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Abstract 

Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic 

scale. However, MD has high computational demands, which may inhibit its use for 

simulations of structures involving large numbers of atoms such as amorphous polymer 

structures. An atomic-scale finite element method (AFEM) is presented in this study with 

significantly lower computational demands than MD. Due to the reduced computational 

demands, AFEM is suitable for the analysis of Young’s modulus of amorphous polymer 

structures. This is of particular interest when studying the degradation of bioresorbable 

polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-

atomic potential energy functions of an MD force field. The nonlinear MD functions were 

adapted to enable static linear analysis. Finite element formulations were derived to 
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represent interatomic potential energy functions between two, three and four atoms. 

Validation of the AFEM was conducted through its application to atomic structures for 

crystalline and amorphous poly(lactide).  

 

Key words: Biodegradable polymers, Young’s modulus, atomic simulations, finite 

element analysis, molecular dynamics. 

 

1 Introduction 

Biodegradable polymers such as poly(lactide), poly(glycolide) and poly(caprolactone) 

have been used in medical applications for several decades. However, their mechanical 

properties are not fully understood due to the complex nature of both polymer theory and 

degradation. Recent studies modelling mechanical property degradation have begun to 

increase knowledge in the area [1, 2]. Further insights into biodegradable polymer 

properties and degradation mechanisms may be achieved through atomic analysis. This 

opportunity has generated interest in the development of molecular dynamics (MD) force 

fields for poly(lactide) [3-6]. These force fields describe the interactions between atoms 

by relating the atomic coordinates to interatomic potential energy.  

 

Ding et al. [1] studied the chain scission of a polyethylene atomic structure through MD  

simulations. It was not possible for Ding et al. [1] to use a complex molecular structure, 

such as poly(lactide), due to the high computational requirements of MD simulations. 

This limitation has led to research into more computationally efficient simulation methods. 

The procedure used in MD simulations is as follows: (i) calculate the instantaneous 

forces applied by the atoms to one another; (ii) calculate the atomic acceleration that 

results from the forces; (iii) calculate the speed and distance travelled by each atom in a 

discrete time period; (iv) calculate the new atom positions and repeat from step i. This 
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computationally intense process can be simplified by using molecular statics, in which 

the simulation can be considered to include a damping force that gradually removes 

energy from the system until the atoms have zero velocity. Although molecular statics 

simulations require less computational power than molecular dynamics, amorphous 

polymers still present a computational challenge. Especially when repeated simulations 

are required, for example when analysing a polymer during degradation.  

 

To enable the analysis of more complex structures, or to enable a greater number of 

simulations, several authors have developed more computationally efficient method for 

atomic analysis [7-10]. Liu et al. [9, 10] developed an atomic-scale finite element method 

(AFEM) in which the molecular dynamics force field is represented by finite elements. 

Their method offered significant reductions in computational demands versus the 

conjugate gradient method in molecular mechanics. For nonlinear potential energy 

functions, an iterative procedure was required in order to minimise the total potential 

energy in a structure. Wang et al. [7, 8] also developed atomistic finite elements to 

represent the interaction between atoms through finite element analysis. The elements 

they developed represent the polymer as a chain of elastic rods connected to each other 

by elastic joints, which facilitate angular potential energy terms to be considered. Again, 

an iterative procedure was used in the simulations. The work of Liu et al. [9, 10] and 

Wang et al. [7, 8] demonstrate the value of atomistic finite element methods. However, 

due to the iterative nature of their methods, the computation benefits over MD are limited. 

 

This study presents a new atomic finite element method (AFEM), in which nonlinear 

interatomic potential energy functions are adapted to enable static linear analysis. 

Simulations are completed in a single step as opposed to numerous iterations. The 

reduced computational demands permit the analysis of large atomic structures, including 

amorphous poly(lactide). This simplification is possible if one is only interested in very 
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small displacement of atoms from their equilibrium positions, such as when calculating 

Young’s modulus of a polymer. Atomic finite elements are specifically formulated to 

represent all atomic interactions in the PLAFF2 [5] molecular dynamics force field for 

poly(lactide). In this first paper of a two-part series, the AFEM simulation technique is 

developed and demonstrated for crystalline and amorphous poly(lactide) structures. In 

the second paper [11] the effect of polymer chain scission on the degradation of Young’s 

modulus is analysed. Such analysis has not previously been conducted for an atomic 

model of a biodegradable polymer. The AFEM simulation results are used to develop a  

numerical model for Young’s modulus change of degrading  polymers. 

 

2 Molecular dynamics polymer force field 

In molecular dynamics, the interactions between atoms are described by force fields that 

relate atomic coordinates to potential energy. McAliley developed the PLAFF2 force field 

specifically for poly(lactide) and supplied it as supplementary information with his thesis 

[5]. This force field is used as a basis for the AFEM approach presented in this study. 

This section gives a brief overview in Eqs. 1 - 8 of the atomic interactions described by 

the force field. Further details can be found in McAliley’s thesis [5] and in the manual of 

the MD software Gromacs [12]. Fig. 1 shows a four-atom section of a polymer chain. 

Several different forms of atomic interaction are shown. In the force field, each type of 

interaction is represented by a potential energy function. Potential energy is calculated 

for covalently bonded atoms based on: 

 interatomic separation (the bond-stretch potential energy); 

 the angle between adjacent bonds (the bond-angle potential energy; 

 and rotation of the polymer chain about a bond (the bond-dihedral potential 

energy).  
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The figure also shows how potential energy is associated with the interatomic separation 

of atoms that are not covalently bonded (the nonbond potential energy). These potential 

energy forms combine to represent the overall atomic interaction in a material. Although 

the AFEM approach presented in this study is based on a specific force field, it simply 

translates to a wide range of force fields for different materials. 

 

Atomic simulations of material properties typically consider the potential energy of a 

representative unit cell of polymer, which repeats to infinity in all directions. The total 

potential energy of the unit cell, VMD (kJ mol-1), according to the PLAFF2 force field is 

given in Eq. 1 as 

 

ji
nonbonds

nb

lkji
dihedrals

d

kji
angles

a

ji
bonds

bMD FuVVVVV

,,,,,,,

 
1

which is the sum of potential energies for all bond-stretch, Vb, bond-angle, Va, bond-

dihedral, Vd, and nonbonded, Vnb (all kJ mol-1), atomic interactions. The term Fu is the 

applied work due to an externally applied force, F (N), and the displacement where F is 

applied, u (nm). In molecular statics simulations, the atomic coordinates are found such 

that VMD is minimised. The minimisation of potential energy results in the atomic 

configuration that the force field suggests is likely to exist in a real material. When an 

overall force is applied to the material and results in a strained atomic configuration, the 

increase in potential energy is used to calculate Young’s modulus.  

 

Bond-stretch potential energy, Vb (kJ mol‐1), of two covalently bonded atoms is given 

by  

 202
1 rrkV ijbb   2

in which kb (kJ mol‐1 nm‐2) is the bond-stretch force constant, rij (nm) is the atomic 

separation, and r0 (nm) is the equilibrium atomic separation. 
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Bond-angle potential energy, Va (kJ mol‐1),  is calculated as  

 2
02

1   aa kV  3

in which ka (kJ mol‐1 rad‐2) is the bond-angle force constant, θ (rad) is the angle between 

atoms i, j, k, and the equilibrium angle is θ0 (rad). 

 

Bond-dihedral potential energy, Vd (kJ mol‐1),  in the force field includes both proper 

and improper dihedrals which are shown schematically in Fig. 1. Proper dihedrals 

consider atoms which are covalently bonded in series. Their potential energy is related 

to rotation about the covalent bond between the middle two atoms. Improper dihedrals 

in PLAFF2 consider four atoms of which three are all covalently bonded to a central atom. 

These can be considered to be in the form of a pyramid, as shown in Fig. 1. The potential 

energy function is effectively related to rotation about one of the bottom edges of the 

pyramid. For a set of four atoms, i, j, k, l, covalently bonded in series, the dihedral angle, 

Φ (rad), is defined as the angle between the plane of atoms i, j, k, and the plane of atoms 

j, k, l. The angle is defined according to the IUPAC/IUB convention such that an angle 

of zero corresponds to the cis configuration with atoms i and l on the same side. The 

force field utilises the Ryckaert-Bellemans dihedral potential energy, Vd(Ryckaert-Bellemans) 

(kJ mol-1), according to  

  


 
5

0
)( 180cos

n
nBellemansRyckaertd CV   4

in which Cn (kJ mol‐1) are six Ryckaert-Bellemans coefficients. The force field also 

considers a periodic dihedral function for which the periodic dihedral potential energy, 

Vd(periodic) (kJ mol-1), is given by 

  202
1

)( cos1   nkV dperiodicd  5
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in which kd (kJ mol‐1 rad‐2) is the periodic dihedral force constant, Φ0 (rad) is the phase 

shift and nΦ (no units) is the multiplicity which dictates the number of peaks in the 

potential energy for one complete rotation of the bond. 

 

Nonbond potential energy, Vnb (kJ mol‐1),  is calculated as the sum of Lennard-Jones 

potential energy, VLennard-Jones (kJ mol-1), and Coulomb interaction potential energy, 

VCoulomb (kJ mol-1), as given by 

CoulombJonesLennardnb VVV   . 6

The Lennard-Jones potential energy accounts for the long range attractive van der Waals 

interactions and the short range Pauli repulsion due to overlapping electron orbitals. 

It can be calculated as  
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  7

in which rij (nm) is the interatomic separation, εii and εjj (kJ mol-1) are the Lennard-Jones 

well-depth parameters for atoms i and j respectively, and σii and σjj (nm) are the Lennard-

Jones radii for atoms i and j respectively. The Coulomb interaction potential energy 

accounts for the attraction or repulsion of atoms due to their permanent charge and 

is given by 













ij

ji
Coulomb r

qq
V

04

1


 8

in which ε0 (F m-1) is the electric constant, qi and qj (units of elementary charge) are 

electric charges for atoms i and j respectively.  

 

In the PLAFF2 force field, the nonbond potential energy function does not apply to atoms 

that are separated by just one or two covalent bonds since the repulsive forces become 

too great. It is assumed that the bond-stretch and bond-angle potential energy terms 
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adequately represent the short-range quantum mechanical atomic interactions. For 

nonbonds between atoms that are separated by exactly three covalent bonds, the 

nonbond repulsion may still be too strong and hence their potential energy contribution 

is halved. These exclusions and reductions of potential energies are frequently 

implemented in molecular dynamics simulations.  
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Fig. 1 Schematic of the interatomic potential energy terms: bond-stretch, bond-angle, 
bond-dihedrals, which are divided into proper and improper dihedrals, and nonbonds. 
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3 Adaptation of nonlinear MD potential energies terms for AFEM 

The AFEM approach presented in this study is based on the MD force field PLAFF2, 

which was discussed in the previous section. The bond-dihedral and nonbond potential 

energy terms in the force field are not suitable for static linear analysis. They require 

iterative simulation techniques, which have much greater computational demands. To 

enable static linear analysis, the total potential energy given in Eq. 1 is adapted here. 

The adapted total potential energy of the unit cell, VMD_FEM (kJ mol-1), is given by Eq. 9 

as 

 

ji
nonbonds

FEMnb

lkji
dihedrals

FEMd

kji
angles

a

ji
bonds

bFEMMD FuVVVVV

,

_

,,,

_

,,,

_  
9

in which Vd_FEM (kJ mol-1) is the adapted bond-dihedral potential energy and Vnb_FEM (kJ 

mol-1) is the adapted nonbond potential energy. As with MD simulations, the total 

potential energy is minimised in order to find the atomic displacements due an externally 

applied force. The molecular dynamics bond-stretch and bond-angle potential energy 

terms in the PLAFF2 force field take the harmonic form as given in Eqs. 2 and 3. The 

bond-dihedral and nonbond potential energy terms take more complex forms. They are 

adapted here to also take a harmonic form.  

 

Finite elements are derived in this study to represent each of the potential energy terms 

in the force field. The potential energy of each individual finite element, Vel is (kJ mol-1), 

is 

2

2
1

elelel dkV  . 10

In Eq. 10, kel is the force constant (kJ mol-1 nm-2 for linear displacement or kJ mol-1 rad-2 

for angular displacement). The term del is the change in length (nm) for bond-stretch and 

nonbond finite elements, or change in angle (rad) for bond-angle and bond-dihedral finite 

elements. The subscript el is set to: 

 b, to represent bond-stretch finite elements 
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 a, to represent bond-angle finite elements 

 d_FEM, to represent bond-dihedral finite elements 

 and nb_FEM, to represent nonbond finite elements. 

  

The double derivative of potential energy Vel in Eq. 10 with respect to change in length 

or angle del gives finite element stiffness kel according to 

 
  el

el

el k
dd

Vd


2

2

. 11

Since the PLAFF2 force field uses a harmonic form of bond-stretch and bond-angle 

potential energy, kel takes the values kb and ka which are explicitly given in the force field 

for use in Eqs. 2 and 3. For the bond-dihedral and nonbond potential energy terms 

however, the values of kd_FEM and knb_FEM are not explicitly given in PLAFF2. They are 

derived here for use in the harmonic potential energy in AFEM by twice differentiating 

the PLAFF2 potential energy terms for bond-dihedrals and nonbonds with respect to 

length or angle. This represents an assumption that the element stiffness does not 

change significantly during deformation, which is appropriate for studies of very small 

displacements. 

 

Eqs. 12 and 13 give the double derivatives of the two bond-dihedral potential energy 

terms used in the PLAFF2 force field with respect to the dihedral angle Φ: 

 

12

 

. 13
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These derivatives give kd_FEM, the bond-dihedral finite element stiffness based on the 

atomic coordinates. The double derivative of the nonbond potential energy terms used 

in the PLAFF2 force field is  

 

 

 

14

which gives that value of nonbond finite element stiffness, knb_FEM, based on atomic 

separation. Fig. 2 plots potential energy, along with its first and second derivatives, 

versus the interatomic separation for two atoms according to the PLAFF2 force field. The 

figure considers a carbonyl carbon atom and a carbonyl oxygen atom. Similar trends 

exist for other atom pairs. Eqs. 6 - 8 are used to plot the potential energy and its 

derivatives. The parameters for these equations are taken from the PLAFF2 force field. 

The first derivative gives the interatomic force that the nonbonded atoms apply to one 

another. The second derivative gives the atomic finite element stiffness, which indicates 

resistance to changes in interatomic separation. At short interatomic separations the 

atoms apply a positive force to each other, which indicates repulsion due to electron 

orbital overlap. At the equilibrium distance the interatomic force is zero because the 

atoms’ attraction and repulsion perfectly balance. As the interatomic separation 

increases further, the atoms apply an attractive interatomic force to each other. At the 

interatomic separation highlighted by the vertical dashed line in the figure, the nonbond 

effectively breaks because further elongation of the nonbond results in less force being 

required to sustain the separation. The structure only remains stable due to interactions 

with other atoms. The finite element stiffness changes from a positive to a negative value 

at the vertical dashed line. For the AFEM simulations used to analyse the poly(lactide) 

polymer structure in this study, nonbond elements with negative stiffness are considered 

to represent broken bonds and therefore are not included in the simulations. A similar 

trend occurs for dihedrals but as opposed to nonbonds, where there is a threshold 

interatomic separation above which stiffness is negative, there are angular ranges in 
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which the dihedral stiffness is negative. In these ranges, the dihedral potential energy 

function represents an atomic state in which changes to the dihedral angle are not 

resisted. Therefore bond-dihedral atomic finite elements with a negative stiffness are 

also excluded from the simulations.  

 
 

 

Fig. 2 The PLAFF2 nonbond potential energy is shown for a nonbond between a two 
atoms in poly(lactide). The single and double derivatives with respect to interatomic 

separation indicate interatomic force and finite element stiffness respectively. 
 

4 Formulation of the atomic finite elements 

This section presents the formulation of the atomic finite elements for bond-stretch, bond-

angle, bond-dihedral and nonbond potential energies. The finite elements are derived 

from the theory of minimum potential energy as discussed in the previous section. To 

minimise total potential energy, the differential of the potential energy sum with respect 

to atomic displacements must equal zero. The Direct Stiffness Method is commonly used 

to set up finite element simulations. In the Direct Stiffness Method, the individual 

contribution of each finite element to the overall differential is identified. These 
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contributions are calculated here for each potential energy type by differentiating the 

potential energy of individual finite elements with respect to atomic displacements.  

 

  Bond-stretch and nonbond AFEM elements 

The bond-stretch and nonbond AFEM elements take the same form as linear elastic 

spring finite elements. They are derived in Eqs. 15 - 20 using the same approach that 

that is applied later for the more complex bond-angle and bond-dihedral finite elements. 

Fig. 3 shows a bond-stretch element with an initial length of LAB before displacement. 

Total elongation of the element, ∆L
AB, is given by  

ABAABBAB ruruL  . 15

where ūA is the vector displacement of atom A, ūB is the vector displacement of atom B 

and r̄AB is the vector from atom A to atom B. It is necessary to consider ∆L
AB

 in terms of 

the individual Cartesian atomic displacements u1 to u6 to enable differentiation of Eq. 10. 

The term αi is used to indicate the effect of the ith atomic displacement, ui, on the overall 

element elongation, such that total elongation of the element can be described by 





61i

iiAB uL  . 16

This is the sum of all the atomic displacements multiplied by their individual effects on 

overall element elongation. The six αi terms can be found by differentiating Eq. 15 by the 

six ui terms according to 

 
 i

AB
i ud

Ld 
 . 17

The interatomic potential energy of the element, is found by substituting ∆L
AB

 into Eq. 10 

as del to give 

2

61
2
1 








 

i
iielel ukV  . 18
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Eq. 18 is differentiated with respect to ui, when minimising total potential energy for 

AFEM. This differentiation gives the element stiffness matrix that is used in the Direct 

Stiffness Method. The ith linear equation that results from the differentiation can be 

written in matrix form as 

 
















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







6

5

4

3

2

1

654321

u

u

u

u

u

u

k
du

dV
iel

i

el  . 19

The ith row of the element stiffness matrix is therefore given by kelαi[α]. The full 6 x 6 

element stiffness matrix is therefore  



















666261

622221

612111














elk . 20
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Fig. 3 Schematic of a bond-stretch element in AFEM containing 2 atoms. The 
displacements of both atoms contribute to overall elongation of the element. 

 

 Bond-angle AFEM element 

Fig. 4 shows a bond-angle finite element for which change to the angle between three 

atoms is considered. As with the bond-stretch element above, the change in bond-angle 

must be formulated in terms of atomic displacements in order to derive the element 

stiffness matrix. This derivation is described here in Eqs. 21 and 22. The total change in 

bond-angle in terms of the vector atomic displacements is given by 




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



 
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
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

 




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AB

AB
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BC

CB

BC

CC
AC r

nu

r

nu

r

nu

r

nu ˆˆˆˆ
  21

in which all terms are defined in Fig. 4. As with the bond stretch element formulation 

above, the effect of each atomic displacement on the bond-angle is calculated by 

differentiating Eq. 21 with respect to each displacement according to 

 
 i

i ud

d  
 . 22

The element stiffness matrix is then calculated in exactly the same way as for the bond-

stretch element in Eqs. 18 - 20. The matrix takes the same form of [αiαj] except it is 9 x 

9 in size. 
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Fig. 4 Schematic of a bond-angle element for 3 atoms. The element is viewed normal 
to the plane containing all three atoms.  

 

 Development of the bond-dihedral AFEM element 

Fig. 5 shows a bond-dihedral element which relates the change in the dihedral angle to 

increase in potential energy. For four atoms, A, B, C, D, the bond-dihedral potential 

energy in the MD force field considers the dihedral angle, Φ, which is defined as the 

angle between the ABC and BCD planes. The deformation is similar to a mechanical 

torsion spring as shown in the bottom left of the figure. Fig. 6 shows a dihedral element 

from several viewpoints, which aid the formulation of the element stiffness matrix. Fig. 6 

(a) shows the dihedral element from a similar view to Fig. 5. Fig. 6 (b) shows a view 

along the vector from atoms B to C. This viewpoint demonstrates that changes in the 

dihedral angle due to deformation of the bond-dihedral element may be expressed as 

AD   . 23

For small displacements, the change in angle ΦA in radians due to the vector 

displacement ūA of atom A is 

nA

AA
A L

nu

_

ˆ
   24

in which LA_n is the perpendicular distance of atom A from the vector r̄BC as shown in Fig. 

6 (c). Similarly, the change in angle ΦD due to displacement of atom D is 

nD

DD
D L

nu

_

ˆ
  25

where LD_n is defined in Fig. 6 (d).  
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Fig. 5 Schematic of a bond-dihedral element for 4 atoms. Changes to the dihedral 
angle Φ between the planes of atoms A, B, C and B, C, D are considered in AFEM. 

 

  

Fig. 6 Definitions of lengths, vectors and angles that are used in the differentiation of 
the bond-dihedral element for the purpose of minimisation of total potential energy. 
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For atoms B and C, the relationship between their atomic displacement and change in 

dihedral angle is complicated by the fact that their displacement leads to a change in the 

vector r̄BC. Fig. 7 (a) shows a view along r̄BC with atoms A, B and C all in the horizontal 

plane. The arbitrary plane used previously in Fig. 6 (b) is chosen here to contain atoms 

A, B and C so the angle ΦA is equal to zero in Fig. 7 (a). The horizontal component of 

any displacement of atom B in Fig. 7 (a) has no effect on the angle ΦA. This is because 

the plane ABC is unaffected by atomic displacement within the plane. Only the n̂A 

component of the displacement of atom B, given by ūB·n̂A, affects the angle. This effect 

is demonstrated in Fig. 7 (b) - (d). Fig. 7 (b) shows a perpendicular view of Fig. 7 (a), 

with atoms A, B and C still in the horizontal plane. Fig. 7 (c) shows a displacement of 

atom B and Fig. 7 (d) shows an equivalent view to Fig. 7 (a) but along the new r̄BC (after 

displacement of atom B). As can be seen in Fig. 7 (d), the change in vector r̄BC due to ūB 

can be considered to produce an effective displacement of atom A; this is because in the 

view along the new vector r̄BC, the position of atom A is different than when viewing down 

the original vector r̄BC. The effective displacement of atom A can be substituted into Eq. 

24 to identify the change in angle ΦA. Displacement ūB therefore affects angle ΦA 

according to 








 


BC

PABC

nA

AB
A L

LL

L

nu _

_

ˆ
  26

in which the terms in brackets are the effective displacement of atom A due to ūB. The 

terms LBC and LA_p are shown in Fig. 7. The distance LA_p is directional and has a sign 

convention such that it is positive when the angle ABC is less than 90°. In a similar 

manner, the change in angle ΦA due to displacement ūC of atom C is calculated as 
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and the change in angle ΦD due to displacements ūB and ūC respectively are 
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and 
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As with LA_p, the sign convention for LD_p is that it is positive when the angle BCD is less 

than 90°. Aside from LA_p and LD_p all lengths refer to absolute values. The six 

relationships for angular displacement in Eqs. 24 - 29 combine according to Eq. 23 to 

give overall angular displacement as 
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Each of the vector atomic displacements ūA, ūB, ūC, ūD in Eq. 30 consist of three Cartesian 

atomic displacements. As demonstrated for bond-stretch and bond-angle finite elements 

above, Eq. 30 can be written in terms of the 12 atomic displacements u1 to u12. And the 

differentials of Eq. 30 with respect to those Cartesian displacements combine to form a 

12 x 12 element stiffness matrix, as demonstrated in Eqs. 16 - 20.  

 



 

    

21 
 

 

 

Fig. 7 Schematic of the change in angle ΦA due to a displacement of atom B while 
atoms A and C remain stationary. 

 

5 AFEM program setup and polymer structures 

The AFEM simulations import atomic coordinates from molecular dynamics polymer 

structure files. The coordinates are given for a central unit cell which repeats periodically 

in x, y and z directions to infinity. Periodic boundary conditions are used in MD and AFEM 

simulations. A nonbond cut-off distance of 0.95 nm is used since this value is frequently 

used in MD simulations. The repeats of this central unit cell are called images. The 

crystalline structure used in this study was proposed by Sasaki and Asakura [13]. Fig. 8 

(a) shows the unit cell of the crystalline structure. The unit cell is repeated once in the x, 

y, and z directions for clarity in the figures here. The eight unit cells contain eight helical 

chains aligned in the z direction, each with 20 repeat polymer units. The overall size is 

2.13 x 1.23 x 5.78 nm. For simulation of amorphous poly(lactide), the atomic structure 
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used was provided as supplementary information with McAliley’s thesis  [5]. The 

amorphous unit cell is shown in Fig. 8 (b). It contains three amorphous chains, each 

consisting of 500 poly repeat units, and is in the form of a cube of side lengths 5.6098 

nm. The chains have a molecular weight of 36000 g mol-1. Each AFEM simulation of the 

crystalline structure took less than 5 minutes on a personal computer. Each amorphous 

simulation for 13500 atoms took approximately 3 hours when utilising 16 processors of 

a supercomputer. The AFEM simulations were conducted in MATLAB. The computation 

times could have been significantly improved through the use of an efficiency-optimised 

linear equation solver. 

 

Young’s modulus is calculated based on the strain energy sum for all AFEM elements. 

For a unit cell of continuous material that is uniaxially strained, the strain energy stored 

in the material, U, is equal to the work that is applied to the material. It is given by  

FuU 2
1  31

where F is the force applied to the unit cell boundary and u is the cell elongation that 

results from the applied force. The value of strain energy calculated in the AFEM 

simulations is used to determine F. Young’s modulus is calculated as stress divided by 

strain through the values of F, u, the unit cell length and the cross-sectional area of the 

unit cell perpendicular to the applied force.  
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Fig. 8 The atomic unit cell structure for a) crystalline and b) amorphous poly(lactide). 
 

6 Application of AFEM to crystalline and amorphous poly(lactide) 

Fig. 9 shows the AFEM results for the crystalline structure when a strain is applied in the 

direction of the polymer chains. An atom on the left hand side of the structure and near 

the middle (x = 0.129 nm, y = 1.17 nm, z = 2.757 nm) is fixed in position during the 

simulations so the structure strains up and down away from the centre. In the simulation 

a value of 2% strain is used, although the value of applied strain does not affect the result 

for Young’s modulus. To ensure clarity in the figure atomic displacements are scaled by 

a factor of 5. Poisson’s ratio can be seen by the translation of the right-most polymer 

chains in the figure away from the edge of the structure: the structure contracts in the 

horizontal directions when a vertical strain is applied. The structure was also strained in 

a) Crystalline structure b) Amorphous structure
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the x and y directions to determine the mechanical properties normal to the direction of 

the polymer chains. 

 

The values of Young’s modulus and Poisson’s ratio are given in Table 1 and Table 2. 

Young’s modulus is greater in the z direction than in the x or y direction, which is to be 

expected since in the z direction the polymer chain covalent bonds must deform to allow 

the polymer chain to elongate. In the x and y directions, the polymer chains are 

connected by weaker nonbonded interactions. The Poisson's ratio values νzx and νzy, 

which indicate the z strains that result from applied x and y strains, are smaller than the 

other values as a result of the crystal being stiffer in the direction of the chains. Table 1 

also details the distribution of interatomic potential energy increases amongst the 

different AFEM element types, which is referred to as strain energy. The percentages of 

total strain energy attributed to each element type are shown. Nonbond elements contain 

the majority of strain energy. This supports the general understanding that strain in 

polymers is accommodated by deformation of weaker intermolecular bonding rather than 

of stiff covalent bonds. The strain energy fraction contained in nonbonds is much lower 

when the strain is applied in the z direction than in x and y. This is because for an applied 

strain in the z direction, it is not possible for the main chain elements to avoid strain since 

the chains are physically elongated in the z direction.  

 

The authors of this paper are aware of two atomic studies regarding the theoretical 

calculation of Young’s modulus for crystalline poly(lactide). Montes de Oca and Ward 

[14] used the COMPASS force field within the molecular dynamics package Materials 

Studio while Lin et al. [15] used the ab initio method. Montes de Oca and Ward [14] and 

Lin et al. [15] find values of Young’s modulus in the z direction of 36.0 GPa and 14.1 

GPa respectively. The small values of Poisson’s ratio found by Montes de Oca and Ward  

[14] of νzx = 0.07 and νzy = 0.08 support the small values found in the AFEM simulations. 
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The discrepancies between the values of Young’s modulus found by AFEM, by Montes 

de Oca and Ward [14], and by Lin et al. [15] are due to different crystal structures and 

force fields being used in the simulations and the different assumptions associated with 

each method. 

 

The values of Young’s modulus found in the AFEM simulations are high compared to 

values that may be expected experimentally. This can be attributed to the fact that the 

AFEM simulations are static and therefore represent Young’s modulus at a temperature 

of 0 Kelvin. Nakafuku and Takehisa [16] measured Young’s modulus of poly(L-lactide) 

experimentally and found Young’s modulus to almost double as the testing temperature 

of the sample decreased from 20°C to 10°C even though both temperatures are well 

below the glass transition temperature. Also, Brown and Clarke [17] and Ding et al. [1] 

conducted molecular dynamics simulations on polyethylene at various temperatures 

from near 0 Kelvin to well above the glass transition temperature. Their results indicate 

that the value of Young’s modulus at 0 Kelvin may be approximately 3-8 times greater 

than the value near to but below the glass transition temperature. Highly crystalline 

(>50%) rods of poly(lactide) with aligned polymer chains can have Young’s modulus 

values in the region of 6-8GPa [18-20]. If a single crystal had a Young’s modulus of 3x 

this value, at 0K the Young’s modulus in the direction of the polymer chains may be 

expected to be between 54GPa (3x3x6GPa) and 192GPa (8x3x8GPa). Therefore, the 

value calculated in Table 1 of 128GPa is reasonable.  
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Fig. 9 AFEM results for the crystalline structure. The covalent bonds are shown for the 
unstrained (red bonds with hollow atoms) and strained (blue bonds with solid atoms) 

structures. 
 

For the AFEM simulations of the amorphous phase, the values of Young’s modulus, 

Poisson's ratio, and strain energy distribution are given in Table 3. Again, a value of 2% 

strain is used. The value of 0.255 for Poisson’s ratio is reasonable for a glassy polymer. 

The value of Young’s modulus is higher than typical experimental values (e.g. 0.5-5GPa) 

which is due to the fact that the simulations are effectively conducted at 0 Kelvin as 
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discussed above. In comparison to the crystalline results, amorphous Young’s modulus 

is lower. This result supports the validity of the AFEM simulations because it is to be 

expected that Young’s modulus would be higher in a crystalline phase than in an 

amorphous phase. As with the crystalline structure, the distribution of strain energy is 

plausible because the nonbonded interactions contain the majority of strain energy in the 

AFEM results. The percentage of strain energy in nonbonds for the amorphous structure 

is in between the percentages for the crystalline structure tested normal to and parallel 

to the polymer chain orientation. This is because in an amorphous structure, the chains 

have a variety of orientations. 

 

Typically in experimental publications of biodegradable polymer degradation, the value 

of Young’s modulus is normalised by the initial value, therefore the absolute value is not 

of critical importance. The primary purpose of the AFEM technique presented in this 

study is to simulate the effect of chain scission on Young’s modulus in the amorphous 

phase, which is studied in the accompanying paper [11]. This leads to a new 

mathematical model for Young’s modulus degradation in biodegradation polymers.  

 

Applied strain direction x y z 

Young’s modulus (GPa) 50.363 53.575 128.220 

Strain energy in bond-stretch elements 0.5% 1.1% 1.9% 

Strain energy in bond-angle elements 1.5% 1.6% 5.9% 

Strain energy in bond-dihedral elements 0.9% 0.8% 2.5% 

Strain energy in nonbonds elements 97.1% 96.5% 89.7% 

Table 1 AFEM results for Young’s modulus and strain energy distribution in the 
crystalline structure for an applied displacement in the x, y, and z directions. 
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νxy 0.298

νxz 0.281

νyx 0.280

νyz 0.328

νzx 0.110

νzy 0.138

Table 2 Poisson’s ratio for the crystalline polymer structure. 
 

 

Young’s modulus (GPa) 37.1 

Strain energy in bond-stretch elements 1.9% 

Strain energy in bond-angle elements 4.2% 

Strain energy in bond-dihedral elements 2.0% 

Strain energy in nonbonds elements 91.9% 

Poisson’s ratio 0.255 

Table 3 AFEM results for Young’s modulus, Poisson’s ratio and strain energy 
distribution in the amorphous unit cell. 

 

7 Conclusion 

A new atomic-scale finite element method (AFEM) was developed for the analysis of 

biodegradable polymer Young’s modulus. The molecular dynamics force field PLAFF2 

[5], which was specifically developed for poly(lactide), was used to derive the AFEM 

technique. In AFEM, atomic-scale finite elements represent the interatomic potential 

energy functions in molecular dynamics. Three different types of finite elements were 

required in order to represent potential energy functions (i) for the interatomic separation 

between two atoms, (ii) for the angle between three atoms that are covalently bonded, 

and (iii) for the angle between the ijk and jkl planes for four atoms i,j,k,l that are covalently 
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bonded. The formulation of these finite elements was described and finite element 

stiffnesses were derived from the PLAFF2 force field [5]. AFEM simulations were 

conducted to analyse the mechanical properties of crystalline and amorphous 

poly(lactide) structures. The strain energy in the strained structures was found to be 

contained mostly in nonbond elements between atoms that are not covalently bonded. 

This finding agrees with the general belief that strain is accommodated in between the 

polymer chains rather than in stiff covalent bonds. The AFEM method enables great 

computational benefits over iterative molecular dynamics simulations. This allows the 

repeated analysis of complex amorphous polymer structures. It is therefore ideal for 

simulating chain scission in biodegradable polymers during degradation. That is the 

focus of the second study in this two part series [11], which develops a model for the 

degradation of Young’s modulus due to chain scission. 
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