C}=\mathbf{N}$	$\mathbf{N}-\mathbf{C}$	O-H	C-O	$\mathrm{C}=\mathrm{C}$	C-F	
$\mathrm{SALp}\left(\mathrm{OCH}_{3}\right)$	3040,2980s,	$\begin{aligned} & \hline \hline 680,760,840 \\ & 890 \mathrm{~s}, 980 \mathrm{~s}, \\ & 1030,1100 \mathrm{~m} \end{aligned}$	1610s	1360w	3090,3810s	$\begin{aligned} & \hline \hline 1240,129011 \\ & 80,1150 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1500, \\ & 1450 \mathrm{~s} \end{aligned}$		
SAL4(OCF_{3})	3040s,	$\begin{aligned} & 690,750,860, \\ & 975,1010, \\ & 1030 \mathrm{~m} \end{aligned}$	1600s	1350w	$\begin{aligned} & 3940,3740, \\ & 3680 \mathrm{w} \end{aligned}$	1330,1250s	$\begin{aligned} & 1570, \\ & 1480 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1200, \\ & 1100, \\ & 1050 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline 2400,2300 \\ & \mathrm{w} \end{aligned}$
SAL3,5($\left.\mathrm{CH}_{3}\right)_{2}$	3050m,2900,	$\begin{aligned} & \hline 730,790 \mathrm{w}, \\ & 950,1030 \mathrm{~m} \end{aligned}$	1640m	1350w	3790,3650m	$\begin{aligned} & 1250,120011 \\ & 40 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1620, \\ & 1500, \\ & 1480 s \end{aligned}$		
SAL3,5(CF3) ${ }_{2}$	3070s,	$\begin{aligned} & 740,840,890 \mathrm{~s}, 980, \\ & 1010, \\ & 1030 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1580, \\ & 1600 \mathrm{~s} \end{aligned}$	1350s	3940s	1310m	$\begin{aligned} & 1570,1510, \\ & 1410, \\ & 1380 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1180 \\ & 1100 \mathrm{~s} \end{aligned}$	2400m
SALF_{5}	3070,2950m	$\begin{aligned} & 690,740,900 \mathrm{~m}, \\ & 1100,1150 \mathrm{~m} \end{aligned}$	1610s	1380 m	3640m	1210,1300s	$\begin{aligned} & 1450, \\ & 1530, \\ & 1600 \mathrm{~m} \end{aligned}$	$\begin{array}{\|l\|} \hline 950, \\ 1000 \mathrm{~s} \end{array}$	2750m
SAL3F,4(CH_{3})	3040,2980m	$\begin{aligned} & 690,760,890 \mathrm{~s}, \\ & 1050,1120 \mathrm{w} \end{aligned}$	1610 m	1360w	3850m	1250,1280s	$\begin{aligned} & 1570,1480 \\ & 1450 \mathrm{~s} \end{aligned}$	1180w	$2680,2500$ m

Compound	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}-\mathrm{H}$	\leftarrow		Stretches				$\begin{aligned} & \text { Other } \\ & \text { Bands } \end{aligned}$
	(Stretch)	(bend)	$\mathrm{C}=\mathrm{N}$	N-C	O-H	C-O	$\mathrm{C}=\mathrm{C}$	C-F	
SAL3,4(CH_{3})	3070.3110m	$\begin{aligned} & \hline 690,840 \mathrm{~m}, \\ & 1040,1090 \mathrm{w} \end{aligned}$	1610s	1410m	3970,3890m	1270,1150s	$\begin{aligned} & \hline 1410, \\ & 1490 \mathrm{~s} \\ & 1600 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 2600,2500 \\ & m \end{aligned}$
SAL4Cl	3040,2970m	$\begin{aligned} & \hline 670,780,890 \mathrm{~s}, \\ & 1040,1080 \mathrm{~m} \end{aligned}$	1610s	1380 m	3940,3780m	$\begin{aligned} & \hline 1270, \\ & 1150 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 1480, \\ & 1650 \mathrm{~m} \end{aligned}$		$2670,2450$ m
5(CL)SAL4(Cl)	3070,2950m,	$\begin{array}{\|l\|} \hline 660,790 \mathrm{~s}, \\ 1050,1070 \mathrm{~m} \end{array}$	1620s	1390m	3950,3790m	$\begin{aligned} & 1280, \\ & 1150 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 1470, \\ & 1680 \mathrm{~m} \end{aligned}$		2590m
$\begin{aligned} & \hline \operatorname{SAL4}\left(\mathrm{NO}_{2}\right) \\ & {[\mathrm{N}-\mathrm{O}} \\ & \hline 1570 \mathrm{~s}] \end{aligned}$	3060m	$\begin{array}{\|l\|} \hline 900 \mathrm{~m}, 980, \\ 1030 \mathrm{w} \end{array}$	1620s	1340s	3740,3810m	$\begin{array}{\|l\|} \hline 1250, \\ 1160 \mathrm{~m}, \\ 1180 \mathrm{~s} \end{array}$	$\begin{array}{\|l\|} \hline 1520, \\ 1580 \mathrm{~s}, \\ 1480 \mathrm{~m} \end{array}$		2640w
$\begin{gathered} 5\left(\mathrm{NO}_{2}\right) \\ \mathrm{SAL}\left(\mathrm{NO}_{2}\right) \\ {[\mathrm{N}-\mathrm{O}} \\ 1570,1560 \mathrm{~s}] \end{gathered}$	3080m	1040,970, 920 m	1630s	1330s	3730,3820s	1265, 1160m, 1185s	$\begin{aligned} & 1520,1575 \mathrm{~s} \\ & , 1470 \mathrm{~m} \end{aligned}$		2675w

Compound	C-H	C-H	\leftarrow		Stretches		\rightarrow		Other Bands
	(Stretch)	(bend)	$\mathrm{C}=\mathrm{N}$	$\mathrm{N}-\mathrm{C}$	O-H	C-O	$\mathrm{C}=\mathrm{C}$	C-F	
SAL4(COOH)	3050,2960m	$\begin{aligned} & \hline \hline 680,750,890 \mathrm{~s}, \\ & 1020,1060 \mathrm{~m} \end{aligned}$	1620s	1355s	$\begin{aligned} & \hline 3920,3750, \\ & 3670 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 1265,1150 \mathrm{~m}, \\ & 1170 \mathrm{~s} \end{aligned}$	1570,1460 1490s, 1650 1400 m		2680w
SAL4($\left.\mathrm{SO}_{3} \mathrm{H}\right)$	3040,2970,	$\begin{aligned} & \hline 680,870 \mathrm{~s}, 1030, \\ & 1050 \mathrm{~s} \end{aligned}$	1580s	1340m	3890,3770s	$\begin{aligned} & \text { 1250,1210m, } \\ & 1180 \mathrm{w} \end{aligned}$	$\begin{aligned} & 1580,1490 \mathrm{~s} \\ & 1665 \mathrm{w} \end{aligned}$		2650m
BispSAL	3030,2960,	670,870,1040s	1610m	1330m	3880s	$\begin{aligned} & \hline 1240,1220, \\ & 1170 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 1680, \\ & 1590 \mathrm{~m} \end{aligned}$		2680m
BisoSAL	3040,2970	680,860,1050	1610m	1340m	3870s	$\begin{aligned} & \hline 1230,1250, \\ & 1180 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 1670, \\ & 1570 \mathrm{~m} \end{aligned}$		2680m

I.R. DISCUSSION:-

All the salicylideneanilines were characterised by I.R. spectroscopy. The I.R. spectra were recorded as solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ against a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ blank. All the characteristic bonds in the compounds gave satisfactory bands in their respective region. No significant shift from the expected value for each band was observed, in comparison with the previous work present in the literature ${ }^{8-13}$.

Salicylideneanilines have two aromatic rings, one aldehydic and other of aniline. They gave stretching vibrations in the region $3100-2800 \mathrm{~cm}^{-1}$, and their deformations are in the $1600-1450 \mathrm{~cm}^{-1}$ region. The out-of-plane bends are in the $650-1000 \mathrm{~cm}^{-1}$ region. The $\mathrm{C}=\mathrm{N}$ bond gave a strong band in the region of $1690-1600 \mathrm{~cm}^{-1}$. The $\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}, \mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{F}$ bonds gave bands in the region of $1600-1000 \mathrm{~cm}^{-1}$. The -OH bond gave a medium to weak broad band in the region of $4000-3700 \mathrm{~cm}^{-1}$, which indicates the presence of hydrogen-bonding between hydroxyl hydrogen and imine nitrogen, except for SAL3,5(CF3 $)_{2}$. This compound gave a strong -OH band which indicates the absence of hydrogen-bonding in SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$.

2.8.8 U.V. SCANS:

U.V. scans of the solutions of the ligands at different concentrations($10 \%, 20 \%, 25 \%, 30 \%$) in methanol/water mixtures were recorded over a period of time. A graph of absorbance plotted against time gave an ascending curve, showing the solubilisation in progress. The plot straightened after a certain time indicating saturation of the solution. There was no change in the wavelength of maximum absorption, and no new peak at any other wavelength appeared. Thus it was concluded that the compounds were stable in solution.

2.9 CONCLUSION:-

The preparation of these ligands was straightforward. Most were isolated as crystals, and were easily recrystallised for purification.

They are air and hydrolytically stable in solid and solution forms. No significant effect of electron donating or electron withdrawing subsitituent groups on the properties of the ligands was found.

2.10 REFERENCES:-

(1) G. M. Loudon, Organic Chemistry, Beniamin/Cummings Publishing Co., 2nd. ed., 792, 1988.
(2) Comprehensive Coordination Chemistry, ed. G. Wilkinson Vol. 2, p. 723, 1987.
(3) P.L.Orioli, M. Di Vaira and L. Sacconi, Inorg. Chem., 5, 4001966.
(4) R. M. Countryman, W. T. Robinson and E. Sinn, Inorg. Chem., 13, 2013, 1974.
(5) J. W. Smith, The Chemistry of the Carbon-Nitrogen Double Bond, Ed. S. Patai, Wiley-Interscience, New York, . 2351970.
(6) G. C. Percy and D. A. Thornton, J. Inorg. Nucl. Chem., 34, 3357, 1972.
(7) J. McMurry, Organic Chemistry, 4th ed., Brooks / Cole Publishing Co. Monterey, California, 701, 1992.
(8) W. Kemp, "Organic Spectroscopy", 3rd ed., Macmillan, 199, 1993.
(9) R. M. Silverstein, G. C. Bassler and T. C. Morill, "Spectroscopic Identification of Organic Compounds", 5th ed., John Wiley and Sons, New York, 127, 1991.
(10) D. L. Pavia, G. M. Lampman and G. S. Kriz Jr, "Introduction to Spectroscopy, a guide for students of organic chemistry", W. B. Saunders Co., London, 26, 1979.
(11) D. G. Curran and S. Siggia, "The Chemistry of the Carbon Nitrogen Double Bond", Ed. S. Patai, Interscience Publishers, London, 149, 1970.
(12) L. E. Clougherty, J. A. Sousa and G. M. Wyman, J. Org. Chem., 22, 462, 1957.
(13) D. Heinert and A. E. Martell, J. Amer. Chem. Soc., 84, 3257, 1962.

CHAPTER 3

STRUCTURE DETERMINATION OF

SOME NOVEL SUBSTITUTED

SALICYLIDENEANILINES

3.1 INTRODUCTION:-

This chapter describes the structures of some novel salicylidene aniline derivatives (Figure 3.1) which were determined by single crystal X-ray diffraction. The synthesis and characterisation of these compounds were given in Chapter 2. Information concerning bond lengths, bond angles and inter- and intramolecular hydrogen-bonding has been gathered.

Figure 3.1

3.2 LITERATURE SURVEY:-

Several groups ${ }^{1-6}$ have determined structures of salicylideneaniline and its derivatives. Destro et al ${ }^{7}$. reported the structure of salicylidene aniline itself (SAL)[Figure 3.2], Tenon et $a l^{8}$. reported the structure of N -(5-hydroxysalicylidene)-2,4,6-trimethylaniline [Figure 3.3] (5(OH)SAL2,4,6 $\left.\left(\mathrm{CH}_{3}\right)_{2}\right)$, while Bregman ${ }^{9-10}$ and co-workers published the structures of N -5chlorosalicylideneaniline(5CISAL) [Figure 3.4] and 2-chloro-salicylideneaniline (SAL2Cl) [Figure 3.5]. Inabe ${ }^{11}$ and coworkers reported the structure of N tetrachlorosalicylideneaniline [Figure 3.6$]\left(\mathrm{Cl}_{4} \mathrm{SAL}\right)$. Burgess et al ${ }^{12}$. solved the structure of salicylidene-4-nitroaniline[Figure 3.7](SALp(NO_{2}). All the molecules have a hydrogen bond between the hydroxyl hydrogen and nitrogen. Selected bond lengths and bond angles of some structures, from the literature, are given in Table 3.1 and Table 3.2 respectively. The numbering of carbon atoms is given in Figure 3.12.

Figure. 3.2 $S A L$

Figure. 3.3 $\left.5(\mathrm{OH}) \mathrm{SAL2,4,6(CH}_{3}\right)$

Figure. 3.4 5ClSAL

Figure 3.5 $\mathrm{SAL2Cl}$

Figure $3.6 \mathrm{Cl}_{4} \mathrm{SAL}$

Figure 3.7 $\operatorname{SALp}\left(\mathrm{NO}_{2}\right)$

X-ray crystallographic structures of SAL4(NO_{2}), (5-(OH)SAL,2,4,6(CH3)3),
and $\mathrm{Cl}_{4} \mathrm{SAL}$ (from the literature) are given in Figures 3.8, 3.9, 3.10, and 3.11

Figure 3.8 SALANO $_{2}$

Figure 3.9 Packing Diagram of SALANO_{2}

Figure 3.10 (5-(OH)SAL, 2,4,6($\left.\left(\mathrm{CH}_{3}\right)_{3}\right)$

Figure $3.11 C l_{4} S A L$

Figure 3.12

Bonds	SAL	5ClSAL	SAL2Cl	Cl $_{4}$ SAL	SALp(NO 2$) \mid$
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.262(8)$	$1.270(5)$	$1.288(4)$	$1.298(9)$	$1.287(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.529(5)$	$1.444(6)$	$1.452(4)$	$1.435(9)$	$1.443(3)$
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.466(5)$	$1.419(5)$	$1.421(4)$	$1.414(9)$	$1.412(2)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.320(7)$	$1.351(5)$	$1.365(4)$	$1.332(8)$	$1.352(2)$
$\mathrm{C}(6)-\mathrm{C}(5)$	-	$1.407(6)$	$1.400(4)$	$1.422(9)$	$1.399(3)$
$\mathrm{C}(1)-\mathrm{C}(6)$	-	$1.418(6)$	$1.391(4)$	$1.412(9)$	$1.409(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	-	$1.410(6)$	$1.384(4)$	$1.390(10)$	$1.388(3)$
$\mathrm{C}(8)-\mathrm{C}(13)$	-	$1.387(6)$	$1.381(4)$	$1.390(10)$	$1.398(3)$
$\mathrm{H} . . \mathrm{N}$	-	-	-	$1.38(9)$	$1.797(24)$
$\mathrm{O} \ldots \mathrm{N}$	$2.598(8)$	2.584	2.609	$2.5717(7)$	$2.645(3)$
$\mathrm{O}-\mathrm{H}$		1.15	1.04	$1.18(9)$	

Table 3.1 Selected Bond Lengths of SAL, 5ClSAL, SAL2Cl, Cl4SAL and $\operatorname{SALA}\left(\mathrm{NO}_{2}\right)$ taken from the literature, spaces left blank where details are not given in the literature.

Angles	SAL	5ClSAL	SAL2Cl	Cl4SAL	SALp(NO $\mathbf{2}) \mid$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$105.1(3)$	120.3	119.0	$121.5(6)$	$118.8(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	-	118.2	118.6	$117.8(6)$	$118.7(2)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$135.3(3)$	121.5	122.0	$120.7(6)$	$122.5(2)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	-	119.8	120.6	$120.3(6)$	$119.6(2)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1)$	$107.1(3)$	120.5	121.3	$120.8(6)$	$121.4(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$132 .(9)$	119.6	118.1	$118.8(6)$	$119.0(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$113.3(6)$	121.7	121.4	$120.2(6)$	$122.1(2)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$113.0(6)$	122.3	118.9	$123.6(6)$	$121.2(2)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$100.2(3)$	124,3	121.2	$124.1(6)$	$116.2(2)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$139.9(3)$	116.1	120.2	$116.0(6)$	$124.9(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	-	119.6	118.5	$120.0(7)$	$118.9(2)$

Table 3.2 Selected Bond Angles of SAL, 5ClSAL, SAL2Cl, Cl4SAL,
$\operatorname{SAL4}\left(\mathrm{NO}_{2}\right)$ taken from the literature, the spaces left blank
where details are not given in the literature.

3.3 METHODS OF CRYSTALLISATION:-

Crystals of these Schiff bases were grown using a number of crystallising methods as described below.

3.3.1 BY SUBLIMATION:-

For sublimation, the cold finger technique was used. The sample was introduced into the outer jacket and the finger was filled with a solid CO_{2} and acetone mixture. The temperature difference between the outer jacket and cold finger was maintained at approximately $40^{\circ} \mathrm{C}$.

By this method very pure flaky crystals were obtained, which could not be used for X-ray analysis.

3.3.2 BY SLOW COOLING:-

The sample was refluxed in ethanol for half an hour and then allowed to cool, first within the heating mantle and then in cold water into which ice was added in small portions. When the temperature was in the range of $5-10{ }^{\circ} \mathrm{C}$ crystals appeared. However, the crystals were very large and were stacked together and were not suitable for X-ray analysis.

3.3.3 BY MIXTURE OF SOLVENTS:-

(a) By slow evaporation at low temperature:

A number of solvent mixtures were tried, for example, ethanol/nhexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane and ether/n-hexane. Crystals appeared in ethanol/n-hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane mixtures on slow evaporation at 0 $5^{\circ} \mathrm{C}$ which were suitable for X -ray analysis.
(b) By adding cold solvent into a hot ligand solution:

The sample was dissolved in a small volume of ethanol, in which it was very soluble. This solution was heated to reflux temperature, then the other solvent (usually n-hexane) was added dropwise down the condenser until turbidity was seen, then a few drops of the first solvent were added to clear the turbidity. The solution was allowed to cool slowly. On cooling flaky crystals appeared, which were not suitable for X-ray analysis.

3.3.4_BY SLOW EVAPORATION:-

The sample was dissolved either in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or ethanol, in a sample tube having three small holes in its top, and was left at $5^{\circ} \mathrm{C}$ for several weeks. As the solvent evaporated crystals appeared at the bottom of the tube. The solvent was then drawn out with a fine pipette, leaving crystals which were good enough for X-ray analysis.

3.4 EXPERIMENTAL:-

All X-ray structure determinations were done on a Siemens P4 X-ray diffractometer by Dr. J. Fawcett.

3.5 SALICYLIDENEANILINE DERIVATIVES:-

Seven of the ligands prepared for this work have been investigated using Xray crystallography. Their formulae are shown in Figures 3.13, 3.14, 3.15, 3.16, and 3.17.

Figure 3.13

$\mathrm{R}=$| OCF_{3} | $\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)$ |
| :---: | :---: |
| F | SAL 4 F |
| | CH_{3} |
| | $\operatorname{SAL} 4\left(\mathrm{CH}_{3}\right)$ |

Figure 3.14 $\left.\mathrm{SAL3,5(CF}_{3}\right)_{2}$

Figure 3.15 SALF_{5}

Figure 3.16 $\mathrm{SAL3F}^{2} 4\left(\mathrm{CH}_{3}\right)$

Figure 3.17 5ClSALACl

3.6 RESULTS AND DISCUSSION:-

3.6.1 $\operatorname{SAL3,5(\mathrm {CF}_{3})_{2}:-~}$

SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$ was crystallised from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane mixture, at low temperature $\left(0-5{ }^{\circ} \mathrm{C}\right)$, as dark yellow crystals. Its crystal system is monoclinic. The molecular structure is shown in Figure 3.18. The packing and 3D stereo pair diagrams are shown in Figures 3.19 and 3.20 repectively. Unlike other SAL structures no intramolecular hydrogen-bonding between the hydroxyl hydrogen and nitrogen is found. This may be due to the electron-withdrawing effect of the $-\mathrm{CF}_{3}$ groups or due to the steric hindrance caused by the presence of two bulky groups on the same ring. The oxygen nitrogen bond distance in this case is $2.631(10) \AA$, which is similar to the compounds with hydrogen-bonding. Selected bond lengths and bond angles for $\operatorname{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}$ are shown in Tables 3.3 and 3.4 respectively.

Figure 3.18 Structure diagram of $\operatorname{SAL3,5(\mathrm {CF}_{3})_{2}}$

Figure 3.19 Packing diagram of $\operatorname{SAL3,5(CF_{3})_{2}}$

Bonds	Lengths[̊]	Bonds	Lengths[\AA]
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.254(13)$	$\mathrm{N}(1)-\mathrm{C}(8)$	$1.374(12)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.438(13)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.403(17)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.372(16)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.463(16)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.407(14)$	$\mathrm{C}(8)-\mathrm{C}(13)$	$1.406(12)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.323(14)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.397(13)$
$\mathrm{C}(10)-\mathrm{C}(14)$	$1.538(13)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.361(15)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.353(14)$	$\mathrm{C}(12)-\mathrm{C}(15)$	$1.457(10)$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.413(13)$	$\mathrm{O}(1)-\mathrm{Ha}(1)$	$0.922(10)$

Table 3.3 Selected Bond Lengths of SAL3,5(CF $\mathbf{3}_{2}$

	Angles[${ }^{\circ}$]		Angles[${ }^{0}$]
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$122.7(8)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$119.6(11)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$117.8(9)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$117.8(10)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$117.6(11)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$123.8(10)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$123.6(9)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$118.8(10)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$123.6(8)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$118.4(9)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$124.5(9)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.1(9)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$118.1(9)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	$120.6(8)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$122.4(10)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$117.4(9)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(14)$	$117.0(8)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	$119.0(9)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$122.6(9)$	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$119.4(9)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(15)$	$118 / 3(9)$		

Table 3.4 Selected Bond Angles of SAL3,5(CF3 $)_{2}$

Figure 3.20 $3 D$ Stereo pair of $\operatorname{SAL3,5(CF_{3})_{2}}$

3.6.2 $\mathbf{S A L 3 F , 4 (\mathbf { C H } _ { 3 })}$

SAL3F, $4\left(\mathrm{CH}_{3}\right)$ was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by slow evaporation at low temperature $\left(0-5^{0} \mathrm{C}\right)$, giving yellow needles. Its crystal system is monoclinic. The molecular structure diagram is shown in Figure 3.21. The fluorine atom is disordered with equal probability at the two meta aniline ring positions. The packing and 3D stereo pair diagrams are shown in Figures 3.22 and 3.23 respectively. It is a planar molecule, packed in layers. There is intramolecular hydrogen-bonding between the hydroxyl hydrogen and the nitrogen having a bonding length of $1.729 \AA$, the distance between oxygen and nitrogen is $2.600 \AA$. These molecules were found to be aligned such that the hydroxyl oxygen of one molecule was facing the methylene proton of the other, having a distance of 2.640 \AA, which is larger than the sum of the van der Waals radii $\left(2.26 \AA^{13}\right)$. Selected bond lengths and bond angles are given in Tables 3.5 and 3.6 respectively.

Figure 3.21 Structure diagram of $\operatorname{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)$

Figure 3.22 Packing diagram of $\operatorname{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)$

Bonds	Lengths[\AA]	Bonds	Lengths[\AA]
$\mathrm{F}(1)-\mathrm{C}(12)$	$1.323(4)$	$\mathrm{O}(1)-\mathrm{C}(5)$	$1.354(4)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.274(4)$	$\mathrm{N}(1)-\mathrm{C}(8)$	$1.419(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.391(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.402(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.452(4)$	$\mathrm{C}(8)-\mathrm{C}(13)$	$1.382(4)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.397(4)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.383(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.397(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.372(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.385(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.377(4)$
$\mathrm{C}(11)-\mathrm{C}(14)$	$1.504(4)$	$\mathrm{O}(1)-\mathrm{H}$	0.974

Table 3.5 Selected Bond Lengths of $\mathrm{SAL3F}, 4\left(\mathrm{CH}_{3}\right)$

	Angles[$\left.{ }^{\circ}\right]$		Angles[$\left.{ }^{\circ}\right]$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$121.5(3)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$118.7(3)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.2(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.1(3)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.1(3)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$120.4(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.5(3)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$122.1(3)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$	$118.4(3)$	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(1)$	$116.4(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)$	$125.2(3)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$114.6(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(14)$	$123.3(3)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	$122.0(3)$
$\mathrm{F}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$119.1(3)$		

Table 3.6 Selected Bond Angles of SAL3F,4(CH $\left.{ }_{3}\right)$

Figure 3.23 $3 D$ Stereo pair of $3 F, 4\left(\mathrm{CH}_{3}\right)$

3.6.3 $\operatorname{SAL4}\left(\mathrm{OCF}_{3}\right)$

$\operatorname{SAL} 4\left(\mathrm{OCF}_{3}\right)$ was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by slow evaporation at low temperature $\left(0-5^{\circ} \mathrm{C}\right)$, to give yellow blocks. Its crystal structure is monoclinic. The structure diagram is given in Figure 3.24. There is a strong intramolecular hydrogen-bond between the hydroxyl hydrogen and the nitrogen, its bond length is $1.622(6) \AA$, but no intermolecular hydrogen-bonding is present in this case. The oxygen-nitrogen distance is $2.603(6) \AA$. This molecule is packed in the form of layers such that the aldehydic ring of one is above the aldehydic ring of the other. The packing and 3D stereo pair diagrams are shown in Figures 3.25 and 3.26 respectively. Selected bond lengths and bond angles are given in Tables 3.7 and 3.8 respectively.

Figure $\mathbf{3 . 2 4}$ Structure diagram of $\operatorname{SALA}\left(\mathrm{OCF}_{3}\right)$

Figure 3.25 Packing diagram of $\operatorname{SALA}\left(\mathrm{OCF}_{3}\right)$

Bonds	Lengths[\AA]	Bonds	Lengths[\AA]
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.289(7)$	$\mathrm{N}(1)-\mathrm{C}(8)$	$1.415(7)$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.350(8)$	$\mathrm{O}(2)-\mathrm{C}(11)$	$1.417(8)$
$\mathrm{O}(2)-\mathrm{C}(14)$	$1.318(12)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.414(9)$
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.373(9)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.403(8)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.440(8)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.371(9)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.388(8)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.392(9)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.349(10)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.374(11)$
$\mathrm{O}(1)-\mathrm{H}$	$1.092(6)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.365(9)$

Table 3.7 Selected Bond Lengths of SALA(OCF ${ }_{3}$)

	Angles[$\left.{ }^{\circ}\right]$		Angles[$\left.{ }^{\circ}\right]$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$122.7(5)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$119.7(6)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.2(6)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.1(6)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$117.5(5)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.3(5)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$123.1(5)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$120.9(5)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$125.8(5)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$115.5(5)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$118.7(5)$	$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$118.2(7)$
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$118.9(6)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$122.8(6)$

Table 3.8 Selected Bond Angles of SAL4(OCF ${ }_{3}$)

Figure 3.26 $3 D$ Stereo pair of $\operatorname{SALA}\left(O C F_{3}\right)$

3.6.4 SAL4F

SAL4F was crystallised from a $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane mixture by slow evaporation at low temperature $\left(0-5{ }^{\circ} \mathrm{C}\right)$, to give lemon yellow needles. Its crystal system is monoclinic. The structure diagram is given in Figure 3.27. There is a strong intra-molecular hydrogen-bonding present between the hydroxyl hydrogen and the nitrogen having bond length $1.744(3) \AA$, the oxygen-nitrogen bond distance is $2.619(3) \AA$, but no intermolecular hydrogen bond was observed. These molecules are planar and packed in layers such that the aldehydic ring of one molecule faces the anil ring of the other. The packing and 3D stereo pair diagrams are shown in Figures 3.28 and 3.29 respectively. Selected bond lengths and bond angles are given in Tables 3.9 and 3.10 respectively.

Figure 3.27 Structure diagram of SALAF

Figure 3.28 Packing diagram of SALAF

Bonds	Lengths[\AA B]	Bonds	Lengths $[\AA]$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.388(3)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.354(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.406(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.395(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.447(2)$	$\mathrm{N}(1)-\mathrm{C}(7)$	$1.273(2)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.419(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.377(2)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.394(2)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.366(3)$
$\mathrm{C}(11)-\mathrm{F}(1)$	$1.362(2)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.365(3)$
$\mathrm{O}(1)-\mathrm{H}$	$0.969(4)$		

Table 3.9 Selected Bond Lengths of SALAF

	Angles[${ }^{\circ}$]		Angles[${ }^{\circ}$]
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$118.7(2)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$121.5(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$119.8(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$118.5(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.8(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.8(2)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$122.1(2)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$122.9(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)$	$116.1(2)$	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{N}(1)$	$124.8(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$122.8(2)$	$\mathrm{F}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	$118.7(2)$
$\mathrm{F}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$118.5(2)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$119.1(2)$

Table 3.10 Selected Bond Angles [${ }^{\circ}$] of SALAF

Figure 3.29 $3 D$ Stereo pair of SALAF

3.6.5 SAL4($\mathbf{C H}_{3}$):-

$\operatorname{SALA}\left(\mathrm{CH}_{3}\right)$ was crystallised from ethanol by slow evaporation at low temperature $0-5{ }^{\circ} \mathrm{C}$ to give bright yellow needles. Its crystal structure is monoclinic. The structure diagram is given in Figure 3.30. There is a strong intramolecular hydrogen-bond between the hydroxyl hydrogen and nitrogen, and this is reflected in the fact that its bond length is $1.455 \AA$. No intermolecular hydrogen-bonding is present in this case. The oxygen to nitrogen distance is $2.597 \AA$. This structure was first solved by Aldoshin et al ${ }^{14}$ but with high e.s.d. values, in the range of $0.02 \AA$ and their R value was 0.052 . The structure solved in this work has lower e.s.d. values in the range of $0.005 \AA$ and its R value is 0.048 . The packing and 3D stereo pair diagrams are shown in Figures 3.31 and 3.32 respectively. Selected bond lengths and bond angles are given in Tables 3.11 and 3.12 respectively.

Figure 3.30 Structure diagram of $\operatorname{SALA}\left(\mathrm{CH}_{3}\right)$

Figure 3.31 Packing diagram of $\operatorname{SALA}\left(\mathrm{CH}_{3}\right)$

Bonds	Lengths[£]	Bonds	Lengths[\AA]
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.391(6)[1.398(6)]$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.448(5)[1.453(6)]$
$\mathrm{C}(5)-\mathrm{O}(1)$	$1.349(5)[1.345(6)]$	$\mathrm{C}(7)-\mathrm{N}(1)$	$1.282(5)[1.294(6)]$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.393(6)[1.401(6)]$	$\mathrm{N}(1)-\mathrm{C}(8)$	$1.420(5)[1.419(6)]$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.396(5)[1.398(6)]$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.382(5)[1.395(6)]$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.384(6)[1.395(5)]$	$\mathrm{C}(8)-\mathrm{C}(13)$	$1.392(6)[1.380(6)]$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.378(5)[1.385(6)]$	$\mathrm{C}(11)-\mathrm{C}(14)$	$1.511(6)[1.503(6)]$

Table 3.11 Selected Bond Lengths of SALA($\left.\mathrm{CH}_{3}\right)$
Values from the literature ${ }^{14}$ are given in italics.

	Angles[${ }^{\circ}$]		Angles[${ }^{\circ}$]
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$119.2(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119.7(4)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.1(4)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.8(4)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.4(4)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.9(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$122.0(4)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$121.7(3)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$116.5(3)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$124.9(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$118.6(4)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$117.4(4)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(14)$	$121.1(3)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	$121.5(4)$

Table 3.12 Selected Bond Angles of $\operatorname{SAL4}\left(\mathrm{CH}_{3}\right)$

Figure 3.32 $3 D$ Stereo pair of $\operatorname{SALA}\left(\mathrm{CH}_{3}\right)$

3.6.6 SALF_{5}

SALF $_{5}$ was crystallised from ethanol by slow evaporation at low temperature (0 to $5^{\circ} \mathrm{C}$) giving light yellow needles. Its crystal system is monoclinic. The structure diagram is given in Figure 3.34. This structure was first solved by Lindeman ${ }^{15}$ in 1981 but the e.s.d. values were high, up to of $0.012 \AA$, and refinement R was 0.054 . The structure solved in this work has lower e.s.d. values up to of $0.003 \AA$, and R value is 0.034 . The molecules are packed in layers such that the aldehydic phenyl ring is above the anil phenyl ring of another molecule. There is a strong intramolecular hydrogen-bond present between the hydroxylhydrogen and nitrogen which is reflected by its bond length [1.722 Å]. Its packing and 3D stereo pair diagrams are in Figures 3.35 and 3.36 respectively. The oxygen-nitrogen bond distance in this case is $2.616 \AA$. Selected bond lengths and bond angles are given in Tables 3.13 and 3.14 respectively.

Figure 3.34 Structure diagram of SALF_{5}

Figure 3.35 Packing diagram of SALF $_{5}$

Bonds	Lengths[$\mathbf{A}]$	Bonds	Lengths[$\AA]$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.353(2)[1.359(8)]$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.407(3)[1.422(8)]$
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.401(3)[1.392(9)]$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.441(3)[1.426(9)]$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.285(2)[1.279(9)]$	$\mathrm{N}(1)-\mathrm{C}(8)$	$1.407(2)[1.387(8)]$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.387(3)[1.394(10)]$	$\mathrm{C}(8)-\mathrm{C}(13)$	$1.388(3)[1.382(9)]$
$\mathrm{C}(12)-\mathrm{C}(11)$	$1.372(3)[1.356(11)]$	$\mathrm{C}(11)-\mathrm{C}(10)$	$1.374(3)[1.372(11)]$
$\mathrm{C}(11)-\mathrm{F}(3)$	$1.342(2)[1.368(8)]$	$\mathrm{C}(13)-\mathrm{F}(5)$	$1.342(2)[1.355(9)]$
$\mathrm{C}(9)-\mathrm{F}(1)$	$1.347(2)[1.341(7)]$		

Table 3.13 Selected Bond Lengths of SALF ${ }_{5}$
Values from the literature ${ }^{15}$ are given in italics

	Angles[${ }^{\circ}$]		Angles[$\left.{ }^{\circ}\right]$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$118.3(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119.8(2)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.9(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.4(2)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.8(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.8(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$121.9(2)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$120.2(2)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$124.5(2)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$118.5(2)$
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{F}(5)$	$118.7(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{F}(1)$	$120.0(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$120.2(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{F}(3)$	$119.7(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{F}(3)$	$120.1(2)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$116.7(2)$

Table 3.14 Selected Bond Angles of SALF ${ }_{5}$

Figure 3.36 3D Stereo pair of $S A L F_{5}$

3.6.7 5CISAL4CI

5CISAL4Cl was crystallised from ethanol by slow evaporation at low temperature $\left(0-5{ }^{\circ} \mathrm{C}\right)$, to give yellow blocks. Its crystal stucture is monoclinic. The structure diagram is given in Figure 3.37. There is a strong intramolecular hydrogen-bond between the hydroxyl-hydrogen and nitrogen, its bond length being $1.716 \AA$. The oxygen-nitrogen bond distance is $2.594 \AA$. The packing and 3D stereo pair diagrams are given in Figures 3.38 and 3.39 respectively. Selected bond lengths and bond angles are given in Tables 3.15 and 3.16 respectively.

Figure 3.37 Structure diagram of 5ClSALACl

Figure 3.38 Packing diagram of 5ClSALACl

Bonds	Lengths[\AA]	Bonds	Lengths[\AA]
$\mathrm{C}(4-\mathrm{C}(5)$	$1.390(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.411(3)$
$\mathrm{C}(5)-\mathrm{O}(1)$	$1.352(3)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.396(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.447(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.367(3)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.419(3)$	$\mathrm{C}(7)-\mathrm{N}(1)$	$1.281(3)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.388(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.388(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.381(4)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.380(4)$
$\mathrm{C}(2)-\mathrm{Cl}(1)$	$1.741(2)$	$\mathrm{C}(11)-\mathrm{Cl}(2)$	$1.740(2)$
$\mathrm{O}(1)-\mathrm{H}$	1.007		

Table $3.15 \quad$ Selected Bond Lengths of 5ClSALACl

	Angles[${ }^{\circ}$]		Angles[${ }^{\circ}$]
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$119.0(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119.7(2)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.3(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$118.6(2)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$120.2(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.3(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$121.1(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Cl}(1)$	$119.5(2)$
$\mathrm{Cl}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.3(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$121.7(2)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$120.4(2)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$119.5(2)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$121.8(2)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$118.5(2)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$121.3(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{Cl}(2)$	$118.8(2)$
$\mathrm{Cl}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.9(2)$	$\mathrm{O}(1)-\mathrm{H}(1) \mathrm{a} . . \mathrm{N}(1)$	143.3

Table 3.16 Selected Bond Angles of 5ClSALACl

Figure $\mathbf{3 . 3 9} 3 D$ Stereo pair of 5ClSALACl

3.7 DISCUSSION:-

The majority of the salicylideneanilines show strong intramolecular hydrogen bonding, the exception being $\operatorname{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}$. It was assumed that this is due to the electron-withdrawing effect of the two $-\mathrm{CF}_{3}$ groups and steric hindrance. For confirmation of the steric effect, the angles between the planes of $(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=$ and $=\mathrm{NC}_{6} \mathrm{H}_{3}\left[3,5\left(\mathrm{CF}_{3}\right)_{2}\right]$, in all the molecules, were calculated (Table 3.18) but no significant change was observed. The hydrogen-bonding is strongest in the case of the methyl substituted compound $\left(\mathrm{SAL} 4\left(\mathrm{CH}_{3}\right)\right)$, which has a $\mathrm{N} . \ldots . . \mathrm{H}$ distance of $1.46 \AA$. It is $1.62 \AA$ in the case of $\operatorname{SAL} 4\left(\mathrm{OCF}_{3}\right)$, but in the other compounds its value is $\approx 1.70 \AA$. It can be seen that all the compounds having fluorine directly substituted on the ring show weak hydrogen-bonding as compared to the compounds not having such fluoro-substituents. For example, in the case of $\operatorname{SAL} 4\left(\mathrm{OCF}_{3}\right)$, the oxygen is in between the ring and the trifluoromethyl group. The bond distances between hydroxyl-oxygen and nitrogen is $\approx 2.6 \AA$ (which is the predicted bond distance for $\mathrm{O}-\mathrm{H} . . . \mathrm{N}$ bonding ${ }^{16-17}$) in all the compounds even in SAL3,5(CF3 $)_{2}$ where there is no hydrogen-bonding at all. In some structures weak intermolecular hydrogen-bonding is present, for example in $\left.\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}\right), \mathrm{SALF}_{5}$ and 5ClSAL4Cl.

All these ligands have very similar bond lengths and bond angles. This implies that there is no significant fluoro or non-fluoro substituent effect on the bond lengths and bond angles. There is no significant substituent effect on hydrogen-bonds except in case of methyl-substituted compound $\operatorname{SAL} 4\left(\mathrm{CH}_{3}\right)$ which
has a strong hydrogen-bond having bond length $1.455 \AA$. This is to be expected as there is no substituent effect noticed in the structures previously reported in the literature, for example $\operatorname{SAL} 4\left(\mathrm{NO}_{2}\right), 5 \mathrm{ClSAL}, \mathrm{SAL} 2 \mathrm{Cl}$ and $\mathrm{Cl}_{4} \mathrm{SAL}^{3-6}$ (Table 3.19 and 3.20). The $\mathrm{N} \ldots \mathrm{O}, \mathrm{O}-\mathrm{H}, \mathrm{N} \ldots \mathrm{H}, \mathrm{OH} \ldots \mathrm{N}$ and the difference of $\mathrm{O}-\mathrm{H}$ and $\mathrm{N} \ldots \mathrm{H}$ is given in Table 3.17 and the expected range ${ }^{18}$ of a hydrogen-bond is given in Graph 3.1.

Compounds	$\begin{gathered} \hline \hline \text { N... } \mathrm{H}-\mathrm{O} \\ {\left[{ }^{\circ}\right]} \end{gathered}$	N... 0 \&	N...H ${ }^{\text {A }}$	O-H \AA	$\begin{gathered} \hline \text { Diff. } \AA \\ \text {.N...H/O-H } \end{gathered}$
SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$	-	2.631	-	0.922	-
SAL4(OCFF_{3})	146	2.603	1.622	1.092	0.53
SAL3F,4(CH_{3})	147	2.60	1.729	0.974	0.755
SAL4F	148	2.617	1.744	0.969	0.755
$\mathrm{SAL4}\left(\mathrm{CH}_{3}\right)$	149	2.597	1.455	1.237	0.218
SALF_{5}	144	2.616	1.722	1.018	0.704
$5 \mathrm{ClSAL4Cl}$	143	2.594	1.716	1.007	0.709

Table 3.17 Represents hydrogen bonding of SAL3,5(CF 3_{2}, $\operatorname{SALA}\left(\mathrm{OCF}_{3}\right), \mathrm{SAL3F}, 4\left(\mathrm{CH}_{3}\right), \mathrm{SALAF}, \mathrm{SALA}\left(\mathrm{CH}_{3}\right)$, SALF_{5} and 5ClSAL4Cl

Compounds	Angles [${ }^{\circ}$]
SAL3,5 $\left(\mathrm{CF}_{3}\right)_{2}$	152.8
SAL4F	2.1
SALF	40.1
SAL4 $\left(\mathrm{CH}_{3}\right)$	6.4
SAL3F,4(CH3 $)$	5.8
SAL4 $\left(\mathrm{OCF}_{3}\right)$	2.7
5ClSAL4Cl	42.6

Table 3.17 Angles between the $(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=$
and $=N_{6} H_{3} R$ planes

Graph 3.1

Figure 3.32 Represents the numbering of carbon atoms
$\left.\begin{array}{||l|l|l|l|l|l|l|l||}\hline \text { BONDS } & \begin{array}{l}\text { SAL3,5 } \\ \left.\left(\mathbf{C F}_{3}\right)_{2}\right)\end{array} & \begin{array}{l}\text { SAL3F,4 } \\ \left(\mathbf{C H}_{3}\right)\end{array} & \begin{array}{l}\text { SAL4 } \\ \left(\mathbf{O C F}_{3}\right)\end{array} & \text { SAL4F } & \text { SAL4 } \\ \left(\mathbf{C H}_{3}\right)\end{array}\right)$

Table 3.18 Selected Bond lengths \AA of $\operatorname{SAL3}, 5\left(\mathrm{CF}_{3}\right)_{2}, \mathrm{SAL3F}, \mathbf{4}\left(\mathbf{C H}_{3}\right)$,
SAL4(OCF_{3}), SAL4F, $\operatorname{SAL4}\left(\mathrm{CH}_{3}\right)$, SALF $_{5}$ and
5CISAL4Cl

ANGLES[${ }^{\circ}$]	SAL3,5 $\left(\mathrm{CF}_{3}\right)_{2}$	SAL3F, $4\left(\mathrm{CH}_{3}\right)$	SAL4 $\left(\mathrm{OCF}_{3}\right)$	SAL4F	SALA $\left(\mathrm{CH}_{3}\right)$	SALF_{5}	$\begin{aligned} & \hline 5 \mathrm{ClSA} \\ & \mathrm{~L} 4 \mathrm{Cl} \end{aligned}$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	118.8(10)	120.4(30	119.3(5)	119.8(2)	119.4(4)	119.4(2)	120.2(2)
C(5)-C(6)-C(1)	117.6(11)	121.2(30	117.5(5)	118.5(2)	118.8(4)	118.8(2)	118.6(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	123.6(8)	121.5(3)	123.1(5)	121.8(2)	121.9(3)	121.8(2)	121.3(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	123.8(10)	120.1(3)	120.1(6)	119.8(2)	119.7(4)	119.8(2)	119.7(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1)$	117.8(9)	121.2(3)	120.2(6)	121.5(2)	121.1(4)	121.9(2)	121.3(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	117.8(10)	118.7(3)	119.7(6)	118.7(2)	119.2(4)	118.3(2)	119.0(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	124.5(9)	122.1(3)	120.9(5)	122.1(2)	122.0(4)	121.9(2)	121.7(2)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	122.7(8)	121.5(3)	122.7(5)	122.9(2)	121.7(3)	120.2(2)	120.4(2)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	123.6(8)	125.2(3)	125.8(5)	116.1(2)	116.5(3)	124.5(2)	121.8(2)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	118.4(9)	116.4(3)	115.5(5)	124.8(2)	124.9(3)	118.5(2)	118.5(2)
C(9)-C(8)-C(13)	118.1(9)	118.4(3)	118.7(5)	119.1(2)	118.6(4)	116.7(2)	119.5(2)

Table 3.19 Selected Bond Angles $\left[{ }^{\circ}\right]$ of $\mathbf{S A L} 3,5\left(\mathbf{C F}_{3}\right), \mathbf{S A L 3 F}, \mathbf{4}\left(\mathbf{C H}_{\mathbf{3}}\right)$,

SAL4(OCF_{3}), $\mathrm{SAL4F}^{\mathbf{S}}, \mathrm{SAL4}\left(\mathrm{CH}_{3}\right)$, SALF $_{5}$ and

5CISAL4CI.

3.8 REFERENCES:-

(1) A. H. Burr and A. D. Hobson, Acta Cryst., B25, 2662, 1969.
(2) S. V. Lindeman, V. E. Shklover, Y. T. Struchkov and V. M. Potapov, Cryst. Stuct. Commun., 11, 43, 1982.
(3) T. Inabe, N. Hoshino, T. Mitani and Y. Maruyama, Bull. Chem. Soc. Jpn., 62, 2251, 1989.
(4) S. V. Lindeman, V. E. Shklover, Y. T. Struchkov, S. G.

Kravcheni and V. M. Potapov, Cryst. Struct. Commun., 11, 49, 1989.
(5) N. Hoshino, T. Inabe, T. Mitani and Y. Maruyama, Bull. Chem. Soc. Jpn., 61, 4207, 1988.
(6) K. Wozniak, H. He, J. Klinowski and W. Jones, J. Chem. Soc. Faraday Trans. 91(1), 77, 1995.
(7) R. Destro, A. Gavezzotti and M. Simonetta, Acta Cryst., B34, 2867, 1978.
(8) J. A. Tenon, M. C. Et, and J. P. Aycard, Acta. Cryst., 51, 2603, 1995.
(9) J. Bregman, L. Leiserowitz and G. M. J. Schmidt, J. Chem. Soc., 2068, 1964.
(10) J. Bregman, L. Leiserowitz and K. Osaki, J. Chem. Soc., 2086, 1964.
(11) T. Inabe, I. Gautier-Luneau, N. Hoshino, K. Okaniwa, H. Okamoto, T. Mitani, U. Nagashima and Y. Maruyama, Bull. Chem. Soc. Jpn. 64, 801, 1991.
(12) J.Burgess, Personal Communication.
(13) SIEMENS SHELXTL PLUS ${ }^{T M}$, Reference manual Appendix B, 271 .
(14) S. M. Aldoshin, M. I. Knyazhanskii, Y. R. Tymyanskii, L. O. Atovmyan and O. A. D. Yachenko, Sov. J. Chem. Phys, 1015, 1982.
(15) S. V. Lindeman, V. G. Andrianov, S. G. Kravcheni, V. M. Potapov, K. A. Potekhin and Yu. T. Struchkov, J. Struct. Chem., 22, 578, 1981.
(16) J. C. Speakman, The Hydrogen Bond and other Intermolecular Forces, The Chemical Society, Monographs For Teachers No. 27, 13, 1975.
(17) F. H. Allen, O. Kennard and D. G. Watson, J. Chem. Soc. Perkin Trans., II, S1-S19, 1987.
(18) J Fawcett, Personal Communications.

CHAPTER 4

SYNTHESIS AND CHARACTERISATION

OF SOME SUBSTITUTED 4-ANILINO-

PENTA-3-EN-2-ONES

4.1 INTRODUCTION:-

The first reaction of a β-diketone with an amino compound was carried out in 1885 by Fisher and Bülow ${ }^{1}$. Simple substituted anilines and aryl amines condense readily with several β-diketones to give β-amino- α, β unsaturated ketones ${ }^{2}$, but the condensation of alkyl amines with β-diketones is difficult ${ }^{3}$. It is generally known that compounds having a Schiff base bonding, $\mathrm{C}=\mathrm{N}$, are affected by hydrogen ions in solution. ${ }^{4}$

Ueno and Martell ${ }^{5-6}$ have reported the preparation and IR spectra of some α, β-unsaturated- β-ketoamines and several corresponding metal chelates. They suggested three possible forms, A, B and C in Figure 4.1, for the α, β-unsaturated- β-ketoamines in solutions.

A

B

C

Figure 4.1
They concluded that a tautomeric equilibrium exists between the forms corresponding to A and B. Cromwell et al. ${ }^{7}$ presented convincing evidence for structure B on the basis of their IR studies, which was supported by Holtzclaw and coworkers ${ }^{8}$. Dudek and coworkers ${ }^{9-11}$ reported NMR studies of 4-amino-3-pentene-2-ones which confirm the presence of structure B in solution.

As these compounds contain two reactive functional groups which are also activating groups, so there are reactions which depend on the activated methylene hydrogen as well as the usual reactions of the keto and amino groups which are expected with such substances. In general the β aminoketones are stable at elevated temperatures or in the presence of acids. The β-aminoketones, like β-amino acids, show a tendency to reform the α, β unsaturated carbonyl compound. ${ }^{13-14}$

4.2 PREPARATION OF KETOANILINES:-

Ketoanilines have been prepared by reacting diketones (2,4pentanedione and 1,1,1-trifluoro-2,4-pentanedione) with a variety of fluoroanilines and their non-fluoro hydrogen-analogues. They are illustrated in Table 4.1.

4.3 GENERAL REACTION:-

The reaction is

4.4 REACTION MECHANISM:-

Ketoanilines are formed by a reversible, acid-catalysed process involving nucleophilic attack on the carbonyl group by the primary amine, followed by transfer of a proton from nitrogen to oxygen to yield a neutral carbinolamine. Protonation of the carbinolamine oxygen by the acid catalyst present converts the hydroxyl into a better leaving group, and loss of water produces an iminium ion. Loss of a proton then gives the final product and regenerates the acid catalyst. The maximum reaction rate is obtained at pH 4.5, because at low pH protonation of aldehyde or ketones, and at high pH protonation of aniline, takes place.

Imine

4.5 EXPERIMENTAL:-

All the solvents used were of analytical grade, all other chemicals were from Aldrich, and used as such. All NMR [Tables 4.4, 4.5 and 4.6] spectra were recorded on a Bruker AM250 MHz spectrometer, infra-red (I.R.) spectra [Table 4.8] on a Perkin Elmer 580B and ultra-violet (U.V.) spectra [Table 4.2] on a Beckmann DU650 spectrophotometer. Mass spectrometry [Table 4.7] was undertaken on a Kratos concept double focusing mass spectrometer by Dr. G. Eaton. All elemental analyses [Table 4.3] were done by Butterworth Laboratories, Teddington.

4.6 GENERAL METHOD OF PREPARATION:-

Two ethanolic solutions, of diketone [$1 \mathrm{M}, 25 \mathrm{ml}$] and of substituted aniline [$1 \mathrm{M}, 25 \mathrm{ml}$](calculated amounts are given in Table 4.1), were mixed, in several small portions, in a one to one ratio. The reaction mixture was then stirred and refluxed for an hour. After refluxing, it was allowed to cool slowly. After cooling precipitation began. The resulting precipitates were dark brown in colour and were very impure. All the isolated compounds were purified first by sublimation, using the cold finger method, in which the temperature of the finger was maintained at -30 to $-40{ }^{\circ} \mathrm{C}$ with a solid CO_{2} /acetone mixture. The temperature of the outer jacket was kept 5-10 ${ }^{\circ} \mathrm{C}$ below the melting point of the respective ligand. Recrystallisation was then carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution by slow evaporation [by placing the solution in a tube with a perforated cover in a fridge for several days] at low temperature (0 to $5{ }^{\circ} \mathrm{C}$). A list of the diketoimines prepared with the abbreviations used is given in Table 4.1.

4.7 LIST OF KETOAMINES PREPARED

TABLE 4.1

Structural Formulae	Molecular Formulae	Abbreviation Used	Amounts Used gm
	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}$	AcAcA	$\begin{aligned} & \mathrm{Aa}=2.50 \\ & \mathrm{an}=2.32 \end{aligned}$
	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}$	AcAc2(OH)A	$\begin{aligned} & \mathrm{Ac}=2.50 \\ & 2(\mathrm{OH}) \mathrm{an}=2.73 \end{aligned}$
	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FNO}$	AcAc3F4MeA	$\begin{aligned} & \mathrm{Ac}=2.50 \\ & 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{an}= \\ & 3.13 \end{aligned}$
	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FNO}$	AcAc4FA	$\begin{aligned} & \mathrm{Ac}=2.50 \\ & 4 \mathrm{Fan}=2.78 \end{aligned}$
	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$	$\mathrm{AcAc4}\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & \mathrm{An}=2.50 \\ & 4\left(\mathrm{CH}_{3}\right) \mathrm{an}=2.68 \end{aligned}$
	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}$	$\begin{gathered} \left(\mathrm{CF}_{3}\right) \mathrm{AcAc} 4(\\ \left.\mathrm{CF}_{3}\right) \end{gathered}$	$\begin{aligned} & 1 \mathrm{CF}_{3} \mathrm{An}=3.85 \\ & 4\left(\mathrm{CF}_{3}\right) \mathrm{an}=4.03 \end{aligned}$
	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{4} \mathrm{NO}$	$\begin{gathered} \left(\mathrm{CF}_{3}\right) \mathrm{AcAc} 3 \mathrm{~F} \\ 4 \mathrm{MeA} \end{gathered}$	$\begin{aligned} & 1\left(\mathrm{CF}_{3}\right) \mathrm{An}=3.85 \\ & 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{an}= \\ & 3.13 \end{aligned}$
	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{NO}$	$\mathrm{AcAcF}_{5} \mathrm{~A}$	$\begin{aligned} & \mathrm{Ac}=2.50 \\ & \mathrm{~F}_{5} \mathrm{an}=4.58 \end{aligned}$
	$\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{~F}_{8} \mathrm{NO}$	$\begin{gathered} \left(\mathrm{CF}_{3}\right) \mathrm{AcAcF}_{5} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & 1\left(\mathrm{CF}_{3}\right) \mathrm{Ac}=3.85 \\ & \mathrm{~F}_{5} \mathrm{an}=4.58 \end{aligned}$

Structural Formulae	Molecular Formulae	Abbreviation Used	Amounts Used gm
	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}$	$\mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right)$	$\begin{gathered} \mathrm{Ac}=2.50 \\ 4\left(\mathrm{OCF}_{3}\right) \mathrm{an}= \\ 4.43 \\ \hline \end{gathered}$
	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{2}$	$\begin{gathered} \left(\mathrm{CF}_{3}\right) \mathrm{AcAc} 4(\\ \left.\mathrm{OCF}_{3}\right) \end{gathered}$	$\begin{aligned} & 1\left(\mathrm{CF}_{3}\right) \mathrm{Ac}=3.85 \\ & 4\left(\mathrm{OCF}_{3}\right) \mathrm{an}= \\ & 4.43 \end{aligned}$
	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{NO}$	AcAc3,5(CF ${ }_{3}$) 2	$\begin{aligned} & \mathrm{Ac}=2.50 \\ & 3,5\left(\mathrm{CF}_{3}\right)_{2} \mathrm{an}= \\ & 5.73 \end{aligned}$
	$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{9} \mathrm{NO}$	$\begin{gathered} \left(\mathrm{CF}_{3}\right) \mathrm{AcAc} 3,5 \\ \left(\mathrm{CF}_{3}\right)_{2} \end{gathered}$	$\begin{aligned} & 1\left(\mathrm{CF}_{3}\right) \mathrm{Ac}=3.85 \\ & 3,5\left(\mathrm{CF}_{3}\right)_{2} \mathrm{an}= \\ & 5.73 \end{aligned}$

4.8 RESULTS AND DISCUSSION:-

All the compounds have been characterised by a variety of techniques including melting points (Table 4.2), elemental analyses (Table 4.3) ${ }^{1} \mathrm{H}$ NMR spectra (Table 4.4), ${ }^{13}$ C-DEPT. NMR spectra (Table 4.5) and ${ }^{19} \mathrm{~F}$ NMR spectra (Table 6). +FAB (Fast atom bombardment) mass spectra (Table 4.7), I.R. spectra (Table 4.8) and U.V. spectra (Table 4.2) have also been recorded.

4.8.1 PHYSICAL CHARACTERISATION

TABLE 4.2

Abbreviations Used	Molecular Formula	M.P. $\mathbf{0} \mathbf{C}$	Colour/ State	Yield	2max (EtOH)
AcAcA	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}$	45	White crystals	28	323.5
AcAc2(OH)A	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$	170	Light brown needles	65	322.0
AcAc3F,4(CH33)A	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FNO}$	65	White crystals	23	324.0
AcAc4(F)A	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FNO}$	47	White crystals	62	320.0
${\mathrm{AcAc4}\left(\mathrm{CH}_{3}\right) \mathrm{A}}^{\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}}$	63	White crystals	53	321.0	
$\left.\mathrm{CF}_{3} \mathrm{AcAc4(CF}_{3}\right) \mathrm{A}$	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}$	95	White crystals	71	332.0
$\mathrm{CF}_{3}{\mathrm{AcAc3F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{A}}^{\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{4} \mathrm{NO}}$	72	White crystals	71	328.0	
$\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$	$\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{~F}_{8} \mathrm{NO}$	120	White crystals	26	318.0
$\mathrm{AcAcF}_{5} \mathrm{~A}$	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{NO}$	93	White crystals	11	308.0

Abbreviations Used	Molecular Formula	M.P. $\mathbf{0} \mathbf{C}$	Colour/ State	$\%$ Yield	λ max (EtOH)
AcAc4(OCF 3) A	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}$	55	White crystals	68	323.0
$\mathrm{CF}_{3}{\mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right) \mathrm{A}}^{\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{2}}$	60	White crystals	23	358.0	
$\mathrm{CF}_{3}{\mathrm{AcAc} 3,5\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~A}}^{\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{9} \mathrm{NO}}$	105	White crystals	22	328.0	
$\left.\mathrm{AcAc3,5(CF}_{3}\right)_{2} \mathrm{~A}$	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{NO}$	98	White crystals	19	329.0

4.8.2 ELEMENTAL ANALYSIS

TABLE 4.3

Comppounds	\% C		\% H		\% N	
	Calculated	Found	Calculated	Found	Calculated	Found
AcAc4(F)A	68.4	68.81	6.2	6.39	7.3	7.49
AcAc3F, $4\left(\mathrm{CH}_{3}\right) \mathrm{A}$	69.57	69.20	6.76	6.53	6.67	6.64
$\begin{gathered} \mathrm{AcAc} 4 \\ \left(\mathrm{OCF}_{3}\right) \mathrm{A} \end{gathered}$	55.59	55.89	4.69	4.78	5.46	5.40
$\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$	41.38	41.76	1.57	1.60	4.39	4.46
CF3AcAc 4(CF3)A	48.5	48.45	3.1	3.37	4.7	4.66
$\begin{gathered} \mathrm{CF}_{3} \mathrm{AcAc} 3 \mathrm{~F} 4 \\ \left(\mathrm{CH}_{3}\right) \mathrm{A} \end{gathered}$	55.17	55.14	4.22	4.30	5.36	5.31

All the above compounds were anhydrous which is consistent with those previously reported in the literature for similar derivatives.

Figure 4.2 Numbering of the Hydrogen Atoms in the ${ }^{1} H$ NMR

4.8.3 ${ }^{1} \mathbf{H}$ NMR DATA

TABLE 4.4

Abbreviation Used	Peaks Assigned	δ	Integral	Multiplicity
AcAcA	NH Ar H $\mathrm{C}_{3} \mathrm{H}$ CH_{3}	$\begin{aligned} & \hline 12.49 \\ & 7.86-6.65 \\ & 5.19 \\ & 2.24,1.98 \end{aligned}$	$\begin{gathered} 1 \\ 6 \\ 1 \\ 3,3 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s}, \mathrm{~s} \end{gathered}$
AcAc2(OH)	$\begin{aligned} & \hline \mathrm{NH} \\ & \mathrm{OH} \\ & \mathrm{ArH} \\ & \mathrm{C}_{3} \mathrm{H} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{array}{\|l\|} \hline 11.73 \\ 8.48 \\ 7.38-6.68 \\ 5.19 \\ 2.36,1.25 \\ \hline \end{array}$	$\begin{gathered} 1 \\ 1 \\ 4 \\ 1 \\ 3,3 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ \mathrm{~s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s}, \mathrm{~s} \end{gathered}$
AcAc3F,4($\left.\mathrm{CH}_{3}\right) \mathrm{A}$	$\begin{aligned} & \hline \mathrm{NH}^{2} \\ & \mathrm{ArH} \\ & \mathrm{C}_{3} \mathrm{H} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & \hline 12.24 \\ & 7.27-6.97 \\ & 5.19 \\ & 2.51,1.96,1.21 \end{aligned}$	$\begin{gathered} \hline 1 \\ 3 \\ 1 \\ 3,3,3 \end{gathered}$	$\begin{gathered} \hline \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s}, \mathrm{~s}, \mathrm{~s} \end{gathered}$
AcAc4(F)A	NH Ar H $\mathrm{C}_{3} \mathrm{H}$ CH_{3}	$\begin{aligned} & \hline 12.37 \\ & 7.06-6.69 \\ & 5.40 \\ & 2.39,1.84 \end{aligned}$	$\begin{gathered} 1 \\ 4 \\ 1 \\ 3,3 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s}, \mathrm{~s} \end{gathered}$
$\mathrm{AcAc} 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$	NH ArH $\mathrm{C}_{3} \mathrm{H}$ CH_{3}	$\begin{aligned} & \hline 12.40 \\ & 7.44-6.8 \\ & 5.29 \\ & 2.60,2.15,1.69 \end{aligned}$	$\begin{gathered} \hline 1 \\ 4 \\ 1 \\ 3,3,3 \end{gathered}$	$\begin{gathered} \hline \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s}, \mathrm{~s}, \mathrm{~s} \end{gathered}$

Abbreviation Used	Peaks Assigned	δ	Integral	Multiplicity
$\mathrm{CF}_{3} \mathrm{AcAc4}\left(\mathrm{CF}_{3}\right) \mathrm{A}$	NH Ar H $\mathrm{C}_{3} \mathrm{H}$ CH_{3}	$\begin{aligned} & \hline 12.65 \\ & 8.03-6.68 \\ & 5.62 \\ & 2.19 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \\ & 1 \\ & 3 \end{aligned}$	\mathbf{S}
$\begin{gathered} 1 \mathrm{CF}_{3} \mathrm{AcAc} 3 \mathrm{~F} 4\left(\mathrm{CH}_{3}\right) \\ \mathrm{A} \end{gathered}$	$\begin{aligned} & \hline \mathrm{NH} \\ & \mathrm{ArH} \\ & \mathrm{C}_{3} \mathrm{H} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{array}{\|l\|} \hline 12.52 \\ 7.38-6.41 \\ 5.55 \\ 2.29,1.98 \\ \hline \end{array}$	$\begin{gathered} 1 \\ 3 \\ 1 \\ 3,3 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s}, \mathrm{~s} \end{gathered}$
$\mathrm{AcAcF}_{5} \mathrm{~A}$	$\begin{aligned} & \hline \mathrm{NH} \\ & \mathrm{C}_{3} \mathrm{H} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{array}{\|l\|} \hline 11.846 \\ 5.324 \\ 2.103,2.08 \end{array}$	$\begin{gathered} 1 \\ 1 \\ 3,3 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ \mathrm{~s} \\ \mathrm{~s}, \mathrm{~s} \end{gathered}$
$1 \mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$	$\begin{aligned} & \hline \mathrm{NH} \\ & \mathrm{C}_{3} \mathrm{H} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & \hline 11.97 \\ & 5.73 \\ & 2.14 \end{aligned}$	$\overline{1}$	s s s
AcAc4(OCF_{3}) A	$\begin{aligned} & \hline \mathrm{NH} \\ & \mathrm{ArH} \\ & \mathrm{C}_{3} \mathrm{H} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{array}{\|l\|} \hline 12.65 \\ 7.43-6.48 \\ 5.29 \\ 2.29,1.91 \end{array}$	$\begin{gathered} 1 \\ 4 \\ 1 \\ 3,3 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s}, \mathrm{~s} \end{gathered}$
$1 \mathrm{CF}_{3} \mathrm{AcAc4}\left(\mathrm{OCF}_{3}\right) \mathrm{A}$	NH ArH $\mathrm{C}_{3} \mathrm{H}$ CH_{3}	$\begin{array}{\|l\|} \hline 12.55 \\ 7.45-6.65 \\ 5.57 \\ 2.37-2.05 \end{array}$	$\begin{aligned} & 1 \\ & 4 \\ & 1 \\ & 3 \end{aligned}$	$\begin{gathered} \hline \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
$1 \mathrm{CF}_{3} \mathrm{AcAc} 3,5\left(\mathrm{CF}_{3}\right)_{2}$	$\begin{aligned} & \hline \mathrm{NH} \\ & \text { Ar. } \mathrm{H} \\ & \mathrm{C}_{3} \mathrm{H} \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{array}{\|l\|} \hline 12.54 \\ 7.73-6.91 \\ 5.57 \\ 2.09 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 3 \\ & 1 \\ & 3 \end{aligned}$	$\begin{gathered} \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s} \end{gathered}$
AcAc3,5(CF3) ${ }_{2}$	NH Ar. H $\mathrm{C}_{3} \mathrm{H}$ CH_{3}	$\begin{aligned} & \hline 12.6 \\ & 7.54-6.92 \\ & 5.24 \\ & 2.05,1.99 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 3 \\ 1 \\ 3,3 \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \mathrm{s} \\ \mathrm{~m} \\ \mathrm{~s} \\ \mathrm{~s}, \mathrm{~s} \end{array} \\ \hline \end{gathered}$

${ }^{1}$ H NMR DISCUSSION:-

In the NMR spectra for these molecules, there is a singlet for NH at approximately 12.45 ppm , and a singlet for the methylene -CH proton approximately at 5.5 ppm . There is also a multiplet for the aromatic protons in the region 6.5-7.8 ppm.These are assigned according to the suggested region for such proton in the literature ${ }^{14-16}$.

According to the structure of acetylacetoimines, in ${ }^{1} \mathrm{H}$ NMR studies there is no $-\mathrm{CH}_{2}$ signal at $\approx 5.0 \mathrm{ppm}$, rather there is a singlet in the region 5.19-5.59 ppm giving an integrated value of one and also there is a singlet for a -NH proton in the region 11.7-12.6 ppm also with an integrated value of one. This implies that one of the methylene protons is shifted from carbon C_{3} (Figure 4.2) to the nitrogen, shifting the double bond to C_{3}. With the majority of ligands the -NH proton appeared in the region 11.6-12.7 ppm , except for $\operatorname{AcAc} 2(\mathrm{OH}) \mathrm{A}$ and two penta-fluoro substituted ligands. In the case of the fluoro-substituted ligands this shift may be due to the strong electron-withdrawing effect of fluorine which is present on the ring, directly attached to the ring carbon. In the case of $\operatorname{AcAc} 2(\mathrm{OH}) \mathrm{A}$, this shift may be due to the inductive effect of the -OH group or may be due to the ortho effect of - OH group, or indeed may be a combination of both.

Aromatic protons in all the molecules appear in their expected region of $6.25-7.5 \mathrm{ppm}$, except for $1 \mathrm{CF}_{3} \mathrm{AcAc}_{\mathrm{A}} \mathrm{CF}_{3} \mathrm{~A}$. In this case peaks are in the region $6.68-8.03 \mathrm{ppm}$, this may be due to the $-\mathrm{CF}_{3}$ group, but no such shift is present in case of $1 \mathrm{CF}_{3} \mathrm{AcAc} 3,5\left(\mathrm{CF}_{3}\right) \mathrm{A}$ and $\mathrm{AcAc} 3,5\left(\mathrm{CF}_{3}\right) \mathrm{A}$, where there are two $-\mathrm{CF}_{3}$ groups present at the phenyl ring. The remaining protons gave peaks in their expected regions. -NH and -CH Singlets of AcAcA and complete ${ }^{1} \mathrm{H}$ NMR spectra of AcAcA and AcAc4FA are given in Figure 4.3 and 4.4 and 4.5 respectively.

Figure 4.3 -NH Singlet of AcAcA

-CH Singlet of AcAcA

Figure 4.4 ${ }^{l} H$ NMR Spectrum of $A c A c A$

Figure 4.5 ${ }^{\prime} H N M R$ Spectrum of $A c A c 4 F A$

Figure 4.6 Numbering of the carbons in ${ }^{13} C$-DEPT NMR

4.8.4 ${ }^{13} \mathrm{C}$ DEPT. NMR DATA

TABLE 4.5

Compounds	Peaks Assigned	δ
AcAcA	$\mathrm{C}_{1}, 5$ C_{3} C_{2} C_{4} C_{6} Ar C7-11	20.3,29.6 98.0 196.5 160.5 142.3 $115.5,118.8,125.1,126.0,129.7$
$1 \mathrm{CF}_{3} \mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right) \mathrm{A}$	C_{5} C_{3} C_{9} C_{4} C_{6} C_{2} $\mathrm{C}_{1} \mathrm{~F}_{3}$ OCF_{3} $\operatorname{ArC}_{7-8,10-11}$	$\begin{aligned} & \text { 20.3, } \\ & 91.4 \\ & 118.4-119.7(\text { d, J- } 320.81 \mathrm{~Hz}) \\ & 148.1 \\ & 135.6 \\ & 167.8 \\ & 176.3-177.9(\text { (q, J- } 123.39 \mathrm{~Hz}) \\ & 114.3-115.1 \text { (d, J- } 197.48 \mathrm{~Hz}) \\ & 122.5,126.8 \\ & \hline \end{aligned}$
$\mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right)$	$\begin{aligned} & \hline \mathrm{C}_{1,5} \\ & \mathrm{C}_{3} \\ & \mathrm{OCF}_{3} \\ & \mathrm{C}_{6} \\ & \mathrm{C}_{9} \\ & \mathrm{C}_{4} \\ & \mathrm{C}_{2} \\ & \mathrm{ArC}_{7-8,10-11} \\ & \hline \end{aligned}$	$20.2,29.6$ 98.6 115.8 146.9 137.9 160.1 197.1 $122.2,122.8,122.9,126.2$
AcAc4(F)A	$\mathrm{C}_{1,5}$ C_{3} C_{6} C_{4} C_{9} C_{2} $\mathrm{ArC}_{7-9,10-11}$	$20.0,29.5$ 97.9 135.1 160.8 162.9 196.7 $116.1,116.5,127.1,127.7$

Compounds	Peaks Assigned	δ
$1 \mathrm{CF}_{3} \mathrm{AcAc} 4\left(\mathrm{CF}_{3}\right) \mathrm{A}$	C_{5} C_{3} C_{4} C_{6} C_{2} C9 CF_{3} $\mathrm{C}_{1} \mathrm{~F}_{3}$ $\mathrm{Ar} \mathrm{C}_{7-9,10-11}$	20.5 92.0 140.3 125.9 167.1 $-119.6-121.5($ (d, J- 468.87 Hz$)$ $128.5-130.1(\mathrm{q}, \mathrm{J}-124.56 \mathrm{~Hz})$ $176.2-178.2(\mathrm{q}, \mathrm{J}-124.21 \mathrm{~Hz})$ $125.9,126.7,126.8,126.9$
$1 \mathrm{CF}_{3} \mathrm{AcAc} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$	C_{5} CH_{3} C_{3} C_{8} $\mathrm{C}_{1} \mathrm{~F}_{3}$ C_{4} C_{2} C_{6} C9 $\operatorname{Ar~C}_{7,10-11}$	20.7 14.7 91.5 $124.7-124.9(q, J-49.37 \mathrm{~Hz})$ $176.15-177.35(\mathrm{q}, \mathrm{J}-98.71 \mathrm{~Hz})$ 163.4 168.2 159.5 136.4 $112.5,112.9,121.1,132.4,132.5$
AcAc3F, $4\left(\mathrm{CH}_{3}\right) \mathrm{A}$	$\mathrm{C}_{1}, 5$ C_{9} C_{3} C_{4} C_{6} C_{8} C_{9} $\mathrm{Ar} \mathrm{C}_{7,10-11}$	$20.9,29.2$ 14.5 98.3 160.3 159.5 $138.2,138.3$ $122.3,122.5$ $111.2,111.8,120.5,131.9,132.0$
$\mathrm{AcAc} 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$	$\mathrm{C}_{1}, 5$ C_{9} C_{2} C_{3} C_{4} C_{6} C_{9} Ar C 7 7.8,10-11	$111.9,29.1$ 19.8 195.9 97.2 160.7 136.1 135.5 $124.9,129.7$
$\mathrm{AcAcF}_{5} \mathrm{~A}$	$\begin{array}{\|l\|l} \hline \mathrm{C}_{1,5} \\ \mathrm{C}_{2} \\ \mathrm{C}_{3} \\ \mathrm{C}_{4} \\ \mathrm{C}_{6} \\ \mathrm{C}_{7-11} \end{array}$	$\begin{aligned} & \hline 19.3,29.8 \\ & 207.4 \\ & 100.1 \\ & 198.5 \\ & 160.23 \\ & 135.6,146.53,143.4,154.25,153.51, \\ & 152.85 \end{aligned}$
$1 \mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$	C_{5} $\mathrm{C}_{1} \mathrm{~F}_{3}$ C_{2} C_{3} C_{4} C_{6} Ar. C_{7-11}	19.7 $178.2-179.5(q, J-123.39 \mathrm{~Hz})$ 198.9 92.8 136.0 145.6 $112.8,114.7,119.3,140.1,141.6$

Compounds	Peaks Assigned	δ
AcAc2(OH)A		19.6,28.6 196.1 97.3 163.5 152.5 129.1 $117.3,120.1,124.8,125.3,128.0,128.8$
$1 \mathrm{CF}_{3} \mathrm{AcAc} 3,5\left(\mathrm{CF}_{3}\right)_{2}$	$\begin{array}{\|l\|} \hline \mathrm{C}_{1} \mathrm{~F}_{3} \\ \mathrm{C}_{2} \\ \mathrm{C}_{3} \\ \mathrm{C}_{4} \\ \mathrm{C}_{5} \\ \mathrm{C}_{6} \\ 2 \mathrm{CF}_{3} \\ \mathrm{C}_{8,10} \\ \text { Ar. } \mathrm{C}_{7,9,11} \\ \hline \end{array}$	$\begin{aligned} & \hline 177.6-179.3(\mathrm{q}, \mathrm{~J}-34.18 \mathrm{~Hz}) \\ & 167.1 \\ & 92.9 \\ & 147.9 \\ & 20.5 \\ & 139.2 \\ & 134.4-132.76(\mathrm{q}, \mathrm{~J}-34.18 \mathrm{~Hz}) \\ & 125.55,121.2 \\ & 116.5,114.5,111.5 \\ & \hline \end{aligned}$
AcAc3,5($\left.\mathrm{CF}_{3}\right)_{2}$	$\begin{aligned} & \hline \mathrm{C}_{1,5} \\ & \mathrm{C}_{2} \\ & \mathrm{C}_{3} \\ & \mathrm{C}_{4} \\ & \mathrm{C}_{6} \\ & \mathrm{CF}_{3} \\ & \mathrm{CF}_{3} \\ & \mathrm{C}_{8,10} \\ & \mathrm{C}_{7,9,11} \end{aligned}$	$\begin{aligned} & 18.8,28.4 \\ & 196.9 \\ & 99.1 \\ & 157.1 \\ & 146.6 \\ & 130.7-132.3(\mathrm{q}, \mathrm{~J}-32.96 \mathrm{~Hz}) \\ & 130.9-132.5(\mathrm{q}, \mathrm{~J}-33.57 \mathrm{~Hz}) \\ & 128.97-128.45,124.63-124.12,120.3- \\ & 119.78,115.97-115.44(\mathrm{dddd}, \mathrm{~J}- \\ & 32.35 \mathrm{~Hz}) \\ & 122.5,117.3,117.2,113.1,110.4,110.3 \end{aligned}$

${ }^{13}$ C-DEPT. NMR DISCUSSION:-

All the compounds gave satisfactory ${ }^{13} \mathrm{C}$-DEPT NMR spectra, peaks are assigined according to the regions given in literature ${ }^{14-16}$. Fluorine substituted carbons showed coupling to the fluorine, carbons bonded to a single fluorine gave a doublet and for the carbon of the CF_{3} groups, a quartet.

Shifting of one of the two methylene protons to nitrogen is also verified by ${ }^{13} \mathrm{C}$-DEPT NMR, as there is no peak for $-\mathrm{CH}_{2}$ carbon expected to be in the region 0 to 50 ppm , instead there is a peak for -CH in the region $91.5-98.5 \mathrm{ppm}$ with in the range 75 to 100 ppm expected for $=$ CHR. Another important factor revealed in ${ }^{13}$ C-DEPT NMR studies is that the majority of the fluorine-substituted ${ }^{13} \mathrm{C}$ atoms show splitting giving either quartet or doublet. No such splitting is observed in ${ }^{19}$ F NMR, due to the fact that the vast majority of ${ }^{19} \mathrm{~F}$ atoms are not attached to ${ }^{13} \mathrm{C}$ atoms. ${ }^{13} \mathrm{C}$ NMR spectrum of AcAc4FA is given in Figure 4.7.

Figure $4.7{ }^{13}$ C NMR Spectrum of AcAc4FA

4.8.5 ${ }^{19}$ F NMR DATA

TABLE 4.6

Compound	Peaks Assigned	δ	Multiplicity
	Coupled Decoupled	$\begin{aligned} & -115.86--115.95 \\ & -115.92 \end{aligned}$	m s
	Coupled Decoupled	$\begin{aligned} & -127.42--127.53 \\ & -127.48 \end{aligned}$	quintet $\mathrm{J}-6.79 \mathrm{~Hz}$ s
	Coupled Decoupled	$\begin{aligned} & \hline-62.95,77.31 \\ & -62.93,-77.32 \end{aligned}$	$\begin{aligned} & \hline \mathrm{s}, \mathrm{~s} \\ & \mathrm{~s}, \mathrm{~s} \end{aligned}$
	Coupled F CF_{3} Decoupled F CF_{3}	$\begin{aligned} & -114.66--114.74 \\ & -77.21 \\ & -114.7 \\ & -77.16 \end{aligned}$	$\begin{aligned} & \hline \mathrm{m} \\ & \mathrm{~s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$
	Coupled Decoupled	$\begin{aligned} & \hline-58.54 \\ & -58.55 \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \end{aligned}$
	Coupled $\mathrm{OCF}_{3}, \mathrm{CF}_{3}$ Decoupled $\mathrm{OCF}_{3}, \mathrm{CF}_{3}$	$\begin{aligned} & -58.51,-77.29 \\ & -58.52,-77.24 \end{aligned}$	s,s S,S
	Coupled $2 \mathrm{CF}_{3}$ Decoupled $2 \mathrm{CF}_{3}$	$\begin{aligned} & -63.69,-63.82 \\ & -63.71 \\ & -63.85 \end{aligned}$	$\mathrm{s}, \mathrm{~s}$ S s

Compound	Peaks Assigned	δ	Multiplicity
	Coupled $\mathrm{C}_{1} \mathrm{~F}_{3}$ $2 \mathrm{CF}_{3}$ Decoupled $\begin{aligned} & \mathrm{C}_{1} \mathrm{~F}_{3} \\ & 2 \mathrm{CF}_{3} \end{aligned}$	$\begin{aligned} & -77.65 \\ & -63.77,-63.96 \\ & \\ & -77.65 \\ & -63.78 \\ & -63.96 \end{aligned}$	s $\mathbf{S , S}$ s s s
	Coupled $\mathrm{F}_{8,10}$ $\mathrm{~F}_{9}$ $\mathrm{~F}_{7,11}$ Decoupled $\mathrm{F}_{8,10}$ $\mathrm{~F}_{9}$ $\mathrm{~F}_{7,11}$	$\begin{aligned} & -162.1--162.3 \\ & -156.5--156.7 \\ & -146.4--146.5 \\ & -162.1--162.3 \\ & -156.5--156.7 \\ & -146.4--146.6 \end{aligned}$	ddd, J- 6.62 Hz t, J- 21.87 Hz dd, J- 6.11 Hz ddd, J- 6.77 Hz t, J- 21.59 Hz dd, J- 6.46 Hz
	Coupled CF_{3} $\mathrm{~F}_{7,11}$ $\mathrm{~F}_{9}$ $\mathrm{~F}_{8,10}$ Decoupled CF_{3} $\mathrm{~F}_{7,11}$ $\mathrm{~F}_{9}$ $\mathrm{~F}_{8,10}$	$\begin{aligned} & \hline-77.65 \\ & -145.43--145.54 \\ & -153.52--153.70 \\ & -160.8--161.03 \\ & -77.52 \\ & -145.43--145.54 \\ & 153.52--153.7 \\ & -160.8--161.03 \end{aligned}$	s dd, J-4.7 Hz $\mathrm{t}, \mathrm{J}-22.21 \mathrm{~Hz}$ ddd, J- 5.7 Hz s dd, J- 4.58 Hz t, J- 21.36 Hz ddd, J- 21.30 Hz

CFCl_{3} was used as reference. The F atoms in the last two entries are numbered as follows

${ }^{19}$ F NMR DISCUSSION:-

${ }^{19}$ F NMR coupled and decoupled spectra were recorded for the fluoro-substituted ${ }^{19} \mathrm{~F}$ molecules. All the peaks were in their expected region as given in literature ${ }^{14-16}$. Coupled ${ }^{19} \mathrm{~F}$ NMR was done to study any possible interaction of fluorine with other atoms in the molecule, but no splitting and no significant shift in the chemical shifts of fluorine was observed, except in the case of $\mathrm{AcAc} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$ and $1 \mathrm{CF} 3 \mathrm{AcAc} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$ there is a multiplet in the coupled spectra for fluorine substituted at C_{8}, this may be due to the interaction of fluorine with aromatic protons of $\mathrm{C}_{7,9,11}$.

4.8.6 MASS SPECTROMETRY:-

All the diketoimines prepared were characterised by +FAB (Fast Atomic Bombardment) mass spectroscopy. All gave strong peaks corresponding to the molecular ion and a characteristic fragmentation was observed between the R group and the carbonyl group with all the compounds.

TABLE 4.7 MASS SPECTROSCOPIC DATA

Compounds	Calculated Mass	Ions observed
AcAcA	175	+FAB $175 \mathrm{M}^{+}, 160\left(-15,-\mathrm{CH}_{3}\right)$
AcAc2(OH)A	192	+FAB, 192M ${ }^{+}$, 176(-15,- CH_{3})
AcAc3F,4($\left.\mathrm{CH}_{3}\right) \mathrm{A}$	207	+FAB, 207M ${ }^{+}$, $192\left(-15,-\mathrm{CH}_{3}\right)$
AcAc4(F)A	193	$+\mathrm{FAB}, 193 \mathrm{M}^{+}, 178\left(-15,-\mathrm{CH}_{3}\right)$
$\mathrm{AcAc} 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$	189	$+\mathrm{FAB}, 189 \mathrm{M}^{+}, 174\left(-15,-\mathrm{CH}_{3}\right)$
$1 \mathrm{CF}_{3} \mathrm{AcAc} 4\left(\mathrm{CF}_{3}\right) \mathrm{A}$	297	+FAB, 297M ${ }^{+}, 228\left(-69,-\mathrm{CF}_{3}\right)$
$1 \mathrm{CF}_{3} \mathrm{AcAc} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$	261	+FAB, 261M ${ }^{+}$, 192 (-69,- CF_{3})
$\mathrm{AcAcF}_{5} \mathrm{~A}$	265	+FAB, 265M ${ }^{+}$, 250(-15,- CH_{3})
$1 \mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$	319	+FAB, 319M ${ }^{+}, 250\left(-69,-\mathrm{CF}_{3}\right)$
$\mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right) \mathrm{A}$	259	+FAB, $259 \mathrm{M}^{+}, 244\left(-15,-\mathrm{CH}_{3}\right)$
$1 \mathrm{CF}_{3} \mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right) \mathrm{A}$	313	+FAB, 313M ${ }^{+}, 244\left(-69,-\mathrm{CF}_{3}\right)$
$1 \mathrm{CF}_{3} \mathrm{AcAc} 3,5\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~A}$	365	+FAB, 365M ${ }^{+}, 269\left(-69,-\mathrm{CF}_{3}\right)$
AcAc3,5($\left.\mathrm{CF}_{3}\right)_{2} \mathrm{~A}$	311	+FAB, 311M ${ }^{+}, 296\left(-69,-\mathrm{CF}_{3}\right)$

In all the mass spectra for all the ligands there is a characteristic fragmentation, there is cleavage of either $-\mathrm{CH}_{3}$ or CF_{3} at position number one (Figure 4.2), no such fragmentation was mentioned in the literature for such compounds. No other fragmentation is observed.Mass spectra of AcAcA and AcAc4FA are given in Figures 4.8 and 4.9 respectively.

Figure 4.8 Mass Spectrum of AcAcA

Figure 4.9 Mass Spectrum of AcAc4FA

4.8.7 I.R. DATA(Recorded as solutions in $\mathbf{C H}_{2} \mathbf{C l}_{2}$)

TABLE 4.8

Compounds				Stretches	\rightarrow	C-F	Other Bands
	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}=\mathrm{C}$	$\mathrm{C}=0$	$\mathrm{N}-\mathrm{H}$	C-N		
AcAcA	$\begin{aligned} & 3030,2980 \mathrm{~s}, 1350, \\ & 1370,1020,910 \mathrm{~s}, \\ & 810,670,620 \mathrm{~m} \end{aligned}$	1430s,1570m	-	-	$\begin{aligned} & \hline 1210,1180 \mathrm{~s}, \\ & 1070,1020 \mathrm{~s} \end{aligned}$		-
$\mathrm{AcAc} 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$	$\begin{aligned} & \hline 3030,2970,2920 \mathrm{~s} \\ & 1510,1370,910, \\ & 810,680,620 \mathrm{~s} \end{aligned}$	1490 m	1720w	-	$\begin{aligned} & 990 \mathrm{~m}, 1010 \mathrm{~s}, \\ & 1180,1300 \mathrm{~s}, \\ & 1210 \mathrm{~m} \end{aligned}$		-
AcAc4FA	$\begin{aligned} & \hline 3030,2970,1370 \mathrm{~s} \\ & 910,840,820,640, \\ & 620 \mathrm{~s} \end{aligned}$	1430s,1560w	1880w	3360w	1020,990s	1090,1150s	-
$1 \mathrm{CF}_{3} \mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right) \mathrm{A}$	$\begin{aligned} & 3050,2980 \mathrm{w}, 860, \\ & 810,770 \mathrm{~s}, 660, \end{aligned}$	1500,1430s	1770w	3380w	1380m,1350s	$\begin{aligned} & \hline 1025 \mathrm{w}, 1010 \mathrm{~s} \\ & 950 \mathrm{~m}, 920 \mathrm{~s} \end{aligned}$	-

Compounds			$\begin{gathered} \leftarrow \\ \mathrm{C}=\mathbf{O} \end{gathered}$			C-F	Other Bands
	C-H			$\mathrm{N}-\mathrm{H}$	$\mathbf{C - N}$		
	630m						
AcAc4(OCF_{3})	$\begin{aligned} & \hline 3040,2965,2920 \mathrm{~m} \\ & 1375 \mathrm{~m}, 915,850 \\ & 800,680,660 \mathrm{~s} \end{aligned}$	1490,1435s	1770w,	-	$\begin{array}{\|l\|} \hline 1100,1020, \\ 1010,990 \mathrm{~m} \end{array}$	1350,1300m	3650w
$1 \mathrm{CF}_{3} \mathrm{AcAc} 4\left(\mathrm{CF}_{3}\right) \mathrm{A}$	$\begin{array}{\|l} \hline 3050 \mathrm{~s}, 2980,2920 \\ \mathrm{w}, 860,780 \mathrm{~s} \end{array}$	1520,1610s	1780w	3385w	1360,1300m	1010,1050m	3640w
AcAc3,5($\left.\mathrm{CF}_{3}\right)_{2} \mathrm{~A}$	$\begin{array}{\|l\|} \hline 3080,3060,2980 \\ 2950,2920 \mathrm{~s}, 1430 \\ 1400 \mathrm{~m}, 860,840 \mathrm{~s}, \\ 680 \mathrm{~m} \end{array}$	$\begin{aligned} & 1570,1500, \\ & 1460 \mathrm{~s} \end{aligned}$	1720w	3396,3220s	$\begin{aligned} & \hline 1070 \mathrm{w}, 1020, \\ & 1000,960,940 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline 1360,1350, \\ & 1310 \mathrm{~s} \end{aligned}$	3680,3480w
$1 \mathrm{CF}_{3} \mathrm{AcAc} 3,5\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~A}$	$\begin{aligned} & \hline 3060 \mathrm{~m}, 2990, \\ & 2920,1240 \mathrm{w}, 890 \\ & 880,840,780,680 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1520 \mathrm{w}, 1460, \\ & 1430 \mathrm{~m} \end{aligned}$	1695w	3395s	1010,985,940s	1380w	3480s

Compounds		$\mathbf{C}=\mathbf{C}$	$\begin{gathered} \leftarrow \\ \mathrm{C}=0 \end{gathered}$	Stretches	\rightarrow	C-F	Other Bands
	C-H			N-H	C-N		
$\begin{aligned} & 1 \mathrm{CF}_{3} \mathrm{AcAc} 3 \mathrm{~F} 4\left(\mathrm{CH}_{3}\right) \\ & \mathrm{A} \end{aligned}$	$\begin{aligned} & 3030,2980,2920 \mathrm{~m} \\ & , 1410,920,900, \\ & 870,825730 \mathrm{~s}, \end{aligned}$	$\begin{aligned} & 1550,1465 \mathrm{~s}, \\ & 1430 \mathrm{~m} \end{aligned}$	1770w	-	$\begin{aligned} & \hline 1130 \mathrm{w}, 1100, \\ & 950 \mathrm{~s} \end{aligned}$	1350,1300s	
AcAc3F4 $\left(\mathrm{CH}_{3}\right) \mathrm{A}$	$\begin{aligned} & 3030,2970,2920, \\ & 1370 \mathrm{~m}, 910,800 \mathrm{~m}, \\ & 880,780 \mathrm{w} \end{aligned}$	1430w	-	-	$\begin{aligned} & 1020,1110 \mathrm{~s}, \\ & 990 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1350,1300, \\ & 1180,1140 s \end{aligned}$	3660m
$1 \mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$	$\begin{aligned} & \hline 3050,2980 \mathrm{w}, \\ & 1420 \mathrm{~s}, 985,890, \\ & 780,690 \mathrm{~s} \end{aligned}$	1620,1580s	-	-	1330,1230m	$\begin{aligned} & \hline 1190,1140 \mathrm{~s}, \\ & 1110,1030, \\ & 1010 \mathrm{~m} \end{aligned}$	-
$\mathrm{AcAcF}_{5} \mathrm{~A}$	$\begin{aligned} & \hline 3030,2970 \mathrm{~m}, \\ & 1410 \mathrm{~s}, 980,870, \\ & 780,660 \mathrm{~s} \end{aligned}$	1640,1550s	1740w	-	1290,1250m	$\begin{aligned} & 1180,1135 \mathrm{~s}, \\ & 1050,1020 \mathrm{~m} \end{aligned}$	3680w
AcAc2(OH)A	3040,2990m,1350 1415,890,680w	$\begin{aligned} & \hline 1510,1500, \\ & 1490,1450 \mathrm{~m} \end{aligned}$	1710,1680w	-	$\begin{aligned} & 1130,1090, \\ & 1020 w, \end{aligned}$		

I.R. DISCUSSION:-

All the ketoimines prepared were characterised by I.R. spectroscopy, all the spectra being recorded as solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ against a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ blank. All the characteristic bonds($\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{N}, \mathrm{N}-\mathrm{H}, \mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{H}$) in the compounds gave bands in their expected region.

4-Anilino-penta-3en-2-ones have one phenyl ring in their structure; they gave stretching vibrations in the region $3100-2900 \mathrm{~cm}^{-1}$, and their deformations are in the $1200-1450 \mathrm{~cm}^{-1}$ region. The out-of-plane bends are in the $980-650 \mathrm{~cm}^{-1}$ region. The majority of the compounds gave a strong to medium band for the $\mathrm{N}-\mathrm{H}$ bond in the region of $3680-3360 \mathrm{~cm}^{-1}$. The $\mathrm{C}=\mathrm{C}$, $\mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{F}$ bonds gave strong to medium bands in the region 1500-900 cm^{-1}. All the N-H peaks observed are either weak or medium in the IR spectra of all the compounds studied which predict the presence of strong hydrogen bond between $\mathrm{N}-\mathrm{H}$ proton and keto oxygen, except $\mathrm{AcAc} 3,5\left(\mathrm{CF}_{3}\right)_{2}$ and $1 \mathrm{CF}_{3} \mathrm{AcAc} 3,5\left(\mathrm{CF}_{3}\right)_{2}$. In the spectra of these two compounds strong $\mathrm{N}-\mathrm{H}$ peaks were observed, which shows the absence of hydrogen-bonding. This behaviour is consistent with the X-ray and IR results for SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$, that two - $\left(\mathrm{CF}_{3}\right)$ groups prohibit hydrogen-bonding; they cause the same effect in AcAcA molecules.

4.9 CONCLUSION:-

The preparation of these compounds was straightforward, but most were isolated in a very impure form. They were first purified by sublimation using the cold finger method described in the experimental section and then recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

According to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-DEPT NMR studies, one methylene proton is shifted to nitrogen. Fluorine-substituted ${ }^{13} \mathrm{C}$ atoms show peak splitting. In mass spectrometric studies only one characteristic fragmentation is observed with all the molecules. No evidence of such fragmentation was found in the literature, and no other characteristic fragmentation was observed.

They are air stable in the solid state but quite unstable in solution in organic solvents. They decompose in approximately an hour. No significant effect of the electron donating or electron withdrawing substituents was found on the spectroscopic behaviour of these ligands.

4.10 REFERENCES:-

(1) E. Fisher and C. Bülow, Ber. 18, 2131, 1885.
(2) N. H. Cromwell, Chem. Rev., 38, 83, 1946.
(3) E. Roberts and E. F. Turner, J. Chem. Soc., 1832, 1927.
(4) M. Miyazaki, H. Fukumoto, S. Yamada and N. Okubo, Chem. Pharm. Bull., 26, 2582, 1978.
(5) K. Ueno and A. E. Martell, J. Phys. Chem., 59, 998, 1955.
(6) K. Ueno and A. E. Martell, J. Phys. Chem., 61, 257, 1957.
(7) N. H. Cromwell, F. A. Miller, A. R. Johnson, R. L. Frank and D. J. Wallace, J. Amer. Chem. Soc., 71, 3337, 1949.
(8) H. F. Holtzclaw, J P. Collman and R. M. Alire, J. Amer. Chem. Soc. 80, 1100, 1958.
(9) G. O. Dudek and R. H. Holm, J. Amer. Chem. Soc., 83, 2099, 1961.
(10) G. O. Dudek and R. H. Holm, J. Amer. Chem. Soc., 84, 2691, 1962.
(11) G. O. Dudek and E. P. Dudek, J. Amer. Chem. Soc., 86, 4283, 1964.
(12) N. H. Cromwell and J. S. Burch, J. Amer. Chem. Soc., 66, 872, 1944.
(13) N. H. Cromwell, Q. T. Wiles and O. C. Schroeder, J. Amer. Chem. Soc., 64, 2432, 1942.
(14) W. Kemp, "Organic Spectroscopy", 3rd ed., Macmillan, 199, 1993.
(15) R. M. Silverstein, G. C. Bassler and T. C. Morill,"Spectroscopic Identification of Organic Compounds", 5th ed., John Wiley, New York, 127, 1991.
(16) D. L. Pavia, G. M. Lampman and G. S. Kriz Jr, "Introduction to Spectroscopy, a Guide for Student of Organic Chemistry", W. B. Saunders Co., London, 26, 1979.

CHAPTER 5

STRUCTURE DETERMINATION OF

SOME NOVEL 4-ANILINO-

PENTA-3-EN-2-ONES

5.1 INTRODUCTION:-

This chapter describes the structures of some novel 4-anilino-penta-3-en-2-one derivatives [Acetyl Aceto Anilines(AcAcA)] (Figure 5.1) which were determined by single crystal X-ray diffraction and whose synthesis and characterisation have been given in Chapter 3. Information concerning bond lengths, bond angles and inter- and intra-molecular hydrogen-bonding has been gathered. No other crystal structure of 4-anilino-penta-3-en-2-one derivative has found in the literature.

Figure 5.1 AcAcA

5.2 METHOD OF CRYSTALLISATION:-

In this work 4-anilino-penta-3-en-2-ones were first purified using the cold finger technique, as described in Chapter 3, as they had been isolated in very crude form. The purified sample was then recrystallised from ethanol by slow evaporation at low temperature, by placing the ethanolic solution in a sample tube with a perforated cover for several days in a refrigerator $\left(0-5^{\circ} \mathrm{C}\right)$. All of the six 4-anilino-penta-3-en-2-ones were crystallised as white transparent plates.

5.3 4-ANILINO-PENTA-3-EN-2-ONES

With all AcAcA (Figure 5.1) structures studied in this work by X-ray crystallography, it can be seen that the hydrogen of the CH_{2} group is shifted onto the nitrogen in the solid form. It is also verified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-DEPT NMR studies (Chapter 3) that they keep the keto form in solution as well. The structural formulae of the ligands investigated by X-ray crystallography in this work are shown below (Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7).

Figure 5.2 $\quad \mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$

Figure 5.3 AcAc2(OH)A

Figure 5.4 $\operatorname{AcAc4}\left(\mathbf{O C F}_{3}\right) \mathrm{A}$

Figure 5.5 AcAc3F, $\mathbf{4}\left(\mathbf{C H}_{3}\right) \mathrm{A}$

Figure 5.6 $\operatorname{AcAc4}\left(\mathbf{C H}_{3}\right) \mathrm{A}$

Figure 5.7 AcAc4FA

5.3.1 $\mathbf{C F}_{3} \mathbf{A c A c F}_{5} \mathbf{A}$

$\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$ (Figure 5.8) was first purified by sublimation and then recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by slow evaporation at low temperature $\left(0-5^{\circ} \mathrm{C}\right)$ giving white blocks. Its crystal system is monoclinic. The $-\mathrm{C}(8) \mathrm{H}_{3}$ group is found to be disordered. There is an intramolecular hydrogen-bond between the keto-oxygen and NH hydrogen having a bond length of 1.956(5) A. The N(1)$\mathrm{H}(1) \ldots \mathrm{O}(1)$ distance is $2.665(5) \AA$. There is intermolecular hydrogen-bond present, between the keto-oxygen of one molecule with the N -hydrogen of another having a bond length of $2.267(5) \AA$.. The intra and intermolecular hydrogen-bonds are shown in Figure 5.9 and its packing diagram in Figure 5.10. Selected bond lengths and bond angles are given in the Tables 5.1 and 5.2 respectively.

Figure 5.8 Molecular structure of $\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$

Figure 5.9 Inter- and Intramolecular Hydrogen-bonding in $\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$ molecules

Bonds	Lengths[̊̊]	Bonds	Lengths[̊̊]
$\mathrm{C}(11)-\mathrm{C}(10)$	$1.548(7)$	$\mathrm{C}(11)-\mathrm{F}(8)$	$1.314(4)$
$\mathrm{C}(10)-\mathrm{O}(1)$	$1.213(7)$	$\mathrm{C}(10)-\mathrm{C}(9)$	$1.394(9)$
$\mathrm{C}(9)-\mathrm{C}(7)$	$1.390(8)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.503(8)$
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.322(8)$	$\mathrm{N}(1)-\mathrm{C}(6)$	$1.423(7)$
$\mathrm{C}(6)-\mathrm{C}(5)$	$1.392(9)$	$\mathrm{C}(6)-\mathrm{C}(1)$	$1.372(9)$
$\mathrm{C}(4)-\mathrm{C}(3)$	$1.350(12)$	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.387(11)$
$\mathrm{C}(3)-\mathrm{F}(3)$	$1.344(8)$	$\mathrm{N}(1)-\mathrm{H}(1) \mathrm{a}$	0.900

Table 5.1 Selected Bond Lengths of $\mathrm{CF}_{3} \mathrm{AcAcF}_{5} A$

	Angles[${ }^{\circ}$]		Angles[${ }^{\circ}$]
$\mathrm{F}(8)-\mathrm{C}(11)-\mathrm{C}(10)$	$113.7(4)$	$\mathrm{F}(8)-\mathrm{C}(11)-\mathrm{F}(7)$	$108.2(4)$
$\mathrm{F}(7)-\mathrm{C}(11)-\mathrm{C}(10)$	$110.3(4)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(1)$	$114.6(8)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$118.0(5)$	$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$127.4(5)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(7)$	$122.2(5)$	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.3(5)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)$	$118.6(8)$	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{N}(1)$	$121.0(5)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)$	$126.3(5)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.6(6)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(1)$	$121.3(5)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(50$	$118.1(6)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.6(6)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{F}(3)$	$121.2(8)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{F}(3)$	$118.2(8)$		

Table 5.2 Selected Bond Angles of $\mathrm{CF}_{3} \mathrm{AcAcF}_{5} A$

Figure 5.10 Packing diagram of $\mathrm{CF}_{3} \mathrm{AcAcF}_{5} A$

5.3.2 $\operatorname{AcAc4}\left(\mathrm{OCF}_{3}\right) \mathrm{A}$

AcAc4(OCF_{3})A (Figure 5.11) was crystallised from ethanol by slow evaporation at low temperature $\left(0-5^{\circ} \mathrm{C}\right)$, after purification by the cold finger sublimation method, giving white blocks. Its crystal system is monoclinic. There is a weak intramolecular hydrogen-bond between the keto-oxygen and the N-hydrogen having a bond length of 1.891(2) \AA. The bond distance between the keto-oxygen and the nitrogen is $2.665(2) \AA$. The nearest intermolecular neighbouring atom to fluorine is a methyl hydrogen having a bond distance of $2.439(3) \AA$. The intramolecular hydrogen-bonding is shown in Figure 5.12 and its packing diagram in 5.13. Selected bond lengths and bond angles are given in Tables 5.3 and 5.4 respectively.

Figure 5.11 Molecular structure of $\operatorname{AcAc4}\left(\mathbf{O C F}_{3}\right) \mathrm{A}$

Figure 5.12 Inter- and Intramolecular hydrogen-bonding in AcAc4(OCF_{3})A molecules

Bonds	Lengths[^̊]	Bonds	Lengths[^̊]
C(12)-C(11)	1.508(4)	$\mathrm{C}(11)-\mathrm{O}(2)$	1.250(3)
$\mathrm{C}(11)-\mathrm{C}(10)$	1.422(4)	C(10)-C(8)	1.370(30
C(8)-C(9)	1.492(4)	$\mathrm{C}(8)-\mathrm{N}(1)$	1.356(3)
$\mathrm{N}(1)-\mathrm{C}(6)$	1.411(3)	$\mathrm{C}(6)-\mathrm{C}(5)$	1.388(4)
C(6)-C(1)	1.390(4)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.371(4)
C(3)-C(4)	1.369(4)	$\mathrm{C}(3)-\mathrm{O}(1)$	1.420(3)
$\mathrm{O}(1)-\mathrm{C}(7)$	1.323(3)	$\mathrm{C}(7)-\mathrm{F}(1)$	1.313(3)
F(3)-C(7)	1.307(4)	$\mathrm{F}(2)-\mathrm{C}(7)$	1.291(4)
$\mathrm{N}(1)-\mathrm{H}(1) \mathrm{a}$	0.957(3)		

Table 5.3 Selected Bond Lengths of AcAc4(OCF 3)A

Bonds	Angles[${ }^{\circ}$]	Bonds	Angles[${ }^{\circ}$]
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(2)$	$119.0(2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$117.5(2)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(2)$	$123.5(2)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(8)$	$125.2(2)$
$\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{N}(1)$	$119.5(2)$	$\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.8(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)$	$120.7(2)$	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(6)$	$130.4(2)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(1)$	$116.1(2)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$124.6(2)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.9(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.4(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	$119.3(2)$	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.2(2)$
$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{C}(7)$	$117.3(2)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{F}(1)$	$109.2(2)$
$\mathrm{N}(1)-\mathrm{H}(1) \mathrm{a}-\mathrm{O}(2)$	136.2		

Table 5.4 Selected Bond Angles of AcAc4(OCF 3) A

Figure 5.13 Packing diagram of AcAc4(OCF $\left.)_{3}\right) A$

5.3.3 $\mathbf{A c A c 4}\left(\mathbf{C H}_{3}\right) \mathbf{A}$

AcAc4($\left.\mathrm{CH}_{3}\right) \mathrm{A}$ (Figure 5.14) was first purified by sublimation and then recrystallised from ethanol by slow evaporation at low temperature $\left(0-5^{\circ} \mathrm{C}\right)$, giving white blocks. Its crystal structure is monoclinic. There is an intramolecular hydrogen-bond between the keto-oxygen and N -hydrogen having a bond length of $1.887(2) \AA$, the bond distance $\mathrm{N} . . . \mathrm{O}(1)$ is $2.645(2) \AA$. Intermolecular hydrogen-bonding is also present between the keto-oxygen of one molecule and aryl hydrogen of another with a bond length of $2.497(3) \AA$. The intra- and intermolecular hydrogen-bonding and packing diagrams are shown in Figures 5.15 and 5.16. Selected bond lengths and bond angles are given in Tables 5.5 and 5.6 respectively.

Figure 5.14 Molecular structure of $\operatorname{AcAc4}\left(\mathrm{CH}_{3}\right)$ A

Figure 5.15 Inter- and intramolecular hydrogen-bonding in

$$
\operatorname{AcAc4}\left(\mathrm{CH}_{3}\right) \boldsymbol{A}
$$

Bonds	Lengths[Å]	Bonds	Lengths[A]]
$\mathrm{C}(7)-\mathrm{C}(3)$	$1.518(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.382(3)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.387(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.389(3)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.393(3)$	$\mathrm{C}(6)-\mathrm{N}(1)$	$1.416(2)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.352(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.496(3)$
$\mathrm{C}(8)-\mathrm{C}(10)$	$1.373(3)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.421(3)$
$\mathrm{C}(11)-\mathrm{O}(1)$	$1.252(2)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.514(3)$
$\mathrm{N}(1)-\mathrm{H}(1)$	$0.977(2)$		

Table 5.5 Selected Bond Lengths of AcAc4($\left(\mathrm{CH}_{3}\right)$ A

	Angles[${ }^{\circ}$]		Angles[${ }^{\circ}$]
$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.4(2)$	$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{C}(4)$	$122.2(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$117.4(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$118.7(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$124.5(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(1)$	$116.7(2)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(8)$	$130.6(2)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.7(2)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(10)$	$119.7(2)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	$119.6(2)$
$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(11)$	$124.6(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)$	$123.3(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(1)$	$118.5(2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$118.2(2)$
$\mathrm{N}(1)-\mathrm{H}(1) \mathrm{a} . . \mathrm{O}(1)$	$132.2(2)$		

Table 5.6 Selected Bond Angles of $\operatorname{AcAc4}\left(\mathrm{CH}_{3}\right)$

Figure 5.16 Packing diagram of AcAc4($\left.\mathrm{CH}_{3}\right)$ A

5.3.4 AcAc4FA

AcAc4FA (Figure 5.17) was first purified by the cold finger sublimation method and then recrystallised from ethanol by slow evaporation at low temperature $\left(0-5{ }^{\circ} \mathrm{C}\right)$ giving white blocks. Its crystal system is monoclinic. A strong intramolecular hydrogen-bond is present between the keto-oxygen and N-hydrogen having a bond length $1.911 \AA$. Intermolecular hydrogen-bonding is also present between the keto-oxygen of one molecule and aryl hydrogen of another having a bond length of $2.552 \AA$. The intra- and intermolecular hydrogen-bonding is shown in Figure 5.18 and its packing diagram in Figure 5.19. Selected bond lengths and bond angles are given in Tables 5.7 and 5.8 respectively.

Figure 5.17 Molecular structure of AcAc4FA

Figure 5.18 Inter- and Intramolecular hydrogen-bonding in AcAc4FA molecules

Bonds	Lengths[\AA]	Bonds	Lengths[\AA]
$\mathrm{F}(1)-\mathrm{C}(3)$	$1.362(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.371(2)$
$\mathrm{C}(3)-\mathrm{C}(2)$	$1.364(2)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.387(2)$
$\mathrm{C}(6)-\mathrm{C}(5)$	$1.391(2)$	$\mathrm{C}(6)-\mathrm{N}(1)$	$1.415(2)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.353(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.491(2)$
$\mathrm{C}(7)-\mathrm{C}(9)$	$1.368(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.422(2)$
$\mathrm{C}(10)-\mathrm{O}(1)$	$1.253(2)$	$\mathrm{C}(10)-(11)$	$1.504(2)$
$\mathrm{N}(1)-\mathrm{H}(1)$	0.921		

Table 5.7 Selected Bond Lengths of AcAc4F

	Angles[${ }^{\circ}$]		Angles[$\left.{ }^{\circ}\right]$
$\mathrm{F}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	$118.9(2)$	$\mathrm{F}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$118.8(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$122.3(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.11(14)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(1)$	$117.13(13)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$123.59(14)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)$	$130.74(13)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.26(13)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(9)$	$119.29(14)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	$120.43(14)$
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$	$125.3(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)$	$122.7(2)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$118.8(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$118.4(2)$
$\mathrm{N}(1)-\mathrm{H}(1) \mathrm{a} . . . \mathrm{O}(1)$	143.0		

Table 5.8 Selected Bond Angles of AcAc4FA

Figure 5.19 Packing diagram of AcAc4FA

5.3.5 $\mathbf{A c A c} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$

AcAc3F,4(CH_{3})A (Figure 5.20) was first purified by sublimation and then recrystallised from ethanol by slow evaporation at low temperature (0-5 ${ }^{\circ} \mathrm{C}$), giving white blocks. Its crystal system is monoclinic. There is an intramolecular hydrogen-bond present between the keto-oxygen and N hydrogen having a bond length of $1.937 \AA$. The $\mathrm{O}(1) \ldots \mathrm{N}(1)$ bond distance is $2.646 \AA$. A weak intermolecular hydrogen-bond is also present between the keto-oxygen of one molecule and aryl hydrogen of another, having a bond length of $2.513 \AA$. The methyl group substituted in the aryl ring is disordered, due to rotation (it may be refined at low temperature). The intra- and intermolecular hydrogen-bonding is shown in Figure 5.21 and its packing diagram in Figure 5.22. Selected bond lengths and bond angles are given in Tables 5.9 and 5.10 respectively.

Figure 5.20 Molecular structure of AcAc3F,4(CH3)A

Figure 5.21 Inter- and Intramolecular hydrogen-bonding in AcAc3F,4(CH3)A molecules

Bonds	Lengths[\AA Bonds	Lengths[\AA]	
$\mathrm{C}(12)-\mathrm{C}(3)$	$1.502(2)$	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.389(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.378(2)$	$\mathrm{C}(4)-\mathrm{F}(1)$	$1.365(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.375(2)$	$\mathrm{C}(6)-\mathrm{C}(1)$	$1.394(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.392(2)$	$\mathrm{C}(6)-\mathrm{N}(1)$	$1.410(2)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.351(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.495(2)$
$\mathrm{C}(7)-\mathrm{C}(9)$	$1.374(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.421(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.505(2)$	$\mathrm{N}(1)-\mathrm{H}(1) \mathrm{a}$	0.950

Table 5.9 Selected Bond Lengths of AcAc3F,4($\left.\mathrm{CH}_{3}\right) \mathrm{A}$

	Angles[$\left.{ }^{\circ}\right]$		Angles[$\left.{ }^{\circ}\right]$
$\mathrm{C}(12)-\mathrm{C}(3)-\mathrm{C}(4)$	$122.7(2)$	$\mathrm{C}(12)-\mathrm{C}(3)-\mathrm{C}(2)$	$122.5(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$114.8(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{F}(1)$	$117.5(2)$
$\mathrm{F}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.3(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$125.1(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$122.7(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$118.5(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$118.6(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$124.5(2)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(1)$	$116.9(2)$	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)$	$131.33(14)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.9(2)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	$119.6(2)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(9)$	$119.4(2)$	$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$	$125.0(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(1)$	$122.9(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$118.2(2)$
$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$118.9(2)$	$\mathrm{N}(1)-\mathrm{H}(1) \mathrm{A} \ldots \mathrm{O}(1)$	129.7

Table 5.10 Selected Bond Angles of AcAc3F,4(CH3)A

Figure 5.22 Packing diagram of AcAc3F,4($\left.\mathrm{CH}_{3}\right)$ A

5.3.6 AcAc2(OH)A

AcAc2(OH)A (Figure 5.23) was first purified by cold finger sublimation and then recrystallised from ethanol by slow evaporation at low temperature $\left(0-5^{\circ} \mathrm{C}\right)$, giving white needles. Its crystal system is orthorhombic. The methyl group attached to the carbon bonded to the ketonic oxygen is disordered. An intramolecular hydrogen-bond is present between the ketooxygen and N -hydrogen having a bond length of $1.891 \AA$. The $\mathrm{N}(1) \ldots \mathrm{O}(2)$ bond distance is $2.640 \AA$. Strong intermolecular hydrogen-bonding is present between the keto-oxygen of one molecule and hydroxyl-hydrogen of another having a bond length of $1.678 \AA$. The inter- and intramolecular hydrogenbonding is given in Figure 5.24 and its packing diagram in Figure 5.25. Selected bond lengths and bond angles are given in Tables 5.11 and 5.12 respectively.

Figure 5.23 Molecular structure of $\operatorname{AcAc} 2(O H) A$

Figure 5.24 Inter- and Intra-molecular hydrogen-bonding in AcAc2(OH)A molecules

Bonds	Lengths[Å]	Bonds	Lengths[Å]
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.369(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.381(5)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.394(5)$	$\mathrm{C}(5)-\mathrm{C}(4)$	$1.380(5)$
$\mathrm{C}(6)-\mathrm{C}(5)$	$1.389(5)$	$\mathrm{C}(6)-\mathrm{N}(1)$	$1.418(4)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.336(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.502(5)$
$\mathrm{C}(7)-\mathrm{C}(9)$	$1.379(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.418(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.496(5)$	$\mathrm{C}(10)-\mathrm{O}(2)$	$1.264(4)$
$\mathrm{O}(1)-\mathrm{H}(1)$	0.970	$\mathrm{~N}(1)-\mathrm{H}(1) \mathrm{A}$	0.823

Table 5.11 Selected Bond Lengths of AcAc2(OH)A

	Angles[$\left.{ }^{\circ}\right]$		Angles[${ }^{\circ}$]
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.8(3)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$116.8(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120.3(3)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.2(3)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(1)$	$116.3(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$124.3(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$120.1(4)$	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)$	$131.0(3)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.5(3)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(9)$	$120.8(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	$118.6(3)$	$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$	$124.5(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.1(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(2)$	$121.8(3)$
$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.1(3)$	$\mathrm{N}(1)-\mathrm{H}(1) \mathrm{A} \ldots \mathrm{O}(2)$	150.7

Table 5.12 Selected Bond Angles of AcAc2(OH)A

Figure 5.25 Packing diagram of AcAc2(OH)A

5.4 DISCUSSION:-

All of the 4-aminophenyl-3-pentene-2-one structures show intra- and intermolecular hydrogen-bonding. In the case of intermolecular hydrogenbonding the molecules form chains. In this type of ligand the fluorine substituted at the aniline ring also forms intermolecular hydrogen-bonds. One of the methylene hydrogens is shifted onto the nitrogen. This shift is also verified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ DEPT NMR studies (sections 3.7.3, 3.7.4), and their I.R. spectra (chapter 4). In these ligands there is also no significant substituent effect, all have similar bond lengths and bond angles irrespective of the substituent.

In this group of molecules there are two different types of hydrogen bonding present, inter- and intra-molecular. The intramolecular hydrogenbond length $(\mathrm{N}-\mathrm{H} . . . \mathrm{O})$ is $\approx 1.89 \AA$ and the $\mathrm{N} \mathrm{O}$ bond distance is $\approx 2.65 \AA$. The NO distance in these molecules is approximately the same as in the case of salicylideneanilines, but in salicylideneanilines the N...H hydrogen-bond has a short bond length($\approx 1.7 \AA$) as compared to the O...H hydrogen-bond length in AcAcA molecules. Some important bond lengths and bond angles of all the solved AcAcA molecules are given in Table 5.13 and Table 5.14 respectively. The bond distances between $\mathrm{N} \mathrm{O}$ in salicylideneanilines and in AcAcA are given in Table 5.15 for comparison.

The molecular structure of these compounds proved that amino β diketones exists in ketoamine form instead of enolimine form in solids as was reported for such compounds in solution on the basis of IR^{1-4} and NMR^{5-7} studies.

Figure 5.26 Numbering of atoms in AcAcA molecules

$$
R=-\mathrm{CH}_{3},-C F_{3}
$$

$\mathbf{B O N D S}$	$\mathbf{N (1) - C (6)}$	$\mathbf{C}(\mathbf{4})-\mathbf{N}(\mathbf{1})$	$\mathbf{N}(\mathbf{1})-\mathbf{H}(\mathbf{1})$	$\mathbf{O}(\mathbf{1})-\mathbf{H}(\mathbf{1})$
$\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$	$1.423(7)$	$1.322(8)$	0.900	$1.956(5)$
AcAc4(OCF 3$) \mathrm{A}$	$1.411(3)$	$1.356(3)$	$0.957(3)$	$1.891(2)$
AcAc4(CH3$) \mathrm{A}$	$1.416(2)$	$1.352(3)$	$0.977(2)$	$1.887(2)$
AcAc4FA	$1.415(2)$	$1.353(2)$	0.921	1.911
AcAc3F,4(CH3)A	$1.41(2)$	$1.351(2)$	0.95	1.937
AcAc2(OH)A	$1.418(5)$	$1.336(4)$	0.823	1.891

Table 5.13 Selected Bond Lengths of $\mathrm{CF}_{3} \mathrm{AcAcF}_{5} A$, AcAc4FA, $\mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right) \mathrm{A}, \mathrm{AcAc} 4\left(\mathrm{CH}_{3}\right) \mathrm{A}, \mathrm{AcAc} 3 F, 4\left(\mathrm{CH}_{3}\right) A$ and $A c A c 2(O H) A$.

	$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(4)$	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$\mathrm{N}(1)-\mathrm{H}(1) \ldots \mathrm{O}(1)$
$\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$	$126.3(5)$	$121.0(5)$	$118.6(8)$	134.4
AcAc4($\left.\mathrm{OCF}_{3}\right) \mathrm{A}$	$130.4(2)$	$119.5(2)$	$120.7(2)$	136.2
AcAc4($\left.\mathrm{CH}_{3}\right) \mathrm{A}$	$130.6(2)$	$119.7(2)$	$120.7(2)$	132.2
AcAc4FA	$130.7(13)$	$119.2(14)$	$120.2(13)$	143.0
AcAc3F,4(CH3)A	$131.3(14)$	$119.4(2)$	$120.9(2)$	129.7
AcAc2(OH)A	$131.0(3)$	$120.8(3)$	$120.5(3)$	150.7

Table 5.14 Selected Bond Angles of $\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}, \mathrm{AcAc} 4\left(\mathrm{OCF}_{3}\right) \mathrm{A}$,
$\mathrm{AcAc} 4\left(\mathrm{CH}_{3}\right) \mathrm{A}, \mathrm{AcAc} 2(\mathrm{OH}) \mathrm{A} \mathrm{AcAc} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right) \mathrm{A}$,
AcAc4FA.

Figure 5.26 Molecular structures of AcAcA and SAL for comparasion

COMPOUNDS	N.....O	COMPOUNDS	$\mathrm{N} \ldots . . \mathrm{O}$
SAL4(OCF3)A	$2.603(6)$	AcAc4(OCF3)A	$2.665(2)$
SAL4(CH3)A	2.597	AcAc4(CH3)A	$1.887(7)$
SAL4F	$2.619(3)$	AcAc4FA	1.911
SAL3F,4(CH3)A	2.600	AcAc3F,4(CH3)A	2.646
SALF5	2.616	CF3AcAcF5A	2.665
SAL3,5(CF3)2A	$2.631(10)$	AcAc2(OH)A	1.891

Table 5.15 Comparison Of Bond Lengths of N......O Between
SAL and AcAc.

5.5 REFERENCES:-

(1) K. Ueno and A. E. Martell, J. Phys. Chem., 59, 998, 1955.
(2) K. Ueno and A. E. Martell, J. Phys. Chem., 61, 257, 1957.
(3) H. F. Holtzclaw, J. P. Collman and R. M. Alire, J. Amer. Chem. Soc. 80, 1100, 1958.
(4) N. H. Cromwell, F. A. Miller, A. R. Johnson, R. L. Frank and D. J. Wallace, J. Amer. Chem. Soc., 71, 3337, 1949.
(5) G. O. Dudek and R. H. Holm, J. Amer. Chem. Soc., 83, 2099, 1961.
(6) G. O. Dudek and R. H. Holm, J. Amer. Chem. Soc., 84, 2691, 1962.
(7) G. O. Dudek and E. P. Dudek, J. Amer. Chem. Soc., 86, 4283, 1964.

CHAPTER 6

SYNTHESIS AND CHARACTERISATION

OF SOME NOVEL

SALICY'LIDENEANILINE TRANSITION

METAL COMPLEXES

6.1 INTRODUCTION:-

A new series of copper(II), nickel(II), cobalt(II) and cobalt(III) complexes derived from Schiff bases, SAL4F, SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}, \mathrm{SAL} 4\left(\mathrm{CF}_{3}\right)$, SAL3,5($\left.\mathrm{CH}_{3}\right)_{2}$, and SAL3F, $4\left(\mathrm{CH}_{3}\right)$, has been synthesised and characterised by elemental analysis, infra red, UV, mass spectra and NMR data. These complexes were synthesised by following the methods present in the literature. ${ }^{1-4}$ The general types of complexes are given in Figures 6.1 and 6.2, where R is an alkyl or aryl group.

Figure 6.1

Figure 6.2

The coordination complexes formed between this type of ligand and divalent metal ions are of considerable interest as they vary in structure from planar to tetrahedral. This depends on the nature of the metal and on both the substituent on the nitrogen atom and the substituents, if any, on the aromatic ring of the salicylaldimine molecule ${ }^{5}$. These complexes have a trans arrangement of ligands ${ }^{6-7}$. Complexes of $\mathrm{Ni}($ II $)$ and $\mathrm{Co}($ III $)$ are diamagnetic in nature, some $\mathrm{Ni}(\mathrm{II})$ salicylideneimine complexes were found to be paramagnetic in solution. ${ }^{8-10}$ Paramagnetism in four-coordinated $\mathrm{Ni}(\mathrm{II})$ complexes which would be expected to be diamagnetic, may be due to (a) the formation of six coordinate adducts with two molecules of polar solvents or (b) a planar-tetrahedral equilibrium in solutions in inert solvents. ${ }^{11-13}$

Diamagnetic and paramagnetic species of the complexes, dissolved in noncoordinating solvents have planar structures. ${ }^{14-15}$ These complexes also develop paramagnetism when they are in the molten state ${ }^{16-17}$ or even on heating. ${ }^{18}$ Hence it was concluded by Yamada and Nishikawa ${ }^{19}$ that bis[salicylideneimine] $\mathrm{Ni}($ II $)$ complexes showing paramagnetism are actually distorted from a planar configuration, which was later confirmed by X-ray studies ${ }^{20}$.

Cu (II) complexes of salicylideneimine and of its N -n-alkyl derivatives have essentially trans-planar structures in the solid state. ${ }^{21-22}$ Spectroscopic, i.e. \mathbb{R}^{23} and $U V^{24}$, evidence suggests that these complexes have the same structures in the solution as in the solid phase.

The relationship between the basic strength and stability was first reported by Calvin ${ }^{25}$. The presence of an electron donating group would make the nitrogen atom more negative and increase the availability of the donor electrons for the M-N bond, whereas an electron withdrawing group would have the opposite effect.

Oxidation of bis-salicylaldimine complexes of Co (II) in solution and in the presence of an excess of the imine leads to the formation of tris-ligand complexes of $\mathrm{Co}(\mathrm{III})$, which have the general structure given in Figure 6.2. Co(III) shows a particular affinity for nitrogen donors. According to Sidgwick ${ }^{26-27}$, in the case of a bidentate NO donor ligand, neutral nitrogen and negative oxygen may have approximately the same attraction for protons and, other things being equal, should attract metal ions to about the same extent.

In general these complexes were synthesised by a one-pot method, as suggested by Yamada ${ }^{28}$. For the preparation of N -n-alkyl salicylaldimine complexes, atmospheric oxidation suffices, but a stronger oxidising agent such as hydrogen peroxide is needed to produce the N-phenyl derivatives, which tend to be reduced again to the Co (II) complexes on heating in solution ${ }^{29}$. As one salicylaldimine molecule is unable to span opposite corners of the octahedron, only two geometric isomers of these tris Co (III) complexes are expected. These are the fac form, in which the nitrogen atoms occupy corners opposite to an oxygen atom, and the mer form in which one pair of nitrogen atoms occupy corners opposite to one another. Dipole moment ${ }^{30}, \mathrm{NMR}^{31}$ and steric considerations ${ }^{29-30}$ predicts that trans forms, are most likely to form, but cis forms of tris Co (III) chelates with bidentate ligands[trifluoroacetylacetonate and benzoylacetylacetonate] were also reported by Fay and Piper ${ }^{32-33}$ on the basis of NMR study.

6.2 GENERAL METHODS OF PREPARATION:-

All the solvents were standard reagent grade and were used without further purification. All other chemicals were from Aldrich and were used as received.

6.2.1 PREPARATION OF Cu ${ }^{I I}$ COMPLEXES:-

A solution of copper acetate ($1 \mathrm{M}, 10 \mathrm{ml}$) in a 50% ethanol/water mixture was added to a hot solution of salicylaldehyde and the appropriate aniline ($1 \mathrm{M}, 20 \mathrm{ml}$)[calculated amounts are given in Table 6.1] in ethanol in 1:2 ratio. Precipitation occurred immediately. After the reaction mixture was cooled, the precipitates were filtered, washed with ethanol, recrystallised from CHCl_{3} as rhombic plates and dried in a desiccator under vacuum.

6.2.2 PREPARATION OF NiI COMPLEXES:-

A nickel acetate ($1 \mathrm{M}, 10 \mathrm{ml}$) solution in 50% ethanol/water was added to a hot ethanolic solution of the respective ligand ($1 \mathrm{M}, 20 \mathrm{ml}$)[calculated amounts are given in Table 6.1] in 1:2 ratios, and on cooling a few drops of ethanolic NaOH solution were added. The precipitates were filtered, washed with a small amount of ethanol, and dried in a desiccator under vacuum.

6.2.3 PREPARATION OF Co ${ }^{I I}$ COMPLEXES:-

A cobalt acetate ($1 \mathrm{M}, 10 \mathrm{ml}$) solution in 50% ethanol/water mixture was added to an ethanolic solution of the respective ligand (1M, 20 ml)[calculated amounts are given in Table 6.2] in 1:2 ratios, and refluxed for 3 to 4 hours. After the reaction mixture was cooled the precipitates were filtered, washed with a small amount of ethanol and dried in a desiccator under vacuum.

6.2.4 PREPARATION OF Co ${ }^{\text {III }}$ COMPLEXES:-

A cobalt acetate ($1 \mathrm{M}, 5 \mathrm{ml}$) solution in 50% ethanol/water mixture was added to an ethanolic solution of the respective ligand (1M, 15 ml)[calculated amounts are given in Table 6.2] in 1:3 ratio, and refluxed for 3 to 4 hours. On cooling 0.1 ml of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ was added and the reaction mixture was left for 2 to 3 days. The precipitated solid was filtered and dried in a vacuum desiccator.

LIST OF Cu[SAL] $]_{2}$ AND Ni[SAL] $]_{2}$ COMPLEXES

PREPARED

Table 6.1

| Momplexes Formulae | Abbreviation
 Used | Amounts Used
 gm |
| :--- | :--- | :--- | :--- |

Complexes Formulae	Molecular Formulae	Abbreviation Used	Amounts Used gm
	$\mathrm{C}_{30} \mathrm{H}_{16} \mathrm{CuF}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{aligned} & \mathrm{Cu}[\text { SAL3,5 } \\ & \left.\left(\mathrm{CF}_{3}\right)\right]_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Cu}(\mathrm{ac})^{\mathrm{i}}=1.82 \\ & \mathrm{~L}^{\mathrm{ii}}=6.68 \end{aligned}$
	$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{CuN}_{2} \mathrm{O}_{2}$	$\begin{aligned} & \mathrm{Cu}[\mathrm{SAL} 3,5 \\ & \left.\left(\mathrm{CH}_{3}\right)\right]_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Cu}(\mathrm{ac})=1.82 \\ & \mathrm{~L}=4.52 \end{aligned}$
	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{CuN}_{2} \mathrm{O}_{2}$	$\mathrm{Cu}[\mathrm{SAL4Cl}]_{2}$	$\begin{aligned} & \mathrm{Cu}(\mathrm{ac})=1.82 \\ & \mathrm{~L}=4.64 \end{aligned}$
	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NiN}_{2} \mathrm{O}_{2}$	Ni[SAL4F]2	$\begin{aligned} & \mathrm{Ni}(\mathrm{ac})^{\mathrm{iii}}=2.49 \\ & \mathrm{~L}=4.32 \end{aligned}$
	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NiN}_{2} \mathrm{O}_{2}$	$\begin{aligned} & \mathrm{Ni}[\mathrm{SAL} 3 \mathrm{~F}, \\ & \left.4\left(\mathrm{CH}_{3}\right)\right]_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Ni}(\mathrm{ac})=2.49 \\ & \mathrm{~L}=4.60 \end{aligned}$

i Copperacetate, ii $\mathrm{L}=$ respective ligand, iii nickleacetate

LIST OF Co ${ }^{\text {II }}$ AND Co ${ }^{\text {III }}$ COMPLEXES

Table 6.2

Complexes Formulae	Molecular Formulae	Abbreviation Used	Amounts Used gm
	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{CoF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{Co}\left[\right.$ SALAF] ${ }_{2}$	$\begin{aligned} & \mathrm{Co}(\mathrm{ac})^{\mathrm{i}}=2.49 \\ & \mathrm{~L}^{\mathrm{ii}}=4.32 \end{aligned}$
	$\begin{aligned} & \mathrm{C}_{30} \mathrm{H}_{16} \mathrm{CoF}_{12} \\ & \mathrm{~N}_{2} \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Co}[\mathrm{SAL} 3,5 \\ & \left.\left(\mathrm{CF}_{3}\right)_{2}\right]_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Co}(\mathrm{ac})=2.49 \\ & \mathrm{~L}=6.68 \end{aligned}$
	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{CoF}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\begin{aligned} & \mathrm{Co}[\mathrm{SAL} 4 \\ & \left.\left(\mathrm{CF}_{3}\right)\right]_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Co}(\mathrm{ac})=2.49 \\ & \mathrm{~L}=5.32 \end{aligned}$
	$\mathrm{C}_{39} \mathrm{H}_{27} \mathrm{CoF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}$	$\mathrm{Co}\left[\right.$ SAL4F] ${ }_{3}$	$\begin{aligned} & \operatorname{Co}(\mathrm{ac})=1.25 \\ & \mathrm{~L}=3.24 \end{aligned}$
	$\begin{aligned} & \mathrm{C}_{45} \mathrm{H}_{24} \mathrm{CoF}_{18} \\ & \mathrm{~N}_{3} \mathrm{O}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{Co}[\mathrm{SAL} 3,5 \\ & \left.\left(\mathrm{CF}_{3}\right) 2\right]_{3} \end{aligned}$	$\begin{aligned} & \operatorname{Co}(\mathrm{ac})=1.25 \\ & \mathrm{~L}=5.01 \end{aligned}$
	$\mathrm{C}_{42} \mathrm{H}_{27} \mathrm{CoF}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$	$\begin{aligned} & \mathrm{Co}[\mathrm{SAL} 4 \\ & \left.\left(\mathrm{CF}_{3}\right)\right]_{3} \end{aligned}$	$\begin{aligned} & \mathrm{Co}(\mathrm{ac})=1.25 \\ & \mathrm{~L}=3.39 \end{aligned}$

Complexes Formulae	Molecular Formulae	Abbreviation Used	Amounts Used gm

i Cobaltacetate, ii respective ligand

6.3 EXPERIMENTAL:-

All the complexes were characterised by IR, UV, NMR and Mass spectra. Melting points were obtained using a Griffin apparatus. IR spectra were obtained as solutions in chloroform against a chloroform blank in the 4000 to $650 \mathrm{~cm}^{-1}$ region and in a Nujol mull from 650 to $200 \mathrm{~cm}^{-1}$, on a Perkin Elmer 580B spectrophotometer. Electronic spectra were obtained on a Beckmann DU650 spectrometer. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker AX250 MHz spectrometer. Fast atom bombardment (+FAB) mass spectra were obtained using a Kratos concept double-focussing mass spectrometer by Dr. G. Eaton, using a nitrobenzylamine matrix. C, H and N elemental analysis was performed by Butterworth Laboratories Ltd, Teddington.

6.4 RESULTS AND DISCUSSION:-

6.4.1 PHYSICAL PROPERTIES:-

Table 6.4 $\mathbf{C u}(\mathrm{II})$ AND Ni(II) COMPLEXES

Complexes	M.P. ${ }^{\circ} \mathrm{C}$	Colour	State	\% Yield
$\mathrm{Cu}[\mathrm{SAL}]_{2}$	210	Brown	Crystals	75
$\mathrm{Cu}\left[\mathrm{SAL} 4\left(\mathrm{CF}_{3}\right)\right]_{2}$	290	Brown	Crystals	75
$\left.\mathrm{CuSAL}\left(\mathrm{OCF}_{3}\right)\right]_{2}$	205	Brown	Crystals	80
$\mathrm{Cu}\left[\right.$ SAL4F] ${ }_{2}$	220	Brown	Crystals	85
$\mathrm{Cu}\left[\text { SAL3F, } 4\left(\mathrm{CH}_{3}\right)\right]_{2}$	225	Brown	Crystals	82
$\mathrm{Cu}\left[\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)\right]_{2}$	273	Brown	Crystal	78
$\mathrm{Cu}\left[\mathrm{SAL3,5}\left(\mathrm{CH}_{3}\right)\right]_{2}$	228	Brown	Crystals	75
$\mathrm{Cu}[\mathrm{SAL4Cl}]_{2}$	240	Brown	Crystals	85
$\mathrm{Ni}\left[\right.$ SAL4F] ${ }_{2}$	85	Green	Powder	65
$\mathrm{Ni}\left[\text { SAL3F, } 4\left(\mathrm{CH}_{3}\right)\right]_{2}$	105	Yellow	Powder	70

Table 6.4 Co(II) AND Co(III) COMPLEXES:-

Complexes	M.P. ${ }^{\circ} \mathrm{C}$	Colour	State	\% Yield
$\mathrm{Co}[\mathrm{SAL4F}]_{2}$	75	Dark Brown	Powder	70
$\mathrm{Co}\left[\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)\right]_{2}$	190	Green	Powder	45
$\mathrm{Co}\left[\mathrm{SAL4}\left(\mathrm{CF}_{3}\right)\right]_{2}$	120	Red	Powder	43
$\mathrm{Co}\left[\mathrm{SAL3}, 5\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$	160	Dark Brown	Powder	45
Co[SAL4F] ${ }_{3}$	100	Black	Powder	68
$\mathrm{Co}\left[\mathrm{SAL4}\left(\mathrm{CF}_{3}\right)\right]_{3}$	95	Green	Powder	50
Co[SAL3F,4($\left.\left.\mathrm{CH}_{3}\right)\right]_{3}$	103	Red	Powder	60
$\mathrm{Co}\left[\mathrm{SAL4}\left(\mathrm{OCF}_{3}\right)\right]_{3}$	58	Dark Green	Powder	52

6.4.2 ELEMENTAL ANALYSIS

Table 6.5

Compounds	$\%$ C Cal. Found		$\%$ H Cal. Found		$\%$ N Cal. Found	
$\mathrm{Cu}\left[\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$	49.5	49.74	2.21	2.15	3.85	3.56
$\mathrm{Cu}\left[\text { SAL3 } \mathrm{F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$	64.6	64.29	4.20	4.18	5.40	5.02
$\mathrm{Cu}\left[\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)\right]_{2}$	53.76	53.56	2.88	2.58	4.48	4.37

6.4.3 ${ }^{1} \mathrm{H}$ NMR DATA :-

Table 6.6 $\operatorname{Co}($ III) AND Ni(II) COMPLEXES

Compounds	Peaks Assigned	δ	Integral	$\mathbf{M}^{\mathbf{a}}$
$\mathrm{Co}\left[\mathrm{SAL3}, 5\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$	$\begin{aligned} & \mathrm{CH} \\ & \mathrm{Ar}^{\mathrm{b}} \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 8.65 \\ & 7.02-7.69 \end{aligned}$	1 7	s m
$\mathrm{Co}[\mathrm{SAL4F}]_{3}$	$\begin{aligned} & \mathrm{CH} \\ & \mathrm{ArH} \end{aligned}$	$\begin{aligned} & \hline 8.59 \\ & 6.64-7.67 \end{aligned}$	1 8	S m
$\mathrm{Co}\left[\mathrm{SAL4}\left(\mathrm{CF}_{3}\right)\right]_{3}$	$\begin{aligned} & \mathrm{CH} \\ & \mathrm{ArH} \end{aligned}$	$\begin{aligned} & \hline 8.62 \\ & 6.97-7.70 \end{aligned}$	1 8	S m
$\mathrm{Co}\left[\text { SAL3F, } 4\left(\mathrm{CH}_{3}\right)\right]_{3}$	$\begin{aligned} & \mathrm{CH}_{3} \\ & \mathrm{CH} \\ & \mathrm{ArH} \end{aligned}$	$\begin{aligned} & 1.69 \\ & 8.02 \\ & 6.90-7.54 \end{aligned}$	3 1 7	s s m
$\mathrm{Co}\left[\mathrm{SAL4}\left(\mathrm{OCF}_{3}\right)\right]_{3}$	$\begin{aligned} & \mathrm{CH} \\ & \mathrm{Ar} \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 8.13 \\ & 6.57-7.03 \end{aligned}$	1 8	s m
$\mathrm{Ni}[\mathrm{SAL} 4 \mathrm{~F}]_{2}$	$\begin{aligned} & \mathrm{CH} \\ & \mathrm{ArH} \end{aligned}$	$\begin{aligned} & \hline 7.70 \\ & 6.47-7.69 \end{aligned}$	$\stackrel{1}{1}$ 8	s m
$\mathrm{Ni}\left[\mathrm{SAL3F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$	$\begin{aligned} & \mathrm{CH}_{3} \\ & \mathrm{CH} \\ & \mathrm{ArH} \end{aligned}$	$\begin{aligned} & \hline 1.7 \\ & 8.04 \\ & 6.60-7.22 \end{aligned}$	3 1 7	S s m

a $\mathrm{M}=$ Multiplicity, b $\mathrm{Ar}=$ Aromatic

NMR DISCUSSION:-

${ }^{1} \mathrm{H}$ NMR spectra of Co (III) complexes gave unsplit peaks for -CH and $-\mathrm{CH}_{3}$ protons, which shows that these complexes are fac forms. Similar unsplit spectra of $f a c$ forms of Co (III) chelates with trifluoroacetylacetonate ${ }^{32}$ and benzoylacetonate ${ }^{33}$ have been reported in the literature.

In Co (III) complexes there is no significant substituent effect on chemical shift observed in the case of $\mathrm{Co}\left[\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}, \mathrm{Co}[\mathrm{SALAF}]_{3}$ and $\operatorname{Co}\left[\operatorname{SAL} 4\left(\mathrm{CF}_{3}\right)\right]_{3}$, but for $\operatorname{Co}\left[\operatorname{SALA}\left(\mathrm{OCF}_{3}\right)\right]_{3}$ and $\operatorname{Co}\left[\operatorname{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)\right]_{3}$ a significant shift of 0.5 ppm in the peak for methylene - CH towards high field side is observed. A similar shift was observed in $\mathrm{Ni}(\mathrm{II})$ complexes. In $\mathrm{Ni}[\mathrm{SAL} 4 \mathrm{~F}]_{2}$ the chemical shift for the methylene -CH proton is $\approx 1 \mathrm{ppm}$ and for $\mathrm{Ni}\left[\mathrm{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$ the shift for methylene -CH proton is $\approx 0.5 \mathrm{ppm}$ towards the high field side.
${ }^{1} \mathrm{H}$ NMR chemical shifts of $-\mathrm{CH}, \mathrm{ArH}$ and $-\mathrm{CH}_{3}$ in the complexes are compared with those for the respective free ligands in Table 6.7. A significant shift in -CH is observed in $\mathrm{Co}(\mathrm{III})$ complexes, with $-3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)$ and $-4\left(\mathrm{OCF}_{3}\right)$ substituents, 0.5 ppm towards high field side, but no significant shift was observed for the $-3,5\left(\mathrm{CF}_{3}\right)_{2}, \quad-4 \mathrm{~F}$ and $-4\left(\mathrm{CF}_{3}\right)$ substituted complexes. Significant shifts were observed for the aromatic protons for complexes with -4 F and $-4\left(\mathrm{OCF}_{3}\right)$ substituents. $-\mathrm{CH}_{3}$ protons were significantly shifted on coordination.

In $\mathrm{Ni}(\mathrm{II})$ chelates a significant shift was observed in all the three types of protons i.e. $-\mathrm{CH}, \mathrm{ArH}$ and $-\mathrm{CH}_{3}$ with both substituents -4 F and $-3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)$
towards high field side, as compared to their respective free ligands. A comparison between the shifts in free ligands and their respective Co (III) and $\mathrm{Ni}(\mathrm{II})$ chelates is given in Table 6.7.

Most of the diamagnetic Ni (II) complexes become paramagnetic in solution and show broad ${ }^{1} \mathrm{H}$ NMR peaks. This behaviour is quite different from that of the Co (II) and Cu (II) complexes. The explanation for this change in magnetic properties of these $\mathrm{Ni}($ II $)$ chelates from diamagnetic to paramagnatic was given by Clark and Odell ${ }^{12}$. On the basis of their studies they concluded that in some solvents like pyridine nickel in Ni (II) chelates forms octahedral complexes by coordinating with two solvent molecules and becoming paramagnetic, these paramagnetic $\mathrm{Ni}(\mathrm{II})$ chelates gave slightly broad NMR peaks. The methylene -CH peak and ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Co}[\mathrm{SAL4F}]_{3}$ is given in Figure 6.3 and 6.4 respectively.

Chapter 6

Figure 6.3 - CH Peak of $\mathrm{Co}\left[\mathrm{SALAF}_{3}\right.$ in ${ }^{1}$ H NMR Spectrum

Figure 6.4 ${ }^{\prime} H^{\prime} N M R$ Spectrum of $\mathrm{Co}\left[\mathrm{SALAF}_{3}\right.$

Table 6.7 Comparison between shifts of $\mathrm{C}-\mathrm{H}, \mathrm{ArH}$ and $-\mathrm{CH}_{3}$ of $\mathrm{Co}(\mathrm{III})$ and $\mathrm{Ni}(I I)$ chelates and their free ligands.

Substituted	C-H	δ	ppm Shift ${ }^{\text {c }}$	ArH	δ	ppm Shift ${ }^{\text {c }}$	$-\mathrm{CH}_{3}$		ppm
Groups	Lig ${ }^{\text {a }}$	Che ${ }^{\text {b }}$		Lig*	Che ${ }^{\text {a }}$		Lig*	Che ${ }^{\text {a }}$	Shift ${ }^{\text {c }}$
$-3,5\left(\mathrm{CF}_{3}\right)_{2}$	8.58	8.65	(0.07)	$\begin{aligned} & \hline 6.88- \\ & 7.7 \end{aligned}$	$\begin{aligned} & \hline \hline 7.02- \\ & 7.69 \end{aligned}$	(0.12)	-	-	-
-4F (Ligand) $\mathrm{Co}(\mathrm{III}) \mathrm{L}_{3}$ $\mathrm{Ni}(\mathrm{II}) \mathrm{L}_{2}$	8.77	8.59 7.7	(0.18) 1.07	$\begin{aligned} & 7.1- \\ & 7.6 \end{aligned}$	6.64- 7.67 7.1- 7.6	$\begin{aligned} & 0.47 \\ & 0.63 \end{aligned}$	-	-	-
$-3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)$ (ligand) $\mathrm{Co}(\mathrm{III}) \mathrm{L}_{3}$ $\mathrm{Ni}(\mathrm{II}) \mathrm{L}_{2}$	8.59	$\begin{aligned} & 8.02 \\ & 8.04 \end{aligned}$	$\begin{aligned} & 0.57 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline 6.9- \\ & 7.41 \end{aligned}$	6.9 - 7.54 6.60- 7.22	$\begin{aligned} & (0.1) \\ & 0.3 \end{aligned}$	2.3	1.69 1.7	0.6 0.6
-4(OCF_{3})	8.69	8.13	0.56	$\begin{aligned} & 7.0- \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 6.5- \\ & 7.03 \end{aligned}$	0.5	-	-	-
$-4\left(\mathrm{CF}_{3}\right)$	8.47	8.62	(0.15)	$\begin{aligned} & 6.79- \\ & 7.59 \end{aligned}$	$\begin{aligned} & 6.97- \\ & 7.70 \end{aligned}$	(0.1)	-	-	-

[$\mathrm{a}=$ Ligand, $\mathrm{b}=$ Chelates, $\mathrm{c}=$ High Field $]$.

6.4.4 IR DATA :-

Table 6.8 Cu (II) AND Ni(II) COMPLEXES

Complexes	$\mathrm{v}_{(\mathrm{C}=\mathrm{N})} / \mathrm{cm}^{-1}$	$\mathrm{v}_{(\mathrm{C}-\mathrm{N})} / \mathrm{cm}^{-1}$	$\mathrm{v}_{\left(\mathrm{C}_{-} \mathrm{O}\right.} / \mathrm{cm}^{-1}$	$\mathrm{v}_{\left(\mathrm{M} _\mathrm{N}\right)} / \mathrm{cm}^{-1}$	$\mathrm{v}_{(\mathrm{M}-\mathrm{O}} / \mathrm{cm}^{-1}$
$\mathrm{Cu}[\mathrm{SAL}]_{2}$	1590 (1611 ${ }^{23}$)	1370	1150	530 (5293)	$490\left(495^{23}\right)$
$\mathrm{Cu}\left[\mathrm{SAL4}\left(\mathrm{CF}_{3}\right)\right]_{2}$	1580	1370	1110	550	470
$\mathrm{Cu}\left[\mathrm{SAL4}\left(\mathrm{OCF}_{3}\right)\right]_{2}$	1530	1370	1150	535	415
$\mathrm{Cu}[\mathrm{SAL4F}]_{2}$	1580	1360	1140	520	450
$\mathrm{Cu}\left[\mathrm{SAL3F}, 4\left(\mathrm{CH}_{3}\right)_{2}\right.$	1580	1360	1140	520	435
$\left.\mathrm{Cu}\left[\mathrm{SAL3,5(CF}_{3}\right)_{2}\right]_{2}$	1530	1380	1130	530	500
$\mathrm{Cu}\left[\mathrm{SAL3}, 5\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$	1530	1390	1140	555	410
$\mathrm{Cu}[\mathrm{SAL4Cl}]_{2}$	1580	1370	1200	525	425
$\mathrm{Ni}\left[\mathrm{SAL4F}_{2}\right.$	1550	1360	1140	540	430
$\mathrm{Ni}\left[\mathrm{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$	1570	1360	1140	520	415

Table 6.9 Co(II) AND Co(III) COMPLEXES

Complexes	$\mathrm{v}_{\left(\mathrm{C}=\mathrm{N} / \mathrm{cm}^{-1}\right.}$	$\mathrm{v}_{\left(\mathrm{C}_{\mathrm{O}}\right) / \mathrm{cm}^{-1}}$	$\mathrm{v}_{(\mathrm{C}-\mathrm{N})} / \mathrm{cm}^{-1}$	$\mathrm{v}_{\left(\mathrm{M} _\mathrm{N}\right)} / \mathrm{cm}^{-1}$	$\mathrm{v}_{\left(\mathrm{M}_{-}\right)} / \mathrm{cm}^{-1}$
$\mathrm{Co}[\mathrm{SAL}]_{2}$	1600 (1607 ${ }^{23}$)	1210	1310	520 (5193)	480 (4944)
$\mathrm{Co}\left[\right.$ SAL4F] ${ }_{2}$	1530	1150	1330	510	460
$\mathrm{Co}\left[\mathrm{SAL3,5}\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$	1530	1120	1320	520	470
$\mathrm{Co}\left[\mathrm{SAL4}\left(\mathrm{CF}_{3}\right)\right]_{2}$	1520	1140	1340	560	470
$\mathrm{Co}\left[\mathrm{SAL3,5}\left(\mathrm{CF}_{3}\right)_{2}\right]_{3}$	1520	1130	1320	540	490
$\mathrm{Co}\left[\right.$ SAL4F] ${ }_{3}$	1560	1100	1370	530	490
$\mathrm{Co}\left[\mathrm{SAL4}\left(\mathrm{CF}_{3}\right)\right]_{3}$	1570	1170	1320	540	480
Co[SAL3F,4($\left.\mathrm{CH}_{3}\right)_{3}$	1580	1190	1360	570	500
$\mathrm{Co}\left[\mathrm{SAL4}\left(\mathrm{OCF}_{3}\right)\right]_{3}$	1550	1110	1320	570	490

IR DISCUSSION:-
IR data for Cu (II), Ni (II), Co (II) and Co (III) chelates are given in Tables 6.8 and 6.9. In M (II) $[\mathrm{Cu}($ II $), \mathrm{Co}($ II $)$ and $\mathrm{Ni}($ II $)]$ chelates the $\mathrm{M}-\mathrm{N}$ bands are in the region $400-500 \mathrm{~cm}^{-1}$ and the M-O the bands are in the region $500-570 \mathrm{~cm}^{-1}$. This is consistent with the previous work described in the literature for $\mathrm{M}-\mathrm{N}$ and $\mathrm{M}-\mathrm{O}$ bonds for NO donor imine chelates ${ }^{24}$. No substituent effects on M-N and M-O bands are observed. Very small differences in v values for Co-N bond were observed in the case of $\mathrm{Co}(\mathrm{III})$ as compared to $\mathrm{Co}(\mathrm{II})$, whereas significant differences had been expected.

The free ligands exhibit bands at $1600-1650 \mathrm{~cm}^{-1}$ and $1200-1250 \mathrm{~cm}^{-1}$ due to $v(\mathrm{HC}=\mathrm{N})$ and $v(\mathrm{C}-\mathrm{O})$ groups respectively, which in the complexes are shifted towards lower frequency, to $1500-1550 \mathrm{~cm}^{-1}$ and $1100-1150 \mathrm{~cm}^{-1}$ for $v(\mathrm{C}=\mathrm{N})$ and $\mathrm{v}(\mathrm{C}-\mathrm{O})$ respectively. According to the X -ray studies the $\mathrm{C}-\mathrm{O}$ bond length becomes shorter in chelates as compared to the free ligands. So its band was expected to appear at higher frequency. The observed lowering of frequency may be due to the replacement of the light hydrogen atom by a metal atom, in chelated form, which compels the C-O bond to vibrate slowly.

The disappearance of the band in the region $3600-4000 \mathrm{~cm}^{-1}$ due to the -OH group in the spectra of the chelates of $\mathrm{Cu}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Co}$ (III) and $\mathrm{Ni}(\mathrm{II})$ confirms the deprotonation of the -OH group on coordination to the metal through the oxygen atom. This is also supported by ${ }^{1} \mathrm{H}$ NMR spectra, which show no peak for -OH in the region of $9-11 \mathrm{ppm}$.

Comparison of $\mathrm{v}_{\mathrm{C}-\mathrm{N}} \mathrm{cm}^{-1}$ for free ligands with their respective chelates is given in Table 6.10. $\mathrm{v}_{\mathrm{C}=\mathrm{N}}, \mathrm{v}_{\mathrm{C}-\mathrm{O}}, \mathrm{v}_{\mathrm{M}-\mathrm{N}}$ and $\mathrm{v}_{\mathrm{M}-\mathrm{O}} \mathrm{cm}^{-1}$ for M (II) and M (III) chelates with $-4 \mathrm{~F}-4\left(\mathrm{CF}_{3}\right) 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)$, and $-4\left(\mathrm{OCF}_{3}\right)$ substituents are compared in Table 6.11. $v_{\mathrm{M}-\mathrm{N}}$ and $\mathrm{v}_{\mathrm{M}-\mathrm{O}} \mathrm{cm}^{-1}$ for all of the chelates are compared in Tables 6.12 and 6.13 respectively.

Table 6.10 Comparison of $C-N$ stretch between free ligands and their $\mathrm{Cu}(I I), \mathrm{Ni}(I I), \mathrm{Co}(I I)$ and $\mathrm{Co}(I I I)$ complexes

	$\mathrm{V}_{\mathrm{C}-\mathrm{N}} / \mathrm{cm}^{-1}$				
	Ligand	$\mathrm{Cu}(\mathrm{II}) \mathrm{Che}^{\mathbf{a}}$	Ni(II) Che ${ }^{\text {a }}$	Co(II) Che ${ }^{\text {a }}$	Co(III) Che ${ }^{\text {a }}$
SAL	1380	1370	-	1310	-
SAL4F	1360	1360	1360	1360	1370
SAL4Cl	1380	1370	-	-	-
SAL4(CF3)	1370	1370	-	1340	1320
SAL4(OCF3)	1350	1370	-	-	1320
SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$	1350	1380	-	1320	1320
SAL3,5($\left.\mathrm{CH}_{3}\right)_{2}$	1350	1390	-	-	-
SAL3F,4(CH_{3})	1360	1360	1360	-	1360

$\mathrm{a}=$ Chelates

Table 6.11 Comparison of $v_{C=N}, v_{C-O}, v_{M-N}$ and v_{M-O} for $M(I I)$ and $M(I I I)$ chelates with $-4 F$ and $3 F, 4(\mathrm{CH} 3)$
substituents.

Ligands \rightarrow	SAL3,5(CH32) SAL3F,4(CH $\left.{ }_{3}\right)$ SAL4(CF_{3}) SAL4F			
Chelates \downarrow	$\mathrm{v}_{\mathrm{C}=\mathrm{N}} \mathrm{cm}^{-1}$	$\mathrm{v}_{\mathrm{C}-\mathrm{O}} \mathrm{cm}^{-1}$	$\mathrm{v}_{\mathrm{M}-\mathrm{N}} \mathrm{cm}^{-1}$	$\mathrm{v}_{\mathrm{M}-\mathrm{O}} \mathrm{cm}^{-1}$
$\mathrm{Cu}(\mathrm{II})$	1530 1580 1580 1580	$\begin{array}{r} \underline{1130} \\ 1140 \\ 1110 \\ \mathbf{1 1 4 0} \end{array}$	530 520 550 520	500 435 470 450
$\mathrm{Ni}(\mathrm{II})$	1570 1550	1140 1140	520	415 430
Co (II)	1530 1520 1530	1320 1340 1150	520 560 510	470 470 460
Co(III)	1520 1580 1560 1560	1320 1190 1370 1100	540 570 530 530	$\begin{aligned} & \underline{490} \\ & 500 \\ & 490 \\ & 490 \end{aligned}$

Table 6.12 Comparison of $v_{M-N} \mathrm{~cm}^{-1}$ of $M(I I)$ and $M(I I I)$ chelates

Ligands	$v_{\text {M-N }} \mathrm{cm}^{-1}$			
	$\mathrm{Cu}(\mathrm{II})$	$\mathrm{Ni}(\mathrm{II})$	Co (II)	Co (III)
SAL	530	-	520	-
SAL4F	520	540	510	530
SAL4(CF_{3})	550	-	560	540
SAL4(OCF_{3})	535	-	-	570
SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$	530	-	520	540
SAL3F,4($\left.\mathrm{CH}_{3}\right)$	520	520	-	570

Table 6.13 Comparison of $V_{M-O} \mathrm{~cm}^{-1}$ for $M(I I)$ and $M(I I I)$ chelates

Ligands	$\mathrm{V}_{\mathrm{M}-\mathrm{O}} \mathrm{cm}^{-1}$			
	$\mathrm{Cu}(\mathrm{II})$	Ni (II)	Co (II)	Co (III)
SAL	490	-	494	-
SALAF	450	430	460	490
SAL4(CF_{3})	470	-	470	480
SAL3,5($\left.\mathrm{CF}_{3}\right)_{2}$	500	-	470	480
$\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)$	415	-	-	490
SAL3,4($\left.\mathrm{CH}_{3}\right)$	435	415	-	500

6.4.5 MASS SPECTROSCOPIC RESULTS:-

Table 6.14 $\mathbf{C u}$ (II) AND Ni(II) COMPLEXES

Complexes	Calculated Mass	Ions Observed
$\mathrm{Cu}[\mathrm{SAL}]_{2}$	456	${ }^{+}$FAB 456CuL 2 , $\begin{aligned} & 259 \mathrm{CuL}_{1}, 518 \mathrm{Cu}_{2} \mathrm{~L}_{2}, \\ & 716 \mathrm{Cu}_{2} \mathrm{~L}_{3} \end{aligned}$
$\mathrm{Cu}\left[\mathrm{SAL} 4\left(\mathrm{OCFF}_{3}\right)\right]_{2}$	624	${ }^{+} \mathrm{FAB} 625 \mathrm{CuL}_{2}$, $\begin{aligned} & 343 \mathrm{CuL}_{1}, 686 \mathrm{Cu}_{2} \mathrm{~L}_{2}, \\ & 968 \mathrm{Cu}_{2} \mathrm{~L}_{3} \end{aligned}$
$\mathrm{Cu}\left[\text { SAL3F, } 4\left(\mathrm{CH}_{3}\right)\right]_{2}$	520	${ }^{+} \mathrm{FAB} 520 \mathrm{CuL}_{2}$, $\begin{aligned} & 291 \mathrm{CuL}_{1}, 582 \mathrm{Cu}_{2} \mathrm{~L}_{2}, \\ & 812 \mathrm{Cu}_{2} \mathrm{~L}_{3} \end{aligned}$
$\mathrm{Cu}\left[\mathrm{SAL4}\left(\mathrm{CF}_{3}\right)\right]_{2}$	593	${ }^{+} \mathrm{FAB} 592 \mathrm{CuL}_{2}$, $328 \mathrm{CuL}_{1}$
$\mathrm{Cu}[\mathrm{SAL} 4 \mathrm{~F}]_{2}$	493	$\begin{aligned} & { }^{+} \mathrm{FAB} 492 \mathrm{CuL}_{2}, \\ & 277 \mathrm{CuL}_{1}, 554 \mathrm{Cu}_{2} \mathrm{~L}_{2}, \\ & 768 \mathrm{Cu}_{2} \mathrm{~L}_{3} \end{aligned}$
$\mathrm{Cu}\left[\right.$ SAL4Cl] ${ }_{2}$	525	${ }^{+}$FAB 526CuL ${ }^{2}$, $\begin{aligned} & 293 \mathrm{CuL}_{1}, 588 \mathrm{Cu}_{2} \mathrm{~L}_{2}, \\ & 716 \mathrm{Cu}_{2} \mathrm{~L}_{3} \end{aligned}$
$\mathrm{Cu}\left[\mathrm{SAL3}, 5\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$	728	${ }^{+}$FAB 728CuL 2, $395 \mathrm{CuL}_{1}$

Complexes	Calculated Mass	Ions Observed
$\mathrm{Cu}\left[\mathrm{SAL} 3,5\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$	512	${ }^{+}$FAB 513CuL 2, $\begin{aligned} & 287 \mathrm{CuL}_{1}, 574 \mathrm{Cu}_{2} \mathrm{~L}_{2}, \\ & 800 \mathrm{Cu}_{2} \mathrm{~L}_{3} \end{aligned}$
$\mathrm{Ni}[\mathrm{SAL4F}]_{2}$	487	${ }^{+}$FAB 486NiL ${ }_{2}$, $\begin{aligned} & 273 \mathrm{NiL}_{1}, 572 \mathrm{Ni}_{2} \mathrm{~L}_{2} \\ & 758 \mathrm{Ni}_{2} \mathrm{~L}_{3} \end{aligned}$
$\mathrm{Ni}\left[\mathrm{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$	515	$\begin{aligned} & { }^{+} \mathrm{FAB} 514 \mathrm{NiL}_{2}, \\ & 287 \mathrm{NiL}_{1}, 572 \mathrm{Ni}_{2} \mathrm{~L}_{2}, \\ & 800 \mathrm{Ni}_{2} \mathrm{~L}_{3} \end{aligned}$

DISCUSSION:

All the chelates of M (II) and M (III) gave very significant peaks for ML_{2} and ML_{3} molecular ions respectively, and also gave significant peaks for $\mathrm{ML}_{1}, \mathrm{M}_{2} \mathrm{~L}_{2}$ and $\mathrm{M}_{2} \mathrm{~L}_{3} . \mathrm{M}_{2} \mathrm{~L}_{2}$ and $\mathrm{M}_{2} \mathrm{~L}_{3}$ are thought to be formed in the gas phase at high temperature within the ionising tube. This difference between solution and gas phase may be because in solution of chelates different bonds break because of solvation and nucleophilic attack but in the gas phase the weakest bond breaks, due to high kinetic energy.

In the mass spectra of $\mathrm{Co}(\mathrm{II})$ complexes a peak for $\mathrm{ML}_{1} \mathrm{X}$ where $\mathrm{X}=$ $\mathrm{Ph}(\mathrm{O}) \mathrm{CH}=\mathrm{N}$ was also observed. Similarly, peaks for $\mathrm{ML}_{1} \mathrm{X}$ and $\mathrm{ML}_{2} \mathrm{X}$ were observed for Co (III) chelates, which is consistent with the behaviour of the $\mathrm{Co}(\mathrm{II})$ chelates. This fragmentation was observed for $-3,5\left(\mathrm{CF}_{3}\right)_{2},-4\left(\mathrm{CF}_{3}\right)$ and $-4\left(\mathrm{OCF}_{3}\right)$ substituents, but not for -4 F and $3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)$ substituents. No $\mathrm{ML}_{\mathrm{n}} \mathrm{X}$ peaks were observed in the mass spectra of any of the $\mathrm{Cu}($ II $)$ or Ni (II) chelates. This unusual behaviour of the Co (II) and Co (III) complexes, as compared to $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$, is still not clear. It was thought that the $=\mathrm{N}$ aryl bond weakens upon coordination with metals, which effect is more enhanced in Co (II) and Co (III) as compared to Cu (II) and $\mathrm{Ni}(\mathrm{II})$. This weakening of the $=\mathrm{N}$-aryl bond was also noticed in IR studies; comparison of $\mathrm{C}-\mathrm{N}$ stretches in free ligands with their respective $\mathrm{Cu}($ II $), \mathrm{Ni}($ II $), \mathrm{Co}$ (II) and $\mathrm{Co}($ III $)$ chelates is given in Table 6.10. Mass spectra of $\mathrm{Cu}\left[\mathrm{SALAF}_{2}\right.$, $\mathrm{Ni}\left[\mathrm{SALAF}_{2}, \mathrm{Co}\left[\mathrm{SALACF}_{3}\right]_{2}\right.$ and $\mathrm{Co}\left[\mathrm{SALACF}_{3}\right]_{2}$ are given in Figures 6.5, 6.6, 6.7 and 6.8 respectively.

Figure 6.5 Mass Spectrum of $\mathrm{Cu}[S A L 4 F]_{2}$

Figure 6.6 Mass Spectrum of $\mathrm{Ni}[S A L 4 F]_{2}$

Figure 6.7 Mass Spectrum of $\operatorname{Co}\left[S A L 4^{\left(C F_{3}\right)}\right]_{2}$

Figure 6.8 Mass Spectrum of $\operatorname{Co}\left[S A L A\left(C F_{3}\right)\right]_{3}$

6.4.6 UV/VIS SPECTROSCOPY:-

All seven $\mathrm{Cu}(\mathrm{II})$ chelates gave bands in the visible region, in the range 650 to 670 nm . The parent complex, $\mathrm{Cu}[\mathrm{SAL}]$ with no substituent, gave a peak at 667.5 nm , which is the highest value, and $\mathrm{Cu}[\mathrm{SAL} 4 \mathrm{Cl}]$ gave a peak at 650 nm which is the lowest value. All other chelates gave peaks in between 650 and 667 nm , the $\lambda_{\text {max }}, v, E(c a l c$. from $E=h v)$ and Hammett σ values are given in Table 6.13.

Table 6.13 $\lambda_{\max , v, E}$ and Hammett σ values for $\mathrm{Cu}(I I)$ complexes. σ and λ max values for $\mathrm{Cu}_{[}\left[\mathrm{H}_{2} \mathrm{O}\right]_{6}$,
$\mathrm{Cu}\left[\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right], \mathrm{Cu}[\mathrm{en}]_{2}, \mathrm{Cu}[\mathrm{acac}]_{2}$ and
$\mathrm{Cu}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]_{2}$ values are collected from literature

Chelates	$\lambda_{\text {max }} / \mathrm{nm}$	$\begin{aligned} & \hline \hline \mathrm{V} / \mathrm{s}^{-1} \\ & \times 10^{14} \end{aligned}$	$\begin{gathered} \hline \hline{\mathbf{E} / \mathrm{Jmol}^{-1}} \times 10^{10} \end{gathered}$	$\sigma^{\text {a }}$
$\mathrm{Cu}[\mathrm{SAL}]_{2}$	667.5	3.40	23.21	0.0
$\mathrm{Cu}\left[\mathrm{SAL4}\left(\mathrm{CF}_{3}\right)\right]_{2}$	655.0	3.50	23.21	0.53
$\mathrm{Cu}[\mathrm{SAL4F}]_{2}$	660.0	3.48	23.10	0.15
$\mathrm{Cu}[\mathrm{SAL4Cl}]_{2}$	650.0	3.53	23.40	0.24
$\mathrm{Cu}\left[\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)\right]_{2}$	657.0	3.50	23.21	
$\mathrm{Cu}\left[\mathrm{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$	650.0	3.54	23.47	$0.20{ }^{\text {b }}$
$\mathrm{Cu}\left[\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$	655.0	3.50	23.21	0.46
$\mathrm{Cu}\left[\mathrm{H}_{2} \mathrm{O}\right]_{6}{ }^{34}$	800.0	2.90	19.23	
$\mathrm{Cu}\left[\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{34}$	600.0	3.83	25.39	
$\mathrm{Cu}[\mathrm{en}]_{2}{ }^{35}$	540.0	4.15	27.51	
Cu [acac] ${ }_{2}{ }^{36,37}$	654.0	3.52	23.34	
$\mathrm{Cu}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]_{2}{ }^{36}$	660.0	3.48	23.1	

$a=$ ref. 38 and $39, b=$ sum of +0.34 for $p(-F)$ and -0.14 for $m\left(-\mathrm{CH}_{3}\right)$

Many other $\mathrm{Cu}(\mathrm{II})$ chelates with O and N donor ligands e.g NH_{3}, $\mathrm{H}_{2} \mathrm{O}$, ethylenediamine (en), acetylacetone (acac) and salicylaldehyde (SA), gave bands in the visible region approximately in the same region of 550 to 675 nm . A spectrochemical series was established with the energy ($\mathrm{E}=\mathrm{h} v$) values of these ligands, fitting them between the values for $\mathrm{H}_{2} \mathrm{O}$ and en, considering $\mathrm{H}_{2} \mathrm{O}$ as the weakest and en as the strongest ligand. The order of ligand strength is

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O} & <\mathrm{SAL}<\mathrm{SA}=\mathrm{SAL} 4 \mathrm{~F}<\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)<\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}= \\
\mathrm{SAL} 4\left(\mathrm{CF}_{3}\right) & <\mathrm{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)=\mathrm{acac}<\mathrm{NH}_{3}<\mathrm{en}
\end{aligned}
$$

As well as the d-d band in the visible region, there were two other peaks in the UV region, one at 250 to 300 nm , and other at 300 to 380 nm . There are many possibilities for these peaks to appear, they may be due to ligand transitions, π to π^{*} delocalised bond transitions, or may be due to charge transfer.

6.5 REFERENCES:-

(1) L. Hunter and J. A. Marriot, J. Chem. Soc., 2000, 1937.
(2) H. S. Verter and A. E. Frost, J. Amer. Chem. Soc., 82, 85, 1960.
(3) B. O. West, Nature, 173, 1187, 1954.
(4) B. O. West, J. Chem. Soc., 3115, 1952.
(5) J. W. Smith, " The Chemistry of the Carbon-Nitrogen Double Bond", ed. S. Patai, Interscience Publishers, London, 235, 1970.
(6) J. M. Stewart and E. C. Lingafelter, Acta Cryst., 12, 842, 1959.
(7) S. H. Simonsen and E. C. Pfluger, Acta Cryst., 10, 471, 1957.
(8) L. Sacconi, P. Paoletti and R. Cini, J. Inorg. Nucl. Chem., 8, 492, 1958.
(9) C. M. Harris, S. H. Lenzer and R. L. Martin, Aust. J. Chem., 11, 331, 1958.
(10) J. E. Mills and D. P. Mellor, J. Amer. Chem. Soc., 64, 181, 1942.
(11) J. B. Willis and D. P. Mellor, J. Amer. Chem. Soc., 69, 1237, 1947.
(12) H. C. Clark and A. L. Odell, J. Chem. Soc., 3431, 1955.
(!3) F. Basolo and W. R. Matoush, J. Amer. Chem. Soc., 75, 5663, 1953.
(14) L. Sacconi, P. Paoletti and G. Del Re, J. Amer. Chem. Soc., 79, 4062, 1957.
(15) L. Sacconi, M. Ciampolini, F. Maggio and G. Del Re, J. Amer. Chem. Soc., 82, 815, 1960.
(16) L. Sacconi, R. Cini and F. Maggio, J. Amer. Chem. Soc., 79, 3933, 1957.
(17) L. Sacconi, R. Cini, M. Ciampolini and F. Maggio, J. Amer. Chem. Soc., 82, 3487, 1965.
(18) L. Sacconi, P. Paoletti and R. Cini, J. Amer. Chem. Soc., 80, 3583, 1958.
(19) S. Yamada and N. Nishikawa, Bull. Chem. Soc. Jpn., 36, 755, 1963.
(20) M. R. Fox, E. C. Lingafelter, P. L. Orioli and L. Sacconi, Nature, 197, 1104, 1963.
(21) E. G. Cox and K. C. Webster, J. Chem. Soc. 731, 1935.
(22) E. G. Cox, E. Sharratt, W. Wardlaw and K. C. Webster, J. Chem. Soc., 129, 1936.
(23) G. C. Percy and D. A. Thornton, J. Inorg. Nucl. Chem., 34, 3357, 1972.
(24) S. N. Dubey and B. Kaushik, Synth. React. Inorg. Met-Org. Chem., 17, 181, 1987.
(25) M. Calvin and K. W. Wilson, J. Amer. Chem. Soc., 67, 2003, 1945.
(26) N. V. Sidgwick, J. Chem. Soc., 433, 1941.
(27) N. V. Sidgwick, "The Electronic Theory of Valency", Oxford University Press, Oxford, UK, 168, 1927.
(28) S. Yamada, Coord. Chem. Rev, 1, 415, 1966.
(29) B. O. West, J. Chem. Soc., 4944, 1960.
(30) M. Ciampolini, F. Maggio and F. P. Cavasino, Inorg. Chem., 3, 1188, 1964.
(31) A. Chakravorty and R. H. Holm, Inorg. Chem., 3, 1521, 1964.
(32) R. C. Fay and T. C. Piper, J. Amer. Chem. Soc., 85, 500, 1963.
(33) R. C. Fay and T. C. Piper, J. Amer. Chem. Soc., 84, 2303, 1962.
(34) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 5th edition, Wiley-Interscience Publication, New York, 770, 1988.
(35) H. Yokoi, M. Otagiri and T. Isobe, Bull. Chem. Soc. Jpn., 46, 442, 1973.
(36) H. Yokoi, M. Sai and T. Isobe, Bull. Chem. Soc. Jpn., 45, 1100, 1972.
(37) R. L. Belford, A. E. Martell and M. Calvin, J. Inorg. Nucl. Chem., 2, 11, 1956.
(38) J. March, "Advanced Organic Chemistry", 4th. ed., Wiley Interscience, New York, 280, 1992.
(39) N. S. Isaacs, "Physical Organic Chemistry", 2nd. ed., Longmans, Harlow, 152, 1995.

CHAPTER 7

STRUCTURE DETERMINATION OF

SOME NOVEL SUBSTITUTED

SALICYLIDENEANILINE COPPER(II)

COMPLEXES

7.1 INTRODUCTION:-

This chapter describes the structures of some novel copper(II) salicylaldimine complexes which were determined by single crystal X-ray diffraction. The synthesis and characterisation of these complexes have been given in chapter 6 . Information concerning bond lengths and bond angles has been gathered here.

The 4-coordinate complexes formed with divalent metal ions are of considerable interest as they vary in structure from planar to tetrahedral, not only in dependence on the nature of the divalent metal involved, but also on the nature of the substituent on the nitrogen atom and the substituents, if any, on the aromatic ring of the salicylaldimine molecule. The complexes of salicylaldimine itself $(\mathrm{R}=\mathrm{H})$ with $\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ are all planar and crystallise in isomorphous forms.

X-Ray diffraction studies show that an N -phenyl group causes considerable distortion from overall coplanarity in the molecule. ${ }^{1-3}$ Distorted tetrahedral coordination occurs in some bis(salicylaldiminato) complexes, where R is bulky.

Stackelberg ${ }^{4}$ confirmed the planar configuration for a number of copper chelates of the salicylaldehyde-imine type by means of X-ray crystal analysis[Figure 7.1]. For the anil chelates the benzene ring attached to the donor nitrogen is not coplanar with the rest of the molecule, but the four donor atoms are still coplanar with the central copper atom. In the
case of bis salicylaldehyde-anil $\mathrm{Cu}($ II $)$ the arrangement of the donors is trans, since the copper atom was shown to be the centre of symmetry.

The trans arrangement had already been demonstrated for a number of planar chelates of $\mathrm{Cu}, \mathrm{Ni}, \mathrm{Pt}$ and Pd by Cox et $\mathrm{al}^{5,6}$. Whereas all the bonds of the imine nitrogens lie in the plane of the metal chelate, phenyl groups attached to them are rotated out of the plane. Since there is no possibility of resonance interaction between the anil nitrogen and the phenyl group, as there are no free electron pairs in the nitrogen atom after chelation takes place, the N -phenyl bond is a purely single bond and the phenyl group would be free to rotate.

Figure 7.1 General formula of bis[N-phenyl salicylaldimine $\mathrm{CH}($ II) chelate.

7.2 METHOD OF CRYSTALLISATION:-

To a concentrated solution of the copper salicylidimine complex in CHCl_{3}, petroleum ether $\left(40-60^{\circ} \mathrm{C}\right)$ was added down the side of the tube so that it formed a separate layer. The solution was left for a few days, during which the complex crystallised out as brown rhombic plates.

7.3 STRUCTURAL STUDY OF SALICYLIDENE ANILINE COPPER(II) COMPLEXES:-

All four of the complexes prepared for this work have been investigated using X-ray crystallography. Their formulae are shown in Figure 7.2, 7.3, 7.4, 7.5.

Figure 7.2 $\mathrm{Cu}[\mathrm{SAL4F}]_{2}$

Figure $7.3 \quad \mathrm{Cu}\left[\mathrm{SAL} 3 \mathrm{~F}, \mathbf{4}\left(\mathrm{CH}_{3}\right)\right]_{\mathbf{2}}$

Figure 7.4 $\mathrm{Cu}\left[\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$

Figure 7.5 $\mathrm{Cu}\left[\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)\right]_{2}$

7.3.1 Cu-Bis-SALICYLIDENE 4-FLUORO ANILINE:-

The $\mathrm{Cu}[\mathrm{SAL} 4 \mathrm{~F}]_{2}$ crystal system is triclinic with space group $\mathrm{P}-1$. Its R value is 0.05 . The N -phenyl group is rotated by an angle of 56.4° from the overall coplanarity of the $\mathrm{CuN}_{2} \mathrm{O}_{2}$ unit. Packing and 3D stereo pair diagrams are given in Figures 7.7 and 7.8. Selected bond lengths and bond angles are given in Tables 7.1 and 7.2 respectively.

Figure 7.6 $\mathrm{Cu}\left[\mathrm{SALAF}_{2}\right.$

Bonds	Lengths[\AA B	Bonds	Lengths[\AA]
$\mathrm{N}(1)-\mathrm{Cu}(1)$	$2.007(4)$	$\mathrm{O}(1)-\mathrm{Cu}(1)$	$1.885(4)$
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.285(6)$	$\mathrm{C}(5)-\mathrm{O}(1)$	$1.308(6)$
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.440(7)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.419(7)$
$\mathrm{C}(9)-\mathrm{C}(8)$	$1.389(7)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.435(8)$
$\mathrm{C}(8) \mathrm{C}(13)$	$1.392(8)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.368(9)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.357(9)$	$\mathrm{C}(11)-\mathrm{F}(1)$	$1.369(7)$

Table 7.1 Selected Bond Lengths of Cu-bis-salicylidene-4-fluoro aniline.

Figure 7.7 Packing Diagram of $\mathrm{Cu}[\mathrm{SAL4F}]_{2}$

	Angles $\left[^{\circ}\right]$		Angles[$\left.{ }^{\circ}\right]$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$91.1(2)$	$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{Cu}(1)$	$129.8(4)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Cu}(1)$	$123.4(4)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$122.4(5)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$116.2(4)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$119.7(5)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$123.1(5)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$127.3(5)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$122.4(6)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{F}(1)$	$119.0(6)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{F}(1)$	$118.6(6)$		

Table 7.2 Selected Bond Angles of Cu bis-salicylidene-4-fluoro aniline.

Figure 7.8 3D Stereo pair of Cu-bis-salicylidene-4fluoro aniline

7.3.2 Cu-Bis-SALICYLIDENE 3-FLUORO 4-METHYL ANILINE

The $\mathrm{Cu}\left[\mathrm{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$ crystal system is orthorhombic with space group Pbca. Its R value is 0.044 . The structure diagram is given in Figure 7.9. In this structure the substituted fluorine atom and the hydrogen atom on $\mathrm{C}(10)$ and $\mathrm{C}(12)$ are disordered with 50% probability at each site. The N-phenyl group is rotated by an angle of 137° from overall coplanarity of the $\mathrm{CuN}_{2} \mathrm{O}_{2}$ unit. Selected bond lengths and bond angles are given in Tables 7.3 and 7.4 respectively. Packing and 3D stereo pair diagrams are given in Figure 7.10 and 7.11 respectively.

Figure $7.9 \mathrm{Cu}\left[\mathrm{SAL3F}, \mathbf{4}\left(\mathrm{CH}_{3}\right)\right]_{2}$

Bonds	Lengths $[\AA]$	Bonds	Lengths $[\AA]$
$\mathrm{N}(1)-\mathrm{Cu}(1)$	$2.018(3)$	$\mathrm{O}(1)-\mathrm{Cu}(1)$	$1.884(2)$
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.295(4)$	$\mathrm{O}(1)-\mathrm{C}(5)$	$1.316(4)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.444(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.417(5)$
$\mathrm{C}(7)-\mathrm{C}(6)$	$1.434(5)$	$\mathrm{C}(6)-\mathrm{C}(1)$	$1.403(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.384(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.417(5)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.381(5)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.380(6)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.381(6)$	$\mathrm{C}(11)-\mathrm{C}(14)$	$1.521(5)$
$\mathrm{C}(10)-\mathrm{F}(1)$	$1.304(6)$	$\mathrm{C}(12)-\mathrm{F}\left(1^{\prime}\right)$	$1.306(6)$

Table 7.3 Selected Bond Lengths of Cu-bis-salicylidene 3 fluoro,4-methyl aniline.

Figure 7.10 Packing Diagram Of Cu[SAL3F4Me] $]_{2}$

	Angles[$\left.{ }^{\circ}\right]$		Angles[$\left.{ }^{\circ}\right]$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$91.05(11)$	$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$121.6(2)$
$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$123.9(2)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$116.1(3)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$123.2(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$122.4(3)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$117.8(3)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$121.5(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$123.5(4)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	118.5() 3
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$123.2(4)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$125.9(3)$
$\mathrm{F}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$115.0(4)$	$\mathrm{F}\left(1^{\prime}\right)-\mathrm{C}(12)-\mathrm{C}(11)$	$116.7(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$115.6(4)$	S	

Table 7.4 Selected Bond Angles of Cu-bis-salicylidene 3fluoro, 4-methyl aniline.

Figure 7.11 3D Stereo pair of Cu-bis-salicylidene 3-F, 4-(CH_{3}) aniline.

7.3.3 Cu-Bis-SALICYLIDENE 3,5 Di(TRIFLUORO METHYL) ANILINE

The $\mathrm{Cu}\left[\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$ crystal structure is monoclinic with space group $\mathrm{C} 2 / \mathrm{c}$. Its R value is 0.0395 . In this structure both the trifluoro methyl groups is disordered. The structure diagram is given in Figure 7.12. The N-phenyl group is distorted by an angle 59.4° from the overall coplanarity in the molecule. Packing and 3D stereo pair diagrams are given in Figures 7.13 and 7.14 respectively. Selected bond lengths and bond angles are given in Tables 7.5 and 7.6 respectively.

Figure 7.12 $\mathrm{Cu}\left[\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$

Bond	Lengths[\AA]	Bonds	Lengths[\AA]
$\mathrm{Cu}(1)-\mathrm{N}(1)$	$1.969(2)$	$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.869(2)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.295(3)$	$\mathrm{O}(1)-\mathrm{C}(5)$	$1.300(4)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.435(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.408(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.370(4)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.431(4)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.386(4)$	$\mathrm{C}(6)-\mathrm{C}(1)$	$1.413(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.392(4)$	$\mathrm{C}(13)-\mathrm{C}(12)$	$1.374(3)$
$\mathrm{C}(10)-\mathrm{C}(14)$	$1.509(4)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.374(4)$
$\mathrm{C}(12)-\mathrm{C}(15)$	$1.496(4)$	$\mathrm{C}(12)-\mathrm{C}(11)$	$1.383(4)$
$\mathrm{C}(15)-\mathrm{F}\left(5^{\prime}\right)$	$1.298(13)$	$\mathrm{C}(14)-\mathrm{F}(1)$	$1.279(10)$
$\mathrm{C}(14)-\mathrm{F}\left(1^{\prime}\right)$	$1.381(14)$	$\mathrm{C}(15)-\mathrm{F}(5)$	$1.302(8)$

Table 7.5 Selected Bond Lengths of Cu-bis-salicylidene-3,5 di(trifluoro methyl) aniline.

Figure 7.13 Packing Diagram Of $\mathrm{Cu}\left[\mathrm{SALB}_{3}, 5\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$

	Angles[$\left.{ }^{\circ}\right]$		Angles[$\left.{ }^{\circ}\right]$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$93.47(8)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Cu}(1)$	$123.9(2)$
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{Cu}(1)$	$127.6(2)$	$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	$118.3(2)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$124.1(2)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$122.1(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$122.9(3)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$117.6(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$125.9(3)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$120.2(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$122.9(3)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.0(3)$
$\mathrm{C}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$117.4(3)$	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.2(2)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.1(2)$	$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.1(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	$120.2(3)$		

Table 7.6 Selected Bond Angles of Cu-bis-salicylidene-3,5 di(tri fluoromethyl)aniline.

Figure 7.14 3D Stereo pair of Cu-bis-salicylidene3,5(CF $)_{2}$ aniline.

7.3.4 Cu-Bis SALICYLIDENE 4-TRIFLUOROMETHOXY ANILINE

The $\mathrm{Cu}\left[\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)\right]_{2}$ crystal structure is monoclinic with space group $\mathrm{P} 2_{1} / \mathrm{c}$. Its R value is 0.0496 . The structure diagram is given in Figure 7.15. In this structure the trifluoro methoxy group is found to be disordered. The N -phenyl group is rotated by an angle 129.3° from the overall coplanarity of the $\mathrm{CuN}_{2} \mathrm{O}_{2}$ unit. Packing and 3D stereo pair diagrams are given in Figures 7.16 and 7.17 respectively. Selected bond lengths and bond angles are given in Tables 7.7 and 7.8 respectively.

Figure 7.15 $\mathrm{Cu}\left[\mathrm{SAL4}\left(\mathrm{OCF}_{3}\right)\right]_{2}$

Bonds	Lengths[\AA B	Bonds	Lengths[$\mathbf{A}]$
$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.877(2)$	$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2.018(2)$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.309(4)$	$\mathrm{N}(1)-\mathrm{C}(7)$	$1.291(4)$
$\mathrm{C}(5)-\mathrm{C}(4)$	$1.409(5)$	$\mathrm{N}(1)-\mathrm{C}(8)$	$1.434(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.414(4)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.384(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.431(5)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.414(4)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.364(6)$	$\mathrm{C}(8)-\mathrm{C}(13)$	$1.375(5)$
$\mathrm{C}(11)-\mathrm{O}(2)$	$1.430(5)$	$\mathrm{O}(2)-\mathrm{C}(14)$	$1.281(7)-$
$\mathrm{C}(14)-\mathrm{F}(1)$	$1.381(14)$	$\mathrm{C}(14)-\mathrm{F}\left(1^{\prime}\right)$	$1.25(2)$
$\mathrm{C}(12)-\mathrm{C}(11)$	$1.376(6)$		

Table 7.7 Selected Bond Lengths of Cu-bis salicylidene-4 trifluoromethoxy aniline.

Figure 7.16 Packing Diagram Of $\mathrm{Cu}\left[\mathrm{SALAOCF}_{3}\right]_{2}$

	Angles[$\left.{ }^{\circ}\right]$		Angles[$\left.{ }^{\circ}\right]$
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(1)$	90.72	$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$126.8(2)$
$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	$122.2(2)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$119.5(3)$
$\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	$121.6(2)$	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$123.1(3)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$127.0(3)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$116.0(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$119.1(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$127.9(3)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.7(3)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$120.8(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.8(4)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(2)$	$119.8(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(2)$	$118.0(4)$	$\mathrm{C}(11)-\mathrm{O}(2)-\mathrm{C}(14)$	$119.9(5)$

Table 7.8 Selected Bond Angles of Cu-bis-salicylidene 4-trifluoro methoxy aniline.

Figure 7.17 $3 D$ Stereo pair of Cu-bis-salicylidene-4 -(trifluoro methoxy) aniline.

7.4 DISCUSSION:-

In the structures solved during this work no significant differences in the $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond lengths of bis[SAL4F] $]_{2} \mathrm{Cu}(\mathrm{II})$, bis $\left[\mathrm{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2} \mathrm{Cu}(\mathrm{II})$ and $\operatorname{bis}\left[\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)\right]_{2} \mathrm{Cu}(\mathrm{II})$ were observed. However, the $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond lengths for bis[SAL3,5($\left.\left.\mathrm{CF}_{3}\right)_{2}\right]_{2} \mathrm{Cu}(\mathrm{II})$ are significantly shorter than those in the other complexes. Bond distances in the complexes are compared in Table 7.9.

There is a significant change in the bond length of $\mathrm{O}-\mathrm{C}(5)$ after chelation as compared to the free ligands. There is no significant change observed in the bond length $\mathrm{N}-\mathrm{C}(7)$ before and after chelation of $\mathrm{Cu}\left[\mathrm{SALAF}_{2}\right.$ and $\mathrm{Cu}\left[\mathrm{SAL}_{2}\left(\mathrm{OCF}_{3}\right)\right]_{2}$. But a significant change[0.021(5)] was observed in the case of $\mathrm{Cu}\left[\mathrm{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$. A significant change in $\mathrm{N}-\mathrm{C}(8)$ bond length was noticed in $\mathrm{Cu}[\mathrm{SAL} 4 \mathrm{~F}]_{2}, \mathrm{Cu}\left[\mathrm{SAL} 3 \mathrm{~F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$ and $\mathrm{Cu}\left[\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)\right]_{2}$ before and after chelation, the increases in the respective bond lengths were $0.031(7), 0.035(5)$ and $0.019(5)$ respectively. The e.s.d. values for the bond lengths of $\mathrm{O}-\mathrm{C}(5)[1.413(13)], \mathrm{N}-$ $\mathrm{C}(7)[1.254(13)]$ and $\mathrm{N}-\mathrm{C}(8)[1.374(12)]$ of $\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}$ are high in ligands, but reasonably low when coordinated, 1.300(4), 1.295(3) and 1.435(3) respectively. Comparison of changes in bond lengths upon coordination is given in Table 7.10; Figure 7.18 represents the numbering of carbon atoms.

Burgess and coworkers ${ }^{7}$ studied $\operatorname{VO}\left[\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)\right]_{2}$. According to their studies there was no significant change in $\mathrm{N}-\mathrm{C}(7)[1.295(4)]$ bond
length. But a significant change was noticed in $\mathrm{N}-\mathrm{C}(8)[1.440(4)]$ and O $\mathrm{C}(5)[1.317(4) \AA$ bond lengths. The increase in the bond length of N-C(8) upon coordination was $0.035(5) \AA$, and the decrease in the bond length of O-C(5) upon coordination was $0.033(5) \AA$.

It is interesting to compare the $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ bond lengths in complexes with ligands containing both N and O donor atoms with such bonds in complexes with only O, O or N, N donor sets.

For example, $\mathrm{Cu}(\mathrm{II})$ complexes with ligands acetylacetonate ${ }^{8}$ and oxalate ${ }^{9}$, both having a oxygen pair donor set, the $\mathrm{Cu}-\mathrm{O}$ bond lengths in both cases are approximately the same i.e. 1.91-1.93 \AA. For complexes with ligands having a pair of nitrogen donor atoms, for example, bis[H-pyrrole-2-aldimine $] \mathrm{Cu}(\mathrm{II})^{10}$, the average $\mathrm{Cu}-\mathrm{N}$ bond length is $1.95 \AA$. In the bis[N -methylsalicylaldiminato $] \mathrm{Cu}(\mathrm{II})^{11}$ complex , the $\mathrm{Cu}-\mathrm{O}$ bond length is $1.90 \AA$ which is slightly shorter than in the O,O chelates and the $\mathrm{Cu}-\mathrm{N}$ bond length is $1.99 \AA$, slightly longer than the $\mathrm{Cu}-\mathrm{N}$ bond length in $\mathrm{N}, \mathrm{N} \mathrm{Cu}(I I)$ chelates. This effect is enhanced in the case of the structure solved during this work [average $\mathrm{Cu}-\mathrm{O}=1.877$, st. dev. $=0.005$ and $\mathrm{Cu}-\mathrm{N}$ 2.004 st. dev. $=0.02$]. This may be the effect of fluorine substitution in the N -phenyl ring.

Figure 7.18 Numbering of carbon, nitrogen and oxygen atoms in $\mathrm{Cu}(\mathrm{II})$ complexes

BONDS	$\begin{aligned} & \hline \hline \mathbf{C u}[\mathrm{SAL} 3,5 \\ & \left.\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}[\AA] \end{aligned}$	$\overline{\mathrm{Cu}[\mathrm{SAL} 4 F}]_{2}$ [Å]	$\begin{aligned} & \hline \hline \mathrm{Cu}[\mathrm{SAL} 3 \mathrm{~F}, 4 \\ & \left.\left(\mathrm{CH}_{3}\right)\right]_{2}[\AA \AA] \end{aligned}$	$\begin{gathered} \mathrm{Cu}[\mathrm{SAL} 4 \\ \left.\left(\mathrm{OCF}_{3}\right)\right]_{2}[\AA] \end{gathered}$
$\mathrm{Cu}-\mathrm{O}(1)$	1.869(2)	1.879(4)	1.884(2)	1.877(2)
$\mathrm{Cu}-\mathrm{N}(1)$	1.969(2)	2.009(4)	2.018(3)	2.018(2)
$\mathrm{N}(1)-\mathrm{C}(7)$	1.295(3)	1.298(7)	1.295(4)	1.291(4)
$\mathrm{N}(1)-\mathrm{C}(8)$	1.435(3)	1.443(7)	1.444(4)	1.434(4)
$\mathrm{O}(1)-\mathrm{C}(5)$	1.300(4)	1.301(7)	1.316(4)	1.309(4)
C(6)-C(7)	1.431(4)	1.427(8)	1.434(5)	1.431(5)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.370(4)	1.395(8)	1.384(5)	1.384(5)
C(8)-C(13)	1.386(4)	1.379(7)	1.381(5)	1.375(5)
C(1)-C(6)	1.413(7)	1.396(8)	1.403(5)	1.408(5)
C(5)-C(6)	1.408(4)	1.419(7)	1.417(5)	1.414(4)

Table 7.9 Selected bond lengths of $\mathrm{Cu}\left[\mathrm{SAL3}, 5\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}, \mathrm{Cu}[\mathrm{SALAF}]_{2}$,
$\mathrm{Cu}\left[\mathrm{SAL3F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$ and $\mathrm{Cu}\left[\operatorname{SALA}\left(\mathrm{OCF}_{3}\right)\right]_{2}$.

Bonds	Lengths \AA		Difference Che ${ }^{\text {a }}$-Lig ${ }^{\text {b }}$
	Ligands	Chelates	
	SAL4F	$\mathbf{C u}\left[\right.$ SAL4F] ${ }_{2}$	
N-C(7)	1.273(2)	1.285(6)	(ns)
$\mathrm{N}-\mathrm{C}(8)$	1.419(2)	1.440(7)	0.031(7) (s)
$\mathrm{O}-\mathrm{C}(5)$	1.354(2)	1.308(6)	-0.046(6) (s)
	SAL3F4(CH3)	$\mathbf{C u}\left[\mathbf{S A L 3 F 4}\left(\mathrm{CH}_{3}\right)\right]_{2}$	
$\mathrm{N}-\mathrm{C}(7)$	1.274(4)	1.295(4)	0.021(5) (s)
$\mathrm{N}-\mathrm{C}(8)$	1.419(4)	1.444(4)	0.035(5) (s)
$\mathrm{O}-\mathrm{C}(5)$	1.354(4)	1.316(4)	-0.038(5) (s)
	SAL3,5(CF3) $\mathbf{2}^{2}$	$\mathbf{C u}\left[\mathrm{SAL3,5}\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$	
N-C(7)	1.254(13)	1.295(3)	0.041(13)
$\mathrm{N}-\mathrm{C}(8)$	1.374(12)	1.435(3)	0.061(12)
$\mathrm{O}-\mathrm{C}(5)$	1.413(13)	1.300(4)	-0.113(13)
N-C(7)	SAL4(0CF ${ }_{3}$)	$\begin{aligned} & \mathbf{C u}\left[\mathbf{S A L 4}\left(\mathrm{OCF}_{3}\right)\right]_{\mathbf{2}} \\ & \mathrm{VO}\left[S A L A\left(O C F_{3}\right)\right]_{2} \end{aligned}$	
	1.289(7)	1.291(4)	(ns)
	1.415(4)	1.295(4)	($n s$)
N-C(8)		1.434(40	0.019(5) (s)
		1.440(4)	$0.035(5)(s)$
O-C(5)	1.350(8)	1.309(4)	-0.041(9) (s)
		1.317(4)	-0.033(5) (s)

Table 7.10 Comparison of selected bond lengths with their
respective ligands. $\quad[\mathrm{a}=$ chelate, $\mathrm{b}=$ free ligand $]$

7.5 REFERENCES:-

(1) L. Wei, R. M. Stogsdill and E. C. Lingafelter, Acta Cryst., 17, 1058, 1964.
(2) R. H. Holm and K. Swaminathan, Inorg. Chem., 1, 599, 1962.
(3) L. Sacconi and M. Ciampolini, J. Amer. Chem. Soc., 85, 1750, 1963.
(4) A. E. Martell and M. Calvin, 'Chemistry of Metal Chelate Compounds', Prentice-Hall, Inc., New York, 271, 1952.
(5) E. G. Cox and K. C. Webster, J. Chem. Soc., 731, 1935.
(6) E. G. Cox, E. Sharrat, W. Wardlaw and K. C. Webster, J. Chem. Soc., 129, 1936.
(7) J. Burgess, Personal Communication.
(8) Z. A. Starikova and E. A. Shugam, J. Struct. Chem., 14, 267, 1964.
(9) D. R. Bloomquest, J. J. Hansen, C. P. Landee, R. D. Willett and R. Buder, Inorg. Chem., 20, 3308, 1981.
(10) R. Tewari and R. C. Srivastava, Acta Cryst. B27, 1644, 1971.
(11) E. C. Lingafelter G. L. Simmons and B. Morrison, Acta Cryst., 14, 1222, 1961.

CHAPTER 8

STRUCTURE DETERMINATION OF

ANHYDROUS BIS[ACETYL

ACETONATO]Co(II)

8.1 INTRODUCTION:-

This chapter describes the structure and bonding of anhydrous bis(acetylacetonato) $\mathrm{Co}(\mathrm{II}), \mathrm{Co}(\mathrm{acac})_{2}[\mathrm{acacH}$ is acetylacetone $=2,4-$ pentanedione]. Its bonding pattern, bond lengths and bond angles are compared with other bis(acetylacetonato)M(II) complexes [$\mathrm{M}=\mathrm{Cr}, \mathrm{Zn}$, Cd, Cu and Ni$]$ and with other forms of $\mathrm{Co}(\mathrm{II})$ complexes i.e. $\mathrm{Co}(\mathrm{acac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{Co}(\mathrm{acac})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and polynuclear forms.

The anhydrous bis(acetylacetonato)Co(II) complex was a by-product of attempts to synthesise complexes of $\mathrm{Co}(\mathrm{II})$ with substituted acetylacetonatoimine ligands. Due to the instability of these ligands, as described earlier in Chapter 4, their complexes could not be synthesised. During one of these unsuccessful attempts a few green plate-like crystals were obtained, and were at first thought to be the crystals of the desired complex. However they proved to be crystals of novel anhydrous bis(acetylacetonato) $\mathrm{Co}(\mathrm{II})$ complex.

The bonding pattern and square-planar geometry were found to be interesting and the related information along with the comparison with other bis(acetylacetonato) M (II) complexes and $\mathrm{Co}(\mathrm{acac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Co}(\mathrm{acac})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and polynuclear $\mathrm{Co}(\mathrm{II})$ complexes, have been gathered in this chapter.

8.2 EXPERIMENTAL:-

The crystal under discussion was obtained during a template reaction. In this reaction an ethanolic solution of metal acetate ($5 \mathrm{ml}, 2$ millimols) had been added to an ethanolic solution of acetylacetone (5 ml , 4millimols) and stirred for a while, followed by addition of an ethanolic solution of 4 -fluoro aniline (5 ml , 4millimols). The reaction mixture was then stirred and refluxed for an hour. After cooling, the reaction mixture was a clear green solution. It was left in a sample tube; after two days a few green crystals had settled at the bottom. They were taken out and the structure of one was determined.

The X-ray structure determination was carried out on a X-ray Siemens P4 diffractometer by Dr. J. Fawcett.

8.3 STRUCTURE:-

The structure of bis[acetylacetonato]Co(II) is given in Figure 8.1. Its crystal system is monoclinic with space group $P 2_{1} / \mathrm{n}$; its R value is 0.0528. It is an anhydrous monomer stacked in columns, having a squareplanar structure. The mean deviation from the plane is $0.0367 \AA$. There is negligible interaction between the molecules. The nearest atom to Co in an adjacent molecule is $\mathrm{H}(5 \mathrm{a})$ at $2.93 \AA$ [the sum of the van der Waals ${ }^{1}$ radii of Co and H is $3.17 \AA$ A There is also no significant interaction between the nearest oxygen above and below which are at $4.078 \AA$ [the sum of the van der Waals radii of Co and O is $3.57 \AA$]. Bis[acetylacetonato] Co (II) is isomorphous with bis[acetylacetonato] $\mathrm{Cu}($ III $)$ and bis[acetylacetonato] $\mathrm{Cr}(\mathrm{II})$. Selected bond lengths and bond angles are given in Tables 8.1 and 8.2 respectively. Packing, end-on view, and 3D stereo pair diagrams are given in Figures 8.2, 8.3 and 8.4 respectively.

Figure 8.1 Anhydrous Bis[acetylacetonato]Co

Bond	Lengths $[\AA]$	Bond	Lengths[$\AA]$
$\mathrm{O}_{2}-\mathrm{Co}_{1}$	$1.917(3)$	$\mathrm{O}_{1}-\mathrm{Co}_{1}$	$1.920(3)$
$\mathrm{C}_{3}-\mathrm{O}_{2}$	$1.268(5)$	$\mathrm{C}_{4}-\mathrm{O}_{1}$	$1.275(5)$
$\mathrm{C}_{3}-\mathrm{C}_{6}$	$1.492(6)$	$\mathrm{C}_{4}-\mathrm{C}_{7}$	$1.504(6)$
$\mathrm{C}_{3}-\mathrm{C}_{5}$	$1.405(6)$	$\mathrm{C}_{4}-\mathrm{C}_{5}$	$1.380(6)$

Table 8.1 Selected Bond Lengths of Bis[acetyl acetonato]Co(II)

Figure 8.2 Packing Diagram of Bis[acetylacetonato]Co(II)

Figure 8.3 Structure showing the planarity of the molecule

	Angles[${ }^{\circ}$]		Angles[${ }^{\circ}$]
$\mathrm{O}_{2}-\mathrm{Co}_{1}-\mathrm{O}_{1}$	$93.37(11)$	$\mathrm{O}_{2}-\mathrm{Co}_{1}-\mathrm{O}_{2 \mathrm{a}}$	180.0
$\mathrm{O}_{2}-\mathrm{Co}_{1}-\mathrm{O}_{1 \mathrm{a}}$	$86.63(11)$	$\mathrm{O}_{1}-\mathrm{Co}_{1}-\mathrm{O}_{2 \mathrm{a}}$	$86.63(11)$
$\mathrm{O}_{2 \mathrm{a}}-\mathrm{Co}_{1}-\mathrm{O}_{1 \mathrm{a}}$	$93.37(11)$	$\mathrm{O}_{1}-\mathrm{Co}_{1}-\mathrm{O}_{1 \mathrm{a}}$	180.0
$\mathrm{Co}_{1}-\mathrm{O}_{2}-\mathrm{C}_{3}$	$126.0(3)$	$\mathrm{Co}_{1}-\mathrm{O}_{1}-\mathrm{C}_{4}$	$125.2(3)$
$\mathrm{C}_{3}-\mathrm{C}_{5}-\mathrm{C}_{4}$	$124.5(4)$	$\mathrm{O}_{2}-\mathrm{C}_{3}-\mathrm{C}_{6}$	$115.7(4)$
$\mathrm{O}_{1}-\mathrm{C}_{4}-\mathrm{C}_{7}$	$115.2(4)$		

Table 8.2 Selected Bond Angles of Bis[acetylacetato]Co(II)

Figure 8.4 3D Stereo Pair of Bis[acetylacetonato]Co(II)

8.4 DISCUSSION:-

The crystal structures of bis[acetylacetonato]M(II) complexes of first row transition metals have been studied extensively. Some of them were isolated as trimeric ${ }^{2}$ or tetrameric ${ }^{3-5}$ complexes, whereas some were isolated as monomers, either anhydrous, or mono or diaqua solvates. Here monomers, trimers and tetramer will be discussed and compared, with respect to their geometry, bond lengths and bond angles, with anhydrous bis[acetylacetonato] Co (II) complex obtained during this work.

It is surprising that bis(acetylacetonato) Co (II) has square-planar geometry instead of tetrahedral, tetragonal or octahedral, which are expected in Co (II) complexes. There is very little direct evidence in the form of X-ray structural determinations for the existence of planar quadricoordinate $\mathbf{C o}($ II $)$ complexes of either the high spin or low spin type. There is no evidence of any sort for high spin complexes of this type and the only low spin complex which has been examined is planar bis(salicylal)ethylenediimineCo(II) ${ }^{6}$. Arrangement of bis-salicylaldehyde ethylenediimine-Co(II) molecules in unit cell is given in Figure 8.4.

Figure 8.4 Arrangement of bis-salicylaldehyde ethlenediimineCo(II) molecules in unit cell.

Consider the position of the oxygen-bearing ligands in the spectrochemical series $\mathrm{I}^{-}<\mathrm{Cl}^{-}<\mathrm{OH}^{-}<\mathrm{NO}_{3}{ }^{-}<\mathrm{F}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \leq \mathrm{H}_{2} \mathrm{O}<$ py \leq $\mathrm{NCS}^{-}<\mathrm{NH}_{3}<$ en $\approx \mathrm{NO}_{2}^{-}<$phen \leqbipy $\ll \mathrm{CN}^{-}$, where the ligands are arranged in increasing ligand field strength, orbital contributions in the values of magnetic moment for the tetrahedral $\mathrm{Co}(\mathrm{II})$ complexes decrease as the ligands vary from I^{-}to CN^{-}. In terms of ligand field theory ${ }^{6}$ the size of the orbital contribution in the magnetic moment values for $\mathrm{Co}-\mathrm{O}_{4}$ complexes is too large to be compatible equally with both planar and tetrahedral conformations and is strongly against the later.

Bullen ${ }^{7}$ has reported the crystal structure of diaaquabis[acetyl acetonato $] \operatorname{Co}$ (II) $\left\{\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}$. Its crystal system is monoclinic, space group $\mathrm{P} 2{ }_{1} / \mathrm{c}$. The cobalt atom, lying on a centre of symmetry, is
oxygens of the acetylacetonate ligand are significantly shorter than the bond lengths of Co with water oxygen, the difference between the two being 0.18 (1) \AA, and are significantly longer than the bond lengths of Co (II) with the coordinating oxygens in anhydrous bis[acetylacetonato]Co(II) solved in this work, the difference between the two being here 0.14 (3) \AA.

Montgomery and Lingafelter ${ }^{10}$ have reported the crystal structure of diaquabis[acetylacetonato] Ni (II). They reported the same structure as of diaquabis[acetylacetonato] Co (II), the only significant difference being in its bond lengths of Ni-O, which are 2.01 and $2.02 \AA$, and $\mathrm{Ni}-\mathrm{OH}_{2}$ both $2.14 \AA$.

Lippert and Truter ${ }^{11}$ reported the structure of monoaquabis[acetyl acetonato] Zn , which was later redetermined by Montgomery and Lingafelter ${ }^{12}$. The five oxygen atoms coordinated to the zinc ion are at the same distance $2.02 \pm 0.02 \AA$. The arrangement of the oxygen atoms is intermediate between tetragonal pyramidal and trigonal bipyramidal, although somewhat nearer to the former.

Bis[acetylacetonato] Cu (II) has been widely studied ${ }^{13-15}$. Starikova and Shugam ${ }^{16}$ reported bis[acetylacetonato] $\mathrm{Cu}($ II $)$ as having planar coordination, the $\mathrm{Cu}-\mathrm{O}$ bond lengths are $1.91-1.93 \AA$, but because of the weak interactions $(3.01 \AA$) of Cu with carbons of the neighbouring molecules [sum of van der waals radii of Cu and C is $3.65 \AA{ }^{\circ}$] its structure becomes elongated tetragonal bipyramid.

Cotton et al ${ }^{17}$ reported an anhydrous monomer of bis[acetylacetonato] $\operatorname{Cr}($ II $)$. Its crystal system was monoclinic with space group $\mathrm{P}_{1} / \mathrm{n}$. The chromium atom in anhydrous bis[acetylacetonato] $\mathrm{Cr}(\mathrm{II})$ lies on an inversion centre and has planar coordination, with four oxygen atoms at a mean Cr-O distance of $1.984 \AA$. There are weak interactions ($3.05 \AA$) with carbon atoms of the ligands in the adjacent molecules to give a tetragonally distorted octahedral coordination sphere about chromium. $\operatorname{Bis}[$ acetylacetonato] Cr (II) complex is isomorphous with bis[acetylacetonato] $\mathrm{Cu}($ II $)$. Anhydrous bis(acac) Co (II) complex is isomorphous with anhydrous bis(acac)Cr(II) and anhydrous bis(acac) $\mathrm{Cu}(\mathrm{II})$.

Some polymeric i.e. trimeric and tetrameric, bis[acetylacetonato]M(II) complexes have also been isolated and structurally characterised. Cotton and Elder ${ }^{3,5}$ reported the structure of tetrameric bis[acetylacetonato] Co (II). The triclinic unit cell with space group P1 contains one centrosymmetric tetramer. Octahedral [Figure 8.5] coordination is achieved by sharing one oxygen atom between cobalt atoms. There are three distinct type of rings: those with both oxygen atoms bonded to only one terminal cobalt atom with average bond length $2.23 \AA$, those with one oxygen atom serving as a bridge between two cobalt atoms with average bond length $2.05 \AA$ and those with both oxygen atoms serving as bridges between three cobalt atoms with average bond length $2.24 \AA$. The bridge bonds in the centre of the tetramer are approximately coplanar with the chelate ring.

Figure 8.5 The asymmetric unit of tetrameric bis(acetylacetonato)Co(II)

The trimer ${ }^{2},\left[\mathrm{Zn}(\mathrm{acac})_{2}\right]_{3}$ with space group: C 2 contains a central octahedrally coordinated zinc atom, lying on the crystallographic twofold axis, and two terminal pentacoordinated zinc atoms. The coordination geometry about the terminal zinc atoms is closer to a trigonal bipyramidal than to a square pyramidal arrangement. Both the octahedron and the trigonal bipyramids show considerable distortions from their ideal geometries. Each terminal zinc atom is connected to the central one by two shared oxygen atoms, one at an axial and the other at an equatorial position of the trigonal bipyramid. Two types of $\mathrm{Zn}-\mathrm{O}$ bond length were observed, bonds from zinc atoms to bridging oxygen atoms average $2.00 \AA$ and the bonds from zinc atoms to non-bridging oxygen atoms average $2.10 \AA$. The
former value is in agreement with the average value of $2.01 \pm 0.02 \AA$ for the $\mathrm{Zn}-\mathrm{O}$ bond lengths in $\mathrm{Zn}[\mathrm{acac}]_{2} \mathrm{H}_{2} \mathrm{O}$. Both the terminal five-coordinate zinc atom and the central six-coordinate zinc atom have considerable angular distortion observed in the other polymeric acetylacetonato complexes and is probably due to intramolecular crowding and to restrictions imposed by the internal geometry of the ligand, since intermolecular crystal packing forces would not be expected to have such large effects on the inner coordination sphere. Trimeric nickel acetylacetonate achieves six coordination through sharing of oxygen atoms between adjacent metal atoms. In $\left[\mathrm{Ni}(\mathrm{acac})_{2}\right]_{3}$, trimerisation occurs by sharing of faces of octahedra. ${ }^{18-20}$ The average bond length between nickel and terminal oxygen is $2.06 \AA$ and average bond length between nickel and bridging oxygen is $2.12 \AA$.

Selected bond lengths and bond angles of diaquabis[acetylacetonato] $\mathrm{Ni}($ II $)$ diaquabis[acetylacetonato] Co (II), monoaquabis[acetylacetonato] Zn (II), anhydrous bis[acetylacetonato] Cr (II) anhydrous bis[acetylacetonato] Cu (II) and anhydrous bis[acetylacetonato]Co(II) are given in Tables 8.3 and 8.4 respectively.

Table 8.3 Selected Bond Lengths[A] of Diaquabis[AcAc]Co(II), Diaquabis[AcAc]Ni(II), Monoaquabis[AcAc]Zn(II), anhydrous Bis[AcAc]Cr(II), anhydrous Bis[AcAc]Cu(II) and anhydrous Bis[AcAc]Co(II).

Compounds	$\mathbf{M}^{*}-\mathbf{O}(\mathbf{1})$	\mathbf{M}^{*}-(O2)	$\mathbf{M}^{*}-\mathbf{O H}_{\mathbf{2}}$
$\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$2.05(1)$	$2.06(1)$	$2.23(1)$
$\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$2.021(1)$	$2.014(1)$	$2.139(1)$
$\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$1.999(2)$	$2.026(2)$	$2.038(2)$
$\mathrm{Cr}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}$	$1.984(3)$	$1.979(3)$	-
$\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}$	1.91	1.93	-
$\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}$	$1.917(3)$	$1.92(3)$	-

* $\mathrm{M}=\mathrm{Co}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Ni}$ and Cu .

Table 8.4 Selected Bond Angles[${ }^{\circ}$] of diaquabis[acac]Co(II), diaquabis[acac]Ni(II), monoaquabis[acac]Zn(II), anhydrous bis[acac]Cr(II), anhydrous bis[acac]Cu(II) and anhydrous bis[acac]Co(II).

Compounds	$\mathbf{O}(\mathbf{1})-\mathbf{M}^{*}-\mathbf{O}(2)$	$\mathbf{O}(\mathbf{1})-\mathbf{M}^{*}-\mathbf{O H}_{\mathbf{2}}$	$\mathbf{O (2) - \mathbf { M } ^ { * } - \mathbf { O H } _ { \mathbf { 2 } }}$
$\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$92.0(4)$	$91.6(4)$	$87.1(4)$
$\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$92.4(4)$	$90.9(4)$	$88.6(4)$
$\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2 .} \mathrm{H}_{2} \mathrm{O}$	$88.5(8)$	$104.9(8)$	$97.5(8)$
$\mathrm{Cr}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}$	$90.3(1)$	-	-
$\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}$	95.0	-	-
$\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}$	$93.37(11)$	-	-

${ }^{*} \mathrm{M}=\mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Cr}$ and Cu .

8.5 REFERENCES:-

(1) SIEMENS SHELXTL PLUS ${ }^{T M}$, Reference manul Appendix B, 271.
(2) M. J. Bennett, F. A. Cotton and R. Eiss, Acta Cryst., B24, 904 1968.
(3) F. A. Cotton and R. C. Elder, Inorg. Chem., 4, 1145, 1965
(4) F. A. Cotton and G. W. Rice, Nouv. J. Chim., 1, 301, 1977.
(5) F. A. Cotton and R. C. Elder, J. Amer. Chem. Soc., 86, 2294, 1964.
(6) A. E. Martell and M. Calvin, 'Chemistry of Metal Chelate Compounds' Prentice-Hall, Inc., New York, N. Y., 266, 1952.
(7) F. A. Cotton and R. H. Holm, J. Amer. Chem. Soc., 82, 2979, 1960.
(8) G. J. Bullen, Acta Cryst., 12, 703, 1959
(9) J. Burgess, Ions in Solution(I), Royal Society of Chemistry Educational Techniques Group, London, 1984.
(10) H. Montgomery and E. C. Lingafelter, Acta Cryst., 17, 1481, 1964.
(11) E. L. Lippert and M. R.Truter, J. Chem. Soc., 4996, 1960.
(12) H. Montgomery and E. C. Lingafelter, Acta Cryst., 16, 748, 1963.
(13) J. Ferguson, J. Chem. Phys., 34, 1609, 1961.
(14) J. Ferguson, J. Chem. Phys., 34, 611, 1961.
(15) J. Ferguson, J. Chem. Phys., 34, 2206, 1961.
(16) Z. A. Starikova and E. A. Shugam, J. Struct. Chem., 14, 267, 1969.
(17) F. A. Cotton and G. W. Rice, Inorg. Chim. Acta, 24, 231, 1977.
(18) G. J. Bullen, R. Mason and P. Pauling, Nature, 189, 291, 1961.
(19) G. J. Bullen, R. Mason and P. Pauling, Inorg. Chem., 4, 456, 1965.
(20) F. A. Cotton and J. P. Fackler, J. Amer. Chem. Soc., 83, 2878, 3775, 1961.

APPENDIX

SAL3,5(CF $\mathbf{3}_{2}$

Table 1 Crystal data and Structure refinement for 1

Identification code	RZ3S
Emperical formula	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}$
Formula weight	333.2
Temperature	$293{ }^{\circ} \mathrm{K}$
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	P2 ${ }_{1} / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=8.0310(10) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=26.708(8) \AA \quad \beta=117.510(10)^{\circ}$
	$\mathrm{c}=7.6090(10) \AA \quad \gamma=90^{\circ}$
Volume	1447.6(5) \AA
Z	4
Density	$1.529 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.149 \mathrm{~mm}^{-1}$
F(000)	672
Crystal size	$0.7 \times 0.41 \times 0.39 \mathrm{~mm}$
θ range for data collection	3.5 to $22.5{ }^{\circ}$
Index ranges	$-8 \leq \mathrm{h} \leq 8, \quad-28 \leq \mathrm{k} \leq 1$
Reflections collected	2405
Independent reflections	$1798\left(\mathrm{R}_{\mathrm{int}}=2.05 \%\right)$
Refinement method	Full matrix least squares on F
Data / restraints / parameters	1798 / 0 / 160
Goodness of fit on F^{2}	3.34
Final R indices [$\mathrm{I}>2 \approx$ (I]	$\mathrm{R}_{1}=0.129, \quad \mathrm{wR}_{2}=0.188$
R indices (all data)	$\mathrm{R}_{1}=0.169, \quad \mathrm{wR}_{2}=0.199$
Extinction coefficient	Not applied
Largest diff. peak and hole	0.58 and $-0.43 \mathrm{e}^{\circ}{ }^{-3}$

Table 1. Atomic coordinates $\left(x 10^{4}\right)$ and equivalent totropic displacement coefficients ($\dot{A}^{2} \times 10^{3}$)

	\mathbf{x}	Y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{N}(1)$	$6071(12)$	$7973(3)$	$4751(13)$	$63(4)$
$O(1)$	$6410(11)$	$6995(3)$	$5174(12)$	$88(4)$
$C(1)$	$1893(15)$	$7347(5)$	$935(19)$	$79(6)$
$C(2)$	$1127(19)$	$6871(6)$	$248(22)$	$100(7)$
$C(3)$	$2140(22)$	$6454(6)$	$1223(25)$	$98(8)$
$C(4)$	$3907(21)$	$6476(5)$	$2846(21)$	$92(8)$
$C(5)$	$4588(19)$	$6956(4)$	$3564(19)$	$75(7)$
$C(6)$	$3709(16)$	$7390(5)$	$2633(16)$	$74(6)$
$C(7)$	$4490(18)$	$7889(4)$	$3316(19)$	$69(6)$
$C(8)$	$6781(13)$	$8447(4)$	$5307(14)$	$59(3)$
$C(9)$	$6317(13)$	$8852(3)$	$3978(16)$	$65(3)$
$C(10)$	$7048(14)$	$9299(4)$	$4627(16)$	$69(3)$
$C(11)$	$8275(13)$	$9393(4)$	$6618(15)$	$68(3)$
$C(12)$	$8737(13)$	$9000(4)$	$7897(15)$	$64(3)$
$C(13)$	$8059(12)$	$8533(4)$	$7306(14)$	$57(3)$
$C(14)$	$6591(10)$	$9741(2)$	$3183(9)$	$94(7)$
$F(1)$	5809	9585	1360	$202(8)$
$F(2)$	5409	10026	3257	$241(11)$
$F(3)$	7907	9988	3311	$213(8)$
$C(15)$	$10093(11)$	$9076(3)$	$9967(9)$	$96(7)$
$F(4)$	11070	8730	10938	$247(8)$
$F(5)$	9306	9155	11052	$272(12)$
$F(6)$	11185	9426	10467	$312(11)$

* Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

SAL3F,4($\mathbf{C H}_{3}$)

Table 1 . Crystal data and structure refincient for 1.

able 2. Asomic coordinates $\left[x 10^{*}\right]$ and er alent iscoropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . $0(e)^{\prime}$ is defined as one third of the trace of the orthogonalized $J_{i j}$ tensor.

	x	y	z	U (eq)
$F(1)$	4357(1)	-1739 (6)	10376 (2)	47 (1)
$O(1)$	1985(1)	7415 (5)	$10574(2)$	47 (2)
N(1)	2510(1)	4635 (5)	9105 (2)	$28(1)$
C (1)	1173 (1)	9595 (6)	7768 (3)	$32(1)$
C(2)	697 (2)	11543 (7)	7974 (3)	37 (1)
C(3)	647(2)	12067 (7)	9069(3)	41(1)
C(4)	1076 (2)	10688 (7)	9932(3)	41 (1)
C(5)	1563 (2)	8719 (7)	9712(3)	$31(1)$
C(6)	1613(1)	8121(6)	8614(2)	26 (1)
C(7)	2108 (1)	5048 (6)	8355(3)	28 (1)
C (8)	2988(1)	2603 (6)	8839 (2)	26 (1)
C (9)	3017 (2)	1688 (7)	7771 (3)	$32(1)$
C (10)	3511(2)	-277(7)	7621 (3)	33 (1)
$F(1 A)$	3537 (4)	-1218(16)	6581 (6)	50(3)
C(11)	3989 (1)	-1479(7)	8479(3)	29 (1)
C(12)	3927(2)	-577(7)	9525(3)	$32(1)$
C (13)	3443(1)	1391(7)	9722(2)	32 (1)
C(24)	4533(2)	-3606(7)	8305 (3)	$38(1)$

$\operatorname{SAL4}\left(\mathrm{OCF}_{3}\right)$

Table 1 Crystal data and Structure refinement for 1

Identification code	RZ2S
Emperical formula	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2}$
Formula weight	281.2
Temperature	$293{ }^{\circ} \mathrm{K}$
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P} 2{ }_{1} \mathrm{C}$
Unit cell dimensions	$\mathrm{a}=5.6470(10) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=7.977(2) \AA \quad \beta=90.630(0)^{\circ}$
	$\mathrm{c}=29.197(4) \AA \quad \gamma=90^{\circ}$
Volume	1315.1(4) A
Z	4
Density	$1.420 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.124 \mathrm{~mm}^{-1}$
F(000)	576
Crystal size	$0.38 \times 0.38 \times 0.22 \mathrm{~mm}$
θ range for data collection	2.5 to $24.0{ }^{\circ}$
Index ranges	$-1 \leq \mathrm{h} 6,-1 \leq \mathrm{k} 9$
Reflections collected	3203
Independent reflections	2071 ($\mathrm{R}_{\text {int }}=2.67 \%$)
Refinement method	Full matrix least squares on F
Data / restraints / parameters	2071/0/181
Goodness of fit on F^{2}	0.81
Final R indices [$\mathrm{I}>2 \approx(\mathrm{I})$]	$\mathrm{R}_{1}=0.0902, \quad \mathrm{wR}_{2}=0.145$
R indices (all data)	$\mathrm{R}_{1}=0.142, \mathrm{wR}_{2}=0.238$
Extinction coefficient	Not applied
Largest diff. peak and hole	$0.44-0.42 \mathrm{e}^{-3}$

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients ($\dot{A}^{2} \times 10^{3}$)

	X	Y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{N}(1)$	$12637(9)$	$5799(6)$	$2679(2)$	$54(2)$
$O(1)$	$16312(9)$	$4795(6)$	$2224(2)$	$78(2)$
$O(2)$	$8735(10)$	$6288(7)$	$4414(2)$	$95(2)$
$F(1)$	$8319(14)$	$7340(8)$	$5088(2)$	$161(3)$
$F(2)$	$9339(20)$	$8933(8)$	$4545(2)$	$194(5)$
$F(3)$	$11717(18)$	$7306(13)$	$4818(2)$	$203(5)$
$C(1)$	$12186(13)$	$7093(9)$	$1484(2)$	$68(3)$
$C(2)$	$13319(14)$	$6952(10)$	$1071(2)$	$75(3)$
$C(3)$	$15356(15)$	$6067(9)$	$1049(2)$	$74(3)$
$C(4)$	$16352(13)$	$5331(9)$	$1431(2)$	$69(3)$
$C(5)$	$15275(11)$	$5474(7)$	$1849(2)$	$56(2)$
$C(6)$	$13133(10)$	$6352(7)$	$1886(2)$	$50(2)$
$C(7)$	$11894(10)$	$6537(7)$	$2312(2)$	$52(2)$
$C(8)$	$11536(11)$	$6012(7)$	$3108(2)$	$51(2)$
$C(9)$	$9450(12)$	$6844(9)$	$3183(2)$	$64(2)$
$C(10)$	$8571(12)$	$6999(9)$	$3624(3)$	$70(3)$
$C(11)$	$9758(13)$	$6256(9)$	$3972(2)$	$67(2)$
$C(12)$	$11854(14)$	$5411(9)$	$3913(2)$	$71(3)$
$C(13)$	$12700(12)$	$5280(8)$	$3479(2)$	$60(2)$
$C(14)$	$9411(27)$	$7468(13)$	$4703(3)$	$111(5)$

* Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

SAL4F

TaSle 1. Crystal data and structure I.

Identification code	p21c
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}$
Formula weight	215.22
Temperature	293(2) K
Wavelength	0.71073 A
crystal system	Monoclinic
Space group	P2 (1)/C
Unit cell dimensions	$a=12.8200(10) \dot{A} \quad \alpha=90^{\circ}$
	$b=5.7870(10) \dot{A} \quad \beta=107.93(2)^{\circ}$
	$c=14.817(2) \dot{A} \quad \gamma=90^{\circ}$
Volume	1045.9(2) \dot{A}^{3}
z	4
Density (calculated)	$1.367 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.099 \mathrm{~mm}^{-1}$
$F(000)$	448
Crystal size	$0.48 \times 0.45 \times 0.26 \mathrm{~mm}$
θ range for data collection	2.86 to 23.99°
Index zanges	$-1 \leq h \leq 14,-1 \leq k \leq 6,-16 \leq \ell \leq 16$
Reflections collected	2299
Independent reflections	$1642\left(R_{\text {int }}=0.0202\right)$
Refinement method	Full-matrix least-squares on \bar{F}^{2}
Data / restraints / parameters	1642 / 0/250
Goodness-of-fit on F^{2}	1.038
Final R indices [I>20(I)]	$\mathrm{RI}=0.0388, \mathrm{wR2}=0.1006$
R indices (all data)	$\mathrm{RI}=0.0564, \mathrm{wR2}=0.1238$
ExEincEion coefficient	$0.014(2)$
Largest diff. peak and hole	0.194 and $-0.135 \mathrm{ef}^{-3}$

Table 2. anomic coordinates $\left[x 10^{*}\right]$ and equivalent $三$, wopic displacemes $=$ parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . (eq) is definad as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	y	$U($ eq)	
$F(1)$	$4655(1)$	$289(3)$	$3380(1)$	$79(1)$
$N(1)$	$317(1)$	$-937(3)$	$1290(1)$	$44(1)$
$O(1)$	$-1095(1)$	$-3620(2)$	$91(1)$	$59(1)$
$C(1)$	$-1854(1)$	$-1999(3)$	$96(1)$	$44(1)$
$C(2)$	$-2939(2)$	$-2404(4)$	$-425(1)$	$52(1)$
$C(3)$	$-3730(2)$	$-783(4)$	$-446(1)$	$54(1)$
$C(4)$	$-3460(2)$	$1280(4)$	$52(1)$	$54(1)$
$C(5)$	$-2385(2)$	$1685(3)$	$570(1)$	$48(1)$
$C(6)$	$-1564(1)$	$69(3)$	$610(1)$	$41(1)$
$C(7)$	$-446(1)$	$545(3)$	$1178(1)$	$43(1)$
$C(8)$	$1414(1)$	$-513(3)$	$1854(1)$	$40(1)$
$C(9)$	$2169(2)$	$-2188(3)$	$1831(1)$	$47(1)$
$C(10)$	$3265(2)$	$-1940(4)$	$2345(1)$	$54(1)$
$C(11)$	$3578(2)$	$16(4)$	$2876(1)$	$51(1)$
$C(12)$	$2855(2)$	$1707(4)$	$2926(1)$	$53(1)$
$C(13)$	$1766(2)$	$1446(3)$	$2413(1)$	$50(1)$

Table $1 \quad$ Crystal data and Structure refinement for 1

Identification code	RZ1S
Emperical formula	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}$
Formula weight	211.3
Temperature	$293{ }^{\circ} \mathrm{K}$
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=19.314(4) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=4.7670(10) \AA \quad \beta=102.11(0)^{\circ}$
	$\mathrm{c}=12.225(4) \AA \quad \gamma=90^{\circ}$
Volume	$1100.5(5) \AA^{3}$
Z	4
Density	$1.275 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.080 \mathrm{~mm}^{-1}$
F(000)	448
Crystal size	$0.60 \times 0.57 \times 0.06 \mathrm{~mm}$
θ range for data collection	3.5 to $22.5{ }^{\circ}$
Index ranges	$-20 \leq \mathrm{h} \leq 21, \quad-5 \leq \mathrm{k} \leq 1$
Reflections collected	2002
Independent reflections	$1344\left(\mathrm{R}_{\text {int }}=2.28 \%\right)$
Refinement method	Full matrix least squares on F
Data / restraints / parameters	1344 / 0 / 145
Goodness of fit on F^{2}	0.83
Final R indices [$\mathrm{I}>2 \approx(\mathrm{I})$]	$\mathrm{R}_{1}=0.0486, \quad \mathrm{wR}_{2}=0.0437$
R indices (all data)	$\mathrm{R}_{1}=0.0749, \mathrm{w}_{2}=0.0581$
Extinction coefficient	Not applied
Largest diff. peak and hole	0.16 and $-0.20 \mathrm{e}^{-3}$

Table 1. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement coefficients $\left(\dot{A}^{2} \times 10^{3}\right)$

	\mathbf{x}	y	\mathbf{z}	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$7032(2)$	$7305(7)$	$5652(2)$	$64(1)$
$\mathrm{N}(1)$	$7545(2)$	$4525(7)$	$4176(3)$	$37(1)$
$C(1)$	$6191(2)$	$9420(8)$	$2820(3)$	$44(2)$
$C(2)$	$5710(2)$	$11381(9)$	$3031(4)$	$53(2)$
$C(3)$	$5674(2)$	$11898(10)$	$4132(4)$	$59(2)$
$C(4)$	$6114(2)$	$10554(10)$	$5001(4)$	$59(2)$
$C(5)$	$6599(2)$	$8580(9)$	$4785(3)$	$46(2)$
$C(6)$	$6640(2)$	$7990(8)$	$3685(3)$	$37(1)$
$C(7)$	$7134(2)$	$5949(8)$	$3417(3)$	$38(1)$
$C(8)$	$8023(2)$	$2505(8)$	$3905(3)$	$37(1)$
$C(9)$	$8497(2)$	$1337(9)$	$4794(3)$	$46(2)$
$C(10)$	$8990(2)$	$-626(9)$	$4609(3)$	$48(2)$
$C(11)$	$9017(2)$	$-1497(8)$	$3539(3)$	$40(1)$
$C(12)$	$8526(2)$	$-376(9)$	$2666(3)$	$46(2)$
$C(13)$	$8037(2)$	$1605(9)$	$2827(3)$	$45(2)$
$C(14)$	$9552(2)$	$-3651(9)$	$3343(3)$	$54(2)$

* Equivalent isotropic u defined as one third of the trace of the orthogonalized U_{ij} tensor

SALF $_{5}$

Table 1. Crystala and structure refinement for 1.

Icen=íication code	1
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{~F}_{5} \mathrm{NO}$
Formula weight	287.19
Temperature	193 (2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P21/C
Unit cell dimensions	$a=12.038(3) \dot{A} \quad \alpha=90^{\circ}$
	$b=7.2890(10) \dot{A} \quad \beta=95.63^{\circ}$
	$C=12.821(3) \dot{\mathrm{A}} \quad \gamma=90^{\circ}$
Volume	$1219.6(4) \mathrm{A}^{3}$
z	4
DensiEy (calculated)	$1.704 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.165 \mathrm{~mm}^{-1}$
$F(000)$	576
Crystal size	$0.80 \times 0.36 \times 0.22 \mathrm{~mm}$
θ range for data collection	3.19 to 23.00°
Index ranges	$-1 \leq h \leq 13,-1 \leq k \leq 8,-14 \leq \ell \leq 14$
Reflections collected	2129
Independent reflections	$1548\left(\mathrm{R}_{\text {int }}=0.0336\right)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1548 / 0/182
Goodness-of-Eit on F^{2}	1.077
Final R indices [I>2 ${ }^{\text {(I) }}$]	$R I=0.0341, ~ W R 2=0.0942$
R incices (all data)	$R I=0.0414, w R 2=0.1012$
Extinceion coefficient	$0.030(3)$
Largest diff. peak and hole	0.215 and $-0.176 \mathrm{ei}^{-3}$

Table 2. Atomic coordina $\left[x\left[10^{4} j\right.\right.$ and equivalent isotropic displacement parameters $\left[\lambda^{2} \times 10^{3}\right]$ for 1 . $\quad(e q)$ is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	y	$U($ eq)	
$F(1)$	$6937(1)$	$5146(2)$	$-3336(1)$	$36(1)$
$F(2)$	$9129(1)$	$5005(2)$	$-2718(1)$	$44(1)$
$F(3)$	$9866(1)$	$3624(2)$	$-812(1)$	$50(1)$
$F(4)$	$8387(1)$	$2471(2)$	$511(1)$	$46(1)$
$F(5)$	$6167(1)$	$2543(2)$	$-119(1)$	$39(1)$
$N(1)$	$5327(1)$	$3908(2)$	$-1996(1)$	$28(1)$
$O(1)$	$3322(1)$	$4632(2)$	$-1483(1)$	$38(1)$
$C(1)$	$3269(2)$	$3207(3)$	$-4233(2)$	$31(1)$
$C(2)$	$2138(2)$	$3273(3)$	$-4530(2)$	$36(1)$
$C(3)$	$1424(2)$	$3797(3)$	$-3800(2)$	$38(1)$
$C(4)$	$1823(2)$	$4264(3)$	$-2788(2)$	$35(1)$
$C(5)$	$2961(2)$	$4189(3)$	$-2483(2)$	$30(1)$
$C(6)$	$3703(2)$	$3656(3)$	$-3210(1)$	$26(1)$
$C(7)$	$4888(2)$	$3522(3)$	$-2924(1)$	$27(1)$
$C(8)$	$6490(2)$	$3790(3)$	$-1751(1)$	$26(1)$
$C(9)$	$7273(2)$	$4412(3)$	$-2393(1)$	$28(1)$
$C(10)$	$8395(2)$	$4372(3)$	$-2081(2)$	$32(1)$
$C(11)$	$8766(2)$	$3708(3)$	$-1106(2)$	$34(1)$
$C(12)$	$8017(2)$	$3109(3)$	$-440(2)$	$33(1)$
$C(13)$	$6896(2)$	$3157(3)$	$-766(1)$	$29(1)$

5CISAL4CI

Tabl. I. Crystal data and structure refinement for ?.

Identification code	9603
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}$
Formula weight	266.11
Temperature	190(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P}_{2} / \mathrm{C}$
Unit cell dimensions	$a=27.419(7) \dot{A} \quad \alpha=90^{\circ}$
	$b=6.901(2) \dot{A} \quad \beta=95.57(2)^{\circ}$
	$c=6.137(1) \dot{A} \quad \gamma=90^{\circ}$
Volume	1155.8(5) A^{3}
z	4
Density (calculated)	$1.529 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.541 \mathrm{~mm}^{-1}$
$F(000)$	544
Crystal size	$0.69 \times 0.62 \times 0.26 \mathrm{~mm}$
θ range for data collection	2.99 to 22.49°
Index ranges	$-29 \leq h \leq 29,-7 \leq k \leq 1,-1 \leq \ell \leq 6$
Reflections collected	2378
Independent reflections	$1507\left(R_{\text {int }}=0.0274\right)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$1506 / 0 / 144$
Goodness-of-fit on F^{2}	1.135
Final R indices [I>2 $\sigma(I)]$	$\mathrm{RI}=0.0346, \mathrm{wR2}=0.0924$
R indices (all data)	$\mathrm{RI}=0.0403, \mathrm{wR2}=0.1080$
Largest diff. peak and hole	0.217 and -0.247 e^{-3}

Table 2. Atomic cuordinates $\left[x 10^{4}\right]$ and equivalen isotropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . \quad (eq) is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	y	$U($ eq)	
$C l(1)$	$4582(1)$	$-737(1)$	$1687(1)$	$41(1)$
$C l(2)$	$381(1)$	$423(1)$	$-2701(1)$	$46(1)$
$0(1)$	$2819(1)$	$707(3)$	$6114(3)$	$32(1)$
$N(1)$	$2305(1)$	$-256(3)$	$2505(3)$	$23(1)$
$C(1)$	$3606(1)$	$-704(3)$	$1895(4)$	$23(1)$
$C(2)$	$4054(1)$	$-349(3)$	$2996(4)$	$25(1)$
$C(3)$	$4097(1)$	$380(4)$	$5117(4)$	$28(1)$
$C(4)$	$3681(1)$	$722(3)$	$6131(4)$	$26(1)$
$C(5)$	$3220(1)$	$362(3)$	$5055(4)$	$23(1)$
$C(6)$	$3178(1)$	$-343(3)$	$2887(4)$	$21(1)$
$C(7)$	$2705(1)$	$-556(3)$	$1642(4)$	$23(1)$
$C(8)$	$1852(1)$	$-175(3)$	$1177(4)$	$21(1)$
$C(9)$	$1815(1)$	$625(3)$	$-907(4)$	$24(1)$
$C(10)$	$1362(1)$	$805(3)$	$-2095(4)$	$26(1)$
$C(11)$	$948(1)$	$183(4)$	$-1186(4)$	$26(1)$
$C(12)$	$977(1)$	$-609(3)$	$888(4)$	$28(1)$
$C(13)$	$1430(1)$	$-772(3)$	$2068(4)$	$25(1)$

$\mathrm{CF}_{3} \mathrm{AcAcF}_{5} \mathrm{~A}$
lable 1. Crystal data and structure refinemeni for 1.

Identification code	9621
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{~F}_{8} \mathrm{NO}$
Formula weight	319.16
Temperature	190(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P}_{2} / \mathrm{C}$
Unit cell dimensions	$a=11.183(3) \dot{A} \quad \alpha=90^{\circ}$
	$b=9.028(4) \dot{A} \quad \beta=90.99(3)^{\circ}$
	$c=11.605(4) \dot{A} \quad \gamma=90^{\circ}$
Volume	1171.5(7) \dot{A}^{3}
z	4
Density (calculated)	$1.810 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.203 \mathrm{~mm}^{-1}$
$F(000)$	632
Crystal size	$0.32 \times 0.22 \times 0.09 \mathrm{~mm}$
θ range for data collection	2.86 to 23.99°
Index ranges	$-1 \leq h \leq 12,-1 \leq k \leq 10,-13 \leq \ell \leq 13$
Reflections collected	2415
Independent reflections	1799 ($\left.\mathrm{R}_{\text {int }}=0.0430\right)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1799 / 6 / 190
Goodness-of-fit on F^{2}	1. 044
Final R indices [$I>2 \sigma(I)]$	$\mathrm{RI}=0.0713, \mathrm{wR2}=0.2047$
R indices (all data)	$\mathrm{RI}=0.1238, \mathrm{wR2}=0.2778$
Largest diff. peak and hole	0.554 and $-0.528 \mathrm{ef}^{-3}$

Table 2. Atomic coordinates $\left[x \quad 10^{4}\right]$ and equivalent isotropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . $U(e q)$ is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	Y	z	U (eq)
O(1)	3716 (4)	4892 (5)	5257(3)	41 (1)
$N(1)$	5219 (4)	3986 (6)	6922(4)	33 (1)
$F(1)$	6713(3)	1893(5)	5984(3)	$51(1)$
F(2)	9025(4)	1581 (5)	6673 (4)	$72(2)$
F(3)	9927 (3)	3315 (6)	8379 (4)	$77(2)$
F(4)	8513 (4)	5390 (6)	9395 (4)	80 (2)
$F(5)$	6225 (4)	5694(5)	8691 (3)	55 (1)
$C(1)$	7154 (5)	2755(7)	6820 (5)	$37(2)$
C (2)	8329 (6)	2590(8)	7175 (6)	48 (2)
C (3)	8775 (6)	3478(9)	8057(7)	54 (2)
C (4)	8076(7)	4509 (9)	8551(6)	51 (2)
C (5)	6900 (6)	4674 (8)	8188 (5)	39 (2)
C(6)	6422 (5)	3786(7)	7314(5)	$33(1)$
C(7)	4245 (5)	3727 (7)	7519 (5)	$34(2)$
C(8)	4381 (6)	3086 (9)	8709 (5)	48(2)
C(9)	3115 (5)	3966 (7)	7038 (5)	$37(2)$
C(10)	2950(5)	4511 (7)	5923 (5)	32 (1)
C(11)	1655(4)	4632 (5)	5441 (4)	47(2)
$F(6)$	1374 (4)	6040(4)	5241(3)	65 (1)
$F(7)$	1557(3)	3941 (5)	4440 (3)	71 (2)
$F(8)$	846(3)	4090 (6)	6132(3)	94(2)

$\operatorname{AcAc}\left(\mathbf{O C F}_{3}\right) \mathrm{A}$

Table 1. Crystal lata and structure refinement for 1.

Identification code	9618
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}$
Formula weight	259.23
Temperature	190(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{C} 2 / \mathrm{c}$
Unit cell dimensions	$a=24.425(4) \dot{A} \quad \alpha=90^{\circ}$
	$b=10.691(2) \dot{A} \quad \beta=105.44^{\circ}$
	$c=9.485(2) \dot{A} \quad \gamma=90^{\circ}$
Volume	2387.4(8) A^{3}
z	8
Density (calculated)	$1.442 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.129 \mathrm{~mm}^{-1}$
$F(000)$	1072
Crystal size	$0.57 \times 0.52 \times 0.15 \mathrm{~mm}$
θ range for data collection	2.88 to 23.46°
Index ranges	$-26 \leq h \leq 25,-10 \leq k \leq 10,-1 \leq \ell \leq 10$
Reflections collected	3473
Independent reflections	$1596\left(\mathrm{R}_{\text {int }}=0.0262\right)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1596 / 0 / 175
Goodness-of-fit on F^{2}	1.049
Final R indices [I>2 $\sigma(I)]$	$\mathrm{RI}=0.0415, \mathrm{wR2}=0.1043$
R indices (all data)	$\mathrm{RI}=0.0560, \mathrm{wR2}=0.1159$
Largest diff. peak and hole	0.318 and $-0.251 \mathrm{ef}^{-3}$

Table 2. Atomic - dinates $\left.; x 10^{4}\right\}$ and equivalent isotropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right\}$ for 1 . $\sigma(e q)$ is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	y	z	U (eq)
$N(1)$	2609 (1)	8986(2)	-3505 (2)	34 (1)
O(1)	4744 (1)	8540 (2)	475 (2)	48 (1)
O(2)	2041(1)	10526(2)	-5591(2)	44 (1)
$F(1)$	5564 (1)	7714(2)	1379 (2)	69 (1)
F(2)	5209 (1)	7605 (3)	-902(2)	122 (1)
$F(3)$	4874 (1)	6517(2)	479 (3)	108(1)
C(I)	3607 (1)	9341(2)	-2793(3)	39 (1)
C(2)	4142 (1)	9247(2)	-1830(3)	43 (1)
C(3)	4203 (1)	8589 (2)	-556(3)	$38(1)$
C (4)	3747 (1)	8046 (3)	-214(3)	$39(1)$
C (5)	3210(1)	8165 (3)	-1158(3)	$38(1)$
C(6)	3138 (1)	8796(2)	-2474 (3)	32 (1)
C(7)	5087(1)	7617(3)	342 (3)	49 (1)
C(8)	2146(1)	8235 (2)	-3898(3)	33 (1)
C (9)	2129 (1)	7018 (3)	-3140(3)	43 (1)
C(10)	1695(1)	8584 (2)	-5031(3)	33 (1)
C(11)	1663(1)	9705 (2)	-5856(3)	37 (1)
C (12)	1147(1)	9888(3)	-7130(3)	55 (1)

$\operatorname{AcAc} 4\left(\mathbf{C H}_{3}\right) \mathbf{A}$

Identitication code

Empirical formula
Formula weight
Temperature
Wavelength

Crystal system

Space group
Unit cell dimensions

Volume

2
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Refinement method
Data / restraints / parameters
Goodness-of-Eit on F^{2}
Final R indices [I>2 $\sigma(I)]$
R incices (all data)
Largest difz. peak and hole

9617
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$
189.25

190(2) K
$0.71073 \dot{\mathrm{~A}}$

Monoclinic
$\mathrm{P}_{2} / \mathrm{C}$
$a=10.2380(10) \dot{A} \quad \alpha=90^{\circ}$
$b=11.138(2) \dot{A} \quad \beta=109.00^{\circ}$
$c=9.802(2) \dot{A} \quad \gamma=90^{\circ}$
$1056.8(3) \dot{A}^{3}$

4
$1.189 \mathrm{Mg} / \mathrm{m}^{3}$
$0.075 \mathrm{~mm}^{-1}$

408
$0.76 \times 0.55 \times 0.38 \mathrm{~mm}$
2.79 =0 23.99°
-II $\leq h \leq 11,-12 \leq k \leq 1,-1 \leq \ell \leq 11$

2209
$1664\left(R_{\text {int }}=0.0201\right)$
Fuil-matrix least-squares on F^{2}
$1664 / 0 / 142$
1.043
$R 1=0.0455, w R 2=0.1272$
$\mathrm{RI}=0.0566, \mathrm{wR} 2=0.1391$
0.211 and $-0.197 \mathrm{eA}^{-3}$

Tabl. 2. Atomic coordinates $\left[x 10^{4}\right]$ and equival.. isotropic displasement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . U(eq) is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	y	$U($ eq $)$	
$N(1)$	$9246(2)$	$7922(1)$	$1656(2)$	$35(1)$
$0(1)$	$11162(2)$	$8672(1)$	$581(2)$	$47(1)$
$C(1)$	$7432(2)$	$9356(2)$	$1332(2)$	$38(1)$
$C(2)$	$6306(2)$	$9811(2)$	$1649(2)$	$41(1)$
$C(3)$	$5782(2)$	$9252(2)$	$2625(2)$	$40(1)$
$C(4)$	$6459(2)$	$8237(2)$	$3315(2)$	$44(1)$
$C(5)$	$7599(2)$	$7770(2)$	$3029(2)$	$41(1)$
$C(6)$	$8080(2)$	$8313(2)$	$2008(2)$	$33(1)$
$C(7)$	$4514(2)$	$9752(3)$	$2907(3)$	$55(1)$
$C(8)$	$9713(2)$	$6802(2)$	$1547(2)$	$35(1)$
$C(9)$	$9035(2)$	$5728(2)$	$1944(3)$	$45(1)$
$C(10)$	$10810(2)$	$6646(2)$	$1050(2)$	$37(1)$
$C(11)$	$11497(2)$	$7591(2)$	$584(2)$	$38(1)$
$C(12)$	$12675(2)$	$7269(2)$	$38(3)$	$50(1)$

AcAc4FA

Table 1. Crystal data and structure refinement for 1.

Identification code	9649
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FNO}$
Formula weight	193.22
Temperature	290(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P}_{2} / \mathrm{C}$
Unit cell dimensions	$a=9.284(2) \dot{A} \quad \alpha=90^{\circ}$
	$b=10.858(1) \dot{A} \quad \beta=106.93(1)^{\circ}$
	$c=10.177(1) \dot{A} \quad \gamma=90^{\circ}$
Volume	981.4(2) A^{3}
z	4
Density (calculated)	$1.308 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.097 \mathrm{~mm}^{-1}$
$F(000)$	408
Crystal size	$0.51 \times 0.33 \times 0.27 \mathrm{~mm}$
θ range for data collection	2.81 to 23.50°
Index ranges	$-1 \leq h \leq 10,-1 \leq k \leq 12,-11 \leq \ell \leq 11$
Reflections collected	1961
Independent reflections	$\left.1448{\left(R_{\text {int }}\right.}=0.0161\right)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1447 / 0 / 127
Goodness-of-fit on F^{2}	2.073
Final R incices [I>20(I)]	$R I=0.0371, w R 2=0.0950$
R indices (all data)	$\mathrm{RI}=0.0458, \mathrm{wR2}=0.1020$
Largest disf. peak and hole	0.182 and -0.270 e \dot{A}^{-3}

Table 2. Atomic coordinates $\left[x 10^{4}\right.$] anc equivalent isotropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right.$] for 1 . $0(e q)$ is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

AcAc3F,4($\left.\mathbf{C H}_{3}\right) \mathbf{A}$

Table 1. Crystal data and structure refinement for 1.

Identification code	9631
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{FNO}$
Formula weight	207.24
Temperature	190(2) K
Wavelength	$0.71073 \dot{\text { A }}$
Crystal system	Monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{C}$
Unit cell dimensions	$a=10.3090(10) \dot{A} \quad \alpha=90^{\circ}$
	$b=11.552(2) \dot{A} \quad \beta=107.95{ }^{\circ}$
	$c=9.3070(10) \dot{A} \quad \gamma=90^{\circ}$
Volume	1054.4(2) A^{3}
z	4
Density (calculated)	$1.305 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.095 \mathrm{~mm}^{-1}$
$F(000)$	440
Crystal size	$0.54 \times 0.51 \times 0.30 \mathrm{~mm}$
θ range for data collection	2.72 50 24.00°
Index ranges	$-11 \leq h \leq 11,-13 \leq k \leq 1,-1 \leq \ell \leq 10$
Reflections collected	2214
Independent reflections	$1658\left(R_{\text {int }}=0.0208\right)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$1658 / 0 / 140$
Goodness-of-fit on F^{2}	0.994
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{RI}=0.0378, \mathrm{wR} 2=0.1022$
R indices (all data)	$\mathrm{RI}=0.0461, \mathrm{wR2}=0.1089$
Extinction coefficient	0.014 (4)
Largest diff. peak and hole	0.274 and $-0.167 \mathrm{ef}^{-3}$

Table 2. Atomic coordinater $\left[\times 10^{4}\right]$ and equivalent isotropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . $\sigma(e q)$ is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	Y	z	U (eq)
$F(1)$	9333 (1)	7192 (1)	911(1)	57 (1)
$O(1)$	3791 (1)	6379 (1)	4326 (2)	44 (1)
N(1)	5785(1)	7042 (1)	3277 (2)	33 (1)
$C(1)$	7468(2)	5557 (1)	3627(2)	35 (1)
C(2)	8607(2)	5079(2)	3374 (2)	37 (1)
C(3)	9290(2)	5612 (2)	2479 (2)	35 (1)
C(4)	8722 (2)	6639 (2)	1828 (2)	36 (1)
C(5)	7582 (2)	7148 (2)	2020(2)	35 (1)
C(6)	6951(2)	6612 (1)	2967(2)	$31(1)$
$C(7)$	5377(2)	8136(1)	3418 (2)	31 (1)
C(8)	6128(2)	9150(2)	3065(2)	43 (1)
C(9)	4273 (2)	8318(2)	3923(2)	33 (1)
C(10)	3516(2)	7432 (2)	4362 (2)	35 (1)
C(11)	2340(2)	7782 (2)	4903 (2)	46 (1)
C(12)	10546(2)	5102(2)	2237 (2)	45 (1)

$\operatorname{AcAc} 2(\mathrm{OH}) \mathbf{A}$

Table 1. Crystal data and structure refinement for .

Identification code	9616
Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$
Formula weight	191.22
Temperature	190(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	$\mathrm{P} 2_{1} \mathrm{I}_{1} \mathrm{Z}_{1}$
Unit cell dimensions	$a=8.7870(10) \dot{A} \quad \alpha=90^{\circ}$
	$b=10.4180(10) \dot{A} \quad \beta=90^{\circ}$
	$c=11.177(5) \dot{A} \quad \gamma=90^{\circ}$
Volume	1023.2(5) \dot{A}^{3}
z	4
Density (calculated)	$1.241 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.086 \mathrm{~mm}^{-1}$
$F(000)$	408
Crystal size	$0.57 \times 0.32 \times 0.21 \mathrm{~mm}$
θ range for data collection	2.67 to 23.97°
Index ranges	$-1 \leq h \leq 10,-1 \leq k \leq 11,-1 \leq \ell \leq 12$
Reflections collected	1145
Independent reflections	$1068\left(R_{\text {int }}=0.0560\right)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1068 / 0/127
Goodness-of-fit on F^{2}	1.066
Final R indices [I>2 $\sigma(I)]$	$\mathrm{R} 1=0.0471, \mathrm{wR2}=0.1186$
R indices (all data)	$\mathrm{RI}=0.0546, \mathrm{WR2}=0.1258$
Absolute structure parameter	1(3)
Largest diff. peak and hole	0.142 and $-0.169 \mathrm{e} \dot{A}^{-3}$

Table 2. Atomic coordinates $\left[x 10^{4}\right]$ and equivalent isctropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . \quad (eq) is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	y	z	U (eq)
$N(1)$	1982 (3)	785 (3)	7797 (2)	27 (1)
O(1)	830 (2)	2074(2)	9618(2)	36 (1)
O(2)	4550(2)	1860 (2)	8502 (2)	37 (1)
C(1)	-65(3)	1113 (3)	9168(3)	28(1)
C (2)	-1467(3)	802(3)	9645 (3)	36 (1)
C(3)	-2314(4)	-184(3)	9146(4)	$42(1)$
C(4)	-1745(4)	-869 (4)	8192 (4)	44(1)
C(5)	-332(4)	-580(3)	7726 (3)	$39(1)$
C(6)	505(3)	436 (3)	8190 (3)	28 (1)
C(7)	2604(3)	779 (3)	6706(3)	27(1)
C(8)	1710(4)	317 (4)	5644 (3)	44(1)
C (9)	4064 (4)	1226(3)	6525 (3)	$31(1)$
C(10)	4991 (4)	1777(3)	7428 (3)	30 (1)
C(11)	6520(4)	2298(4)	7096 (4)	46 (1)

$\mathbf{C u}\left[\mathrm{SAL3F}, 4\left(\mathrm{CH}_{3}\right)\right]_{2}$

Table 1. Crystal data and structure $r \cdots \because e m e n t$ for 1.

The Fathom wide 1 atom on at each site.

Table 2. Atomic coordinates $\left[x 10^{4}\right]$ and equivalent isotropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . 0 (eq) is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	Y	z	U (eq)
$\mathrm{Cu}(1)$	0	0	0	20(1)
$F(1)$	-3053 (6)	-1888(9)	1943 (2)	71 (2)
F(1')	932(4)	48 (6)	1974 (1)	$38(1)$
O(1)	376 (2)	-1658(3)	-472(1)	26 (1)
$N(1)$	-711(3)	-1776(4)	450 (1)	21 (1)
C(1)	-1806(3)	-5189 (4)	-339(1)	24 (1)
C(2)	-1805(3)	-5837(5)	-804(1)	26 (1)
C(3)	-1069(3)	-5046(5)	-1157(1)	26 (1)
C(4)	-347(3)	-3662 (5)	-1045 (1)	24 (1)
C(5)	-338(3)	-2972(4)	-567(1)	22 (1)
C(6)	-1110(3)	-3750(4)	-213(1)	20 (1)
C (7)	-1145 (3)	-3196(5)	286 (1)	21 (1)
C(8)	-858(3)	-1485 (4)	968(1)	23 (1)
C(9)	-1959 (4)	-1861 (5)	1206 (1)	$30(1)$
C(10)	-2033(4)	-1589 (6)	1701(1)	$42(1)$
C(11)	-1063(4)	-961 (6)	1976 (1)	40(1)
C(12)	13 (4)	-592 (6)	1722(1)	$37(1)$
C(13)	135(3)	-830(5)	1226 (1)	27 (1)
C(14)	-1174 (5)	-647(7)	2522 (2)	58(1)

$\mathrm{Cu}\left[\mathrm{SAL} 3,5\left(\mathrm{CF}_{3}\right)_{2}\right]_{2}$

Table 1. Crystal data and si witure refinement for 1.

* in asymmetric unit with Cu or $0,4,1 / 4$ position of space group C_{2} / c

Table 2. Atomic coordinates $[x 10$; and equivalent isotropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . U(eq) is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	U (eq)
$\mathrm{Cu}(1)$	0	$452(1)$	2500	$49(1)$
O(1)	716 (1)	-100(3)	2000(1)	64 (1)
N(1)	1081(1)	1119 (3)	2984 (1)	43(1)
$F(1)$	2457 (6)	474(15)	4946 (4)	141(5)
F (2)	1174 (7)	80 (20)	5179 (3)	166 (5)
$F(3)$	1669 (11)	-1715(11)	4693 (3)	173(4)
$F\left(1^{\prime}\right)$	1639(14)	1062 (22)	5225 (4)	121 (6)
$F\left(2^{\prime}\right)$	1168 (11)	-1327(28)	4889 (7)	125 (6)
$F\left(3^{\prime}\right)$	2421(11)	-362(43)	4795 (8)	135 (10)
$F(4)$	-1142 (9)	5083(19)	3700 (4)	135(5)
F (5)	-81(6)	6370(12)	4170 (8)	158 (4)
F (6)	-965(11)	4628(22)	4451 (5)	155 (5)
$F\left(4^{\prime}\right)$	-426(20)	6204(24)	3778 (9)	163 (8)
$F\left(5^{\prime}\right)$	-1384(8)	4396 (36)	3943 (12)	182 (9)
$F\left(6^{\prime}\right)$	-521(15)	5481 (27)	4493 (4)	124(6)
C(1)	1571 (2)	342(4)	1983 (1)	56 (1)
C(2)	1915(3)	219(5)	1518(1)	77 (1)
C (3)	2806(3)	656 (6)	1477 (2)	87 (1)
C(4)	3414(3)	1228 (5)	1883 (2)	$84(1)$
C (5)	3112 (2)	1354 (4)	2341(1)	68 (1)
C(6)	2189(2)	931 (4)	2397 (1)	53 (1)
C(7)	1915 (2)	1230 (4)	2877(1)	49 (1)
C (8)	936(2)	2554 (4)	3483(1)	42 (1)
C (9)	1367 (2)	632(4)	3888(1)	49 (1)
C (10)	1171(2)	1088 (4)	4360 (1)	55 (1)
C (11)	559(2)	2442(5)	4426 (1)	59 (1)
C(12)	128 (2)	3356 (4)	4013(1)	51 (1)
C(13)	300 (2)	2892(4)	3544 (1)	46 (1)
C(14)	1618 (3)	15 (7)	4802 (1)	83 (1)
C(15)	-527(3)	4863 (6)	4074 (1)	77 (1)

$\mathbf{C u}\left[\mathrm{SAL} 4\left(\mathrm{OCF}_{3}\right)\right]_{2}$

Table 1. Crys it data and structure refinement for 1.

Identification code	9680
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cu}_{0.50} \mathrm{~F}_{3} \mathrm{NO}_{2}$
Formula weight	311.99
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P} 2{ }_{1} / \mathrm{C}$
Unit cell dimensions	$a=14.768(1) \dot{A} \quad \alpha=90^{\circ}$
	$\begin{array}{ll} b=10.663(1) \dot{A} & \beta=95.87(1)^{\circ} \\ c=8.320(1) \dot{A} & \gamma=90^{\circ} \end{array}$
Volume	1303.3(2) A^{3}
z	4
Density (calculated)	$1.590 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.919 \mathrm{~mm}^{-1}$
F(000)	630
Crystal size	$0.69 \times 0.55 \times 0.22 \mathrm{~mm}$
θ range for data collection	2.77 to 26.50°
Index ranges	$-18 \leq h \leq 18,-13 \leq k \leq 1,-1 \leq \ell \leq 10$
Reflections collected	3579
Independent reflections	$2684\left(\mathrm{R}_{\text {int }}=0.0307\right)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2683/0/214
Goodness-of-fit on F^{2}	1.033
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{RI}=0.0496, \mathrm{wR2}=0.1235$
R indices (all data)	$\mathrm{R} 1=0.0783, \mathrm{wR} 2=0.1432$
Largest diff. peak and hole	0.428 and $-0.273 \mathrm{ei}^{-3}$

Table 2. Atomic coordnaties $\left[x 10^{4}\right]$ and equivalent isotropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . $\quad(e q)$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	U (eq)
$\mathrm{Cu}(1)$	0	5000	0	50 (1)
O(1)	-905 (2)	4715 (2)	1386(3)	61 (1)
O(2)	4547 (2)	6337(4)	1210 (4)	104(1)
N(1)	840(2)	5702(2)	1848 (3)	48(1)
C (1)	-597(3)	6745 (3)	4935 (4)	58(1)
C(2)	-1451 (3)	6743 (3)	5396(5)	64 (1)
C(3)	-2130(3)	6063(3)	4498(4)	63 (1)
C(4)	-1939(2)	5398(3)	3164 (4)	57 (1)
C(5)	-1059(2)	5383 (3)	2649 (4)	50(1)
C(6)	-377(2)	6093(3)	3555 (4)	47 (1)
$C(7)$	541 (2)	6128 (3)	3148 (4)	51 (1)
C (8)	1794 (2)	5868 (3)	1727 (4)	53 (1)
C(9)	2316(3)	4858 (3)	1331(4)	61 (1)
C(10)	3230 (3)	4991 (4)	1221(5)	71 (1)
C(11)	3612 (2)	6149 (5)	1459 (5)	76 (1)
C(12)	3113 (3)	7177 (4)	1841 (6)	87 (1)
C(13)	2194 (2)	7026 (4)	1968(6)	73 (1)
$F(1)$	5929 (7)	6708(10)	1967(19)	143(4)
$F(2)$	5000 (6)	6715 (19)	3717(14)	169(7)
F(3)	5275 (10)	5015 (14)	2735(19)	188(6)
C(14)	5165 (4)	6233 (10)	2400(10)	120(2)
F(3')	5020(19)	5688(41)	3590(46)	221 (19)
F (2^{\prime})	5138(18)	7434(33)	3037(47)	276 (23)
F(\mathbf{I}^{\prime})	5958(15)	5927(30)	2168(36)	188(16)

Table 1. Crystal data and structure refinement for 1.

Identification code	9671
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{CuF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	491.96
Temperature	190(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=10.009(2) \dot{A} \quad \alpha=95.08(1)^{\circ}$
	$b=10.4780(1) \dot{A} \quad \beta=92.44(1)^{\circ}$
	$c=10.560(2) \dot{A} \quad \gamma=105.42(2)^{0}$
Volume	1060.9(3) A^{3}
z	2
Density (calculated)	$1.540 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.074 \mathrm{~mm}^{-1}$
F(000)	502
Crystal size	$0.48 \times 0.36 \times 0.22 \mathrm{~mm}$
θ range for data collection	2.50 to 29.06°
Index ranges	$-1 \leq h \leq 11,-12 \leq k \leq 12,-12 \leq \ell \leq 12$
Reflections collected	4238
Independent reflections	$3330{\left(R_{\text {int }}=0.0217\right)}$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$3309 / 0 / 301$
Goodness-of-fit on F^{2}	1.165
Final R indices [I>2 $\left.{ }^{(I)}\right]$	$R I=0.0505, w R 2=0.1108$
R indices (all data)	$\mathrm{RI}=0.0768, \mathrm{WR2}=0.1415$
Largest diff. peak and hole	0.327 and $-0.381 \mathrm{eA}^{-3}$

displacnent parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . $\quad(e q)$ is cisfined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	x	y	z	U (eq)
$\mathrm{Cu}(1)$	0	0	5000	35 (1)
$F(1)$	5402 (4)	3447(4)	9128(4)	67 (1)
O(1)	-1125 (4)	-1763(4)	4797(3)	43 (1)
$N(1)$	796 (5)	-260(4)	6707(4)	33 (1)
C (1)	-1582 (7)	-3161 (6)	7836 (6)	47(2)
C (2)	-2666(7)	-4268(7)	7504 (6)	53(2)
C(3)	-3257(6)	-4511 (6)	6246(6)	49 (2)
C(4)	-2720 (6)	-3671 (6)	5358(6)	44 (2)
C(5)	-1605 (6)	-2522 (5)	5677 (5)	38 (1)
$C(6)$	-1030(6)	-2278(5)	6956(5)	34 (1)
C(7)	161 (6)	-1200(6)	7365 (5)	37 (1)
C(8)	1987(6)	716 (5)	7346 (5)	33 (1)
C(9)	3251 (6)	970(6)	6775 (6)	45 (2)
$C(10)$	4402 (7)	1886 (6)	7383 (6)	49 (2)
C(11)	4272 (6)	2539 (6)	8530 (6)	46 (2)
C(12)	3046 (7)	2311(6)	9105 (5)	45(2)
C(13)	1883 (6)	1381(6)	8508 (5)	40(1)
$\mathrm{Cu}(2)$	0	5000	10000	35 (1)
$F(1 A)$	4343 (4)	7889 (4)	5703 (4)	71 (1)
O(1A)	-1103(5)	3269 (4)	10171(3)	46 (1)
$N(1 A)$	465 (5)	4417 (4)	8250 (4)	33 (1)
C (IA)	-1976(6)	1183 (6)	7127(5)	41 (1)
C (2A)	-2965 (6)	136 (6)	7461 (6)	46 (2)
C(3A)	-3328(7)	147 (6)	8729 (6)	49 (2)
C (4A)	-2708(7)	1196 (6)	9614 (6)	47(2)
C(5A)	-1683 (6)	2292 (5)	9294(5)	36 (1)
C (6A)	-1301 (6)	2285 (5)	8015 (5)	33 (1)
$C(7 A)$	-216(6)	3326 (5)	7599 (5)	34 (1)
C (8A)	1482 (6)	5317(5)	7592 (5)	35 (1)
C(9A)	1071(6)	5797(5)	6498 (5)	36 (1)
$\mathrm{C}(10 \mathrm{~A})$	2041(7)	6662 (6)	5872 (5)	44(2)
C (11A)	3388 (7)	7034 (6)	6338 (6)	47(2)
C(12A)	3824 (7)	6576(6)	7413 (6)	51(2)
C(13A)	2872 (6)	5714(6)	8045 (5)	43 (2)

Anhydrous Bis[acetylacetonato]Co

Table 1. Crystal data and structure retinement for 1.

Table 2. Atomic coordinates $\left[x 10^{4}\right]$ and equivalent isotropic displacement parameters $\left[\dot{A}^{2} \times 10^{3}\right]$ for 1 . $O(e q)$ is defined as one third of the trace of the orthogonalized $\sigma_{i j}$ tensor.

	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathrm{U}(\mathrm{eq})$
$C O(1)$	0	0	0	$22(1)$
$O(1)$	$655(3)$	$1985(6)$	$-1341(2)$	$33(1)$
$O(2)$	$-1620(3)$	$2038(6)$	$-67(2)$	$32(1)$
$C(3)$	$-1897(4)$	$4163(10)$	$-727(4)$	$29(1)$
$C(4)$	$105(4)$	$4111(10)$	$-1860(4)$	$30(1)$
$C(5)$	$-1084(4)$	$5260(9)$	$-1589(4)$	$33(1)$
$C(6)$	$-3175(4)$	$5562(11)$	$-526(4)$	$40(1)$
$C(7)$	$859(5)$	$5438(10)$	$-2833(4)$	$41(1)$

