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Abstract

Mesh-free Radial Basis Function M ethods 
for Advection-Dominated Diffusion Problems

David Patrick Hunt 
University of Leicester

This thesis is concerned with the numerical solution of advection-dominated diffusion 
problems. There are essentially two key aspects to this work: the derivation of an a priori 
error estimate for a semi-Lagrangian mesh-free method using radial basis function interpo
lation to numerically approximate the first-order linear transport problem; and the design 
and testing of a semi-Lagrangian mesh-less method to numerically solve the full parabolic 
advection-diffusion problem, using radial basis function Hermite interpolation.

We begin by establishing the theory of radial basis function interpolation, including new 
results for the stability of interpolation via the class of radial basis functions known as poly
harmonic splines, as well as error estimates for interpolation by the same class of function. 
These results provide us with the necessary tools to prove the a priori error estimate for 
the semi-Lagrangian advection scheme, given certain assumptions on the smoothness of the 
solution. We then validate both the scheme and the analysis with a series of numerical 
experiments.

By introducing the concept of Hermite interpolation, we develop and implement a new 
semi-Lagrangian method for the numerical approximation of advection-dominated diffusion 
problems, which is validated through two numerical experiments.
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Chapter 1

Introduction

This thesis is primarily concerned with the numerical solution of advection and advection- 

diffusion problems, which are broadly defined as models of the transport of a scalar quantity 

in a vector field. In the case of purely advective problems, the quantity is conserved along 

the trajectories (also known as the characteristics) of particles within the system; a physical 

example of this behaviour would be the transport of pollution in a river: the motion of the 

water carries the polluted water downstream. When diffusion occurs as well as advection, 

the quantity initially assigned to one particle “spreads” over a region as time moves for

wards. With this in mind, it should be clear that the mathematical modelling and numerical 

approximation of purely advective or advection-dominated diffusion problems are of fun

damental importance within a wide range of areas in applied mathematics; most notably, 

meteorology, oil reservoir simulation, aerodynamics and physiology, for example.

1.1 T he study o f advection-diffusion problem s

Mathematically, we can state the advection-diffusion problem as a parabolic differential 

equation of the form

ut +  a • Vu — eAu  =  / ,  (x, t) 6  x (0, T], (1.1.1a)
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u = g, (x,t) e dQ x (0 ,T],

u(x, 0) =  uq{x), a; € ft,

(1.1.1b)

(l.l.lc )

where

• a : R *1 R+ -♦ R d is the velocity field, which we assume is divergence-free (that is, 

V • a =  0);

•  /  : H d x H+ —► I t  is the forcing function;

• e > 0 is the coefficient of diffusion;

• g : H d x (0,T] —> I t  is a known function providing the value of the solution on dft, 

the boundary of ft, for a llt  6  (0 ,T];

• the solution u : H d x H+ —> H  is, for example, the temperature of a fluid or the 

concentration of a pollutant, whose value is known for all x  G ft C lRd at time t =  0 , 

represented by the initial function uo : H d —> ]R.

When e =  0 the problem reduces to one of a purely advective nature, sometimes referred 

to as passive advection, in which case (1.1.1a) becomes hyperbolic.

Typically, in many areas of practical importance, advection dominates diffusion, in 

the sense that ||a||/e 1 for some appropriate norm of a. In this situation, it is well

known that the application of many traditional numerical methods, developed for strictly 

parabolic or diffusion-dominated processes, often behave very poorly when applied to these 

types of problems. Indeed, among the common difficulties is a trade-off between excessive 

numerical diffusion and non-physical oscillations. However, these effects can be greatly 

reduced by employing numerical methods which directly exploit the hyperbolic character 

of the underlying partial differential equations. Indeed, one such class which we shall be 

concerned with— semi-Lagrangian methods— seek to combine the method of characteristics 

with a suitable algorithm for interpolating/projecting the solution onto a fixed (Eulerian) 

spatial mesh. Since their initial development in the early 1980s (see Robert (1981), for
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example) they have been extensively studied; indeed, semi-Lagrangian finite difference and 

finite element methods have been studied by, e.g., Bercovier & Pironneau (1982), Pironneau 

(1981/82), Douglas & Russell (1982), Morton, Priestley & Siili (1988), Morton & Siili (1995), 

Houston & Siili (2001); see also the references cited therein. For the application of spectral 

methods within the context of semi-Lagrangian methods, we refer the reader to the article 

by Siili & Ware (1991).

The starting-point for the work contained in this thesis is a class of semi-Lagrangian 

methods based on employing a combination of the method of characteristics with radial basis 

function interpolation for the numerical approximation of the unsteady linear transport 

equation. This class of schemes was first introduced in the series of articles by Behrens & 

Iske (2002) and Behrens, Iske Sz Kaser (2003); also see Iske (20036) for the extension to 

advection-dominated diffusion problems.

The idea behind the method is quite straightforward: the computational domain is first 

discretised by a set of scattered points S, referred to as a point cloud, since in contrast to 

finite difference-based methods, S may be completely unstructured. Then, at each time- 

step, every point within S is first traced backwards in time based on solving the system 

of ordinary differential equations which determine the characteristics of the underlying 

partial differential equation. The value of the numerical solution at this upstream point 

is then determined by locally interpolating the values of the computed solution within 

a neighbourhood of where the point has landed at the previous time level. Due to the 

hyperbolic nature of the problem, we may then assign a value to the particle at the current 

time level based on the computed value at the previous time level.

Using only a small number of the immediate neighbours of the upstream point over which 

to interpolate the numerical solution, ensures that the interpolation is computationally 

inexpensive since the resulting interpolation matrix is relatively small. Moreover, since this 

process is completely local, it can easily be parallelised, since each point within the point 

cloud S can be treated independently.
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The major advantage to using radial basis functions to solve the interpolation problem 

is that they can easily treat problems in high space dimensions, since, being based purely 

on the distance from each point in a given point set, radial basis function interpolation is 

essentially a dimensionally-independent process.

A natural progression from the study of advection problems is, of course, the solution of 

advection-diffusion problems, which are the focus of the penultimate chapter in this thesis; 

the strategy of deriving a numerical solution to this family of problems is similar to that 

described above, with the exception of it being not possible to straightforwardly localise 

the interpolation problem due to the global influence of diffusion. These concepts will be 

explained in greater depth as and when they occur.

1.2 The structure o f th e thesis

The thesis is structured as follows. After the preliminaries of notational conventions which 

close this chapter, Chapter 2 provides background theory on interpolation and function- 

reconstruction using the particular family of functions known as radial basis functions. In 

Sections 2.2 and 2.3 we see how linear combinations of shifts of these functions are utilised 

to construct a function which agrees with all values from given set of data, and thus forms 

an approximation to a function that corresponds to the given values.

The questions of which functions can be theoretically reconstructed in this manner, and 

how accurate the approximation is (termed error estimation), are addressed in Sections 2.4 

and 2 .6 , respectively, where we concentrate on one particular class of radial basis function: 

polyharmonic splines. We then introduce the concept of local interpolation, describing how 

it differs from global interpolation methods, proving the stability of the interpolation oper

ator for polyharmonic splines, which is undertaken in Section 2.7.1 using their property of 

invariance under scalings, followed by error estimates for local interpolation in Section 2.7.4.

Finally in this chapter, we broaden the discussion to consider interpolation problems 

wherein the data is not provided simply as function values but as the action of given 

functionals on a function. This is so-called Hermite-Birkhoff interpolation, for which in



Section 2.8 we describe some established results from the literature concerning its accuracy, 

as well as applications that will prove pertinent to the advection-diffusion problem.

In Chapter 3 we introduce the proposed radial basis function semi-Lagrangian method 

for the numerical approximation of the linear transport equation. Our main theoretical 

results are the a priori error bounds presented in Section 3.2. The proof of the bound for 

the semi-discrete (continuous in space) scheme is carried out in Section 3.3; in Section 3.4 the 

convergence proof for the full radial basis function semi-Lagrangian scheme is undertaken.

The analysis closely follows that presented in the article by Falcone k, Ferretti (1998), 

where a class of mesh-free partition of unity methods were studied. The key difference in 

our work is that we consider a more general class of mesh-free methods based on radial 

basis function interpolation. In this case, the main technical difficulty lies in controlling 

the interpolation error at a given time level, evaluated at an interpolation point, with the 

corresponding quantity evaluated at the upstream point on the previous time level. To 

this end, we employ the Lagrangian representation of the underlying radial basis function 

interpolation operator which we describe in Section 2.5, together with approximation results 

based on employing a Taylor-series-argument that we prove in Section 2.7.4..

Although radial basis functions have been used to good effect elsewhere in numerically- 

solving advection-diffusion-type partial differential equations— see the work of Zerroukat, 

Djidjeli & Charafi (2000) for explicit and implicit mesh-less methods using radial basis 

functions; Zerroukat, Power & Chen (1998) for radial basis function collocation methods for 

solving the heat equation; Boztosun, Charafi, Zerroukat & Djidjeli (2002) and Ingber, Chen 

& Tanski (2004) for a description of a Crank-Nicholson (^-weighted) radial basis function 

method; and Lorentz, Narcowich & Ward (2003) for related work on Eulerian-based radial 

basis function interpolation methods for linear hyperbolic problems— to the best of our 

knowledge this is the first proof of convergence of this class of numerical methods.

The numerical performance of the method is demonstrated in Chapter 4, for problems 

with (Sections 4.1 and 4.2) and without (Section 4.3) known analytical solutions; the former 

problems also serve to confirm the analysis of the previous chapter.

5



Chapter 5 introduces a method for numerically solving advection-diffusion problems 

using radial basis functions to solve Hermite-Birkhoff interpolation problems at each time- 

step. The effectiveness of this scheme is demonstrated in numerical experiments presented 

in Section 5.5.

Finally, in Chapter 6 we summarise the work presented in this thesis, draw some con

clusions and suggest possible avenues for future work.

1.3 Prelim inaries

In this section we conveniently gather some notational conventions and definitions that will 

be used throughout the rest of this thesis. Where beneficial, we shall remind the reader of 

these definitions and conventions as and when they subsequently occur.

From the outset, to avoid confusion we state here that when we write, for example,

f(x )  =  g(x) (x e Rd),

we mean that the stated property is true for all x 6  R d.

1.3.1 N um bers and m ulti-indexes

Let IN denote the set of natural numbers, 7L the set of integers, and H  the set of real 

numbers. A subscript -I- symbol on the latter two sets indicates the subset of non-negative 

numbers; e.g. 7L+ indicates the set of non-negative integers, and is equivalent to IN U {0}.

2Z+ denotes all multi-indexes with non-negative entries, and if a  =  ( o i , . . . ,  ad)T € ZZ+, 

the order of a  is defined to be |a | =  a\ +  • • • +  ay, and a\ = ai! • • • cy! (which extends

the convention that if a  =  (0, . . . ,0 ) ,  then a! =  1). For x  =  (aq, . . . ,  Xd)T 6  lRd and

a  =  ( a i , . . . ,  ad)T € ZẐ ., xa = x J 1 • • • x%d, and xa is called a monomial

6



1.3.2 D ifferential operators and continuous functions

The differential operator Da is

where d/dxi denotes the partial derivative with respect to x*, for i =  1 , . . . ,  d. Da is equal 

to the identity operator for a  =  0 .

For m € Zj+ U { o o } ,  Cm(f2) denotes the set of all continuous real-valued functions /  

defined on such that Daf  is continuous on Cl for all |a | < m. When m = 0 we simply 

write C(Cl) rather than C°(Cl). C°°(Cl) denotes functions /  for which Daf  is continuous 

over Cl for all m  =  0 ,1 ,2 , __

1.3.3 Inner products and norm s

Semi-inner products are always denoted by (•, •) whereas inner products will use angle 

brackets (•, •), with an appropriate subscript specifying over which space the (semi-)inner 

product is defined. Semi-norms that arise from semi-inner products are denoted by | • | 

with the corresponding subscript — | • \f for the semi-norm over the function space F, for 

example— whereas full norms are denoted || • || with a subscript. In particular, the norms 

for the well-known Lebesgue spaces of measurable functions of finite norm, which for an 

arbitrary domain Cl C are denoted Lp(fi), 1 < p < oo, are defined as follows:



It has become standard in the literature (or at least, the literature concerned with radial 

basis function methods) to denote the Euclidean norm || • H2 by | • |; when the argument is a 

real number the same notation denotes the modulus of the number, and as it is always clear 

from the context which metric is being deployed we shall defer to this tradition, although 

we may re-introduce the former notation where extra clarity can be gained from its use. In 

general, for any vector a =  (a i , . . . ,  af) 6  R d,

/  d \ V p

Hi* :=  ( 5 > n

for 1 < p < 00, and

IM lo o  : =  m a x  |a j | .l<i <d

Given an n x n real matrix A, the matrix p-norm is defined for 1 < p < 00 by

P I I p  : =  m a x  P x | | p ,||x||p=l

where x € lRd.

For a real-valued function f  defined on a finite set of n points {x i , . . . ,  xn} = S C R d, 

the discrete infinity norm is

| | / | | o o ,S  :=max\f(x)\. x€z.

Let 0 =  t° < t 1 < . . .  < tn~ 1 < tn =  T  be a subdivision of the interval [0, T\. For any 

function space F,

whenever /  can be interpreted as a function of t.
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For /  € C J(H d) x  C((0,T]),

C((0,TI;C1(Ild)) SUP ,
te(o,T]

max sup \Daf(x ,t) \  
xeRd

(1.3.4)

1.3.4 Function spaces, d istributions, dual spaces and Fourier transform s

We denote by 11̂  the space of real-valued d-variate polynomials with real coefficients of total 

degree less than or equal to m. Hence IIg = H, Ilf is the space of all linear polynomials in 

d variables, and so on. By convention the zero polynomial (that is, the constant polynomial 

that is zero everywhere) has degree —oo, so n l fc =  {0} for all k > 0 and d > 1.

The classical Sobolev space W k(Ci) is defined for k,p  6  2Z+ as the space

Wp*(ft) := {v : Dav e Lp(n), 0 < |a| < k} , (1.3.5)

with norms

when 1 < p < oo, and

IMIw*,(ft) :=

for p =  oo.

It is common in the literature to write H k(Q) for W k{fl), but for simplicity in this thesis 

we shall avoid introducing this extra notation.

The Schwartz space of rapidly decreasing functions consists of functions in C°°(lRd) for 

which

sup sup (1 +  \x\2)N \(Daf)(x)\ < oo (N  G 5Z+). (1.3.6)
\a [<N  x e n .d

9



y  denotes the vector space of these functions with a topology given by the countable col

lection of norms (1.3.6), and 5?' denotes the space of linear functionals on 5? that are 

continuous with respect to this topology, which is termed the space of (tempered) distribu

tions. For a distribution A E S?' and a so-called test function <f> E 5?, [A, 4>\ denotes the 

action of the distribution on the test function. For /  E C°°(Hd), /A  is a distribution with 

an action defined by

[/A,0] =  [A,/0 ] (<b e y ).

We extend the notion of differentiation to encompass distributional derivatives by defining 

the distribution Da A via

[Dah,tj>\ = [A, ( - l)M £>“ ,/>] {4> e  y ) .

For any space of functions F, we denote the dual space of distributions over F  by F*.

The Fourier transform of a function /  E L\(lRd) is denoted /  and given by

f(x )  =  (27r)_d/2 [  f(y)e~lxTydy,
Jn d

which is continuous and vanishes at infinity. Moreover, the Fourier transform defines a 

continuous, linear, one-to-one mapping of S? onto 5? whose continuous inverse / v is given 

by

f v (x) = (2n)-d' 2 [  f(y )e ixTVdy,
J Rd

and we have/ = / ( —•)• We may extend the Fourier transform to a distributional setting 

by defining, for A E <5̂ ',

[A,0] =  [A,<£] ((f> E J^),

10



and the distributional Fourier transform is also a continuous, linear, one-to-one mapping, 

this time of 5 ? ' onto 5 ? \ with a continuous inverse A? defined in the obvious way.

It is a useful property of the Fourier domain that Daf  =  ( i • )a f  — in other words, the 

Fourier transform of the derivative of a function is merely a polynomial multiplication of 

the Fourier transform of the function. (This property is key in generalising the notion of 

differentiation to a fractional-order setting.)

Parseval’s formula

f  f (x )g(x )dx= f  f (x)g(x)dx  ( / ,p  € L2(lRd))
J Rd J n d

reveals, via the special case f  = g, that the Fourier transform is an isometry on L2 (Hd):

II/IIl2(f/‘) =  II/IIl,(r‘) ( /  6  ^(K.")), (1.3.7)

a result known as the Plancherel theorem. More specifically, the theorem proves the 

existence of a linear isometry : L2 (Hd) —► L2 (IRd) such that =  /  for all /  € 

Li(]Rd) fl L2 (Hd), with inverse ’F-1 /  =  / v for all /  G L i(Itd) fl L2 (lRd), which extends 

the notion of the Fourier transform from Li(]R,d) fl L2 (lRd) to L2 (Hrf). The extension ^  is 

still referred to as the Fourier transform and we continue to write /  instead of for all

/  € L2(Rd).

For extensive further details on the above spaces and operations, the books of Adams 

(1978) and Rudin (1991) are excellent resources.
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Chapter 2

Interpolation via Radial Basis 

Functions

In a fairly abstract setting, the interpolation problem involves finding a function <5 which, 

for a set of pairwise distinct interpolation points A  =  {a i , . . . ,  an} C R d, d > 1, satisfies

S(a) = fa (a e  A),

where the f a are n interpolation values which correspond to each of the n interpolation 

points.

Usually, and certainly in the settings we will discuss, the f a are real numbers; if we 

define the data function f  : A  —> 1R the problem becomes one of finding an interpolant 

S f  : lR.d —► R, such that Sf(a)  =  /(a ) for all a € A.  Note that aside from ensuring that 

they are pairwise distinct, we have placed very little restriction on the distribution of the 

interpolation points in ]Rd— they may be scattered wildly throughout space.

2.1 Fundam ental properties o f an interpolant

There are some properties of an interpolant S f  which would be sensible to demand. Firstly, 

we would hope that if the data function /  was scaled by some a  6  R , an interpolant to this

12



new set of points would be simply aSf.

Additionally, suppose that, as well as the data /  and their interpolant Sf,  we have 

another set of data g whose interpolant is Sg; it would be quite natural to expect the 

function S f +g =  S f  +  Sg to interpolate the data f  + g.

Consequently, we have implied that our potential interpolants must belong to a linear 

space of functions, which we denote by T — this space is sometimes referred to as the space 

of admissible functions.

As one might expect, we cannot make such demands on our interpolant without paying 

a price: suppose that v € T  vanishes at all the interpolation points a € A  Let S f € T  be 

an interpolant to the values /(a ), a e A. Then

Vf,a(a) :=  <S/(a) +  otv{a) =  Sf(a) +  a.0 =  Sf(a)  =  f(a)

for each a E A  and all a  E 1R. Hence V/ja interpolates the data as well as Sf ,  so the 

interpolant is not uniquely defined— a property which is vital in practice, for numerical 

stability. In situations where this problem may arise, we can make an assumption about 

our interpolation points which neatly circumvents the issue.

Definition 2.1.1 (Unisolvent sets of points). Let K  be a space of functions defined on 

fl C H d. A subset A  of Q is called unisolvent with respect to K  if the only function in K  

that vanishes on A  is the zero function.

Thereby, as long as the interpolation points form a unisolvent set with respect to the 

space of admissible functions, if the interpolant exists then it is unique. We shall see later 

that this requirement is not as restrictive on the choice of interpolation points as one might 

imagine. Unfortunately, before we even reach that point, things again take a turn for the 

worse: the following theorem is attributed to Mairhuber (1956).

Theorem 2.1.2. Let K  be an n-dimensional space of continuous, real-valued functions on 

R d. Assume that all sets of points A  C with |.4| =  n are unisolvent with respect to K . 

Then either n — 1 or d — 1.
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Hence we axe, to say the least, rather restricted in our choices for dimension or number of 

interpolation points if we want to demand that all sets of interpolation points are unisolvent 

with respect to every function in our space of interpolants.

2.2 Spaces o f adm issible functions

In order to overcome the problem revealed to us by the theorem of Mairhuber, one thing 

we can do is allow the space of admissible functions to depend on the interpolation points 

themselves— thus by changing the interpolation points, we alter the space of functions. 

One way to do this is to define a function ip : R d x R d —> R; then, for a set of interpolation

points A  C R d, the space of admissible functions can be defined as

FA,i> = span {ip( •, a) : a € A }  . (2 .2 .1)

In such a setting the single function ip generates a space of functions; we refer to ip as the

basis function (or sometimes as the basic function, since it is really the n functions ip( - , a) 

which form a basis for Fa ,ip)-

Suppose we want to interpolate the function /  at the interpolation points a € A  with a 

function from Fa ,ip- The interpolant would be of the form

S f ( x ) =  a ^ ( x  ̂a)> (2 .2 .2 )
aEA

for all x  € R d, and the coefficients aa would be determined by the requirements

<*aip(b, a) = f(b ), (2.2.3)
aeA

for all b 6  A\ in matrix form this is written

Aa = f ,  (2.2.4)
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with the obvious definitions of the so-called interpolation matrix A  E R nxn and the vectors 

a, /  € R n. From this representation we can see that in order to guarantee a unique solution 

to the interpolation problem, A  must be a non-singular matrix. One way of doing this is to 

ensure A  is positive-definite, which in turn means that ip must be a strictly positive-definite 

function.

2.2.1 S trictly  positive-defin ite functions

Definition 2.2.1 (Positive-definite matrix). An n x n  matrix M  is called positive-definite 

if, for any 7  E Rn,

7TM7 > 0 ,

and, in addition, 7 M 7 7, =  0 if and only 2 /7  =  0 .

Definition 2.2.2 (Strictly positive-definite function). A function ip • R d x R d —> R  2s 

strictly positive-definite on R d if, for any finite set of points x \ , . . .  ,x n E R d, the n x n  

matrix A with entries given by

Aij = xp{xi,xj) (1 < i , j <  n),

is positive-definite.

Using a positive-definite function as our basic function, we immediately have a unique 

interpolant of the form (2 .2 .2), as proved in the following well-known theorem.

Theorem 2.2.3. Let ip : R d x R rf —► R  be a strictly positive-definite function on R d. Let 

A  C R d be an arbitrary set o fn  interpolation points, and let f  : A —► R  be the corresponding 

data function. Then there exists a unique function S f  E such that

5/(6) =  / ( 6) (b e  A).
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Proof. Prom the matrix form (2.2.4) of the interpolation problem, we wish to show that the 

matrix A  given by Aij =  ip(ai,aj), 1 < i , j  < n, is non-singular; we do this by showing that 

it has only zero in its kernel.

Let 7  6  JR.” be in ker A, so that A*y =  0. Then ^ A y  =  0. Since ip is strictly positive- 

definite, A  is positive-definite, and thus by definition, 7  =  0. □

Here we see that the strict positive-definiteness of ip takes care of the uniqueness of the 

interpolant, so we do not need to impose a unisolvency condition on A. We now meet our 

first example of a strictly positive-definite function.

Example 2.2.4. The function ip : R d x R d —> R  defined by ip(x,y) =  e~^x~y\2, 7  > 0, is 

strictly positive-definite (Light 1992, p. 118). ip is referred to as the Gaussian.

In fact, the Gaussian is a member of a whole family of strictly positive-definite functions, 

revealed to us by the following lemma.

Lemma 2.2.5. I f  f  £ L i(R d) is continuous, non-negative and non-vanishing, then

(p(x) = [  f(u>)e~txTuduj (x e  1Rd),
J]Rd

is strictly positive-definite.

For a proof of this lemma, see (Wendland 2005, Corollary 6.9). In particular, this holds 

for /  £ Li(R) and x  € I I  with x  =  B(y, z) for some map B  : R d x ]Rd —► JR. Thus

ip(y, z) ’•= (<t>0 B)(y, z) =  f  f(u )e~ lB{-y'z)uJ da;,
J R

ai2
is strictly positive-definite. Setting f{uS) =  , w 6  R , and B(y,z)  =  |y — z |,

y, z € R d, verifies that the Gaussian is strictly positive-definite.

However, there are certain types of functions that have also proved effective at solving 

interpolation problems, but are positive-definite only on a subspace of R rf.
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2.2.2 C onditionally  str ictly  positive-defin ite functions

We modify the definition of strictly positive-definite functions slightly to encompass those 

functions which are strictly positive-definite on an important subset of and call these 

functions conditionally strictly positive-definite of order m.

Definition 2.2.6 (Conditionally (strictly) positive-definite function of order m). A function 

xp : JHd x —► I t  is conditionally positive-definite of order m  on i f  for any finite set of

points x \ , . . . ,  xn € R d, the n x  n matrix A given by A{j — ip(xi, Xj), 1 < i, j  < n, satisfies

7TA7 > 0 ,

for all 7  =  (71, . . . ,  7n) € R n \  0 satisfying

n
w ( xi) =  0 (p e  n m-l)'

}=1

I f  in addition, ^ A 'y  — 0 if and only if 7  =  0 then we say ip is a conditionally strictly 

positive-definite function of order m  on TRd.

Thus, a strictly positive-definite function is a conditionally strictly positive-definite func

tion of order 0 .

We still wish to use these functions to solve the interpolation equations (2.2.3), which 

give us n degrees of freedom. By using conditionally strictly positive-definite functions we 

have increased the degrees of freedom of the problem by £ = dim(II^_1). In order that we 

recover a square system, we require i  extra conditions, and so we adjust our interpolant by 

a polynomial of an appropriate degree, which thus has the form

l
■S/M = a aip(x,a) +  ^2fiiPi(x) (x € U d), (2.2.5)

aEA i= 1

where /3\ , . . . ,/% € R, p i , . . .  ,pt form a basis for n^ l_1, and we demand what are often
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referred to as the natural side conditions:

5 3  aaPi(a) = 0  (t =  1 , .  . . , £). 
a€A

This choice of extra conditions, as well as the use of a polynomial modifier in the 

interpolant— may seem a little contrived, but we will see in Section 2.3 that, in fact, these 

conditions arise naturally from the general set-up.

Of course we must still satisfy the interpolation conditions

l
Y^<Xa {̂b,a) + 53fe(&) = (&€.A),
a€.A t= l

and writing this in matrix form it is easy to see how we have now recovered a square system:

^ ( a i , a i ) ^ ( a i ,a 2) • • il>(ai,an) p i(a i)  • • Pe{a i)^ f f ( a 1)^

V>(a2,a i ) ^ ( a 2 , a 2) • • ^ ( a 2 , a n ) P i ( a 2) • • Pe{a 2 ) / ( a  2)

V>(an,a i ) ^ (an,a 2) ' • ip(an, an) pi(an) • • P t M OLn / ( « n )

Pi(a i) Pi(a2) Pi (an) 0 0 Pi 0

P2{a\) P2{cl2) P2(an) 0 0 (32 0

\  Pe(ai) Pi(o>2) Pe(an) 0 • 0 J \Pi) V 0 /

or,

PT 0

If the (n+t)  x (n+t)  matrix above is non-singular then we have a unique solution to the 

interpolation problem. Due to our polynomial modifier, we can see that as in Section 2.1, 

the interpolant may not be unique unless we demand the interpolation points are unisolvent
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with respect to our space of admissible functions. In fact, because of the conditionally strict 

positive-definiteness of ip, we need only demand unisolvency over the polynomial space.

Theorem 2.2.7. Let ip be conditionally strictly positive-definite of order m on and 

let A  C fftrf be a set of n interpolation points, unisolvent with respect to with a

corresponding data function f  : A  —► H.

Then there exists a unique solution (a, (3)T G lRn+  ̂ to the interpolation equations

l
Y  aaip(b, a) +  Y  PiPi(b) = f ( b) {be A),  (2.2.6)
aEA i = l

5 > a P i ( a )  =  0 (i = l,...,e),  (2.2.7)
aEA

and hence a unique interpolant of the form (2.2.5).

Proof. Suppose that a  G H n and /3 G R* are such that {ot,(3)T G lRn+* is in the kernel of 

(  PT o ) '  r̂ îen Aa  +  P(3 =  0 and PTa  =  0. The second of these equations can be rewritten 

aTP  =  0 , and utilising this fact when pre-multiplying the first equation by aT gives

aTAa — 0.

Since aTP  = 0, that is, J2aGA aaPi{a) =  0 for 1 < i < t, we can use the conditionally 

strictly positive-definiteness of ip to conclude that a = 0 .

Hence we have P(3 =  0. Each of the n rows of this may be written in full as

q{a) := (3\Pi{a) + +  • • • +  PtPlfa) =

for some q G n ^ _ l5 for all a G A. So q{a) =  0 for all a G A, and by the unisolvency of A, 

this must mean that q = 0 , thus {3 = 0.

Therefore ker ̂  q )  1S triv^  and so the matrix is non-singular. □

Remark 2.2.8. As one would hope, if we take m  =  0 then clearly the above theorem reduces 

to be equivalent to Theorem 2.2.3.

19



2.2.3 C haracterisation o f conditionally str ictly  p ositive-defin ite  functions

In the mid-Eighties, Micchelli (1986) proved a conjecture of Franke which said that there 

exists a unique solution to the interpolation problem in Ft2 when interpolating via a function 

from the family known as multiquadrics, given by ip(x, y) = (l + \x — y\)^. The same paper 

also contains the first half of a characterisation of a class of conditionally strictly positive- 

definite functions ip : x Ftd —»Ft in terms of a relatively easily-checkable property. The

characterisation was completed some years later by Guo, Hu & Sun (1993). We first recall 

the definition of completely monotone functions.

Definition 2.2.9 (Completely monotone function). A function f  is said to be completely 

monotone on (0, oo) if f  E C°°(0, oo) and (—1 )fc/ ( fc) is non-negative for all k =  0,1,2,__

Theorem  2.2.10. Let <p E C°°(0, oo) D C(Ft+). The function ip := <p o | • |2 is conditionally 

strictly positive-definite of order m  if and only if (—1 )m(p̂ m  ̂ is completely monotone but 

not identically constant on (0 , oo).

Note the subtlety here: m  is the smallest number such that (—l)m+fĉ (m+fc) > 0 for all 

k = 0 ,1,2, —

Corollary 2.2.11. Let <p E C°°(0, oo) D C(Ft+) be completely monotone but not identically 

constant on (0, oo). Then ip := <p ° | • |2 is strictly positive-definite on Ftd.

Motivated by these characterisations, it is convenient to make the following definition.

Definition 2.2.12 ((Conditionally) strictly positive-definite univariate function). A uni

variate function <p : [0, oo) —> Ft is (conditionally) strictly positive-definite (of order m) 

on Ftd if the corresponding multivariate function ip := (p o | • | is (conditionally) strictly 

positive-definite (of order m ) on ]Rd.

Thus, given a function (p E C°°(0, oo) fl 0(111+), in order to prove that ip <p o 

| • | is conditionally strictly positive-definite of order m  over H d, it suffices to show that 

(—l )m+k<p(m+k\y/~^) is completely monotone but not constant in (0 , oo) for k = 0 , 1, 2 , —
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2.2.4 R adial basis functions

As interest and work in interpolation progressed, and now motivated by Michelli’s charac

terisation, one particular type of basis function emerged as a popular and powerful tool: 

those functions which are radial— the value of the function depending only on the Euclidean 

distance of the argument.

Definition 2.2.13 (Radial function). A function 0  : ]Rd —»I t  is said to be radial if there 

exists a function 0 : R+ —> 1R such that '0 =  0 ° | • |, where | • | denotes the Euclidean norm 

on ]Rd.

Interpolation schemes which utilise such a function refer to 0  as the radial basis function. 

It is usual, and convenient, to also refer to the univariate function 0 as the radial basis 

function, despite it actually being translates of the radial function 0  which form the basis 

for the space of admissible functions.

With the characterisations given by Theorem 2.2.10 and Corollary 2 .2 .11, it is relatively 

easy to verify that the most commonly-used radial basis functions are strictly positive- 

definite or conditionally strictly positive-definite (and to determine their order in the latter 

case).

Exam ple 2.2.14. We have already seen in Example 2.2.4 that the Gaussian 0(r) =  e~ir is 

strictly positive-definite, with r =  \x — y\. To prove this in light of Theorem 2.2.10, observe

that 4 k\y / f )  = (-1  )*7 * e-'T for r e  H, k = 0,1,2........  Then ( -1  )k4 k\y /r )  =  7 V (\/r )  >

0 (and not constant) for 7 , r  > 0.

Exam ple 2.2.15. Similarly, we can prove the positive-definiteness of the inverse multi

quadrics 0 (r )  =  (c2 +  r 2) - 7 , c ,7  > 0, by observing that

( - 1  )k4 k\ ^  = (—1)*(—1 )7 ( 7  +  1 ) ... (7 +  * -  l)(c2 +  r ) ~ ^  > 0 ,

for k = 0 , 1, 2 , __
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Example 2.2.16. Consider the multiquadric <j>(r) =  — (c2 +  r 2)s, c > 0. 0 is clearly not 

strictly positive-definite since (f>{y/r) < 0 for all r > 0. However, since (—l)m<̂ m)(v/r) = 

(—l )m+1^(5 — 1) ■ • • (J — m +  lXc2 +  r ) 2-m > 0 for m  =  1 ,2 ,..., we can see that </> is 

conditionally strictly positive-definite of order 1. In fact, we can generalise this to the whole 

family of multiquadrics <f>{r) =  (—1)1̂ 1 (c2 _j_ r 2)7, 7  > 0, 7  ^ IN, which are conditionally 

strictly positive-definite of order [7 ] .

Example 2.2.17. The functions <f>(r) =  (—l)rfc/2V fc, where k is an odd natural number, 

are conditionally strictly positive-definite of order \k /2].

We wish to find the smallest m such that (—1 is completely monotone on

(0,00). Let A W  := (f>(y/r) =  (—l)Ffc/2V i. Then

f i m)M  = ( - D rt/21! ( J  -  l )  ' ( |  -  m +

and thus, observing that [|"| =  ^ 7  (—1 )mf j ^  is completely monotone fo rm  > [|"| but 

not for m = |"|] — 1.

Example 2.2.18. The functions (f>{r) =  (—l) fc+1r 2fc ln(r) are conditionally strictly positive- 

definite of order k +  1 on ]Rd.

As noted by Wendland (2005), since 2<f>(r) = (—l) fc+1r 2fe ln(r2), it suffices to show that 

fk(r) := (—l)*+1r* ln(r) is conditionally strictly positive-definite of order k +  1 .

This follows from the observation that

/ ^ ( r )  =  (—1 )k+1k(k — 1 )(k — 2) • • • (k — m  +  1 )rk~m ln(r) +  pm(r) (1 < m < k),

where pm is a polynomial of degree k — m. In particular, when m  =  k, (—1 =

(—l)2k+1k\ ln(r) +  c is not completely monotone on (0 , 00), whereas since for m = k +  1, 

f(k+1) _  we have ( _ i) fc+1y f̂c+1) =  k\r~l which is completely monotone on

(0 , 00) and so <f> is conditionally strictly positive-definite of order k -1- 1 .
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Radial basis function 0 (r), r  > 0 m
Gaussian e~Xr\  A > 0 0
Inverse multiquadrics (c2 +  r 2)-7 , c, 7  > 0 0
Multiquadrics (_ 1) |7 |(c2 +  r2)1, c,7  > 0 M

Polyharmonic splines
(_ 1)l*/a|r fcj fc> 0 j k g 21N0 
(—l) fc+1r 2fcln(r), fc> 0

r * / 2i
k + 1

Table 2 .1: Commonly-used radial basis functions and their order m  of conditionally strictly 
positive-definiteness.

R em ark 2.2.19. The functions of Examples 2.2.17 and 2.2.18 are known collectively as 

the polyharmonic splines. This is because they are the multi-dimensional generalisations of 

the well-known one-dimensional cubic spline, <f>(r) =  r 3.

We have collected together the results of the above examples for easy reference to the 

common names and corresponding order of conditionally strict positive-definiteness of each 

of the radial basis functions we have just met — see Table 2.1.

So it seems that things are progressing nicely: we apparently have a good collection of 

functions with which to carry out our interpolation, and we know that they produce unique 

interpolants to our data. But we have said little about why the form of the interpolant 

(2 .2 .5) comes about — for instance, why the addition of a polynomial term would be the 

right thing to do. And since the space of admissible functions is essentially determined 

by linear combinations of the basis function, we are not really sure exactly what kind of 

functions we can interpolate— they may be of no practical value whatsoever. We need to be 

able to say more about the properties of the functions we are interpolating — in particular, 

their smoothness.

To address these issues, it seems appropriate to tackle the problem from an alternative, 

almost opposite direction: start with a space of functions that we would like to be able 

to interpolate, and see if we can deduce anything about the form or properties of the 

interpolant. This strategy is called a variational approach, wherein assumed properties of 

the space of functions itself are used to show that the form of the interpolant (2.2.5) arises 

quite naturally.
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2.3 A  variational approach to  the interpolation  problem

As discussed early in Section 2.1, it is prudent to assume that our space of functions is 

linear, and we would like to be able to talk about the value of the functions in a pointwise 

sense over H d, so let T  be a linear space of continuous functions H d —» H. Assume T  is
i

equipped with a semi-inner product (•, • )^, and hence a semi-norm | • \? := (•, • )£, which 

determines an ^-dimensional kernel K.

As before, let A  C H d be a finite set of n interpolation points, with given real-valued 

interpolation data f a f(a ) for a E A , for some function /  E T  which we are attempting 

to interpolate. To go some way to ensuring uniqueness, we must assume A  is unisolvent 

with respect to AT, for if not, we may adjust any interpolant by a function v E K  which 

vanishes on A.

With our set of interpolation points in place, we can adjust the semi-inner product 

(•, •) jr in a certain way to define a true inner product on T . Pick a subset A! C A  of size 

t  which is unisolvent with respect to K. Such a set exists, for if it did not, then A  itself 

would not be unisolvent with respect to K. (It is time to come clean and admit that we 

have tacitly assumed throughout that n > £.) Now define

(/> 9)t  := ( / ,9)t  +  X  (2-3.1)
aeA'

for f ,g  E F. This is a genuine inner product on T  since (•, • )?■ is a semi-inner product. 

Denote the induced norm by || • ||^, and assume T  is complete with respect to this norm. 

Hence we have a Hilbert space.

2.3.1 R eproducing kernel H ilbert spaces

As mentioned above, for the purposes of interpolation, it is important to be able to determine 

pointwise values of functions in T , so we have assumed the functions are continuous — in 

other words, that the point evaluation functional Sx such that 6x(f)  = f ( x ) for all x E U d 

is a bounded linear functional in the dual of T. This means that for each x E !Rd, there
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exists a constant Cx such that \f(x)\ < Cx\\f\\r, for all /  6  T . We may now apply the 

Riesz representation theorem for Hilbert spaces (Adams 1978), which states that Sx is a 

bounded linear functional if and only if T  is a reproducing kernel Hilbert space.

Definition 2.3.1 (Reproducing kernel Hilbert space). Let T  be a Hilbert space of real

valued functions on equipped with an inner product (•, •)?. If, for each x G fftd, there 

exists a unique element Rx G T  such that f(x ) = ( f,R x )r  for all f  G T , then T  is called 

a reproducing kernel Hilbert space. The function Rx is called the reproducing kernel for x 

in T .

The power of the reproducing kernels will be revealed in a moment; firstly, because 

there may be more than one function in T  that satisfies the interpolation conditions (that 

is, functions that agree with /  at the interpolation points), we need a consistent way of 

defining the function which we will call “the interpolant to / ” .

2.3.2 Interpolants o f m inim al norm

Consider the set M  = { v G f  : v(a) = f(a ),a  G A}. This is the set of all elements of T  

which interpolate /  G T . Observe that M  is a closed, convex, non-empty subset of T  and 

as such possesses a unique element of minimal norm (Cheney 1966, page 22).

Definition 2.3.2 (Minimal norm interpolant). The minimal norm interpolant to /  on A  

from T  is the unique element of M  of minimal norm, which shall be denoted Z4 / .

Henceforth, whenever we speak of the interpolant to a function, we will mean the in

terpolant of minimal norm, and it is in terms of the minimal norm interpolant that we 

formulate the variational problem: find Tj^f such that

X4 /(a ) =  /(a ) for all a G A  (the interpolation conditions), (2.3.2a)

K 4 /I.F < \9\r for all g G M  (the minimal norm condition). (2.3.2b)

(The second of these conditions is a reduction of the more “natural” condition ||X4 / ||jr  < 

||p||^ for all g G M, by the definition of || • || -̂.)
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One might ask for further justification for the choice of the element of minimal norm to 

be the interpolant, and we shall address this shortly, in Remark 2.3.5. For now, we learn 

that, rather surprisingly, we can calculate J 4 /  explicitly, via the reproducing kernels for A.

Theorem 2.3.3. Let T  be a reproducing kernel Hilbert space with inner product (•, •) j? 

defined by (2.3.1). Let f  € T  and let A  be a set of n pairwise distinct interpolation points, 

unisolvent with respect to K , the kernel of T  with respect to the semi-inner product (•, • )jr. 

Let Xj^f be the minimal norm interpolant to f  on A  from T . Then

X4 f  — ^   ̂otcRc, 
ceA

where the coefficients ac are determined by the equations

Y  on,(Rb, Rc)r  =  (/, Rc)j■,
beA

for all c 6  A, where Rc denotes the reproducing kernel for c in T .

Remark 2.3.4. Recall that ( f ,R c) r  =  f(c), which means that, as we would expect, the 

coefficients ac are determined by the values of f  at the interpolation points.

The proof of Theorem 2.3.3 that follows is a mild rewriting of the result found in Cheney 

& Light (2000, Chapter 30, Theorem 3).

Proof of Theorem 2.3.3. Define a subset V  of T  consisting of all functions which vanish 

on the interpolation points — that is V := flae-A ^ ^  : v(a) =  minimal norm

condition is equivalent to minimising \X^f\jr subject to ( /  — Xj^f) G V, and setting v = 

/  — J 4/ ,  we can restate this as minimising \ f  — vjj? subject to v € V.

This is a standard problem of best approximation and its solution is characterised by 

the conditions v E V  and /  — v l.V  (Cheney & Light 2000); hence X ^ fl-V .
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Since V  is a subset of T  we know there exist unique reproducing kernels Ra such that, 

for all v € V, (v, Ra)? =  v(a) =  0 for all a E A. Thus we can rewrite V  in terms of these 

reproducing kernels:

V  =  f |  6 T  ■ (v,Ra)r  =  0} =  f |  R«-
06*4 aeA

This is the set of elements of T  which are orthogonal to Ra for all a 6 A, and hence 

V  =  ^span {i?a : a 6  -4}^ . Thus J 4 /  € span {i?a : a € A}  and the coefficients in the 

span axe determined by the interpolation equations. □

We saw in the above proof that 2^ /T V -, so for any v G V  we have

||v -  I Af\\2r  = ( v -  JAf ,  V -  I Af ) F

=  ( v , v -  %jJ)F -  {XAf ,  V -  Xa Tif  

= {v,v)F + (1a  f ,  I a D f

=  IM& +  \ \Z A fW h

giving us a Pythagorean law relating elements of V  to the interpolant. Now put v = X4 / —/ ,  

and apply the interpolation conditions to deduce

\ f - l A f \ F  =  \ f \ r - \ l A f \ h  (2.3.3)

for all /  € T , which is called the Pythagorean property of the interpolant.

R em ark 2.3.5. We return to the question of why the element of minimal norm should be 

the one chosen to be the interpolant to f . To justify this choice, suppose that, in addition 

to the values of f  at the interpolation points, we are told that ||/||?  < r, for some r 6  R . 

Then we can summarise all the information we have about f  by:

f e C : = { c e M  : ||c||jr < r} =  {c 6  T  : \\c\\? < r,c(a) = f(a ),a  E A} .
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Notice that, due to its minimal norm property, 2a  f  € C. Moreover, for c 6  C with 

||c||jf =  r, by definition there exists v =  (c — J * / )  € V, so by the Pythagorean law for 

elements o fV ,

\\c \\% =  IK * / -  c \\% +  IKa/II^-

Thus HZ4 /  — c|||r =  r2 — \\2Af\\%, so XAf is equidistant from all points on the circumference 

of C — in other words, the minimal norm interpolant lies at the centre of C; since we know 

nothing of the location of f  within C, the centre of C is a reasonable choice to make for the 

approximation to f .

By Theorem 2.3.3, we will be able to determine the form of the interpolant to data 

prescribed on A  provided we know the reproducing kernels R c for each c e A. Light & 

Wayne (1998) proved the form of the reproducing kernels in terms of a function 0 6  C(Hd) 

on the condition that the kernel K  has a Lagrange basis.

Definition 2.3.6 (Lagrange basis). Let F be a space of continuous functions in of 

dimension n. Let A  be a finite set of n pairwise distinct points in ]Rd. The Lagrange basis 

for F is the set of functions Xa 6  F, a 6  A  such that

1, a = b,
a «(&) =  ;

0, a A b, 

for all b e  A.

For convenience, we gather the so-far-assumed properties of the space T .

Assumption 2.3.7. The space F  =  ^(R^) of functions !Rd —> I t  has the following prop

erties:

1. /  c e r t

2. A semi-inner product (•, ■ )?■ is defined on T  with corresponding semi-norm \ ■ \jr 

having kernel K;
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3. Let A! be a finite set of pairwise-distinct points unisolvent with respect to K  and let 

{Pa\aeA' a LufFa-nse basis for K . Then there exists a function 4> € C(1R) such that, 

for each x E R d,

rx(y) = 4>(\x -y \)~ 2 2  Po(x)̂ (ly -  ®l) (ye Rd)>
aeA'

defines a function rx 6  T  with ( f ,r x)j? =  f{x) for all f  E .F(]R,d) with the property 

that f(a) =  0 for all a E A!. Here, for u ,v E T ,

(u, v)j: =  (u, v )r  +  22 u(a)v(a).
aeA'

Remark 2.3.8. The use of the symbol $, which was used previously to represent a basic 

function, in this new context is not meant to confuse the reader; on the contrary, it is 

intended to seed the notion that the function will eventually turn out to be a radial basis 

function that we have already met.

We now quote the aforementioned result of Light & Wayne (1998).

Lemma 2.3.9. Let T  satisfy Assumption 2.3.7. Then the representer of point evaluation — 

that is, the element Rx E T  such that (/, R x )f  =  f(x )  for all f  E T  — has the form

Rx(y)  =  <t>{\y-A) -  $ 1  Pa(x)<f>(\y -  a|)
aeA'

-  2 2  ( ^ l 6 ~  *1) “  _  a\))pb(y) +  2 2  Pb(x )Pb(y)•
beA' aeA' beA'

So if, in addition to the above assumptions, T  is complete with respect to the norm 

|| • ||^ = (•, •)jL, then by Theorem 2.3.3 we know we have a unique interpolant of minimal 

norm, and using Lemma 2.3.9 gives us the form of the representers.

In particular, for the interpolation points c E A, we have, for all y  E  R d,

R c{y) =  0 (|y -c |) -  22 Pa(c)<t>(\y ~  aD
a€A' (2.3.4)

-  22 Wl6 ~ CD ~ Pa(C)̂ (l6 ~ a\))Pb{y) + 22 Pb(C)Pb(y)-
beA' aeA' beA'
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When c 6  A', it is clear from (2.3.4) that R c (y )  =  Pc{y)-  Moreover, we can see that for 

each c e A \A *  there exist constants 7^, a G A, and i/£, for b e A ',  such that we can rewrite 

(2.3.4) as

Rciv) = 13 iZWv ~ al) + 13 VbPb(y)
aeA beA'

with constants 7  ̂ explicitly given by

t
1, a = c,

la = ~Pa(c), a E A',

0 , otherwise,

and constants i/£ whose explicit description is not important here. Via the two lemmas that 

follow we shall see that we have been led quite naturally to an interpolant with coefficients 

selected in an identical manner to that previously seen in the “direct” construction which 

resulted in Theorem 2.2.7.

Lemm a 2.3.10. Let c € A  \  A '. For each b € A!, J2aeA 7aPt>(a) =  0*

Proof. Using the definition of 7  ̂ and properties of the Lagrange basis functions,

13 l CaPb(°) = P b (c )  ~  5 3  P a { c ) p h{ a )  =  p b (c )  -  p b (c )  =  0.
aeA  aeA'

□

Hence, Theorem 2.3.3 tells us that can write the interpolant of /  as

ZAf(y) =  5 3  acRc(y)
ceA

=  5 3  acRc(y) +  5 3  abRb(y) 
ceA \A ' beA'
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=  13 a °  (13 i & U y  ~  a D +  13 ^ P b i v n  + 53 a b R b ( y )

ceA \A ' \a e A  beA' )  beA!

= 22 13 ac7â (|y- al) + 22 ( 12 ac"b + <xb)pb(y) 
a eA ceA \A '  b e A '\c e A \A ' /

= 22 7â i y -  ai) +13 P̂biy)̂
aeA  beA'

where

7a  = 22 ac7«’ Vb= 13 acVb+<xb-
ceA \A ' ceA \A '

Lem m a 2.3.11. Let b € A'. Then Y^aeA^aPbi.0)  =  0- 

Proof.

53 7aP&(o) =  13 13 a o l CaPb{p)  =  13 a c 2 2  ^ ( a )  =  ° >

aeA  a eA ceA \A '  ceA \A ' aeA

by Lemma 2.3.10. □

Thus the interpolation problem boils down to finding constants 75 for 6 G A  and in, for 

b e  A! that satisfy

53^(1° ~ &l) + 13 PbPb(a) = f{a) (a e A),
beA beA '

137bPa(&)=0 (a e A ') .
beA

Hence we have deduced that the unique solution to the variational problem (2.3.2) is of 

precisely the same form as the solution displayed in Theorem 2.2.7. Furthermore, the 

selection of the coefficients is in the same manner in both cases, providing justification for 

the apparently artificial selection of the natural conditions that we saw in Section 2.2.2.

Now that we know more about the form of the interpolant, we can investigate certain 

well-known spaces which happen to satisfy the assumptions we have made on T , and use
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these to provide more insight into how interpolants comprising a sum of translates of a 

radial basis function arise quite naturally from the variational approach.

2.4 B eppo Levi spaces

As we have said in Assumption 2.3.7, the space of functions we are interpolating must be 

at least globally continuous; beyond that assumption, we would like to know precisely how 

smooth the functions axe. To this end, we define suitable spaces of continuous functions, 

the Beppo Levi spaces, popularly-used in the radial basis function literature, for they are 

the native space for the polyharmonic splines.

Definition 2.4.1 (Fractional-order Beppo Levi space on ]Rd). Let d,k E 2L+ and 0 < p < 1 

such that k +  p > d/2. The fractional-order local Beppo Levi space on R,d is defined as

B L k+>t(R d) =  { /  6 C (n d) : | f \ BLk+Hn^  < oo} ,

where the weighted semi-inner product given by

(/>^)fiLfc+^(Rd) =  y i  c“ f  d(Daf){x)(L)olg)(x)\x\ ^dx,
M=* R

1
for f ,g  e BLk+fi(]Rd), induces the semi-norm \ • l^fc+^Rd) =  (•, • ) 2BL ^ ^ R dy 

The constants ca are chosen so that the semi-norm is rotationally invariant —

^  cax2a — \x^k (x E  IRd),
\a\=k

and are given explicitly by ca =  ( «!) •

When p, = 0, by the Plancherel theorem (1.3.7) we can write the semi-norm alternatively

05 \ f \B Lk(Rd) =  1 2 \a\=kc<* fjRd \ D a f \ 2 '
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Note that k and /z are assumed to be optimal, by which we mean 0 < /z < 1. The 

following theorem shows that B L k+fi(R d) is an example of the function space T  that we 

have been building-up over the previous sections.

Theorem  2.4.2. (B L k+t*(Hd), | • satisfies the properties of T  in Assump

tion 2.3.7 with <j> =  <f>d,k,n € C'(IR) the polyharmonic spline given by

<f>d,kAr ) =  <

(_l)fc+M d/2+ir2k+2n 2k + 2p, — d even,

(—1) ffc+M-d/2] r 2fc+2/i-d ̂ otherwise.
(2.4.1)

For n  =  0 the semi-norm has kernel n j ^ ;  when /z > 0 the kernel is Ud.

Given the dependence on /z of the semi-norm kernel, it is convenient to define

n^_1? /z = o, 

n£,  ̂> o.
(2.4.2)

For the integer-order case (that is, when /z = 0), this theorem is proved over several 

results in Wendland’s (2005, Chapter 10) book; for the general result, see the Ph.D. thesis 

of Wayne (1996).

R em ark 2.4.3. As suggested by Examples 2.2.17 and 2.2.18, the constants ( _ i) fc+M-d/2+1 

and (—l)rfc+/i-d/2l are required to ensure (j> is conditionally strictly positive-definite and thus 

provides a unique solution to the interpolation problem, in accordance with Theorems 2.2.7 

and 2.2.10.

R em ark 2.4.4. Another way to approach this set-up is to choose a set A ' C A  of size I  =  

dim(/Cfci/i) which is unisolvent with respect to Kk^, and modify the semi-norm | • \BLk+f*(iR.d) 

as described on page 24, to form a genuine norm || • \\BLk+t*(Rd)’ Then, with <$> =  (j)d,k,n> the 

completion of T  with respect to this norm is B L k+fi(Eid).

The notion of Beppo Levi spaces on ]Rd may be generalised to domains Q, C 1Rd, in terms 

of the tempered distributions defined in Section 1.3, but it is not simply a case of restricting
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the integration to 17 instead of JRd, due to the global nature of the Fourier transform. As 

shown by Levesley & Light (1999), one must first determine what they call the “direct 

form” of the global semi-norm— that is, an expression in terms of the original function 

rather than its Fourier transform. Once this form has been found, it can then be restricted 

to the local domain, and thus we arrive at the following definition.

Definition 2.4.5 (Fractional-order Beppo Levi space on 17). Let d ,k e 2Z+ and 0 < fi < 1. 

Let 17 C The fractional-order local Beppo Levi space on 17 is defined as

B L k^ (U )  =  { / € • ? " :  | / |BL*+Hn) <  oo} ,

where the local weighted semi-inner product is given by

„  r f  ((D af ) ( x ) - ( D af)(.y])((D ag ) ( x ) - ( D ag)(y))
= E  « .y o yn ------------------------------------------------------------- d* d*'’

| a | —«

l
for f ,g  6 £ L fc+M(17), which induces the semi-norm | • \BLk+n(Q) ~  (*> ’)BLk+»(n)' ^he 

constants ca are as in Definition 2.4-1-

Remark 2.4.6. The weight | • \~2̂ ~d may seem a little mysterious at first glance, but we 

should not be too worried: it is merely a consequence of the theory of Levesley & Light 

(1999, Theorem 3.7) that we are taking the Fourier transform of the “global weight” | • |2m.

If the local spaces B L k+tJ,(Q) are unfamiliar to the reader, the following result should 

provide some more comfortable ground.

Lemma 2.4.7. Let 17 C ]Rd. Let 0 < fi < 1, and k and d be integers chosen so that k > 0 ,  

d > 1 and k +  p -  d/2 > j  > 0. Then B L k+ti(Q) C for 17 C where \j] denotes

the largest integer that does not exceed j.

Proof. Beppo Levi spaces are an example of the spaces studied in the Ph.D. thesis of Wayne 

(1996), see Theorem 4.1.18 and Section 5.1 therein; alternatively see Light & Wayne’s (1999, 

Theorem 2.12) paper. □
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R em ark 2.4.8. In light of Lemma 2.4-7, henceforth we assume k +  p. — d/2 is at least 

positive, so that point evaluation makes sense.

2.5 T he Lagrange representation o f th e interpolant

There is an alternative representation of the radial basis function interpolant which utilises 

a Lagrange basis for the whole of T  over A  (as opposed to a Lagrange basis for the kernel 

space)— in other words, those functions Aa € T  satisfying Xa(b) =  8^  for a,b E A, where 

Sab is the Kronecker delta function. These functions, once known, immediately give us the 

interpolant

%Af(x) = A0(x)/(a),
aeA

(2.5.1)

for all x E R d, which clearly satisfies the interpolation conditions XAf(b) = f(b) for all

b e A .

Finding the values of the Lagrange basis functions at an arbitrary point x  E R d requires 

the solution of the linear system

f  A  P ^ f u  X\{x)

^ ( x ))

where A  and P  are the usual interpolation matrices as described in Section 2 .2 .2 , and, in 

the context of the kernel

X(x) = (Xa(x))aeA e R n, 

t ( x )  =  ( T a t e ) ) ^ *  e  n e , 

(f(x) = (<f)(\x -  a|))oe^ e R n, 

7t ( x )  =  ( z q ) | q | < £  6  U e ,

35



with a  G Z+ and

k = <
k, p = 0

k +  1 fi>  0 .

As ever, assuming that A  is unisolvent with respect to KfcjM, for any p G /Cfc)M we have 

polynomial reproduction, in that

=  P-
aeA

Because pointwise evaluation entails solving a linear system, computing values of an 

interpolant based on its Lagrange basis form is an expensive procedure practically speaking, 

but this representation can prove useful from a theoretical perspective.

2.6 Error estim ates

Arguably the most important question one can ask of an interpolant is: how “close” does 

it come to reproducing the function it interpolates? Ideally the so-called error estimate, 

however we define this quantity, would be given in terms of something over which we have a 

good deal of control — for example, some measure of the distance between the interpolation 

points. Intuitively, we would expect the interpolant to be more accurate the greater the 

number of interpolation points we use, but if we double the number of points, does the 

error only halve? It is one of the great achievements of approximation theory that we can 

provide error estimates that answer this question.

Suppose that our finite set of interpolation points A  is contained in some open bounded 

subset SI of H d, and let denote the closure of Q (in other words, =  Q U dQ).

Definition 2.6.1 (Fill distance). The fill distance of A  in Q is defined to be the quantity

h = supminla; — a|. 
xefia*A
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One can think of h as being the radius of the largest open ball, centred at a point in fl, 

such that no points in A  lie inside the ball.

Although the radial basis function interpolant that we construct is globally supported, 

lying in the space P, the interpolation points are the only points where we know the precise 

values of the data function, so we cannot expect to be able to determine much about the 

accuracy of our interpolant far away from these points. Yet of course we would like to be 

able to say something about the error away from the interpolation points (by construction, 

the error at each interpolation point is zero), so we try to deduce error estimates over Q, 

rather than the whole of (for example, when interpolating with polyharmonic splines, 

we may assume the interpoland /  is in a local Beppo Levi space rather than a global one).

2.6.1 Pointw ise error estim ates

A natural quantity to look at is | f(x )  —XJ\f{x)\ — that is, the difference in modulus between 

the function and its interpolant evaluated at a particular point x € Q. Let us assume that 

T  is complete with respect to || • || jr. By construction f(a )  =  J 4 f(a)  for all a £ A, thus 

/  — J 4 /  is a member of the set

V' := p |  {u € T  : v(a) = 0} , 
ae-A'

where A' is a unisolvent subset of A  of size I  =  dim(/Cfc)At), and V' itself is a Hilbert space, so 

it seems prudent to examine, for each x € fi, the value of |u(x)| where v € V7, to ascertain 

whether this tells us anything about the behaviour of the interpolant. More specifically, we 

define what is known as the power function and examine its properties.

Definition 2.6.2 (Power function). Let x € fl. The power function P is given by

P(x) := sup {|u(x)| : \v\? =  1} . (2.6.1)
vev'
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Thus for any v € V' we have P(x) > \v(x)\/\v\jr for all x e ft; in other words, |v(x)| < 

P(x)\v\jr, and in particular,

I/(* ) -  2U/(*)| < P (x)\f -  XAf \T . (2.6.2)

Recall the Pythagorean property of the interpolant (2.3.3); substituting this into (2.6.2) 

gives an error estimate of the form

\f(x) -  XAf(x)\ < P (x ) \f \r , (* 6 ft). (2.6.3)

For this to be of any practical use, we obviously need to be able to say a little more about 

the power function P, ideally describing it in terms of (powers of) h as mentioned at the 

beginning of this section. With Assumption 2.3.7 in place, Light h  Wayne (1998) provide 

the precise form of the power function.

Theorem 2.6.3. Let X’Af  be the interpolant to f  from T  over a finite set of interpolation 

points A  C which contains a subset A! that is unisolvent with respect to the kernel K . 

Then

P(x) = <£(0) -  2 ^ 2  Pa(x)4>(\x -  a|) +  Pa(x)pb(x)(f>(\a -  6|). 
aeA ' a,beA'

Substituting this into (2.6.3), we have an expression for the behaviour of the error, at 

least in a pointwise sense, so we turn our attention to establishing stronger results, which 

will require more stringent demands on the domain ft that contains our interpolation points.

2.6.2 Lp-error estim ates for B L k(Q)

In this section we prove error estimates in the Lp-norms (1.3.1) and (1.3.2) in the case of 

the polyharmonic spline radial basis functions with /i =  0. Recall from Theorem 2.4.2 that 

these basis functions give rise to the integer-order Beppo Levi spaces B L k(lRd) (with kernel
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which happily satisfy our assumptions on the general space T , so naturally we shall 

be interpolating functions from the local space B Lk(Cl).

Some preliminary results arm us with properties of the sets of points with which we 

deal, the first of which, found in Light & Wayne (1998) for example, tells us that we may 

perturb a unisolvent set and still retain its unisolvency property.

Lemma 2.6.4. Let B (x,r) := {y G Hd : \x — y\ < r} be the closed ball of radius r, centred 

at x. Let b ~  (b i,...,b i) denote an £-tuple of points in IFtd which is unisolvent with respect 

to IId_1. Then there exists 6 > 0 such that if c =  (c \,. . . ,  q )  G B(b\,8) x • • ■ x B(be, 6), 

then c i , . . . ,  C£ is also a set of points unisolvent with respect to .

This next result, due to Duchon (1978), shows that our set Cl may be covered with a 

finite number of closed balls, provided that Cl satisfies the well-known cone condition.

Definition 2.6.5. Let C ]Rd. Cl satisfies the cone condition (or possesses the cone 

property,) if, for each x G Cl, there exists an £x £ !Rd of unit length such that, for fixed 

positive p and 6,

+ A77 : 7] G M =  p, r)T£x > cos 6, 0 < A < 1 j C Cl.

(Note that p and 9 are fixed but may depend on the domain.)

A domain which satisfies the cone condition may not, in particular, contain any cusps.

Lemm a 2.6.6 (Duchon (1978)). Let Cl be an open subset o/]Rd satisfying the cone condi

tion. Then there exist M, M\ and ho > 0 such that to each 0 < £ < ho, there corresponds a 

set Tf C Cl with

(Dl) B(t,£) C Cl for all t G T^;

(D2) 9 c U tG7>S(t,M £);

(D3) J2teT( XB(t,M£) < Mi.
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Here xw  is the so-called characteristic function which, for any set W , has value one on W  

and zero elsewhere.

A ssum ption 2.6.7. The following are useful properties of a set Cl C

(PI) Cl is open, bounded and connected;

(P2) Cl has the cone property;

(PS) Cl has a Lipschitz boundary.

Assuming 2.6.7, Duchon (1978) showed that there exist extensions of functions in 

B Lk(Cl) to the native space of the interpolant— that is, to B L k(lRd).

Lemm a 2.6.8. Let Cl satisfy Assumption 2.6.7, and let f  G B L k(Cl). Then there exists a 

unique element f G B L k(R d) such that f^ \n=  f ,  and amongst all elements of B L k(Eid) 

with this property, \ fn \BLk(nd) minimal.

Moreover, there exists a constant Cq, dependent on Cl, such that, for all f  G B L k(Cl), 

l / fi|£Lfc(Rd) ^  Chl/lsLfc(ft)-

Light & Wayne (1998) were able to adapt this result to show that Cfo =  C, that is, the 

constant is independent of the domain, when Cl is a ball in R d.

Lem m a 2.6.9. Let B  be any ball in JRd; and let f  G B L k(B). Then there exists a unique 

element f B G B Lk(fild) such that f B \B= f ,  and amongst all elements of B L k{\Rd) with 

this property, \ fB\sLk(tid) minimal.

Moreover, there exists a constant C, independent of B , such that, for all f  G B L k(B),

\ fB \BLk(jRd) ^  C1/Ibl*(b)-

A lternative basis function for even dim ensions d

In the case of an even dimension d, we may use a slightly different basis function, ipe, in 

place of the usual polyharmonic spline, and still arrive at the same power function given in 

Theorem 2.6.3, and furthermore, we know the maximum value of the modulus of this basis
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function, inside a ball depending on the fill distance h, in terms of h\ we prove this series 

of results via work adapted, for clarity, from Light & Wayne (1998).

Lemm a 2.6.10. Let {oo, • •., am) C R d be any set of points unisolvent with respect to K,k,n- 

Let a o , . . . , a m € I I  be chosen so that, for all p € n d_1, Y1T=oarP(ar) = 0, and assume 

k > d/2. Then

m
5 3  ttrttslOr “  as\2k~d =  0.

r,s—0

Note that in the case of polyharmonic splines, <f>(0) =  0, so we are free to drop this term 

from the power function.

Lemm a 2.6.11. Let A! be a subset of R d unisolvent with respect to n d_r  Let <f> = 

(—l)(fc-d/2+1V2fc-dln(r), where d is even and k > d/2, and let

P(x) =  - 2  5 3  Va{x)<t>{\x -  o|) +  5 3  Pa(x)pb(x)4>(\a -  6|). (2.6.4)
aeA' a,beA'

Define Vv (r) =  (—l)(fc-d/2+1V2fc~dln(ar), where a > 0, and set

PG(x) = - 2  5 3  Pa(x)1>A\x -  o|) +  5Z  Pa(x )Pb{x)'ip<T(\a -b \) . (2.6.5)
aeA' a,beA'

Then PG(x) = P(x) for all a > 0, for x  € R d.

Proof. Let ndik =  ( - l)* " d/2+1. Since i/jG =  (f>(x) +  nd}kr2k~dln(cr), we have

Pa(x) =  P(x) -  ndA  2 5 3  Pa(x)\x -  a\2k~d -  5 3  Pa(x)pb(x)\a -  &|2fc-dl  \n(a). (2.6.6) 
I aeA1 a,beA' J

We claim that,

2 5 3  P*(x )lx ~ a\2k~d -  5Z  Pa(x)pb{x)\a -  h\2k~d =  0. (2.6.7)
aeA' a,beA'
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To see this, first observe that for any x  G we may write p(x) =  YlaeA' aaPa{x)» for 

some coefficients a a, a G A '— in particular, for x =  6 G A'. Thus p(b) =  X^ae.A' aaPa(b) =  

ab since pa(b) =  <Sa6> for all 6 G >1'.

Hence p(x) =  5^ae<̂ /p(a)Pa(^) for all x  G IT*, which we can rewrite as

Y  <xap(a) =  0,
aG '̂Ufx}

where

Qn =  <
1, a =  x,

-Pa(z), a e  A'.

With this explicit definition of the coefficients aa for a G A' U {x } , we may rewrite 

(2.6.7) as follows:

2 ^ p a( x ) | x - a | 2fc d -  PaOE)Pi>(rc)la _ b l 
aeA' a,b€A'

2k—d

= -(^2 Y  ab\x ~ b\2k d +  Y  aaOLb\a ~ b \2k d\
\  beA' a,beA' /

= -  (2 Y  Y  a<*al>\a -  b\2k~d + Y  aaab\a -  &|2fc_d>)
\  ae{x}beA' a,beA' )

= ~ (  Y  aaab\a ~ ] •

Appealing to Lemma 2.6.10 in light of the coefficients ota possessing the required prop

erty, we have that J2a,beA'u{x} aa&b\a ~ b\2k~d — 0, and hence Pa(x) =  P{x). □

Lem m a 2.6.12. Let <l>d,k,(T : H  —> 1R, 6e defined as follows:

(_l)(fc-d/2+1)r2fc d even,
0d,fc,a(r ) =

( _ l ) f k-d/i\r2k-d^ d odd.
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Then

o“ < c J ^ '* '1/'*(r)l =  0<yh2k d) 

for all h > 0, where C is a constant independent of h.

Proof. For the case of d odd, the result is obvious, so let d be even and set n^k — 

(—l)fc-d/2+1. Then clearly

omax J0d,fc,a(r)| =  max {ndtfe(C/i)2fc_d|ln((7Ch)|, \<f>d,kAs)\} >

where 0 < s < Ch is such that (jfc<f>d,k,a') (s) =  0- Some elementary calculus shows that 

s =  and hence <f>d,k,a(s) — K ( l/a )2k~d for a suitable constant K. Putting

a = l/h completes the proof. □

The final result we require before proving the main result of this section is a rephrasing 

of Theorem 2.6.3, which we state in the integer-order Beppo Levi space case with which we 

are concerned.

Corollary 2.6.13. Let A! C Cl C H d be unisolvent with respect to nd_1; and let g € 

J5L*(Hd) satisfy g(a) =  0 for all a E A'. Then for all x E Q,

|ff(z)|2 < P(x )\9\2BL\ny

where the power function P  is as in Theorem 2.6.3.

We are now in a position to state the main result of this section, which gives the Lp-norm 

error for functions in B L k(Cl) in terms of the fill distance of the underlying interpolation 

points.

Theorem  2.6.14. Let Q be a subset o/]Rd satisfying Assumption 2.6.7, let 1 < p < oo and 

k > d/2. For each h > 0, let Ah be a finite, subset of Q, unisolvent with respect to n d_1; 

and with fill distance less than or equal to h.
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Let f  E B L k(£l) andXj^hf  be the minimal norm interpolant to f  over Ah from B L k(Hd). 

Then there exists a constant ho > 0 and a constant C independent of h such that

11/ - ^ A hf\\Lp(n) < <

for all f  E B L k(Q) and h < ho.

Chk\f\BLk(Si)i 1 < P < 2,
(2 .6 .8)

Chk+d/r -V 2\f\BLHn), 2 < p < oo,

R em ark 2.6.15. The following proof of this result largely follows Light & Wayne’s (1998) 

strategy, but we present it here with some modifications and clarifications in light of the 

theory as we have built it up thus far, as well as to provide insight into the general ideas 

that these error estimates use in their proofs.

Proof of Theorem 2.6.14• Take v \ , . . . , V£ to be a set of points in that are unisolvent 

with respect to Then by 2.6.4, there exists a <5 > 0 such that if

(x i , . . . ,  x t )  E B(vi,6) x • • • x B ( v £, 8), (2.6.9)

then {xi, ...  ,x^} is a set of points unisolvent with respect to Kd_i- Since unisolvency is 

unaffected by scaling, it follows that if

( » ..........» ) 6 i ( p l ) x . . . x B 0 , l ) ,  ( 2. 6. 10)

then {y i,...,y e }  is also a set of points unisolvent with respect to n^_j.  Set Ui =  Vi/8, 

i = 1

Choose R > 0 such that B(u{, 1) C R(0, R) for i = 1 , . . .  , i  (note that R  > 1). Select 

ho in accordance with Lemma 2.6.6, and fix h > 0 so that Rh < ho. (So in the language 

of Lemma 2.6.6, £ =  Rh.) Thus we have effectively fixed the Hd_ i-unisolvent set Ah- 

By Lemma 2.6.6 there exists a set Tr^ C Q. such that B (t,R h)  C O, for all t E T^h and 

Q C UteTRh MRh) for some constant M.
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Hence, fixing x E  ft, x E  B (t, MRh) for some t E  Trr. Define

a :B ( t ,M R h )-+ B (  0, M R)

by

°(y) = h~1( y - t )  ( y e  U d).

We claim that there exist £ points a \ , . . . ,  at e Ah such that {ai , . . . ,  at} is unisolvent with 

respect to n^_1, and

a(aj) e B(uu 1) (i = 1, — ,£).

To see this, note firstly that for each i — 1 , . . . , / ,  a~1(B(ui, 1)) is a ball of radius h, and

|a~l (ui) -  t\ — |(hui + t) — £|

=  h|tit|

< hR,

since E B(0, R). Thus

a -^ B im ,  1)) C B(t, Rh) C ft (2.6.11)

by hypothesis. Since the fill distance of Ah in ft is at most h, a~1(B(ui, 1)) must contain 

at least one point of Ah, and so by (2.6.11), we can choose a\ , . . . ,  at E B(t, Rh) D Ah such 

that cr(cii) E B(ui, 1) for i =  ! , . . . ,£ .  Thus we have a set of i  points which are unisolvent 

with respect to n^_1 — denote this set by A'h.

Let ^Ahf*1 be the minimal norm interpolant to / n over Ah from B L k(JRd), Henceforth 

we denote B(t, MRh) by B*. For each t E Tr^  define gt E B L k(JRd) such that
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( G l ) 9t|B t= ( / n - W n )|Bi;

(G2) \9t\BLk(Sld) ^  C\9t\B&*(Bt) =  ~ ^ A hf Q\BLk(Bt)'

Note that gt exists, and the constant C is independent of Bt, by virtue of Lemma 2.6.9.

Since gt(a) =  0 for all a G A'h, we can apply the error estimate in Corollary 2.6.13 to 

find

|9,(x)|2 < < P(x)C2\gt\%LHBt) =  C2P ( x ) \ f - l AJ n\ l LHBty

Hence

IIaHma) 5  -  x* J a \BLHB>) ( j  l^(*)l! d* ) '  ■ (2.6.12)

We now turn our attention to dealing with the power function P. Recall from Lemma 2.6.3 

that

P(x) =  (f>(0) - 2 ^ 2  Pa(x)<t>(\x -  a\) +  ^ 2  Pa(x)Pb(x)(f>(\a -  6|), 
aeA' a,beA'

where here <f> =  <f>d,k,i/h Is as defined in Lemma 2.6.12. Since x  6 Bt, |£ — x\ < M Rh, and 

since each a 6 B(t, Rh), \t — a\ < Rh. Hence \x — a| and |a — 6| are each at most (M  + 1  )Rh 

for all a, b G A'h. Set

A =  max {\<f>(y)\ : y € B(0, (M  +  l)Rh)} ,

r  =  max < ^ 2  : y 6 B (t,M R h)
aeAi
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Then by Lemma 2.6.12, A =  0(h2k d) and so

f  |P (x ) |2dx<  f  (|0(O)| +  2 ^  |po(x ) ||0 ( |x - a |) |+  |pa(x)||p6(x)||,£(|a -  6 |) |)2 dx
Jb‘ Jb‘ a tt'h '

<aS f  (i + 2r + r2)!dx 
J Bt

= C(hk~dl2f(l + T)p(MRh)d
= c(hk-d/2yhd.

Here and henceforth, C denotes an arbitrary constant independent of h. Hence from (2.6.12) 

we have

l/°  - * * /% ( * )  = llallM*) 2 c(hM'p-d/2cBl\ftt- i AjXLHB,))P-
Now set ft* =  (JteTR* MRh)] by Lemma 2.6.6, ft C ft*, and so 

ll/n - W % (n) 5 HZ”
= f  \fa(x) ~ (lAhfa){x)\p dx 

Jn*

< £  I  i / ° ( * ) - ( w nx*)ip d*
t e r Rh jB t  

= £  11^ ~ ^ Ah fn \\PLp(Bt)
tETRh

<CJ2 {hMlp-d>2\fn -  X A j n \BLHBt) ) P■ (2-6.13)
t€TRh

We now consider the two cases 1 < p < 2 and 2 < p < oo separately, taking the latter 

case first.

For any vector v G H m, ||v||p < IMI2 for p > 2, and observe that

£  ( h k+d/p- d /2 \ f n  - X A j n \BLHBt) Y  =■■ W(hk+d/p- d /2 \ f n - Z A j n \BLHB,))  
t€TRh
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Since \ \ f - ^ A j f Lr(a} =  ll/n -2 U h/ n|ltp(f!), from (2.6.13) we find

ii/ - w i i ^ ( 0) < c (  E  ( ^ +‘i/p- ‘'/2i /n - ^ / n iBL*(Bl))
\ te T Rh /

= c k ^ - w  ( ^  ( i / n - i ^ / n iBi, (B()) 2y
\ t e T Rfi /

= cfc*p+<*-W ^3  53 c /  iz3a(/n- i ^ / n)i2V.
V(€7Kk |a|=ft •/B* /

By introducing the characteristic function XBti which has the value one on Bt and is zero 

everywhere else, we can rewrite this as

11/ -  W IG rfO ) ^  Chkp+d~dp/2 [ 5 3  5 3  c« [  XB,\Da( f n -  l A j n )\2)  2
\ te T Rh |Q |= f c  m  /

=  Chkp+d~dp/2 ( 5 3  Co, f  JDa(/n -  XA J n)\2 53 X B ,)  2
\ | a | = f c  J lid  t e r Rh /,|a|

< Chkp*d~dp/2 ( | / n -  I aJ ^ bl^ A  2,

by once again appealing to Lemma 2,6.6, using (D3) on this occasion. Hence we have

11/ -  W lf lu n )  S Chkp+d- dp'2 ( \ f n

< c h ^ - w

by recalling the Pythagorean property of the interpolant (2.3.3), then using Lemma 2.6.8. 

Taking the p-th root, we obtain

\ \ f - l A j \ \ L PV )< C h,k+d/p- i ' 2\f\BLHn) (2 < p <  oo), (2.6.14)

as required.
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Now suppose 1 < p  < 2. From (2.6.13) we know

i / p

[hM /P -W \fO  )

t€TRh
[ c  £  { h k+dlv- d l2 \ l Q - i A j n \BLHBt ) ) V t

i ip

( \ f Q ~  ^ A hf n \BLk(Bt ) )  )
t̂eTRh

= C h ^ - V 2 (  ( l / °  -  ■
\ te T Rh J

Let q be the number such that p/2  +  l/q  =  1; applying Holder’s inequality for sums (which 

will hold for 1 < p < 2),

p/ 2 /  \  i /p

II/0 -  l l L p ( n )  < Chk^ ~ d4  (  5 3  ( | / n -  z ,u / ‘w (Bl)) a') ( 5 3  }
I  \t£TRh / \tETRh / J
(  o\ 1/2 /  \  1/PQ

=  ch.k+d/p~d/2 (  5 3  ( i / 0 - i ^ / n i B i k ( a ) )  (  5 3  i " )
\t£TRh J \tETRh. J
/  o\ V2

=  Chk+d/p~d/21 5 3  ( \ f U - l A j a \BL*(B,)) ) h - d/pg
V teT /i h /

(  2 \  V 2

\t€TRh. J

As in the case 2 < p < oo, we may now introduce x s t into the above, apply (D3) of 

Lemma 2.6.6 and Lemma 2.6.8 to conclude

l l / n  -  i A j n \ \L m  < c h k\f\BLHn) ( i  <  v  <  2 ) -

□
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2.7 Local interpolation

We have seen in Section 2 .2 .2 , that, for a set of n interpolation points A, finding the 

coefficients (a,P)T € R n+€ of the interpolant

l A f  = '5 2 a a<f>(I* - a \ ) + p
a€A

requires inverting an (n +  £) x (n +  £) matrix of the form

' a  p N

\PT ° /

Using direct solvers, this is an order (n +  £)3 operation. But, if one reasons that, for the 

evaluation of the interpolant at a point x  G ft, interpolation points far away from x  should 

not have as much influence on the value of the continuous function we are interpolating (and 

hence on the value of interpolant itself) as those interpolation points in a neighbourhood 

of x , then we can use the idea of local interpolation to reduce the number of operations we 

need to carry out.

Let B (x , r) be a ball of radius r  centred at the point x  G fh Choose a local interpolation

set N  =  Af(x) C A  of size N  such that N  C B(x, r) is in the neighbourhood of x, and is

unisolvent with respect to the kernel defined in (2.4.2). Then for any suitable function

/ ,  the value of the local interpolant Xj^f at x is given by
l

= ^ 2  aa4>{\x -  a|) +  ^2,/3iPi(x), (2.7.1)
aEAf t = l

with the coefficient vector (a, 0)T G JRN+i given by the constraints

=  f(x )  (x E Af), (2.7.2a)

7 ;  otap(x) =  0 (x eAf, p €  /CfciM), (2.7.2b)
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which we can write in matrix form as

I A  P  W  An P\r

\ PH  0 V 0 /

where the local interpolation matrices are given by

(4 a r)ij =  0 ( |o i  -  a, j \ ) ,  (1 < i , j  < N),

=  Pj(a>i), (1 < i < N ,  1 < j < £ ) .

As in the global case, the local interpolant has a Lagrange basis representation, to wit:

Z / / f ( x )  =  5 3  Xa( x) f ( a ) >
ae .V

(2.7.3)

where

Aa(b) =
1, a =  6,

0 , otherwise,

for a, b 6  A7.

For problems where the number of points at which the value of the interpolant is re

quired— call this number M  — is such that

M (N  + ( f  « ( n  +  <)3,

using a local interpolation scheme is clearly advantageous. Additionally, the M  interpolation 

problems being independent from one another allows for easy parallelisation.
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2.7.1 C ondition  num bers and stab ility  o f polyharm onic spline local inter

polation

Numerical stability of an interpolation operator is of great importance; we need to be sure 

that, as we refine a set of interpolation points (in other words, let the fill distance h tend 

to zero), the method does not become unstable. In this section we provide new stability 

results for local interpolation with polyharmonic splines.

The stability of the interpolation process is intrinsically linked to the eigenvalues of 

the interpolation matrix— specifically, the smallest and largest eigenvalues, with which we 

define the condition number of the matrix.

Definition 2.7.1 (Condition number). For a given symmetric matrix A, let Amjn(>l) and 

Amax(^) denote its smallest and largest eigenvalues, respectively.

The condition number of A, denoted cond(.A), is given by

■%/ a\ Amax(i4)
cond(A) =  w w

The astute reader may realise that, whilst for a positive-definite interpolation matrix A, 

Amin(̂ 4) coincides with ||i4- 1||2, if the basis function is only conditionally strictly positive- 

definite, we must be more careful about what we really mean by Amin(.A), for A  is only 

positive-definite on a subset of ]Rd. But we are getting ahead of ourselves, and these ideas 

will be explored in more detail later, by invoking the Rayleigh Quotient.

In the case of local interpolation, we keep N, the size of the local interpolation set, fixed 

as we refine the global set of interpolation points A — the net result of this is that as h —» 0 , 

the radius of the ball containing our local interpolation set around a particular point x € 

also tends to zero. Naturally this may be cause for concern, for we are carrying out our 

interpolation calculations on points that are getting closer and closer together. Fortunately, 

in the case of local interpolation via poly harmonic splines, it turns out that the Lagrange 

basis functions have a particularly useful property, as shown by Iske (2003a).
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Lemma 2.7.2. The Lagrange basis functions of polyharmonic spline interpolation are in

variant under uniform scalings.

Let W =  {w i, . . . ,  wn} C R d be a fixed set of points with fill distance hyy, where N  is 

a given fixed number, and suppose that there exists an R > 0 such that W C B r , where 

B r  denotes the ball of radius R. As usual, for the interpolant over W to be well defined, 

we must demand that W is unisolvent with respect to but we shall say a little more 

about the unisolvency condition in a moment, with regard to the local interpolation points 

N  and the global set A. Let W h be the uniform scaling of W by h > 0. Then Lemma 2.7.2 

tells us

PvvfcflOM = (Zvvfo 0 0h))((Th (x)) (2.7.4)

for an arbitrary suitable continuous function g : H d —► H, where oh is the scaling such that 

ah(W h) =  W. Thus, in order to prove the stability of the interpolant over W h as h —> 0, 

it suffices to show that the interpolation operator is bounded over the “reference set” W. 

In other words, we need to find a bound on ||Zw^||oo,Bh := maxyeBR\(Tw9)(y)\ in terms of 

IlSllWB*)! where g := g o ah.

Before we proceed we must be a little more careful about the relationship between any 

given set of local interpolation points N  and the reference set W.

Defining P y v  analogously to Pj^ — that is, (Pw)ij = Pj(ai), ai € Af, 1 < i < N , 

I < j  < £, the quantity ||(Py^Pw)-1 ||oo can be thought of as measuring the unisolvency of 

the set W with respect to the kernel. In two dimensions, the unisolvency condition only 

requires that the points must not all lie on a straight line. Numerical experiments indicate 

that as the points in W approach a straight line, || (P^Pyy)' 1 lloo ~> oo, and conversely, as 

the points become more scattered away from a straight line, | |(P y v > A v ) - 1 ||oo —► C ? ( l ) .

As such, in two dimensions we can draw parallels between || (PyyPw)_ 1 ||oo and the 

existence of a minimum angle 0 of a triangle with vertices in W: as 9 approaches zero, the 

interpolation points must be approaching a straight line.
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For any given h (the global fill distance of A), we choose sets of local interpolation points 

N  =  N (x)  of size N, for each x  G Cl at which we require the value of the local interpolant. 

Whilst it would be unreasonable to assume that every ftf could be mapped via an affine 

transformation to the reference set W, recall from Lemma 2.6.4 that we may perturb W 

and still retain its unisolvency property, so it is more reasonable to assume that each local 

set can be mapped to a perturbation of the reference set.

With these points in mind, we investigate the stability of the interpolation operator in 

the special case of </>(r) =  r 2 ln r, the so-called thin-plate spline.

2.7.2 P roof o f stab ility  o f th e  th in-p late spline local interpolant

Let A  C and {u>i,. . . ,  wn} C B r  be sets of points in 1R2, of size n and iV, and positive 

fill distance h and hw, respectively. Assume both sets axe unisolvent with respect to II2 

(the space of real-valued linear polynomials in two variables). Let S > 0 be such that, for 

any set of points W  C B(w\, 6) x • • • x B(wn,S), W is unisolvent with respect to II2.

Let x € Q and assume that for every N (x )} there exists an affine transformation M(x) —► 

W = W(x) C B(wi,S) x • • • x B(wjsr,S) and moreover, there exists an angle 0 such that 

every triangle with vertices in B(w\,S) x • • • x B (w n,S ) has minimum angle greater than 

or equal to 6.

Before going on to prove our stability result for the thin-plate spline case, we must first 

deduce a bound on the vector a 6  ]RJWI of the local interpolation problem (2.7.1)-(2.7.2), 

for an arbitrary W C B(wi, 6) x • • • x B (w n , 6).

Bounding | |a | |o o

From our assumptions on the unisolvency of W and the conditionally strict positive-defi- 

niteness of 0, there exists a unique solution (a, (3)T 6  1R/V+̂  to (2.7.1)-(2.7.2). Moreover, 

we have that ker(Py^) is non-trivial and, defining Aw equivalently to A//,

oFAyyct > 0  (0 7̂  a  € ker Pw)? (2.7.5)
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Given that Aw is symmetric, for all 0 /  £ € H N, the following Rayleigh Quotient 

inequalities hold:

A . <  A''mm /vmax)

where Amin and Amax are, respectively, the smallest and largest eigenvalues of Aw (Golub 

& Van Loan 1996). In particular this holds for all a  £ ker Py^, thus

Aminll l̂ta — ® AwO ^  Amax 11 ̂  112 j

which immediately displays the importance of the smallest eigenvalue.

By (2.7.5) and the fact that || • ||2 > 0, there must be an eigenvalue A > Amin with A > 0. 

Setting A =  Amax, we have

0 < A||a||i < a TAw a  < A||o:|||, (2.7.6)

for 0 7̂  a € ker Pyy-

The interpolation problem is given by

Aw a  +  Pw (3 = g, (2.7.7a)

Pwa =  0, (2.7.7b)

where g =  g\yy. Thereby, pre-multiplying (2.7.7a) by aT gives

aTAyya +  a TPw/5 =  aTg,

that is,

aTAyya +  (P&a)TP =  aTg.
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Hence, employing (2.7.7b), we get

aTAy^a =  aTg.

Using (2.7.6), together with the Cauchy-Schwarz inequality, gives

AIMli < < IMhllllk;

assuming a  0 , we have

Halloo <  IW|2 <  A- 1 | | | | |2 < ^ V N f g U  = ^ y / N M U w .  (2.7.8)

A lower bound for A

In order to specify a lower bound for A, we firstly recall the classical T-function. 

Definition 2.7.3 (r-function). The T-function is defined by

r(z) = Urn , "!ra*----- „
n —*00 z{z +  1) • • • (z +  n)

for z  E  C.

The T-function has many useful properties and details may be found in the book of 

Lebedev (1965), for example, but the most relevant to our application is

r ( n )  =  (n  — 1)! (n  E  IN).

Defining the two constants,

_ - . a / ^ d +  1A 3”  o ^  1 I  Md VMd — 12 (  9 J and -  2 r ( |  +  1} ( 23/2 J ’

a lower bound for A is found in the recent book by Wendland (2005, page 214).

56



Lem m a 2.7.4. Under the foregoing assumptions on the set of points W , the following lower 

bound on X holds:

A > Cdcd,kjt(2Md) - 2k- 2'‘h%+2>‘- d, (2.7.9)

where

cd,k,fi — i
22*+2M—d/2—iF(fc + M)(fc +  M_  d/2)!, 2 k  +  2n - d  even,

(_l)r*+»-<i/2l22*+2/i-<i/2r (jt +  f j ) / r ( ( d / 2  - k - f j , ) ) ,  otherwise.

Stability  theorem  for two dim ensions

Theorem  2.7.5. Under the foregoing assumptions on the sets Af(x), x € Q, and the refer

ence set W,

\\-Ejlf(x)9\\L00(B(x,r)) — ^N,i?,/ivV)^ll^llcx)rA/’(z)> (2.7.10)

where

with

Cn,R,e,hw =  1 +  2-Dn,rAw+f 1 +  DN R hw \ (2.7.11)

9 1/3w 2/3 j v 3/2$
Dn ,rAw = 128--------^ --------  and =  0̂ RW v )l

Proof Using the definition of the local thin-plate spine interpolant, and the invariance of 

the Lagrange basis under uniform scalings,

\\^M(x)9\\L00(B(x,r)) =  IPw P||Loo(B h) = v -̂d r
^ 2  a w<f>(\y -  H )  +

«j6W j= 1
I

^ P jP j iy )
3=1

< JV||o|| oo <f>i? +  maxyeBR (2.7.12)
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where $ r  =  maxo<v<2ii|0(y)|- Here, £ = 3 and for y — (/i, i/),

pi{y)  = 1, P2{y) = P3 (y) = v.

Let p(y) =  X)|=i PjPj(y)i observe that bounding max{|p(y)| : y 6  Bj?} from above is 

equivalent to bounding the size of the plane that p(y) describes as y ranges over values in 

B r .

We need only three points that lie within it to completely describe the plane, and 

naturally we choose the points which form the triangle with minimum angle 0; suppose, for 

convenience, they are labelled w\ — (s i,ti) ,u >2 =  (s2> £2) and w3 =  (53, £3). Then we can 

write the interpolation problem, F*wP =  9 — Ayya, as

P i  +  P2S1 +  f o h  =  g i  -  a w (f)(\wi -  u;|) =: z \ ,
twevv

Pi  +  P2S2 +  P3t2 =  9 2 - ^ 2  otw<t>(\m ~  w \ )  =: z 2 ,
w€W

P i  +  P2S3 +  P3t 3 =  9 3 ~  -  H ) = :  z 3-
wEW

Without loss of generality we can translate the three points w i , w 2, and W3 so that w  \ 

lies at the origin and consider the plane passing through

a =  (0 ,0, 21), b =  ( s 2, 0, z 2) , c =  (S3, *3, *3),

where s 3/ t 3 =  ta n 0 ; by assumption, the triangle formed by these three points has sides of

length at least 2/iw and has minimum angle 0 .

Taking the vector product (6 — a) x  (c — a) we produce a normal vector v to the plane,

v  =  (-*3(22 -  z i ), s 3 ( z 2 -  z i )  -  s 2( z 3 -  z i ) ,  s 2t 3),

and thus the vector equation of the plane is given by • v =  (0 , 0 , z\) • v, where

p, v, 77 6  F t— remember we are thinking of rj — p((p, i')).
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Expanding this gives

Ari3(2l -  22) +  ^(53(22 -  *l) -  S2(*3 -  21)) +  7/52*3 =  2iS2*3,

and rearranging gives us the Cartesian equation of the plane,

=  ^*3(21 -  22) +  v{s$(z2 -  21) -  52(23 -  21)) t _
«2*3

Observe that for (p, v )  6 B r ,

max 17/| < |V ;/|2fl+ |«i|.
{n,u)eBR (2.7.13)

To this end, we compute the size of the gradients of the plane along the n and v 

directions. Firstly,

dr/ 
djji

21 -  z2 K 2 maxi=ii2,3 N  _  maxi=ii2,3 N
5 2 2/lyy;

In the 1/ direction,

drj
dv

= 53(^2 ~ 2j) -  52(Z3 ~ 2j)
52*3

< 2maxj==i)2,3 |2j| 2maxi=i,2,3 12*
52 |tan0| *3

Now t i b  “  35$ -  5ib »  and  sin 0  -  2& -  Therefore

d-q 
dv

< 2 maxt=i)2,3 N  
hw sin 0

The maximum gradient is thus

|Vt/| =
d z \

\ d x 'd y )
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dz
dx +

dz
dy

i
2 \  2

< y/2 max
dz dz
dx dy

_ 2y^maxi=i>2>3kt| 
hw sin 0

Thereby from (2.7.13),

i / \i , , . OD2v^maxt=i)2,3kt| . . ,max\p(y)\ =  max I77I < 2R  :-----. ’ —1 +  max IzAv^Br (n,i/)eBR hw sin 0 1=1,2,3

where

Chwfi,R =  1 +
4 Ry/2 

hw sin 0

But by definition, for i =  1,2,3, we have

Zi  = 9i -  ^ 2  a ^ ( K  -  w \)
wEW

Chw,e,R .max |zj|,l—1,2,0

< \9i\ +  W$fl|M|oo

< ll̂ lloo.W + ^^fl||«||ooj

the last step employing the interpolation conditions. Thus

m a x |p ( y ) |  < ChWto,R(\\g\\oo,w +  iV $ f ? | |a : | |o o ) .

We have an upper bound on ||a||oo via (2.7.8) and Lemma 2.7.4:

W .  <  A ^ v S llS lk re  <  Cdcd tj , ( m , ) - » l ^ r ‘ [m ’, -W

^ 2C2,2,0^w

in this case since d =  k =  2 and fi = 0.
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Substituting this new bound on ||a||oo snd the above bound on maXy€eR |p(y)| into 

(2.7.12),

llJ wp||Loo(Bfl) ^  ^l|a ||oo^i?+  max\p(y)|

< IV M U **  +  C^.s.fldlslU .w  +  WllalU^fl)

=  (1 +  C/lvv,s,B)A/'||a||ocl$ R +  C ^ ^ b IIs Hoo.w

(2M2)i N U R V
<  I (1  +  L h w ,e,R) Q 2 C 2 2 o h 2 +  t ' M J I  I llslloo.w -

Defining the constant C n ^ q ^  to be the coefficient in parentheses on the right-hand side, 

some elementary calculation using the definitions of Cd and Cdtk,n gives us explicitly 

that

CN,R,9,hw =  1 +  2DN,R,hw+ ^  h ^sh iO ' (2.7.14)

where

DN,R,hw — 128(93 TT3N'2$R) / h y v

Recalling that

\\Zw 9 \ \ lo o ( B r ) =  \ \^ A f (x )9 \ \L 00(B (x ,r ) ) and ||£||oo,W =  ll^lloo^x)

completes the proof. □

Hence for fixed hyy, N  and R, in the two-dimensional case we can see from (2.7.14) 

precisely how the angle 6 affects the stability of the interpolant. Moreover, for any given 

local interpolation set of size N  in two dimensions, h\y ~  2R / N i . Thus, fixing R  and 6, 

we may think of the stability constant here as being

C N , R , e , h w  —  1 +  0 ( N 3 ) ,  
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which will be particularly pertinent to the analysis of the advection scheme in the next 

chapter. The next section extends the two-dimensional stability result to the general case 

in R d, d>  1.

2.7.3 P ro o f o f  stab ility  o f  th e  general polyharm onic spline local inter

polant

We state our general assumption concerning the scattering of the interpolation points as 

follows:

Assumption 2.7.6. Let A c t t  and {w \,. . . ,  w n }  C B r  be sets of points in ]Rd, of size n 

and N , and positive fill distance h and hyy, respectively. Choose k > 1 and 0 < p < 1 and 

assume both sets of points are unisolvent with respect to JCk,n- Let 6 > 0 be such that, for 

any set of points W  C B(wi,S) x  • • • x  B ( w n , S ) ,  W  is unisolvent with respect to /Cfcj/Lt.

Fix r > 0. For each x € Cl, let M  — Af(x) C B (x , r) be a subset of A  of size N , and 

assume that there exists an affine transformation cr£ : M  —► B {w \,8) x  • • • x  B ( w n , S ) .

We assume that

max j||(P^Pvv)-1||oo : W =  <rJ(A0 C B(wi, S) x • • • x B ( w n ,  5)}

is uniformly bounded above.

Let $ r  = maxo<y<2R\(t>(\y\)\. Recall that we are writing g = g o crj. By definition we 

have that

^ 2  a a<t>(\y -  o|) + ^ 2  P}Pj(y)
a£Af j = l

< Toa^^2 \0j\\Pj(y)\
a t N  v  R 3=1

< ^ | H | o c  +  C P |o o , (2.7.16)

62



where

c =  mwcY]|pj(j/)|.yeBfl “  j=i

We remark that the bounds shown for ||a||oo in (2.7.8) and Lemma 2.7.4 hold for general k 

and d, so we now proceed to determine a general upper bound on ||/?||oo-

B o u n d i n g  ||/?||oo

We observe that fiFPwPwP =  (Pw(3)T • (Pw(3) =  ll-FW ÎIl — which implies that the 

quadratic form (3TPwPwP is positive semi-definite. In particular, (3T PyjPw (3 =  0 if and 

only if \ \ P w P h  =  0, i.e., when P w ( 3  =  0. Since W is unisolvent with respect to JCk,m 

jFVw/3 =  0 implies that /? =  0 , in which case Py^Pw is positive-definite, and hence invertible. 

With a simple rewriting of (2,7.7a), we have that

l|/J||oo =  IKP&Pwr'P&G -  ^ w a ) | | o o

<  I K f ^ / W J ^ I U I I ^ I I o o d l l l l o o  +  P w l U M U )

— IK-^W-^Vv) ' l U l i ^ v l U d l s l l c o + P w l l c o A  W l l s l l o o )

=  i K P ^ r ' i u i f f t i w i  +  P w I u a - ^ i i i i u

by the Cauchy-Schwarz inequality and the application of (2.7.8), where g =  g\\y. Since A\y 

is symmetric, ||̂ 4vvl|2 =: A, where A is the largest eigenvalue of Aw» and thus ||Ayv||oo < 

y/NA, so

P l l o o  <  l | ( i ^ i \ v ) - 1| | o o l l ^ l l o o ( l  +  J V A A - ^ I I S I U  

=  l l ( ^ f \ v ) - 1||oo l l-Pw lleo( l  +  ^ A A - ^ l l f f l U . w -
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Hence, from (2.7.8), (2.7.16) and the above bound on ||/?||ooj we get

IIIwsIIwbh) < N $ r ||a||oo +  c Halloo

< Jvi^A -'llslloo.w  +  E( 1 + iVAA-^llslU.w, (2.7.17)

where E  =  q |(P & A v)-% l|P & ||oo .

As noted by Wendland (2005, page 203), an upper bound for A is provided as a conse

quence of Gerschgorin’s theorem:

A < N  max \<t>i\x — y|)| < N $ r . (2.7.18)
( x , y ) e B R x B R

Finally, we note that we can re-scale via the inverse affine transformation (crj) -1  : W —> 

AT using of the invariance of the interpolant under this operator, and so by substituting the 

bounds (2.7.9) and (2.7.18) for A and A, respectively, into (2.7.17) we deduce the following 

new stability result.

Theorem 2.7.7. Under the foregoing assumptions on the set of points W and the neighbour 

sets M(x), x 6  12, for any continuous function g defined on H d, the following stability bound 

holds:

\\^Af(x)9\\Loo(B(xtr)) =  \\Zw9\\Loo(BR) ^  Cs\\g\\oo,W =  Cs\\9\\ooJSf(x)

for all x 6  ft, where B{x,r) denotes the ball containing M ix), and

( 1 \  iV2$p
l +  £ i \ m ,  D = ---------------------- - -----Tfi-Tr,..-7,

> CdckAli(2Md)-™ -^h% +2“- d
£

E  =  CIKP^FVvJ^llooll-Pwlloo, C  =  max ^ \ p j { x )|.
x£Br t - t  

3=1

Remark 2.7.8. We saw from (2.7.15) that for the two-dimensional thin-plate spline case, 

the constant Cs = CN,R,e,hw =  1 +  0 (N 3). We shall assume in general that, for a fixed
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radius R  of the ball containing W, Cs = 1 +  0 (N 'r) for some 7  > 1 for all d > 1. The proof 

that this assumption is reasonable in the general case is the subject of intended future work.

2.7 .4  Error estim ates for local in terpolation  w ith  p oly  harm onic splines

If a certain degree of smoothness of the interpoland is assumed, one can show that this 

smoothness is carried over to the order of convergence of the interpolation procedure by 

way of a Taylor series argument.

Theorem  2.7.9. Let A c  Cl have fill distance h > 0. Choose x £ Cl and let N  =  N (x)  C 

B{x,r) satisfy Assumption 2.7.6. Choose k > 1 and 0 < fi < 1 so that k +  p > d/2  and 

k > m, and let 1/sg be the local polyharmonic spline interpolant from B L k+tJ,(TEld) to a 

continuous function g over M . Then, assuming that g G Cm(B (x , r)), for every y G B(x, r) 

the following approximation result holds:

\g(y) - ZN9(y)I < cThm\g\WS(BiXtr)),
where Ct  is a non-negative constant, independent of h, and,

lfllwS(B(*,r)) := sup \Da9iz )\-
z € B ( x ,r )  w = m

Rem ark 2.7.10. Our proof largely follows that of Iske (2003a), but we need to be more 

careful due to the assumptions on the distribution of our interpotion points (cf. Assump

tion 2.7.6).

Proof of Theorem 2.7.9. Observe that g permits the m-th order Taylor polynomial,

=  £  h ( Das)(y)(z  -  J/)“ .
|a |< m

around y G B (x,r). This equation can be rewritten to reveal

g(y) = T£y( z ) -  Y  i [ ( Dag ) (y ) ( z - y ) a,
\a \< m ,
| a |^ 0

65



for all z E  B(x, r), which holds in particular for z =  a E M.

The assumption k + ii>  d/2 ensures that the interpolant is at least continuous, so that 

point evaluation makes sense. The further hypothesis that k > m  results in polynomial 

reproduction for, in particular, C fCk,n- As explained in Section 2.5, we may write

ZM9(y) = X  A«(2/)0(a),
a e M

where the Lagrange basis functions Aa, a Efsf ,  satisfy Aa(6) =  8ab for a,b € A/\ where de

notes the Kronecker delta function. Moreover, since interpolation reproduces polynomials, 

in particular the constant polynomial p =  1, we have

1 = X  = X
a e M  a e M

for all y E B(x,r). Thus, for any y E B(x,r),

9(y) = X  AM y ( y )  = X  ~ X  ^ j Day(y)(a -  y)a)
a&A/" cleN  |a|<m,

|a |#0

=  ^ A 0(s/)I^(a), (2.7.19)
aeAf

since, by the assmned smoothness of the interpolant, Ylaesf Aa(2/)(a —y)a =  {x—y )a | =  0

for |a | < m. Hence, we deduce that

g(y) -  Xj/g(y) =  £  A„(y) (2 £ (a )  -  g (a)) , (2 .7 .20)
a e A f

for any y E B(x, r).

Now, it is well known that the remainder term of the Taylor expansion is given by

I ^ ( a )  -  g(a) = - ^  £  (B“<?)«a)(!/ -  <*)“ , (2.7.21)
7711

|a |= m
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for all a € Af, where £a is some point on the line segment connecting y and a. 

Observing that \y — a\ < h, gives

\T£y{a)-g{a)\ = h  £  (D a 9) ( t a ) i y - ° Y
n' M=m

< Chm J 2  l(D °P )(« l
|a |= m

< C h m \g\wm(B(x,r))i

for all a e A/\ Defining Xw for w 6 W analogously to Aa, a € Af, it can be shown, following 

ideas from Light & Wayne (1998) for example, that because of the scale-invariance of the 

Lagrange basis functions, ]Cae//l^al =  Z^ewl^w|> and moreover, this quantity is uniformly 

bounded over all W C B {w i,6) x • • • x B{w n, <5)> as h —> 0; hence, from (2.7.20), we get

\9(y) -  ZAT9(y)\ < CThm\g\w^ B{x,r)), 

as required. □

2.8 H erm ite-Birkhoff interpolation

Up to this point we have been considering the recovery of a function using the value of the 

function at certain points; a natural question to ask is whether we can perform any sort of 

recovery of a function if only more general information is known — not necessarily the value 

of the function, but values prescribed by the action of a functional on the function.

We pose the generalised problem of recovering a function from a Hilbert function space 

T  as follows. Suppose that Ai, . . . ,  An are a set of linearly independent functionals on JF, 

and let u i , . . . ,  tin 6 H  be corresponding given values for u 6 T — in other words, Ai(u) = u\ 

for i = 1, . . . ,  n.
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The generalised recovery problem would be to find Su € T  such that

Ai(<Su) —

for all z =  1, . . . ,  n. In the same vein as the variational approach to interpolation that we 

saw in Section 2.3, we specify that Su has minimal norm amongst all functions with this 

generalised interpolation property.

Exam ple 2.8.1. Let A  = An  U A#n C Ct c  IIId be a set of interpolation points such that 

A q € Cl and A m  € dfi. Then we could have Xa =  <5a o A for An and Aa =  0 for A$n, as in 

solving Laplace’s equation with Dirichlet boundary conditions.

Recall that the Riesz representation theorem implies that each functional Aj has a unique 

representer R\. € T  such that A* =  (•, R x ^ .  The following is a generalisation of Theo

rem 2.3.3, the proof of which is along similar lines to the point-evaluation case, and shown 

explicitly by Wendland (2005, Theorem 16.5).

Theorem  2.8.2. Let T  be a Hilbert space, Ai , . . . ,An be linearly independent functionals 

on T  with corresponding representers R \t 6 T , 1 < i < n, and let u \ , . . .  ,un 6 H  be given. 

Then the unique element Su of minimal norm satisfying the interpolation conditions

Ai(&u) ~  (1 ^  i ^  n>),

is given by

n
Su ^   ̂°tiR\i j 

i=l

where the coefficients ot\ , . . . ,  an are determined by the interpolation conditions.

Furthermore, Su is the best approximation to u from span {-Raj> • • • > R \n} (Wendland 

2005).
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2.8.1 N on-sym m etric and sym m etric approaches

Although we have generalised the interpolation problem to encompass a wider class of data 

than merely function values, we would still like to take advantage of the strengths of radial 

basis function interpolation in solving the problem. Our first instinct would be to utilise 

collocation in the usual way, by constructing an approximation to a function u via

Su =  ^ a a$(- ,a) ,
aeA

for a chosen set of interpolation points A  CQ. This function lies in the span of the functions 

$( •, a), a G A , where $  =  </> o | • | for one of our usual radial basis functions <f>, and gives 

rise to a system of equations,

* l ( S u )  =  M » ) ,  (2-8.1)

b G A, to be solved in order to determine the coefficients aa• (We are tacitly assuming 

that the elements of {$( •, a)}ae^  are linearly independent.) This problem is referred to as 

Hermite-Birkhoff interpolation; for applications where the functionals are point evaluations 

of (combinations of) the derivatives of the function, the problem is referred to simply as 

Hermite interpolation.

R em ark 2.8.3. We have introduced a superscript notation onto the functionals Xa in order 

to clarify as to which variable the operation is with respect. For example, suppose A = <5& 

(that is, evaluation at the point b). Then Aj(3>( •, a)) = $(b, a). Where there is no ambiguity 

the superscript is unnecessary and will not be displayed.

This approach was first investigated by Kansa (1990a), with 0 specifically being the 

multiquadric basis function (see Table 2.1 on page 23 for its definition), and hence is referred 

to as Kansa’s method; it is equivalent to the radial basis function interpolation methods 

described earlier in this chapter if the functionals are all simple point evaluations. However,
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in the general case the resulting interpolation matrix with entries

A i ( * ( - , « ) ) ,

a, 6 € A, may be non-symmetric, and for almost twenty years the non-singularity of this 

matrix was an open problem (Franke & Schaback 1998a, Beatson & Mouat 2002). However, 

recent work by Schaback (2005) appears to provide the conditions under which the matrix 

is invertible. However, even before this development, it was noted by Hon & Schaback 

(2001), for example, that the cases in which the possibility that the non-symmetric matrix 

may be singular are rare and the method performs very well (Kansa 1990a, Kansa 19906, 

Wendland 2005). Even so, we may eliminate this concern entirely by instead constructing 

a symmetric matrix, the price of which is a second application of the functionals to the 

chosen basis function.

In other words, setting $(x, y) =  4>(\x — y |) for a conditionally strictly positive-definite 

radial basis function <t> of order k, we define the approximation to the solution via

Z,tt» =  £ a . A i ( * ( . , . ) ) + P  (2.8.2)
aeA

where p E n^_1? and hence the interpolation conditions are

=  A 6(u),

for all 6 € A. Since (f) is assumed to be only conditionally strictly positive-definite, we need 

to satisfy the additional conditions

2̂ a aXa(p)  = 0, 
aeA

for all p E Uf_v  which again is equivalent to the usual natural conditions when the func

tionals are all straightforward point evaluations.
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Finally, we must generalise the notion of our interpolation point-set A  being unisolvent 

with respect to n^_1; to this end we insist that

\i(p ) =  0 for all a E A  and p E implies that p = 0. (2.8.3)

The resulting interpolation matrix is thus of the form

( a (P ) \

K H P)T 0 )  ’

where A ^ a =  (\l(X b($(x,y)))aibeA E ]Rnxn, and A(P) =  (Xa{ps))aeA, with span{ps}*=1 = 

I I ^ j .  We now have an interpolation matrix which is symmetric — an important property in 

terms of considerably reducing the amount of computation required compared to the non- 

symmetric matrix above — and is provably non-singular (Wu 1992, Sun 1994, Iske 1995, 

Fasshauer 1997).

Of course, as noted earlier, the price we have paid is a second application of the func

tionals Aa, a E w4, and hence whatever basis function we choose, we must ensure it will 

permit both applications of the functionals without becoming discontinuous or vanishing. 

Thankfully, for the applications we have in mind, all of the radial basis functions we have 

met up to this point are suitable candidates for Hermite-BirkhofT interpolation.

2.8.2 Application of Hermite-BirkhofF interpolation to  solving linear par

tial differential equation problems

Consider a partial differential equation problem of the form

Cu — f  in f2, (2.8.4a)

Bu = g on dQ, (2.8.4b)
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for a domain Q in R d, where C and B are given differential operators, and /  and g axe also 

known.

Practical applications and investigations into the feasibility of collocation via radial 

basis functions for this type of problem are plentiful in the literature (see the work of 

Kansa (1990a), Dubai, Oliveira & Matzner (1992), Moridis & Kansa (1994), Dubai (1994) 

and Sharan, Kansa & Gupta (1997), for example), and one way of implementing such an 

approach is with Hermite-Birkhoff interpolation. Discretising Q and dQ with finite sets of 

points A j  and A b , respectively, we define the functionals

Xb — <
6b o C, b 6 A i, 

6b o B, b G A b  ,

which are used in the generalised interpolant (2.8.2).

Convergence analysis was undertaken by Franke & Schaback (1998a) (see also (Franke 

& Schaback 19986)) for the case where the differential operators are linear, in which they 

showed that, for all functionals A e F  (the dual of the native space P) the following error 

estimate holds:

\X(u -  XAu)\ < P(A)||u -  I Au\\jr, (2.8.5)

where P  is the generalised power function given by

P(X) = inf {||A -  fj,||;f. : /x G span{Aa}aeA} .

In the special case of point evaluation functionals, P  coincides with the power function 

that we met in Section 2.6.1, and thus Franke &; Schaback’s (1998a) work generalised the 

available results to a wider class of applications. However, it must be noted that, as the 

authors themselves acknowledge, a high degree of regularity of the solution is an essential 

assumption. For the general existence and uniqueness of the Hermite-Birkhoff interpolant
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solution to the linear partial differential problem (2.8.4), we state the requirements as 

follows.

Definition 2.8.4 (Linear differential operator of order k). An operator T  : (ft) —> C(ft)

is called a linear differential operator of order k if it has the form

T =  '$2 daDa, with da € C(fi).
|a |<fc

Exam ple 2.8.5. The well-known Laplacian operator A  is a linear differential operator of 

order 2, since for example in two dimensions it may be written as

A =  £>(2,0) +  £>(0,2)

Theorem  2.8.6. Let C,B be linear differential operators of order k over ft C lRd. Choose 

(j>, a conditionally strictly positive-definite radial basis function of order k such that $  G 

C2k(Cl x ft), where $(x,y)  := (j>(\x — y\), and such that the native space is mapped via both 

C and B to functions that are at least continuous on the domain. Let A  = A i  U A b be a 

finite set of interpolation points satisfying the generalised unisolvency condition (2.8.3). Set

A b = <
Sb o C, b E A j, 

6b o B, b E A b ?

and assume these functionals are linearly independent. Then the Hermite-Birkhoff inter

polant

uniquely satisfies the conditions

Abi^ Au )  =  Ab(u) ,  ( b E  A),

Q:aAa(p) =  0, {p E n^_i).
aeA
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This theorem is a special case of the general theory neatly described by Wendland (2005, 

Chapter 16). We will be applying Hermite-Birkhoff interpolation theory when we come to 

be investigating the numerical solution of advection-diffusion problems in Chapter 5. For 

the purely advective case, we are able to apply the classic theory of radial basis function 

interpolation, specifically that of local interpolation via polyharmonic splines which we saw 

in Section 2.7.4, and it is this class of problem we deal with first of all, in the following 

chapter.
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Chapter 3

Linear Advection Problem s

In this chapter we discretise and numerically solve the problem (1.1.1) with s — 0, which 

is a purely advective system. The numerical method, which was introduced by Behrens & 

Iske (2002), is a combination of a semi-Lagrangian method and local radial basis function 

interpolation. The authors of the original paper incorporated an adaptive step into their 

algorithm, which automatically coarsens or refines the interpolation point set depending on 

pre-set criteria. Here, we do not consider adaptivity, but rather concentrate on the analysis 

for an arbitrary point set of fill distance h. Under certain assumptions on the smoothness 

of the solution u , as well as some other technical hypotheses, we are able to prove that the 

algorithm converges as h —► 0.

3.1 M odel problem  and discretisation

Given a final time T  > 0, we consider the unsteady advection problem

^ + a ( x , t ) - V «  =  /(x ,i) , (®>t ) e R ‘, x ( 0 , I l ,  (3.1.1a)crt

u(x ,0) =  uo(x), x  6 R d, (3.1.1b)

where a : R d x (0, T] —► R d, /  : ]Rd x (0, T] —► 1R and u q  : H d  —> R  are the velocity field, 

forcing function and initial condition respectively. For simplicity, we assume that u q  has 

compact support in R d. ^



The semi-Lagrangian radial basis function method is constructed by first rewriting 

(3.1.1a) in terms of Lagrangian coordinates. To this end, we first introduce the follow

ing notation: let X(x,s; t )  be the position at time t of a point (or particle) located at 

position x  at time s G [0, T]— thus X(x,  s; s) = x. The particle trajectories, or character

istics, associated with problem (3.1.1a) axe defined as the solution of the following system 

of ordinary differential equations:

-^-X(x, s;t) = a(X(x , s;t),t),  (3.1.2a)
dt

X ( x , s; s) = x. (3.1.2b)

We note that for a G C1(Hd x [0, T])d there exists a unique solution to (3.1.2), see Lefschetz 

(1977), for example. Moreover, this assumption guarantees that the particle trajectories X  

are Lipschitz continuous in time, that is, there exists a positive constant L x  such that

\X{x , s; s) — X(x,  s;t)| < L x \t — s|, (3.1.3)

for any x G Hrf and s, t G (0,T\.

Additionally, we assume that (minimally) / ( •  ,t) 6 C 1(lRd) for all t G (0, T] and uq € 

C(Rd). We shall also need to assume that the solution u( • ,t) is Lipschitz continuous in 

space, that is

|u{x, t) -  u(y, t)| < Lu\x -  y|, (3.1.4)

for x, y G R d, t G (0, T\.

With this notation, we define the material derivative Dtu as follows:

Dtu(x, t) := -^-u{X(x,S]t), t)I =  ut(x,t) +  a(x,t) • Vu{x,t)  =  f (x, t ) ,  (3.1.5)
dt t-s

by application of the chain rule and (3.1.1a).

We let 0 =  t° < t1 < . . .  < tM < tM+1 = T  be a uniform subdivision of [0,T], with 

time-step At; that is, tn =  nAt, for 0 < n < M  +  1. Integrating (3.1.5) with respect to t
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between the time-steps tn and tn+1, we get the following exact representation formula for 

the analytical solution u:

rtn+1
u(X(x,tn+1-,tn+1),tH+1) - u ( X ( x , t n+1-,tn),tn) = /  f (X (x , tn+l-,t),t) dt. (3.1.6)

J tn

If we now define y to be the “upstream” point at time tn from which a point located at x 

at time tn+1 has originated, that is,

y =  X {x ,tn+l \tn), 

then (3.1.6) may be written in the following simplified form:

r t n + 1

u(x ,tn+1) = u(y, tn) + f ( X ( x , t n+1’, t ) , t )d t  (3.1.7)
J tn

for all x €

3.1.1 Temporal discretisation

We now write u^t to denote the semi-discrete temporal approximation to it; this function 

is discrete in time, but continuous in space, with u^ti •, t°) := ito- Using the rectangle rule 

and the fact that tn+1 —tn — At, 0 < n < M , we define UAt as follows:

UAt(x} tn+1) =  UAt(y, tn) + At f (x ,  tn+1) (n =  0, . . . ,  M).

In general, the precise location of y will not be typically known analytically, and thereby, it 

must be numerically approximated instead. For the purposes of this thesis, any appropriate 

numerical ordinary differential equation solver of order p > 1 may be employed; in other 

words, we assume that the scheme employed for the numerical approximation of (3.1.2) 

between two consecutive time levels satisfies

(3.1.8)



where y denotes the approximation to the upstream point y and Lp is a non-negative 

constant which is independent of the time step At. As an example, an explicit Runge- 

Kutta method of order p may be employed for this task (see, for example, the book of 

Morton & Mayers (2005)). Using the same notation as before (for simplicity), we introduce 

the following alternative semi-discrete scheme:

UAt(x,tn+1) =  u^t(y, tn) +  A t f ( x , t n+1), (n =  0 , . . . ,M) .  (3.1.9)

This describes the semi-discretisation of u with respect to time, so that u&t{ • >fn) ^  

u{ •, tn) for all time-levels tn = nAt, n = l , . . . , M + l .  To complete the definition of the 

proposed discretisation method, we now proceed to discretise in space.

3.1.2 Spatial discretisation

We define a set of scattered, pairwise distinct interpolation points A  =  { x \ , . . . ,  x\^\ } C 

upon which we seek to approximate the value of u&t( •, £n), n  =  0 , . . . ,  M  +1; here, we have 

used the notation |.A| to denote the cardinality of the set A. From equation (3.1.9) we see 

that in order to determine tiAt(z, tn+1), x  € A, we need to exploit knowledge of the value of 

it At computed at the previous time-step tn, at the upstream point y. In general, this point 

will not be contained in the point cloud A , except in very special circumstances; thereby, 

we compute an approximation to itAt(^, tn) based on performing an interpolation over a 

subset of points in A, naturally utilising the radial basis function theory we introduced 

in the previous chapter — specifically, local interpolation via polyharmonic splines. Recall 

that these have the form

<!>d,kAr) = <
d̂,A:,/x̂ 2fe+2/i dln(r), 2k +  2p, — d even, 

^d,k,n'f'2k+2,J'~dj otherwise,

where fc>0, 0 < p < I and ndtk,n is a known constant. Their natural setting is the Beppo 

Levi space B L k+fi(lEid) which has the /i-dependent kernel Kk,P given by (2.4.2).
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Firstly, for all N  > d-\-1, assume {iyi,. . . ,  w ^}  is a set of points unisolvent with respect 

to j and 8 is chosen such that all sets {ci,. . . ,  c^} € B{w\, 8) x • • • x B (w n , 8) are 

unisolvent with respect to (recall that such a 8 exists by virtue of Lemma 2.6.4). Let 

the fill distance of a set W € B (w i,8) x • • • x B(wn, 8) be /iw, and let A  be a point cloud 

in R d of fill distance h. Now we assume that the following hypotheses hold:

(i) For each x  € A, we assume that there exists a set of nearest neighbours Af(x) C A  

to the numerical approximation y to the solution of the backwards characteristic 

equations (3.1.2). In particular, we assume that for each x  G A  and h > 0 there exists 

an affine transformation crj : J\f(x) —> W(z), where W (x) G B (w \,8) x • • • x B ( w n , 8 ) .

(ii) Let 7  > 1 be as defined in Remark 2.7.8, i.e. so that the stability constant of the 

interpolation operator Cs =  1 +  0 (N 7). Then we assume that N  ~  A — that is, 

there exists a constant K  such that Cs — 1 +  K A t.

(iii) The polyharmonic spline variables k and fi are chosen such that k +  (J, > d/2 and 

k > m > 1, where m  is the degree of smoothness of the analytical solution u to

(3.1.1).

R em ark 3.1.1. We note that hypothesis (i) is essential to guarantee that the resulting 

(local) interpolation problem (cf. (2.7.1)-(2.7.2)) is uniquely solvable. Hypothesis (ii) en

sures that the semi-Lagrangian radial basis function scheme remains stable over time, by 

demanding that the size of the neighbour sets M (x), x € A, depends on the time-step A t: for 

smaller time-steps we take smaller neighbour sets. We shall say more on this assumption 

following the proof of the scheme, in Remark 3.4-1.

Hypothesis (iii) ensures that, in the first instance, the interpolant is at least continuous, 

and moreover, that a high enough degree of polynomial is reproduced in order to apply our 

intended Taylor series argument.

For further discussion on the selection of a nearest neighbour set, from a computational 

point of view, we refer the reader to Appendix A.
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Given the above hypotheses, we write u&t,h to denote the numerical approximation to 

u in both time and space. Following on from the temporal approximation (3.1.9), for the 

time-level tn+1 we define the numerical solution as follows:

UAt,h{x, tn+1) := (Iu(x)UAt,h( *, tn))(y) +  At f(x ,  tn+1) (n =  0 , . . . ,  Af), (3.1.10)

for x  6  A, where y  is the numerical approximation to y — X (x ,tn+1;tn). At time t° =  0, 

we set UAt,h(%, t°) = uq(x) for all x  e A.

3.2 Main results

In this section we state a priori error bounds for both the (continuous in space) semi-discrete 

scheme (3.1.9), as well as for the radial basis function semi-Lagrangian numerical method 

(3.1.10).

Lemma 3.2.1. Let u : IR.** x (0, T] —» H  be the analytical solution of the advection problem

(3.1.1) satisfying u € C(TRd x (0, T]). Let u&t be the semi-discrete temporal approximation 

obtained by (3.1.9). Then, the following a priori error bound holds:

|M  •, tn+l) -  uAt( ■,«"+1)||oo < tn+1(LuLpA tl> + C/'X&t),

where Lu is defined in (3.1.4), Lp and p are defined in (3.1.8) and C fyx  — ^x\\f\\c((p,T\-,c1(1Rd)) 

(cf (1.3.4)), where L x  is as in (3.1.3).

Theorem 3.2.2. Let u : x (0, T] —> 1R be the analytical solution of the advection prob

lem (3.1.1) satisfying u € C((0, T]-,Cm(Eld)). Let UAt,h be the semi-Lagrangian numerical 

approximation obtained by (3.1.10) by employing polyharmonic splines, assuming that hy

potheses (i), (ii) and (iii) are satisfied. Then, the following a priori error bound holds:

I K  • I tn+1)-UAt,h( '  , *n + 1)||oo,.A

< e K̂+1 1̂ (jjuLpA tp +  C f^ A t  +  Crh171 A t 1||'w||£oo((to tnj;̂ m(Rd )^ ,
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where

llWll/oo((t0,tn];W’S(Ra)) ' >**)!!WS(Rd) o<l<^ WDau( ' i**)llooi

and the constants K , Lu, Lp, Ct  and Cf,x are defined in hypothesis (ii), (3.1.4), (3.1.8), 

Theorem 2.7.9, and Lemma 3.2.1, respectively.

The proofs of Lemma 3.2.1 and Theorem 3.2.2 will now be presented in the following 

sections, respectively.

3.3 Analysis o f th e sem i-discrete schem e

In this section we estimate the error between the analytical and numerical solutions with 

respect to time only, so we consider the difference between the two solutions u and uAt 

defined by (3.1.7) and (3.1.9), respectively. To this end, subtracting (3.1.7) and (3.1.9) 

gives

u(x ,tn+1) -  UAt(x,tn+1) =  u(y ,tn) -  UAt{y,tn)

=  u(y, tn) -  u(y , tn) +  u(y , tn) -  uAt(y , tn)

-  A t f ( x , tn+1) +  f ( X ( x , tn+1-,t),t) dt. (3.3.1)

We note from Taylor’s Theorem that

}(X (x , tn+1;t), t) = f(X (x , tn+1; t"+1)+

(X (x,tn+1;i) -  X (x ,tn+1-,tn+1)) • Vx/K (t),t) ,
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where £(£) is on the line segment (X (x ,tn+1',t) ,X (x ,tn+1;tn+l)). Thereby, writing

.*n+ir l  ' *

En =  I f (X ( x , tn+1',t),t) dt -  At f ( x , t n+1). (3.3.2)
J tn

we deduce that

•t"+i/•f1 *
En =  (X(x, tn+1; 4) -  X(x, 4"+1; 4"+1)) • V*/(£(t), 4) dt.

Jtn

Exploiting the Lipschitz continuity of X  (3.1.3), gives

ptn+1
\En\ < Lx A t  /  |V */(£(t),t)| dt < C/,x,n+iA t2, (3.3.3)

Jtn

where Cf}X,n+l =  ^x||/Uc(t»>t»+i;ci(Rd)) := supte[tn}tn+i]|Vx/(^(£),£n+1)|. Addition

ally, using the Lipschitz continuity of u, cf. (3.1.4), together with (3.1.8), we get

|u(y, tn) -  u(y, £n)| < LuLpA tp+1. (3.3.4)

Employing (3.3.3) and (3.3.4) we may bound (3.3.1) as follows

|u(a;,£n+1) -  UAt(x,tn+1)\ < \u(y,tn) -  UAt(y,tn)\ +  LuLpA tp+1 +  Cf,x,n+iAt2.

Taking the maximum over x e R d, we deduce that

||u( • , tn+1) -  uAt( ■, f+^lloo <  I K  • , tn) -  uAt( ■, 4") IU  +  LuLpA tp+1 +  Cf'X.n+1 A t2.

(3.3.5)
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At time t -  0 (that is, when t -  t°), \\u( • ,t°) -  tiAt( • ,*°)||oo =  0; thereby, recursively 

applying (3.3.5) gives

IK  • , tn+1) -  uAt( • , tn+1)||oo < IK  • , tn) -  uAt( •, tn)||oo +  LuLpAt0+1 4- Cfix,n+iAt2

< ||u( •, *n_1) -  UAt( ',  £n_1) lloo

4- 2LuLpA tp+1 4- (C/}x,n+1 +  C /^ n JA t2

n - f l

< (n +  l)L uLf,Atp+1 + Y , C f ,x,iA t2.
1= 1

Noting that Cf,x,i < (n4-l)C/,x» and using the fact that tn+1 = (n4-1)At, we deduce 

the statement of Lemma 3.2.1.

Rem ark 3.3.1. In particular, from this result, we have

\u(x,tn) — uAt(x ,tn)\ < M - , t n) - u At( - , tn)||oo < tn+1(LuLpA tp + Cf,x&t) 

for each x € A.

R em ark 3.3.2. Note that when f  =  0, Cfyx  — 0; moreover, Lp =  0 when the ODE method 

used to solve the backwards characteristics system (3.1.2) is exact. In this case the right- 

hand side of the error bound stated in Lemma 3.2.1 is identically zero, which reflects the 

fact that there is no error in the semi-discrete scheme in this case.

3.4 Analysis o f th e  radial basis function sem i-Lagrangian nu

merical m ethod

Finally, in this section we present the proof of Theorem 3.2.2; that is, we analyse the 

difference between the analytical solution and its numerical approximation in space and
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time (3.1.10) at an arbitrary point x in our discrete set A  at time-level tn+1:

M x ,tn+1) -  uAt,h(x,tn+1)\ < |u(y,tn) -  (lM(x)UAt,h( • , tn))(y)|
*tn+l

+
r t ” ' *

/  f ( X ( x , tn+1;t),t) dt -  A t f ( x , tn+1)
Jtn

< |u(y,tn) -  u (y ,tn)| +  |u(y ,tn) -  ■ ,*n))(i/)|

+  IKtf(*)u( • , tn)){y) -  (ZM(x)UAt,h( - , tn))(y) |
/•tn+1
/ f (X ( x , tn+1]t),t) dt -  A t f ( x , tn+1)

J tn
+

< LuL„At^ 1 + CThm|u( • .n iw 'sfR '')

+  Cs||«( •, t") -  •, <")IIOO..A +  C ftx,n+lAt2, (3.4.1)

by application of the bound (3.3.3), Theorems 2.7.9 and 2.7.7, and the bound (3.3.4). 

Recall from hypothesis (ii) that Cs =  1 +  K A t. Thus,

|u(x,tn+1) -  UAt,fc(Mn+1)| < LuLpA tP+1 +  Cf>X,n+l&t2 +  CThm\u( ■ , 

-I- (1 + KAt)\\u(- , tn) -  U A t , h ( '  , tn)\\oo,A.

Taking the maximum over all x 6  A  provides us with the error estimate in terms of the 

previous time-level:

IN  • ,*n+1) -  uAt,h( •, tn+1)||oo^ < LuLpAtf* 1 +  Cf ,x ,n+1A t2 +  CThm\u( •, tn) | ^ (]Rd)

+ (1 +  KAt)\\u( ' , t n) ~  UAt,h( • , *n) lloô t-

Telescoping this bound through all time-levels, noting that ||u( •, t°) — UAt,h( • > £°)||oo,.4 = 0,

M - , t n+1)-U A t,h (- ,tn+1)\\oo,A 

< LuLpA tp+1 +  Cf,x,n+iA t2 +  CThm\\u( • 

+  (1 +  K A t)  ||u( • , tn) -  UAt,h( •, tn) Hoo^
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< LuLpAt?*1 +  Cf,x,n+iA t2 +  CThm\\u( • »̂ n)llv^(n<i)

+  (1 +  K A t) (yLuLf,At»+1 + Cf ,x,n At2 +  CThm ||u( •, O I I ^ r - ,  

+  (1 +  i f  At)||u( • . t " - 1) -  uAt,h( • , tn- 1)llco,^)

=  L u L p A t? * 1 +  C f tx , n+ i & t 2 +  C T h m \\u (  • >*n ) |lv ^ m (]R .d )

+  (1 +  K A t) (L uLpA t»+1 +  Cf ,x,nA t2 +  CThm\\u( ■, 

+  (1 +  ifA i)2||«( •,«"-!) -  uAt,h(

n

< £ ( 1  +  K A t)n- i (L uL/,At»+1 + Cf ,x,w A t2 + Cr hm|M  • ,t4)!!*™ ^))
t=0 °°

< (n +  1)(1 +  K At)"+1 (LuLpAt1* 1 +  Cf ,x A t2 + Cr /im11« ||< c o ( t 0 (».-)))

=  tn+1(l +  K  A t)n+1 (LuLpAt9 +  C/,xAt +

since (n +  I)A t =  tn+1. The facts that

(1 +  K A t)n+1 < (eKAt)n+1 =  e (n+1)ArAt =  eKtn+1

and

t n + l =  g l n ^ 1) <  c t»+i

complete the result.

Rem ark 3.4.1. Recall hypothesis (ii), which assumed that the size N  of a neighbour set 

M  is related to the time-step A t. In the two dimensional thin-plate spline case we saw that 

we required N 3 =  K A t for some constant K  (cf. (2.7.15)). From Theorem 3.2.2 we can 

see that for p > 1 the first two terms of the error estimate are balanced by A s o  this 

latter quantity must be uniformly bounded above to ensure convergence of the scheme. Thus, 

in essence, N  should be of order hm/ 6 as the mesh is uniformly refined, indicating that for 

rougher functions we should take N  to be larger than for smoother functions.
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R em ark 3.4.2. In the special case of thin-plate spline interpolation in two dimensions, 

when N  — 3 the interpolation operator reduces to that of linear polynomial interpolation, 

in which case it can be shown via an alternative method of proof that the scheme converges 

precisely as predicted by Theorem 3.2.2 but with N  independent of At.
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Chapter 4

Linear Advection Numerical 

Experiments

In this chapter we present the results of some two-dimensional numerical experiments which 

illustrate the performance of the method and confirm our analysis. In Section 4.1 we consider 

the oft-used rotating cone problem. The exact solutions for both the ordinary differential 

equation problem of finding the upstream points (cf. (3.1.2) on page 76) and the partial 

differential equation problem itself are known, hence we can investigate the accuracy of the 

scheme, and as the analytical solution possesses the required level of regularity, we may 

apply the theory of the previous chapter.

In Section 4.2 we consider the rotating cylinder problem, which is similar to the rotating 

cone except that in this case the solution is not continuous everywhere at any time t and 

hence our analysis cannot be applied; however, the numerical experiments show that it still 

performs very well for this problem.

Finally, in Section 4.3 we present numerical results for a Gaussian cone in a vortex, 

for which an analytical solution is not available, to further demonstrate the utility of the 

scheme.
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4.1 E xperim ent 1: R otating cone problem

In this first example, we let /  =  0, a(x , y, t) =  -2n(2y  —1,1 — 2x)T and

u q ( x } y )  =  <
cos2(27rr), r < \ ,

0 , otherwise,

where r 2 =  (2x  — h)2 +  (2y — l)2.

The analytical solution u is simply the initial cone no rotating about the point (^ ,5 ) 

with period \  (in other words, u(x,y, §) =  uo(x,y) for j  =  0 , 1, 2 , . . .) ,  and hence we can 

restrict our domain of computation to [0, l]2. This problem is a commonly-used test case 

for linear advection schemes, also seen in the work of Siili & Ware (1991) and Priestley 

(1994), for example.

We remark that the solution lies in the fractional-order Sobolev space W ^ 2-c((0, l )2), 

e > 0; this space comprises the same equivalence classes of functions as B L 5/ 2~ e( (0, l )2), 

which is contained in C'1([0, l]2) by Lemma 2.4.7. Thereby, this model problem satisfies 

the hypotheses of our analysis — recall from Theorem 3.2.2 (page 80) that we require the 

smoothness of the solution u to be m > 1. Thus, we proceed to demonstrate the practical 

performance of the numerical scheme (3.1.10) on a sequence of increasingly finer point 

clouds A  of regular gridpoints covering [0, l]2. To this end, in Tables 4.1 and 4.2 we present 

numerical experiments, based on employing the thin-plate spline radial basis function </>(r) = 

r 2 lnr, that is, k = 2 and // =  0, for two different time-steps, At =  0.01 and At =  0 .001, 

respectively. In both cases, we show the maximum error computed over all of the nodes 

in the point cloud A  at the final time T  =  0.5 and their respective orders of convergence, 

using an increasing number of neighbours for the computation of the approximation of the 

solution at the upstream point, as well as using a global interpolant, where computationally 

feasible.

Since here m = 1, Theorem 3.2.2 would predict an order of convergence of 0{h) as h 

tends to zero. However, from Tables 4.1 and 4.2, we clearly observe that 0 (h 2) convergence
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N
10 20 40

HI Error /  Order Error /  Order Error /  Order
225 5.228e—1 /  - 4.534e—1 /  - 4.725e—1 /  -
900 1.708e—1 /  1.61 9.660e—2 /  2.23 1.255e—1 /  1.91
3600 4.621e—2 /  1.89 3.867e—2 /  1.32 1.547e—2 /  3.02
8100 2.629e—2 /  1.39 2.070e—2 /  1.54 6.369e—3 /  2.19
14400 1.632e—2 /  1.66 1.209e—2 /  1.87 3.394e—3 /  2.19
57600 4.333e—3 /  1.91 3.179e—3 /  1.93 7.943e—4 /  2.10

N
80 160 î i

HI Error /  Order Error /  Order Error /  Order
225 4.752e—1 /  - 4.752e—1 /  - 4.752e—1 /  -
900 1.269e—1 /  1.90 1.276e—1 /  1.90 1.276e—1 /  1.90
3600 1.260e—2 /  3.33 1.271e—2 /  3.33 1.273e—2 /  3.33
8100 4.847e—3 /  2.36 4.770e—3 /  2.42 4.772e—3 /  2.42
14400 2.553e—3 /  2.23 2.472e—3 /  2.29 - / -
57600 5.855e—4 /  2.12 5.578e—4 /  2.15 - / -

Table 4.1: Loo,.A errors at T  — 0.5 for the rotating cone problem with At =  0.01 and k =  2 .

N
20 40 80 160

HI Error /  Order Error /  Order Error /  Order Error /  Order
225 4.247e—1 /  - 4.889e—1 /  - 4.924e—1 /  - 4.922e—1 /  0.00
900 3.355e—1 /  0.34 2.511e—1 /  0.96 2.408e—1 /  1.03 2.429e—1 /  1.02

3600 3.696e—1 /  -0.14 1.027e—1 /  1.29 4.229e—2 /  2.51 4.267e—2 /  2.51
14400 1.475e—1 /  1.33 3.886e—2 /  1.40 1.035e—2 /  2.03 9.666e—3 /  2.14
57600 4.004e—2 /  1.88 7.397e—3 /  2.39 2.506e—3 /  2.05 1.995e—3 /  2.28

Table 4.2: .Loo,.4 errors at T =  0.5 for the rotating cone problem with A t  =  0.001 and k =  2.
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is attained in practice as the number of points in A  is uniformly increased. This is further 

observed in Figure 4.1, where we plot the results presented in Tables 4.1 and 4.2. Secondly, 

we note that on coarse meshes the error is relatively insensitive to an increase in the number 

of points employed in the nearest neighbour set M  for the local interpolation algorithm. 

However, on finer meshes, an increase in the size of M  does indeed lead to a significant 

decrease in the error. It is particularly noteworthy that, whilst for the analysis we required 

that N  be explicitly dependent on the mesh-spacing, we see here that the method converges 

as h tends to zero for fixed N. In practice, there is a balance between the computational 

effort involved in solving these larger local problems on coarser meshes, as opposed to using 

smaller neighbour sets N  on finer meshes. The latter approach is particularly attractive 

from a parallel perspective, as these local interpolation problems are entirely independent 

of each other. Finally, from Tables 4.1 and 4.2, we notice that on finer meshes, a decrease 

in the time step actually leads to an increase in the error. This is due to the fact that since 

/  =  0 and that the upstream points are evaluated exactly, in this problem there is no error 

due to A t— in other words, the first two terms on the right-hand side of the error bound 

stated in Theorem 3.2.2 are zero— thereby, a smaller value for A t  must be compensated 

for by a finer node set A.

In Tables 4.3 and 4.4 we present results based on employing smoother polyharmonic 

spline interpolation functions, with k =  3 and k =  4, respectively, with A t  =  0.01; cf. 

Figure 4.2, also. Here, we observe that the order of convergence remains unchanged, as we 

would expect, and moreover that the actual magnitude of the errors are very comparable for 

each value of k. Finally, in Figures 4.3 and 4.4 we show the computed numerical solution at 

the final time T  =  0 .5 , with At =  0.01 and k =  2 , for different choices of A  and N .  Here, we 

note that although some small oscillations are observable at the base of the cone, together 

with some slight loss in the height of the profile, the general quality of the computed solution 

is extremely good.
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Figure 4.1: Convergence plots for the rotating cone problem at T = 0.5, with k =  2: (a) 
A t  =  0.01; (b) A t  =  0.001.

N
10 20 40 80

HI Error /  Order Error /  Order Error /  Order Error /  Order
225 2.403e—1 /  - 1.878e—1 /  - 2.239e—1 /  - 2.228e—1 /  -
900 6.531e—2 /  1.88 3.364e—2 /  2.48 2.380e—2 /  3.23 1.780e—2 /  3.65
3600 1.633e—2 /  2.00 6.231e—3 /  2.43 3.582e—3 /  2.73 3.436e—3 /  2.37
14400 2.908e—3 /  2.49 1.090e—3 /  2.52 8.209e—4 /  2.13 7.855e—4 /  2.13
57600 5.822e—4 /  2.32 2.352e—4 /  2.21 1.924e—4 /  2.09 1.930e—4 /  2.02

Table 4.3: jLoo,.4 errors at T  — 0.5 for the rotating cone problem with A t — 0.01 and k =  3.

N
10 20 40 80

HI Error /  Order Error /  Order Error /  Order Error /  Order
225 3.726e—1 /  - 1.235e—1 /  - 9.810e—2 /  - 1.272e—1 /  -
900 7.766e—2 /  2.26 3.677e—2 /  1.75 1.210e—2 /  3.02 9.066e—3 /  3.81
3600 8.124e—3 /  3.26 4.086e—3 /  3.17 2.156e—3 /  2.49 2.333e—3 /  1.96
14400 1.808e—3 /  2.17 7.875e—4 /  2.38 4.453e—4 /  2.28 4.968e—4 /  2.23
57600 4.337e—4 /  2.06 1.932e—4 /  2.03 1.143e—4 /  1.96 1.315e—4 /  1.92

Table 4.4: L ^ a  errors at T  — 0.5 for the rotating cone problem with A t =  0.01 and k =  4.
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Figure 4.4: Cut through solutions for rotating cone problem at T  — 0.5 with A t =  0.01 and 
k =  2: (a) \A\ =  3600, AT =  20, where x =  0.25 and 0 < y < 1; (b) \A\ = 3600, N  =  20, 
where y =  0.5 and 0 < x  < 1; (c) |.A| =  3600, N  =  80, where x =  0.25 and 0 < y < 1; 
(d) |^ | =  3600, JV =  80, where y =  0.5 and 0 < x < 1; (e) |>1| =  14400, TV = 10, where 
x =  0.25 and 0 < y < 1; (f) \A\ = 14400, N  =  10, where y =  0.5 and 0 < x < 1.
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4.2 E xperim ent 2: R otating cylinder problem

In this second example, we consider the rotating cylinder problem; this another popular 

test case which demonstrates the effectiveness of the scheme even when the solution is 

discontinuous. Here, the set-up is almost identical to that of the rotating cone problem 

presented in Section 4.1; the only difference being the initial condition is now the cylinder 

defined by

uo(x,y) = <
1 f  < i' — 4?

0 , otherwise,

where r 2 =  (2x — ^)2 +  (2y — l)2.

This problem can also be found in the results of Bermejo (1990), for example. In 

Figure 4.5 we show slices of the analytical and numerical solutions at T =  0.5, with At = 

0.01 and k =  2, for varying sizes of point- and neighbour-sets. Here, we again observe some 

oscillatory behaviour of the computed numerical solution in the vicinity of the discontinuities 

in the analytical solution. However, these oscillations are extremely localised, and do not 

lead to a general deterioration of the accuracy of the underlying approximation.

4.3 E xperim ent 3: G aussian cone in a vortex

In this section we present numerical results which serve to further validate the scheme, with 

a more complex velocity field than the previous two examples. The domain of computation 

is again [0, l]2. The initial condition is given by



(a)

0.1 0.2 0.3 0.4 03  0.0 0.7 0.0 0.0

(b)

0.1 02 03  0.4 03  a o  0.7 0.6 0.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.6 1

(c) (d)

0.1 03  0.3 0.4 0 3  0.6 0.7 03  0.6 0 0.1 0.2 03  0.4 0 3  0.6 0.7 0.6 0.6

(e) (f)

Figure 4.5: Cut through solutions for rotating cylinder problem at T =  0.5 with A t = 0.01: 
(a) \A\ = 14400, N  — 20 where x = 0.25 and 0 < y < 1; (b) |.A| =  14400, N  — 20 where 
y =  0.5 and 0 < x < 1; (c) \A\ =  14400, N  = 80 where x  =  0.25 and 0 < y < 1; (d) 
\A\ =  14400, N  — 80 where y =  0.5 and 0 < x < 1; (e) |̂ 4| =  57600, N  = 10 where x =  0.25 
and 0 < y < 1; (f) |^4| =  57600, N  = 80 where y = 0.5 and 0 < x < 1.
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in other words, a Gaussian cone of height 10 centred at ( | ,  | ) ,  and the velocity field is

a{x<ytt) =  M *,y)sinh(r(x,y))
160 cosh3 (r(x,y)) \ i - y ’ \t; - x

where

r(x,y) : = 8 \ i - x )  + ( \ - y

which essentially “sucks” the cone into the centre of the domain in a spiralling, whirlpool-like 

motion. Here, the forcing function is /  = 0.

Figure 4.6 shows the results for \A\ =  14400, N  =  20, A t =  0.01 at times t =  0, t — 2.5 

and t =  5. In this example we do not have an exact solution for the backwards characteristic 

problem (3.1.2) for computing the upstream points y, so instead a Runge-Kutta method of 

order 4 (sometimes known as RK4) was deployed to determine the approximate point y in 

each instance. This problem appears to have received little or no attention in the current 

literature, so drawing conclusions as to the performance of our particular scheme is difficult. 

However, we can see from Figure 4.6 that although we can observe some slight degradation 

of the numerical solution along the spine (due to the resolution of the point cloud A), the 

scheme appears to perform very well for this problem, displaying the behaviour we would 

expect of the given velocity field on the initial data.
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(c) t  =  5

Figure 4.6: Numerical solution for Experiment 3: Gaussian cone in a vortex.

97



Chapter 5

Advection-Diffusion Problems

We now increase the complexity of the partial differential equation problem that we have 

been numerically solving by reintroducing the diffusion coefficient e, and thus we present a 

new scheme for solving advection-diffusion problems of the following form:

ut(x ,t)  +  a • Vu — eAu  =  / ,  (x,t) 6  ft x (0, T\, (5.0.1a)

u = g, (x,t) G Oil x (0,T], (5.0.1b)

u(x,0) =  uo(x), x  € ft, (5.0.1c)

where ft C Rrf and dft is the boundary of ft. Here, a : R d x (0, T] —► is the velocity field, 

e E I I  is the coefficient of diffusion (e > 0), /  : x (0, T] —»1R is the forcing function, and

g : dft x (0,T] —> 1R and uq : R d —> R  are known functions providing the boundary and 

initial conditions of the problem, respectively.

The numerical solution of problems of this type has generally been approached with finite 

difference, finite element or boundary element methods developed for strictly-parabolic or 

diffusion-dominated problems— see Zerroukat et al. (2000) and the references contained 

therein. Each of these methods requires a mesh to be generated and maintained in order to 

carry out the computations, placing a significant burden on the scheme; moreover, it is well 

known that standard finite difference or finite element solutions of advection-dominated
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diffusion problems exhibit problems with non-physical oscillations or excessive numerical 

diffusion.

With these concerns in mind, the development of methods which do not require a mesh, 

and the obvious higher-dimensional benefits that such schemes would bring, has been of in

creased interest in recent times. As we have seen, radial basis functions are essentially 

dimensionally-independent but powerful interpolatory tools, thus their successful usage 

would be of significant advantage in advection-diffusion problems.

Consequently, there are a variety of methods utilising radial basis functions to numeri

cally solve advection-diffusion-type problems. Boztosun et al. (2002) describe a thin-plate 

spline-based scheme which uses a Crank-Nicholson method (sometimes called a ^-weighted 

method) to discretise in time, with thin-plate splines discretising the spatial domain by ap

plying both the Laplacian and gradient operators to the basis functions directly, in contrast 

to the finite difference method with which they draw comparisons; the latter method dis- 

cretises the two differential operators with the second-order central difference and backward 

difference, respectively.

An alternative strategy is to solve via a combination of the method of fundamental 

solution with the dual reciprocity method, as favoured by Ingber et al. (2004) and Chen, 

Kuhn, Li Sc Mishuris (2003), for example. Broadly speaking, the solution is assumed to 

comprise two functions: the solution to the corresponding homogeneous problem, and a 

particular solution which is approximated by radial basis functions via collocation.

Whilst the above schemes choose to discretise time using an Eulerian method, the new 

scheme we present in this chapter follows the lead of that described in Chapter 3, by 

rewriting the advection-diffusion problem (5.0.1) in Lagrangian form and discretising in 

time along the direction of the characteristics, giving the solution at the current time- 

level in terms of the solution at the previous level. We then proceed to discretise in space 

by defining a set of interpolation points A  =  A \ U A 2 such that the points in A \ lie in 

the interior of Cl whereas those in A 2 are wholly on dCl, the boundary of the domain. 

The value of the solution at the previous time-step is given via solving a global Hermite 

interpolation problem based on the known values at this time-level, for which we refer back
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to Section 2.8; the numerical solution at the present time-level is determined from these 

approximate values. To this end, we first proceed to temporally discretise.

5.1 Tem poral d iscretisation

Rewriting the advection-diffusion equation (5.0.1a) in Lagrangian form, we have

D tu(x,t) — eAu(x,t) = /(x , t),

where Dtu denotes the material derivative of u (cf. (3.1.5), page 76). Let 0 =  t° < t1 < . . .  <

tM < tM+1 =  T  be a uniform subdivision of [0, T\ with £n+1 — tn =: A t  for all 0 < n < M.

Integrating along the characteristic between two time-levels tn+1 and tn, we have

ptn+x /*tn+1 /*tn+1
I D tu(x , t) dt — e /  Au(x, t )d t=  /  /(x , t) dt,

J tn J tn J tn

that is,

t n + 1 t n + l

u (x ,tn+1) — u(y ,tn) — e / A u (x ,t)d t = / f(x ,t)d t,  (5.1.1)
J t r ,  J t n

where y =  X (x ,tn+1', tn), and it is clear that, unlike the purely advective case (cf. (3.1.7)), 

we cannot localise this problem spatially due to the global nature of the Laplacian operator 

acting on the solution u in the second term on the left-hand side.

By applying the right-hand rectangle rule, we have that

rt"+1
/  /(x , •) »  A t/(x ,tn+1),

Jtn

and

r t n+ 1

/ Au(x, •) «  A tA u (x ,tn+1).
J tn
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As in the advection case, it will not generally be possible to precisely find the upstream 

point, and instead an approximation, y, to y is introduced, for which we assume \y — y\ < 

LpA tp+1, where p > 0 and Lp is a non-negative constant which is independent of the 

time-step A t.

Thus, following (5.1.1), we define a semi-discrete approximation of u with respect to 

time, denoted u^t : Cl x [0, T] —* H, to be the function satisfying

UAt(x,tn+1) — eAt(Au&t){x, tn+1) =  u&t(y,tn) + A tf(x ,  tn+1), x e Cl, (5.1.2a)

UAt(x, tn+1) =  p(x,tn+1), x  € dCl, (5.1.2b)

where y is the numerical approximation to y, the upstream point at time tn corresponding 

to x, and with UAtOc,0) := u q { x )  for all x € Cl.

Defining the operator

C := I  — eA tA , (5.1.3)

where I  denotes the identity operator, we may write the scheme as

(£t»At)(®, tn+1) =  UAt(y, tn) +  A tf(x , tn+1), x e Cl,

t(x, tn+1) = g(x, tn+1), xedC l.

5.2 Spatisd d iscretisation

Define a set of scattered, pairwise-distinct interpolation points

A  =  A i U A i =  {x i,. . . ,  x/, x j+i , . . . ,  Xjv} C Cl,

upon which we seek to approximate the value of UAt(' , tn), where A \ =  {x i,. . . ,  x/} are 

points in the interior of Cl and A 2 = {x /+ i,. . . ,  x m }  are points which lie on dCl, the boundary 

of Cl.
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We define v>At,h • A  x [0, T] —► R , the numerical approximation to it in both time and 

space, to be the function satisfying

(CuAtA)(x ,tn+1) =  uAtA(y ,tn) + A t/(x ,t"+1), ( i , t n+1) e A i X  (0,T], (5.2.1a)

t,h(x, tn+1) = g(x, tn+1), (x, tn+1) e A B y (0, T], (5.2.1b)

where, for all x e Q and all time t e (0,T], u&t,h has the form

t
U A t , h ( x , t )  := ^ 2  <*y(C4)i\x -  2/1) +  A/0G* “  2/1) +  ^ 7 jP j(® ), (5.2.2)

yeA i yeA2 j = l

where {pj}*=1 forms a basis for H f-i  anc  ̂ is a conditionally strictly positive-definite 

function of order k  on R d which permits the application of C2 without vanishing or creating 

singularities. This means in particular that it must allow A2 to be applied; in the case of 

polyharmonic splines, this requires 2fc+2/t—d > 4, whereas infinitely-smooth basis functions 

such as the multiquadrics require no such forethought in this regard.

Defining M  functionals Ax, x  € A, by

Al! — i
Sx oC, x e  A i ,

(5.2.3)
Sx , x e  A 2,

it is clear that UAt,h has the form of the Hermite-Birkoff interpolants that we met in Sec

tion 2.8 (cf. (2.8.2) on page 70):

i

UAt,h(x,t) =  OtyX2y {<l>{\x -  • I)) +  '52'ljP j(x)  
y€A j=1

I
= X ) avxv(^(lx ”  • I)) + ^ Ay(^(\x -  * I)) +

yeAi yeA2 j =l

where the superscript 2 on the functionals denotes action with respect to the second vari

able. (In fact, since the functionals involve combinations of derivatives, UAt,h is a Hermite 

interpolant.)
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In order to construct a symmetric system, we also demand that

^  a y^y(Pj) — 0, (5.2.4)
yeA

that is,

X !  av(CPj)(y) +  X  f e ( ^ )  =  °> (5-2-5)
yeAi yeAi

for j  =  1 . . .  I.

As with the temporal discretisation, U A t , h ( x > t y  :=  u o ( x )  for all a; €  A . Prom Theo

rem 2.8.6 we know there exists a unique solution of the form (5.2.2) for all t  E { t ° , . . . ,  t n+1]  

subject to the conditions (5.2.1) and (5.2.5).

R em ark  5.2.1. In contrast to the numerical advection scheme (3.1.10), which was defined 

only on the point cloud, here the function u&t,h Is globally supported.

5.3 A nalysis o f th e  sem i-discrete schem e

The error analysis for the semi-discrete approximation (5.1.2) follows in an analogous man

ner to the analysis carried out for the purely advective scheme (cf. Section 3.3). Firstly, we 

state our assumptions:

• We assume that the solution u  E C((0,T]; C2(Rd)) and, moreover, u(  • , t )  is Lipschitz 

continuous in space, that is

\u(x,t) -u (y ,t ) \  < Lu\ x - y \ ,  (5.3.1)

for x, y E t  E (0,T].
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The velocity field a 6  C 1(Hd x [0,T])d, providing a unique solution to the backwards 

characteristic problem (3.1.2) and guaranteeing that the particle trajectories X  are 

Lipschitz continuous in time— that is, there exists a positive constant Lx  such that

|X (z ,s;s) - X ( z ,s ; t ) |  < Lx \ t - s \, (5.3.2)

for any x  € R d and s, t 6  (0 ,T],

• For the backwards characteristic problem, we further assume

(5.3.3)

where y denotes the approximation to the upstream point y, p > 0 and Lp is a 

non-negative constant which is independent of the time step At.

By (5.1.1) and (5.1.2),

|u (x ,tn+1) -  UAt(x,tn+1)| <\u(y,tn) -  u(y ,tn)\
f>tn+1

+ 'el J  Au(x, t) dt — A tA u (x ,tn+1)

I r tn+1
+ /  f ( x , t) dt -  A tf(x , tn+1)

\Jtn

u(y,tn) -  uAt(y ,tn)+

By the previous analysis (cf. (3.3.3), page 82) we know that there exists a constant 

Cftx,n+1 =  L x  ll/llc'(tn,£n+1;C'1(Ilct)) SUĈ

rtn+1
/  f ( x , t ) d t  -  A t f ( x , tn+1) 

Jtn
<  Cf,x,n+lAt2', (5.3.4)
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by similar arguments we have

rtn+1
/  A u (x ,t)d t-A tA u (x ,tn+1) < Cu,x,n+iA t2, (5.3.5)

J tn

for some constant CUtx,n+1 defined analogously to Cftx,n+1*

Applying these bounds together with (5.3.1) and (5.3.3), then taking the maximum over 

all x  G we have

||u( • , tn+1) -  «A«( •, tn+1)||oo <  iu ip A t^ 1 +  (Cf,x ,„+l +  £C„,x.„+l)At2

Recursively applying this bound and noting that at time t =  0, ||u( •, 0) — UAt( •, 0)||oo =  0, 

gives

IM •, tn+1) -  uAt( •, tn+1) lloo < LuLpA tp+l + (C/,x ,„+1 +  eC„,x,„+i)At2

< 2LuLpAip+1 +  (C/,x ,n+l d" Cf,X,n “I" £Cu,X,n+l "I" eCu^X,n)At

+ H . , r - 1) - U At( - , tn- 1)||oo

< (n +  l)LuZ/pAt *̂’1 +  (n +  l)(C /,x  +  eC ^x^A t^,

where

Cf,X — L x  || /  II C (0 ,T ;C 1 (Rd)) ’ — ^ H lillc(OlT;C1(R<l))» (5.3.6)

with Lx defined in (5.3.2)

Using the definition of At, we conclude the following lemma.

Lem m a 5.3.1. Let u : x (0,T] —► H  6e the analytical solution of the advection-diffusion

problem (5.0.1) satisfying u e  C((0,T] x C'2(Rd)). Let u ^ t  be the semi-discrete temporal
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approximation obtained by (5.1.2). Then, the following a priori error bound holds:

M  • , «n+1) -  « A t (  • , <"+1)||oo <  tn+1 (LuLpA t p +  (Cf,x  +  eCu,x)A t) ,

where Lu and Lp are defined in (5,3.1) and (5.3.3), respectively, and C/tx  and Cu,x are 

given by (5.3.6).

5.4 Rem arks on th e  analysis o f th e full d iscretisation scheme

In this section we provide some comments on the issues that may arise when attempting 

the analysis of the numerical advection-diffusion scheme (5.2.1).

Consider the difference between the numerical scheme and the analytical solution (5.0.1) 

at an arbitrary point x  6  A \ at time tn+1. Using the definition of the functionals Ax, x  G A, 

and applying the theory of Franke & Schaback (1998a) (cf. (2.8.5) on page 72), we would 

have

I(C(u -  UAt,h))(x, *n+1)l =  |(Ax(u -  UAt,h))( •, *n+1)| < ^,a(A x)||(u  -  UAt,h)( • , n̂+1)||^,

where || • \\jr denotes the norm associated with the native space for <f> and a denotes the 

power function depending on 3>, where $(cc, y) := (j>{\x—y\), and A := {Ax : x E Al}. It can 

be shown that the power function involving Az =  5X o C and $  can be reduced to the usual 

point-evaluation power function involving A^A^$( •, •). However, even given appropriate 

stability results for the power function and Hermite interpolation in general (see (Narcowich 

& Ward 1994), for example), one cannot simply telescope this bound down to t =  t° due 

to the presence of the operator C on the left-hand side, and more work must be required in 

order to develop a useful error estimate for the scheme. This is the subject of future work 

we intend to carry out.
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5.5 N um erical experim ents for advection-diffusion problem s

Here we present the results of numerical implementations of the proposed scheme to advection- 

diffusion problems.

5.5.1 E xperim ent 1: Shear flow

The first test of the computational performance of the scheme is Problem 4 from Baptista, 

Adams & Gresho (1995), which models the transport of a small source in a plane shear 

flow. Let Q — (0,24000) x (—3400,3400), /  =  0, a(x,y ,t)  =  (ao +  ay, 0)T, where ao =  0.5 

and a  =  5.0 x 10-4 .

The initial condition uq is a point source of mass m  located at (#o>2/o) =  (7200,0); 

however, in order to allow the numerics to begin with a finite source size, the calculations 

begin at t =  to =  2400, with m =  47reto(l +  a 2to/12)1/2.

The solution to this problem is given by

U{X' V' t) = Anet(l + a H y  12) ^

where

_  ( x - x p -  apt -  a y t/2)2 y2 

4et(l +  a 2t2/12) 4 e t ’

Setting e — 10 and T  — 9600, we ran the algorithm over several different time-steps and 

resolutions, with three different radial basis functions: inverse multiquadrics, multiquadrics, 

and a class of function we have not met before, the Matem family of radial basis functions, 

which we will define shortly. Figure 5.1 shows the initial data (that is, time t = to = 2400) 

as both a three-dimensional elevation and as a contour plot.

The analytical solution at t =  T  =  9600 is shown in Figure 5.2, again in both three 

dimensions and as a contour plot. For comparison purposes, we note that this problem was 

also attempted by Houston Sz Siili (2001) using an adaptive Lagrange-Galerkin method.
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X

(b) Contour plot of initial data, displaying correct aspect-ratio of domain of computation.

Figure 5.1: Initial data (t =  to =  2400) for the shear flow problem on the domain [0,24000] x 
[-3400,3400].



X

(b)

Figure 5.2: Analytical solution to the shear flow problem at time T  =  9600 on the domain 
[0,24000] x [-3400,3400].



At
120 60 30 15

HI Error /  Order Error /  Order Error /  Order Error /  Order
441 1.456e—1 /  - 1.538e—1 /  - 1.580e—1 /  - 1.602e—1 /  -
1681 3.873e—2 /  1.91 4.296e—2 /  1.84 4.488e—2 /  1.82 4.578e—2 /  1.81
3721 2.432e—2 /  1.15 2.065e—2 /  1.81 1.856e—2 /  2.18 1.747e—2 /  2.38
6561 2.266e—2 /  0.25 1.689e—2 /  0.70 1.371e—2 /  1.05 1.215e—2 /  1.26

Table 5.1: Loo,A errors and corresponding orders for the shear flow problem using the inverse 
multiquadric radial basis function.

At
120 60 30 15

HI Error /  Order Error /  Order Error /  Order Error /  Order
441 1.446e—1 /  - 1.506e—1 /  - 1.537e—1 /  - 1.552e—1 /  -
1681 2.725e—2 /  2.41 2.833e—2 /  2.41 2.917e—2 /  2.40 2.979e—2 /  2.38
3721 6.539e—3 /  3.52 6.043e—3 /  3.81 6.031e—3 /  3.89 5.971e—3 /  3.96
6561 3.036e—3 /  2.67 2.632e—3 /  2.89 2.386e—3 /  3.22 2.285e—3 /  3.34

Table 5.2: Loo,a  errors and corresponding orders for the shear flow problem using the 
multiquadric radial basis function.

The results for the inverse multiquadric, which we recall is strictly positive-definite, 

and for the multiquadric, which is conditionally strictly positive-definite of order 1 (and so 

requires a constant polynomial modifier), are presented in Tables 5.1 and 5.2, respectively. It 

can be seen that the multiquadric in particular performs very well in this scheme, displaying 

better than 0 (h2) convergence.

R em ark  5.5.1. Both the multiquadric and the inverse multiquadric require a value for the 

parameter c to be set before they can be used; there are, at the time of writing, no hard-and- 

fast rules as to the optimum value of c in order to balance accuracy with conditioning.

It has been shown (Madych 1992) that multiquadric interpolation becomes more accurate 

as c increases — however, as c gets larger the function flattens out”, which leads to ill- 

conditioning. Some headway has been made, by Kansa & Hon (2000) for example, in 

attempts to circumvent this problem, although in many applications, trial and error has 

been used to determine the “optimal” value for c (Fasshauer 1997). In our setting, for 

simplicity we choose to set c — h.



Figures 5.3 and 5.4 show, respectively, the numerical solution at time T  for the inverse 

multiquadric and multiquadric at two different resolutions (|.A| =  1681 and |.A| =  6561, 

respectively). In both cases, the coarser grid (seen in Figures 5.3(a) and 5.4(a)) displays

the case of the finer grid (Figures 5.3(b) and 5.4(b)).

The method was also tested using a radial basis function from the family known as 

Matem functions. These are, it seems, less frequently-used basis functions, but it has 

been demonstrated by Beatson & Mouat (2002) that they can prove more effective than 

multiquadrics, for example, at tackling partial differential equation problems.

D efinition 5.5.2 (Matern family of radial basis function). The Matern family is given by

where K v is a modified Bessel function of order 1/ > 0 (Wendland 2005, Definition 5.10) 

and c > 0 .

For v =  n € 2L+, (5.5.1) simplifies to

R em ark 5.5.3. It can be shown by appealing to Fourier transform arguments that the 

Matem family of radial basis functions are strictly positive-definite; essentially, Matem 

functions are the Fourier transforms of inverse multiquadrics. Rudin (1991, Theorem 7.7) 

and Wendland (2005, Theorems 6.11 and 6.13) detail the salient results; see also (Beatson 

& Bui 2003) and the references cited therein.

some oscillatory artifacts. It is clear tha t these artificial oscillations reduce significantly in

(5.5.1)

where for any m  € 2Z+,

1 m =  0 ,

m " — < m  • (m — 2) • • • 4 • 2, 0 ^  m  even,

m • (m — 2) • • • 3 • 1, m  odd.
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(a) 1681 regularly-spaced points.

(b) 6561 regularly-spaced points.

Figure 5.3: Numerical solution for the shear flow problem using the inverse multiquadric
radial basis function with A t  =  15 on the domain [0,24000] x [—3400,3400].
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(a) 1681 regularly-spaced points.

(b) 6561 regularly-spaced points.

Figure 5.4: Numerical solution for the shear flow problem using the multiquadric radial
basis function with A t = 15 on the domain [0,24000] x [—3400,3400].
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For 1/ =  9/2 (that is, n =  4),

<t>4+1 (r) =  (1 +  cr +  3c2r 2/7  +  c4r 4/105) exp(—cr),

and it is this member of the family with which we performed our numerics.

Less appears to be known about the optimum values of the parameter c for Materns 

functions than for (inverse) multiquadrics, although as c decreases the conditioning of the 

interpolation matrix increases (Beatson & Mouat 2002). Mirroring our approach for the 

multiquadrics, we set c = 1/h , although with mixed success — using this basis function, the 

scheme appears to be particularly sensitive to the relationship between the fill distance h 

and the time-step At, as well as the value of c. We can see in Figure 5.5 however, that for 

certain values of h and At, the Matern function performs comparably to the previously-used 

basis functions.

Figure 5.5.1 displays more clearly the dramatic reduction in oscillatory artifacts as the 

resolution of A  is increased, whichever of the three types of basis function that we tested 

is being used. An appropriate use of adaptivity on the placement of the nodes would 

significantly reduce these oscillations further, and warrants further study. We note however 

that in all cases displayed in Figure 5.5.1, the superfluous oscillations are no greater than 

10-4  in modulus.

R em ark  5.5.4. The reader may be questioning why the polyharmonic splines, which were 

used to great effect in the previous chapter, have not been tested here: the problem lies in 

the double-application of the Laplacian operator. As noted at the end of Section 2.8.1, the 

basis function used for Hermite-Birkhoff interpolation must permit two applications of the 

functionals \ x, x € A . Here, for x ,y  € A \,

-  2eA t(A $)(x ,y) + e2A t2{A2<b){x,y).

In the case of the polyharmonic spline, where for even dimensions 4>(x, y) =  \x — 

y\2k~dln\x — y\ and for odd dimensions $ (x ,y)  =  \x — y\2k~d, we must choose k large
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(a) 1681 regularly-spaced points.

(b) 6561 regularly-spaced points.

Figure 5.5: Numerical solution for the shear flow problem using the Matern radial basis
function with v — 9 /2 and A t = 120 on the domain [0,24000] x [-3400,3400].
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( a )  1 6 8 1  r e g u l a r l y - s p a c e d  p o i n t s  u s i n g  t h e  i n v e r s e  m u l t i q u a d r i c .

A -------------- 1----------------------1______________i . i______________i_________ C __ i______________I_____________ L

X

( b )  6 5 6 1  r e g u l a r l y - s p a c e d  p o i n t s  u s i n g  t h e  i n v e r s e  m u l t i q u a d r i c .

X

( c )  1 6 8 1  r e g u l a r l y - s p a c e d  p o i n t s  u s i n g  t h e  m u l t i q u a d r i c .

____i______ i______ i______ i--------- 1--------- 1--------- 1-----
X

( d )  6 5 6 1  r e g u l a r l y - s p a c e d  p o i n t s  u s i n g  t h e  m u l t i q u a d r i c .

( e )  6 5 6 1  r e g u l a r l y - s p a c e d  p o i n t s  u s i n g  t h e  M a t e r n ,  v  =  9 / 2 .

Figure 5.6: Contour plots of the numerical solution to the shear flow problem at T  — 
9600, with A t  =  15 in all but the final plot, where A t  =  120, on the domain [0,24000] x 
[-3400,3400].
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enough so that A24> does not become discontinuous or vanish — fo r  example, fo r  d =  2 we 

require at least k =  4 — which can result in  a badly-scaled interpolation matrix.

Preconditioning o f the m atrix  — that is, performing preprocessing in  order to improve its 

conditioning — may allow the successful use o f polyharmonic splines with this scheme, and 

we feel this deserves fu rthe r investigation as this class o f basis function has the strength of 

requiring no additional parameters to be set.

C onditioning

As we saw in Section 2.7.1, the conditioning of the standard interpolation matrix is linked 

to the condition number of the matrix, and this is also the case with the Hermite-Birkhoff 

interpolation that our method uses.

The interpolation matrix is of the form

' A m  a ( P ) \  

v MP)T o )  '

where A ^)A =  (Aj(Al($ (x ,y )))a,beA € R nxn, and A(P) =  (Aa(ps))ae.A,i<s<*, given

by (5.2.3) and span-tpa}^ =  it is the condition number of with which we are

concerned. Table 5.3 displays the condition numbers for the previously-described experi

ment using each of the three basis functions we tested, and suggest that we may like to seek 

to improve the conditioning of the method via preconditioning or with further experiments 

on the parameter c of each basis function.

5.5.2 Experim ent 2: R otating cylinder w ith small diffusion coefficient

For this experiment we return to the advection-type rotating cylinder problem that we met 

in Chapter 4, Section 4.2, but on this occasion we treat the problem as advection-diffusion 

by setting e =  1.0 x 10-8  and applying our new method.

As before, a time-step of At =  0.01 was used and the final time was set to t ~ T ~  0.5, 

corresponding to one full revolution by the cylinder. Figures 5.7 and 5.8 display cut-
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Nodes

Basis function
Multiquadric, 

ff)(r) =  (h2 +  r 2) 1/ 2
Inverse multiquadric, 
(f>(r) =  (h2 -1- r 2)-1 / 2

Matern,
0(r) =  (l +  r /h  +  r 2/3h2)e(- r / /l)

cond(i4^tA) cond(A*tA) cond(A^iA)
441 1.285e+6 1.285e+6 6.095e+10
1681 1.246e+7 1.246e+7 1.264e+ll
3721 6.392e+7 6.302e+7 3.653e+ll
6561 1.990e+8 1.990e+8 9.709e+ll

Table 5.3: Condition numbers for the shear flow problem Hermite-Birkhoff interpolation 
matrix (or sub-matrix) for gridded interpolation points with At =  15.

throughs of the numerical and (approximate) analytical solutions at the final time using 

the inverse multiquadric and the multiquadric, respectively. In both cases the basis function 

parameter c was set to h. The same experiment was carried out by Houston (1996, Section 

5 .4 .2) using an adaptive Lagrange-Galerkin finite element method; comparing the profiles 

shown in Houston (1996, Fig. 5:9) with our own results, it is clear that, although the 

localised oscillations that can be seen around the base and top of the cylinder could surely 

be improved with adaptivity, for example, the overall profile of the numerical solution not 

only matches that of the analytical very well, but further demonstrates that this new method 

is competitive with existing methods.
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( a )  x  =  0 . 2 5  a n d  0  <  y  <  1  o n  a  ( b )

r e g u l a r l y - s p a c e d  g r i d  o f  1 6 8 1  p o i n t s ,  r e g u l a r l y - s p a c e d  g r i d  o f  1 6 8 1  p o i n t s .

a *  • 

M  • 

0.4 • 

"

I 1 .

1 .

( c )  x  =  0 . 2 5  a n d  0  <  y  <  1  o n  a  ( d )  y  =  0 . 5  a n d  0  <  x  <  1 o n  a  

r e g u l a r l y - s p a c e d  g r i d  o f  6 5 6 1  p o i n t s ,  r e g u l a r l y - s p a c e d  g r i d  o f  6 5 6 1  p o i n t s .

Figure 5.7: Cut-throughs of the numerical and analytical solutions to the advection-diffusion 
rotating cylinder problem with At =  0.01 at t =  T  =  0.5 using the inverse multiquadric 
basis function.

•o

( a )  x  =  0 . 2 5 ,  0  <  y  <  1 .  (b) y =  0 . 5 ,  0  <  x  <  1 .

Figure 5.8: Cross-sections of numerical and analytical solutions for rotating cylinder prob
lem with At =  0.01 at t = T  =  0.5, using the multiquadric basis function on a regularly- 
space grid of 6561 points.
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Chapter 6

Conclusions and Future Work

6.1 Introduction

In this chapter we summarise the. results presented in this thesis, and discuss the scope for 

future developments of both the advection scheme analysed and tested in Chapters 3 and 4, 

respectively, and the advection-diffusion scheme introduced and tested in Chapter 5.

6.2 C onclusions

The focus of this thesis has been the marrying of the interpolatory power of radial basis 

functions with the semi-Lagrangian approach employed for the numerical approximation of 

advection-diffusion problems. In particular, we have proved a priori error estimates for the 

numerical scheme of Behrens & Iske (2002), which as far as we know is the first proof of 

convergence for this class of numerical methods.

We firstly introduced the concept of radial basis function interpolation in Chapter 2. 

This provided solid theoretical grounding for the global interpolation problem, including 

error estimates for polyharmonic splines, before proving results for local interpolation by 

poly harmonic splines: the stability of the local interpolation operator in the special case 

of two-dimensional thin-plate splines (Theorem 2.7.5) and in the general multi-dimensional 

case (Theorem 2.7.7), followed by the essential local error estimate result of Theorem 2.7.9.

120



The discussion was extended to consider the generalised interpolation problem of data 

prescribed by functionals as opposed to function values; Theorem 2.8.2 and, in particular, 

Theorem 2.8.6, suggest tha t radial basis functions could be employed for the numerical 

solution of linear partial differential equation problems.

The work initiated in Chapter 3 derived a priori error estimates for the numerical 

schemes (3.1.9) and (3.1.10), which is one of the central achievements of this thesis. The 

stability bounds, Theorems 2.7.5 and 2.7.7, were essential ingredients of the latter result.

The numerical advection scheme was validated in a series of experiments described in 

Chapter 4, which showed that the scheme can perform better than the analysis would 

predict even for “rough” solutions, providing some motivation for extending the analysis to 

encompass functions that do not possess at least C1-regularity.

Chapter 5 extended the discussion to advection-diffusion problems, beginning with an 

outline of the advantages radial basis functions bring to this arena, followed by a brief 

description of some existing numerical advection-diffusion schemes based on interpolation 

with radial basis functions. Taking the lead from the work of Chapter 3, we proceeded to 

describe, in Sections 5.1 and 5.2, a new semi-Lagrangian radial basis function method for 

advection-diffusion problems, based on the Hermite-Birkhoff interpolation of Section 2.8.

In Section 5.3, the semi-discrete numerical scheme (5.1.2) was analysed in an analogous 

manner to the advection scheme (3.1.9), the result of which is summarised in Lemma 5.3.1. 

Section 5.4 describes issues pertaining to the analysis of the fully-discrete scheme (5.2.1).

Finally in this chapter, we validated the scheme with two numerical experiments: firstly, 

a shear flow problem detailed in Section 5.5.1, for which an analytical solution is available, 

using three different radial basis functions (inverse multiquadric, multiquadric, and Matern) 

and describing the issues surrounding the possible use of polyharmonic splines with this 

scheme. The conditioning of the matrix for the scheme was investigated in the context of 

this problem by examining the condition numbers of the interpolation matrix.

For the second numerical experiment we returned to the rotating cylinder problem of 

Section 4.2, but with a small diffusion coefficient added in order to apply the new scheme 

using both the inverse multiquadric and the multiquadric basis functions.
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6.3 Future work

In this section we outline possible directions in which further study could be carried out, 

based on the work contained in this thesis.

6.3 .1  A n alysis  o f  th e  lin ear  ad vection  schem e

The main result of Chapter 3, Theorem 3.2.2, proves convergence of the numerical scheme 

(3.1.10) provided that the solution u is of at least C'1-regularity in space. In order to show 

convergence for a wider class of functions, it would be necessary to relax this restriction 

whilst still retaining control of the interpolation error. We have seen that the difference 

between the analytical and numerical solutions can be written as follows (cf. (3 .4 .1)):

|u (x ,tn+1) -  uAt>h(x ,tn+1)I < Iu(y,tn) -  u (y ,tn)\

+  K y ,tn) +  (Jvu{  • , tn))(y)\

+  |T^(u( •, tn) -  uAtth( •, tn))(y)|
ptn+1
/ f ( X ( x , tn+1’,t) ,t)d t  -  A tf(x )

J tn
+

<tn

< LuLpA tp+1 

+  M  y ,tn) +  (2Vu( • , tn))(y)\

+ 12v(u( • , tn) -  UAt,h( -, n̂))(y)l 

+  Cf}x,n+lA t2,

where the coefficients and constants axe as in Lemma 3.2.1 and, as before, x  6  A, y = 

X (x ,tn+1',tn) is the upstream point of x, and y is the numerical approximation to y.

Thus a bound is required on the second and third terms on the right hand side. Naturally 

one could choose from the plethora of radial basis function error estimates (see the books of 

Buhmann (2003), Cheney & Light (2000) and Wendland (2005), for example), and in our 

analysis we opted to utilise explicitly the smoothness of the underlying solution u, assuming
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it possessed at least C 1-regularity. But the less we can assume about the regularity of the 

underlying solution, the better. Brownlee & Light (2004) have already taken the first steps 

in proving error estimates for interpolation of rough functions, by providing bounds on 

the error when the interpoland lies outside the native space of the interpolant, in the case 

of interpolation by polyharmonic splines. The incorporation of their results would be a 

significant step forward in the analysis of schemes of this class, as would similar bounds 

for functions outside the native spaces of the other commonly-used radial basis functions 

such as the multiquadrics and Gaussians (it is recognised that the latter basis function in 

particular does not enjoy a particularly rich native space).

However, it is clear that if such results are to be utilised, the stability of the interpolation 

operator, seen in the third term above, is of central importance to this endeavour. Based on 

our stability result for the thin-plate spline in two dimensions, Theorem 2.7.5, we assumed 

the associated constant to be of size 1 +  O(At) in general, as it is via this term that we 

telescope the bound back to t =  tQ. Proof that the constant is indeed of the assumed size 

in the case of interpolation via poly harmonic splines would validate this assumption.

The a posteriori error analysis for this scheme is also a possible avenue for further 

research, which would involve firstly rewriting the scheme in a variational setting.

6.3 .2  T h e advection-d iffusion  schem e

The numerical advection-diffusion scheme defined by (5.2.1), (5.2.2) and (5.2.5) has many 

important applications, in particular to problems of high dimension that are common in fi

nancial applications, and polymeric flows, for example. In these latter problems, the Fokker- 

Planck equation is coupled with the incompressible Navier-Stokes equations. For treating 

the lower-dimensional Navier-Stokes problem, finite element methods have a proven record 

of accuracy and stability (Girault & Raviart 1986), whereas for the higher-dimensional 

Fokker-Planck component, the strengths of radial basis functions could be called into play 

via our mesh-less numerical scheme, resulting in combination of these two numerical meth

ods.
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In this view, improvements to the efficiency and accuracy of our scheme would be an 

important direction to consider, and there are a variety of possibilities: the areas of pre

conditioning of the interpolation matrix and localising the problem (or decomposing the 

computational domain) would both induce greater efficiency on the scheme if it can be 

demonstrated that they can be applied effectively— see (Beatson & Light 1997, Beatson, 

Light & Billings 2000, Mateescu, Ribbens & Watson 2003) for possible starting-points. 

From a numerical-accuracy perspective, sensible adaptivity of the point cloud — placing 

more nodes in regions of steep gradient, for example, or areas where the solution is more 

complex— would be of great benefit, and it is but for the constraints of time that we were 

not able to include such a step ourselves in the testing of the scheme.

As noted in Remark 5.5.1 and the comments following Remark 5.5.3, the use of (inverse) 

multiquadrics and Matern functions requires careful control or selection of the parameter c; 

for the shear flow experiment in particular, multiquadrics and Matern functions displayed 

promising results. Polyharmonic splines require no additional parameters to be set, and 

this strength together with the results of Brownlee & Light (2004) described above provide 

justification for further investigation into their application in this scheme.

When using globally-supported radial basis functions such as those just mentioned, the 

interpolation matrices of the scheme are full, so it may be worth testing the effectiveness 

of the compactly supported basis functions of Wendland (2005, Chapter 9). Continuous 

compactly-supported functions enjoy the property that, if they are conditionally positive- 

definite of order m, then m =  0 — that is, they are positive-definite. But it is well known 

that there exists a trade-off between the accuracy of an interpolant and the conditioning of 

the matrix (the so-called uncertainty principle coined by Schaback (1995)), so whilst the 

compactly-supported functions may generate sparser matrices than their globally-supported 

cousins, in order to maintain a required degree of accuracy it is necessary to keep the support 

fixed as the fill distance tends to zero, which will obviously affect the conditioning.

Aside from these computational-efficiency-focussed directions there are of course the a 

priori and a posteriori error analyses of the scheme, both of which are yet to be attempted

124



directly and, as fax as is known, are not easy consequences of work already in the established 

literature. Section 5.4 described some issues concerning the analysis of this scheme; to this 

we add that, similarly to the advection case, error estimates for Hermite (or Hermite- 

Birkhoff) interpolation of functions that do not lie in the native space of the interpolant 

could be of considerable advantage in this endeavour.
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Appendix A

Nearest Neighbour Algorithm s

In this appendix we enter into a brief discussion of nearest neighbour algorithms in the 

context of the analysis of the linear advection scheme presented in Chapter 3; whilst the 

details are not vital as far as our analysis is concerned, the process is of crucial importance 

when implementing the scheme, for the choice of a slow nearest neighbour algorithm could 

seriously inhibit the overall computational efficiency of the method.

The size of the neighbour set is an important choice, independent of the method used 

to determine its members. As we saw in Chapter 4, choosing a large set would increase the 

accuracy of the interpolant which determines the value of the solution at y, but this adds 

to the computational expense of the scheme, as each interpolatory step is solved for a larger 

interpolation matrix. On the other hand, too small a set of neighbours would adversely 

affect the error of the interpolant. For our purposes the choice of \J\f(x)\ is left somewhat 

arbitrary, but we assume it is fixed over all x G H for all time.

Behrens & Iske (2002) provide one possible method for determining the set of nearest 

neighbours. Firstly, the nodes of S are used to construct a triangulation of fi. Strictly 

speaking it is y, the numerical approximation, to which we should be determining the nearest 

neighbours, but without loss of generality we can consider y =  X(x,  tn+l\tn). Locate the 

triangle T  € ST containing y, and let M(x)  =  (Jv^yT where Vt  is the set of three vertices 

of the triangle T, and for any vertex i; G ^  is the vertex set of its cell.
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An alternative method has been described by Mielikainen (n.d.), which has the strength 

of being exhaustive whilst being significantly faster than a naive “brute force” approach.

Consider a set S =  { x \ , . . .  , xn }  C and a point y € IIId, and suppose we wish to 

find the nearest t  neighbouring points. The brute force method would be to compute the 

distances \y — Xi\ for i =  1, . . . ,  N,  sort in ascending order and pick the first i  elements. 

Now suppose, as in our advection algorithm, we need to find the nearest neighbours from 

E for not just one point, but many— say, all members of {2/1, . . .  , 2/m} for some M  not 

necessarily equal to N.  For each j  =  1, . . .  , M  we would need to compute all \yj — xt\,

i — 1, . . . ,  N . Clearly this is highly inefficient and thus finding a fast algorithm is crucial to

the performance of our scheme.

A .0.1 Fast exh au stive  nearest neighbour algorithm

In order to speed up the process, we perform some preprocessing o n S  =  {x \ , . . . ,  x n }. Let 

D be the N  x N  matrix whose entries are given by

D{i,j)  =  |Xi -  xj |

for i , j  =  1 , . . . , iV.  That is, D is the matrix of all distances between the points in E. 

Since this matrix is symmetric with zeros along the diagonal, we need only perform *

calculations. For each yj we now proceed as follows.

Let nn  be a I x 3 matrix whose rows are given by

n n (i, :) =  [i,Xi, \ y j  -  x*|]

for i =  1, . . . , / .  The second column of this matrix is our t -tuple of candidate nearest 

neighbours, in the first instance comprising the first I  elements in E; obviously it is highly 

unlikely this vector will be the correct set of nearest neighbours to 2/7 , so we need to update 

it as described in Algorithm 1.
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A lgorithm  1 Update the candidate nearest-neighbour matrix nn.
Require: y E fftd, D E H NxN, S = {xi , . . . , xn}  

for i = 1 : £ do 
nn(i, :) =  [hXi,\y-Xi\]  

end for
Sort nn in ascending order of nn(:, 3).
Nn =  nn{£, 1)
Dn =  nn(^, 3) 
for i = £ +1  : N  do  

d e =  |- D ( i ,  -ATn) — - ^ n |  

if de <  Dn then  
da =  \ V j ~ X i \  

if d a <  Dn then  
nn(£, :) =  [ i , X i , d a ]

Sort the rows of nn  in ascending order of column 3 
Nn = nn (£, 1)
Dn =  nn(£, 3) 

end if 
end if 

end for 
return nn

One may convince oneself this is faster and cheaper than brute force because we perform 

simple look-ups (of the values stored in D) and subtractions, and only perform the more 

expensive norm calculation when we suspect we have a better candidate. The matrix D 

can be stored and used for as long as the set S remains unchanged — if there is no adapting 

of the nodes, D need only be computed once.

A .0 .2  C o m p ariso n  o f fa s t fu ll-search  eq u iv a len t a lg o r ith m  w ith  b ru te  

fo rce se a rc h

We performed a simple comparison to demonstrate that, although the algorithm just de

scribed is exhaustive, it performs much better than simple brute force for larger values of 

|E| in terms of computational speed. For each point x E {xi , . . .  ,xjv} C 1R2, we find the 

nearest 5 neighbours (treating S as a periodic set). Table A .l displays the CPU times for 

each algorithm against N; these results are plotted in Figure A.I. For a fair comparison 

we have included the pre-processing time it takes to generate the matrix D , hence for small

sets of points, brute force out-performs the Mielikainen method.
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Moreover, it is clear that if, alternatively, S is contained in some ball B  c  3Rd and x C B  

with |x | |S|, the algorithm will perform at a much greater rate of efficiency than brute

force at finding the nearest neighbours from S to each point in x*

A .0.3 A ltern ative  nearest neighbour algorithm s

There are several popular data structures that one may impose on the point cloud S in 

order to be able to quickly generate nearest-neighbour sets, and the reader is directed to 

(Wendland 2005, Chapter 14), and the references cited therein, for further discussion.
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N Tbf Tm
8 0.12 0.13
16 0.12 0.24
32 0.34 0.43
64 0.97 1.26
128 3.75 3.85
256 14.81 12.29
512 59.22 41.14
1024 235.45 143.94
2048 939.04 522.30
4096 3754.39 1980.01

Table A.l: CPU time for the brute force algorithm (Tb f ) and the method of Mielikainen 
{Tm ).
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Figure A.l: Plot of the data in Table A.l, showing that Mielikainen’s algorithm rapidly 
out-performs the brute-force method.
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