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Abstract

Reasoning about atoms (names) is difficult. The last decade has seen the development of numerous novel
techniques. For equational reasoning, Clouston and Pitts introduced Nominal Equational Logic (NEL),
which provides judgements of equality and freshness of atoms. Just as Equational Logic (EL) can be
enriched with function types to yield the lambda-calculus (LC), we introduce NLC by enriching NEL with
(atom-dependent) function types and abstraction types. We establish meta-theoretic properties of NLC;
define NFM-cartesian closed categories, hence a categorical semantics for NLC; and prove soundness &
completeness by way of NLC-classifying categories. A corollary of these results is that NLC is an internal
language for NFM-cccs. A key feature of NLC is that it provides a novel way of encoding freshness via
dependent types, and a new vehicle for studying the interaction of freshness and higher order types.

Keywords: category theory, dependent types, FM-sets, internal language, nominal logic, semantics, type
theory

1 Introduction

(NEL) was introduced by Clouston and Pitts in [8] (closely related to Nominal

Algebra introduced by Gabbay and Mathijssen [16]). Space forces us to assume

familiarity with NEL, but here is a quick overview: NEL extends equational logic

EL [10,24] (where types denote ZF-sets). NEL variables are thought of as ele-

ments of FM-sets (roughly speaking, sets whose elements have a finite support of

atoms/(names) in the sense of Gabbay and Pitts [14] and for which one can make

assertions about the freshness of atoms). The motivation for NEL is to provide a

system for formal equational reasoning combined with reasoning about the fresh-

ness of atoms—the latter an important topic of study in Programming Semantics.

To this end one seeks a theory with a sound and complete semantics. The theory

must necessarily capture permutation actions, finite support, and freshness. As

such, one might expect to be able to make judgements a # M , asserting atom a is
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fresh for M , as well as M = M ′. Further, we need to be able to assert hypotheses

a # x about variables x that may occur (freely) in M . Indeed in NEL one sees

a1 # x1 : s1, ..., an # xn : sn �# a # M : s capturing the intuition that if sets of

atoms ai are fresh for (the interpretation of) the xi, then a is fresh forM . One might

also work instead with judgements a1 # x1 : s1, ..., an # xn : sn �E M : s and then

codify a # M by way of an equation, since freshness can be defined equationally [6]

(under suitable conditions). This is the approach we take.

Clouston has shown in [5,7] that the category FMSet provides a sound and

complete semantics for NEL. Further he defines the notion of an FM-category,

axiomatising the underlying structure of FMSet , and shows that such categories

yield a sound semantics. He shows that a NEL theory has a classifying FM-category

in which there is a generic model [10,31]—hence his semantics is also complete.

Indeed, Clouston shows that there is a correspondence between NEL theories and

FM-categories establishing that NEL is an internal language for FM-categories.

Lambek [21] showed that theories in the λ-calculus correspond to cartesian closed

categories (a proof using functional completeness, with Scott, appears in [22]; see

also [10]).

A natural question to ask is whether there is a notion of nominal λ-calculus

(NLC) that corresponds to some form of “cartesian closed FM-category”. More-

over, if there is, we can test the robustness of both NEL, and the methodology of

categorical logical relations, by attempting to show that NLC is conservative over

NEL using gluing. To do this we need to develop NLC and a suitable categorical

correspondence, which we do in this paper.

Before we begin the task at hand, we justify our overall approach. At the

conceptual level, this paper concerns itself with the fascinating notion of corre-

spondences between category theory and type theory. This arises from Lawvere’s

seminal work [23]. There are two approaches that one could take in formulating

such correspondences. (i) is to demonstrate that models of a theory Th in a cate-

gory C (and maps between models), Mod(Th, C), correspond to structure preserving

functors (and natural transformations between functors), SPF (Cl(Th), C). (ii) is

to show the existence of a monad TTh for which Mod(Th, C) corresponds to the

(Eilenberg-Moore) algebras of TTh . Both approaches have their merits. For some

deep insights into the heart of the matter in the case of theories in equational logic

consult Hyland and Power’s overview [19]. An elegant approach via monads, pro-

viding a very general framework, is established in the work of Berger, Mèlliés and

Weber [2] and Mèlliés [26]. However, for computer science and (foundations of)

program semantics, where one may well be seeking a rigorously specified syntactic

type theory capable of being formalised, approach (i) seems to be the path to follow

(please see Section 7 for additional commentary). In particular, we want to estab-

lish that any such theory is indeed the internal language of a suitable category with

structure, with the usual adjunction Cl � Th.

Remark 1.1 The category central to this work is FMSet [5,15]. The category of

nominal sets FMNom is relevant too: for a very clear introduction see [30]. While

the properties of FMSet are less well known than FMNom, both are toposes T .
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As such each is equipped with a Higher Order Logic internal language ThT . Thus

one might ask whether one could automatically capture the notion of FM-ccc by

internalisation of cartesian closure (and freshness) in T ; and indeed “extract” NLC

from the HOL ThT , perhaps by extending ThT with additional axioms. It is not

clear to us that this can be done, or, if it can, whether it it can circumvent the detail

in this paper bearing in mind that our aim from the “computer science” perspective

is to produce a fully formalised type theory. See Section 7 for more discussion.

We build directly on [7], taking approach (i). We have tried to keep this paper

as self-contained as possible, but cannot include all of the definitions and lemmas

for lack of space. In Section 2 we specify the types and terms of NLC without

abstraction. We define permutation actions, capture avoiding substitution, and α-

equivalence. We prove results about the terms which we will use when proving

soundness and completeness. In Section 3 we specify the NLC type system and

define NLC equational theories, without abstraction. We again prove key results

for soundness and completeness. In Section 4 we introduce FM-cartesian closed

categories, showing they soundly model NLC without abstraction. In Section 5 we

add abstraction and concretion to NLC and show that our semantics is sound and

complete for NFM-cccs, which are FM-cccs with additional structure that models

abstraction and concretion. In Section 6 we show that NFM-cccs are syntax free

presentations of NLC theories. In Section 7 we discuss applications and further

work. Here are the main contributions:

• Higher order functions that naturally extend NEL are partial in the sense that

their arguments must satisfy freshness conditions. We believe that this is the

first paper to posit a move to a “types dependent on atoms” type theory in order

to capture, in a novel type system, this partiality of higher order functions (see

page 4 for details). NLC allows us to examine the combination of the freshness

relation and higher types in a new light.

• Dependent types enable us to to specify name abstraction and concretion. The

operation of concretion is inherently partial, and indeed cannot be captured as

a NEL theory—see Clouston [4]. However NLC dependent types do provide a

mechanizm to capture this partiality.

• In [7] the type system for terms is separate from the system for freshness as-

sertions, (a two part type system). Moreover typing judgements predicated on

freshness assertions are not first class citizens (but simply reflexive equations). We

introduce rules for a single first class type system. This is not only necessitated

by the dependent types, but significantly simplifies and unifies the judgements

forms in [7].

• A clean formulation of a categorical semantics of NLC. The semantics is consid-

erably complicated by both type dependency on atoms, and the encapsulation

of freshness judgements by equational axioms. Our single first class type system

simplifies our soundness proof from what it would otherwise have been.

• A simplification of Clouston’s meta-theory [7]. We show that all the key properties

of (syntactic) permutation actions we require can be defined cleanly on raw terms,
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prior to type-checking. This material is mainly in Section 2.

• A detailed proof of an “approach (i)” category theory type theory correspon-

dence, yielding NLC theories as the internal language of FM-cccs, and hence

completeness. We pay very careful attention to details that are significant for

implementations (see for example the proof on page 11 of Lemma 3.3).

We will use the following notation: Let A be the set of atoms (names). We write

a or similar for typical finite subsets {a1, . . . , ak} of A. We write π or similar for any

permutation on A with finite domain. Perm denotes the set of such permutations

(equivalently those generated by transpositions (a b)). The composition of π and

π′, with π′ acting first, is denoted by π ◦ π′ or ππ′. If X = (X, ·) is an FM-set, and

x ∈ X, we write supp(x) for the support of x, and a # x to denote that each atom

in a is not in supp(x).

2 The Meta-Theory of NLC Terms without Abstraction

Remark 2.1 Until Section 5 we work with a subset of NLC. This will allow us

to fully motivate the use of a form of dependent typing in order to formulate our

extension of NEL with higher order functions. Abstraction and concretion is omitted

until later in the paper.

In NEL one works with a nominal set of types 2 . In NLC we work with a nominal

set of ground types, and generate the function types. NLC extends NEL terms with

function abstractions and applications. An abstraction takes the form λax : s.M

and we explain the intended semantic interpretation. In NEL we may have a # x :

s �E M : s ′. If we want to capture the “mapping” x �→ M as an abstraction, we

could consider λ x : s.M . However, if we apply λ x : s.M to a term N : s we also

need to ensure that a # N . We might codify the set a in the abstraction λax : s.M .

So far so good. But what about types? In NEL, the FM-set semantics of a # x : s

is specified by requiring that [[x]] ∈ [[s]]#a def
= {e ∈ [[s]] | a # e}. So one might

wonder if sa could be be a suitable type for the source of our abstraction, with a

compositional semantics [[sa]]
def
= [[s]]#a. We can then consider the type sa ⇒ s′ for

our abstraction, hoping that if our semantics is defined in a compositional way, it

will have all of the relevant equivariance and categorical properties to yield a sound

and complete semantics. This abstraction typing is deceptively simple: the type

and equation system that results is intuitive, but quite complex to manipulate since

function types now depend on atoms.

NLC-Signatures, Types, and Raw Terms. We start with an analogue of the

notion of a signature for λ-calculus. A NLC-signature Sg is specified by

(i) GndSg , a nominal set of ground types. The set of types TypeSg is then

generated by the BNF grammar s ::= γ | sa ⇒ s where γ is any ground type.

Since each type s is a finite tree and GndSg is a nominal set, each s is finitely

2 In [7] “types” are called sorts. We use the word type since it better matches general usage in computer
science, and categorical type theory
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supported with the permutation action

π · γ def
= π ·GndSg

γ π · (sa ⇒ s′)
def
= (π · s)π·a ⇒ (π · s′)

and hence TypeSg is a nominal set of types.

(ii) A nominal set of (higher order function) constant symbols FunSg .

(iii) An equivariant typing function FunSg → TypeSg , which assigns to each con-

stant symbol c a type; we refer to a typing c : s.

Fixing a set Var
def
= {V1,V2,V3, . . .} of (ordered) variables, the raw NLC-terms

are specified by M := πx | c | λax : s.M | M M where πx is a suspension [8,7] of

any variable x ∈ Var . We refer to the set of raw terms for signature Sg by TermSg .

Variables may be free or bound (where all occurrences of x in any “subterm”

λax : s.M are bound).

Permutation Actions for Raw Terms. Recall [8,16] the two standard permu-

tation actions on Perm, namely conjugation (which is finitely supported) and left

multiplication (which is not). Clouston & Pitts and Gabbay & Mathijssen define

two permutation actions, called meta-level π ·M and object-level π ∗M [8,7], which

are syntactic analogues of the actions on Perm. In categorical type theory one

always works with terms in context. As such, a term M with a free variable x

is always regarded as a “function” x �→ M . The permutation action on functions

found in nominal and FM-sets is a (form of) conjugation action and the syntac-

tic analogue is π · M . However it is useful to work also with a simple action in

which π acts on M simply by acting recursively over the structure of a term: eg

π ∗ (τx)(τ ′y) = (π ∗ τx)(π ∗ τ ′y) = (πτx)(πτ ′y).
We define such actions for NLC. To do so, consider the recursive definition of

mappings (π,M) �→ π ∗ M and (π,M) �→ π · M in Table 1. Note that in order

to define the object-level permutation we first define a basic form of substitution

M [π−1x/x], on raw termsM . We call this a suspension-substitution. Informally,

free occurrences of x in M are replaced by π−1x. Formally, the recursive definition

is the expected one, where on suspensions we define (π′y)[π−1x/x]
def
= π′y if x 
= y

and (π′x)[π−1x/x]
def
= (π′π−1)x.

To show, in Proposition 2.3, that the mappings in Table 1 are permutation

actions, we need Lemma 2.2 which is proved by induction over M .

Lemma 2.2 (π ∗M)[π−1x/x] = π ∗ (M [π−1x/x]) for any raw M , where [π−1x/x]

indicates that x is replaced by π−1x.

Proposition 2.3 (Permutation Action Definitions)

• The mapping (π,M) �→ π ·M is a permutation action; we call it the meta-level

permutation action. It is finitely supported, so the set TermSg of raw NLC-

terms is a nominal set. The finite support of a raw term is specified recursively

where supp(πx)
def
= supp(π), supp(λax : s.M)

def
= a ∪ supp(s) ∪ supp(M) and

supp(M N)
def
= supp(M)∪ supp(M); and constants are finitely supported by defi-
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• π · π′x
def
= (ππ′π−1)x

• π · c def
= π ·FunSg

c

•
π · (λax : s.M)

def
=

λπ·ax : π · s.(π ·M)

• π · (M N)
def
= (π ·M) (π ·N)

Meta-Level

• π ∗ π′x
def
= (ππ′)x

• π ∗ c def
= π ·FunSg

c

•
π ∗ (λax : s.M)

def
=

λπ·ax : π · s.(π ∗ (M [π−1x/x]))

• π ∗ (MN)
def
= (π ∗M)(π ∗N)

Object-Level

Table 1
Permutation Actions for NLC

nition.

• The mapping (π,M) �→ π∗M is a permutation action; we call it the object-level

permutation action.

Capture Avoiding Substitution and α-Equivalence. We require simultaneous

capture-avoiding substitution of raw terms. This will be crucial for defining compo-

sition of morphisms in a classifying category–see Proposition 5.1. Since the high level

ideas of this paper can be read without recourse to complete detail, we just outline

our notation and the key ideas (our approach simplifies Clouston’s [7]). Substitut-

ing N1, . . . , Nn for free occurrences of the distinct variables x1, . . . , xn in the raw

term M yields another raw term, which we denote by M{N1, . . . , Nn/x1, . . . , xn}
or by M{Ni/xi}. The “usual” recursive definition for “ordinary” λ-terms (see, for

example, [18]) carries over to NLC apart from the base cases on suspensions where

we define

(πy){N1, . . . , Nn/x1, . . . , xn} =def πy (∀i)(xi 
= y)

(πy){N1, . . . , Nn/x1, . . . , xn} =def π ∗Ni0 (∃i)(xi = y) with xi0 = y

Note the critical use of the object-level permutation action. Note also the crucial

connection—used in many proofs—between suspension-substitutions and simulta-

neous substitution, which is easily proved by induction:

Lemma 2.4 For any term M we have M [π−1x/x] = M{π−1x/x}.

So far we have used structural equality on terms M = N . Since we wish to work

with capture avoiding substitution (to construct our classifying category) which

makes use of variable renaming, we have to replace = with α-equivalence ∼α. We use

two definitions of α-equivalence. One is founded on capture avoiding substitution;

the other on variable swapping. Each definition generates the same relation ∼α⊂
TermSg × TermSg (see [11]).

The first definition [18] takes ∼α to be the smallest equivalence relation closed

under the congruence rules (for application and abstraction terms) and the axiom

λax : s.M ∼α λax′ : s.M{x′/x} where x′ 
∈ var(M). The second definition is given
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(x ∈ Var π ∈ Perm)πx ∼α πx
M1 ∼α M ′

1 M2 ∼α M ′
2

M1M2 ∼α M ′
1M

′
2

(z x) •M1 ∼α (z y) •M2
(z 
∈ var(M1) ∪ var(M2))

λax : s.M1 ∼α λay : s.M1

Table 2
Alpha Equivalence by Variable Swapping

in terms of variable swapping [11,14]. If x, y ∈ Var then we define (x y) •M to be

M in which any occurrence of x is swapped with y (and vice-versa). Then we can

define ∼α by the rules in Table 2. It can easily be shown that ∼α is equivariant for

the permutation actions, that is M ∼α N implies π ·M ∼α π ·N and respectively

for the object level permutation action. From this well-defined permutation actions

on α-equivalence classes of terms are induced by way of the following definitions

π · [M ]α
def
= [π ·M ]α and π ∗ [M ]α

def
= [π ∗M ]α and moreover we can prove

Lemma 2.5 Capture avoiding substitution lifts to the set of α-equivalence classes

of terms, TermSg
/
∼α , a nominal set under the meta-level permutation action on

α-equivalence classes, with supp([M ]α) = supp(M).

Remark 2.6 We call [M ]α an expression. Having taken great care in defining

expressions [M ]α, we adopt the usual convention of writing just M . However, all

our proofs deal correctly with the intricacies that arise from variable re-naming to

avoid capture (see for example [28] (page 169) and [25]).

The next propositions are crucial for our main theorems, the first (∗ associates

with {/}) by induction on M , the second (∗ distributes over {/}) by direct calcula-

tion being a corollary of Proposition 2.8 and Lemma 2.7. The lemma expresses the

meta-level action in terms of the object-level action. In fact it is not only used to

prove properties of NLC but also, later on, our categorical semantics.

Lemma 2.7 (· in terms of ∗) For any term M and {x1, ..., xn} ⊆ Var with

fv(M) ⊆ {x1, ..., xn} we have π ·M = (π ∗M){π−1x1/x1, ..., π
−1xn/xn}.

Proof. Although the proof of this lemma is straightforward, since it is quite typical

we give full details of the proof by induction on the structure of term M of

(∀π)(∀{x1, . . . , xn})(fv(M) ⊆ {x1 . . . xn}
=⇒ π ·M = (π ∗M){π−1x1/x1, ..., π

−1xn/xn}

We assume Lemma 2.4 throughout.

SUSP: When M is τxi the result follows immediately by the definition of sub-

stitution and the permutation actions. CONST: Follows immediately. APP:

Straightforward.

LAM-ABS: Case M is λax : s.M ′ where fv(λax : s.M ′)
def
= fv(M ′) \ {x} ⊆

{x1 . . . xn}. We examine the case when x is not an xi; if x is an xi the details are
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not too dissimilar. So for the induction step fv(M ′) ⊆ {x, x1 . . . , xn}.

π · (λax : s.M ′)
def
= λπ·ax : π · s.π ·M ′

= λπ·ax : π · s.(π ∗M ′){π−1x/x,π−1xi/xi} (induction)

= λπ·ax : π · s.((π ∗M ′){π−1x/x}){π−1xi/xi} (x 
= xi)

= λπ·ax : π · s.(π ∗ (M ′{π−1x/x})){π−1xi/xi} (Lemma 2.2)

= (λπ·ax : π · s.π ∗ (M ′{π−1x/x})){π−1xi/xi} (x 
= xi so no capture)

def
= (π ∗ (λax : s.M ′)){π−1xi/xi}

�

For expressions [M ]α, distinct variables x1, . . . , xn, and expressions [N1]α, . . . ,

[Nn]α we have

Proposition 2.8 (π ∗ [M ]α){[N ′
i ]α/xi} = π ∗ ([M ]α{[N ′

i ]α/xi})
Proposition 2.9 π · (M{Ni/xi}) = (π ·M){(π · Ni)/xi} (Written using the con-

vention for α-equivalence classes, generally adopted from now on.)

3 NLC Typed Expressions and Equational Theories

We define NLC by specifying a type and equation system. The intuitions of NLC

and NEL are the same, but technicalities are quite different. In NEL, terms are

typed using environments Γ
def
= x1 : s1, . . . , xn : sn, just like ordinary equational

logic. The judgements either take the form Γ � M : s (�), or ∇ �E M ≈ M ′ : s
where ∇ = a1 # x1 : s1, ..., an # xn : sn records assumptions about freshness and

types. NEL judgements ∇ �E M : s are simply sugar for reflexive equations. The

type system (�) is entirely separate from the freshness system (in two parts)! We

found this slightly confusing. Indeed, with NLC we cannot separate the type system

in this way, since the types of abstractions depend directly on freshness assertions.

Thus the environments used in the type system must encode freshness assertions

(and cannot be of the form Γ)! Our typing judgements ∇ �E M : s are first class

citizens (in a single system). They are not abbreviations for reflexive equations.

This is not merely dabbling with unnecessary cosmetic idolatry: it simplifies the

presentation of our categorical semantics and is a key contribution.

Recall the formal notion of a freshness environment [7] (included below). We

can then define expressions, and equations, in context and finally present the NLC

type and equation systems.

A freshness environment, or just environment, is a finite partial function

∇ : Var → Pfin(A) ⊗ TypeSg with finite domain. By definition it maps each

x ∈ dom(∇) to a pair (a, s) where a is a finite set of atoms s ∈ TypeSg and

a # s. The set of environments EnvSg is a nominal set under the permutation

action (π · ∇)(x) = (π · a, π · s). We often write an environment ∇ as a1 # x1 :

s1, ..., an # xn : sn. For ∇,∇′, we write ∇ ≤ ∇′ if dom(∇) ⊆ dom(∇′) and for all

x ∈ dom(∇) we have pr1(∇(x)) ⊆ pr1(∇′(x)) and pr2(∇(x)) = pr2(∇′(x)).
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(SP) ∇, a # x : s �E πx : π · s

(C) ∇ �E c : s (c ∈ FunSg and c has Sg typing c : s)

(ABS)
∇, a # x : s �E M : s′

∇ �E λax : s.M : sa ⇒ s′

(AP)
∇ �E F : sa ⇒ s′ ∇ �E a # A : s

∇ �E F A : s′

(AE) ∇#a �E M : s

∇ �E M : s
(a # (∇,M)) (WEAK) ∇ �E M : s

∇′ �E M : s
(∇ ≤ ∇′)

(SUB)
∇′ �E ai # Ni : si ∇ �E M : s′

∇′ �E M{N1, . . . , Nn/x1, . . . , xn} : s′

In rule (SUB) ∇ def
= a1 # x1 : s1, ..., an # xn : sn and 1 ≤ i ≤ n

Table 3
NLC Typing Rules for a Given Th

• We define an expression-in-context as a judgement of the form ∇ �E M : s

where ∇ is a freshness environment, M is an α-equivalence class of NLC-terms

(an expression) and s is a type.

• An equation-in-context is a judgement of the form ∇ �E M ≈ M ′ : s where

∇ �E M : s and ∇ �E M ′ : s.

A NLC-theory Th is a pair (Sg ,Ax ), where Sg is a NLC-signature and Ax is a

collection of equations-in-context. We shall use Th to inductively define a subset

of expressions-in-context and equations-in-context. Any expression-in-context that

has a derivation is a typed expression; and any such equation-in-context is a

theorem. The set of typed expressions and theorems of a NLC-theory Th is the

least set of judgements containing the axioms of Th and closed under the rules in

Table 3 and Table 4. We indicate that any judgement J has a derivation in theory

Th by writing Th � J .

Remark 3.1 Justified by [6] we use the following abbreviation: for ∇ � M : s and

a ⊆ A (a # s), we write ∇#b def
= a1 ∪ b # x1 : s1, ..., an ∪ b # xn : sn and

∇ �E a # M : s
def
= ∇#b �E M ≈ (a b) ∗M : s.

In the transposition, a ∈ A
n is sugar for a tuple of the atoms in the set a and
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(REF) ∇ �E M : s

∇ �E M ≈ M : s
(SYM) ∇ �E M ≈ M ′ : s

∇ �E M ′ ≈ M : s

(TRANS) ∇ �E M ≈ M ′ : s ∇ �E M ′ ≈ M ′′ : s
∇ �E M ≈ M ′′ : s

(WEAK) ∇ �E M ≈ M ′ : s
∇′ �E M ≈ M ′ : s

(∇ ≤ ∇′)

(AE) ∇#a �E M ≈ M ′ : s
∇ �E M ≈ M ′ : s

(a # (∇,M,M ′))

(PERM)
∇ �E M : s

∇#ds(π,π′) �E π ∗M ≈ π′ ∗M : π · s
(ds(π, π′) # (∇,M))

(BF)
∇, a # x : s �E M : s′ ∇ �E a # N : s

∇ �E (λax : s.M) N ≈ M{N/x} : s′

(EF) ∇ �E M : sa ⇒ s′

∇ �E λax : s. (M x) ≈ M : sa ⇒ s′
(x /∈ fv(M))

(CF)
∇, a # x : s �E M ≈ M ′ : s′

∇ �E λax : s.M ≈ λax : s.M ′ : sa ⇒ s′

(CA)
∇ �E a # Ai : s ∇ �E F1 ≈ F2 : s

a ⇒ s′ ∇ �E A1 ≈ A2 : s
(i=1,2)

∇ �E F1 A1 ≈ F2 A2 : s
′

(SUB)

∇′ �E ai # N ′
i : si

∇′ �E ai # Ni : si ∇′ �E Ni ≈ N ′
i : si ∇ �E M ≈ M ′ : s′

∇′ �E M{N1, . . . , Nn/x1, . . . , xn} ≈ M ′{N ′
1, . . . , N

′
n/x1, . . . , xn} : s′

ds(π, π′) is the disagreement set: {a ∈ A | π(a) 
= π(a)}

In rule (SUB) ∇ def
= a1 # x1 : s1, ..., an # xn : sn and 1 ≤ i ≤ n

Table 4
NLC Equation Rules for a Given Th

b ∈ A
n is any/some fresh tuple of the same size such that b # (∇, a,M). If

Th � ∇ �E a # M : s then we may legitimately call the judgement a theorem, but

we will usually call it a freshness assertion.

The role that the judgements ∇ �E a # M : s play leads to a crucial difference
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between NEL and NLC. Consider the rule AP. Since F has type sa ⇒ s ′ then a

must be fresh for the argument A, formally encoded as ∇ �E a # A : s. Thus the

type system rules have equations-in-context as hypotheses, and the equation rules

have expressions-in-context as hypotheses. Thus theorems and typed expressions

are mutually inductively defined. Obviously this complicates our proofs, at least in

comparison to NEL, and leads to some subtleties which we explain in due course.

We have two more lemmas that are crucial for proving some important facts

about NLC. Lemma 3.2 is used in induction steps in which a binding variable in

an abstraction also occurs in the environment (of the abstraction): For an example

induction see the proof on page 11 of Lemma 3.3, and [28] (page 169) for a detailed

explanation of the problem. Lemma 3.3 is used in proving Proposition 3.4; the

proposition underpins our semantics and classifying category construction.

Lemma 3.2 (Variable Equivariance of Judgements) All typed expressions,

and all theorems (hence freshness assertions too), are equivariant under variable

swapping. More precisely, for any two distinct variables x, y, and where (x y) • −
denotes variable swapping (see page 7), we have

Th � ∇ �E M : s =⇒ Th � (x y) • ∇ �E (x y) •M : s

Th � ∇ �E M ≈ M ′ : s =⇒ Th � (x y) • ∇ �E (x y) •M ≈ (x y) •M ′ : s

Lemma 3.3 Th � ∇, a # x : s �E M : s ′ if and only if Th � ∇, π ·a # x : π ·s �E

M{π−1x/x} : s ′ and similarly for equations.

Proof. Since permutations are isomorphisms we only need to prove one direction

of the implication. We have to prove, by (mutual) induction over the rules in Table 3

and 4,

(∀Th � ∇′ �E [M ]α : s ′) [

(∀ ∇, a, π, x, s) (∇′ ≡ ∇, a # x : s

=⇒ Th � ∇, π · a # x : π · s �E [M{π−1x/x}]α : s ′)) ]

(∀Th � ∇′ �E [M ]α ≈ [M ′]α : s ′) [

(∀ ∇, a, π, x, s) (∇′ ≡ ∇, a # x : s

=⇒ Th � ∇, π · a # x : π · s �E [M{π−1x/x}]α ≈ [M ′{π−1x/x}]α : s ′)) ]

In the remainder of this example proof we concentrate only on illustrating the care

we take over dealing with proofs involving capture avoiding re-naming.

Rule (ABS) : Consider the following instance

∇′, b # y : t �E [N ]α : t′
ABS

∇′ �E [λb y : t.N ]α : tb ⇒ t′
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As an illustration of the proof, consider an (arbitrary) instantiation of

(∀ ∇, a, π, x, s) such that ∇′ ≡ ∇, a # y : s and y ≡ x. For Induction Property

Closure, since [(λby : t.N){π−1y/y}]α = [λby : t.N ]α, we have to prove that

∇, π · a # y : π · s �E [λby : t.N ]α : t′ (�)

We cannot immediately invert ABS since the binding y occurs in ∇′. Choosing

distinct y′ we have [λby : t.N ]α = [λby′ : t. (y′ y) •N ]α (†) so we may now invert

ABS to get

∇, a # y : s, b # y′ : t �E [(y′ y) •N ]α : t′

and hence by the variable equivariance of judgements, Lemma 3.2,

∇, a # y′ : s, b # y : t �E [N ]α : t′

Therefore by induction with (∀ ∇, a, π, x, s) locally instantiated to ∇, b # y :

t, a, π, y′, s we have

∇, π · a # y′ : π · s, b # y : t �E [N{π−1y′/y′}]α = [N ]α : t′

since y′ 
∈ var(N). Hence by Lemma 3.2 we have

∇, π · a # y : π · s, b # y′ : t �E [(y′ y) •N ]α : t′

and (�) follows from this using an instance of ABS, and (†). �

In order to define our categorical semantics, we will require Proposition 3.4 and

Proposition 3.5.

Proposition 3.4 (∗ preserves Typed Expressions and “Equalities”)

Given a theory Th,

Th � ∇ �E M : s implies Th � ∇ �E π ∗M : π · s
Th � ∇ �E M ≈ M ′ : s implies Th � ∇ �E π ∗M ≈ π ∗M ′ : π · s

Proposition 3.5 (Atom Equivariance of Judgements) Given a theory Th,

Th � ∇ �E M : s implies Th � π · ∇ �E π ·M : π · s
Th � ∇ �E M ≈ M ′ : s implies Th � π · ∇ �E π ·M ≈ π ·M ′ : π · s

4 A Sound Categorical Semantics

FM-Cartesian Closed Categories. Underlying intuition for FM-cccs starts by con-

sidering internal categories I in FMNom. Such structures, while necessary for

modelling NLC, are not sufficiently rich: to give meaning to NLC terms we must

encode permutation actions as morphisms—an additional requirement on I. We
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follow the “type (i) approach”: axiomatising I externally and equipping with per-

mutation morphisms, yields a category with finitely supported internal permutation

actions. We then obtain good notions of products and exponentials by stipulating

coherence conditions between these structures and the internal permutation action;

these are cartesian closed perm-categories. The (additional, external) axiomatisa-

tion of freshness properties yields FM-cccs. Further details of FM-categories are

in [7].

A category C has an internal permutation action if for each π ∈ Perm and

C ∈ ob C there is a C-arrow πC : C → π · C such that ιC is the identity idC and

(π′ ◦ π)C = π′
π·C ◦ πC , where π ·C is defined to be the codomain of πC . An internal

permutation action is finitely supported if every arrow f : C → D in C is finitely

supported with respect to the permutation action π · f def
= πD ◦ f ◦ (π−1)π·C . We

call a category with a finitely supported permutation action a perm-category. A

perm-category has equivariant products if it has finite products, and the inter-

nal permutation action preserves the projections (hence also preserves the product

objects). A perm-category with equivariant finite products has equivariant ex-

ponentials if it is cartesian closed and the internal permutation action preserves

the evaluation morphism π · evA,B = evπ·A,π·B (and hence exponential objects are

preserved). A perm-category with equivariant finite products has fresh inclusions

if for every finite set of atoms a ⊆ A and C-object C such that a # C we have a

C-arrow iaC : C#a → C for which the following properties hold:

(i) (Equivariance): π · iaC = iπ·aπ·C ;

(ii) (Sets of Atoms): i∅C = idC and iaC ◦ ia′
C#a = ia∪a

′
C ;

(iii) (Products): iaC1×C2
= iaC1

× iaC2
;

(iv) (Internal permutation action): if supp(π) # C then πC#supp(π) is equal to the

identity idC#supp(π) ;

(v) (Epi When Fresh): If we have parallel C-arrows f, g : C → D such that

f ◦ iaC = g ◦ iaC and a # (f, g), then f = g;

(vi) (Freshness): Let f : C → D be such that a # D. Define †(f, a) def
= (∃ b)(b #

(a, f) ∧ (a b)D ◦ f ◦ ibC = f ◦ ibC). If †(f, a) holds then there is a unique

f∗ : C → D#a, the image restriction of f , such that iaD ◦ f∗ = f .

A perm-category with equivariant finite products and fresh inclusions is an FM-

category and if it also has equivariant exponentials we call it an FM-ccc. The

category FMSet of FM-sets is an FM-ccc, with the (equivariant) exponential of

FM-sets X and Y being the FM-set X ⇒fs Y of finitely supported functions from

X to Y , and with iaX : X#a def
= {x ∈ X | a # x} ↪→ X as fresh inclusions. FM-cpos

are another example.

We will use the functor (−) ⇒ (+) : Cop × C → C, which is defined by (A,B) �→
A ⇒ B and (f, g) �→ f ⇒ g

def
= λ(g ◦ ev ◦ (idA⇒B × f)). An auxiliary lemma is used

in establishing that our semantics is sound; the proof is routine category theory. Its

use is illustrated briefly on page 16.
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Lemma 4.1

(i) For any f : A×B → C we have π · λ(f) = λ(π · f)
(ii) πB ◦ evA,B = evπ·A,π·B ◦ (πA⇒B × πA).

(iii) π · (f ⇒ g) = π · f ⇒ π · g
(iv) πA⇒B = π−1

π·A ⇒ πB

(v) For any f : A×B → C we have πB⇒C ◦ λ(f) = λ(πC ◦ f ◦ (id× π−1
π·B))

(vi) For any f : A×B → C and g : A′ → A, λ(f) ◦ g = λ(f ◦ (g × idB))

Remark 4.2 Each freshness property has a simple intuition. We give one example

for (Freshness). Let f : X → Y be finitely supported in FMSet , x ∈ X and a # Y .

By choosing b # a, f and b # x we have (f ◦ ibC)(x) = f(x) and the condition †(f, a)
amounts to (b # a, f) ∧ (a b) · f(x) = f(x). But since b # x we can also deduce

b # f(x), so we have (b # a, f(x)) ∧ (a b) · f(x) = f(x). Hence f(x) ∈ Y #a and so

f image restricts (with f∗ : x �→ f(x)).

A Sound Categorical Semantics. We wish to define a categorical semantics

which will interpret typed expressions Th � ∇ �E M : s as morphisms [[∇ �E M :

s]] : [[∇]] −→ [[s]] in an FM-ccc C. However we have seen that NLC is dependently

typed: in particular the type system and equation system are mutually inductively

defined. This means that we cannot give a simple recursive definition of a function

[[−]] over (well-typed) expressions [31,33]. However, we can give such a definition

of a partial semantic function, which is defined only when certain equations are

themselves satisfied by [[−]].

We also deal with a further complication. See rule AP which has hypothesis

∇ �E a # A : s. We wish to define, following Remark 4.2, the semantics of

∇ �E a # A : s as [[∇ �E a # A : s]]
def
= [[∇ �E A : s]]

∗
—but this morphism is

defined only if the condition †([[∇ �E A : s]], a) holds! Thus we also need to factor

this requirement into our semantics and soundness theorem.

We can now define the semantics. Let C be a FM-ccc and Sg a NLC-signature.

Then a Sg-structure M in C is specified by giving:

• An equivariant map [[−]] : GndSg −→ ob C. We extend to the map [[−]] :

TypeSg −→ ob C via structural recursion ( [[sa ⇒ s ′]]
def
= [[s]]#a ⇒ [[s ′]]) and this is

easily seen to be equivariant too, since C has equivariant structure.

• An equivariant map [[−]] : FunSg −→ ob C where for each higher order function

constant c : s we have [[c]] : 1 −→ [[s]] (recall that C has finite products—hence an

equivariant terminal object).

Let ∇ = a1 # x1 : s1, ..., an # xn : sn ∈ EnvSg be a freshness environment. Then

we define the C-object [[∇]] by [[∇]]
def
= [[s1]]

#a1 × ... × [[sn]]
#an . We define a notion

of satisfaction for both expressions-in-context and equations-in-context. Let M be

a structure for a NLC-signature in an FM-ccc C and consider the binary relation

� in Table 5. Table 5 specifies a partial function J �→ [[J ]] from judgements to

morphisms [[J ]] in C. Given ∇ �E M : s or ∇ �E a # M : s we say that M satisfies
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[[∇, ai # xi : si � πxi : π · si]] � π[[si]]
◦ i

ai
[[si]]

◦ pr i : [[∇, ai # xi : si]] −→ [[si]]
#ai −→ [[si]] −→ π · [[si]]

[[∇ � c : s]] � [[c]]◦! : [[∇]] → 1 → [[s]]

[[∇, a # x : s � M : s′]] � m : [[∇]]× [[s]]a → [[s′]]

[[∇ � λax : s.M : sa ⇒ s′]] � λ(m) : [[∇]] → ([[s]]#a ⇒ [[s′]])

[[∇ � F : sa ⇒ s′]] � f : [[∇]] → ([[s]]#a ⇒ [[s′]]) [[∇ � a # A : s]] � θ : [[∇]] → [[s]]#a

[[∇ � F A : s′]] � ev ◦ 〈f, θ〉 : [[∇]] → ([[s]]#a ⇒ [[s′]])× [[s]]#a → [[s′]]

[[∇ �E M : s]] � m
†(m,a)

[[∇ �E a # M : s]] � m∗

Table 5
Semantics of Higher Order Functions

the judgement if the morphism [[∇ �E M : s]] : [[∇]] −→ [[s]] or [[∇ �E a # M : s]] :

[[∇]] −→ [[s]]#a in C is defined (that is, the partial function J �→ [[J ]] is defined). If so

we write [[∇ �E M : s]]⇓ or [[∇ �E a # M : s]]⇓. Generally, [[J ]]⇓ def
= (∃j)([[J ]] � j).

We may write [[J ]] or even [[J ]]⇓ for morphism j. Given ∇ �E M ≈ M ′ : s we say

that M satisfies it if both [[∇ �E M : s]]⇓ and [[∇ �E M ′ : s]]⇓ and they are equal

morphisms in C. We say that M is a model of a NLC theory Th = (Sg ,Ax ) if

M satisfies all of the equations-in-context in Ax . With this, we have our soundness

theorem:

Theorem 4.3 (Soundness) Let Th be a NLC theory and M a model of Th in

an FM-ccc. Then every typed expression Th � ∇ �E M : s, freshness assertion

Th � ∇ �E a # M : s and theorem Th � ∇ �E M ≈ M ′ : s is satisfied by M.

We need the following intermediate results to prove the soundness theorem.

We adopt a direct approach to proving that our semantics is compositional with

respect to substitution, which reduces some overhead from the approach in [7].

Note that we appeal to Propositions 3.4 and Proposition 3.5 to ensure that the

NLC judgements mentioned below are properly defined. We shall write L � R to

mean that L⇓ ⇐⇒ R⇓ and that L = R.

Lemma 4.4 (Semantic Id, Inclusion, Int. Perm. Action, Projection)

Given a freshness environment ∇ = a1 # x1 : s1, ..., an # xn : sn then we have

(i) id[[∇]] � 〈[[∇ � a1 # x1 : s1]], ..., [[∇ � an # xn : sn]]〉
(ii) ia[[∇]] � 〈[[∇#a � a1 # x1 : s1]], ..., [[∇#a � an # xn : sn]]〉
(iii) π[[∇]] � 〈[[∇ � π · a1 # πx1 : π · s1]], ..., [[∇ � π · an # πxn : π · sn]]〉
(iv) pr [[∇j ]] : [[∇1]]× [[∇2]] → [[∇j ]] � 〈[[∇1 ∪ ∇2 � ai # xi : si]]〉, where ∇1,∇2 ∈

EnvSg have disjoint domains but are such that ∇j = ∇ for j = 1 and 2.

Lemma 4.5 (Useful Semantic Factorisations “[[ξ]] = [[ξ]] ◦m”)

(i) The function [[−]] : EnvSg → EnvSg is equivariant.

(ii) [[π · ∇ �E π ·M : π · s]] � π · [[∇ �E M : s]]

(iii) [[∇ � π ∗M : π · s]] � π[[s]] ◦ [[∇ � M : s]]
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(iv) [[∇, π · a # x : π · s �E M{π−1/x} : s′]] �
[[∇, a # x : s �E M : s′]] ◦ (id[[∇]] × π−1

[[π·s]]#π·a)

(v) Given ∇ ≤ ∇′ there exists an arrow weak : [[∇′]] → [[∇]] such that for any

typed expression ∇ �E M : s, [[∇′ �E M : s]] � [[∇ �E M : s]] ◦ weak.
(vi) [[∇#a �E M : s]] � [[∇ �E M : s]] ◦ ia where a # ∇.

Proof. We illustrate proofs of Lemma 4.5 part i and ii:

(i) Following the definitions in our paper together with the properties of a perm-

category, we have

π · [[∇]] = π · ([[s1]]#a1 × ...× [[sn]]
#an)

= (π · [[s1]]#a1 × ...× π · [[sn]]#an)

= ((π · [[s1]])#π·a1 × (π · [[sn]])#π·an)

= ([[π · s1]]#π·a1 × [[π · sn]]#π·an)

= [[[π · a1 # x1 : π · s1, ..., π · an # xn : π · sn]]]
= [[π · ∇]]

(ii) Proof by induction on the structure of M

(∀M) [ (∀ ∇, π, s) (π · [[∇ �E M : s]] � [[π · ∇ �E π ·M : π · s]])) ]

SUSP: It directly follows from the categorical semantics that

[[π · ∇, π · a # x : π · s �E π · π′x : π · π′ · s]]⇓

and [[∇, a # x : s �E π′x : π′ · s]]⇓
The equality follows by basic properties of FM-cccs.

CONST: It is immediate that [[∇ �E c : s]]⇓ and [[π · ∇ �E π · c : π · s]]⇓.
The equality follows from the fact that [[−]] : FunΣ → ob C is equivariant.

LAM-ABS: Suppose [[π · ∇ �E π · (λax : s.M) : π · (sa ⇒ s′)]]⇓ and it is

equal to fπ. By the definition of the meta-level permutation action and the

inductively defined semantics we get

[[π · ∇ �E λπ·ax : π · s. π ·M : (π · s)π·a ⇒ π · s′]] � λ(mπ)

for some mπ where [[π ·∇, π ·a # x : π ·s �E π ·M : π ·s′]] � mπ. By induction

we deduce that [[∇, a # x : s �E M : s′]] � m such that π ·m = mπ. We then

apply the rule for semantics of abstraction to obtain [[∇ �E λax : s.M : sa ⇒
s′]] � λ(m), that is, [[∇ �E λax : s.M : sa ⇒ s′]]⇓. The definitional existence

proof in the converse direction follows by similar reasoning. We now need to

show that fπ = π · λ(m).
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fπ
def
= λ(mπ)

= λ(π ·m) (induction)

= π · λ(m) (Lemma 4.1 (i))

APP: Suppose [[π · ∇ �E π · (F A) : π · s′]]⇓ and it is equal to tπ. By the

definition of the meta-level permutation action and the rule for semantics of

applications

[[π · ∇ �E (π · F ) (π ·A) : π · s′]] � ev ◦ 〈fπ, θπ〉

for [[π·∇ �E π·F : (π · s)π·a ⇒ π·s′]] � fπ and [[π·∇ �E π·a # π·A : π·s]] � θπ.

We have [[π ·∇ �E π ·a # π ·A : π ·s]] � απ
∗ by the rule for freshness assertion

semantics where [[π · ∇ �E π · A : π · s]] � απ such that †(π · a, απ). Given

that � is a partial function, we have that θπ = απ
∗. By induction we get

[[∇ �E F : sa ⇒ s′]] � f and [[∇ �E A : s]] � α such that fπ = π · f and

απ = π ·α. We now deduce from †(π ·a, απ) that †(a, α) holds: Let a′ # (a, α).

It follows immediately that π · a′ # (π · a, π · α) and hence from †(π · a, π · α)
we obtain equation (1). In the equations below, we write internal permutation

actions τC as τ− since the source-target data does not play a significant role

in our reasoning, and indeed is probably obfuscating:

(π · a′ π · a)− ◦ (π · α) ◦ i = (π · α) ◦ i (1)

(π · a′ π · a)− ◦ π− ◦ α ◦ π−1
− ◦ i = π− ◦ α ◦ π−1

− ◦ i (2)

π− ◦ (a′ a)− ◦ α ◦ π−1
− ◦ i = π− ◦ α ◦ π−1

− ◦ i (3)

(a′ a)− ◦ α ◦ i ◦ π−1
− = α ◦ i ◦ π−1

− (4)

(a′ a)− ◦ α ◦ i = α ◦ i (5)

By definition of the FM-ccc permutation action on morphisms we obtain

equation (2). The transposition notation (a′ a) is short for (a′1 a1)◦. . .◦(a′k ak).
Since in Perm, π◦(c d) = (π(c)π(d))◦π holds generally for single transpositions

(c d), and since permutation actions satisfy (τ ′ ◦ τ)C = τ ′τ ·C ◦ πC we have

π− ◦ (a′ a)− = (π ◦ (a′ a))− = ((π · a′ π · a) ◦ π)− = (π · a′ π · a)− ◦ π−

This gives us equation (3). Any internal permutation action (τC : C → τ ·C |
C ∈ ob C) is a natural transformation Id → τ · − and in particular so is π−1

− .

Since also π− is iso, equation (4) holds. Finally since π−1
− is iso we obtain (5).

Hence, †(a, α) holds.
We can now apply the rule for freshness assertion semantics to obtain [[∇ �E

a # A : s]] � α∗, followed by the rule for application semantics to get [[∇ �E

F A : s′]] � ev ◦ 〈f, α∗〉. Hence, we have [[∇ �E F A : s′]]⇓. The definitional

existence proof in the converse direction follows by similar reasoning.
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We now show that tπ = π · (ev ◦ 〈f, α∗〉). Note that (π · α)∗ = π · α∗ (Φ)

holds: This follows immediately from the universal property of inclusion image

restriction and the definition of π · −. Hence

tπ
def
= ev ([[π·s]]#π·a,[[π·s′]]) ◦ 〈fπ, θπ〉
= ev ([[π·s]]#π·a,[[π·s′]]) ◦ 〈fπ, απ

∗〉 (θπ = απ
∗)

= ev (π·([[s]]#a),π·[[s′]]) ◦ 〈π · f, (π · α)∗〉 (induction)

= ev (π·([[s]]#a),π·[[s′]]) ◦ 〈π · f, π · α∗〉 (Φ)

= ev (π·([[s]]#a),π·[[s′]]) ◦ (π · 〈f, α∗〉) (equivariant products)

= (π · ev ([[s]]#a,[[s′]])) ◦ (π · 〈f, α∗〉) (equivariant exponentials)

= π · (ev ([[s]]#a,[[s′]]) ◦ 〈f, α
∗〉) (equivariance of ◦)

�

Proposition 4.6 (Compositional Semantics) Let ∇ def
= a1 # x1 : s1, ..., an #

xn : sn. Suppose, for theory Th, we have the typed expression ∇ �E M : s and

freshness assertions ∇′ �E ai # Ni : si for each i. Then we have ∇′ �E M{Ni/xi} :

s. Moreover, if [[∇ �E M : s]]⇓ and [[∇′ �E ai # Ni : si]]⇓ for each i then we

have [[∇′ �E M{Ni/xi} : s]]⇓ and further [[∇′ �E M{Ni/xi} : s]] = [[∇ �E M :

s]] ◦ 〈[[∇′ �E ai # Ni : si]]〉.

The proofs of Lemmas 4.4 and 4.5 require a combination of direct calculations

and inductions over the structure of terms. Note that the proof of Proposition 4.6 is

by induction over the structure of M and does not require a complicated statement

that is provable by mutual induction. The intuition is that, as one would expect,

the semantics of expressions is derivation independent. We are now in a position to

prove Theorem 4.3.

Proof. This proof does proceed by a mutual induction establishing the satisfaction

of all judgement forms. Induction Property Closure for all the rules in Table 3 and

Table 4 is similar to our example:

(AP): We need to show that [[∇ �E F A : s′]]⇓ (�). By induction we have

[[∇ �E F : sa ⇒ s′]] � f (1). Recalling that satisfaction of the freshness assertion

is the satisfaction of an equation

∇ �E a # A : s
def
= (∀ / ∃ a′ # (∇, a, A)) (∇#a′ �E A ≈ (a a′) ∗A : s)

we have [[∇#a′ �E A : s]] � θ and [[∇#a′ �E (a a′) ∗ A : s]] � θ′ with θ = θ′. Hence

by Lemma 4.4 vi we have θ = α ◦ i where [[∇ �E A : s]] � α and by Lemma 4.4 iii

and 4.4 vi we have θ′ = (a a′)[[s]] ◦α◦ i. From the (Epi When Fresh) property of FM-

cccs we have α = (a a′)[[s]] ◦ α, that is †(α, a). Hence [[∇ �E a # A : s]] � α∗ (2).

From (1) and (2) we have (�), with definition ev ◦ 〈f, α∗〉.
Property Closure for the rules in Table 4 is trivial for (REF) (SYM) (TRANS).

(WEAK) uses Lemma 4.4 v. (AE) uses Lemma 4.4 vi and Lemma 4.4 ii. (PERM) uses

Lemma 4.4 iii and Lemma 4.4 vi. (BF) is quite similar to the details given for (AP).�
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5 A Complete Categorical Semantics

In order to obtain a completeness result we need a way to construct a cartesian

closed category out of NLC syntax. To do this we augment the types, expressions

and rules with a form of dependently typed atom-abstraction. In doing so we arrive

at the final form of NLC (with abstraction) for which we have a categorical model

that is both sound and complete. Please note that we only give a summary of the

details in this preliminary paper; a substantial journal version will follow.

We augment the type system with types of the form [a]s. We augment the

collection of terms with abstraction and concretion denoted by 〈a〉M and M @ a

respectively, and by a form of local scoping fr a.M .

Occurrences of a in 〈a〉M are not bound. The permutation actions on the

resulting terms (and expressions) are defined in the expected way. The type system

and equation system appears in Table 6 on page 20.

The equations specify forms of beta and eta equality, ensure that term forming

operations are congruences, and that the 〈a〉M abstraction operator on expressions

is equated with 〈a′〉M ′ provided that the two expressions given by swapping out

the a and a′ for a fresh atom b are provable equal in the logic (so “binding” is

encoded at the level of formal equations). As for semantics, in FMSet one should

think of the usual semantic notions of abstraction and concretion modelling 〈a〉M
and M @ a, and the expression fr a.M as the syntactic analogue of fresh a in F (a)

(see [30], the Freshness Theorem).
We also need a richer categorical structure to achieve completeness. For any

FM-category C, there is a family of categories (C#a | a ∈ A) where ob C#a consists
of those C ∈ ob C for which a # C. Given such C,C ′ ∈ ob C#a, then f : C →
C ′ ∈ mor C is a morphism in C#a just in case a # f . The basic properties of
fresh inclusions ensure that each C#a is indeed a category, and moreover that there
is a functor (−)#a : C#a → C. For the remainder of this section we fix on an
atom a that specifies the functor (−)#a. We shall require this functor to have
a right adjoint [a](−) (moreover, an equivalence) and for there to be a family of
morphisms concb : ([a]C)#b → (a b) ·C. These structures are required to satisfy the
commutativity properties which are needed in order to soundly model the equations
(see Table 6). For example, for every D ∈ ob C#a, X ∈ ob C, and a′, b # X, where
ηa,D is the counit of the adjunction, we have

D#a m� (a a′) ·X
(a′ b)(a a′)·X� (a b) ·X

D

i

�

F ∗ � ([a]X)#b

concb

�

with F being the morphism

D
ηa,D� [a]D#a [a]m� [a](a a′) ·X

[a](a a′)(a a′)·X� [a]X
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(AABS)
∇#a �E M : (a a′) · s
∇ �E 〈a′〉M : [a]s

(a # ∇,M, a′ # s)

(CONC)
∇ �E b # F : [a]s

∇#a �E F @ b : (a b) · s
(a # ∇)[b = a ∨ b # s]

(LN)
∇#a �E a # M : s

∇ �E fr a.M : s
(a # ∇)[a # s]

(BAA)
∇#a �E M : (a a′) · s ∇ �E b # 〈a′〉M : [a]s

∇#a �E (〈a′〉M)@ b ≈ (a′ b) ·M : (a b) · s
(a # ∇,M, a′ # s)

(EAA)
∇ �E b # F : [a]s

∇ �E 〈b〉 (F @ b) ≈ F : [a]s
(a # ∇, b # F )

(BINDAA)
∇#a,b �E (b a′) ·M ≈ (b a′′) ·M ′ : (a a′) · s

∇ �E 〈a′〉M ≈ 〈a′′〉M ′ : [a]s
(a # ∇,M,M ′, a′, a′′ # s,
b # a, a′, a′′,M,M ′, s)

(CC)
∇ �E b # F : [a]s ∇ �E F ≈ F ′ : [a]s

∇#a �E F @ b ≈ F ′@ b : (a b) · s
(a # ∇)[a = b ∨ b # s]

(LNFr)
∇#a �E a # M : s

∇#a �E fr a.M ≈ M : s
(a # ∇, a # M)[a # s]

(LNS)
∇#b �E b # M : s

∇#b\{a,a′} �E fr a.fr a′.M ≈ fr a′.fr a.M : s
(b # ∇, a, a′ ∈ b)[b # s]

(LNFS)
∇#a′ , a # x : s �E M : s′

∇ �E fr a′.λax : s.M ≈ λax : s. fr a′.M : sa ⇒ s′
(a′ 
∈ a)

Table 6
NLC Augmented Typing and Equation Rules for a Given Th

Further

D
F � [a]X

[a]D#a

ηa,D

�

[a]((a b)(a b)·X ◦ conca ◦ F ∗ ◦ iaD)
� [a]X

���������

where

D#a iaD � D
F ∗
� ([a]X)#b concb� (a b) ·X

(a b)(a b)·X� X
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[[∇#a �E M : (a a′) · s]] � m : [[∇]]#a → (a a′) · [[s]]
[[∇ �E 〈a′〉M : [a]s]] � [a]((a a′)(a a′)·[[s]] ◦m) ◦ ηa,[[∇]] : [[∇]] → [a][[∇]]#a → [a][[s]]

[[∇ �E F : [a]s]] � f : [[∇]] → [a][[s]]
†(f ,b)

[[∇#a �E F @ b : (a b) · s]] � concb ◦ f∗ ◦ ia
[[∇]]

: [[∇]]#a → [[∇]] → ([a][[s]])#b → (a b) · [[s]]

[[∇#b �E b # M : s]] � θ : [[∇]]#b → [[s]]#b

[[∇ �E fr b.M : s]] � η−1
b,[[∇]]

◦ [b]θ ◦ ηb,[[s]] : [[∇]] → [b][[∇]]#b → [b][[s]]#b → [[s]]

Table 7
Semantics of Abstraction and Concretion

Suppose that we also require the adjoints to commute. We call such FM-cccs with

this additional structure NFM-cccs; it is these categories that yield a sound and

complete semantics for NLC. The semantics of abstraction and concretion appears

in Table 7.

An example of such a category is FMSet . The action of the functor (−)#a

sends any FM-function f : X → Y ∈ FMSet#a to f#a : X#a → Y #a where

f#a(x ∈ X#a)
def
= f(x) ∈ Y #a is easily seen to be well-defined. The action of the

right adjoint [a](−) is defined on f : X → Y by setting

[a]X
def
= {〈a′〉x | a′ # X ∧ x ∈ (a a′) ·X}

where 〈a′〉x is the abstraction operator of Gabbay and Pitts [14], and further

[a]f(a′ ∈ [a]X)
def
= fresh b in 〈b〉 ((a b) · f)(a′@ b). The verification that we have

an adjunction satisfying the stated properties is a rather length calculation which

we omit from this paper.

The Classifying Category and Categorical Completeness. The notion of classi-

fying category, topos, etc is a standard one in category theory [10,22]. To prove

completeness we now show that we can build an FM-ccc from the syntax of a

NLC theory (Proposition 5.1), together with a generic model [10] (Propositions 5.3

and 5.4).

Proposition 5.1 (Classifying Category) For every NLC-theory Th we can de-

fine a classifying FM-ccc Cl(Th) which is built from the syntax of Th. An object is

a freshness environment ∇ def
= (a1 # x1 : s1, ..., an # xn : sn). If ∇′ def

= (a′1 # x′1 :

s′1, ..., a
′
m # x′m : s′m) then a morphism δ

def
= ([M1]≈, . . . , [Mm]≈) : ∇ → ∇′ is a list

of typed expressions such that for 1 ≤ i ≤ m we have Th � ∇ �E a′i # Mi : s
′
i, and

[Mi]≈ is the equivalence class of those T such that Th � ∇ �E Mi ≈ T : s′i.

Remark 5.2 We explain, with a simple example, how we are able to construct

exponentials in the classifier. Consider (a1 # x1 : s1) ⇒ (a′1 # x′1 : s′1). One

would imagine that, whatever the exponential is, it should somehow involve the

type s1
a1 ⇒ s′1

a′1 which is not legitimate in NLC. However, consider the following,

recalling that in an NFM-ccc the adjoints commute

C(C#a1
1 , C ′

1
#a′1) ∼= C#a′1([a′1]C

#a1
1 , C ′

1)
∼= C#a′1(([a′1]C1)

#a1 , C ′
1)
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We can mimic the above isomorphisms in the syntax of NLC in order to construct

exponentials, and in fact we can show that

(a1 # x1 : s1) ⇒ (a′1 # x′1 : s
′
1)

def
= a′1 # f : ([a′1]s1)

#a1 ⇒ s ′1︸ ︷︷ ︸
NLC type

and that this easily extends to the general case of ∇1 ⇒ ∇2.

Proposition 5.3 The generic Sg-structure G of Th = (Sg , Ax) in Cl(Th) is given

by defining [[γ]]G =def (∅ # x : s) where γ is any ground type from Sg. If c is a

constant with typing c : s then [[c]]G
def
= ([c]≈) : 1

def
= () −→ (∅ # x : s) is well

defined since Th � [ ] �E c : s Further, suppose that Th � ∇ �E M : s. Then

[[∇ �E M : s]]G � [M ]≈ : ∇ → (∅ # v : s)

Proposition 5.4 The generic structure G is a model of any Th = (Sg ,Ax ).

Theorem 5.5 (Completeness) The categorical semantics of NLC-theories in

FM-cccs is complete: Let Th be a NLC-theory. If any equation-in-context for Th is

satisfied in all FM-ccc models of Th, then it is a theorem.

6 Category Theory/Type Theory Correspondence

Clouston [7] demonstrated a categorical type theory correspondence between NEL

and FM-categories; we have established a similar correspondence between NLC and

FM-cccs. Recall [10] that the correspondence result for standard λ-calculus and

cartesian closed categories is slightly more restricted than the one for EL and cate-

gories with finite products: Due to the covariant nature of exponentials, components

of homomorphisms of models must be restricted to isomorphisms.

Theorem 6.1 The category Cl(Th) is a classifying category for NLC-theories

in the sense that for every model M of Th in a NFM-ccc D there is a unique NFM-

ccc functor FM : Cl(Th) → D such that FM composes with the generic model to

yield M.

Now take a definition of homomorphism h : M → N of models of an NLC-theory

Th in an NFM-ccc C consisting of equivariant isomorphisms hγ : [[γ]]M
∼= [[γ]]M,

where hsa⇒s′ is given by (h#a
s )−1 ⇒ hs′ (and a # s ensures homomorphisms are well

defined). For a NLC-theory Th and a small NFM-ccc C, the category of models

Mod∼=(Th, C) consists of the Th models and homomorphisms. An NFM-ccc functor

F : C → D is an NFM-functor that preserves exponentials and commutes with the

adjunction. We can define FMccc∼=(C,D) as a category with NFM-ccc functors as

objects and finitely supported natural isomorphisms as morphisms.

Theorem 6.2 We have FMccc∼=(Cl(Th),D) � Mod∼=(Th,D) for any NLC-theory

Th and NFM-ccc D. For any NFM-ccc C, we have Cl(Th(C)) � C. For any NLC-

theory Th we have Th � Th(Cl(Th)).
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7 Solutions, Open Questions, and Further Work

Exploiting Atom-Dependent Types. Clouston [4] observes that name-abstraction

and concretion in FMSet cannot be captured by a NEL theory. This is related to

the fact that concretion is a partial function, which can only be applied to arguments

that meet certain freshness conditions. In the total concretion theory in Section 8

of [4] (page 15; MFPS 2010), Clouston describes concretion functions of the form

cona : Name.s → s where Name.s is the name-abstraction type. Now cona x is

well-formed only if a # x. NEL does not support such partiality. But in NLC we

have exploited the new dependent type system to yield a solution.

Internal and 2-Categorical Approaches Could this paper be simplified by consid-

ering internalisation in one of the FM-toposes? We cannot give a definitive answer:

a deep investigation must wait for future work, but here are a few observations.

Consider even the basic notion of perm-category. A perm-category is internal to

FMNom; but an internal FMNom-category is not a perm-category since the mor-

phism permutation πC is not directly captured by the internalisation. So it is not

clear to us that the notion of FM-ccc could be extracted by internalisation. Going

further, it is also not clear how the atom-set-partiality of our higher types can be

(usefully) captured. However, even if it can, this misses a central point of our pa-

per: a direct investigation into the interplay of higher order types and the freshness

relation via a domain specific formal type theory. Possibly if one sought a direct

route to “some kind of” completeness result an internal approach might work, but

we are trying to do more than that. What is true is that the “nominal” world still

needs to be better understood from a “2-categorical” viewpoint, and there are a

number of open questions.

Future Work. Recall our motivation for this work: to develop a formal frame-

work for nominal higher order functions, with a view to proving it a conservative

extension over NEL by nominal gluing. Nominal gluing remains work in progress,

but our preliminary results about the Yoneda Lemma and cartesian closure of nom-

inal functor categories appear in [12]. From such a gluing proof, we might be able

to extract a form of categorical normalisation result, taking the work in a more ap-

plied direction through the construction of some form of abstract machine for NLC

along with an implementation. Is there some form of nominal categorical abstract

machine?

From the Computer Science perspective, we have taken great care in specifying

NLC formally and care with proofs that involve quite subtle intricacies arising from

α-equivalence in the nominal setting, and the (variable) equivariance of judgements

and rules. We have attempted to avoid the traps (explained in [28]) that others have

fallen into. As such, it would be an interesting project to study a mechanisation of

NLC.

How much further can one take categorical correspondences for nominal log-

ics/type theories? We are considering product and coproduct types, and of course

one might study computational monad types, numbers, and more [20]. Going still

further there is the general consideration of Martin Löf dependent type theory
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[27,32], nominal and FM analogues, and corresponding categorical structures. We

are also investigating Henkin style models as have Gabbay and Mulligan [17]. Ch-

eney [3] has studied the properties of a type theory that mixes functions, and atoms

as first class citizens, along with a name abstraction operator. While discussing

others’ work, it is interesting to note that type dependency is a common feature of

studies involving computational type-and-effect systems. Examples are [34,1].

We have considered the possibility that the original NEL could be presented

using dependent types in place of freshness assertions. However, the resulting type

theory might be different. Such dependently typed theories, in which a # x : s

is wholly replaced by x : sa, could be more expressive than NEL theories. This

remains future work.
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